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Abstract

The NTRU lattice is a promising candidate to construct practical cryptosystems, in particular key encapsulation mechanism
(KEM), resistant to quantum computing attacks. Nevertheless, there are still some inherent obstacles to NTRU-based KEM schemes
in having integrated performance, taking security, bandwidth, error probability, and computational efficiency as a whole, that is as
good as and even better than their {R,M}LWE-based counterparts. In this work, we solve this problem by presenting a new family
of NTRU-based KEM schemes, referred to as CTRU and CNTR. By bridging low-dimensional lattice codes and high-dimensional
NTRU-lattice-based cryptography with careful design and analysis, to the best of our knowledge CTRU and CNTR are the first
NTRU-based KEM schemes with scalable ciphertext compression via only one single ciphertext polynomial, and are the first that
could outperform {R,M}LWE-based KEM schemes in integrated performance. For instance, compared to Kyber that is currently
the only standardized KEM by NIST, on the recommended parameter set CNTR-768 has about 12% smaller ciphertext size while
encapsulating 384-bit keys compared to the fixed 256-bit key size of Kyber, security strengthened by (8, 7) bits for classical
and quantum security respectively, and significantly lower error probability (2−230 of CNTR-768 vs. 2−164 of Kyber-768). In
particular, CTRU and CNTR admit more flexible key sizes to be encapsulated, specifically n

2
where n ∈ {512, 768, 1024} is

the underlying polynomial dimension. In comparison with the state-of-the-art AVX2 implementation of Kyber-768, CNTR-768
is faster by 1.9X in KeyGen, 2.6X in Encaps, and 1.2X in Decaps, respectively. When compared to the NIST Round 3 finalist
NTRU-HRSS, our CNTR-768 has about 15% smaller ciphertext size, and the security is strengthened by (55, 49) bits for classical
and quantum security respectively. As for the AVX2 implementation, CNTR-768 is faster than NTRU-HRSS by 19X in KeyGen,
2.3X in Encaps, and 1.6X in Decaps, respectively. Along the way, we develop new techniques for more accurate error probability
analysis, as well as unified implementations with respect to multiple dimensions with unified NTT methods, for NTRU-based
KEM schemes over the polynomial ring Zq[x]/(xn − xn/2 + 1), which might be of independent interest.

Index Terms

Post-quantum cryptography, Lattice-based cryptography, Key encapsulation mechanism, NTRU, Lattice codes, Number
theoretic transform, Integrated performance.

I. INTRODUCTION

Most current public-key cryptographic schemes in use, which are based on the hardness assumptions of factoring large
integers and solving (elliptic curve) discrete logarithms, will suffer from quantum attacks when practical quantum computers
are built. These cryptosystems play an important role in ensuring the confidentiality and authenticity of communications on the
Internet. With the increasing cryptographic security risks of quantum computing, post-quantum cryptography (PQC) has become
a research focus in recent years. There are five main types of post-quantum cryptographic schemes: hash-based, code-based,
lattice-based, multivariable-based, and isogeny-based schemes, among which lattice-based cryptography is commonly viewed
as amongst the most promising one due to its outstanding integrated performance in security, communication bandwidth, and
computational efficiency.

In the post-quantum cryptography standardization competition held by the U.S. National Institute of Standards and Technology
(NIST), lattice-based schemes account for 26 out of 64 schemes in the first round [1], 12 out of 26 in the second round [2], and
7 out of 15 in the third round [3]. Recently, NIST announced 4 candidates to be standardized [4], among which 3 schemes are
based on lattices. Most of these lattice-based schemes are based on lattices of the following types: plain lattice and algebraically
structured lattice (ideal lattice, NTRU lattice, and module lattice). They are mainly instantiated from the following two categories
of hardness assumptions. The first category consists of Learning With Errors (LWE) [5] and its variants with algebraic structures
such as Ring-Learning With Errors (RLWE) [6] and Module-Learning With Errors (MLWE) [7], as well as the derandomized
version of {R,M}LWE: Learning With Rounding (LWR) [8] and its variants such as Ring-Learning With Rounding (RLWR) [8]
and Module-Learning With Rounding (MLWR) [9]. The second category is the NTRU assumption [10].

NTRU was first proposed by Hoffstein, Pipher and Silverman at the rump session Crypto96 [11], and it survived a lattice
attack in 1997 [12]. With some improvements on security, NTRU was published normally in 1998 [10], which is named as
NTRU-HPS for presentation simplicity in this work. NTRU-HPS was the first practical public key cryptosystem based on the
lattice hardness assumptions over polynomial rings, and there have been many variants of NTRU-HPS such as those proposed
in [13]–[18]. Besides being survived attacks and cryptanalysis over 24 years since its introduction, NTRU-based KEM schemes
also enjoy many other desirable features. For example, they admit more flexible key sizes to be encapsulated (corresponding
to the message space M in this work), varying according to the degree of the underlying quotient polynomial. In comparison,
the KEM schemes based on MLWE and MLWR like Kyber [19] and Saber [20] in the NIST PQC standardization encapsulate
keys of fixed size that is restricted to the underlying quotient polynomial that is of degree 256 for Kyber and Saber.

NTRU has played a basic role in many cryptographic protocols, e.g., [21]–[26]. In particular, NTRU-based schemes have
achieved impressive success in the NIST PQC standardization. Specifically, Falcon signature scheme [26], which is based
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Fig. 1. Differences of message positions between NTRU-based and LWE-based KEMs

on NTRU assumption, is one of the signature candidate to be standardized [4]. NTRU KEM (including NTRU-HRSS and
NTRUEncrypt) [16] is one of the seven finalists, and NTRU Prime KEM (including SNTRU Prime and NTRU LPRime) [17]
is one of the alternate candidates in the third round of NIST PQC standardization. Although NTRU-based KEM schemes are
not chosen to be standardized by NIST, we can not ignore their great potential in PQC research and standardization due to their
attractive features. The study and optimization of NTRU-based KEM schemes still deserve further research exploration. Actually,
some standardizations have already been including NTRU-based PKE/KEM schemes. The standard IEEE Std 1363.1 [27], which
was issued in 2008, standardizes some lattice-based public-key schemes, including NTRUEncrypt. The standard X9.98 [28]
standardizes NTRUEncrypt as a part of the X9 standards which are applied to the financial services industry. The European
Union’s PQCRYPTO project (i.e., Horizon 2020 ICT-645622) [29] is considering another NTRU variant [30] as a potential
European standard. In particular, the latest updates of OpenSSH since its 9.0 version released in April 2022 have adopted
NTRU Prime, together with X25519 ECDH in a hybrid mode, to prevent “capture now decrypt later” attacks [31].

A. Challenges and Motivations

When considering integrated performance in security, bandwidth, error probability, and computational efficiency as a whole,
up to now NTRU-based KEM schemes are, in general, inferior to their counterparts of {R,M}LWE-based KEM schemes. It
might be the partial reason that NTRU-based KEM schemes were not finally standardized by NIST. In the following, we will
summarize some obstacles and challenges faced with current NTRU-based KEM schemes, which also presents the motivations
of this work.

1) Small secret ranges: The first inherent limitation of NTRU-based KEM schemes is that they usually support very narrow
secret ranges, typically {−1, 0, 1}, which inherently limits the security level achievable by NTRU-based KEM schemes [15]–
[17]. However, {R,M}LWE-based KEM schemes have the advantage in allowing larger secret ranges for stronger security
when using the approximate moduli as in NTRU-based KEM schemes.

2) Large bandwidth: The next limitation is that traditional NTRU-based KEM schemes commonly have larger bandwidth
compared to their {R,M}LWE-based counterparts. The importance of reducing bandwidth is self-evident, since low commu-
nication bandwidth is friendly to internet protocols (e.g., TLS) and to constrained internet-of-things (IoT) devices. On the
one hand, traditional NTRU-based KEM schemes set relatively large moduli (together with relatively small secret ranges) in
order to achieve perfect correctness. Although {R,M}LWE-based KEM schemes could also choose larger moduli to have zero
error probability, they prefer smaller moduli for smaller bandwidth, tolerating negligible error probability instead of insisting
on zero error probability. On the other hand, the larger bandwidth is due to the inherent inability to compress ciphertexts of
NTRU-based KEM schemes. Below, we briefly explain why ciphertext compression leads to a decryption failure at a high
probability for traditional NTRU-based KEM schemes, but the impact of ciphertext compression for {R,M}LWE-based KEM
schemes is within some controllable range.

As shown in Figure 1, the initial plaintext message m is encoded into the most significant bits of the second ciphertext
term for most {R,M}LWE-based KEM schemes like Kyber, where their first ciphertext term (corresponding to an {R,M}LWE
sample) is independent of the second ciphertext term. The randomness and security of the ciphertext are guaranteed by
the {R,M}LWE samples. On the contrary, the initial message is encoded into the least significant bits of the ciphertext for
traditional NTRU-based KEM schemes. Actually, NTRU-based KEM schemes [10], [16], [30], [32] have ciphertexts of the
form c = phr + m mod q, where p is the message space modulus, h is the public key, r is the randomness, and m is the
message to be encrypted. In the decryption process, one could compute cf mod q = pgr + mf , and clean out the term pgr
via reduction modulo p. In order to obtain m, one can multiply the inverse of f modulo p, or directly reduce modulo p if
f = pf ′ + 1. This can be viewed as a unidimensional error-correction mechanism.

Compressing the ciphertext of NTRU-based KEM schemes means dropping some least significant bits, which is equivalent
to increasing the small error. For {R,M}LWE-based KEM schemes, compressing the first ciphertext term has no impact on
the messages. The impact brought by reasonably compressing the second ciphertext term could be eliminated if the total
error is within the capacity range of the message-recovering mechanism. However, for traditional NTRU-based KEM schemes,
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ciphertext compression will destroy the useful information of the encoded messages in the least significant bits of the ciphertext.
Consequently, the initial messages can not be recovered correctly.

3) Weak starting point of security reduction: For most NTRU-based KEM constructions, their chosen ciphertext attack
(CCA) security is usually reduced to the one-way (OW-CPA) secure encryption instead of the traditional IND-CPA secure
encryption. Above all, IND-CPA security is a strictly stronger security notion than OW-CPA security. Though OW-CPA security
can be transformed into IND-CPA security, but at the price of further loosening the reduction bound particularly in the quantum
random oracle model (QROM) [32]. One can also have a tight reduction from CCA security to OW-CPA deterministic public-
key encryption (DPKE), but at the cost of a more complicated decapsulation process [16], [17]. More detailed discussions and
clarifications on CCA security reduction of KEM in the ROM and the QROM are presented in Appendix A. As a consequence,
it is still desirable for NTRU-based KEM constructions to have security reduction from CCA security to IND-CPA security,
as is in {R,M}LWE-based KEM schemes.

4) Complicated key generation: Typically, there are only one or two polynomial multiplications in the encryption process
and decryption process of NTRU-based KEM schemes, such that the encryption process and decryption process are as efficient
as (and could even be more efficient than) those of {R,M}LWE-based ones. However, for most NTRU-based KEM schemes
(with [15], [32] as exceptions), the main efficiency obstacle is from their key generations, since there exits a complicated
computation of polynomial inverse for which there does not exit much efficient algorithms for most of the polynomial rings
chosen by NTRU-based KEM schemes.

Unfortunately, there are no literatures to propose such NTRU-based KEM schemes which can overcome all the obstacles
mentioned above. This leads us to the following motivating question.

Motivating question

Is it possible to construct NTRU-based KEM schemes that have essentially the same or even better integrated
performance in security, bandwidth, error probability, and computational efficiency as a whole, than {R,M}LWE-based
KEM schemes?

B. Our Contributions

Our main result shows that NTRU-based KEM schemes can practically have a remarkable integrated performance (in security,
bandwidth, error probability, and computational efficiency as a whole), just as and even better than {R,M}LWE-based KEM
schemes. In this work, we present such practical constructions, and instantiate such NTRU-based KEM schemes with detailed
analysis.

Specifically, in this work, we present new variants of NTRU-based cryptosystem, referred to as CTRU and CNTR for
presentation simplicity, which can allow larger secret ranges, achieve scalable ciphertext compression, have CCA provable
security reduced directly to IND-CPA security, and have fast implementations. The error probabilities of CTRU and CNTR
are low enough, which are usually lower than those of Kyber. They consist of IND-CPA secure public-key encryptions, named
CTRU.PKE and CNTR.PKE, and IND-CCA secure key encapsulation mechanisms, named CTRU.KEM and CNTR.KEM
constructed through FO 6⊥ID(pk),m that is an enhanced variant of Fujisaki-Okamoto transformation [33], [34] with a short prefix
of the public key into the hash function [35].

Our CTRU and CNTR demonstrate novel approaches to constructing NTRU-based schemes. The descriptions of CTRU and
CNTR are over NTT-friendly rings of the form Zq[x]/(xn−xn/2+1). We choose n ∈ {512, 768, 1024} for NIST recommended
security levels I, III and V, respectively, with the same modulus q = 3457 (that is close to the modulus q = 3329 of Kyber) set
for all the three dimensions for ease of implementation simplicity and compatability. We may recommend the case of n = 768
that could have a moderate balance of post-quantum security and performance for most applications in practice.

1) Efficient constant-time scalable lattice code: Before introducing our proposed schemes, for better capability on recovering
message and low enough error probability, we apply and refine the scalable E8 lattice code based on the works [36]–[39]. As
for its density, there is a remarkable mathematical breakthrough that sphere packing in the E8 lattice is proved to be optimal in
the sense of the best density when packing in R8 [38]. To avoid the potential timing attacks, we present constant-time encoding
and decoding algorithms of the scalable E8 lattice code. All the conditional statements are implemented by constant-time bitwise
operations. Unlike most of other existing error correction codes whose constant-time implementations are inherently difficult,
the constant-time implementation of the scalable E8 lattice code is practical and efficient. We present the scalable E8 lattice
coding algorithms in section III, and give the details about the constant-time implementations in section VII-F.

2) New constructions: The key generation algorithm in CTRU is similar to the exiting NTRU-based KEM schemes such
as [10], [16], [17], [32]. CTRU uses h = g/f as its public key and f as its secret key. We develop a novel encryption
algorithm which breaks through the limitation of ciphertext compression for NTRU-based KEM, which allows us to compress
the ciphertexts in the case of one single polynomial. To be specific, we encode every 4-bit message into a scalable E8 lattice
point, and hide its information by adding an RLWE instance, which forms the ciphertext. This way, the message is encoded
into the most significant bits of the ciphertext, such that compressing the ciphertext does not destroy the useful information
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TABLE I
COMPARISONS BETWEEN CTRU, CNTR AND OTHER PRACTICAL LATTICE-BASED KEM SCHEMES.

Schemes Assumptions Reduction Rings n q |pk| |ct| B.W. (Sec.C, Sec.Q) δ

CTRU (Ours) NTRU,
RLWE

IND-CPA
RPKE Zq [x]/(xn − xn/2 + 1)

512 3457 768 640 1408 (118,107) 2−143

768 3457 1152 960 2112 (181,164) 2−184

1024 3457 1536 1408 2944 (255,231) 2−195

CNTR (Ours) NTRU,
RLWR

IND-CPA
RPKE Zq [x]/(xn − xn/2 + 1)

512 3457 768 640 1408 (127,115) 2−170

768 3457 1152 960 2112 (191,173) 2−230

1024 3457 1536 1280 2816 (253,230) 2−291

NTRU-HRSS [16] NTRU OW-CPA
DPKE Zq [x]/(xn − 1) 701 8192 1138 1138 2276 (136,124) 2−∞

SNTRU Prime-761 [17] NTRU OW-CPA
DPKE Zq [x]/(xn − x− 1) 761 4591 1158 1039 2197 (153,137) 2−∞

NTTRU [15] NTRU OW-CPA
RPKE Zq [x]/(xn − xn/2 + 1) 768 7681 1248 1248 2496 (153,140) 2−1352

NTRU-C768
3457 [32] NTRU,

RLWE
IND-CPA

RPKE Zq [x]/(xn − xn/2 + 1) 768 3457 1152 1184 2336 (171,155) 2−281

Kyber [19] MLWE IND-CPA
RPKE

Zq [x]/(xn/k + 1)
k = 2, 3, 4

512 3329 800 768 1568 (118,107) 2−139

768 3329 1184 1088 2272 (183,166) 2−164

1024 3329 1568 1568 3136 (256,232) 2−174

Saber [20] MLWR IND-CPA
RPKE

Zq [x]/(xn/k + 1)
k = 2, 3, 4

512 8192 672 736 1408 (118,107) 2−120

768 8192 992 1088 2080 (189,172) 2−136

1024 8192 1312 1472 2784 (260,236) 2−165

of the message. As for the decryption algorithm, we multiply the ciphertext polynomial by the secret polynomial, and finally
recover the messages correctly with the aid of the decoding algorithm in the scalable E8 lattice whenever the `2 norm of
the error term is less than the sphere radius of the scalable E8 lattice. An important point to note here is, different from the
most existing NTRU-based KEM schemes such as [10], [16], [32], in CTRU the message space modulus p is removed in
the public key h and in the ciphertext c, as it is not needed there to recover the message m with our CTRU construction.
The only reserved position for p is the secret key f , which has the form of f = pf ′ + 1. We show that the above steps
constitute an IND-CPA secure PKE scheme: CTRU.PKE, based on the NTRU assumption and the RLWE assumption. Finally,
we apply the FO6⊥ID(pk),m transformation [35] to get the IND-CCA secure CTRU.KEM. The CNTR scheme is a simplified and
more efficient variant of CTRU: the noise polynomial is eliminated, and the rounding of the output of the scalable E8 lattice
encoding algorithm is moved. The security of CNTR is based on the NTRU assumption and the RLWR assumption. The detailed
construction of CTRU and CNTR are given in section IV. To our knowledge, CTRU and CNTR are the first NTRU-based
KEM constructions which bridges high-dimensional NTRU-lattice-based cryptography and low-dimensional lattice codes, and
are the first NTRU-based KEM schemes with scalable ciphertext compression via only one single ciphertext polynomial.

