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ABSTRACT
This study derives information-theoretical bounds of the success
rate (SR) of side-channel attacks on masked implementations. We
first develop a communication channel model representing side-
channel attacks on masked implementations. We then derive two
SR bounds based on the conditional probability distribution and
mutual information of shares. The basic idea is to evaluate the
upper-bound of the mutual information between the non-masked
secret value and the side-channel trace by the conditional proba-
bility distribution of shares given its leakage, with a help of the
Walsh–Hadamard transform. With the derived theorems, we also
prove that the security of masking schemes: the SR decreases ex-
ponentially with an increase in the number of masking shares, un-
der a much more relaxed condition compared with the previous
proof. To validate and utilize our theorems in practice, we propose
a deep-learning-based profiling method for estimating the condi-
tional probability distribution of shares to estimate the SR bound
and the number of traces required for attacking a given device. We
experimentally confirm that our bounds are much tighter than the
conventional bounds onmasked implementations, which validates
the relevance of our theorems to practice.
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1 INTRODUCTION
1.1 Background
Booleanmasking is one of the major countermeasures against side-
channel attacks on symmetric ciphers. In a masking scheme, an
𝑛-bit secret variable 𝑍 is represented by the sum of 𝑑 random num-
bers over F𝑛2 as 𝑍 = 𝑆1 ⊕ 𝑆2 ⊕ · · · ⊕ 𝑆𝑖 ⊕ · · · ⊕ 𝑆𝑑 , where 𝑆𝑖 is
called share. The number of masking shares 𝑑 is an essential pa-
rameter which determines the security and implementation cost. If
the masking is correctly and soundly implemented, masking with
𝑑 shares is secure against (𝑑 − 1)-th-order side-channel attacks.
This can be intuitively explained by the (𝑑 − 1)-th order probing
model—any (𝑑 − 1)-th probing attacker cannot recover the secret
variable𝑍 from the information of at most (𝑑−1) shares [4, 16, 43].
Many studies have been devoted for the implementation and veri-
fication of masking schemes for a given masking order 𝑑 − 1 (e.g.,
[2, 3, 5, 22, 26, 27, 33, 39, 43, 51, 52]); and (𝑑 − 1)-th order mask-
ing (i.e., masking with 𝑑 shares in this paper) which is considered
sufficiently secure and practical has been commonly selected and
implemented nowadays.

However, it is natural to assume that attackers would attempt
any 𝑑-th order attack on the (𝑑 − 1)-th order masked implementa-
tion. This implies that attention should be devoted towards investi-
gating how much more difficult a 𝑑-th order attack is than the cor-
responding (𝑑−1)-th order attack. It is considered that the number
of traces required for successful attacks (i.e., the attack cost) and
the implementation cost increase exponentially and quadratically
by 𝑑 , respectively [12]; hence, the implementer should determine a
minimum 𝑑 such that the attack cost is greater than the theoretical
and/or practical attack limits. This, in turn, leads to a high demand
for estimating the cost of a 𝑑-th order attack from an implemented
device and its conditions (e.g., the signal-to-noise ratio (SNR) of
the side-channel measurement). The attack cost can be evaluated
by the upper-bound of the success rate (SR) for a given number
of traces, which is equivalent to the lower-bound of the number
of traces to achieve an SR [49]. A pioneering study by Duc et al.
has derived the relation between the masking order/number of
masking shares and the SR upper-bound [20]. However, its pre-
cision and tightness should be improved for a practical use. In
TCHES 2019 [13], treating a side-channel attack as a communica-
tion channel, de Chérisey et al. showed an information-theoretical
SR upper-bound for non-masked implementations that can be cal-
culated using mutual information between a secret variable 𝑍 and
side-channel trace𝑿 , denoted by 𝐼 (𝑍 ;𝑿 ). Their information-theoretic
approach is promising because they experimentally showed that
their bounds are much tighter than those in previous studies. How-
ever, they are only applicable to non-masked implementations and
are unavailable for estimating the security of masked implementa-
tions during the design. As is described in Section 1.3, other pre-
vious studies also have some difficulties and limitations (e.g., gen-
erality, precision, and tightness) in their practical use for cases of
masked implementations.

1.2 Contributions
Information-theoretical SRupper-bounds. This study presents

a new information-theoretical approach for deriving SR upper-bounds
of side-channel attacks on masked implementations. We first ex-
tend the communication channel model of [13] to side-channel at-
tacks on masked implementations, and then derive two SR upper-
bounds: Theorem 4.5 and Theorem 4.7. Theorem 4.5 shows that
an SR bound derived from the conditional probability distribution
of the 𝑖-th share 𝑆𝑖 given its side-channel leakage 𝑳𝑖 (i.e., 𝑝𝑆𝑖 |𝑳𝑖

),
which assumes that the conditional probability distribution 𝑝𝑆𝑖 |𝑳𝑖

is known in some manner. Theorem 4.7 shows another SR bound
derived from themutual information between share and its leakage
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Figure 1: Overview of our contributions.

𝐼 (𝑆𝑖 ; 𝑳𝑖 ). The SR upper-bound of Theorem 4.5 provides a tighter
value than that of Theorem 4.7 because 𝑝𝑆𝑖 |𝑳𝑖

is far more informa-
tive than 𝐼 (𝑆𝑖 ; 𝑳𝑖 ). By contrast, the SR upper-bound of Theorem 4.7
is a natural extension of the previous study [13] and can be eval-
uated more easily than that of Theorem 4.5. The ease of analysis
comes from the fact that the mutual information 𝐼 (𝑆𝑖 ; 𝑳𝑖 ) can be
estimated/approximated by the SNR of side-channel measurement
(i.e., 𝐼 (𝑆𝑖 ; 𝑳𝑖 ) ≤ log(1 + SNR)/2). Given a target device to be pro-
filed, the evaluation of Theorem 4.7 is performed only by the SNR
of the side-channel measurement, whereas that of Theorem 4.5 is
required to estimate 𝑝𝑆𝑖 |𝑳𝑖

experimentally with a higher compu-
tational cost, as described below. Note that these theorems bound
the SRs of attacks with an optimal distinguisher that maximizes
the SR [8, 29] (the SR of any other attack is lower than that of
the attack with the optimal distinguisher). This indicates that the
bounds are valid for any type of attack that exploits the leakage(s)
of an intermediate value (i.e., the output of a selection function).

Theoretical analyses on security of masking schemes. On
the basis of Theorem 4.5, we provide a concrete proof of security
of masking schemes as Theorem 5.2: the SR decreases exponen-
tially with an increase in 𝑑 , and SR converges to 1/2𝑛 as 𝑑 → ∞,
where 𝑛 is the bit length of the target intermediate value (or the
bit length of an attacked partial key). This proof also indicates that
the number of traces required for an attack success increases ex-
ponentially with 𝑑 . Although Duc et al. has already proved this
statement in [20] using a noisy leakage model, their proof is valid
only if 𝐼 (𝑆𝑖 ; 𝑳𝑖 ) ≤ 2−2𝑛+1. This indicates that, for example, in the
case of AES (i.e., 𝑛 = 8), the proof is valid only if 𝐼 (𝑆𝑖 ; 𝑳𝑖 ) < 2−15 ≈
3.05 × 10−5. Suppose that the mutual information 𝐼 (𝑆𝑖 ; 𝑳𝑖 ) can be
bounded by the SNR as 𝐼 (𝑆𝑖 ; 𝑳𝑖 ) ≤ log(1+SNR)/2, as discussed and
experimentally evaluated in [13]. Their proof makes sense only if
the SNR is less than 6.1 × 10−5; the SNR value appears too low
to consider practical side-channel attacks1. Thus, in the existing
study [20], the security of masking schemes (here, such an expo-
nential property) was unclear under practical conditions in terms
of SNR. On the other hand, our proof provided in this paper is valid
if 𝐼 (𝑆𝑖 ; 𝑳𝑖 ) < 1/(2 ln(2)) ≈ 0.72, independently of𝑛. Our proof first
validates the masking security in general and practical cases that
were previously unknown. Moreover, we also analyze and discuss
the convergence of SR → 1/2𝑛 as 𝑑 → ∞ to further investigate
the security of masking schemes.

Accurate SR estimation. This paper also shows that Theo-
rem 4.5 can be used for a practically (at least non-trivially) tight
1In [13], de Chérisey et al. proved that more than 10,000 traces are required for a
reliable attack success on non-protected AES implementations if SNR is worse than
10−4 . However, many previous studies have reported that attack on non-protected
AES implementations have been successful within 10,000 traces. In particular, in [7],
Bronchain and Standeart reported that the noise level of some low-end off-the-shelf
devices can be too low for a secure masking.

evaluation of the SR (or the number of traces) of the masked im-
plementation with the conditional probability of a NON-masked
implementation. More precisely, to utilize Theorem 4.5 for practi-
cal SR evaluation, this paper proposes a deep learning (DL)-based
method for estimating (i.e., profiling) the conditional probability
𝑝𝑆𝑖 |𝑳𝑖

from a non-masked implementation on the same device as
the masked ones. A combination of Theorem 4.5 and DL-based
estimation enables the evaluation of the upper-bound of SR and
the lower-bound of the number of traces for attack success more
tightly and precisely than ever before.

Figure 1 illustrates the overview of the above contributions. The
practicality and effectiveness of proposed bounds/method are demon-
strated in Section 7 through an experimental attack on AES in com-
parisonwith an actual optimal attack [8, 29] in addition to a numer-
ical evaluation.

1.3 Related studies
Analysis based on specific attacks. In [9], Chari et al. first

showed that the measurement complexity of a single-bit differ-
ential power analysis (DPA) on the masked implementations in-
creases exponentiallywith𝑑 . However, for this proof, they assumed
that the measurement noise is Gaussian distributed and the leak-
ages of all the shares are sufficiently noisy. As this study was the
first report on the security proof of masked implementations to
the best of authors’ knowledge, their study has been followed by
many researchers in order to, for example, generalize/extend their
analysis to other attacks and relax the assumption about noise.

In [35], Mangard et al. derived an analytical relation between
SR and the number of attack traces as an equation/identity. In [57],
Zhang et al. presented a function named Cross Entropy Ratio (CER)
which could be used as a loss function in a deep-learning based
side-channel analysis (DL-SCA). Zhang et al. proved that DL-SCA
can always successfully recover the secret key if an infinite num-
ber of attack traces are available and CER < 1. Their formula-
tion/derivation assumed that the intermediate values correspond-
ing to a correct key and wrong keys are independent of each other.
However, some counterexamples were found as in [31, 50], mean-
ing that the assumption does not generally hold.

In [55], Zaid et al. presented another loss function for DL-SCA
named Ranking loss, and showed that Ranking loss is a lower-
bound of SR. Ranking loss can be computed only empirically, but
not analytically, and the computation of ranking loss requires the
conventional experimental/empirical evaluation of SR [32]. In this
sense, there are few merits of using ranking loss instead of other
conventional experimental evaluations.

Analysis based on central limit theorem (CLT). This type
of analysis utilizes the fact that the distribution of a score function
can be approximated as a normal distribution based on the CLT
if the distinguisher in the side-channel attack is additive [34, 44,
56, 58]. In addition, the result in [45] is generalized to some non-
additive distinguishers in [28].

Although the above approaches provide a precise approxima-
tion of SR (when the SNR is low), the major drawback is the lack
of generality because their approach depends on a specific distin-
guisher and/or leakage model (power model). In addition, the error
decay of the CLT-based approximation is slower than linear to𝑚
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(the number of traces), and their results are valid only for a suffi-
ciently large number of traces because of the characteristics of CLT.
In addition, it should be noted that these analyses are asymptotic
approximations of SR but not upper-bound. Although CLT-based
approximations can be used to evaluate the SR bound on the basis
of the Berry–Esseen theorem, the Berry–Esseen theorem incurs
an approximation error of order 1/

√
𝑚 in the derived bound [54].

Therefore, CLT-based bound could be relatively inadequate in the
context of SR evaluation as in the large deviation principle [11], al-
though CLT-based approximation could achieve some meaningful
results.

