
Ponyta: Foundations of Side-Contract-Resilient Fair Exchange

Hao Chung Elisaweta Masserova Elaine Shi
Sri AravindaKrishnan Thyagarajan

Carnegie Mellon University

Abstract

Fair exchange is a fundamental primitive for blockchains, and is widely adopted in applica-
tions such as atomic swaps, payment channels, and DeFi. Most existing designs of blockchain-
based fair exchange protocols consider only the users as strategic players, and assume honest
miners. However, recent works revealed that the fairness of commonly deployed fair exchange
protocols can be completely broken in the presence of user-miner collusion. In particular, a user
can bribe the miners to help it cheat — a phenomenon also referred to as Miner Extractable
Value (MEV).

We provide the first formal treatment of side-contract-resilient fair exchange. We propose
a new fair exchange protocol called Ponyta, and we prove that the protocol is incentive com-
patible in the presence of user-miner collusion. In particular, we show that Ponyta satisfies
a coalition-resistant Nash equilibrium. Further, we show how to use Ponyta to realize a
cross-chain coin swap application, and prove that our coin swap protocol also satisfies coalition-
resistant Nash equilibrium. Our work helps to lay the theoretical groundwork for studying
side-contract-resilient fair exchange. Finally, we present practical instantiations of Ponyta in
Bitcoin and Ethereum with minimal overhead in terms of costs for the users involved in the fair
exchange, thus showcasing instantiability of Ponyta with a wide range of cryptocurrencies.

1

Contents

1 Introduction 1
1.1 Our Results and Contributions . 2
1.2 Additional Related Work . 3

2 Technical Roadmap 4
2.1 Problem Statement and Assumptions . 4
2.2 Strawman and Prior Approaches . 4
2.3 Our Approach . 6

3 Model 7
3.1 Blockchain, Transaction, and Smart Contracts . 7
3.2 Players and Strategy Spaces . 8
3.3 Protocol Execution . 8
3.4 Utilities . 9
3.5 Convention for Writing Smart Contracts . 9
3.6 Incentive Compatibility Definitions . 10

4 Ponyta: A CSP-Fair Fair Exchange Protocol 11
4.1 Construction . 11
4.2 Proofs . 12
4.3 Ponyta Disincentivizes a 100% Coalition . 14

4.3.1 The Meta-Game of Coalition Formation . 15
4.3.2 Comparison with Prior Approaches . 15

5 Application: Atomic Swap 16
5.1 Model and Utility . 16
5.2 Construction . 17
5.3 Proof of CSP-Fairness . 21
5.4 Proof of Dropout Resilience . 24

6 Instantiating Ponyta in Bitcoin 25
6.1 Notation and Background . 25
6.2 High-Level Idea . 26
6.3 Addresses, Scripts, and Transactions for Ponyta . 26
6.4 Conditional Timelock Redeem and Conditional Burning 29
6.5 Protocol . 30
6.6 Estimated Transaction Costs . 30

7 Instantiating Ponyta in Ethereum 31

1 Introduction

Consider the following scenario between mutually distrusting Alice and Bob: Alice possesses some-
thing that Bob wants, and Bob possesses something that Alice wants. A fair exchange proto-
col enables an exchange between Alice and Bob such that either both of them get the desired
item, or neither of them does. Fair exchange is a problem that has been studied for a long
time [Mic03, Aso98, ASW97]. In particular, it has been shown that fair exchange is impossible
to achieve without further assumptions [PG99, Mic03]. One way to circumvent this limitation is
to rely on a trusted third party such as a blockchain [BBSU12,Her18,MMS+, vdM19,MD19,Max,
CGGN,BDM,Fuc,BKb,MES16,MMA,Bis,ZHL+19,JMM14,TYME21,PD]. Indeed, fair exchange
is a fundamental primitive in blockchain applications [BBSU12,Her18,MMS+,vdM19,MD19,Max,
CGGN, BDM, Fuc, BKb, MES16, MMA, Bis, ZHL+19, JMM14, TYME21, PD], and has been widely
adopted in the form of atomic swaps [Her18, MMS+, vdM19, MD19], contingent payment [Max,
CGGN,BDM,Fuc,BKb], payment channels [PD,DW15,GM,MMSH,MBB+,DFH18,DEFM19], or
vaults [MES16,MMA,Bis,ZHL+19].

Most existing blockchain-based fair exchange protocols consider only Alice and Bob as poten-
tially strategic players, and the miners are assumed to be honest [EFS20,DEF18,AHS22,CGJ+17a,
GKM+22,BKa]. Recently, however, the community has become increasingly concerned that poten-
tial user-miner collusion can completely break the fairness guarantees promised by fair exchange
protocols [TYME21,WHF19,Bon,MMS+,MHM18a,JSZ+21,Ham]. As a concrete example, a Hash
Timelock Contract (HTLC) is one of a commonly employed mechanism for realizing fair exchange
in blockchain environments. Imagine that Alice has a secret s and she wants to sell it to Bob
at a price of $v coins. A standard HTLC contract is parametrized with the hash of the secret
h = H(s), a timeout value T , and the price $v. In a preparation phase, Bob deposits $v coins into
the contract. The contract now allows Alice to redeem the $v coins by posting the secret s whose
hash should be equal to h. However, if Alice fails to redeem $v by time T , Bob can get his deposit
$v back. Since the HTLC contract can protect Bob from an offline Alice, we also say that it is
dropout resilient.