3) Provable security: As for security reduction, our CTRU.PKE (resp., CNTR.PKE) can achieve the IND-CPA security
under the NTRU assumption and the RLWE (resp., RLWR) assumption, while most of the existing practical NTRU-based
PKEs only achieve OW-CPA security. Note that, the RLWE and RLWR assumptions are only required to achieve IND-CPA
security for our schemes, since CTRU.PKE and CNTR.PKE are still OW-CPA secure only based on the NTRU assumption (i.e.,
without further relying on the RLWE or RLWR assumptions). The reduction advantages of CCA security of our CTRU.KEM
and CNTR.KEM are tighter than those of NTTRU [15] and NTRU-C768

3457 [32]. For example, in the quantum setting, the CCA
reduction bound of CTRU.KEM is dominated by O(

√
q′εCPA), while those of NTTRU and NTRU-C768

3457 are O(q′
√
εOW )

and O(q′1.5 4
√
εOW ) respectively, where εCPA(εOW ) is the advantage against the underlying IND-CPA (resp., OW-CPA) secure

PKE and q′ is the total query number. However, NTRU-HRSS [16], [40] has a tight CCA reduction bound starting from
OW-CPA deterministic PKE (DPKE), at the cost of more complicated and time-consuming decryption process [16]. In any
case, IND-CPA security is a strictly stronger security notion than OW-CPA security.

4) More accurate analysis of error probability: Previously, the work [15] gave a conservative estimation of the error
probability, based on the worst case consisting of 3

2n terms for each polynomial product coefficient in Zq[x]/(xn−xn/2 + 1).
In this work, we derive the exact number of the terms of the polynomial product coefficient, and improve the error probability
analysis developed in [15], which might be of independent interest. The concrete analysis is provided in section IV-D.

5) Performance and comparisons: By careful evaluation and selection, we provide some parameter sets for CTRU and
CNTR, and present the recommended parameter sets in section V-A3. We also make a comprehensive analysis of CTRU and
CNTR on the provable security, core-SVP hardness, refined gate-count estimate, dual attack, S-unit attack, BKW attack and side
channel attack, etc, in section V. Here, we present brief comparisons between our schemes on the recommended parameters
and other prominent practical NTRU-based KEM schemes: NTRU-HRSS [16], [40], SNTRU Prime [17], NTTRU [15] and
NTRU-C768

3457 [32], as well as the NIST standardized candidate Kyber [19] and the NIST Round 3 finalist Saber [20]. The
comparisons are summarized in Table I. There, the column “Assumptions” refers to the underlying hardness assumptions.
The column “Reduction” means that IND-CCA security is reduced to what kinds of CPA security, where “IND” (“OW”)
refers to indistinguishability (resp., one-wayness) and “RPKE” (“DPKE”) refers to randomized (resp., deterministic) public-
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key encryptions. “Rings” refers to the underlying polynomial rings. The column “n” means the total dimension of algebraically
structured lattices. “q” is the modulus. The public key sizes |pk|, ciphertext sizes |ct|, and B.W. (bandwidth, |pk| + |ct|) are
measured in bytes. “Sec.C” and “Sec.Q” mean the estimated security expressed in bits in the classical and quantum setting
respectively, which are gotten by the same methodology and scripts provided by Kyber, Saber, and NTRU KEM in NIST PQC
Round 3, where we minimize the target values if the two hardness problems, say NTRU and RLWE/RLWR, have different
security values. The column “δ” indicates the error probabilities, where the error probabilities of NTTRU and NTRU-C768

3457

are re-tested according to the accurate measurement methodology discussed in section IV-D.
From the comparisons, CNTR has the smallest bandwidth and the strongest security guarantees among all the practical

NTRU-based KEM schemes. For example, when compared to the NIST Round 3 finalist NTRU-HRSS [16], our CNTR-768
has about 15% smaller ciphertext size, and its security is strengthened by (55, 49) bits for classical and quantum security,
respectively. The error probabilities of CNTR are set according to the security level targeted by each set of parameters, which
can be viewed as negligible in accordance with the security level. When compared to Kyber-768 [19] that is standardized
by NIST, CNTR-768 has about 12% smaller ciphertext size, and its security is strengthened by (8, 7) bits for classical and
quantum security, respectively. For all the three recommended parameter sets, the error probabilities of CNTR are significantly
lower than those of Kyber (e.g., 2−230 of CNTR-768 vs. 2−164 of Kyber-768). To the best of our knowledge, CNTR is the
first NTRU-based KEM that could outperform Kyber in the integrated performance by considering security, bandwidth, error
probability, and computational efficiency as a whole. We also would like to stress that we do not know how to have the
well balance achieved by CTRU/CNTR by simply adjusting parameters for the existing NTRU-based KEM schemes. Another
significant point is that CTRU and CNTR admit more flexible key sizes to be encapsulated, i.e., n/2-bit shared keys according
to the polynomial rings we used, but Kyber and Saber can only encapsulate fixed 256-bit shared keys.

6) Unified NTT: The NTT-based polynomial operations over Zq[x]/(xn − xn/2 + 1) are very efficient. However, as the
dimension n varies with CTRU and CNTR, we have to equip with multiple NTT algorithms with different input/output lengths
in accordance with n ∈ {512, 768, 1024}. This brings inconvenient issues for software implementations and especially for
hardware implementations. In this work, we overcome this problem by presenting the methodology of using a unified NTT
technique to compute NTTs over Zq[x]/(xn − xn/2 + 1) for all n ∈ {512, 768, 1024} with q = 3457, which might be of
independent interest. Technically speaking, we split f ∈ Zq[x]/(xn − xn/2 + 1) into α ∈ {2, 3, 4} sub-polynomials of lower
degrees, each of which is in Zq[x]/(x256 − x128 + 1). We then design a 256-point unified NTT based on the ideas from [15],
[41], and apply it to each sub-polynomial. Finally, their intermediate NTT results are combined to generate the final results. In
this case, in order to obtain the public key (the quotient of two n-dimension polynomials), we need to compute the inversions
in the rings of the form Zq[x]/(x2α−ζ), where ζ is some primitive root of unity in Zq . We use Cramer’s Rule [42] to compute
the inverse of polynomials of low degree. More details are presented in section VI.

7) Implementation and benchmark: We provide portable C implementation and optimized AVX2 implementation for CTRU-
768 and CNTR-768. More details and discussions about the implementation can be seen in section VII. We perform benchmark
comparisons with the related lattice-based KEM schemes and some prominent non-lattice-based KEM schemes. The benchmark
comparisons show that the encapsulation and decapsulation algorithms of our schemes are among the most efficient. As for
the optimized AVX2 implementations, CTRU-768 is faster than NTRU-HRSS by 23X in KeyGen, 2.1X in Encaps, and 1.6X
in Decaps, respectively; CNTR-768 is faster than NTRU-HRSS by 19X in KeyGen, 2.3X in Encaps, and 1.6X in Decaps,
respectively. When compared to the state-of-the-art AVX2 implementation of Kyber-768, CTRU-768 is faster by 2.3X in
KeyGen, 2.3X in Encaps, and 1.2X in Decaps, respectively; CNTR-768 is faster by 1.9X in KeyGen, 2.6X in Encaps, and
1.2X in Decaps, respectively. The benchmark comparisons are referred to section VIII.

C. Related Work

In recent years, many NTRU variants have been proposed. Jarvis and Nevins [13] presented a new variant of NTRU-HPS [10]
over the ring of Eisenstein integers Z[ω]/(xn− 1) where ω = e2πi/3, which has smaller key sizes and faster performance than
NTRU-HPS. Bagheri et al. [14] generalized NTRU-HPS over bivariate polynomial rings of the form (−1,−1)/(Z[x, y]/(xn−
1, yn− 1)) for stronger security and smaller public key sizes. Hülsing et al. [40] improved NTRU-HPS in terms of speed, key
size, and ciphertext size, and presented NTRU-HRSS, which was one of the finalists in NIST PQC Round 3 [16]. Bernstein et
al. [43] proposed NTRU Prime, which aims for “an efficient implementation of high security prime-degree large-Galois-group
inert-modulus ideal-lattice-based cryptography”. It tweaks the textbook NTRU scheme to use some rings with less special
structures, i.e., Zq[x]/(xn − x− 1), where both n and q are primes.

In order to obtain better performance of NTRU encryption, Lyubashevsky and Seiler [15] instantiated it over Z7681[x]/(x768−
x384 + 1). Then Duman et al. [32] generalized the rings Zq[x]/(xn−xn/2 + 1) with various n for flexible parameter selection.
But all of them follow the similar structure of NTRU-HPS and do not support ciphertext compression.

Recently, Fouque et al. [18] proposed a new NTRU variant named BAT. It shares many similarities with Falcon signature [26]
where a trapdoor basis is required in the secret key, which makes its key generation complicated. BAT uses two linear equations
in two unknowns to recover the secret and error, without introducing the modulus p to extract message. It reduces the ciphertext
sizes by constructing its intermediate value as an RLWR instance (with binary secrets), and encrypts the message via ACWC0
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transformation [32]. However, ACWC0 transformation consists of two terms, causing that there are some dozens of bytes in the
second ciphertext term. Another disadvantage is about the inflexibility of selecting parameters. Since BAT applies power-of-two
cyclotomics Zq[x]/(xn + 1), it is inconvenient to find an underlying cyclotomic polynomial of some particular degree up to
the next power of two. For example, BAT chooses Zq[x]/(x512 + 1) and Zq[x]/(x1024 + 1) for NIST recommended security
levels I and V, but lacks of parameter set for level III, which, however, is the aimed and recommended security level for most
lattice-based KEM schemes like Kyber [19] and our schemes. Although BAT has an advantage of bandwidth, its key generation
is 1,000 times slower than other NTRU-based KEM schemes, and there are some worries about its provable security based on
the RLWR assumption with binary secrets which is quite a new assumption tailored for BAT. For the above reasons, we do
not make a direct comparison between our schemes and BAT.

II. PRELIMINARIES

A. Notations and Definitions

Let Z and R be the set of rational integers and real numbers, respectively. Let n and q be some positive integers. Denote
Zq = Z/qZ ∼= {0, 1, . . . , q−1} and Rq = R/qR. Let Z×q be the group of invertible elements of Zq . For any x ∈ R, bxe denotes
the closest integer to x. We denote Z[x]/(xn − xn/2 + 1) and Zq[x]/(xn − xn/2 + 1) by R and Rq respectively in this work.
The elements in R or Rq are polynomials, which are denoted by regular font letters such as f, g. The polynomial, e.g., f , in
R (or Rq) can be represented in the form of power series: f =

∑n−1
i=0 fix

i, or in the form of vector: f = (f0, f1, . . . , fn−1),
where fi ∈ Z (or fi ∈ Zq), i = 0, 1, . . . , n− 1. A function ε : N→ [0, 1] is negligible, if ε(λ) < 1/λc holds for any positive
c and sufficiently large λ. Denote a negligible function by negl.

Cyclotomics. More details about cyclotomics can be found in [44]. Let m be a positive integer, ξm = exp( 2πi
m ) be a m-th root

of unity. The m-th cyclotomic polynomial Φm(x) is defined as Φm(x) =
∏m
j=1,gcd(j,m)=1 (x− ξjm). It is a monic irreducible

polynomial of degree φ(m) in Z[x], where φ is the Euler function. The m-th cyclotomic field is Q(ξm) ∼= Q[x]/(Φm(x)) and
its corresponding ring of integers is exactly Z[ξm] ∼= Z[x]/(Φm(x)). Most of cryptographic schemes based on algebraically
structured lattices are defined over power-of-two cyclotomic rings, Z[x]/(xn+1) and Zq[x]/(xn+1), where n = 2e is a power
of two such that xn+1 is the 2e+1-th cyclotomic polynomial. We use non-power-of-two cyclotomic rings Z[x]/(xn−xn/2 +1)
and Zq[x]/(xn − xn/2 + 1), where n = 3l · 2e, l ≥ 0, e ≥ 1 throughout this paper and in this case xn − xn/2 + 1 is the
3l+1 · 2e-th cyclotomic polynomial.

Modular reductions. In this work, we expand the definition of modular reduction from Z to R. For a positive number q,
r′ = r mod ±q means that r′ is the representative element of r in [− q2 ,

q
2 ). Let r′ = r mod q denote as the representative

element of r in [0, q).
Sizes of elements. Let q be a positive number. For any number w ∈ R, denote by ‖w‖q,∞ = |w mod ±q| its `∞ norm. If w is

an n-dimension vector, then its `2 norm is defined as ‖w‖q,2 =
√
‖w0‖2q,∞ + · · ·+ ‖wn−1‖2q,∞. Notice that ‖w‖q,2 = ‖w‖q,∞

holds for any number w ∈ R.
Sets and Distributions. For a set D, we denote by x $←− D sampling x from D uniformly at random. If D is a probability

distribution, x← D means that x is chosen according to the distribution D. The centered binomial distribution Bη with respect
to a positive integer η is defined as follows: Sample (a1, . . . , aη, b1, . . . , bη)

$←− {0, 1}2η , and output
∑η
i=1 (ai − bi). Sampling

a polynomial f ← Bη means sampling each coefficient according to Bη individually.

B. Cryptographic Primitives

A public-key encryption scheme contains PKE = (KeyGen, Enc, Dec), with a message space M. The key generation
algorithm KeyGen returns a pair of public key and secret key (pk, sk). The encryption algorithm Enc takes a public key pk
and a message m ∈ M to produce a ciphertext c. Denote by Enc(pk,m; coin) the encryption algorithm with an explicit
randomness coin if necessary. The deterministic decryption algorithm Dec takes a secret key sk and a ciphertext c, and
outputs either a message m ∈ M or a special symbol ⊥ to indicate a rejection. The decryption error δ of PKE is defined
as E[maxm∈MPr[Dec(sk,Enc(pk,m)) 6= m]]< δ where the expectation is taken over (pk, sk)← KeyGen and the probability
is taken over the random coins of Enc. The advantage of an adversary A against indistinguishability under chosen-plaintext
attacks (IND-CPA) for public-key encryption is defined as AdvIND-CPA

PKE (A) =
∣∣∣∣∣∣∣∣
Pr


b
′ = b :

(pk, sk)← KeyGen();
(m0,m1, s)← A(pk);

b
$←− {0, 1}; c∗ ← Enc(pk,mb);

b′ ← A(s, c∗)


−

1

2

∣∣∣∣∣∣∣∣
.

A key encapsulation mechanism contains KEM = (KeyGen, Encaps, Decaps) with a key space K. The key generation
algorithm KeyGen returns a pair of public key and secret key (pk, sk). The encapsulation algorithm Encaps takes a public
key pk to produce a ciphertext c and a key K ∈ K. The deterministic decapsulation algorithm Decaps inputs a secret key sk
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and a ciphertext c, and outputs either a key K ∈ K or a special symbol ⊥ indicating a rejection. The error probability δ of
KEM is defined as Pr[Decaps(sk, c) 6= K : (c,K)← Encaps(pk)] < δ where the probability is taken over (pk, sk)← KeyGen
and the random coins of Encaps. The advantage of an adversary A against indistinguishability under chosen-ciphertext attacks
(IND-CCA) for KEM is defined as AdvIND-CCA

KEM (A) =
∣∣∣∣∣∣∣∣∣∣∣

Pr



b′ = b :

(pk, sk)← KeyGen();

b
$←− {0, 1};

(c∗,K∗0 )← Encaps(pk);

K∗1
$←− K;

b′ ← A Decaps(·)(pk, c∗,K∗b )



− 1

2

∣∣∣∣∣∣∣∣∣∣∣

.

C. Hardness Assumptions
As the lattice cryptography evolved over the decades, the security of NTRU and its variants can be naturally viewed as two

assumptions. One is the NTRU assumption [10], and the other is the Ring-Learning with error (RLWE) assumption [6], which
are listed as follows. In some sense, the NTRU assumption can be viewed as a special case of the RLWE assumption. More
details about NTRU cryptosystem and its applications can be seen in the excellent survey [45].