Analysis based on noisy leakage model. The noisy leakage
model is an attacker model in which the attacker can obtain the
value of the wires in a target circuit2 with “noise” [19, 41]. In [20],
Duc et al.modeled the “noise” by a statistical distance (or total vari-
ation distance) between a conditional probability distribution of in-
termediate values given side-channel leakage and the occurrence
probability distribution of intermediate values. Here, the noisy leak-
age model is reduced to a random probing model [19]. Because the
SR upper-bound can be easily evaluated using the random prob-
ing model, their modelling enables an indirect evaluation of the SR
upper-bound in the noisy leakagemodel.With this result, Duc et al.
to further prove that SR decreased exponentially with an increase
in the masking order.

However, the reduction of the noisy leakage model to the ran-
dom probing model is only meaningful if the noise is significantly
(and sometimes impractically) large. In [13], it was experimentally
demonstrated that Duc et al.’s bound only gave a trivial evaluation
result (i.e., an attack success required at least one trace) unless the
SNR of the side-channel measurement was less than 10−4. In many
practical attack conditions, the SNR frequently exceeds 10−4; thus,
it is difficult to utilize this bound in designing actual cryptographic
modules for many practical applications.

Analysis based onmutual information. In [13], de Chérisey
et al. gave an SR upper-bound using the mutual information be-
tween intermediate value and side-channel leakage by modelling
side-channel attack as a communication channel. Here, de Chérisey
et al. only focused on non-masked implementations. In [10], Cheng
et al. improved the bounds and evaluated a first-order masked im-
plementation with some extensions. However, the analysis is lim-
ited to first-order (𝑑 = 2 in this study) and is dependent on the
numerical/experimental evaluation of mutual information under
some assumptions on leakage. In this sense, their analysis result is
experimental under specific assumptions rather than fully information-
theoretic. Note that their attack model or communication channel
model is different from ours (they assumed that information of two
shares is leaked at one point with an additive composition).

In [37], Masure et al. reported that the cross-entropy (CE) loss
function, which is the most major loss function in DL(-SCA), is
asymptotically equivalent to the perceived information and can
be used for estimating the mutual information. Masure et al. also
showed that de Chérisey et al.’s bound could be estimated/evaluated
using DL-SCA. However, the reported method required an actual

2Note that the target circuit includes logic circuits evaluated on software; therefore,
their results are not limited to hardware implementation.

attack (DL-SCA) on the target module to evaluate the SR; there-
fore, it cannot be applied to evaluate the SR/number of traces for
any masking order 𝑑 without experimental attacks.

Summary. The studiesmentioned above have significantly con-
tributed to the analysis of the theoretical aspects of side-channel
attacks; however, there are still difficulties and/or limitations in
utilizing their results to design masked cryptographic modules in
practice. Among the four approaches, themutual information based
approach is probably the most promising for non-masked imple-
mentation because of its generality and practicality, but it still has
been unknown to extend it to masked implementations with any
order in an analytical manner. Addressing the aforementioned is-
sues, this paper presents information-theoretical SR bounds for
masked implementation in any order.

1.4 Paper organization
The rest of this paper is organized as follows: Section 2 introduces
the mathematical notations. Section 3 illustrates the communica-
tion channel model of side-channel attacks on masked implemen-
tation. Section 4 derives the SR upper-bounds for a given num-
ber of traces through information-theoretical analysis. Section 5
gives a proof and analysis about the security of masking schemes.
Section 6 presents the profiling method for estimating conditional
probability 𝑝𝑆𝑖 |𝑳𝑖

from unprotected (i.e., non-masked) implemen-
tation using a DL technique. Section 7 validates our theorems and
bounds through an experimental simulation of attack on AES. Fi-
nally, Section 8 concludes this paper. In addition, Appendices intro-
duce the Walsh–Hadamard transform (WHT) and the inequalities
used in our analysis.

2 MATHEMATICAL NOTATIONS
In this paper, a probability distribution function is referred to as
a probability distribution. Throughout this paper, a calligraphic
character denotes a set, an upper-case italic character denotes a
random variable, and a lower-case character denotes its element, if
it is not explicitly defined otherwise. For example, a random vari-
able on a value in a measurable set X is denoted by 𝑋 , and the
element of X is denoted by 𝑥 . Let Pr denote a probability mea-
sure. For example, the probability of a discrete random variable
𝑋 taking 𝑥 is written as Pr(𝑋 = 𝑥). Let 𝑝 denote the probabil-
ity density or mass function. For example, a joint probability of
two random variables can be written as 𝑝𝑋,𝑌 (𝑥,𝑦).3 For two ran-
dom variables 𝑋 and 𝑌 , the conditional probability distribution of
𝑌 = 𝑦 given 𝑋 = 𝑥 is defined as 𝑝𝑌 |𝑋 (𝑦 | 𝑥) = 𝑝𝑌,𝑋 (𝑦, 𝑥)/𝑝𝑋 (𝑥)
if 𝑝𝑋 (𝑥) ≠ 0; otherwise, 𝑝𝑌 |𝑋 (𝑦 | 𝑥) = 0. Let E denote the ex-
pectation operator, and E[𝑌 | 𝑋 ] denote the conditional expecta-
tion of 𝑌 given 𝑋 . The entropy of random variable 𝑋 is defined as
𝐻 (𝑋 ) = −E log𝑝𝑋 (𝑋 ). The conditional entropy of 𝑌 given𝑋 is de-
fined as 𝐻 (𝑌 | 𝑋 ) = −E log 𝑝𝑌 |𝑋 (𝑌 | 𝑋 ). The mutual information
between𝑋 and𝑌 is defined as 𝐼 (𝑋 ;𝑌 ) = 𝐻 (𝑋 ) −𝐻 (𝑋 | 𝑌 ). We also
assume that the logarithms of all the probability distributions (e.g.,

3Such a probability density or mass function does not always exist for any probability
distribution. However, for simplicity, we assume that all probability distributions in
this study have a probability density or mass function. This assumption allows us to
describe most parts of this paper with probability density or mass function without
probability measure nor distribution.
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log 𝑝𝑋 (𝑋 ), log𝑝𝑋,𝑌 (𝑋,𝑌 ), log 𝑝𝑋 |𝑌 (𝑋 | 𝑌 )) used in this study are
essentially integrable, and therefore, their entropies basically ex-
ist. Operator ⊕ denotes addition over F𝑛2 or an XOR operation. We
may represent an element of F𝑛2 like an integer (e.g., (1111)2 ∈ F42
may be represented as 24 − 1). In this study, log and ln denote bi-
nary and natural logarithms, respectively. Finally, for a function
𝑓 : F𝑛2 → R, its Walsh–Hadamard transform (WHT), which is a
discrete Fourier transform (DFT) over F2 = Z/2Z, is denoted by
𝑓 : F𝑛2 → R (See Appendix A).

3 COMMUNICATION CHANNEL MODEL TO
SIDE-CHANNEL ATTACK ON MASKED
IMPLEMENTATION

In this section, we formulate side-channel attacks on masked im-
plementations using a communication channel model given as an
extension of the non-masked model in [13], which is utilized for
deriving our SR upper-bounds in the following section. Figure 2
illustrates the extended communication channel model, where the
symbols are given as follows:

• 𝑚 ∈ N is the number of traces used for the attack.
• 𝑑 ∈ N is the number of masking shares.
• 𝐾 and �̂� are random variables for an 𝑛-bit secret key and

estimated key on a key space K = {0, 1}𝑛 , respectively
(for example, 𝑛 = 8 for AES).

• 𝑇𝑚 = (𝑇1,𝑇2, . . . ,𝑇𝑚) is an 𝑚-dimensional random vec-
tor for plaintexts or ciphertexts and consists of𝑚 random
variables𝑇1,𝑇2, . . . ,𝑇𝑚 , each of which denotes an𝑛-bit par-
tial plaintext/ciphertext (i.e., an element of {0, 1}𝑛). In this
study, 𝑇1,𝑇2, . . . ,𝑇𝑚 are assumed to be independent and
uniformly distributed.

• 𝑍𝑚 = (𝑍1, 𝑍2, . . . , 𝑍𝑚) is an𝑚-dimensional randomvector
for secret intermediate values. For each 𝑗 ∈ {1, 2, . . . ,𝑚},
𝑍 𝑗 is an 𝑛-bit secret value calculated from 𝐾 and 𝑇𝑗 by
using a selection function 𝜙 . The selection function 𝜙 is
assumed to be bijective in terms of𝑇𝑗 for fixed𝐾 , as in [13].
For example, 𝑍 𝑗 = 𝜙 (𝐾,𝑇𝑗 ) = Sbox(𝐾 ⊕𝑇𝑗 ) for AES. Here,
𝑍 𝑗 is independent and uniformly distributed because𝑇𝑗 is
assumed to be the same.

• 𝑺𝑚 = (𝑺1, 𝑺2, . . . , 𝑺𝑚) is a (𝑑 × 𝑚)-dimensional random
vector for shares of 𝑍𝑚 (this random vector forms a 2D
array). For each 𝑗 ∈ {1, 2, . . . ,𝑚}, 𝑺 𝑗 is a 𝑑-dimensional
random vector consisting of 𝑑 random variables for shares
𝑆1, 𝑆2, . . . , 𝑆𝑖 , . . . , 𝑆𝑑 . Note that, for 𝑍 𝑗 and its shares 𝑺 𝑗 =
(𝑆1, 𝑆2, . . . , 𝑆𝑑 ),𝑍 𝑗 = 𝑆1⊕𝑆2⊕· · ·⊕𝑆𝑑 always holds. Shares
𝑆1, 𝑆2, . . . , 𝑆𝑑 are assumed to be identically and uniformly
distributed, which corresponds to the uniformity property
commonly required for masking schemes [3, 26, 39, 43].

Note that 𝑑-share masking corresponds to at most (𝑑 − 1)-
th order masking.

• 𝑿𝑚 = (𝑿1,𝑿2, . . . ,𝑿𝑚) is a (𝑑 ×𝑚 × ℓ)-dimensional ran-
dom vector for side-channel traces (this random vector
forms a 3D array), where ℓ is the number of sample points
for one leakage (i.e., partial trace corresponding to one
share). For each 𝑗 ∈ {1, 2, . . . ,𝑚},𝑿 𝑗 is a (𝑑×ℓ)-dimensional
random vector of leakages 𝑳1, 𝑳2, . . . , 𝑳𝑑 corresponding to
shares𝑆1, 𝑆2, . . . , 𝑆𝑑 , respectively. Leakage 𝑳𝑖 (𝑖 ∈ {1, 2, . . . , 𝑑})
is an ℓ-dimensional random vector on Rℓ . It is assumed
that 𝑳𝑖 is dependent only on the corresponding share 𝑆𝑖 ,
and is independent of other leakage/shares. In addition,
𝑳1, 𝑳2, . . . , 𝑳𝑑 are assumed to be independent, but not nec-
essarily identically distributed.

The communication channel in Figure 2 corresponds to aMarkov
chain 𝐾 ↔ 𝑍𝑚 ↔ 𝑺𝑚 ↔ 𝑿𝑚 ↔ �̂� .

In the following, for simplicity, the subscripts 𝑗 ∈ {1, 2, . . . ,𝑚}
are omitted as it does not need specifying owing to the assumption
of independent and identically distributed (i.i.d.). For example, the
expectation of 𝑍1, 𝑍2, . . . , 𝑍𝑚 can be represented using that of an
independent copy of 𝑍 .

This communication channel shows that the secret variable𝑍 is
decomposed into𝑑 shares as 𝑆1, 𝑆2, . . . , 𝑆𝑑 , and that the attacker ob-
tains information about each share 𝑆𝑖 from the side-channel leak-
age (i.e., partial trace) 𝑳𝑖 . In addition, the attacker is supposed to
obtain information about secret variable 𝑍 from the entire side-
channel trace 𝑿 that contains leakages on all shares 𝑳1, 𝑳2, . . . , 𝑳𝑑 .