Unfortunately, a number of recent works have pointed out that the standard HTLC is vulnerable
to user-miner collusion. In particular, Bob may collude with some miners in an attempt to starve
Alice’s redeeming transaction. If Bob’s coalition can suppress the transaction till the timeout T ,
then they can get the $v deposit back after learning the secret s! Various works have shown that such
user-miner collusion is indeed possible in practice through bribery mechanisms [TYME21,WHF19,
HZ20,MHM18a,JSZ+21,Ham]. Such attacks can be instantiated in various ways [TYME21,WHF19,
HZ20, MHM18a, JSZ+21, Ham], e.g., by exploiting the decentralized smart contracts available in
blockchain environments. Moreover, with some clever tricks, they can be instantiated in a fairly
inexpensive manner [TYME21].

Tsabary et al. [TYME21] also made a pioneering attempt to try to overcome such bribery
attacks. They proposed a new fair exchange mechanism called a Mutual-Assured Destruction Hash
Timelock Contract (MAD-HTLC). Just like the HTLC contract, in MAD-HTLC, Bob deposits
$v into the contract upfront. The contract allows Alice to redeem the $v coins by revealing the
secret prea that Bob wants to learn, and whose hash is hard-wired in the contract. If Alice does
not redeem the coins by time T , Bob can claim back his deposit by revealing another secret preb
whose hash is also hard-wired in the contract. Importantly, MAD-HTLC adds the following clever
rule (henceforth called the bomb): anyone (including the miner of the block) who present both
prea and preb can claim the $v coins for themselves. MAD-HTLC deters Bob from cheating in
the following way: if a cheating Bob posts preb and attempts to claim his $v even after Alice
has revealed prea, then any miner, who now has knowledge of both prea and preb, can preempt

1

Bob’s transaction by triggering the bomb and claiming the $v coins itself. This effectively thwarts
Bob’s attempt. Although MAD-HTLC does seem to resist the known bribery mechanisms, it
opens up some possible new attacks. For example, as soon as Alice publishes prea, if a Bob-miner
coalition happens to mine the next block, they should claim the $v back by posting (prea, preb), and
split off the gain among themselves. Indeed, the authors of the MAD-HTLC paper acknowledge
themselves that MAD-HTLC does not provide any provable guarantee in the presence of user-miner
collusion [TYME21].

Therefore, the following natural and fundamental question remains open:

Can we have a blockchain-based fair exchange protocol that resists user-miner collusion?

If a fair exchange protocol is incentive compatible even in the presence of user-miner coalitions, we
also say that it is side-contract-resilient.

1.1 Our Results and Contributions

To the best of our knowledge, we are the first to give a formal treatment of side-contract-resilient
fair exchange. Specifially, we make the following contributions:

Ponyta: a side-contract resilient fair exchange protocol. We propose a new mechanism
called Ponyta1, which works atop any standard Proof-of-Work blockchain or a Proof-of-Stake
blockchain where the next block proposer is selected on the fly with probability proportional to the
miner’s stake. We prove that Ponyta achieves a game-theoretic notion called cooperative strategy
proofness (or CSP-fairness for short), i.e., any coalition of players (that does not simultaneously
contain Alice and Bob2) is incentivized to play honestly, as long as the rest of the world is playing
honestly and the coalition does not control 100% of the mining power. In other words, the honest
behavior is a coalition-resistant Nash equilibrium.

We argue why Ponyta disincentivizes coalitions of 100% mining power by analyzing the coali-
tion formation process as a meta-game. We argue that a 100% coalition is not a equilibrium in
this meta-game. This also justifies our modeling approach where we consider coalitions that do not
wield 100% of the mining power.

Last but not the least, we use Ponyta to realize a cross-chain coin swap application, and prove
that the resulting protocol also satisfies CSP fairness.

Our ideas in a nutshell. We now explain our idea in a nutshell. We are inspired by MAD-
HTLC’s elegant idea of using a bomb [TYME21]. The problem with MAD-HTLC is that triggering
the bomb actually benefits a Bob-miner coalition. In our work, we make Alice and Bob put in
extra collateral into the smart contract. If no player cheats, both players can get their collateral
back at the end of the protocol. However, should Bob cheat causing the bomb to be triggered, not
only can the miner triggering the bomb obtain some payment, but also part of the collateral will
be burnt and made unrecoverable. In this way, we make sure that triggering the bomb actually
hurts an Alice-miner or a Bob-miner coalition; and as a result, they would not want to behave in
a way that risks triggering the bomb.

Our definitional approach. Our work helps to lay the formal groundwork for studying side-
contract-resilient fair exchange protocols. In general, mechanism design in the blockchain world is

1Ponyta is a fire-type Pokémon who can control its flames such that its rider is not burnt. Our Ponyta contract
incentivizes honest behavior and protects the players’ collateral from being burnt.

2If Alice and Bob were in the same coalition, then they would not need to do the fair exchange.

2

complicated by the existence of decentralized smart contracts which can be used to openly solicit
coalitions, as well as implement potentially arbitrary side contracts among players.

Our modeling approach follows a line of recent works [PS17a,CGL+18,WAS22,CS21] and can
capture arbitrary side contracts among coalitions of players. We assume that the goal of a rational
coalition is to maximize its joint utility, i.e., the sum of the utilities of all coalition members.
Equivalently, we are assuming that there is some binding side contract that allows the coalition
to split their joint gains among themselves, and moreover the enforcement of this side contract is
ensured. Besides capturing arbitrary binding side contracts between different players, our modeling
approach also captures the coalitions that are naturally formed when the same player controls
multiple pseudonyms such as public keys. For example, Alice or Bob may well be the pseudonym
of some miner (c.f. the assumption made in earlier works [TYME21], that Bob must not be a
miner, is unenforceable in the real world).