Definition 1 (NTRU assumption [10]) Let Ψ be a distribution over a polynomial ring R. Sample f and g according to Ψ,
and f is invertible in R. Let h = g/f . The decisional NTRU assumption states that h is indistinguishable from a uniformly-
random element in R. More precisely, the decisional NTRU assumption is hard if the advantage AdvNTRU

R,Ψ (A) of any probabilistic
polynomial time (PPT) adversary A is negligible, where AdvNTRU

R,Ψ (A) =
∣∣∣∣Pr
[
b′ = 1 :

f, g ← Ψ ∧ f−1 ∈ R
h = g/f ∈ R; b′ ← A(h)

]
− Pr

[
b′ = 1 : h

$←− R; b′ ← A(h)
] ∣∣∣∣.

Definition 2 (RLWE assumption [6]) Let Ψ be a distribution over a polynomial ring R. The (decisional) Ring-Learning with
error (RLWE) assumption over R is to distinguish uniform samples (h, c)

$←− R×R from samples (h, c) ∈ R×R where h $←− R
and c = hr + e with r, e ← Ψ. It is hard if the advantage AdvRLWE

R,Ψ (A) of any probabilistic polynomial time adversary A is
negligible, where AdvRLWE

R,Ψ (A) =
∣∣∣∣∣Pr

[
b′ = 1 : h

$←− R; r, e← Ψ;
c = hr + e ∈ R; b′ ← A(h, c)

]
− Pr

[
b′ = 1 : h

$←− R; c
$←− R; b′ ← A(h, c)

] ∣∣∣∣∣.

Definition 3 (RLWR assumption [8]) Let q > p ≥ 2 be integers. Let Ψ be a distribution over a polynomial ring R. Let
Rq = R/qR and Rp = R/pR be the quotient rings. The (decisional) Ring-Learning with rounding (RLWR) assumption is
to distinguish uniform samples (h, c)

$←− Rq × Rp from samples (h, c) ∈ Rq × Rp where h $←− Rq and c = bpqhre mod p

with r ← Ψ. It is hard if the advantage AdvRLWR
R,Ψ (A) of any probabilistic polynomial time adversary A is negligible, where

AdvRLWR
R,Ψ (A) =

∣∣∣∣∣Pr

[
b′ = 1 : h

$←− Rq; r ← Ψ;
c = bpqhre mod p ∈ Rp; b′ ← A(h, c)

]
− Pr

[
b′ = 1 : h

$←− Rq; c $←− Rp; b′ ← A(h, c)
] ∣∣∣∣∣.

D. Number Theoretic Transform
From a computational point of view, the fundamental and also time-consuming operations in NTRU-based schemes are the

multiplications and divisions of the elements in the rings Zq[x]/(Φ(x)). Number theoretic transform (NTT) is a special case of
fast Fourier transform (FFT) over a finite field [46]. NTT is the most efficient method for computing polynomial multiplication
of high degrees, due to its quasilinear complexity O(n log n). The complete NTT-based multiplication with respect to f and g
is INTT (NTT (f)◦NTT (g)), where NTT is the forward transform, INTT is the inverse transform and “◦” is the point-wise
multiplication.

The FFT trick [47] is a fast algorithm to compute NTT, via the Chinese Remainder Theorem (CRT) in the ring form. Briefly
speaking, given pairwise co-prime polynomials g1, g2, . . . , gk, the CRT isomorphism is that ϕ :

Zq[x]/(g1g2 · · · gk) ∼= Zq[x]/(g1)× Zq[x]/(g2)× · · · × Zq[x]/(gk)

along with ϕ(f) = (f mod g1, f mod g2, . . . , f mod gk). In the case of the classical radix-2 FFT trick step, given the
isomorphism Zq[x]/(x2m − ζ2) ∼= Zq[x]/(xm − ζ) × Zq[x]/(xm + ζ) where ζ is invertible in Zq , the computation of the
forward FFT tirck and inverse FFT tirck can be conducted via Cooley-Tukey butterfly [48] and Gentleman-Sande butterfly [49],
respectively. The former indicates the computation from (fi, fj) to (fi + ζ · fj , fi − ζ · fj), while the later indicates the
computation from (f ′i , f

′
j) to (f ′i + f ′j , (f

′
i − f ′j) · ζ−1). As for the classical radix-3 FFT trick step, it is more complicated,

given the isomorphism Zq[x]/(x3m − ζ3) ∼= Zq[x]/(xm − ζ)×Zq[x]/(xm − ρζ)×Zq[x]/(xm − ρ2ζ) where ζ is invertible in
Zq and ρ is the third root of unity. The mixed-radix NTT means that there are more than one type of FFT trick step.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 8

III. THE LATTICE CODE

Before introducing our proposed NTRU-based KEM schemes, we present a simple and efficient lattice code. The motivation
is that a dense lattice with efficient decoding algorithm is needed in our construction for better efficiency on recovering message
and low enough error probability. The coding algorithms should satisfy the following conditions.

• The operations should be simple enough, and can be implemented by efficient arithmetic (better for integer-only operations).
• The implementations of the coding algorithms are constant-time to avoid timing attacks.
• The decoding bound is large enough such that it leads to a high fault-tolerant mechanism.

We note that an 8-dimension lattice, named E8 lattice (see [37, Chapter 4]) could satisfy the above requirements to some
extent. As for its density, there is a remarkable mathematical breakthrough that sphere packing in the E8 lattice is proved to
be optimal in the sense of the best density when packing in R8 [38]. As for the efficiency on coding, there have been simple
executable encoding and decoding algorithms of the E8 lattice in [36], [37], [39]. However, the known coding algorithms
in [36], [37] cannot be directly applied here. To work in our setting, we need to specify a one-to-one mapping from binary
strings to the E8 lattice points to encode messages. The work [39] specifies such a mapping by choosing a basis, but its
implementation of decoding algorithm is not constant-time, since in multiple places there is data flow from secret polynomials
into the variables which are then used as lookup indexes. In this work, we provide a scalable version of the E8 lattice in the
spirit of [39] as well as a corresponding constant-time implementation of its decoding algorithm, which can also transform the
lattice points to the binary strings without involving Gaussian Elimination.

A. Scalable E8 Lattice Code

The scalable E8 lattice is constructed from the Extended Hamming Code with respect to dimension 8, which is defined as
H8 = {c ∈ {0, 1}8 | c = zH mod 2, z ∈ {0, 1}4} where the binary matrix H is

H =




1 1 1 1 0 0 0 0
0 0 1 1 1 1 0 0
0 0 0 0 1 1 1 1
0 1 0 1 0 1 0 1


 .

Let C = {(x1, x1, x2, x2, x3, x3, x4, x4) ∈ {0, 1}8 | ∑xi ≡ 0 mod 2}, where C is spanned by the up most three rows of
H. Then the scalable E8 lattice (named E′8 lattice) is constructed as

E′8 = λ · [C ∪ (C + c)] ⊂ [0, λ]8,

where c = (0, 1, 0, 1, 0, 1, 0, 1) is the last row of H, λ ∈ R+ is the scale factor and λ · C means that all the elements in C
multiply by λ.

1) Encoding algorithm: The encoding algorithm of the E′8 lattice (see Algorithm 1) is to calculate λ · (kH mod 2), given
a 4-bit binary string k.

Algorithm 1 EncodeE′8 (k ∈ {0, 1}4)

1: v := λ · (kH mod 2) ∈ [0, λ]8

2: return v

Algorithm 2 DecodeE′8 (x = (x0, . . . , x7) ∈ R8)

1: Recall that c := (0, 1, 0, 1, 0, 1, 0, 1)
2: (k0,TotalCost0) := DecodeC′(x)
3: (k1,TotalCost1) := DecodeC′(x− λ · c)
4: b := arg min{TotalCost0,TotalCost1}
5: (k0, k1, k2, k3) := kb
6: k := (k0, k1 ⊕ k0, k3, b) ∈ {0, 1}4
7: return k
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Algorithm 3 DecodeC′ (x ∈ R8)
1: mind := +∞
2: mini := 0
3: TotalCost := 0
4: for i = 0 . . . 3 do
5: c0 := ‖x2i‖22λ,2 + ‖x2i+1‖22λ,2
6: c1 := ‖x2i − λ‖22λ,2 + ‖x2i+1 − λ‖22λ,2
7: ki := arg min{c0, c1}
8: TotalCost := TotalCost + cki
9: if c1−ki − cki < mind then

10: mind := c1−ki − cki
11: mini := i
12: end if
13: end for
14: if k0 + k1 + k2 + k3 mod 2 = 1 then
15: kmini := 1− kmini
16: TotalCost := TotalCost +mind
17: end if
18: k := (k0, k1, k2, k3) ∈ {0, 1}4
19: return (k,TotalCost)

2) Decoding algorithm: Given any x ∈ R8, the decoding algorithm is to find the solution of the closest vector problem
(CVP) of x in the E′8 lattice, which is denoted by λ · k′H mod 2, and it outputs the 4-bit string k′. To solve the CVP of
x ∈ R8 in the E′8 lattice, we turn to solve the CVP of x and x−λc in the lattice C ′ = λ ·C. The one that has smaller distance
is the final answer.

We briefly introduce the idea of solving the CVP in the lattice C ′ here. Given x ∈ R8, for every two components in x,
determine whether they are close to (0, 0) or (λ, λ). Assign the corresponding component of k to 0 if the former is true, and
1 otherwise. If

∑
ki mod 2 = 0 holds, it indicates that λ · (k0, k0, k1, k1, k2, k2, k3, k3) is the solution. However,

∑
ki mod 2

might be equal to 1. Then we choose the secondly closest vector, λ · (k′0, k′0, k′1, k′1, k′2, k′2, k′3, k′3), where there will be at
most one-bit difference between (k0, k1, k2, k3) and (k′0, k

′
1, k
′
2, k
′
3). The detailed algorithm is given in Algorithm 2, along

with Algorithm 3 as its subroutines. Note that in Algorithm 3, mind and mini are set to store the minimal difference of the
components and the corresponding index, respectively.

Finally, DecodeC′ in Algorithm 2 will output the 4-bit string (k0, k1, k2, k3) such that the lattice point λ ·(k0, k0⊕b, k1, k1⊕
b, k2, k2 ⊕ b, k3, k3 ⊕ b) is closest to x in the E′8 lattice. Since the lattice point has the form of λ · (kH mod 2), the decoding
result k can be obtained by tweaking the solution of the CVP in the E′8 lattice, as in line 5 and line 6 in Algorithm 2. The
details about constant-time implementation of decoding algorithms are presented in section VII-F.

B. Bound of Correct Decoding

Theorem 1 gives a bound of correct decoding w.r.t. Algorithm 2. Briefly speaking, for any 8-dimension vector which is close
enough to the given E′8 lattice point under the metric of `2 norm, it can be decoded into the same 4-bit string that generates
the lattice point. This theorem is helpful when we try to recover the targeted message from the given lattice point with error
terms in our schemes.

Theorem 1 (Correctness bound of the scalable E8 lattice decoding) For any given k1 ∈ {0, 1}4, denote v1 :=
EncodeE′8(k1). For any v2 ∈ R8, denote k2 := DecodeE′8(v2). If ‖v2 − v1‖2λ,2 < λ, then k1 = k2.

Proof According to the construction of the Extended Hamming Code H8, we know that its minimal Hamming distance is 4.
Thus, the radius of sphere packing in the E′8 lattice we used is 1

2

√
4 · λ2 = λ. As shown in Algorithm 1, v1 is the lattice

point generated from k1. As for v2 ∈ R8, if ‖v2 − v1‖2λ,2 < λ, the solution of the CVP about v2 in the E′8 lattice is v1.
Since DecodeE′8 in Algorithm 2 will output the 4-bit string finally, instead of the intermediate solution of the CVP, v1 is also
generated from k2, i.e., v1 = λ · (k2H mod 2), which indicates that k1 = k2. �

IV. CONSTRUCTION AND ANALYSIS

In this section, we propose our two new cryptosystems based on NTRU lattice, named CTRU and CNTR, both of which
contain an IND-CPA secure public-key encryption and an IND-CCA secure key encapsulation mechanism. CTRU and CNTR
have similar forms of public key and secret key to those of the traditional NTRU-based KEM schemes, but the method to
recover message in CTRU and CNTR is significantly different from them. With our construction, CTRU and CNTR will
achieve integrated performance in security, bandwidth, error probability and computational efficiency as a whole.
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A. CTRU: Proposal Description

Our CTRU.PKE scheme is specified in Algorithm 4-6. Restate that Rq = Zq[x]/(xn − xn/2 + 1), where n and q are the
ring parameters. Let q2 be the modulus, which is usually set to be a power of two that is smaller than q. Let p be the message
space modulus, satisfying gcd(q, p) = 1. We mainly focus on p = 2 for the odd modulus q in this paper. Let Ψ1 and Ψ2 be
the distributions over R. For presentation simplicity, the secret terms, f ′, g are taken from Ψ1, and r, e are taken from Ψ2.
Actually, Ψ1 and Ψ2 can be different distributions. Let M = {0, 1}n/2 denote the message space, where each m ∈M can be
seen as a n

2 -dimension polynomial with coefficients in {0, 1}.

Algorithm 4 CTRU.PKE.KeyGen()
1: f ′, g ← Ψ1

2: f := pf ′ + 1
3: If f is not invertible in Rq , restart.
4: h := g/f
5: return (pk := h, sk := f)

Algorithm 5 CTRU.PKE.Enc(pk = h, m ∈M)
1: r, e← Ψ2

2: σ := hr + e

3: c :=
⌊q2

q
(σ +

⌊
PolyEncode(m)

⌉
)
⌉

mod q2

4: return c

Algorithm 6 CTRU.PKE.Dec(sk = f , c)
1: m := PolyDecode (cf mod ±q2)
2: return m

Algorithm 7 PolyEncode(m =
n/2−1∑
i=0

mix
i ∈M)

1: E′8 := q
2 · [C ∪ (C + c)] ⊂ [0, q2 ]8

2: for i = 0 . . . n/8− 1 do
3: ki := (m4i,m4i+1,m4i+2,m4i+3) ∈ {0, 1}4
4: (v8i, v8i+1, . . . , v8i+7) := EncodeE′8(ki) ∈ [0, q2 ]8

5: end for
6: v :=

n−1∑
i=0

vix
i

7: return v

Algorithm 8 PolyDecode(v =
n−1∑
i=0

vix
i ∈ Rq2 )

1: E′′8 := q2
2 · [C ∪ (C + c)] ⊂ [0, q22 ]8

2: for i = 0 . . . n/8− 1 do
3: xi := (v8i, v8i+1, . . . , v8i+7) ∈ R8

4: (m4i,m4i+1,m4i+2,m4i+3) := DecodeE′′8 (xi) ∈ {0, 1}4
5: end for

6: m :=
n/2−1∑
i=0

mix
i ∈M

7: return m

The PolyEncode algorithm and PolyDecode algorithm are described in Algorithm 7 and 8, respectively. Specifically, we
construct the E′8 lattice with the scale factor q2 in Algorithm 7. That is, the encoding algorithm works over E′8 := q

2 ·[C∪(C+c)].
The PolyEncode algorithm splits each m ∈ M into some quadruples, each of which will be encoded via EncodeE′8 . As for
PolyDecode algorithm, the decoding algorithm works over the lattice E′′8 := q2

2 · [C ∪ (C + c)]. It splits v ∈ Rq2 into some
octets, each of which will be decoded via DecodeE′′8 . The final message m can be recovered by combining all the 4-bit binary
strings output by DecodeE′′8 .

We construct our CTRU.KEM=(Keygen, Encaps, Decaps) by applying FO 6⊥ID(pk),m, a variant of Fujisaki-Okamoto (FO)
transformation [33], [34] aimed for the strengthened IND-CCA security in multi-user setting [35]. Let ι, γ be positive integers.
We prefer to choose ι, γ ≥ 256 for strong security. Let H : {0, 1}∗ → K × COINS be a hash function, where K is the
shared key space of CTRU.KEM and COINS is the randomness space of CTRU.PKE.Enc. Note that we make explicit the
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randomness in CTRU.PKE.Enc here. Define H1(·) as H(·)’s partial output that is mapped into K. Let PK be the public key
space of CTRU.PKE. Let ID : PK → {0, 1}γ be a fixed-output length function. The algorithms of CTRU.KEM are described
in Algorithm 9-11.