Relation to probing model. The attack model as the commu-
nication channel is reduced to a 𝑑-th order probing model [3, 16,
19, 43]. We assume that a 𝑑-th-order probing attacker directly ob-
tains the information of the 𝑑 shares instead of the correspond-
ing side-channel leakages. In other words, the probing attacker in
our model obtains 𝐻 (𝑆𝑖 )-bit information of each share as the max-
imum value of 𝐼 (𝑆𝑖 ; 𝑳𝑖 ) (note that 𝐼 (𝑆𝑖 ; 𝑳𝑖 ) = 𝐻 (𝑆𝑖 ) −𝐻 (𝑆𝑖 | 𝑳𝑖 ) ≤
𝐻 (𝑆𝑖 )). Such a probing attacker is far stronger than the real side-
channel attacker who observes 𝑳𝑖 but does not directly observe
𝑆𝑖 , because 𝐻 (𝑆𝑖 ) ≥ 𝐼 (𝑆𝑖 ; 𝑳𝑖 ) and 𝐼 (𝑍 ; 𝑺) ≥ 𝐼 (𝑍 ;𝑿 ), according to
the data processing inequality for the Markov chain 𝑍 ↔ 𝑺 ↔ 𝑿 .
This indicates that the 𝑑-th order probing model attacker always
has greater advantages than any other attacker in our model and
is equivalent to the strongest attacker in this model. Thus, the pro-
posed attack model is reduced to the probing model. This indicates
that the results using Figure 2 can be applied to provably secure
masking schemes in the probing model; that is, using the proposed
theorems, we can evaluate the SR upper-bound of the𝑑-th order at-
tack on a provably secure (𝑑 −1)-th order masked implementation
in the probing model. Note here that the 𝑑-th order probing model
mentioned in this paper is not completely equivalent to the origi-
nal Ishai–Sahai–Wagner (ISW) probing model [30]; however, such
a model is common to discuss masked implementations in several
previous studies and is closely related to the ISW probing model.

Independence condition. In our communication channel, we
assume that each leakage 𝑳𝑖 depends only on the corresponding
share 𝑆𝑖 . This implies that 𝑳1, 𝑳2, . . . , 𝑳𝑑 are i.i.d because the shares
𝑆1, 𝑆2, . . . , 𝑆𝑑 are i.i.d due to the requirement of masking schemes
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(many masking schemes have been developed with this assump-
tion). This assumption is essential for the proof of Lemma 4.4 and
the following theorems. However, several previous studies [1, 14,
15, 22, 24, 38, 42, 47, 48] have pointed out that, in actual masked
implementations, each leakage may depend on multiple shares be-
cause of physical defaults and/or micro-architectural features such
as glitches, transitions, couplings, and interaction. For example, if
a leakage 𝑳1 depends on the two shares 𝑆1 and 𝑆2, an attacker
can estimate the values of these shares through the leakage 𝑳1.
In other words, 𝑆1 and 𝑆2 are conditionally dependent given 𝑳1
(i.e., 𝑆1 ⊥̸⊥ 𝑆2 | 𝑳1). In this case, the substantial number of mask-
ing shares (security order) will be smaller than the expected one.
Therefore, in practice, consideration may need to be given to some
security-order reductions, even if the masking scheme is provably
secure. Alternatively, masking should be carefully implemented to
eliminate such an interaction. A tool that automatically modifies
masked software to eliminate leakages due to such an architectural
interaction, named Rosita [47, 48], would be useful for realizing
practical and secure implementation with the independence condi-
tion and would work well with our theorems and profiling method.

Remark 3.1. The independence assumption used in this studymakes
our analysis simple and general (as used in many previous studies).
Actually, the cross-share dependency would be very specific and
unique to device/implementation and should analyzed for a given
device/implementation. Our analysis and theorems are enough prac-
tical for a simple and general evaluation which do not target a spe-
cific device, which may be followed by more complex analyses and
specific case studies to derive more accurate evaluation for a given
device/implementation without the independence condition.

4 INFORMATION-THEORETICAL SR
UPPER-BOUNDS

4.1 Overview
In this section, we derive information-theoretical SR upper-bounds
from the communication channel model extended above, namely,
Theorems 1 and 2. Theorem 4.5 bounds SR with the conditional
probability of 𝑆𝑖 given 𝑳𝑖 (i.e., 𝑝𝑆𝑖 |𝑳𝑖

). Theorem 4.7 bounds SR with
the mutual information between 𝑆𝑖 and 𝑳𝑖 (i.e., 𝐼 (𝑆𝑖 ; 𝑳𝑖 )). For ob-
taining the theorems,we first prove Lemma 4.1: SR is upper-bounded
by 𝐼 (𝑍𝑚 ;𝑿𝑚 | 𝑇𝑚), owing to the communication channel model.
We then prove Lemma 4.2: 𝐼 (𝑍𝑚 ;𝑿𝑚 | 𝑇𝑚) is upper-bounded by
𝐼 (𝑍 ;𝑿 ), which allows for a simple experimental evaluation and
makes the following analyses easy. FromLemma 4.1 and Lemma 4.2,
we derive Proposition 4.3: an analytical relationship between 𝐼 (𝑍 ;𝑿 )
and the SR of attack on masked implementation. We thirdly prove
Lemma 4.4: 𝐼 (𝑍 ;𝑿 ) is upper-bounded using theWHT of 𝑝𝑆𝑖 |𝑳𝑖

. We
derive Theorem 4.5 from Lemma 4.4 and Proposition 4.3. Finally,
we prove Lemma 4.6: 𝐼 (𝑍 ;𝑿 ) is upper-bounded by the product of
𝐼 (𝑆1 | 𝑳1), 𝐼 (𝑆2 | 𝑳2), . . . , and 𝐼 (𝑆𝑑 | 𝑳𝑑 ) using Lemma 4.4. We
derive Theorem 4.7 from Theorem 4.5 and Lemma 4.6.

4.2 Relation between SR and mutual
information

Lemma 4.1. Let SR = Pr(𝐾 = �̂�) be the success rate of side-
channel attacks. In the communication channel shown in Figure 2,

the success rate SR is upper-bounded using mutual information as
follows:

𝜉 (SR) ≤ 𝐼 (𝑍𝑚 ;𝑿𝑚 | 𝑇𝑚),

where 𝜉 (𝑟 ) is a measurable function on a closed interval [0, 1], de-
fined as

𝜉 (𝑟 ) = 𝐻 (𝐾) − (1 − 𝑟 ) log2 (2𝑛 − 1) − 𝐻2 (𝑟 ),

and 𝐻2 (𝑟 ) = −𝑟 log(𝑟 ) − (1 − 𝑟 ) log(1 − 𝑟 ) is the binary entropy
function.

Proof. We omit this proof because Lemma 4.1 is proven in the
manner almost same as in [13], despite the difference between our
and de Chérisey et al.’s communication channels. □

As proven in Lemma 5.1, the function 𝜉 in Lemma 4.1 is non-
negative, is minimized as 𝜉 (2−𝑛) = 0, and is maximized as 𝜉 (1) = 𝑛.
Intuitively, 𝜉 converts the probability (i.e., SR) to the entropy of the
recovered secret key (i.e., the number of recovered bits of the se-
cret key). For an 𝑛-bit secret key, if the attacker has no information
about the key, then SR = Pr(𝐾 = �̂�) = 2−𝑛 ; that is, the key recov-
ery is equivalent to a completely random guess from 2𝑛 candidates.
This indicates that the attacker recovers a zero bit as 𝜉 (2−𝑛) = 0.
In contrast, if the attacker has all the key information, then SR = 1.
This indicates that the attacker recovers 𝑛 bits, as 𝜉 (1) = 𝑛. Thus,
𝜉 derives the entropy (i.e., number of key bits to be recovered) to
achieve a given SR. Lemma 4.1 states that this entropy is upper-
bounded by 𝐼 (𝑍𝑚 ;𝑿𝑛 | 𝑇𝑚). If 𝐼 (𝑍𝑚 ;𝑿𝑚 | 𝑇𝑚) = 0 (i.e., the at-
tacker obtains no information from the side-channel traces), then
𝜉 (SR) ≤ 0, followed by SR = 2−𝑛 . However, it is quite difficult to
derive or compute the conditional mutual information 𝐼 (𝑍𝑚 ;𝑿𝑛 |
𝑇𝑚) = E log𝑝 (𝑍𝑚,𝑿𝑛 | 𝑇𝑚)/(𝑝 (𝑍𝑚 | 𝑇𝑚)𝑝 (𝑿𝑚 | 𝑇𝑚)) analyt-
ically, because it contains a multiple integral for the expectation.
To simplify the analysis and computation, we introduce and uti-
lize Lemma 4.2.

Lemma 4.2. In the communication channel in Figure 2, mutual in-
formation 𝐼 (𝑍𝑚 ;𝑿𝑚 | 𝑇𝑚) and 𝐼 (𝑍 ;𝑿 ) satisfy 𝐼 (𝑍𝑚 ;𝑿𝑚 | 𝑇𝑚) ≤
𝑚𝐼 (𝑍 ;𝑿 ).

Proof. Becausemutual information is decomposed into entropies,
𝐼 (𝑍𝑚 ;𝑿𝑚 | 𝑇𝑚) is upper-bounded as follows:

𝐼 (𝑍𝑚 ;𝑿𝑚 | 𝑇𝑚) (𝑎)
= 𝐻 (𝑿𝑚 | 𝑇𝑚) − 𝐻 (𝑿𝑚 | 𝑍𝑚,𝑇𝑚)
(𝑏)
= 𝐻 (𝑿𝑚 | 𝑇𝑚) − 𝐻 (𝑿𝑚 | 𝑍𝑚)
= 𝐻 (𝑿𝑚) − 𝐻 (𝑿𝑚 | 𝑍𝑚)

− (𝐻 (𝑿𝑚) − 𝐻 (𝑿𝑚 | 𝑇𝑚))
(𝑐)
= 𝐼 (𝑍𝑚 ;𝑿𝑚) − 𝐼 (𝑇𝑚 ;𝑿𝑚)
(𝑑)
≤ 𝑚𝐼 (𝑍 ;𝑿 ),

where the equalities (𝑎) and (𝑐) follow from the definition of mutual
information; the equality (𝑏) holds because (𝑇𝑚,𝑿𝑚) is condition-
ally independent given 𝑍𝑚 ; and the inequality (𝑑) holds because
𝐼 (𝑍𝑚 ;𝑿𝑚) =𝑚𝐼 (𝑍 ;𝑿 ) and 𝐼 (𝑇𝑚 ;𝑿𝑚) ≥ 0. □
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Lemma 4.2 indicates that the mutual information with𝑚 traces
𝐼 (𝑍𝑚 ;𝑿𝑚 | 𝑇𝑚) is upper-bounded by a multiple of mutual in-
formation of one trace 𝐼 (𝑍 ;𝑿 ) by𝑚. The evaluation of 𝐼 (𝑍 ;𝑿 ) is
much easier than the computation of 𝐼 (𝑍𝑚 ;𝑿𝑚 | 𝑇𝑚). According
to Lemma 4.1 and Lemma 4.2, we obtain Proposition 4.3.

Proposition 4.3. The success rate SR is upper-bounded usingmu-
tual information 𝐼 (𝑍,𝑿 ) as follows:

𝜉 (SR) ≤ 𝑚𝐼 (𝑍 ;𝑿 ) .

Proof. It is obvious from Lemma 4.1 and Lemma 4.2.
□

Proposition 4.3 states that SR is upper-bounded by𝑚𝐼 (𝑍 ;𝑿 ) in
the proposed communication channel model in Figure 2.

4.3 SR upper-bound by conditional probability
distribution

We introduce Lemma 4.4 that derives the relation between 𝐼 (𝑍 ;𝑿 )
and the conditional probability distribution 𝑝𝑆𝑖 |𝑳𝑖

.

Lemma 4.4. Consider the communication channel in Figure 2. Mu-
tual information 𝐼 (𝑍 ;𝑿 ) is upper-bounded using the conditional prob-
ability distribution 𝑝𝑆𝑖 |𝑳𝑖

as follows:

𝐼 (𝑍 ;𝑿 ) ≤ log

(∑
𝑤

𝑑∏
𝑖=1
E𝑝𝑆𝑖 |𝑳𝑖

(𝑤 | 𝑳𝑖 )2
)
,

where 𝑝𝑆𝑖 |𝑳𝑖
is the WHT of 𝑝𝑆𝑖 |𝑳𝑖

.