Finally, our definitional approach models players and coalitions as interactive Turing Machines
who can send and receive a special type of variables called money. This allows us to capture a most
general strategy space, i.e., deviating players can not only send arbitrary messages, but also post
new smart contracts on the fly during protocol execution.

Instantiation atop Bitcoin and Ethereum. We first describe Ponyta assuming an existence
of generic smart contracts. We then give an instantiation of Ponyta that is compatible with
the scripting language of Bitcoin. To do so, we introduce two novel transaction-level tricks which
we call conditional timelock redeem and conditional burn. The former ensures that coins from an
address are redeemable only if T time has passed since the redeeming of coins from another address.
The latter allows miners to redeem a portion of the coins from a target address while burning the
rest under some conditions. These techniques may be of independent interest and lend to other
applications. We also instantiate Ponyta in Solidity [Eth22], Ethereum’s smart contract language,
and deploy it on the Rinkeby testnet [rin22]. We show that the cost overhead for either user in
terms of gas cost is insignificant compared to MAD-HTLC.

1.2 Additional Related Work

We now review additional related work besides those already mentioned. Our work is also related to
financially fair protocols [BK14,MB17,BZ17,CGJ+17b,KB16,KMS+16], where a common theme is
using collateral and penalty mechanisms to incentivize honest behavior. For some specific applica-
tions such as lottery and leader election, a few works showed that collateral is in fact not necessary
to achieve game-theoretic fairness [MB17, BZ17, CCWS21]. To the best of our knowledge, almost
all prior works consider only the users as potentially strategic players, and the miners are assumed
to be honest.

Miner Extractable Value (MEV) is among the often debated problems in the cryptocurrency
community today. In MEV, the miner leverages its unique position, i.e., its ability to decide what
to include in the block, to profit from blockchain applications. The original motivation of our
work is possible user-miner collusion which is a form of MEV. Interestingly, inspired by MAD-
HTLC [TYME21], we leverage MEV itself to defend against MEV — specifically, to thwart such
user-miner collusion, Ponyta allows honest miners to extract value should any cheating behavior
take place.

3

2 Technical Roadmap

2.1 Problem Statement and Assumptions

Suppose that Alice has a secret s and Bob wants to buy the secret from Alice at a price of $v. We
would like to design a fair exchange protocol to accomplish this. Henceforth we assume that Alice
loses value $va for revealing s, and Bob gains value $vb if he learns s. If $va < $v < $vb, both
parties benefit from Alice selling s to Bob at price $v.

Throughout this paper, we will assume that Alice or Bob may collude with a subset of the
miners, and the coalition may adopt arbitrary probabilistic polynomial-time strategies to maximize
its joint utility. The only restriction we impose on the strategy space is that the coalition does not
perform a consensus-level or network-level attack. For example, we do not consider 51% attacks
that aim to make profit through double-spending. There is an orthogonal line of work that focuses
on consensus security [GKL15,PSS17,PS17b].

Therefore, we assume an idealized mining process. In every time step, an ideal functionality
picks the next winning miner at random with probability proportional to its mining power. The
winning miner may choose a set of transactions to include in the next block. We assume that
the network delay is 0, i.e., any message posted by Alice, Bob or any new block mined will be
immediately seen by other players.

In Section 3, we will formalize the notion of transactions and a smart contract execution model.

2.2 Strawman and Prior Approaches

For simplicity, in the technical roadmap, we will assume the existence of general smart contracts,
although later, we will indeed show how to instantiate our protocol atop Bitcoin which supports
only a restricted language for contracts.

Näıve protocol. The most straightforward idea is for Alice and Bob to agree on a smart contract
which knows hs = H(s) where H(·) denotes a cryptographic hash function. Moreover, Bob deposits
$v into the contract upfront. The smart contract’s logic is very simple:

On receiving s from Alice such that H(s) = hs, send $v to Alice.

Let T = 0 be the moment when Bob deposited the initial $v into the contract. The honest protocol
is simple: Alice sends s to the smart contract at T = 0, and Bob does nothing. We always want
the miner’s honest strategy to be consistent with the underlying consensus protocol, that is, the
miner should include all outstanding transactions in the block.

Somewhat surprisingly, even this very simple protocol satisfies a coalition-resilient game theo-
retic notion. Consider any coalition consisting of either Alice or Bob as well as an arbitrary subset
of the miners: the coalition should have no incentive to deviate from the honest protocol, if its goal
is to maximize its own utility. Such a notion is often referred to as cooperative-strategy-proofness
(or CSP fairness). In particular, it implies that the honest strategy is a coalition-resistant Nash
equilibrium.

This approach, however, has two drawbacks: 1) Alice can harm Bob without incurring any
cost to herself. Simply by withholding s, Bob will lose its deposit $v; and 2) even if Alice is well-
meaning, she may accidentally drop offline (e.g., due to an unforeseen circumstance such as losing
her password) in which case Bob also loses $v. Note that the first drawback can be overcome by
requiring Alice to make a deposit of $v′ too besides Bob’s deposit of $v, such that Alice can claim
$v + $v′ if she sends s to the smart contract. However, this does not fix the second problem, that
is, the protocol is not dropout resilient.