Algorithm 9 CTRU.KEM.KeyGen()
1: (pk, sk)← CTRU.PKE.KeyGen()
2: z

$←− {0, 1}ι
3: return (pk′ := pk, sk′ := (sk, z))

Algorithm 10 CTRU.KEM.Encaps(pk)

1: m
$←−M

2: (K, coin) := H(ID(pk),m)
3: c := CTRU.PKE.Enc(pk,m; coin)
4: return (c,K)

Algorithm 11 CTRU.KEM.Decaps((sk, z), c)
1: m′ := CTRU.PKE.Dec(sk, c)
2: (K ′, coin′) := H(ID(pk),m′)
3: K̃ := H1(ID(pk), z, c)
4: if m′ 6=⊥ and c = CTRU.PKE.Enc(pk,m′; coin′) then
5: return K ′

6: else
7: return K̃
8: end if

B. CNTR: Proposal Description

CNTR is a simple variant of CTRU, which is based on the NTRU assumption [10] and the RLWR assumption [8]. Here,
CNTR stands for “Compact NTRu based on RLWR”. CNTR is also usually the abbreviation of container, which has the
meaning CNTR is an economically concise yet powerful key encapsulation mechanism.

Our CNTR.PKE scheme is specified in Algorithm 12-14. The PolyEncode algorithm and PolyDecode algorithm are the same
as Algorithm 7 and 8, respectively. The symbols and definitions used here are the same as those of CTRU.

Algorithm 12 CNTR.PKE.KeyGen()
1: f ′, g ← Ψ1

2: f := pf ′ + 1
3: If f is not invertible in Rq , restart.
4: h := g/f
5: return (pk := h, sk := f)

Algorithm 13 CNTR.PKE.Enc(pk = h, m ∈M)
1: r ← Ψ2

2: σ := hr

3: c :=
⌊q2

q
(σ + PolyEncode(m))

⌉
mod q2

4: return c

Algorithm 14 CNTR.PKE.Dec(sk = f , c)
1: m := PolyDecode (cf mod ±q2)
2: return m

Unlike the encryption algorithm of CTRU (see Algorithm 5), that of CNTR has the following distinctions: (1) the noise
polynomial is eliminated; (2) the rounding of the PolyEncode algorithm is moved.

Our CNTR.KEM scheme is constructed in the same way as CTRU.KEM, via the FO transformation FO 6⊥ID(pk),m [35]. The
algorithms of CNTR.KEM can be referred to Algorithm 9-11.
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C. Correctness Analysis
Lemma 1 It holds that cf mod ±q2 = q2

q (( qq2 c)f mod ±q).

Proof Since polynomial multiplication can be described as matrix-vector multiplication, which keeps the linearity, it holds
that ( qq2 c)f = q

q2
(cf). There exits an integral vector θ ∈ Zn such that q

q2
cf mod ±q = q

q2
cf + qθ where each component of

q
q2
cf + qθ is in [− q2 ,

q
2 ). Thus, each component of cf + q2θ is in [− q22 ,

q2
2 ). Hence, we obtain

cf mod ±q2 = cf + q2θ =
q2

q
(
q

q2
cf + qθ) =

q2

q
((
q

q2
c)f mod ±q).

�

Theorem 2 (Correctness of CTRU) Let Ψ1 and Ψ2 be the distributions over the ring R, and q, q2 be positive integers. Let
f ′, g ← Ψ1 and r, e ← Ψ2. Let ε ← χ, where χ is the distribution over R defined as follows: Sample u $←− Rq and output[⌊

q2
q u
⌉
− q2

q u
]

mod ±q2. Let Erri be the i-th octet of gr+ ef +~1 · f ′+ q
q2
εf , where ~1 is the polynomial with each coefficient

being 1. Denote 1− δ = Pr
[
‖Erri‖q,2 < q

2 −
√

2
]
. Then, the error probability of CTRU is δ.

Proof Scale the E′′8 lattice and cf mod ±q2 by the factor q/q2. According to Lemma 1, we have

m = PolyDecodeE′′8
(
cf mod ±q2

)

= PolyDecodeE′8

(
(
q

q2
c)f mod ±q

)
,

(1)

in Algorithm 6. For any m ∈ M, the result of PolyEncode(m) in Algorithm 5 can be denoted by q
2s where s ∈ R2. Based

on the hardness of the NTRU assumption and the RLWE assumption, σ in line 2 in Algorithm 5 is pseudo-random in Rq so
is σ + b q2se for any given s ∈ R2. We mainly consider the case of odd q, since an even q leads to a simpler proof due to
b q2se = q

2s.
Therefore, the value of c in line 3 in Algorithm 5 is

c =
⌊q2

q
(σ +

⌊q
2
s
⌉
)
⌉

mod q2 =
q2

q
(σ +

q + 1

2
s) + ε mod q2.

With σ = hr + e, h = g/f and f = 2f ′ + 1, for the formula (1) we get

(
q

q2
c)f mod ±q =

q

q2
[
q2

q
(σ +

q + 1

2
s) + ε] · f mod ±q

=
q + 1

2
s(2f ′ + 1) + σf +

q

q2
εf mod ±q

=
q

2
s+ gr + ef + sf ′ +

s

2
+

q

q2
εf mod ±q

(2)

Each octet of q
2s in (2) is essentially a lattice point in the E′8 lattice, which we denoted by q

2 (kiH mod 2). Denote the i-th
octet of the polynomial X by (X)i. From Theorem 1 we know that to recover ki, one could hold the probability condition
‖(gr + ef + sf ′ + s

2 + q
q2
εf)i‖q,2 < q

2 which can be indicated by the condition ‖(gr + ef + ~1 · f ′ + q
q2
εf)i‖q,2 +

√
2 < q

2 ,
since ~1 · f ′ has a “wider” distribution than s · f ′ and ‖( s2 )i‖q,2 ≤

√
2 for any s ∈ R2. Similarly, for an even q, it can be

simplified to the condition ‖(gr + ef + q
q2
εf)i‖q,2 < q

2 directly which can be implied by the inequality of the case of odd q.
Therefore, we consider the bound of the case of odd q as a general bound. �

Theorem 3 (Correctness of CNTR) Let Ψ1 and Ψ2 be the distributions over the ring R, and q, q2 be positive integers. q2

is an even number that is smaller than q. Let f ′, g ← Ψ1 and r ← Ψ2. Let ε← χ, where χ is the distribution over R defined
as follows: Sample h $←− Rq and r ← Ψ2, and output

(⌊
q2
q hr

⌉
− q2

q hr
)

mod ±q2. Let Erri be the i-th octet of gr + q
q2
εf .

Denote 1− δ = Pr
[
‖Erri‖q,2 < q

2

]
. Then, the error probability of CNTR is δ.

Proof The main observation is that the computation of the ciphertext c is equivalent to

c =
⌊q2

q
(σ + PolyEncode(m))

⌉
mod q2

=
⌊q2

q
hr +

q2

q
· q

2
s
⌉

mod q2

=
⌊q2

q
hr
⌉

+
q2

2
s mod q2

=
q2

q
hr + ε+

q2

2
s mod q2

(3)
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for even q2 < q, where s ∈ R2. Based on the hardness of the NTRU assumption, h is pseudo-random in Rq . The term
⌊
q2
q hr

⌉

indicates an RLWR sample, and the term q2
2 s implies the encoding output of m via the scalable E8 lattice w.r.t. the scale factor

q2
2 .

Similarly, we have

m = PolyDecodeE′′8
(
cf mod ±q2

)

= PolyDecodeE′8

(
(
q

q2
c)f mod ±q

)

thereby ( qq2 c)f mod ±q = q
2s + gr + q

q2
εf mod ±q. Each octet of q

2s is essentially a lattice point in the scalable E8 lattice
w.r.t. the scale factor q

2 , which we denote by q
2 (kiH mod 2). From Theorem 1 we know that to recover ki, it should hold

‖Erri‖q,2 < q
2 , where Erri is the i-th octet of gr + q

q2
εf . �

D. More Accurate Form of Polynomial Product and Error Probability Analysis over Zq[x]/(xn − xn/2 + 1)

The more accurate form of polynomial product and more accurate corresponding analysis of error probability over the ring
Zq[x]/(xn−xn/2 +1) are presented in detail here. As previously described in [15], the general form of the polynomial product

of f =
n−1∑
i=0

fix
i and g =

n−1∑
i=0

gix
i in the ring Zq[x]/(xn − xn/2 + 1) is presented via a matrix-vector multiplication

h =




h0

h1

...
hn−1


 =

[
L− U −F− U
F + U F + L

]
·




g0

g1

...
gn−1


 , (4)

where F,L,U are the n/2-dimension Toeplitz matrices as follows:

F =




fn/2 fn/2−1 · · · f1

fn/2+1 fn/2 · · · f2

...
...

. . .
...

fn−1 fn−2 · · · fn/2


 , L =




f0 0 · · · 0
f1 f0 · · · 0
...

...
. . .

...
fn/2−1 fn/2−2 · · · f0


 , U =




0 fn−1 · · · fn/2+1

...
...

. . .
...

0 0 · · · fn−1

0 0 · · · 0


 .

However, in [15], to bound the error probability, they consider the worst case consisting of the sums of 3
2n terms of the form

figj for each coefficient of h, which will give the most conservative estimation result. In the following, we will derive the
exact number of the terms of the polynomial product coefficient, and improve the original error probability analysis developed
in [15], instead of roughly considering the worst case of using 3

2n terms. Firstly, focusing on the arithmetic operations in Zq ,
the product of f and g in Zq[x] is written as

∑

i+j=k,
0≤k≤n−1

figjx
k +

∑

i+j=k,
n≤k≤2n−2

figjx
k.

To obtain the result in Zq[x]/(xn − xn/2 + 1), we consider the second summation
∑

i+j=k,
n≤k≤2n−2

figjx
k, and have

∑

i+j=k,
n≤k≤2n−2

figjx
k =

∑

i+j=k+n,
0≤k≤n−2

figjx
k(x

n
2 − 1) =

∑

i+j=k+n
2
,

n
2
≤k≤ 3n

2
−2

figjx
k −

∑

i+j=k+n,
0≤k≤n−2

figjx
k.

(5)

Then consider the form of
∑

i+j=k+n
2
,

n
2
≤k≤ 3n

2
−2

figjx
k. Actually, we have

∑

i+j=k+n
2
,

n
2
≤k≤ 3n

2
−2

figjx
k =

∑

i+j=k+n
2
,

n
2
≤k≤n−1

figjx
k +

∑

i+j=k+n
2
,

n≤k≤ 3n
2
−2

figjx
k

=
∑

i+j=k+n
2
,

n
2
≤k≤n−1

figjx
k +

∑

i+j=k+3n
2
,

0≤k≤n
2
−2

figjx
k(x

n
2 − 1)

=
∑

i+j=k+n
2
,

n
2
≤k≤n−1

figjx
k +

∑

i+j=k+n,
n
2
≤k≤n−2

figjx
k −

∑

i+j=k+3n
2
,

0≤k≤n
2
−2

figjx
k.

(6)
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Therefore, for each coefficient hk, there will be

hk =
∑

i+j=k,
0≤k≤n−1

figj −
∑

i+j=k+n,
0≤k≤n−2

figj +
∑

i+j=k+n
2
,

n
2
≤k≤n−1

figj +
∑

i+j=k+n,
n
2
≤k≤n−2

figj −
∑

i+j=k+3n
2
,

0≤k≤n
2
−2

figj .
(7)

Concretely, for 0 ≤ k ≤ n
2 − 2, we have

hk =
∑

i+j=k

figj −
∑

i+j=k+n

figj −
∑

i+j=k+ 3n
2

figj .

For n
2 − 2 < k ≤ n

2 , we have
hk =

∑

i+j=k

figj −
∑

i+j=k+n

figj .

For n
2 < k ≤ n− 1, we have

hk =
∑

i+j=k

figj +
∑

i+j=k+n
2

figj .

Note the symmetry of the distribution, here we only focus on the number of terms of the form figj , which are listed as
follows: For 0 ≤ k ≤ n

2 − 2, hk has 3n
2 − k − 1 terms of the form figj ; For n

2 − 2 < k ≤ n
2 , hk has n terms of the form

figj ; For n
2 < k ≤ n− 1, hk has 3n

2 terms of the form figj . According to the results mentioned above, the exact number of
terms of the polynomial product coefficient is provided, based on which we can compute more accurate error probabilities of
our schemes, as well as NTTRU and NTRU-C768

3457. Thus, the error probabilities of CTRU, CNTR, NTTRU and NTRU-C768
3457

in this work are estimated by using a Python script according to our methodology. The whole results of CTRU and CNTR for
the selected parameters are given in Table II and Table III.

E. Provable Security

We prove that CTRU.PKE is IND-CPA secure under the NTRU assumption and the RLWE assumption, and CNTR.PKE is
IND-CPA secure under the NTRU assumption and the RLWR assumption.

Theorem 4 (IND-CPA security of CTRU.PKE) For any adversary A, there exit adversaries B and C such that
AdvIND-CPA

CTRU.PKE(A) ≤ AdvNTRU
Rq,Ψ1

(B) + AdvRLWE
Rq,Ψ2

(C).

Proof We complete our proof through a sequence of games G0, G1 and G2. Let A be the adversary against the IND-CPA
security experiment. Denote by Succi the event that A wins in the game Gi, that is, A outputs b′ such that b′ = b in Gi.

Game G0. This game is the original IND-CPA security experiment. Thus, AdvIND-CPA
CTRU.PKE(A) = |Pr[Succ0]− 1/2|.

Game G1. This game is the same as G0, except that replacing the public key h = g/f in the KeyGen by h $←− Rq . To
distinguish G1 from G0 is equivalent to solve an NTRU problem. More precisely, there exits an adversary B with the same
running time as that of A such that |Pr[Succ0]− Pr[Succ1]| ≤ AdvNTRU

Rq,Ψ1
(B).

Game G2. This game is the same as G1, except that using uniformly random elements from Rq to replace σ in the encryption.
Similarly, there exits an adversary C with the same running time as that of A such that |Pr[Succ1]−Pr[Succ2]| ≤ AdvRLWE

Rq,Ψ2
(C).

In Game G2, for any given mb, according to Algorithm 5 and 7, mb is split into n/8 quadruples. Denote the i-th quadruple of
mb as m(i)

b , which will later be operated to output the i-th octet of the ciphertext c that is denoted as c(i), i = 0, 1, . . . , n/8−1.
Since c(i) is only dependent on m(i)

b and other parts of mb do not interfere with c(i), our aim is to prove that c(i) is independent
of m(i)

b , i = 0, 1, . . . , n/8− 1. For any i and any given m(i)
b , bEncodeE′8(m

(i)
b )e is fixed. Based on the uniform randomness of

σ in Rq , its i-th octet (denoted as σ(i)) is uniformly random in Z8
q , so is σ(i) + bEncodeE′8(m

(i)
b )e. Therefore, the resulting

c(i) is subject to the distribution b q2q ue mod q2 where u is uniformly random in Z8
q , which implies that c(i) is independent of

m
(i)
b . Hence, each c(i) leaks no information of the corresponding m(i)

b , i = 0, 1, . . . , n/8− 1. We have Pr[Succ2] = 1/2.
Combining all the probabilities finishes the proof. �

Theorem 5 (IND-CPA security of CNTR.PKE) For any adversary A, there exit adversaries B and C such that
AdvIND-CPA

CNTR.PKE(A) ≤ AdvNTRU
Rq,Ψ1

(B) + AdvRLWR
R,Ψ2

(C).

Proof We complete our proof through a sequence of games G0, G1 and G2. Let A be the adversary against the IND-CPA
security experiment. Denote by Succi the event that A wins in the game Gi, that is, A outputs b′ such that b′ = b in Gi.

Game G0. This game is the original IND-CPA security experiment. Thus, AdvIND-CPA
CNTR.PKE(A) = |Pr[Succ0]− 1/2|.

Game G1. This game is the same as G0, except that replacing the public key h = g/f in the KeyGen by h $←− Rq . To
distinguish G1 from G0 is equivalent to solve an NTRU problem. More precisely, there exits an adversary B with the same
running time as that of A such that |Pr[Succ0]− Pr[Succ1]| ≤ AdvNTRU

Rq,Ψ1
(B).
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Game G2. This game is the same as G1, except that using random elements from Rq2 to replace b q2q hre of c = b q2q hre+
q2
2 s mod q2 (see the formula (3)) in the encryption where the term q2

2 s implies the encoding output of the given challenge
plaintext mb via the scalable E8 lattice w.r.t. the scale factor q2

2 . Similarly, there exits an adversary C with the same running
time as that of A such that |Pr[Succ1]− Pr[Succ2]| ≤ AdvRLWR

R,Ψ2
(C).

In Game G2, the information of the challenge plaintext mb is perfectly hidden by the uniformly random element from Rq2 .
Hence, the advantage of the adversary is zero in G2. We have Pr[Succ2] = 1/2.

Combining all the probabilities finishes the proof. �

By applying the FO6⊥ID(pk),m transformation and adapting the results given in [35], we have the following results on CCA
security of CTRU.KEM and CNTR.KEM in the random oracle model (ROM) [50] and the quantum random oracle model
(QROM) [51].