Proof. According to the definition of mutual information and
Jensen’s inequality (8), we have

𝐼 (𝑍 ;𝑿 ) = 𝐻 (𝑍 ) − 𝐻 (𝑍 | 𝑿 )
= E log𝑝𝑍 |𝑿 (𝑍 | 𝑿 ) + 𝐻 (𝑍 )
≤ logE𝑝𝑍 |𝑿 (𝑍 | 𝑿 ) + 𝑛

= logE

[∑
𝑧

𝑝𝑍 |𝑿 (𝑧 | 𝑿 )2
]
+ 𝑛. (1)

Here, E𝑝𝑍 |𝑿 (𝑍 | 𝑿 ) = E
[∑

𝑧 𝑝𝑍 |𝑿 (𝑧 | 𝑿 )2
]
holds because

E𝑝𝑍 |𝑿 (𝑍 | 𝑿 ) =
∫ ∑

𝑧

𝑝𝑍,𝑿 (𝑧, 𝒙)𝑝𝑍 |𝑿 (𝑧 | 𝒙) 𝑑𝒙

=
∫

𝑝𝑿 (𝒙)
∑
𝑧

𝑝𝑍 |𝑿 (𝑧 | 𝒙)2 𝑑𝒙

= E

[∑
𝑧

𝑝𝑍 |𝑿 (𝑧 | 𝑿 )2
]
.

The conditional probability 𝑝𝑍 |𝑿 (𝑧 | 𝑿 ) is represented by

𝑝𝑍 |𝑿 (𝑧 | 𝑿 ) (𝑒)
=

∑
𝑠1,...,𝑠𝑑

𝑝𝑍,𝑆1,...,𝑆𝑑 |𝑳1,...,𝑳𝑑
(𝑧, 𝑠1, . . . , 𝑠𝑑 | 𝑳1, . . . , 𝑳𝑑 )

(𝑓 )
=

∑
𝑠1,...,𝑠𝑑

𝑝𝑍 |𝑆1,...,𝑆𝑑 (𝑧 | 𝑠1, . . . , 𝑠𝑑 )
𝑑∏
𝑖=1

𝑝𝑆𝑖 |𝑳𝑖
(𝑠𝑖 | 𝑳𝑖 )

(𝑔)
=

∑
𝑠1⊕𝑠2⊕···⊕𝑠𝑑=𝑧

𝑑∏
𝑖=1

𝑝𝑆𝑖 |𝑳𝑖
(𝑠𝑖 | 𝑳𝑖 ), (2)

where the equality (𝑒) follows from the marginalization in terms
of (𝑆1, 𝑆2, . . . , 𝑆𝑑 ) and 𝑿 = (𝑳1, . . . , 𝑳𝑑 ); the equality (𝑓 ) follows
from the Markov chain 𝑍 ↔ 𝑺 ↔ 𝑳 and the independence of
(𝑆1, 𝑳1), . . . , (𝑆𝑑 , 𝑳𝑑 ); and the equality (𝑔) follows from the relation
between the intermediate value and its shares:

𝑝𝑍 |𝑆1,...,𝑆𝑑 (𝑧 | 𝑠1, . . . , 𝑠𝑑 ) =
{1 if 𝑧 = 𝑠1 ⊕ 𝑠2 ⊕ · · · ⊕ 𝑠𝑑 ,
0 otherwise.

Equation (2) indicates that the conditional probability 𝑝𝑍 |𝑿 (· | 𝑿 )
is represented by the XOR convolution of 𝑝𝑆𝑖 |𝑳𝑖

(· | 𝑳𝑖 ). Here, we
define the WHT of 𝑝𝑍 |𝑿 (· | 𝑿 ) by

𝑝𝑍 |𝑿 (𝑤 | 𝑿 ) =
∑
𝑧∈F𝑛2

𝑝𝑍 |𝑿 (𝑧 | 𝑿 )(−1) ⟨𝑤 ·𝑧 ⟩,

and the WHT of 𝑝𝑆𝑖 |𝑳𝑖
(· | 𝑳𝑖 ) by

𝑝𝑆𝑖 |𝑳𝑖
(𝑤 | 𝑳𝑖 ) =

∑
𝑠∈F𝑛2

𝑝𝑆𝑖 |𝑳𝑖
(𝑠 | 𝑳𝑖 ) (−1) ⟨𝑤 ·𝑠 ⟩ .

Using these WHTs, Equation (2), and Parseval’s identity (7), we
have ∑

𝑧

𝑝𝑍 |𝑿 (𝑧 | 𝑿 )2 = 2−𝑛
∑
𝑤

𝑝𝑍 |𝑿 (𝑤 | 𝑿 )2

= 2−𝑛
∑
𝑤

𝑑∏
𝑖=1

𝑝𝑆𝑖 |𝑳𝑖
(𝑤 | 𝑳𝑖 )2 . (3)

Thus, according to Inequality (1), and Equation (3), we have

𝐼 (𝑍 ;𝑿 ) ≤ log 2−𝑛E
∑
𝑤

𝑑∏
𝑖=1

𝑝𝑆𝑖 |𝑳𝑖
(𝑤 | 𝑳𝑖 )2 + 𝑛

≤ log
∑
𝑤

𝑑∏
𝑖=1
E𝑝𝑆𝑖 |𝑳𝑖

(𝑤 | 𝑳𝑖 )2 .

□

Lemma 4.4 states that 𝐼 (𝑍 ;𝑿 ) is upper-bounded by the WHT
of conditional probability distribution 𝑝𝑆𝑖 |𝑳𝑖

, which is followed by
Theorem 4.5.

Theorem 4.5 (SR upper-bound by conditional probability
distribution). Let 𝑑 and𝑚 be the number of masking shares and
traces used in an attack, respectively. For each 𝑖 ∈ {1, 2, . . . , 𝑑}, let
𝑝𝑆𝑖 |𝑳𝑖

be the conditional probability distribution of share 𝑆𝑖 given its
leakage 𝑳𝑖 . The success rate SR is upper-bounded as

𝜉 (SR) ≤ 𝑚 log
∑
𝑤

𝑑∏
𝑖=1
E𝑝𝑆𝑖 |𝑳𝑖

(𝑤 | 𝑳𝑖 )2 .

Proof. It is apparent from Lemma 4.4 and Proposition 4.3. □

Theorem 4.5 can be used for a tight evaluation of SR and number
of attack traces with a combination of a DL technique, as proposed
in Section 6.
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4.4 SR upper-bound by mutual information
We derive an upper-bound of the WHT of 𝑝𝑆𝑖 |𝐿𝑖 by 𝐼 (𝑆𝑖 ; 𝑳𝑖 ) to
reveal the relationship between 𝐼 (𝑍 ;𝑿 ) and 𝐼 (𝑆𝑖 ; 𝑳𝑖 ) with Theo-
rem 4.5.

Lemma 4.6. Consider the communication channel in Figure 2. For
any 𝑖 ∈ {1, 2, . . . , 𝑑}, the WHT of the conditional probability distri-
bution 𝑝𝑆𝑖 |𝑳𝑖

is upper-bounded using mutual information 𝐼 (𝑆𝑖 ; 𝑳𝑖 )
as follows:{

E𝑝𝑆𝑖 |𝑳𝑖
(𝑤 | 𝑳𝑖 )2 = 1 (𝑤 = 0),

E𝑝𝑆𝑖 |𝑳𝑖
(𝑤 | 𝑳𝑖 )2 ≤ 2 ln(2)𝐼 (𝑆𝑖 | 𝑳𝑖 ) (otherwise),

where ln denotes the natural logarithm.

Proof. According to the definition of WHT, we have

𝑝𝑆𝑖 |𝑳𝑖
(𝑤 | 𝑳𝑖 ) =

∑
𝑠∈S

𝑝𝑆𝑖 |𝑳𝑖
(𝑠 | 𝑳𝑖 )(−1) ⟨𝑤 ·𝑠 ⟩,

where ⟨𝑤 · 𝑠⟩ denotes the sum of the products of𝑤 and 𝑠 modulo 2,
when we consider them as F𝑛2 elements (⟨𝑤 · 𝑠⟩ is a function from
F𝑛2 × F𝑛2 to {0, 1}). Owing to the law of total probability, for𝑤 = 0,
it holds

𝑝𝑆𝑖 |𝑳𝑖
(0 | 𝑳𝑖 ) =

∑
𝑠∈S

𝑝𝑆𝑖 |𝑳𝑖
(𝑠 | 𝑳𝑖 ) = 1.

Consider the case that 𝑤 ≠ 0. Let 1 denote the indicator func-
tion. The WHT is decomposed as

𝑝𝑆𝑖 |𝑳𝑖
(𝑤 | 𝑳𝑖 ) =

∑
𝑠∈S

𝑝𝑆𝑖 |𝑳𝑖
(𝑠 | 𝑳𝑖 )1{ ⟨𝑤 ·𝑠 ⟩=0}

−
∑
𝑠∈S

𝑝𝑆𝑖 |𝑳𝑖
(𝑠 | 𝑳𝑖 )1{ ⟨𝑤 ·𝑠 ⟩=1} .

Define a random variable 𝑌 (𝑤)
𝑖 = ⟨𝑤 · 𝑆𝑖 ⟩. The above equation is

equivalent to

𝑝𝑆𝑖 |𝑳𝑖
(𝑤 | 𝑳𝑖 ) = E

[
1{ ⟨𝑤 ·𝑆𝑖 ⟩=0} | 𝑳𝑖

]
− E

[
1{ ⟨𝑤 ·𝑆𝑖 ⟩=1} | 𝑳𝑖

]
= 𝑝

𝑌 (𝑤)
𝑖 |𝑳𝑖

(0 | 𝑳𝑖 ) − 𝑝𝑌 (𝑤)
𝑖 |𝑳𝑖

(1 | 𝑳𝑖 ).

Note that, for any 𝑤 ≠ 0, it holds that 𝑝
𝑌 (𝑤)
𝑖

(0) = 𝑝
𝑌 (𝑤)
𝑖

(1) = 1/2
because the number of candidates of 𝑠 satisfying ⟨𝑤 · 𝑠⟩ = 1 is
equivalent to half of |S|. Taking the absolute value of 𝑝𝑆𝑖 |𝑳𝑖

(𝑤 |
𝑳𝑖 ), we have��𝑝𝑆𝑖 |𝑳𝑖

(𝑤 | 𝑳𝑖 )
�� = ����𝑝𝑌 (𝑤)

𝑖 |𝑳𝑖
(0 | 𝑳𝑖 ) − 𝑝𝑌 (𝑤)

𝑖 |𝑳𝑖
(1 | 𝑳𝑖 )

����
(ℎ)
=

���������𝑝𝑌 (𝑤)
𝑖 |𝑳𝑖

(0 | 𝑳𝑖 ) − 1/2
����

+
����𝑝𝑌 (𝑤)

𝑖 |𝑳𝑖
(1 | 𝑳𝑖 ) − 1/2)

���������
=

∑
𝑦∈{0,1}

����𝑝𝑌 (𝑤)
𝑖 |𝑳𝑖

(𝑦 | 𝑳𝑖 ) − 𝑝𝑌 (𝑤)
𝑖

(𝑦)
����

≤
√
2 ln(2)𝐷KL (𝑝𝑌 (𝑤)

𝑖 |𝑳𝑖
∥ 𝑝

𝑌 (𝑤)
𝑖

),

where 𝐷KL denotes the Kullback–Leibler (KL) divergence, and we
here use Pinsker’s inequality (9) to bound 𝑝𝑆𝑖 |𝑳𝑖

using the KL diver-
gence. The equality (ℎ) holds because 𝑝

𝑌 (𝑤)
𝑖 |𝑳𝑖

(0 | 𝑳𝑖 )+𝑝𝑌 (𝑤)
𝑖 |𝑳𝑖

(1 |

𝑳𝑖 ) = 1 and 0 ≤ 𝑝
𝑌 (𝑤)
𝑖 |𝑳𝑖

(𝑦 | 𝑳𝑖 ) ≤ 1. Then, squaring both sides
and taking expectation, we have

E𝑝𝑆𝑖 |𝑳𝑖
(𝑤 | 𝑳𝑖 )2 ≤ 2 ln(2)𝐷KL (𝑝𝑌 (𝑤)

𝑖 ,𝑳𝑖
∥ 𝑝

𝑌 (𝑤)
𝑖

𝑝𝑳𝑖 )

= 2 ln(2)𝐼 (𝑌 (𝑤)
𝑖 ; 𝑳𝑖 ) .