4

Hash timelock Contract. A line of work used hash timelock contracts (HTLCs) [atob, atoa,
Her18,CGGN,Max] aimed at achieving dropout resilience, but at the price of losing CSP fairness.
A standard HTLC contract works as follows, where Bob is still required to deposit $v into the
contract upfront, and the contract is parametrized with a timeout T1:

HTLC

• On receiving s from Alice such that H(s) = hs, send $v to Alice.

• After T1, on receiving ok from Bob: send $v to Bob.

In the above, the two activation points are mutually exclusive, i.e., only one of them can be activated
and only once.

The above contract allows Bob to recover its deposit should Alice drop offline. However, the
HTLC-based protocol is not CSP fair in the presence of user-miner coalitions. Suppose there is no
transaction fee, then a coalition of Bob and some miners should never include Alice’s transaction:
if Alice’s transaction is starved till after T1, then Bob’s coalition can get both the secret s and the
$v deposit back!

If Alice offers a transaction fee of $f , then as long as Bob bribes each miner $f + $ε (for some
small $ε > 0) for excluding Alice’s transaction, rational miners will take the bribe [TYME21]. This
bribery attack makes sense for Bob as long as $v > $f · T1. It may seem like HTLC is secure
as long as we make T1 · $f sufficiently large. However, Tsabary et al. [TYME21] showed new
attacks where the cost to Bob is not dependent on T1. We provide more details on Tsabary et al.’s
attack [TYME21] in Section 4.3. In particular, using our terminology, such attacks are viewed as
strategies in the coalition forming meta-game. The HTLC contract is undesirable because there
exist meta-games where 100% of the miners taking the “bribe” is an equilibrium, thus encouraging
100% coalitions — see Section 4.3 for details.

MAD-HTLC. Tsabary et al. [TYME21] suggest a new contract called MAD-HTLC in an attempt
to remove the undesirable 100%-miner-colluding equilibrium in the coalition-forming meta-game.
As before, Bob deposits $v upfront, and the contract works as follows3:

MAD-HTLC

• On receive prea from Alice such that H(prea) = ha: send $v to Alice.

• After T , on receive preb from Bob such that H(preb) = hb: send $v to Bob.

• On receive (prea, preb) from anyone P such that H(prea) = ha and H(preb) = hb: send $v
to P .

All activation points in the above contract are again mutually exclusive, and here we use the
notation prea to denote the secret Alice wants to sell.

In MAD-HTLC, if Alice has disclosed prea and yet Bob still attempts to get his deposit back by
posting preb, then the miner easily preempts Bob’s transaction and claim $v itself by posting the
pair (prea, preb). MAD-HTLC indeed defends against the simple bribery attack mentioned above
as well as the attack of Tsabary et al. [TYME21] — or in our language, MAD-HTLC removes
the undesirable 100%-colluding-equilibrium in the coalition forming meta-game (see Section 4.3).

3MAD-HTLC has some additional logic to defend against a spiteful Bob which we omit for simplicity, since the
additional logic does not help mitigate the coalition attacks we point out.

5

Unfortunately, MAD-HTLC does not have provable security in the presence of miner-user coalitions,
as the authors acknowledge themselves [TYME21]. Their game-theoretical formulation considers
only individual deviations. In fact, the following is straightforward to observe:

Observation: MAD-HTLC is NOT incentive compatible in the presence of binding side con-
tracts.

A binding side contract allows the coalition to split off their joint utility in a binding manner.
For example, in MAD-HTLC, Bob can collude with some miners, and as soon as Alice posts prea,
if the colluding miners happen to mine the next block, they can exclude Alice’s transaction and
redeem the $v coins for themselves by posting both prea and preb. Then, using the binding side
contract, the coalition can split off the $v coins among its members. It could also be that Bob is a
miner himself. In this case, if Bob happens to mine the next block after Alice posts prea, Bob can
get the secret for free. As the authors of MAD-HTLC [TYME21] acknowledge themselves, MAD-
HTLC provides no guarantee when Bob is a miner himself — however, in reality, since creating
pseudonyms or public keys is cheap, it is difficult for Alice to check whether Bob is a miner.

2.3 Our Approach

In our Ponyta contract, during the preparation phase, Alice and Bob each deposits $ca and $cb+$v
into the contract respectively, where $ca > $v and $cb > 2 · $v. We refer to $ca and $cb as Alice
and Bob’s collateral, respectively. Note that Bob needs to deposit his collateral $cb on top of the
promised payment amount $v. Given prea as the secret Alice wants to sell, our Ponyta contract
works as follows:

Ponyta contract

Payment:

P1: On receive prea from Alice such that H(prea) = ha, send $v to Alice.

P2: Time T1 or greater: on receive preb from Bob such that H(preb) = hb, send $v to Bob.

Collateral:

C1: At least T2 after either P1 or P2 is activated: on receiving from anyone, send $ca to
Alice and send $cb to Bob.

C2: On receive (prea, preb) from anyone P such that H(prea) = ha and H(preb) = hb send
$v to player P . All remaining coins are burnt.

In the above, assuming that the coalition consists of any constant fraction of the miners (e.g., even
99%), we can set the timeout values T1 and T2 to be appropriate constants as we discuss in more
detail in Section 4.1.

There are two types of activation points in the contract: P1 and P2 are used to redistribute
Bob’s promised payment $v, and C1 and C2 are used to redistribute the collateral part, that is $ca
and $cb. The activation points P1 and P2 are mutually exclusive i.e., only one can be successfully
activated, and at most once. Similarly, C1 and C2 are mutually exclusive, too.