Theorem 6 (IND-CCA security in the ROM and QROM [35]) Let ` be the min-entropy [33] of ID(pk), i.e., ` =
H∞(ID(pk)), where (pk, sk)←CTRU/CNTR.PKE.KeyGen. For any (quantum) adversary A, making at most qD decapsulation
queries, qH (Q)RO queries, against the IND-CCA security of CTRU/CNTR.KEM, there exits a (quantum) adversary B with
roughly the same running time of A, such that:
• In the ROM, it holds that AdvIND-CCA

CTRU/CNTR.KEM(A) ≤

2

(
AdvIND-CPA

CTRU/CNTR.PKE(B) +
qH + 1

|M|

)
+
qH
2ι

+ (qH + qD)δ +
1

2`
;

• In the QROM, it holds that AdvIND-CCA
CTRU/CNTR.KEM(A) ≤

2

√
qHDAdvIND-CPA

CTRU/CNTR.PKE(B) +
4qHD√
|M|

+
4(qH + 1)√

2ι
+ 16q2

HDδ +
1

|M| +
1

2`
,

where qHD := qH + qD + 1.

The detailed discussions and clarifications on CCA security reduction of KEM in the ROM and the QROM are given in
Appendix A.

F. Discussions and Comparisons

The rings. As in [15], [32], we can choose non-power-of-two cyclotomics Zq[x]/(xn−xn/2+1) with respect to n = 3l·2e and
prime q, This type of ring allows very fast NTT-based polynomial multiplication if the ring moduli are set to be NTT-friendly.
Moreover, it also allows very flexible parameter selection, since there are many integral n of the form 3l · 2e, l ≥ 0, e ≥ 1.

The message modulus. Note that the modulus p is removed in the public key h (i.e., h = g/f ) and in the ciphertext c of
our CTRU and CNTR, for the reason that p is not needed in h and c to recover the message m in our construction. The only
reserved position of p is the secret key f , which has the form of f = pf ′+1. Since gcd(q, p) = 1 is required for NTRU-based
KEM schemes, we can use p = 2 instead of p = 3. A smaller p can lead to a lower error probability. Note that for other
NTRU-based KEM schemes with power-of-two modulus q as in NTRU-HRSS [16], p is set to be 3 because it is the smallest
integer co-prime to the power-of-2 modulus.

The decryption mechanism. Technically speaking, the ciphertext of NTRU-based PKE schemes [10], [16], [30], [32] has
the form of c = phr+m mod q. One can recover the message m through a unidimensional error-correction mechanism, after
computing cf mod q. Instead, we use a multi-dimension coding mechanism. We encode each 4-bit message into a lattice point
in the scalable E8 lattice. They can be recovered correctly with the aid of the scalable E8 decoding algorithm if the `2 norm
of the error term is less than the sphere radius of the scalable E8 lattice.

The ciphertext compression. The step of compressing ciphertext in CTRU is described in line 3 in Algorithm 5, while the
step of compressing ciphertext in CNTR is described in line 3 in Algorithm 13. Both of them can be mathematically written

as y := bq2

q
xe mod q2, x ∈ Zq for each component. The sufficient condition of ciphertext compression is that dlog(q2)e <

dlog(q)e, such that y occupies less bits than x. But, the capacity of ciphertext compression is invalid under the condition of
dlog(q2)e ≥ dlog(q)e, especially q2 = q. To the best of our knowledge, CTRU and CNTR are the first NTRU-based KEM
schemes with scalable ciphertext compression via a single polynomial. The ciphertext modulus q2 is adjustable, depending on
the bits to be dropped. Recall that most NTRU-based KEM schemes [10], [16], [32] fail to compress ciphertext due to the
fact that the message information would be destroyed once the ciphertext is compressed.

The role of noise e and rounding. We remark that the noise e in line 2 in Algorithm 5 is only necessary for basing
the IND-CPA security on the RLWE assumption for CTRU.PKE. As we shall see, even without e, CTRU.PKE is still IND-
CPA secure under the RLWR assumption if the ciphertext compression exits. In some sense, CTRU.PKE degenerates into
tweaking CNTR.PKE with the existing of the rounding of PolyEncode. Moreover, without the noise e and the ciphertext
compression, CTRU.PKE is still OW-CPA secure only based on the NTRU assumption (without further relying on the RLWE
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TABLE II
PARAMETER SETS OF CTRU.

Schemes n q q2 (Ψ1,Ψ2) |pk| |ct| B.W. NTRU
(Sec.C, Sec.Q)

LWE, primal
(Sec.C, Sec.Q)

LWE, dual
(Sec.C, Sec.Q) δ

CTRU-512 512 3457 29 (B2, B2) 768 576 1344 (111,100) (111,100) (110,100) 2−122

512 3457 210 (B3, B3) 768 640 1408 (118,107) (118,107) (117,106) 2−143

CTRU-768
768 3457 210 (B2, B2) 1152 960 2112 (181,164) (181,164) (180,163) 2−184

768 3457 3457 (B3, B3) 1152 1152 2304 (192,174) (192,174) (190,173) 2−136

768 3457 211 (B3, B3) 1152 1056 2208 (192,174) (192,174) (190,173) 2−121

CTRU-1024
1024 3457 211 (B2, B2) 1536 1408 2944 (255,231) (255,231) (252,229) 2−195

1024 3457 210 (B2, B2) 1536 1280 2816 (255,231) (255,231) (252,229) 2−132

1024 3457 3457 (B3, B3) 1536 1536 3072 (269,244) (269,244) (266,241) 2−96

TABLE III
PARAMETER SETS OF CNTR.

Schemes n q q2 (Ψ1,Ψ2) |pk| |ct| B.W. NTRU
(Sec.C, Sec.Q)

RLWR
(Sec.C, Sec.Q) δ

CNTR-512
512 3457 29 (B3, B3) 768 576 1344 (118,107) (117,106) 2−99

512 3457 210 (B5, B5) 768 640 1408 (127,115) (127,115) 2−170

512 3457 210 (B6, B6) 768 640 1408 (131,119) (131,119) 2−126

CNTR-768 768 3457 210 (B3, B3) 1152 960 2112 (192,174) (191,173) 2−230

768 3457 210 (B4, B4) 1152 960 2112 (200,181) (199,181) 2−151

CNTR-1024 1024 3457 210 (B2, B2) 1536 1280 2816 (255,231) (253,230) 2−291

1024 3457 210 (B3, B3) 1536 1280 2816 (269,244) (267,243) 2−167

or RLWR assumption). As for CNTR.PKE, once eliminating the ciphertext compression, CNTR.PKE requires the rounding of
PolyEncode, such that CNTR.PKE can be OW-CPA secure similarly based on the NTRU assumption.

The trade-off of using lattice code. The scalable E8 lattice code allows an efficient and constant-time implementation, as
described in section III and section VII-F. The error-correction capability of the scalable E8 lattice code yields a low enough
error probability, and allows wider noise distribution and ciphertext compression, such that the security of our schemes can be
strengthened by about 40 bits and the ciphertext size is reduced by 15% at least, with the mostly the same (even faster) overall
running time when compared to other NTRU-based KEM schemes. Although the scalable E8 lattice code sightly increases
extra implementation complexity, this is likely to be a reasonable and acceptable trade-off of the security, ciphertext size and
implementation complexity in many contexts.

V. CONCRETE HARDNESS AND PARAMETER SELECTION

In this section, we first estimate and select parameters for CTRU and CNTR, by applying the methodology of core-SVP
hardness estimation [52]. Then, we present the refined gate-count estimate, by using the scripts provided by Kyber and NTRU
Prime in NIST PQC Round 3. Finally, we overview and discuss some recent attacks beyond the core-SVP hardness.

A. Parameter Selection with Core-SVP

1) Primal attack and dual attack: Currently, for the parameters selected for most practical lattice-based cryptosystems,
the dominant attacks considered are the lattice-based primal and dual attacks. The primal attack is to solve the unique-Short
Vector Problem (u-SVP) in the lattice by constructing an integer embedding lattice (Kannan embedding [53], Bai-Galbraith
embedding [54], etc). The most common lattice reduction algorithm is the BKZ algorithm [55], [56]. Given a lattice basis, the
blocksize, which we denote by b, is necessarily chosen to recover the short vector while running the BKZ algorithm. NTRU
problem can be treated as a u-SVP instance in the NTRU lattice [12], while a u-SVP instance can also be constructed from
the LWE problem. The dual attack [57] is to solve the decisional LWE problem, consisting of using the BKZ algorithm in the
dual lattice, so as to recover part of the secret and infer the final secret vector.

2) Core-SVP hardness: Following the simple and conservative methodology of the core-SVP hardness developed from [52],
the best known cost of running SVP solver on b-dimension sublattice is 20.292b for the classical case and 20.265b for the
quantum case. These cost models can be used for conservative estimates of the security of our schemes. Note that the number
of samples is set to be 2n for NTRU problem (resp., n for LWE problem), since the adversary is given such samples. We
estimate the classical and quantum core-SVP hardness security of CTRU and CNTR via the Python script from [19], [52],
[58]. The concrete results are given in Table II and Table III.

3) Parameter sets: The parameter sets of CTRU and CNTR are given in Table II and Table III respectively, where those
in red are the recommended parameters also given in Table I. Though the parameters in red are marked as recommended, we
believe the other parameter sets are still very useful in certain application scenarios. Note that in Table I we did not list the
security against the LWE dual attack. The reason is that the LWE dual attack was considered less realistic than the primal
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TABLE IV
GATE-COUNT ESTIMATE OF CTRU PARAMETERS.

Schemes (Ψ1,Ψ2) d b b′ log(gates) log(memory) log(gates)
by NIST

CTRU-512 (B2, B2) 1007 386 350 144.1 88.4 143
(B3, B3) 1025 411 373 150.9 93.3

CTRU-768 (B2, B2) 1467 634 583 214.2 137.9 207
(B3, B3) 1498 671 618 224.6 145.3

CTRU-1024 (B2, B2) 1919 890 825 286.1 188.9 272
(B3, B3) 1958 939 871 299.7 198.5

TABLE V
GATE-COUNT ESTIMATE OF CNTR PARAMETERS.

Schemes q2 (Ψ1,Ψ2) d b b′ log(gates) log(memory) log(gates)
by NIST

CNTR-512
29 (B3, B3) 1025 411 373 150.9 93.3

143210 (B5, B5) 1025 444 404 160.1 100.0
210 (B6, B6) 1025 457 417 163.9 102.7

CNTR-768 210 (B3, B3) 1498 671 618 224.6 145.3 207
210 (B4, B4) 1521 699 644 232.3 150.8

CNTR-1024 210 (B2, B2) 1919 890 825 286.1 188.9 272
210 (B3, B3) 1958 939 871 299.7 198.5

attack, and was not taken for concrete hardness estimates in many lattice-based cryptosystems including Kyber in NIST PQC
Round 3 [19]. For ease of a fair comparison, the security estimate against the LWE dual attack was not listed in Table I.

The ring dimension n is chosen from {512, 768, 1024}, corresponding to the targeted security levels I, III and V recommended
by NIST. The ring modulus q is set to 3457, and q2 is the ciphertext modulus (also the RLWR modulus for CNTR). Recall
that we fix the message space modulus p = 2 and the underlying cyclotomic polynomial Φ(x) = xn − xn/2 + 1, which are
omitted in Table II and Table III. Ψ1 and Ψ2 are the probability distributions which are set to be Bη , where Bη is the centered
binomial distribution w.r.t. the integer η. The public key sizes |pk|, ciphertext sizes |ct| and B.W. (bandwidth, |pk| + |ct|)
are measured in terms of bytes. “Sec.C” and “Sec.Q” mean the estimated security level expressed in bits in the classical and
quantum settings respectively, where the types of NTRU attack, LWE primal attack, LWE dual attack and RLWR attack are
considered. The last column “δ” indicates the error probability, which is evaluated by a script according to the analysis given
in section IV-C.

We stress that our schemes enjoy a flexibility of parameter selections, but selecting these n’s in Table II and Table III is only
for simplicity. One can also choose n from {576, 648, 864, 972, 1152, 1296} which are integers of the form 3l ·2e, l ≥ 0, e ≥ 1.
Note also that the plaintext message space of CTRU and CNTR is {0, 1}n/2, compared to the fixed message space {0, 1}256

of Kyber and Saber. As for CNTR-512, its first parameter set has the smallest ciphertext sizes, and the third parameter set has
the strongest hardness of lattice problem (say, NTRU and RLWR). They can be practically applicable in certain application
scenarios which are not much sensitive to error probability. In practice, each secret key will not be used for decryption more
than 280 times during its lifetime. In this case, the relatively higher error probabilities, e.g., 2−99, does not undermine the
actual security of these parameter sets in reality. The third parameter set of CNTR-512 is highly recommended due to its robust
security, since the recent improvements on the attacks [59]–[61] might cause the worry that other lattice-based schemes like
Kyber and Saber do not achieve the claimed security goals, especially on the dimension of 512. However, it is seen that the
third parameter set of CNTR-512 is possible, which has a gate complexity of 2163.9 at the memory complexity of 2102.7.

B. Refined Gate-Count Estimate

As for the quantum gates and space complexity related to the LWE and LWR problems, we use the same gate number
estimation method as Kyber, Saber, NTRU KEM, and SNTRU Prime in NIST PQC Round 3. Briefly speaking, it uses the
probabilistic simulation of [62] rather than the GSA-intersect model of [52], [63] to determine the BKZ blocksize b for a
successful attack. And it relies on the concrete estimation for the cost of sieving in gates from [64]. It also accounts for the
“few dimensions for free” proposed in [65], which permits to solve SVP in dimension b by sieving in a somewhat smaller
dimension b0 = b − O(b). Finally, it dismisses the dual attack as realistically more expensive than the primal attack. In
particular, in the dual attack, exploiting the short vectors generated by the Nearest Neighbor Search used in lattice sieving is
not compatible with the “dimension for free” trick [65]. The scripts for these refined estimates are provided in a git branch of
the leaky-LWE estimator [62]1.

The gate-count estimate results of the parameter sets of CTRU and CNTR are shown in Table IV and Table V, respectively.
Ψ1 and Ψ2 are the probability distributions. q2 is the RLWR modulus for CNTR. d is the optimal lattice dimension for the

1https://github.com/lducas/leaky-LWE-Estimator/tree/NIST-round3

https://github.com/lducas/leaky-LWE-Estimator/tree/NIST-round3
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attack. b is the BKZ blocksize. b′ is the sieving dimension accounting for “dimensions for free”. Gates and memory are
expressed in bits. The last column means the required log(gates) values by NIST. It is estimated in [19] that the actual cost
may not be more than 16 bits away from this estimate in either direction.

C. Attacks Beyond Core-SVP Hardness
1) Hybrid attack: The works [2], [3], [66] consider the hybrid attack as the most powerful against NTRU-based

cryptosystems. However, even with many heuristic and theoretical analysis on hybrid attack [66]–[69], so far it still fails
to make significant security impact on NTRU-based cryptosystems partially due to the memory constraints. By improving the
collision attack on NTRU problem, it is suggested in [70] that the mixed attack complexity estimate used for NTRU problem
is unreliable, and there are both overestimation and underestimation. Judging from the current hybrid and meet-in-the-middle
(MITM) attacks on NTRU problem, there is an estimation bias in the security estimates of NTRU-based KEMs, but this bias
does not make a big difference to the claimed security. For example, under the MITM search, the security of NTRU KEM in
NIST PQC Round 3 may be 2−8 less than the acclaimed value in the worst situation [70].

2) Recent advances on dual attack: There are some recent progress on the dual attack, and we discuss their impacts on
CTRU and CNTR. Duc et al. [71] propose that fast Fourier transform (FFT) can be useful to the dual attack. As for the small
coefficients of the secrets, various improvements can also be achieved [68], [72], [73]. Albrecht and Martin [72] propose a
re-randomization and smaller-dimensional lattice reduction method, and investigate the method for generating coefficients of
short vectors in the dual attack. Guo and Thomas [60] show that the current security estimates from the primal attacks are
overestimated. Espitau et al. [74] achieve a dual attack that outperforms the primal attack. These attacks can be combined with
the hybrid attack proposed in [75] to achieve a further optimized attack under specific parameters [68], [76], [77]. Very recently,
MATZOV [61] further optimizes the dual attack, and claims that the impact of its methods is larger than those of Guo and
Thomas’s work [60]. It is also mentioned in [61] that the newly developed methods might also be applicable to NTRU-based
cryptosystems (e.g., by improving the hybrid attack). The improvements of dual attacks mentioned above have potential threats
to the security of CTRU and CNTR (as well as to other cryptosystems based on algebraically structured lattices). This line of
research is still actively ongoing, and there is still no mature and convincing estimate method up to now.