As 𝑌 (𝑤)
𝑖 is considered a function of 𝑍 , it holds that 𝐼 (𝑌 (𝑤)

𝑖 ; 𝑳𝑖 ) ≤
𝐼 (𝑆𝑖 ; 𝑳𝑖 ) according to the data processing inequality. Therefore, we
have

E𝑝𝑆𝑖 |𝑳𝑖
(𝑤 | 𝑳𝑖 )2 ≤ 2 ln(2)𝐼 (𝑆𝑖 ; 𝑳𝑖 ),

for𝑤 ≠ 0. This completes the proof. □

From Theorem 4.5 and Lemma 4.6, we prove Theorem 4.7.

Theorem 4.7 (SR upper-bound by mutual information). Let
𝑑 and𝑚 be the number of masking shares and number of traces in an
attack, respectively. For each 𝑖 ∈ {1, 2, . . . , 𝑑}, let 𝐼 (𝑆𝑖 ; 𝑳𝑖 ) denote the
mutual information between shares 𝑆𝑖 and leakages 𝑳𝑖 . The success
rate SR is upper-bounded as

𝜉 (SR) ≤ 𝑚 log

(
(2𝑛 − 1)(2 ln(2))𝑑

𝑑∏
𝑖=1

𝐼 (𝑆𝑖 ; 𝑳𝑖 ) + 1

)
.

Proof. According to Theorem 4.5 and Lemma 4.6, we conclude

𝜉 (SR) ≤ 𝑚 log

(∑
𝑤

𝑑∏
𝑖=1
E𝑝𝑆𝑖 |𝑳𝑖

(𝑤 | 𝑳𝑖 )2
)

≤ 𝑚 log

(∑
𝑤≠0

𝑑∏
𝑖=1

2 ln(2)𝐼 (𝑆𝑖 ; 𝑳𝑖 ) + 1

)
=𝑚 log

(
(2𝑛 − 1) (2 ln(2))𝑑

𝑑∏
𝑖=1

𝐼 (𝑆𝑖 ; 𝑳𝑖 ) + 1

)
.

□

5 SECURITY PROOF OF MASKED
IMPLEMENTATIONS

5.1 Overview
In this section, we prove that SR decreases exponentially by 𝑑 and
that SR converges to 1/2𝑛 as 𝑑 → ∞ using Theorem 4.5. We then
describe the security of masked implementation using the lemmas
and theorems from the viewpoint of the convergence condition of
SR → 1/2𝑛 as 𝑑 → ∞.

5.2 SR convergence
Theorem 4.5 and Theorem 4.7 state that there is a relation between
SR and the number of masking shares 𝑑 . In [20], Duc et al. showed
that the SR on masked implementations decrease exponentially
by 𝑑 if 𝐼 (𝑆𝑖 ; 𝑳𝑖 ) is significantly small (i.e., 𝐼 (𝑆𝑖 ; 𝑳𝑖 ) ≤ 2−2𝑛+1). We
prove a similar but stronger result using Theorem 4.5, that holds
if 𝐼 (𝑆𝑖 ; 𝑳𝑖 ) < 1/(2 ln(2)) ≈ 0.72, which is a much more relaxed
condition than 𝐼 (𝑆𝑖 ; 𝑳𝑖 ) ≤ 2−2𝑛+1 for any 𝑛 ∈ N. For the proof, we
introduce Lemma 5.1.

Lemma 5.1. Let SR𝑑 be the success rate of a side-channel attack on
a masked implementation with 𝑑 shares. Let 𝑛 ∈ N be the bit length.
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Let 𝜖 > 0 be a real number, such that∀𝑑 ∈ N, sup𝑖 max𝑤≠0 E𝑝𝑆𝑖 |𝑳𝑖
(𝑤 |

𝑳𝑖 )2 < 𝜖 . If 𝜖 < 1, it holds SR𝑑 − 1/2𝑛 = 𝑂 (𝜖𝑑/2) (𝑑 → ∞).

Proof. Define a continuous function 𝜉 : [0, 1] → [0,∞) as 𝜉 (𝑟 ) =
𝑛− (1−𝑟 ) log(2𝑛 −1) −𝐻2 (𝑟 ). Function 𝜉 is of class𝐶2 on the open
interval (0, 1) (namely, there exists the second derivative 𝜕2𝜉

𝜕𝑟 2
on

(0, 1) and the second derivative is continuous).We prove Lemma 5.1
using Theorem 4.7 and a relation between 𝜉 (𝑟 ) and 𝑟−1/2𝑛 derived
from Taylor’s theorem. To derive the above relation, we first show
that 𝜉 is strictly convex with a global minimum of 𝜉 (1/2𝑛) = 0.

Show that function 𝜉 is strictly convex with a minimum of 0 at
𝑟0 = 1/2𝑛 . Recall that (1 − 𝑟 ) log(2𝑛 − 1) is convex because it is
a linear function of 𝑟 and −𝐻2 (𝑟 ) is strictly convex. Hence, the
function 𝜉 (𝑟 ) = 𝑛− (1−𝑟 ) log(2𝑛 − 1) −𝐻2 (𝑟 ), which is the sum of
the above (strictly) convex functions and constant coefficient 𝑛, is
also strictly convex. If a strictly convex function has an extremum,
then the extremum is always a unique global minimum. Let 𝑟0 be
the stationary point of 𝜉 that minimizes 𝜉 globally. Point 𝑟0 is given
by a solution of the following equation:

𝜕𝜉 (𝑟0)
𝜕𝑟

= log(𝑟0) − log(1 − 𝑟0) + log(2𝑛 − 1) = 0.

Thus, 𝑟0 = 1/2𝑛 , and 𝜉 (𝑟0) = 0 is the global minimum owing to the
convexity.

Derive a relation between 𝜉 (𝑟 ) and 𝑟 − 1/2𝑛 using Taylor’s theo-
rem. Let 𝑑0 be a positive integer that satisfies

min{𝜉 (0), 𝜉 (1)} > 𝑚 log(𝑒) (2𝑛 − 1)𝜖𝑑0 .
For any integer 𝑑 ≥ 𝑑0, define a half-open interval I𝑑 = { 𝑗 ∈
[0,∞) | 𝑗 < 𝑚 log(𝑒)(2𝑛 − 1)𝜖𝑑 }. Let an interval U𝑑 = 𝜉−1 (I𝑑 ).
According to their definition, it always holds I𝑑 ⊂ I𝑑0 , which is
followed by U𝑑 ⊂ U𝑑0 . Here, U𝑑 always includes 𝑟0 and is an
open interval because 𝜉 is convex. In addition, 𝜉 is of class 𝐶2 on
U𝑑 because U𝑑 ⊂ (0, 1). Hence, if we consider the second order
Taylor expansion of 𝜉 at the point 𝑟0 ∈ U𝑑 , according to Taylor’s
theorem, there exists a real number 𝑐 ∈ U𝑑 ⊂ U𝑑0 that satisfies

𝜉 (𝑟 ) = 𝜉 (𝑟0) + (𝑟 − 𝑟0)
𝜕𝜉 (𝑟0)
𝜕𝑟

+ (𝑟 − 𝑟0)2
2

𝜕2𝜉 (𝑐)
𝜕𝑟2

=
(𝑟 − 𝑟0)2

2
𝜕2𝜉 (𝑐)
𝜕𝑟2

.

Recall that 𝜉 is strictly convex, indicating that the range of 𝜕2𝜉
𝜕𝑟 2

is
positive and bounded below. Thus, 𝜉 (𝑟 ) is lower-bounded by

𝜉 (𝑟 ) ≥ (𝑟 − 𝑟0)2
2

inf
𝑟 ′∈U𝑑0

𝜕2𝜉 (𝑟 ′)
𝜕𝑟2

. (4)

Main part of proof. Let SR𝑑 be the success rate when the number
of masking shares is 𝑑 . Let 𝜖 = 2 ln(2) sup𝑖 𝐼 (𝑆𝑖 ; 𝑳𝑖 ). According to
Theorem 4.5, Lemma 4.6, and ln(1 + 𝑥) ≤ 𝑥 , for 𝑑 > 𝑑0, it holds

𝜉 (SR𝑑 ) < 𝑚 log

(∑
𝑤≠0

𝑑∏
𝑖=1
E𝑝𝑆𝑖 |𝑳𝑖

(𝑤 | 𝑳𝑖 )2 + 1

)
< 𝑚 log

(
(2𝑛 − 1)𝜖𝑑 + 1

)
< 𝑚 log(𝑒)(2𝑛 − 1)𝜖𝑑 . (5)

Let 𝜉𝑐 denote a coefficient of right-hand side of Inequality (4); that
is, 𝜉𝑐 = inf𝑟 ′∈U𝑑0

𝜕2𝜉 (𝑟 ′)
𝜕𝑟 2

Note that 𝜉𝑐 is independent of 𝑟 and 𝑑 .
Because SR𝑑 ∈ U𝑑 , applying Inequality (4) to the left-hand side of
Inequality (5), we have

(SR𝑑 − 1/2𝑛)2
2

𝜉𝑐 < 𝑚 log(𝑒) (2𝑛 − 1)𝜖𝑑 ,

which is followed by��SR𝑑 − 1/2𝑛
�� < √

2𝑚 log(𝑒) (2𝑛 − 1)
𝜉𝑐

𝜖𝑑/2 .

As
√
2𝑚 log(𝑒)(2𝑛 − 1)/𝜉𝑐 is a constant coefficient that is indepen-

dent of 𝑑 , we conclude that SR𝑑 − 1/2𝑛 = 𝑂 (𝜖𝑑/2) (𝑑 → ∞). □

From Lemma 5.1, we provide a proof that confirms the security
of masking schemes under a relaxed assumption compared to [19].

Theorem 5.2. If ∀𝑑 ∈ N, 2 ln(2) sup𝑖 𝐼 (𝑆𝑖 ; 𝑳𝑖 ) < 𝜖 < 1, then
SR𝑑 − 1/2𝑛 = 𝑂 (𝜖𝑑/2) (𝑑 → ∞).

Proof. Lemma 4.6 states that∀𝑤 ≠ 0, 𝑝𝑆𝑖 |𝑳𝑖
(𝑤 | 𝑳𝑖 )2 ≤ 2 ln(2)𝐼 (𝑆𝑖 |

𝑳𝑖 ), and thus 𝑝𝑆𝑖 |𝑳𝑖
(𝑤 | 𝑳𝑖 )2 < 𝜖 holds. From Lemma 5.1 and

E𝑝𝑆𝑖 |𝑳𝑖
(𝑤 | 𝑳𝑖 )2 < 𝜖 , we can prove SR𝑑 − 1/2𝑛 = 𝑂 (𝜖𝑑/2) (𝑑 →

∞). □

In Theorem 5.2, the condition that 𝜖 < 1 corresponds to that
sup𝑖 𝐼 (𝑆𝑖 ; 𝑳𝑖 ) < 1/(2 ln(2)) ≈ 0.72. Thus, if 𝐼 (𝑆𝑖 ; 𝑳𝑖 ) < 1/(2 ln(2)),
the number of traces required for attack success increases exponen-
tially with 𝑑 . Theorem 5.2 also states that, if 𝐼 (𝑆𝑖 ; 𝑳𝑖 ) < 1/(2 ln(2)),
the success rate SR = Pr(�̂� = 𝐾) converges to 1/2𝑛 when 𝑑 → ∞,
which indicates that we can make the attacker’s advantage arbi-
trary smaller by increasing 𝑑 .