Intuition. Informally, the Ponyta contract provides game theoretic fairness due to the following
intuition. Suppose that Alice posted prea. In this case, a Bob-miner coalition would not want preb

6

to be revealed. If so, some other miners may be able to activate C2 before C1 is activated. In this
case, the coalition would lose its collateral $cb > 2 · $v. Another strategy is for the coalition to
claim both P2 and C2 and get 2 · $v back from the contract. Had they acted honestly, however,
they could get $cb > 2 · $v back, which is strictly better.

In Section 4, we shall prove that our Ponyta protocol satisfies CSP-fairness when players do
not have external incentives. Informally, this means that an Alice-miner coalition or a Bob-miner
coalition cannot increase its utility by deviating from the honest protocol, as long as the coalition
does not control 100% of the mining power, and moreover, the parameters $ca, $cb, and T2 are
appropriately set. In other words, the honest protocol is a coalition-resistant Nash equilibrium.

Ponyta disincentivizes 100% coalitions. To prove that our protocol satisfies CSP-fairness, we
used the assumption that the coalition does not wield 100% of the mining power. We justify this
assumption by analyzing the coalition forming meta-game in Section 4.3. In the coalition forming
meta-game, imagine that Bob posts a smart contract that promises to split off the gains with any
miner who helps him get the $v back, after Alice has posted prea. We argue that 100% miner
participation is not an equilibrium in this meta-game. A miner has the option of not joining the
coalition, in which case it has some probability (proportional to its mining power) of claiming the
$v itself by posting (prea, preb) — should Bob ever decide to cheat. To incentivize the miners to
join, Bob needs to offer more than the expected gain of the miner had it not joined the coalition.
However, to do so, the cost incurred for Bob would be greater than the price $v of the secret. We
defer the detailed argument to Section 4.3.

In Section 4.3, we also show that this meta-game approach is not only a good complement to
our formal foundations of side-contract-resilience, but also helpful for reasoning about the known
bribery attacks [TYME21, WHF19, HZ20, MHM18a, JSZ+21] that pertain to the standard HTLC
contract.

3 Model

3.1 Blockchain, Transaction, and Smart Contracts

Smart contracts and transactions. We assume that smart contracts are ideal functionalities
that are 1) aware of money; and 2) whose states are publicly observable. A smart contract can have
one or more activation points. Each transaction is associated with a unique identifier, and consists
of the following information: 1) an arbitrary message, 2) some non-negative amount of money, and
3) which activation point of which smart contract it wants to be sent to. When the transaction is
executed, the corresponding activation point of the smart contract will be invoked, and then, some
arbitrary computation may take place accompanied by the possible transfer of money.

Money can be transferred from and to the following entities: smart contracts and players’
pseudonyms. Without loss of generality, we may assume that players cannot directly send and
receive money among themselves; however, they can send money to or receive money from smart
contracts. The balance of a smart contract is the amount of money it has received minus the
amount of money it has sent out. The balance of any smart contract must always be non-negative.

We assume that each smart contract has a unique name, and each player may have multiple
pseudonyms — in practice, a pseudonym is encoded as a public key. A miner is also a special
player who is capable of mining blocks.

Mining. In this paper, we do not consider strategies that involve consensus- or network-level
attacks — there is an orthogonal and complementary line of work that focuses on this topic [GKL15,

7

PSS17, PS17b], For example, a 51% miner can possibly gain by performing a double spending
attack.

For simplicity, we assume an idealized mining process, that is, in each time step t, an ideal
functionality picks a winning miner with probability proportional to each miner’s mining power (or
amount of stake for Proof-of-Stake blockchains). The winning miner may choose to include a set of
transactions in the block, and order these transactions in an arbitrary order. At this moment, a new
block is mined, and all (valid) transactions contained in the block are executed. Any transaction
that has already been included in the blockchain before is considered invalid and will be ignored.
The above idealized mining process can capture standard Proof-of-Work blockchains and Proof-of-
Stake blockchains where the next proposer is selected on the fly with probability proportional to
the stake held by the miner.

3.2 Players and Strategy Spaces

There are three kinds of players in the model: Alice, Bob, and the miners. We also call Alice and
Bob the users to differentiate from miners. We consider the following strategy space for players.

Anyone, including Alice, Bob, or the miners, is allowed to do the following at any point of time:

1. Post a transaction to the network at the beginning of any time step. We assume that the network
delay is 0, such that transactions posted are immediately seen by all other users and miners.
When miners pick which transactions to include in some time step t, they can see transactions
posted by users for time step t.

2. Create an arbitrary smart contract and put an arbitrary amount of money into the smart
contract. For example, a smart contract can say, “if the state of the blockchain satisfies some
predicate at some time, send some pseudonym some amount of money, where the recipient and
the amount of money can also be dependent on the state of the blockchain.

Additionally, the miners are allowed the following actions: whenever it is chosen to mine a
block, it can choose to include an arbitrary subset of the outstanding transactions into the block,
and order them arbitrarily. The miner can also create new transactions on the fly and include them
in the block it mines.

Coalition. Alice or Bob can form a coalition with some of the miners. When the coalition is
formed, all members in the coalition share their private information. The coalition’s strategy space
is the union of the strategy space of each member in the coalition. Notice that once Alice and Bob
are in the same coalition, they can exchange the secret s privately without using the blockchain.
Thus, we do not consider the coalition consists of Alice and Bob.