3) S-unit attack: The basis of the S-unit attack is the unit attack: finding a short generator. On the basis of the constant-
degree algorithm proposed in [78], [79], Biasse et al. [80] present a quantum polynomial time algorithm, which is the basis for
generating the generator used in the unit attack and S-unit attack. Then, the unit attack is to shorten the generator by reducing
the modulus of the unit, and the idea is based on the variant of the LLL algorithm [81] to reduce the size of the generator in
the S-unit group. That is, it replaces yi with yi/ε, thereby reducing the size of yi, where yi refers to the size of the generator
and ε is the reduction factor of the modulus of the unit. The S-unit attack is briefly recalled in Appendix B. Campbell et
al. [82] consider the application of the cycloid structure to the unit attack, which mainly depends on the simple generator of
the cycloid unit. Under the cycloid structure, the determinant is easy to determine, and is larger than the logarithmic length of
the private key, which means that the private key can be recovered through the LLL algorithm.

After establishing a set of short vectors, the simple reduction repeatedly uses v − u to replace v, thereby reducing the
modulus of vector v, where u belongs to the set of short vectors. This idea is discovered in [81], [83]. The difference is that
the algorithm proposed by Avanzi and Howard [83] can be applied to any lattice, but is limited to the `2 norm, while the
algorithm proposed by Cohen [81] is applicable to more norms. Pellet-Mary et al. [84] analyze the algorithm of Avanzi and
Howard [83], and apply it to S-unit. They point out that the S-unit attack could achieve shorter vectors than existing methods,
but still with exponential time for an exponentially large approximation factor. Very recently, Bernstein and Tanja [59] further
improve the S-unit attack.

Up to now, it is still an open problem to predict the effectiveness of the reduction inside the unit attacks. The statistical
experiments on various m′-th cyclotomics (with respect to power-of-two m′) show that the efficiency of the S-unit attack is
much higher than a spherical model of the same lattice for m′ ∈ {128, 256, 512} [85]. The effect is about a factor of 2−3,
2−6 and 2−11, respectively. Therefore, even with a conservative estimate, the security impact on CTRU and CNTR may not
exceed a factor of 2−11.

4) BKW attack: For cryptographic schemes to which the BKW method can be applied, the combined methods proposed
in [86]–[89], which extend the BKW method, can be the most efficient method for specific parameters. These methods require
a large number of samples, and their security estimates are based on the analysis of lattice basis reduction, either by solving
the encoding problem in the lattice or by converting to a u-SVP problem [90]–[92]. These attacks do not affect the security
of CTRU and CNTR, because the parameters chosen for CTRU and CNTR do not meet the conditions of BKW method.

5) Side channel attack: Ravi et al. [93] construct some ciphertexts with specific structures where the key information exists
in the intermediate variables, so as to recover the key through side channel attack (SCA). They apply this attack to NTRU
KEM and NTRU Prime in NIST PQC Round 3, which can recover the full secret keys through a few thousands of chosen
ciphertext queries. This type of SCA-aided chosen ciphertext attack is not directly applicable to CTRU and CNTR, but might
be possible to be improved against CTRU and CNTR.

Recently, Bernstein [94] proposes an efficient fault attack with a one-time single-bit fault in the random string stored inside
the secret key, such that this attack can recover all the previous NTRU-HRSS session keys with the aid of about a thousand
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of modified ciphertexts in the standrad IND-CCA attack model. However, Bernstein’s fault attack is valid for the specific
ciphertext form of NTRU-HRSS, and is invalid for compressed ciphertext (as in CTRU and CNTR). Thus, this type of fault
attack does not threaten CTRU and CNTR yet.

6) Other attacks: Algebraic attacks [80], [82], [95], [96] and dense sublattice attacks [77] also provide new ideas for LWE-
based cryptographic analysis. However, these attacks do not currently affect the acclaimed security of the proposed parameters
of CTRU and CNTR.

VI. POLYNOMIAL ARITHMETIC

In this section, some NTT algorithms are introduced to compute and accelerate the polynomial multiplication or division
of CTRU and CNTR. In particular, to address the inconvenient issues that multiple NTT algorithms have to be equipped in
accordance with each n ∈ {512, 768, 1024}, we provide the methodology of using a unified NTT technique to compute NTT
algorithms over Zq[x]/(xn − xn/2 + 1) for all n ∈ {512, 768, 1024} with the same q.

A. The Mixed-radix NTT

A type of mixed-radix NTT is utilized to compute the polynomial multiplication and division over Zq[x]/(xn − xn/2 + 1)
with respect to n = 768 and q = 3457. We choose the 3

2n-th primitive root of unity ζ = 5 in Zq due to 3
2n|(q − 1). As

for the forward NTT transform (NTT ), inspired by NTTRU [15], there is a mapping such that Zq[x]/(xn − xn/2 + 1) ∼=
Zq[x]/(xn/2 − ζ1) × Zq[x]/(xn/2 − ζ2) where ζ1 + ζ2 = 1 and ζ1 · ζ2 = 1. To apply the mixed-radix NTT, we choose
ζ1 = ζn/4 mod q and ζ2 = ζ5

1 = ζ5n/4 mod q. Thus, both xn/2 − ζ1 and xn/2 − ζ2 can be recursively split down into
degree-6 terms like x6 ± ζ3 through 6 steps of radix-2 FFT trick for n = 768. Then the steps of radix-3 FFT trick can be
utilized, for example, given the isomorphism Zq[x]/(x6− ζ3) ∼= Zq[x]/(x2− ζ)×Zq[x]/(x2− ρζ)×Zq[x]/(x3− ρ2ζ) where

ρ = ζn/2 mod q. Therefore, Zq[x]/(xn−xn/2 +1) can be decomposed into
n/2−1∏
i=0

Zq[x]/(x2 − ζτ(i)), where τ(i) is the power

of ζ of the i-th term and we start the index i from zero. Upon receiving the polynomial f , its result of the forward NTT
transform is f̂ = (f̂0, f̂1, . . . , f̂n2−1) where f̂i ∈ Zq[x]/(x2 − ζτ(i)) is a linear polynomial, i = 0, 1, . . . , n2 − 1.

The inverse NTT transform (INTT ) can be obtained by inverting these procedures. In this case, the point-wise multiplication
(“◦”) is the corresponding linear polynomial multiplication in Zq[x]/(x2 − ζτ(i)), i = 0, 1, . . . , n2 − 1.

As for the mixed-radix NTT-based polynomial multiplication with respect to h = f · g, it is computed by h =
INTT (NTT (f)◦NTT (g)). In addition, as for the mixed-radix NTT-based polynomial division with respect to h = g/f (i.e.,
computing the public key in this paper), it is essentially to compute h = INTT (ĝ ◦ f̂−1). Here, ĝ = NTT (g), f̂ = NTT (f),
and f̂−1 = (f̂−1

0 , f̂−1
1 , . . . , f̂−1

n
2−1) where f̂−1

i is the inverse of f̂i in Zq[x]/(x2− ζτ(i)), if each f̂−1
i exits, i = 0, 1, . . . , n2 − 1.

1) The pure radix-2 NTT: Similar techniques can be utilized to Zq[x]/(xn − xn/2 + 1) w.r.t. (n = 512, q = 3457) and
(n = 1024, q = 3457). As for both of them, only the steps of the radix-2 FFT trick are required, due to the power-of-two n.
Note that for these two n, there only exits the 384-th primitive root of unity ζ in Zq . Therefore, Zq[x]/(xn−xn/2 + 1) can be

decomposed into
n/4−1∏
i=0

Zq[x]/(x4 − ζτ(i)) for n = 512, but into
n/8−1∏
i=0

Zq[x]/(x8 − ζτ(i)) for n = 1024. Thus, the point-wise

multiplication and the base case inversion are aimed at the corresponding polynomials of degree 3 for n = 512 (degree 7 for
n = 1024).

B. The Unified NTT

As mentioned above, in order to achieve an efficient implementation, we conduct 6 steps of radix-2 FFT trick for n ∈
{512, 768, 1024} and one more step of radix-3 FFT trick for n = 768. Therefore, for different n’s, the various (mixed-radix
and radix-2) NTT algorithms are required for three types of parameter sets. However, for many applications or platforms, all
the three types parameter sets may need to be implemented. In order to deal with the inconvenient issue, we present a unified
NTT methodology over Zq[x]/(xn−xn/2 +1), n ∈ {512, 768, 1024}, such that only one type of NTT computation is required
for different n’s, which is useful for modular and unified implementations when all the three parameter sets are required.

In this work, we consider n = α · N , where α ∈ {2, 3, 4} is called the splitting-parameter and N is a power of
two. In fact, α can be chosen more freely as arbitrary values of the form 2i3j , i ≥ 0, j ≥ 0. With the traditional NTT
technique, when the dimension n changes we need to use different NTT algorithms of various input/output lengths to compute
polynomial multiplications over Zq[x]/(xn−xn/2 +1). This causes much inconvenience to software and particularly hardware
implementations. To address this issue, we unify the various n-point NTTs through an N -point NTT, which is referred to as
the unified NTT technique. For n ∈ {512, 768, 1024}, we fix N = 256 and choose α ∈ {2, 3, 4}. With this technique, we
only focus on the implementation of the N -point NTT, which serves as the unified procedure to be invoked for different n’s.
Specifically, the computation of NTT over Zq[x]/(xn − xn/2 + 1) is divided into three steps. For presentation simplicity, we
only give the procedures of the forward transform as follows, since the inverse transform can be obtained by inverting these
procedures. The map road is shown in Figure 2.
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Zq[x]/(xα·N − xα·N/2 + 1)
(
Zq[y]/(yN − yN/2 + 1)

)
[x]/(xα − y)

N/2β−1∏
k=0

Zq[x]/(xα·2
β − ζτ(k))

(
N/2β−1∏
k=0

Zq[y]/(y2
β − ζτ(k))

)
[x]/(xα − y)

ϕ1

ϕ2

n-point NTT N -point NTT

Fig. 2. Map road for unified NTT

Step 1. Construct a splitting-polynomial map ϕ1 :

Zq[x]/(xα·N − xα·N/2 + 1)→
(
Zq[y]/(yN − yN/2 + 1)

)
[x]/(xα − y)

f =

α·N−1∑
i=0

fix
i 7→

α−1∑
j=0

Fjx
j

where Fj =
N−1∑
i=0

fα·i+jyi ∈ Zq[y]/(yN − yN/2 + 1). Namely, the n-dimension polynomial is split into α N -dimension

sub-polynomials.
Step 2. Apply the unified N -point NTT to Fj over Zq[y]/(yN − yN/2 + 1), j = 0, 1, . . . , α − 1. Specifically, inspired

by NTTRU [15], there is a mapping such that Zq[y]/(yN − yN/2 + 1) ∼= Zq[y]/(yN/2 − ζ1) × Zq[y]/(yN/2 − ζ2) where
ζ1 + ζ2 = 1 and ζ1 · ζ2 = 1. Let q be the prime satisfying 3N

2β
|(q − 1), where β ∈ N is called the truncating-parameter, such

that it exits the primitive 3N
2β

-th root of unity ζ in Zq . To apply the radix-2 FFT trick, we choose ζ1 = ζN/2
β+1

mod q and
ζ2 = ζ5

1 = ζ5N/2β+1

mod q. Thus, both yN/2 − ζ1 and yN/2 − ζ2 can be recursively split down into degree-2β terms like
y2β ± ζ. The idea of truncating FFT trick originates from [41]. Therefore, Zq[y]/(yN − yN/2 + 1) can be decomposed into
N/2β−1∏
k=0

Zq[y]/(y2β − ζτ(k)), where τ(k) is the power of ζ of the k-th term and we start the index k from zero. Let F̂j be the

NTT result of Fj and F̂j,l be its l-th coefficient, l = 0, 1, . . . , N − 1. Hence, we can write

F̂j = (

2β−1∑
l=0

F̂j,ly
l,

2β−1∑
l=0

F̂j,l+2βy
l, . . . ,

2β−1∑
l=0

F̂j,l+N−2βy
l) ∈

N/2β−1∏
k=0

Zq[y]/(y2
β

− ζτ(k))

Step 3. Combine the intermediate values and obtain the final result by the map ϕ2 :N/2β−1∏
k=0

Zq [y]/(y2
β
− ζτ(k))

 [x]/(xα − y)→
N/2β−1∏
k=0

Zq [x]/(xα·2
β
− ζτ(k))

α−1∑
j=0

F̂jx
j 7→ f̂

where f̂ =
α·N−1∑
i=0

f̂ix
i is the NTT result of f . Its i-th coefficient is f̂i = F̂j,l, where j = i mod α and l = b iαc. It can be

rewritten as:

f̂ = (

α·2β−1∑
i=0

f̂ix
i,

α·2β−1∑
i=0

f̂i+α·2βx
i, . . . ,

α·2β−1∑
i=0

f̂i+n−α·2βx
i) ∈

N/2β−1∏
k=0

Zq[x]/(xα·2
β

− ζτ(k)) (8)

In this work, we choose β = 1 and q = 3457, where the primitive 384-th root of unity ζ = 55 exits in Z3457. In this
case, the point-wise multiplication is the corresponding 2α-dimension polynomial multiplication in Zq[x]/(x2α − ζτ(k)), α ∈
{2, 3, 4}, k = 0, 1, . . . , N/2− 1.

C. Discussions

As for the application scenarios w.r.t. n = 768, the polynomial multiplication and division over Zq[x]/(xn − xn/2 + 1) can
be efficiently improved with the aid of the mixed-radix NTT (the benchmark results are shown in section VIII). But, this type
of NTT can not be implemented universally and modularly for more general n’s, since it can be only applied in the case of
n = 3 · 2e for some integer e, instead of power-of-two n like 512 and 1024. Hence, for our CTRU and CNTR, three various
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NTT algorithms would be needed for the three recommended parameter sets. The unified NTT can overcome the inconvenient
issue. Note that in the base case inversion of the unified NTT-based polynomial division, we need to compute the inverses of
degree-3, degree-5 and degree-7 polynomials for n = 512, 768, 1024 respectively, which are more complicated than that of
linear polynomial in the mixed-radix NTT-based polynomial division. It causes that the unified NTT performs less efficiently
in the KeyGen algorithm.

However, most application scenarios and cryptographic devices are usually equipped with three recommended parameter
sets (n = 512, 768, 1024) for the targeted security levels. In these cases, the unified NTT can lead to modular and simplified
software and hardware implementation. Note that in practice the KeyGen algorithm is run once and for all, and its computational
cost is less sensitive to most cryptographic applications. As KeyGen is less frequently run, we have taken priority on simple,
unified and modular implementations, i.e., unified NTT. In addition, when compared to NTRU-HRSS and SNTRU Prime, the
KeyGen algorithm of CTRU and CNTR can be still faster in the context of the unified NTT.

D. Base Case Inversion
The inverse of the polynomials in Zq[x]/(xi−ζj), i, j ≥ 0 can be computed by Cramer’s Rule [42]. Take Zq[x]/(x4−ζ) as an

example. Let f be a degree-3 polynomial in Zq[x]/(x4−ζ), and denote its inverse by f ′, which implies f ·f ′ = 1 mod x4−ζ.
It can be written in the form of matrix-vector multiplication:




f0 ζf3 ζf2 ζf1

f1 f0 ζf3 ζf2

f2 f1 f0 ζf3

f3 f2 f1 f0


 ·




f ′0
f ′1
f ′2
f ′3


 =




1
0
0
0


 . (9)

Let ∆ be the determinant of the coefficient matrix. Hence, the inverse of f exits if and only if ∆ 6= 0. In this case, according
to Cramer’s Rule, there is a unique f ′, whose individual components are given by

f ′i =
∆i

∆
, i = 0, 1, 2, 3 (10)

where ∆i is the determinant of the matrix generated by replacing the (i+1)-th column of the coefficient matrix with (1, 0, 0, 0)T .
And ∆−1 can be computed by using Fermat’s Little Theorem, i.e., ∆−1 ≡ ∆q−2 mod q.

E. Multi-moduli NTT
Although directly-using NTT is invalid over Rq2 w.r.t. power-of-two q2 in the decryption process of CTRU and CNTR, the

work [97], [98] show that it is still possible to conduct an efficient multi-moduli NTT over Rq2 . Briefly speaking, according to
[97], the polynomial multiplication over Rq2 can be lifted to that over RQ = ZQ[x]/(xn − xn/2 + 1), where Q is a positive
integer and larger than the maximum absolute value of the coefficients during the computation over Z. Then, one can recover
the targeted product polynomial through reduction modulo q2. We choose Q = qq′ where q = 3457 and q′ = 7681 in this
paper. We have the CRT isomorphism: RQ ∼= Rq ×Rq′ . The first NTT algorithm w.r.t (n, q) over Rq can be instanced as the
mixed-radix NTT in section VI-A or the unified NTT in section VI-B. The second NTT algorithm w.r.t. (n, q′) over Rq′ can
be followed from that in NTTRU [15]. After using NTTs to compute two intermediate products in Rq and Rq′ respectively,
the targeted product in RQ can be recovered via CRT.

VII. IMPLEMENTATION

In this section, the remaining details of the implementations of our schemes are provided, including our portable C
implementation, as well as optimized implementations with AVX2 instruction sets. All the implementations are carefully
protected against timing attacks.