Remark 5.1. Theorem 5.2 shows an asymptotic SR decay, which
implies that SR may not decay exponentially by 𝑑 if 𝑑 is small
and/or 𝜖 is large. In other words, Theorem 5.2 also states that it
would be difficult to protect the cryptographic implementation by
masking with practical 𝑑 if 𝜖 is very large (i.e., the noise level is
very low), as experimentally demonstrated in [7]. However, the
exponential SR decay for small 𝑑 (in this study, 𝑑 = 1, 2, and 3)
when sup𝑖 𝐼 (𝑆𝑖 ; 𝑳𝑖 ) < 1/(2 ln(2)) is confirmed through a numeri-
cal experiment in Section 7, as the number of traces required for
an attack success increases exponentially by even small 𝑑 in the
some experimental condition. The detailed analysis on the condi-
tion for an exponential SR decay would be a future work, although
our novelty and theoretical contribution also include that we show
that masking scheme is asymptotically secure for large 𝑑 with a re-
laxed condition compared to the previous study.

5.3 Conditions for security through masking
scheme

This subsection discusses the convergence condition of SR → 1/2𝑛
as 𝑑 → ∞, using Lemma 5.1 and Theorem 5.2.

First, we discusswhat happenswhenmutual information 𝐼 (𝑆𝑖 ; 𝑳𝑖 )
is significantly large from the viewpoint of Theorem 5.2. Consider
an extreme case (the strongest attacker in our model) in which
𝐼 (𝑆𝑖 ; 𝑳𝑖 ) = 𝐻 (𝑆𝑖 ) (i.e., 𝐼 (𝑆𝑖 ; 𝑳𝑖 ) is maximized) for each 𝑖 . This at-
tacker always succeeds recovering the secret key 𝐾 independently
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of 𝑑 , because the attacker can exactly know 𝑍 from 𝑆1, 𝑆2, . . . , 𝑆𝑑
(note that such an attacker is equivalent to a 𝑑-th order probing
attacker discussed in Section 3). In this case, 𝐼 (𝑍 ;𝑿 ) does not de-
crease with increasing 𝑑 . In fact, a masked implementation can be
secure4 only if sup𝑖 𝐼 (𝑆𝑖 ; 𝑳𝑖 ) < 𝛾 for some positive real number 𝛾 ,
which guarantees that 𝐼 (𝑍 ;𝑿 ) decreases with an increase in 𝑑 . If a
device has a side-channel leakage amplitude 𝐼 (𝑆𝑖 ; 𝑳𝑖 ) greater than
the threshold 𝛾 , no masking scheme can protect the implementa-
tion on the device (i.e., the attacker can succeed with a trivial num-
ber of traces), even when 𝑑 is large.

Duc et al.’s result shows that 𝛾 ≥ 2−2𝑛+1, which indicates that
their result is valid only if the SNR of the side-channel measure-
ment is significantly small. For example, in the case of AES (i.e.,𝑛 =
8), the mutual information should be 𝐼 (𝑆𝑖 ; 𝑳𝑖 ) ≤ 2−15 ≈ 3.05×10−5,
which is too small to evaluate the side-channel resistance. Note
again that the value of 𝐼 (𝑆𝑖 ; 𝑳𝑖 ) corresponds to the side-channel
leakage amplitude or approximately represents the SNR of themea-
surement. In this study, we proved that 𝛾 ≥ 1/(2 ln(2)) ≈ 0.72 in-
dependently of 𝑛. Thus, Theorem 5.2 is a much stronger and more
generalized result than Duc et al.’s result. However, its tightness
is still unclear (although it is far tighter than the existing bound).
The derivation of exact value of 𝛾 is an open problem.

Then, we consider the security of masking schemes from the
viewpoints of Lemma 5.1, the meanings of WHT, and the random
variable 𝑌 (𝑤)

𝑖 = 1{ ⟨𝑤 ·𝑆𝑖 ⟩=1} defined in the proof of Lemma 4.6, in-
stead of the value of 𝐼 (𝑆𝑖 ; 𝑳𝑖 ). In a 2𝑛 × 2𝑛 WHT matrix, a column
(corresponding to a value of 𝑤 ) contains 2𝑛−1 number of 1 and
2𝑛−1 number of −1 coefficients, except for the case where 𝑤 = 0.
Therefore, given 𝑤 ≠ 0, the values that a share can take are di-
vided into two sets of { 𝑠 ∈ S | ⟨𝑤 · 𝑠⟩ = 0 } and { 𝑠 ∈ S |
⟨𝑤 · 𝑠⟩ = 1 }, corresponding to the coefficients of 1 and −1, re-
spectively. For𝑤 ≠ 0, the value of WHT, namely

��𝑝𝑆𝑖 |𝑳𝑖
(𝑤 | 𝑳𝑖 )

�� =���Pr(𝑌 (𝑤)
𝑖 = 0 | 𝑳𝑖 ) − Pr(𝑌 (𝑤)

𝑖 = 1 | 𝑳𝑖 )
���, represents a confidence value

that attacker can distinguish which 𝑆𝑖 belongs to { 𝑠 ∈ S | ⟨𝑤 ·𝑠⟩ =
0 } or { 𝑠 ∈ S | ⟨𝑤 ·𝑠⟩ = 1 } from a given leakage. We call this value
distinguish advantage in this paper. Lemma 4.4 and Lemma 4.6
state that the success rate 𝜉 (SR) (precisely, the mutual information
𝐼 (𝑍 ;𝑿 )) is upper-bounded by the maximum distinguish advantage
as

𝜉 (SR) ≤ 𝑚 log

(
1 +

∑
𝑤≠0

𝑑∏
𝑖=1
E

����𝑝𝑌 (𝑤)
𝑖 |𝑳𝑖

(0 | 𝑳𝑖 ) − 𝑝𝑌 (𝑤)
𝑖 |𝑳𝑖

(1 | 𝑳𝑖 )
����2) .

For example, if the attacker cannot estimate which 𝑠𝑖 belongs to
{ 𝑠 ∈ S | ⟨𝑤 ·𝑠⟩ = 0 } or { 𝑠 ∈ S | ⟨𝑤 ·𝑠⟩ = 1 } for any𝑤 ≠ 0 from 𝑳𝑖 ,
the distinguish advantage is zero as 𝑝𝑆𝑖 |𝑳𝑖

= |1/2 − 1/2| = 0. In this
case, it holds 𝜉 (SR) = 𝑚 log 1 = 0, which implies that the attacker
has no advantage in key recovery (i.e., SR = 1/2𝑛). By contrast, if
the attacker can completely estimate/distinguish it for a given𝑤 =
𝑣 ≠ 0, the distinguish advantage for 𝑣 is maximized as 𝑝𝑆𝑖 |𝑳𝑖

(𝑣 |
𝑳𝑖 ) = 1. Recall that 𝜉 (SR) ≤ log

∑
𝑤

∏
𝑖 E𝑝𝑆𝑖 |𝑳𝑖

(𝑤 | 𝑳𝑖 )2. If a
complete distinguish is possible for𝑤 = 𝑣 ≠ 0 (i.e., 𝑝𝑆𝑖 |𝑳𝑖

(𝑣 | 𝑳𝑖 ) =
4Here, we mean that a masked implementation is secure if, by the increase in 𝑑 , SR
decreases and the number of traces for attack success increases exponentially. This
also indicates that, for a secure masked implementation, SR − 1/2𝑛 is negligible in
terms of 𝑑 .

1), then log
∑

𝑤
∏

𝑖 E𝑝𝑆𝑖 |𝑳𝑖
(𝑤 | 𝑳𝑖 )2 ≥ log 2 = 1 for any 𝑑 . This

indicates that such an attack would succeed in key recovery with
only 𝑛 traces according to Theorem 4.5 for any 𝑑 . In addition, the
convergence rate of SR → 1/2𝑛 as 𝑑 → ∞ (in Theorem 5.2) mainly
depends onmax𝑤≠0 E𝑝𝑆𝑖 |𝑳𝑖

(𝑤 | 𝑳𝑖 )2. This is because, if 𝑳1, 𝑳2, . . . ,
and 𝑳𝑑 are i.i.d,

∑
𝑤

∏𝑑
𝑖=1 E𝑝𝑆𝑖 |𝑳𝑖

(𝑤 | 𝑳𝑖 )2 in Theorem 4.5 can be
bounded as∑

𝑤

𝑑∏
𝑖=1
E𝑝𝑆𝑖 |𝑳𝑖

(𝑤 | 𝑳𝑖 )2 = 1 +
∑
𝑤≠0

[
E𝑝𝑆 |𝑳 (𝑤 | 𝑳)2

]𝑑
≤ 1 + (2𝑛 − 1)

[
max
𝑤≠0
E𝑝𝑆 |𝑳 (𝑤 | 𝑳)2

]𝑑
. (6)

Here, we omit the subscript 𝑖 and replace
∏

𝑖 with the 𝑑-th power
owing to the assumption that 𝑳1, 𝑳2, . . . , and 𝑳𝑑 are i.i.d (see Sec-
tion 6 for the detail). This formally represents a simplified upper-
bound of the attacker’s advantage in distinguishing between𝑌 (𝑤)

𝑖 =

1 or 𝑌 (𝑤)
𝑖 = 0 (i.e., 𝑆𝑖 ∈ { 𝑠 ∈ S | ⟨𝑤 · 𝑠⟩ = 1 } or 𝑆𝑖 ∈ { 𝑠 ∈ S |

⟨𝑤 · 𝑠⟩ = 0 }). In addition, if max𝑤≠0 E𝑝𝑆𝑖 |𝑳𝑖
(𝑤 | 𝑳𝑖 )2 = 1, the SR

does not converge to 1/2𝑛 and the attack is successful with a trivial
number of traces. Therefore, in order for a masked implementation
to be secure, it must be non-trivially difficult to distinguish which
𝑆𝑖 ∈ { 𝑠 ∈ S | ⟨𝑤 · 𝑠⟩ = 1 } or 𝑆𝑖 ∈ { 𝑠 ∈ S | ⟨𝑤 · 𝑠⟩ = 0 } is true for
any𝑤 from the leakage 𝑳𝑖 . In this sense, side-channel traces must
contain noise to guarantee security against side-channel attacks,
as well as the discussion about 𝛾 in the above.

5.4 Security of masking scheme with
Hamming weight leakage

Wediscussed thatmasking countermeasures aremeaninglesswhen
the share values leak as they are, and there is only trivial noise. This
subsection details how noise plays an important role even when in-
formation of shares are leaked as its Hamming weight (HW). Let
us consider an attacker who can obtain the HW of 𝑆𝑖 from 𝑳𝑖 , as
many attacks on software implementation. Let 𝐻𝑖 = HW(𝑆𝑖 ). The
attacker has to obtain 𝐻𝑖 from 𝑳𝑖 to estimate 𝑆𝑖 . We then focus on
the value of 𝑤 which maximizes the distinguish advantage of the
above HW-based attacker. In the absence of noise, we can easily
confirm that the masking countermeasures do not make sense if𝑤
exists such that H0 ∩ H1 = ∅, where H0 = {HW(𝑠) | ⟨𝑤 · 𝑠⟩ =
0, 𝑠 ∈ S }) and H1 = {HW(𝑠) | ⟨𝑤 · 𝑠⟩ = 1, 𝑠 ∈ S }). In fact,
such 𝑤 exists; for example, 𝑤 = 2𝑛 − 1 because H0 = {HW(𝑠) |
⟨(2𝑛 − 1) · 𝑠⟩ = 0, 𝑠 ∈ S } = {ℎ | ℎ = 0 mod 2, ℎ ∈ H } and
H1 = {HW(𝑠) | ⟨(2𝑛 − 1) · 𝑠⟩ = 1, 𝑠 ∈ S } = {ℎ | ℎ = 1
mod 2, ℎ ∈ H }, whereH is the set of HWs (e.g.,H = {0, 1, . . . , 8}
when 𝑛 = 8). Its intuitive meaning can be explained through the
following proposition:

Proposition 5.3. Let 𝑠1 and 𝑠2 be variables over F𝑛2 . It holds that
(1) If HW(𝑠1) and HW(𝑠2) are even, HW(𝑠1 ⊕ 𝑠2) is even.
(2) If HW(𝑠1) and HW(𝑠2) are odd, HW(𝑠1 ⊕ 𝑠2) is even.
(3) If HW(𝑠1) is even and HW(𝑠2) is odd, HW(𝑠1 ⊕ 𝑠2) is odd.