3.3 Protocol Execution

In the most general case, we view the start of protocol execution (i.e., t = 0), as the moment that
the relevant smart contract is deployed. Sometimes, it may also be convenient to view the start
of protocol execution as the moment when the parties involved have made their initial deposits
into the contract. Later on when we define our protocols, we shall explicitly mention the start
of protocol execution (i.e., t = 0). In our paper, an honest protocol is always a simple protocol
that does not create additional smart contracts in the middle of the execution. Without loss of
generality, we may assume that the honest protocol employs at most one contract — since if there
are multiple, we can view the union of them as a single contract. Of course, strategic parties can
create new smart contracts on the fly during the execution.

8

A protocol execution involves Alice, Bob, and the miners who are modeled as interactive Turing
machines who can send and receive a special type of variables called money. Additionally, the
protocol may involve one or more smart contracts which can be viewed as ideal functionalities
whose states are publicly visible to anyone. Ideal functionalities are also interactive Turing machines
capable of sending and receiving money.

For the honest protocol, we always want the miners’ honest behavior to be consistent with their
honest behavior in typical consensus protocols, i.e., the miner’s honest behavior should be to include
all outstanding transactions in the mined block.

Finally, since we consider probabilistic polynomial time (PPT) players, we assume that the
protocol execution is parametrized by a security parameter λ.

3.4 Utilities

We assume that the secret s is worth $va and $vb to Alice and Bob, respectively. That is, Alice
will lose utility $va if s is released to someone else, and Bob will gain $vb if he learns s. We assume
that $vb > $v > $va, such that Alice wants to sell the secret s to Bob at a price of $v.

Players’ utility. Let β ∈ {0, 1} be an indicator such that β = 1 if and only if Bob outputs the
secret s. Let $da ≥ 0 and $db ≥ 0 be the amount of money Alice and Bob deposit into the smart
contract, respectively. Let $ra ≥ 0 and $rb ≥ 0 be the payments that Alice and Bob obtain from
all smart contracts during the protocol.

Then, Alice’s utility, $ua, is defined as

$ua = −$da + $ra − β · $va,

and Bob’s utility, $ub, is defined as

$ub = −$db + $rb + β · $vb.

Similar to Alice and Bob, we can also define the utility for any miner. Fix some miner. Let
$dm be the money that the miner deposits into the smart contracts belonging to this protocol, and
let $rm be the payment received by the miner in the current protocol instance. A miner’s utility,
denoted $um, is defined as

$um = −$dm + $rm.

Finally, the joint utility of the coalition is simply the sum of every coalition member’s utility.
Throughout this paper, we assume that the total utility of all players from the protocol cannot

exceed a polynomial function in the security parameter λ.

3.5 Convention for Writing Smart Contracts

For ease of exposition, we use a simplified notation for writing meta-contracts. A meta-contract is
a platform-independent approach to express smart contract logic. Meta-contracts expressed in our
notation can easily be instantiated using a general smart contract language such as Ethereum. By
contrast, not every meta-contract expressible using our notational system can be instantiated atop
Bitcoin, since Bitcoin’s scripting language is not Turing-complete. However, for the contracts we
propose in this paper, we will show that they can indeed be instantiated even atop Bitcoin.

A meta-contract will be expressed using the following style of notation:

9

A toy meta-contract

• Parameters: T .

• Preparation phase: Alice and Bob each deposits $da and $db + $d′b, respectively.

• Execution phase:

A1: On receive (msg, $c) from Alice: send $d < $da + $db to Bob.

A2: After T , on receive (msg, $c) from Bob: send $da + $db − $d to Alice.

B1: On receive (msg, $c) from Bob: send $d′b to Bob.

In our notational system, every activation point is given a unique name that consists of a letter
followed by a number. The leading letter defines the type of the activation point. All activation
points of the same type are mutually exclusive. For example, if A1 has been invoked, then neither
A1 nor A2 can be invoked any more; however, B1 can still be invoked (as long as it has not
been invoked yet). If an activation point constrained some time interval (e.g., after T), then any
attempted invocation that happens outside the specified time interval is considered invalid and not
counted.

Our example toy meta-contract above has a standard prepation phase where Alice and Bob
each deposits some coins into the contract. In a practical implementation, the contract should
allow each player to withdraw its deposit if the other player has not made its deposit yet. However,
once both players have made their deposits, the redistribution of money is only possible through
the activation points of the execution phase. Later in our paper, the preparation phase may also
have customized logic — in this case, we will spell out the logic of the preparation phase explicitly.

To instantiate our meta-contracts in practice, each party involved is actually identified by their
public keys. The party can sign the message sent to the activation point to authenticate itself.
In a practical instantiation, each party may also need to pay a typically small transaction fee for
their transaction to be confirmed. For simplicity, we ignore the transaction fee in our theoretical
model since we need not rely on transaction fees to achieve our game theoretic guarantees. Adding
an ε-small transaction fee in a practical instantiation will only introduce O(ε)-slack to our game
theoretic guarantees.

We leave the concrete instantiation of our meta-contract to Section 6 and Section 7. In our
meta-contract notation, we simply assume that there is an authenticated channel from each user
to the smart contract.

3.6 Incentive Compatibility Definitions

Henceforth, we use C to denote a coalition, and use −C to denote all parties of the protocol that
are not part of the coalition. We use honestC or honest−C to denote the honest strategy executed
by either the coalition C or its complement. Let SC and S′−C be the strategies of the coalition C
and its complement. We use utilC(SC , S

′
−C) to denote the expected utility of C when the coalition

C adopts the strategy SC and the remaining parties adopt the strategy S′−C .