A. Symmetric Primitives
All the hash functions are instantiated with functions from SHA-3 family. To generate the secret polynomials, i.e., f ′, g, r, e,

the secret seeds are needed to be expanded to the sampling randomness by using SHAKE-128. The hash function H is
instantiated with SHA3-512, aiming to hash the short prefix of public key ID(pk) and message m into the 64 bytes where
the first 32 bytes are used to generate the shared keys and the later 32 bytes are used as the secret seed for the encryption
algorithm.

B. Generation of Secret Polynomials
All the secret polynomials in our schemes are sampled according to the centered binomial distribution Bη . Each of them

totally requires 2nη bits, or saying 2nη/8 bytes, as sampling randomness, which are produced from the output of SHAKE-128
with a secret seed as an input. To generate each coefficient of an secret polynomial, we arrange the adjacent independent 2η
random bits and subtract the Hamming weight of the most significant η bits from the Hamming weight of the least significant
η bits.
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C. The Keys and Ciphertexts

The format of the public key. The public key is transmitted in the NTT representation, as in the works like [15], [19],
[52], [58]. Specifically, treat the public key as ĥ = ĝ ◦ f̂−1, which saves an inverse transform in the key generation and a
forward transform in the encryption (re-run in the decapsulation). The coefficients of ĥ are reduced modulo q into Zq , causing
that each coefficient occupies 12 bits. Therefore, the public key is packed into an array of 12n bits, i.e., 3n/2 bytes in total.

The format of the secret key. Note that the polynomial f has coefficients in normal representation of [−2η, 2η+ 1] where
η is the parameter of the centered binomial distribution Bη . Instead of directly packing the polynomial f into bytes array, we
subtract each coefficient from 2η+ 1, making sure that all the coefficients are in [0, 4η+ 1]. We pack the resulting polynomial
into ndlog(4η + 1)e/8 bytes. The initial coefficient can be recovered by being subtracted from 2η + 1 in the unpack step in
decryption. Since the public key is needed in the re-encryption during the decapsulation, we simply concatenate and store the
packed public key as part of the secret key. An extra 32-byte z is also concatenated, since z is used to derive a pseudo-random
key as output of implicit rejection if re-encryption does not succeed. The total size of a decapsulation secret key contains
ndblog(4η + 1)e/8 + 3n/2 + 32 bytes.

The format of the ciphertext. The ciphertexts of our schemes consist of only one (compressed) polynomial c. The polynomial
c is in normal representation instead of NTT representation, since the compression through rounding has to work in normal
representation. Each coefficient of c occupied dlog(q2)e bits. Thus, to pack and store such a ciphertext only costs ndlog(q2)e/8
bytes.

The prefix of the public key. As for the prefix ID(pk) of the public key h in CTRU and CNTR, we use the first 33 bytes
of the bit-packed NTT representation of h. It is reasonable, since h is computationally indistinguishable from a uniformly
random polynomial in Rq and the forward NTT transform keeps the randomness property (i.e., h is uniformly random, so is
ĥ = NTT (h)). Thus, the first 22 coefficients of the public key have the min-entropy of more than 256 bits and occupy 33
bytes in the bit-packed NTT representation since each coefficient has 12 bits.

D. Portable C Implementation

Our portable C implementations rely on 16-bit and 32-bit integer arithmetic mainly, excluding any floating-point arithmetic.
The polynomials are represented as arrays of 16-bit signed integers. It is reasonable since we use a 12-bit prime. Our
implementation of decoding algorithm of the scalable E8 lattice follows the methodology in [39] which is based on 32-bit
integer arithmetic, but with high developments on constant-time skills for security and simplicity.

NTT implementation. Our C implementations of NTTs do not make use of variable-time operator “%” for the modular
reductions, but we turn to use Barrett reduction [99], [100] and Montgomery reduction [100], [101], where the former is
applied after additions and the later is applied for multiplication between coefficients with primitive roots. But we only use the
signed variants of these two reductions as described in [100]. Lazy reduction strategy [100] is suitable for the forward NTT
transform. Note that the output range of Montgomery reduction is in [−q, q]. For 12-bit coefficients of the input polynomial,
after 7-level FFT tricks, the forward NTT transform outputs the polynomials with coefficients in [−8q, 8q], which does not
overflow the valid representation of a 16-bit signed integer in the context of 12-bit q. However, NTT is invalid in Rq2 w.r.t.
power-of-two q2 in the decryption process, so we turn to the schoolbook algorithm to compute cf mod ±q2 for efficiency
and simplicity in the portable C implementation, where the modular reduction w.r.t. power-of-two q2 can be implemented by
logical AND operations efficiently.

E. Optimized AVX2 Implementation

The optimized implementations of our schemes for CPUs which support the AVX2 instruction sets are provided. The main
optimized targets are polynomial arithmetic, sampling secrets and modular reduction algorithms in NTT, all of which are the
time-consuming operations. However, as for SHA-3 hash functions, we do not have any AVX2-based optimization. Consistently,
we use the same source codes as in portable C implementation. This is because the vectorized implementations of SHA-3 hash
functions are not very helpful for accelerating, and the fastest implementation is based on C language [52], [102]. As for the
computation of cf mod ±q2 w.r.t. power-of-two q2 in the decryption process of CTRU and CNTR, we choose the multi-moduli
NTT (see section VI-E), instead of the schoolbook algorithm, which is different from that in the portable C implementation.
Besides, according to our experiments on a full polynomial multiplication over Rq2 , compared to the schoolbook algorithm,
the multi-moduli NTT is slower in the context of C implementation, but is faster in the context of AVX2 implementation, for
which NTT is suitable for vectorized implementation, especially AVX2.

NTT optimizations. Our AVX2-based NTT implementation handles 16-bit signed integer coefficients, every 16 values of
which are loaded into one vector register. Load and store instructions are time-consuming in AVX2 instruction set. To accelerate
AVX2 implementation, we need to reduce the memory access operations. We present some implementation strategies to fully
utilize vector registers and minimize total CPU cycles. For the radix-2 FFT trick, we merge the first three levels and the
following three levels. During the merging levels there is no extra load or store operations. We achieve this by using different
pair of vector registers and permutating coefficients order. The instructions we use for permutation task are vperm2i128,
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vpunpcklqdq, vpblendd and vpblendw. The coefficients are permutated in levels 3-5. After the radix-2 FFT trick, we do not
choose to store the coefficients immediately, instead we use the vector register to complete the radix-3 FFT trick if necessary.
It’s because after the last level of the radix-2 FFT trick, the order of coefficients in the vector register is naturally the order
we need in the radix-3 FFT trick. To reduce total permutation time, we propose to store coefficients in a shuffled order. For
polynomial point-wise multiplication and polynomial inversion, pairwise modular multiplications are involved, since we store
coefficients in the shuffled order. The two continual coefficients are stored in two different vector registers, therefore, we can
easily implement polynomial point-wise multiplication and polynomial inversion. We encapsulate some functional codes which
are used multiple times during the whole process into macro, making the codes more concise and readable, as well as avoiding
repetitive codes.

F. Constant-time Implementation

We report on our constant-time implementation to avoid the potential timing attacks. Specifically, our implementations do
not use any variable-time instructions to operate the secret data, do not use any branch depending on the secret data and do
not access any memory at addresses depending on the secret data.

As for the modular reductions used in the NTTs, as described in [15], [100], both Barrett reduction [99], [100] and
Montgomery reduction [15], [101] used in our implementations are constant-time algorithms. Furthermore, the reduction
algorithms are not specific to the modulus q.

As for the scalable E8 lattice code, in our encoding algorithm, kH mod 2 can be computed efficiently by simple bitwise
operations, which we have implemented with constant-time steps. For the implementation of the scalable E8 decoding algorithms
in Algorithm 2 and Algorithm 3, we present branching-free implementations. All the “arg min” statements and “if” conditional
statements are implemented by constant-time bitwise operations. In essence, these can be summarized as choosing the minimal
value of two secrets in signed integer representation, which are defined as a,b. This can be implemented without timing
leakage of the secret data flow as: c = ((-(r XOR 1)) AND a) XOR ((-(r AND 1)) AND b), where r ∈ {0, 1} is the sign
bit of the value b − a, XOR is the logical Exclusive OR operator, and AND is the logical AND operator. We emphasize
that, although there exit a variety of error correction codes, including lattice codes, there are indeed inherent difficulties on
constant-time implementations for most existing error correction codes. Take BCH code and LDPC code [103] as examples,
which are widely used in reality. BCH code does not enable a constant-time implementation for its decoding process, since it
needs to locate the error bits by computing the syndrome and correct the error bits within its range of error correction capability,
but these proceeds are not constant-time [104]. LDPC code also does not have a constant-time decoding process, since its
decoding process works under iterative steps which stop unless the errors are corrected or the iterations reach the maximum
number [104]. A similar situation happens to some lattice codes. For example, none has found constant-time implementations
of decoding algorithms with respect to BW32 lattice and BW64 lattice [37]. However, unlike those error correction codes,
our scalable E8 lattice code features constant-time encoding and decoding algorithms, enabling safe implementations against
timing attacks.

VIII. BENCHMARK AND COMPARISON

In this section, we provide the benchmark results of our CTRU and CNTR where we focus on the recommended parameter
set of dimension 768, i.e., (n = 768, q = 3457, q2 = 210,Ψ1 = Ψ2 = B2) for CTRU-768 and (n = 768, q = 3457, q2 =
210,Ψ1 = Ψ2 = B3) for CNTR-768 under the applications of the mixed-radix NTT. All the benchmark tests are run on an
Intel(R) Core(TM) i7-10510U CPU at 2.3GHz (16 GB memory) with Turbo Boost and Hyperthreading disabled. The operating
system is Ubuntu 20.04 LTS with Linux Kernel 4.4.0 and the gcc version is 9.4.0. The compiler flag of our schemes is listed
as follows: -Wall -march=native -mtune=native -O3 -fomit-frame-pointer -Wno-unknown-pragmas. We run the corresponding
KEM algorithms for 10,000 times and calculate the average CPU cycles. The benchmark results are shown in Table VI,
along with comparisons with other schemes. Concretely, we re-run the C source codes of parts of other schemes on the exact
same system as CTRU and obtain the corresponding benchmark results for providing reasonable reference comparisons, but
their state-of-the-art AVX2 benchmark results are directly taken from the literatures or SUPERCUP (the supercop-20220506
benchmarking run on a 3.0GHz Intel Xeon E3-1220 v6) [102]. Regarding the benchmark results in this section, we stress that
this may be not an exhaustive benchmark ranking but serves as optional illustration that our schemes might perform reasonably
well when compared to other schemes.

A. Comparison with Other NTRU-based KEM Schemes

The C source codes of NTRU-HRSS and SNTRU-Prime are taken from their Round 3 supporting documentations, while
those of NTTRU are taken from [15]. One regret is that the source codes of NTRU-C768

3457 are not online available in [32], and
the AVX2 benchmark results of NTRU-C768

3457 are absent in [32], so all of its benchmark results are omitted here.
Note that the work [97] shows how to apply multi-moduli NTT to accelerate the polynomial multiplications in NTRU-HRSS,

but the polynomial divisions remain unchanged. However, the resulting speed-up for NTRU-HRSS in [97] is not obvious (in
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TABLE VI
CPU CYCLES OF KEMS (IN KILO CYCLES).

Schemes C AVX2
KeyGen Encaps Decaps KeyGen Encaps Decaps

CTRU-768, Mixed-radix NTT (Ours) 117.5 63.4 134.6 10.6 11.7 35.7
CNTR-768, Mixed-radix NTT (Ours) 118.4 64.9 133.1 12.8 10.6 35.4

CTRU-768, Unified NTT (Ours) 6.2× 103 75.3 135.9 – – –
CNTR-768, Unified NTT (Ours) 6.3× 103 78.0 137.0 – – –

NTRU-HRSS 127.6× 103 3.2× 103 9.4× 103 254.0 24.9 59.2
SNTRU Prime-761 17.1× 103 9.0× 103 23.7× 103 156.3 46.9 56.2

Kyber-768 140.3 159.0 205.9 25.3 27.6 43.4
Saber-768 94.7 109.7 138.9 64.2 69.3 95.3

CTRU-768, SHA-2 variant (Ours) 101.4 58.6 116.9 7.0 6.0 21.8
CNTR-768, SHA-2 variant (Ours) 104.6 60.0 114.2 8.4 6.0 23.6

NTTRU 157.4 98.9 142.4 6.4 6.1 7.9
BIKE (Level 3) – – – 1.7× 103 267.1 5.3× 103

Classic McEliece460896 – – – 150.0× 103 77.3 253.9
HQC-192 – – – 417.8 719.7 1.2× 103

SIKEp610 – – – 15.0× 103 27.2× 103 27.7× 103

fact, the speed-up is ±0%). Hence, we omit the benchmark results about NTRU-HRSS provided in [97]. Consequently, the
benchmark results of the state-of-the-art AVX2 implementation of NTRU-HRSS are reported in [102]. As for SNTRU Prime-
761, its state-of-the-art AVX2 implementation is presented in [105]. Thus, we take the AVX2 benchmark results of NTRU-HRSS
and SNTRU Prime-761 from [102] and [105], respectively. The AVX2 benchmark results of NTTRU are taken from [15].

When compared to NTRU-HRSS and SNTRU Prime-761, the efficiency improvements of CTRU-768 and CNTR-768 are
benefited from the applications of NTT in polynomial operations. For example, as for portable C implementation, CTRU-768
is faster than NTRU-HRSS by 1,000X in KeyGen, 50X in Encaps, and 69X in Decaps, respectively. As for optimized AVX2
implementation, CTRU-768 is faster than NTRU-HRSS by 23X in KeyGen, 2.1X in Encaps, and 1.6X in Decaps, respectively;
CNTR-768 is faster than NTRU-HRSS by 19X in KeyGen, 2.3X in Encaps, and 1.6X in Decaps, respectively.

When compared to NTTRU fairly, we do the following modifications to present vaianrts of CTRU and CNTR, which have
the same hash functions, symmetric primitives and FO transformations as NTTRU: (1) use SHA-2 family to instantiate hash
functions; (2) use AES to expand seeds; (3) change the FO transformation into FO⊥m. The AVX2 benchmark results of the
KeyGen of CTRU/CNTR variants are close to those of NTTRU, whereas the Encaps results of CTRU/CNTR variants are
faster than that of NTTRU. However, the Decaps results of CTRU/CNTR variants are slightly slower than that of NTTRU,
on the following grounds: (1) the decoding algorithm of the scalable E8 lattice code costs extra time; (2) multi-moduli NTT
is more time-consuming than the NTT algorithm of NTTRU, since multi-moduli NTT essentially consists of two routines of
NTT algorithms.

B. Comparison with Other Lattice-based KEM Schemes

The C source codes of Kyber-768 and Saber-768 are taken from their Round 3 supporting documentations. We modify their
FO transformation into FO6⊥ID(pk),m, and re-run their C source codes. The work [35] has reported the state-of-the-art AVX2
implementation of Kyber and Saber with FO6⊥ID(pk),m. Thus, we take their AVX2 benchmark results from [35] directly.

As shown in Table VI, our CTRU-768 and CNTR-768 outperform both Kyber-768 and Saber-768. For example, when
compared to the state-of-the-art AVX2 implementation of Kyber-768, CTRU-768 is faster by 2.3X in KeyGen, 2.3X in Encaps,
and 1.2X in Decaps, respectively; CNTR-768 is faster by 1.9X in KeyGen, 2.6X in Encaps, and 1.2X in Decaps, respectively.
It is due to the following reasons: (1) in Kyber, there are a rejection sampling to generate the matrix A and a complicated
polynomial matrix-vector multiplication in the key generation process and the encryption process of Kyber-768 (which are
also re-run with the Decaps); (2) but there is only one polynomial multiplication in the encryption process of CTRU-768 and
CNTR-768.

C. Comparison with Other Non-lattice-based KEM Schemes

We present a rough comparison with other non-lattice-based KEM schemes, i.e., BIKE [106], Classic McEliece [107],
HQC [108] and SIKE [109], which are candidates advancing to the fourth round of NIST PQC [110]. The first three KEM
schemes are code-based, and the last one is isogeny-based. However, the SIKE team acknowledges that SIKE is insecure
and should not be used [110]. Nevertheless, the benchmark results of SIKE are still presented and only used for intuitive
comparisons. We only present their state-of-the-art AVX2 benchmark results, which can be also found in SUPERCUP [102].
As shown in Table VI, our schemes are much faster than these non-lattice-based KEM schemes. For example, CTRU-768 is
faster by 160X in KeyGen, 6.6X in Encaps and 7.1X in Decaps than Classic McEliece460896.
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D. Benchmark Results with Unified NTT

The C implementations of CTRU-768 and CNTR-768 with our unified NTT are also provided, whose benchmark results
could be found in Table VI. Although the overall performances of CTRU-768 and CNTR-768 with our unified NTT are
inferior than those of CTRU-768 and CNTR-768 with mixed-radix NTT, we stress that the primary goal of the unified NTT
is to provide a modular and convenient implementation, instead of a faster implementation. Note that an optimized AVX2
implementation of the unified NTT could be more precise to present benchmark results. But the AVX2 implementation is still
a work in progress and we left as a future work.
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APPENDIX A
ON CCA SECURITY REDUCTION OF KEM IN THE ROM AND THE QROM

Generic constructions of an efficient IND-CCA secure KEM are well studied in [34], [111], which are essentially various
KEM variants of Fujisaki-Okamoto (FO) transformation [33] and GEM/REACT transformation [112], [113]. The work [34]
gives a modular analysis of various FO transformations in the ROM and the QROM, and summarizes some practical FO
transformations that are widely used to construct an IND-CCA secure KEM from a passive secure PKE (e.g., OW-CPA and
IND-CPA), including the following transformations FO⊥, FO⊥m, FO 6⊥, FO 6⊥m, U 6⊥ and U 6⊥m, etc, where m (without m) means
K = H(m) (K = H(m, c)), 6⊥ (⊥) means implicit (explicit) rejection.