Proof. Note thatHW(𝑠1⊕𝑠2) = HW(𝑠1)+HW(𝑠2)−2HW(𝑠1∧
𝑠2). IfHW(𝑠1) andHW(𝑠2) are even, then there exist 𝑘1 and 𝑘2 ∈ N
such that HW(𝑠1) = 2𝑘1 and HW(𝑠2) = 2𝑘2. Thus, HW(𝑠1 ⊕ 𝑠2) is
even, because HW(𝑠1 ⊕ 𝑠2) = 2(𝑘1 + 𝑘2) − 2HW(𝑠1 ∧ 𝑠2).
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If HW(𝑠1) and HW(𝑠2) are odd, then there exist 𝑘1 and 𝑘2 such
that HW(𝑠1) = 2𝑘1 + 1 and HW(𝑠2) = 2𝑘2 + 1. Thus, HW(𝑠1 ⊕ 𝑠2)
is even, because HW(𝑠1 ⊕ 𝑠2) = 2(𝑘1 + 𝑘2) + 2 − 2HW(𝑠1 ∧ 𝑠2).

IfHW(𝑠1) is even andHW(𝑠2) is odd, then there exist 𝑘1 and 𝑘2
such thatHW(𝑠1) = 2𝑘1 andHW(𝑠2) = 2𝑘2 +1. Thus,HW(𝑠1 ⊕ 𝑠2)
is odd, because HW(𝑠1 ⊕ 𝑠2) = 2(𝑘1 + 𝑘2) + 1 − 2HW(𝑠1 ∧ 𝑠2). □

According to Proposition 5.3, the parity of the HW of the secret
intermediate value (i.e., HW(𝑍 )) can be calculated if the parity of
each HW(𝑆𝑖 ) is known. The parity of HW(𝑍 ), which is one-bit in-
formation about𝑍 , enables the attacker to halve the number of can-
didates for secret key values. If the traces do not contain any noise,
the attack will succeed in only 𝑛 traces on average, no matter how
much 𝑑 increases. Thus, an HW-based attacker can easily exploit
the distinguish advantage as max𝑤≠0 E𝑝𝑆𝑖 |𝑳𝑖

(𝑤 | 𝑳𝑖 )2. If the at-
tacker can always obtain the correct HW (i.e.,max𝑤≠0 E𝑝𝑆𝑖 |𝑳𝑖

(𝑤 |
𝑳𝑖 )2 = 1), no masking scheme can protect the device even with a
very large 𝑑 . In addition, according to Inequality (6) (which repre-
sents a simplified upper-bound of 𝑑-th order attacker’s distinguish
advantage), the convergence rate of SR𝑑 → 1/2𝑛 as𝑑 → ∞mainly
depends on

max
𝑤≠0
E𝑝𝑆 |𝑳 (𝑤 | 𝑳)2 = E𝑝𝑆 |𝑳 (2𝑛 − 1 | 𝑳)2

= E
(
Pr(HW(𝑆) is even | 𝑳) − Pr(HW(𝑆) is odd | 𝑳)

)2
,

for the HW-based attacker.

6 TIGHT SUCCESS RATE EVALUATION IN
PRACTICE

In this section, it is assumed that 𝑳1, 𝑳2, . . . , 𝑳𝑑 are i.i.d, which im-
plies that there exists 𝑝𝑆 |𝑳 and 𝐼 (𝑆 ; 𝑳) such that 𝑝𝑆 |𝑳 = 𝑝𝑆𝑖 |𝑳𝑖

and
𝐼 (𝑆 ; 𝑳) = 𝐼 (𝑆𝑖 ; 𝑳𝑖 ) for any 𝑖 , respectively. In other words, we omit
the subscript 𝑖 and use an independent copy of these random vari-
ables/vectors owing to the i.i.d assumption, as well as subscript 𝑗 in
Section 3. This implies that the leakage characteristics/amplitude
is identical for all shares, and implies that 𝐼 (𝑆𝑖 ; 𝑳𝑖 ) = 𝐼 (𝑆𝑖′ ; 𝑳𝑖′)
and 𝑝𝑆𝑖 |𝑳𝑖

= 𝑝𝑆𝑖′ |𝑳𝑖′ for any 𝑖 and 𝑖
′. This assumption is likely to

hold for certain applications. For example, because masked soft-
ware may process each share in a serial manner on an identical
device and instructions, the leakage characteristics/amplitude is
likely to be identical for all shares. This assumption enables us to
evaluate the SR of attacks on masked implementations from an ex-
periment (i.e., profiling) using a non-protected implementation on
an identical device.5 Note that 𝐼 (𝑆 ; 𝑳) is equivalent to 𝐼 (𝑍 ;𝑿 ) if
𝑑 = 1 (i.e., without masking).

To evaluate the SR using Theorem 4.5, we required to know the
conditional probability distribution 𝑝𝑆 |𝑳 (i.e., a leakage character-
istics), whereas Theorem 4.7 can be used if the mutual informa-
tion 𝐼 (𝑆 ; 𝑳) (i.e., leakage amplitude or SNR) is known. For a prac-
tical and tight SR evaluation, it would be better to use the 𝑝𝑆 |𝑳
5This means that we assume that 𝑝𝑆 |𝑳 and 𝐼 (𝑆 ; 𝑳) are identical for the two imple-
mentations if they are on the same device and are in a similar style. For example, in
the case of software implementation, we assume that the SR of attacks on bit-slicing
masked software implementation can be evaluated by profiling the corresponding in-
struction in a non-masked bit-slicing software implementation on the same device. As
well, the SR of an attack on a table-lookup-based masked implementation can be eval-
uated by profiling the corresponding instruction in a table-lookup-based non-masked
implementation.

based bound of Theorem 4.5, as it is tigher than the 𝐼 (𝑆 ; 𝑳) based
bound of Theorem 4.7. However, there have been few studies on
the estimation of the conditional probability distribution 𝑝𝑆 |𝑳 for
Theorem 4.5. This is because estimating the conditional probabil-
ity distribution is difficult owing to the curse of dimensionality.
Therefore, for the practical and tight SR evaluation, which would
be useful for design flow of cryptographic modules, we propose
a profiling method to estimate 𝑝𝑆 |𝑳 using a DL technique. In con-
trast, note that several studies have been devoted to estimate mu-
tual information 𝐼 (𝑆 ; 𝑳) [13, 25, 37], which indicates that, given a
device, we can evaluate the SR with Theorem 4.7 by estimating
𝐼 (𝑆 ; 𝑳) using these previous studies through an experiment to pro-
file a non-masked implementation.

Theorem 4.5 states that SR is upper-bounded using the expected
WHT of conditional probability 𝑝𝑆𝑖 |𝑳𝑖

as

𝜉 (SR) ≤ 𝑚 log

(∑
𝑤

𝑑∏
𝑖=1
E𝑝𝑆𝑖 |𝑳𝑖

(𝑤 | 𝑳𝑖 )2
)
.

If the above assumption that 𝑝𝑆 |𝑳 = 𝑝𝑆𝑖 |𝑳𝑖
holds for any 𝑖 , this

inequality can be written as

𝜉 (SR) ≤ 𝑚 log
∑
𝑤

[
E𝑝𝑆 |𝑳 (𝑤 | 𝑳)2

]𝑑
,

where 𝑝𝑆 |𝑳 is the WHT of 𝑝𝑆 |𝑳 . This indicates that, if we can esti-
mate 𝑝𝑆 |𝑳 precisely, we can approximately evaluate the SR upper-
bound tightly.

We employ a neural network (NN) to approximate the condi-
tional probability distribution 𝑝𝑆 |𝑳 . Let 𝑞(𝑠 | 𝑳;𝜃 ) be the con-
ditional probability distribution represented by NN, where 𝜃 is a
model parameter. In addressing a multiclass classification problem
with DL, the negative log likelihood (NLL, also known as categor-
ical cross-entropy) is commonly used as a loss function. NLL is
known to be asymptotically equivalent to cross-entropy defined
as

CE(𝑝, 𝑞) = −E log𝑞(𝑆 | 𝑳;𝜃 ) = −
∫ ∑

𝑠

𝑝 (𝑠, ℓ) log𝑞(𝑠 | ℓ;𝜃 )𝑑ℓ .

The cross-entropy CE(𝑝, 𝑞) takes the global minimum if and only
if 𝑝 = 𝑞, which indicates that 𝑝 can be imitated/approximated us-
ing the conditional probability distribution 𝑞𝑆 |𝑳 estimated using
DL with the NLL as a loss function. Let 𝜃 be the trained model
parameter. The SR is approximately upper-bounded by

𝜉 (SR) ⪅ 𝑚 log
∑
𝑤

[
E𝑞𝑆 |𝑳 (𝑤 | 𝑳;𝜃 )2

]𝑑
.

Remark 6.1. Specifically, we used the DL technique to estimate
𝐼 (𝑍 ;𝑿 ) according to Lemma 4.4. This estimation is far more pre-
cise than using Lemma 4.6. In other words, a precise estimation of
𝐼 (𝑍 ;𝑿 ) (and SR) can be achieved using the DL-based estimation
of 𝑝𝑆 |𝑳 instead of Lemma 4.6. Therefore, Theorem 4.7 is important
especially in theory and reveals the properties and conditions re-
quired for a secure masked implementation, whereas the proposed
SR estimation method with Theorem 4.5 and DL-based approxima-
tion is useful especially in practice and builds a bridge between
theory and practice.
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Figure 3: Number of required traces in attacking AES for
achieving SR = 0.99 when 𝑑 = 1, 2, and 3.

7 EXPERIMENTAL VALIDATION
7.1 Evaluation using only mutual information
We first evaluate our bound of Theorem 4.7 in comparison with
Duc et al.’s bound [20] for a simple validation from a theoretical
viewpoint. Figure 3 shows the number of traces in attacking AES
(i.e., 𝑛 = 8) for achieving SR = 0.99 evaluated only from 𝐼 (𝑆 ; 𝑳)
using Theorem 4.7. For comparison, Figure 3 shows the conven-
tional bound in [20]. Here, previous studies [13, 37] were not eval-
uated because their methods are inapplicable to masked implemen-
tations. Given a value of mutual information 𝐼 (𝑆 ; 𝑳) (i.e., leakage
amplitude), each curve denotes the lower-bound of the number
of traces to achieve SR = 0.99. For a given 𝑑 , the evaluation re-
sult is more precise if the result is a larger number of traces, as
they are lower-bounds. From Figure 3, we can confirm that our
bound is much tighter than the conventional bound. For example,
when 𝑑 = 3, our results indicates that the attack success with 99%
probability requires at least approximately 1016 traces, whereas
the conventional bound states that attack success requires at least
approximately 103 traces. In addition, with regard to Remark 5.1,
we confirm that the number of traces required for an attack suc-
cess increases by even small 𝑑 = 1, 2, and 3 in this experiment
(note that the vertical axis is in the logarithmic scale). Moreover,
as mentioned previously, the conventional bound is valid only if
𝐼 (𝑆 ; 𝑳) < 2−15 ≈ 3.05× 10−5. Therefore, their result is trivial when
𝐼 (𝑆 ; 𝑳) ≥ 2−15, that is, it only states that at least one trace is re-
quired for attack success. By contrast, our bound is meaningful for
a wider range of 𝐼 (𝑆 ; 𝑳). Thus, we confirm the effectiveness of our
theorems.