CSP fairness. We first define a game-theoretic fairness notion called cooperative strategy proof-
ness (CSP fairness) — the same notion was formalize earlier in a recent line of works [PS17a,
CGL+18,WAS22]. Intuitively, CSP fairness says that a coalition that is profit-driven and wants to
maximize its own utility has no incentive to deviate from the honest protocol, as long as all other

10

players play by the book. In this sense, the honest protocol achieves a coalition-resistant Nash
Equilibrium.

Definition 3.1 (CSP fairness). We say that a fair exchange protocol satisfies γ-cooperative-
strategy-proofness (or γ-CSP-fairness for short), iff the following holds. Let C be any coalition
that controls at most γ ∈ [0, 1) fraction of the mining power, and possibly includes either Alice or
Bob. Then, for any probabilistic polynomial-time (PPT) strategy SC of C, there exists a negligible
function negl(·) such that

utilC(SC , HS−C) ≤ utilC(HSC , HS−C) + negl(λ)

where we use HS to mean the honest strategy.

Dropout resilience. In practice, a dropout can happen due to mistakes, misconfiguration, or
unforeseen circumstances, e.g., Alice may lose her hardware wallet. We define a notion called
dropout resilience which requires the following. Suppose that at least 1/poly(λ) fraction of the
mining power is honest. Then, if either Alice or Bob plays honestly but drops out before the end
of the protocol, then with 1 − negl(λ) probability where negl(·) is a negligible function, the other
party’s utility must be non-negative.

4 Ponyta: A CSP-Fair Fair Exchange Protocol

4.1 Construction

We now describe our Ponyta contract and protocol. Below, we use prea to denote the secret that
Alice wants to sell, and we assume that prea is sampled by Alice uniform at random from {0, 1}λ.

Ponyta contract
Parameters: ha, hb, T1, T2, $v, $ca, $cb such that $ca > $v and $cb > 2 · $v.

Preparation phase: Alice deposits $ca, Bob deposits $v + $cb

Execution phase:

Payment:

P1: On receive prea from Alice such that H(prea) = ha, send $v to Alice.

P2: Time T1 or greater: on receive preb from Bob such that H(preb) = hb, send $v to Bob.

Collateral:

C1: At least T2 after either P1 or P2 is activated: on receiving from anyone, send $ca to
Alice and send $cb to Bob.

C2: On receive (prea, preb) from anyone P such that H(prea) = ha and H(preb) = hb, send
$v to player P . All remaining coins are burnt.

As mentioned earlier, the activation points of the same type are mutually exclusive; that is,
only one of the them can be activated, and at most once.

We now describe the honest protocol.

11

The Ponyta protocol. We assume that at the very beginning, Alice knows prea and Bob knows
preb. During the preparation phase, Alice and Bob each makes a deposit of $ca and $cb + $v into
the Ponyta contract, respectively. Each party can freely withdraw its deposit as long as the other
party has not deposited yet. However, once both parties have deposited, money redistribution is
only possible through the activation points of the execution phase. The moment both parties have
deposited into the contract, the protocol executoin starts, and we rename the current time t to be 0.
The execution phase proceeds as follows — henceforth, we use the phrase “a player sends a message
to an activation point” to mean that “the player posts a transaction containing the message and
destined for the activation point”:

• Alice: Alice sends prea to activation point P1 at t = 0. T2 time after either P1 or P2 successfully
completes, she posts an empty message to C1.

• Bob: If Alice failed to post a transaction containing a correct prea destined for P1 before time T1,
then Bob sends preb to P2 at time t = T1. T2 time after either P1 or P2 successfully completes,
he sends an empty message to C1.

If either P2 or C2 is successfully activated, Bob outputs the corresponding prea value included
in the corresponding transaction. If C1 and P2 are successfully activated, Bob outputs ⊥.

• Miner: The miner watches all transactions posted to P1, P2, and C2. If the miner has observed
the correct values of both prea and preb from these posted transactions, then it sends (prea, preb)
to C2. Further, any miner always includes all outstanding transactions in every block it mines.
If there are multiple transactions posted to C2, the miner always places its own ahead of others
(and thus invalidating the others).

Choice of timeouts. We now discuss the choice of the timeout values T1 and T2 in the Ponyta
contract. For our game theoretic proofs (see Section 4.2) to hold, we can set T1 = 1, and T2 should
be set such that γT2 < $cb−$v

$cb
where γ is the maximum percentage of mining power that can form

a coalition with Bob. For example, suppose $cb = 2$v + $ε for some small $ε. Then, we need to
ensure γT2 ≤ 1/2. This means if γ = 90%, we can set T2 = 7. Asymptotically, for any γ = O(1),
T2 is a constant. Increasing $cb also helps to make T2 smaller.

In practice, the network may be unstable (for either Alice or Bob), or there may be a spike in
transaction volume causing congestion. In these cases, we can still set T1 = 1, but Bob can choose
to wait longer before posting preb. Alice and Bob can also coordinate through an offline channel to
inform each other that they are going to post either prea or preb, to avoid the situation that both
prea and preb are posted, leading to part of their collateral being burnt.

4.2 Proofs

Lemma 4.1. Let C be any coalition that consists of Alice and an arbitrary subset of miners (possibly
no miner). Then, for any (even unbounded) coalition strategy SC,

utilC(SC , HS−C) ≤ utilC(HSC , HS−C)

where HS−C denotes the honest strategy for everyone not in C.

Proof. Throughout the proof, when we compute the coalition C’s utility, we may ignore the −$da =
−$ca part of the utility since this is a constant offset that is fixed during the preparation phase
prior to the protocol execution, and has no effect on the coalition’s behavior.