FO⊥, FO⊥m, FO6⊥ and FO6⊥m are the most common transformations used in NIST PQC. According to [34], in the ROM, the
reduction bound of these four transformations are all ε′ ≤ εCPA + q′δ and ε′ ≤ q′εOW + q′δ, where ε′ is the advantage of an
adversary against IND-CCA security of KEM, εCPA (εOW ) is the the advantage of an adversary against IND-CPA (OW-CPA)
security of the underlying PKE, q′ is the total number of hash queries, and δ is the error probability. Notice that in order
to keep the comparison lucid, we ignore the small constant factors and additional inherent summands. The reduction is tight
for IND-CPA secure PKE, but it has a loss factor q′ for OW-CPA secure PKE in the ROM. However, all of their reduction
bounds in the QROM suffer from a quartic loss, i.e., ε′ ≤ q′

√
q′
√
εOW + q′2δ with an additional hash in [34]. Later, the

bound of FO6⊥ is improved as follows: ε′ ≤ q′
√
εOW + q′

√
δ without additional hash in [114], ε′ ≤ √q′εCPA + q′

√
δ with

semi-classical oracles [115] in [116], ε′ ≤ √q′εCPA+q′2δ with double-sided OW2H lemma in [117], and ε′ ≤ q′2εCPA+q′2δ
with measure-rewind-measure technique in [118]. The bound of FO 6⊥m is improved as follows: ε′ ≤ q′

√
εOW + q′

√
δ without

additional hash in [114], ε′ ≤ √q′εCPA + q′2δ with disjoint simulatability in [119], ε′ ≤ √q′εCPA + q′2δ with prefix hashing
in [35]. The bound of FO⊥m is improved as follows: ε′ ≤ q′√εOW + q′

√
δ and ε′ ≤ √q′εCPA + q′

√
δ with extra hash in [120],

ε′ ≤ q′√εOW + q′2
√
δ without extra hash in [121].

There also exist some transformations with tight reduction for deterministic PKE (DPKE) with disjoint simulatability and
perfect correctness, for example, a variant of U 6⊥m proposed in [122]. In the case that the underlying PKE is non-deterministic,
all known bounds are of the form O(

√
q′εCPA) and O(q′

√
εOW ) as we introduce above, with the exception of [118]. The

work [123] shows that the measurement-based reduction involving no rewinding will inevitably incur a quadratic loss of the
security in the QROM. In another word, as for the underlying PKE, the IND-CPA secure PKE has a tighter reduction bound
than the OW-CPA secure PKE. It also significantly leads us to construct an IND-CPA secure PKE for tighter reduction bound
of the resulting IND-CCA secure KEM.

Some discussions are presented here for comparing the reduction bounds of CTRU and CNTR and other NTRU-based KEM
schemes. Most of the existing NTRU-based encryption schemes can only achieve OW-CPA security. NTRU-HRSS and SNTRU
Prime construct the KEM schemes from OW-CPA DPKEs via U 6⊥m variants. Although they can reach tight CCA reductions
with extra assumptions in the (Q)ROM [16], [17], there is a disadvantage that some extra computation is needed to recover
the randomness in the decryption algorithms.

Determinism is a much stricter condition, thus some NTRU-based PKEs prefer to be non-deterministic (i.e., randomized).
NTTRU applies FO⊥m to build an IND-CCA KEM from an OW-CPA randomized PKE [15]. According to [34], [121], its
IND-CCA reduction bounds are not-tight in both the ROM (O(q′εOW )) and the QROM ( O(q′

√
εOW )).

NTRU-C is the general form of NTRU-C768
3457. NTRU-C uses a slightly different way that it first constructs an IND-CPA PKE

from an OW-CPA NTRU-based PKE via ACWC0 transformation [32], and then transforms it into an IND-CCA KEM via FO⊥m.
Note that ACWC0 brings two terms of ciphertexts, where the extra term of ciphertexts costs 32 bytes. The IND-CPA security
of the resulting after-ACWC0 PKE can be tightly reduced to the OW-CPA security of the underlying before-ACWC0 PKE
in the ROM. However, there is a quadratic loss advantage in the QROM, i.e., εCPA ≤ q′

√
εOW . In the ROM, the advantage

of the adversary against IND-CCA security of KEM is tightly reduced to that of the adversary against IND-CPA security of
after-ACWC0 PKE, and consequently is tightly reduced to that of the adversary against OW-CPA security of before-ACWC0

PKE. However, in the QROM, there is no known direct reduction proof about FO⊥m from IND-CPA PKE to IND-CCA KEM
without additional hash. The reduction bound of FO⊥m in the QROM in [121] only aims at the underlying OW-CPA PKE.
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Since the IND-CPA security implies OW-CPA security [34], the reduction bound of IND-CCA KEM to before-ACWC0 OW-
CPA PKE will suffer from the quartic advantage loss in the QROM. That is, if the adversary has εOW advantage against the
before-ACWC0 OW-CPA PKE, then it has O(q′1.5 4

√
εOW ) advantage against the resulting IND-CCA KEM in the QROM.

On the other hand, with an additional hash, a better bound of FO⊥m for after-ACWC0 IND-CPA PKE can be achieved, i.e.,
O(
√
q′εCPA) advantage against the resulting IND-CCA KEM in the QROM [120] at the cost of some extra ciphertext burden.

ACWC0 also has an effect on the efficiency, since an extra transformation from OW-CPA PKE to IND-CPA PKE is also
relatively time-consuming.

Our CTRU and CNTR seem to be more simple, compact, efficient and memory-saving than other NTRU-based KEM
schemes, along with a tight bound in the ROM and a tighter bound in the QROM for IND-CCA security. When compared to
NTRU-HRSS, SNTRU Prime and NTRU-C, an obvious efficiency improvement of our CTRU and CNTR is due to the fact
that there is no extra requirement of recovering randomness in decryption algorithm or reinforced transformation to obtain
IND-CPA security. CTRU/CNTR.PKE can achieve IND-CPA security in the case that its ciphertext can be only represented by
a single polynomial, without any extra ciphertext term like NTRU-C. Starting from our IND-CPA PKE to construct KEM with
FO6⊥ID(pk),m, the reduction bound of IND-CCA security is tightly reduced to IND-CPA security in the ROM (ε′ ≤ O(εCPA),
restated), so it is tightly reduced to the underlying hardness assumptions. We also have the known best bound in the QROM
(ε′ ≤ O(

√
q′εCPA), restated) according to [35], which is better than those in NTTRU and NTRU-C.

A. CCA Security in Multi-User Setting

We remark that, the work [35] originally gives the multi-user/challenge IND-CCA reduction bound of FO 6⊥ID(pk),m in the
ROM and the QROM. We adapt the results from Theorem 3.1 and Theorem 3.2 in [35] into the single-user/challenge setting
of CTRU and CNTR, which is only for ease of fair comparisons as other KEM schemes only utilize single-user/challenge FO
transformations. As CTRU/CNTR.PKE is IND-CPA secure, another advantage of using FO6⊥ID(pk),m is that CTRU and CNTR
can be improved to enjoy the multi-user/challenge IND-CCA security as well. To address this issue, some adjustments are
needed as follows. Unlike the single-user/challenge setting, the adversary (against the n′-user/qC-challenge IND-CPA security
of the underlying PKE) is given the public keys of n′ users, and is allowed to make at most qC challenge queries w.r.t. the
same challenge plaintext mb chosen by the challenger. According to [35], based on the single-user/challenge IND-CPA security
of the underlying PKE, the formal multi-user/challenge IND-CCA security of the resulting KEM is given in Theorem 7.

Theorem 7 (n′-user/qC-challenge IND-CCA security in the ROM and the QROM [35]) Following [35], we will use (or
recall) the following terms in the concrete security statements.
• n′-user error probability δ(n′) [35].
• Min-entropy ` [33] of ID(pk), i.e., ` = H∞(ID(pk)), where (pk, sk)← CTRU/CNTR.PKE.KeyGen.
• Bit-length ι of the secret seed z ∈ {0, 1}ι.
• Maximal number of (Q)RO queries qH .
• Maximal number of decapsulation queries qD.
• Maximal number of challenge queries qC .

For any (quantum) adversary A against the (n′, qC)-IND-CCA security of CTRU/CNTR.KEM, there exits a (quantum) adversary
B against the (n′, qC)-IND-CPA security of CTRU/CNTR.PKE with roughly the same running time of A, such that:
• In the ROM, it holds that Adv(n′,qC)-IND-CCA

CTRU/CNTR.KEM (A) ≤

2

(
Adv(n′,qC)-IND-CPA

CTRU/CNTR.PKE (B) +
(qH + qC)qC
|M|

)
+
qH
2ι

+ (qH + qD)δ(n′) +
n′2

2`
;

• In the QROM, it holds that Adv(n′,qC)-IND-CCA
CTRU/CNTR.KEM (A) ≤

2

√
qHDAdv(n′,qC)-IND-CPA

CTRU/CNTR.PKE (B) + 4qHD

√
qC · n′
|M| + 4(qH + 1)

√
n′

2ι
+ 16q2

HDδ(n
′) +

q2
C

|M| +
n′2

2`
,

where qHD := qH + qD + 1.

APPENDIX B
S-UNIT ATTACK

Here we refer to [59] to briefly introduce S-unit attack.
S-unit attack begins with a nonzero v ∈ I and outputs v/u, but now u is allowed to range over a larger subset of K∗ ,

specifically the group of S-units.
Here S is a finite set of places, a subset of the set V mentioned above. There are two types of places:
• The “infinite places” are labeled 1, 3, 5, . . . , n− 1, except that for n = 1 there is one infinite place labeled 1. The entry

at place j in logα is defined as 2 log |σj(α)|, except that the factor 2 is omitted for n = 1. The set of all infinite places
is denoted ∞, and is required to be a subset of S.
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• For each nonzero prime ideal P of R, there is a “finite place” which is labeled as P . The entry at place P in logα is
defined as −(ordPα) log |(R/P )|, where ordPα is the exponent of P in the factorization of α as the product of powers
of prime ideals. There are many choices of S here. It focuses on the following form of S: choose a parameter y, and
take P ∈ S if and only if |(R/P )| ≤ y.

The group US of S-units of K is, by definition, the set of elements u ∈ K∗such that the vector log u is supported on S,
i.e., it is 0 at every place outside S. The S-unit lattice is the lattice logUS , which has rank |S − 1|.

Short v/u again corresponds to short log v − log u, but it is required to ensure that v/u ∈ I , i.e., ordP (v/u) ≥ ordP I for
each finite place P . This was automatic for unit attacks but is not automatic for general S-unit attacks. One thus wants to find
a vector log u in the S-unit lattice logUS that is close to log v in the following sense: log u is close to log v at the infinite
places, and ordPu is close to but no greater than ordP v − ordP I .

As for closeness, as a preliminary step, if ordP v < ordP I for some P , update v by multiplying it by a generator of PP̂
(or, if possible, of P ) as explained above, and repeat this step. Then v ∈ I . Next, if some u in the list has v/u shorter than v
and v/u ∈ I, replace v with v/u, and repeat this step. Output the final v.

As an extreme case, if S =∞ (the smallest possible choice, not including any P ), then US = R∗ : the S-units of K are the
units of R, the S-unit lattice is the unit lattice, and S-unit attacks are the same as unit attacks. Extending S to include more
and more prime ideals P gives S-unit attacks the ability to modify more and more places in log v.

APPENDIX C
GENERALIZATION AND MORE VARIANTS

Finally, to demonstrate the flexibility of our framework, we present and discuss some generalization approaches and more
variants. The following approaches are applicable to both CTRU and CNTR.

A. Compressing the Public Key h

In general, let q1 ≤ q be an integer, we set the public key to be ĥ =
⌊
q1
q h
⌉
∈ Rq1 in the KeyGen. This not only shortens

the public key size, but also can strengthen the security of the NTRU assumption in general. Then, there are two approaches
to deal with this change in PKE.Enc.
• σ = ĥr ∈ Rq1 , and now PolyEncode needs to work in Rq1 rather than Rq (i.e., the parameter q is replaced with q1).
• σ =

⌊
q
q1
ĥ
⌉
r ∈ Rq . That is, we lift ĥ from Rq1 to Rq . With this approach, PolyEncode remains unchanged.

These approaches can reduce the size of public key, but at the cost of larger error probability or lower security (as we may
need to narrow the space of secret polynomials for reducing error probability). With experiments, when q1 = 211 (i.e., cutting
off one bit from each dimension) we still can achieve reasonable balance between security and performance.

B. Masking the Public Key h

Similarly, we would like also to strengthen the NTRU assumption, by setting h = g/f + x, where x is an n-dimension
small noise polynomial with each coefficient typically taken from B1 or U1, i.e., the uniform distribution over {0,±1}. In this
case, h is analogous to an RLWE sample, except that f−1 is not publicly accessible. Intuitively, it makes the NTRU problem
harder than its standard form. In this case, one extra error term xr will be introduced. Thanks to the powerful error correction
ability of the E8 lattice code, our experiments show that we can still achieve good balance between security and performance,
with x taken from B1 or U1. Note that the above approach to compressing the public key can also strengthen the hardness of
the NTRU problem.

C. More Possibilities of PolyEncode and PolyDecode

We choose the E8 lattice code within our framework because: (1) the error correction ability of the E8 lattice code is powerful
and almost optimal; and (2) it is simple, very efficient, and well fits our framework combining NTRU and RLWE/RLWR.
However, in general, we can use other error correction codes (ECC) within our framework. Also, an extreme choice is to not use
any extra ECC mechanism, i.e., letting PolyEncode(m) = q

2m. The corresponding decryption process is PolyDecode(cf mod
±q2) = b 2

q2
(cf mod ±q2)e mod 2.

D. More Possibilities of the Underlying Rings

The modulus q is set to be a prime number that allows efficient NTT algorithms over Zq[x]/(xn − xn/2 + 1) in this
paper. One can also choose power-of-two q for the flexibility of parameter selection. Upon setting power-of-two q and q2, the
distribution χ in Theorem 3 can be simplified as follows: Sample u $←− [− q

2q2
, q

2q2
) ∩ Z and output − q2q u. However, in this

case the computation of polynomial division is slightly slower, since NTT is invalid and we need to turn to other less efficient
algorithms to compute polynomial divisions.
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We can naturally generalize the underlying polynomial rings of the form Zq[x]/(xn−xn/2 + 1) to power-of-two cyclotomic
rings of the form Zq[x]/(xn + 1). To consider the dimension n, one can pick n = 512, 1024 for NIST recommended security
levels I and V. When the modulus q is NTT-friendly (i.e., 2e|(q − 1) for some integer e in this case), the efficient polynomial
multiplications and divisions are possible via some NTT algorithms (or their variants). For the flexibility of ring selection, one
can also consider the rings of the form Zq[x]/(xn − x− 1) w.r.t. prime n and q like those in NTRU Prime [17], [43].

E. Variants without RLWE or RLWR

If we insist on a purely NTRU-based KEM, we can simply set c := σ+
⌊
PolyEncode(m)

⌉
mod q where we can set σ := hr.

In this case, the resulting KEM scheme is OW-CPA secure based on the NTRU assumption. With this variant, at about the
same error probabilities of CTRU and CNTR, we can choose much larger ranges for the secret key and the ephemeral secrecy
r leading to stronger NTRU hardness.
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[68] J. Buchmann, F. Göpfert, R. Player, and T. Wunderer, “On the hardness of LWE with binary error: Revisiting the hybrid lattice-reduction and meet-in-

the-middle attack,” in AFRICACRYPT 2016, vol. 9646, 2016, pp. 24–43.
[69] N. Howgrave-Graham, “A hybrid lattice-reduction and meet-in-the-middle attack against NTRU,” in CRYPTO 2007, vol. 4622, 2007, pp. 150–169.
[70] P. Nguyen, “Boosting the hybrid attack on ntru: torus lsh, permuted hnf and boxed sphere,” in NIST Third PQC Standardization Conference, 2021.
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