7.2 Evaluation using simulated traces
We further validate the effectiveness and practicality of Theorem 4.5
with a DL technique and Theorem 4.7 through experimental simu-
lations of attacks on AES. We target the first-round S-box output
𝑍 = Sbox(𝑘∗ ⊕ 𝑇 ), where 𝑘∗ is an eight-bit secret key, and 𝑍 is
masked as 𝑍 = 𝑆1 ⊕ 𝑆2 ⊕ · · · ⊕ 𝑆𝑑 if 𝑑 > 1 (note that 𝑑 = 1 corre-
sponds to a non-masked implementation). We generate the corre-
sponding leakage for each share such that the leakage is given by
the Hamming weight (HW) of 𝑆𝑖 with Gaussian noise, that is, for
each 𝑖 ∈ {1, 2, . . . , 𝑑}, 𝑳𝑖 = HW(𝑆𝑖 )+𝑁𝑖 , where𝑁𝑖 is Gaussian noise.
According to the Shannon–Hartley theorem, the upper-bound of
mutual information of a channel with Gaussian noise is given by
log(1 + SNR)/2. Therefore, the SR upper-bound/number of traces
can be evaluated for different values of mutual information 𝐼 (𝑆 ; 𝑳)

by changing the variance of the Gaussian noise. For the evaluation
of Theorem 4.5 with a DL approximation, we employ a multilayer
perceptron (MLP) that consists of four layers with output dimen-
sions of 128, 256, 128, and 256 in the order of input to output layers.
The output layer has a softmax function as an activation function,
and the other layers have an ELU function. We employ Adam as
the optimizer and NLL as the loss function. We use five million
simulated traces for each training and test. In addition, we adopt
a Python open-source library NPEET [53] to estimate mutual in-
formation 𝐼 (𝑆 ; 𝑳) (note that the estimation is different from the
upper-bound by the Shannon–Hartley theorem). We use 10 mil-
lion simulated traces for the estimation.

We also perform a template attack on the simulated traces for
the ground truth. Since the distribution of traces is known, the
template in the attack is an optimal distinguisher that theoreti-
cally maximizes SR and minimizes the number of required traces,
as proven in [8, 29, 32]. Figure 4a and Figure 4b show the num-
bers of traces in attacking AES to achieve SR = 0.80 when 𝑑 = 1
and 2, respectively. These figures include the evaluation results of
the template attack, the bound of Theorem 4.5 with a DL-based
approximation of 𝑝𝑆 |𝑳 (denoted by “This work 1”), the bound of
Theorem 4.7 with 𝐼 (𝑆 ; 𝑳) (denoted by “This work 2”), and the con-
ventional bound with 𝐼 (𝑆 ; 𝑳) in [20]. A bound is tighter if the re-
sult is closer to that of a template attack, and such a tight bound
is useful for practical evaluation. From these figures, we confirm
that “This work 1” is far tighter than the other bounds, including
“This work 2.” This is because “This work 1” evaluates the bound
by exploiting much information (i.e., conditional probability distri-
bution) rather than the leakage amplitude or SNR (i.e., mutual in-
formation value). In contrast, as in Lemma 5.1, “This work 2” (i.e.,
Theorem 4.7) is meaningful only if 𝐼 (𝑆 ; 𝑳) < 1/(2 ln(2)) ≈ 0.72;6
otherwise, it shows that at least one trace is required for an at-
tack success. Note that the conventional bound shows that at least
one trace is always required for attack success, as it never holds
𝐼 (𝑆 ; 𝑳) < 2−2𝑛+1 ≈ 3.05 × 10−5 in this experiment. Thus, we
confirm the effectiveness and practicality of the proposed theo-
rems and evaluation method method. In particular, the evaluation
of “This work 1” is more precise, tight, and practical than other
bounds, thanks to the proposed DL-based approximation of the
conditional probability distribution (i.e., profiling the leakage char-
acteristics).

8 CONCLUSION
8.1 Summary
This study derived information-theoretical bounds of SR in attack-
ing masked implementations. The derived bounds are used to eval-
uate the security ofmasked implementations frommutual informa-
tion or conditional probability distribution and can be estimated by
profiling a non-masked implementation on a target device. Based
on a numerical evaluation and an experimental simulation, we con-
firmed the effectiveness, tightness, and practicality of the proposed
bounds and profiling method. In addition, this paper also provided
a proof for the concrete security of masking schemes, discussed

6Note that the convergence condition of 𝐼 (𝑆 ; 𝑳) < 1/(2 ln(2)) (i.e., 1 < 𝜖) comes
from the proof of Lemma 4.6, but is related to neither Theorem 4.5 nor Lemma 4.4. This
is one of reasons why the bound of Theorem 4.5 is tighter than that of Theorem 4.7.
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Figure 4: Evaluation results of number of traces in attacking
masked AES implementation with SR = 0.80.

some important aspects of masked implementation from the view-
point of the convergence of SR → 1/2𝑛 as 𝑑 → ∞, and showed
that SNR and the distinguish advantage play an essential role in
attacking/protecting masked cryptographic devices. A more con-
crete and quantitative analysis/evaluation of the relationship be-
tween convergence and 𝐼 (𝑆 ; 𝑳) or max𝑤≠0 E𝑝𝑆 |𝑳 (𝑤 | 𝑳)2 remains
an open problem that is important from both practical and theoret-
ical viewpoints.

Our theorems/method for cryptographic module designs.
The proposed theorems can be used to determine the number of
masking shares 𝑑 (or mask order) for a given device, which would
be useful for practical system design. For example, the implementer
first determines the maximum number of encryptions/decryptions
using an identical key, namely, the number of traces that can be
acquired by a side-channel attacker. This can be determined based
on the application and mode of operation. Adoption of leakage-
resilient authenticated encryption (e.g., Ascon-AEAD, ISAP, TEDT,
etc. [6, 17, 18]) would contribute to an increase of this number.
Then, he/she determines𝑑 using the proposed theorems andmethod,
such that the number of traces required for attack success should
be greater than the above number. Rosita would be useful for se-
cure and practical cryptographic software design with the inde-
pendence condition [47, 48]. Finally, he/she implements a masked
cipher and verifies whether the (𝑑 − 1)-th order masking is cor-
rectly implemented, for example, using a formal/symbolic verifi-
cation tool such as maskVerif and SILVER [2, 33] and/or the test
vector leakage assessment (TVLA) [46].

8.2 Future works
Extension tonon-Booleanmasking. In this study, we focused

on Boolean masking as the most major scheme. On one hand, The-
orem 4.5 and the proposed DL-based SR evaluation method would

be extended and applicable to other additivemasking schemes such
as arithmetic masking, by utilizing a DFT over the field/ring in-
stead ofWHT. On the other hand, Theorem 4.7 cannot be extended
to the other masking schemes because it is unknown how to apply
our proof strategy with Pinsker’s inequality to non-Boolean mask-
ing schemes. In addition, it has been discussed that, given a noise
level, the SCA resistance of some non-Boolean masking schemes
would be higher than Boolean masking [21], which indicates that
the threshold 𝛾 for secure masking condition may be different be-
tween Boolean and non-Boolean masking schemes. Further analy-
ses for non-Boolean masking would be a future work.

On independence condition and real device evaluation.
The experimental simulation results in this study confirmed the
effectiveness and practicality of proposed theorems/method for a
simple but general case (with the independence condition) that
does not target a specific device. However, a real device may have
such a dependency. Actually, the independence assumption may
(partially) hold for some software implementations that process
each share in a serial manner, although it would be not valid for
some implementations due to, for example, micro-architectural fea-
tures. We emphasize that a tool named Rosita addresses this prob-
lem: it would be useful to realize a secure and practical masked
implementation that satisfies the independence condition [47, 48].
In contrast, this assumption may not hold for many masked hard-
ware implementations, as they usually process all shares in parallel
in one clock cycle, and glitch and coupling effectsmay cause depen-
dency between shares [1, 14, 36]. It is important to investigate the
effect of the dependency on our theorems/method and how to treat
the dependency appropriately. Also, developing a profilingmethod
for share-parallel implementations to use the proposed theorems
would be subject to future research work.

Investigation of NN architecture/hyperparameter for pro-
posedmethod. Although the effectiveness and practicality of pro-
posed DL-based SR estimation are validated through the experi-
ments, as important future works, we plan to investigate the im-
pact of the NN approximation error on the resulting SR evaluation
and develop an efficient NN architecture for our purpose. In addi-
tion, for a further validation, it would be also important to analyze
the effect of NN approximation error on the proposed method.

APPENDIX A: WALSH–HADAMARD
TRANSFORM (WHT)
Walsh–Hadamard transform (WHT) is a discrete Fourier transform
(DFT) over F2 = Z/2Z. WHT of a function 𝑓 : F𝑛2 → R is a function
𝑓 : F𝑛2 → R and is defined as

𝑓 (𝑤) =
∑
𝑠∈F𝑛2

𝑓 (𝑠) (−1) ⟨𝑤 ·𝑠 ⟩,

where ⟨𝑤 · 𝑠⟩ denotes the sum of the products of each elementmod-
ulo 2 (defined as a function from F𝑛2 × F𝑛2 to {0, 1}), like an inner
product. Inverse WHT is written by

𝑓 (𝑤) = 1
2𝑛

∑
𝑠∈F𝑛2

𝑓 (𝑠) (−1) ⟨𝑤 ·𝑠 ⟩ .
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A convolution over F𝑛2 can be decomposed into a product in the
WHT representation. Let 𝑓1 and 𝑓2 be functions from F𝑛2 to R, and
let 𝑓 be their convolution:

𝑓 (𝑠) =
∑

𝑠1⊕𝑠2=𝑠
𝑓1 (𝑠1) 𝑓2 (𝑠2) = (𝑓1 ∗ 𝑓2)(𝑠) .

This is equivalently represented using their respectiveWHTs, 𝑓 (𝑤),
𝑓1 (𝑤), and 𝑓2 (𝑤), as

𝑓 (𝑤) = 𝑓1 (𝑤) 𝑓2 (𝑤) .
In addition, Parseval’s identity holds for WHT; that is,∑

𝑠

𝑓 (𝑠)2 = 2−𝑛
∑
𝑤

𝑓 (𝑤)2 = 2−𝑛
∑
𝑤

𝑓1 (𝑤)2 𝑓2 (𝑤)2 . (7)

TheseWHT properties also hold for convolution of more-than two
functions.

APPENDIX B: INEQUALITIES USED IN THIS
PAPER
This appendix introduces the inequalities used in the study. See [11]
for more details.

Theorem 8.1 (Data processing ineqality). Let 𝐴, 𝐵, and 𝐶
be random variables that form a Markov chain𝐴 ↔ 𝐵 ↔ 𝐶 . Mutual
information 𝐼 (𝐴;𝐵) and 𝐼 (𝐴;𝐶) always satisfy

𝐼 (𝐴;𝐵) ≥ 𝐼 (𝐴;𝐶),
which is called a data processing inequality.

Theorem 8.2 (Jensen’s ineqality). Let 𝑋 be a random vari-
able and let 𝑓 be a function convex on the range of 𝑋 . Jensen’s in-
equality in the probability theory states that, if there exist finite E𝑋
and E𝑓 (𝑋 ), then

E𝑓 (𝑋 ) ≥ 𝑓 (E𝑋 ) . (8)

Theorem 8.3 (Pinsker’s ineqality [23, 40]). Let 𝑃 and 𝑄 be
probability distributions and let𝐷KL (𝑃 ∥ 𝑄) be the Kullback–Leibler
divergence to base 2 between 𝑃 and𝑄 . Pinsker’s inequality states that

𝛿 (𝑃,𝑄) ≤
√

ln(2)𝐷KL (𝑃 ∥ 𝑄)
2

,

where 𝛿 (𝑃,𝑄) denotes the total variation distance (or statistical dis-
tance) between 𝑃 and 𝑄 . If 𝑃 and 𝑄 are discrete and have the prob-
ability mass functions 𝑝 and 𝑞, respectively, Pinsker’s inequality has
the following alternative form:∑

𝑎

|𝑝 (𝑎) − 𝑞(𝑎) | ≤
√
2 ln(2)𝐷KL (𝑃 ∥ 𝑄) . (9)
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