12

Suppose everyone not in C plays the honest strategy. Then, the coalition C can play honestly,
i.e., post prea to P1 at t = 0, and post to C1 at time T2. In this case, C obtains utility $v+$ca−$va.

Now, consider the case that the coalition C deviates from the honest strategy. We may assume
that the coalition does not post any new smart contract and deposit money into it4 (see the
definition of strategy space in Section 3.2) — if it did so, it cannot recover more than its deposit
since any player not in C will not invoke the smart contract. There are two possibilities:

1. First, P1 is successfully activated at some point. Since C1 and C2 are mutually exclusive, and
$ca ≥ $v, $v + $ca is the maximal amount that the coalition can redeem from the Ponyta
contract. In this case, the honest Bob will output prea and thus the coalition C’s utility is at
most $v + $ca − $va, which is the same as following the honest strategy.

2. Second, P1 is never activated. In this case, it is impossible for the coalition to redeem any value
from P1 or P2, and its utility is at most $ca. Since $v > $va by our assumption, following the
honest strategy maximizes the utility of C.

Lemma 4.2. Let C be any coalition that consists of Bob and a subset of miners controlling at most
γ fraction of mining power. Then, as long as γT2 ≤ $cb−$v

$cb
, for any (even unbounded5) coalition

strategy SC, it must be that

utilC(SC , HS−C) ≤ utilC(HSC , HS−C)

Proof. Just like in the proof of Lemma 4.1, we may ignore the −$db = −($v + $cb) part of the
utility since this a constant fixed prior to the start of protocol execution.

Suppose everyone not in C plays the honest strategy. If the coalition follows the honest strategy
as well, Bob outputs prea, and the coalition gets $cb from branch C1. Thus, the utility of the
coalition is $cb + $vb.

Now, consider the case where the coalition C deviates from the honest strategy. Just like in the
proof of Lemma 4.1, we may assume that the coalition does not post any new contract during the
protocol execution.

We may also assume that either P1 or P2 is successfully invoked, since otherwise, the coalition
C’s utility is at most $vb + $cb which is no more than the honest case. There are two possibilities.

First, P1 is successfully activated. In this case, the maximal value the coalition can get from
the contract is to activate the C1 branch, and the utility of the coalition is at most $vb+ $cb, which
is the same as the honest case.

Second, P2 is activated. Let t∗ be the time at which P2 is activated. There are two subcases. In
the first subcase, the coalition also gets $v from C2 at time t∗ or earlier. In this case, the coalition’s
utility is at most 2 · $v + $vb, and since $cb > 2 · $v, this is less than the honest case. Henceforth,
we may assume that the coalition has not got $v from C2 at time t∗ or earlier. Since the honest
Alice posts prea at t = 0, both prea and preb are publicly known at t∗. Since all non-colluding
miners are honest, after t∗, they will activate C2 themselves when they mine a new block if C2 has
not already been activated before. If a non-colluding miner mines a new block during (t∗, t∗ + T2],
we say that the coalition loses the race. Otherwise, we say that the coalition wins the race. If the

4However, the coalition C itself could be facilitated by smart contracts, our modeling of coalition already captures
any arbitrary side contract within the coalition.

5Bob’s coalition can be unbounded as long as the mining process is idealized as in our model.

13

coalition loses the race, then it gets nothing from C1 or C2, and thus its utility is at most $v+ $vb.
Else if it wins the race, then the coalition’s utility is at most $v+ $cb + $vb. The probability p that
the coalition wins the race is upper bounded by p ≤ γT2 . Therefore, the coalition’s expected utility
is at most

($v + $vb) · (1− p) + ($v + $cb + $vb) · p.

Recall that $cb > 2 · $v. Therefore, for ($v + $vb) · (1 − p) + ($v + $cb + $vb) · p to exceed the
honest utility $cb + $vb, it must be that p > $cb+$v

$cb
which is not true by our assumption. We thus

conclude that C cannot increase its utility through any deviation.

Theorem 4.3 (CSP fairness). Suppose that the hash function H(·) is a one-way function and that
γT2 ≤ $cb−$v

$cb
. Then, the Ponyta protocol satisfies γ-CSP-fairness.

Proof. Lemmas 4.1 and 4.2 proved γ-CSP-fairness for the cases when the coalition consists of either
Alice or Bob, and possibly some miners. Since by our assumption, Alice and Bob are not in the
same coalition, it remains to show γ-CSP-fairness for the case when the coalition consists only of
some miners whose mining power does not exceed γ. This is easy to see: since both Alice and Bob
are honest, the coalition’s utility is 0 unless it can find preb on its own — the probability of this
happening is negligibly small due to the one-wayness of the hash function H(·).

We now prove that Ponyta is dropout resilient.

Theorem 4.4 (Dropout resilience). Ponyta is dropout resilient. In other words, suppose at least
1/poly(λ) fraction of the mining power is honest. If either Alice or Bob plays honestly but drops
out before the end of the protocol, then with 1− negl(λ) probability, the other party’s utility should
be non-negative.

Proof. We first analyze the case where Alice drops out. There are two possible case: 1) Alice drops
out before posting a transaction containing prea; 2) Alice drops out after she already posted a
transaction containing prea. In the first case, as long as 1/poly(λ) fraction of the mining power is
honest, Bob would activate P2 and C1 in polynomial time except with negligible probability, and
his utility is 0 since he simply gets all his deposit back. In the second case, an honest miner would
include Alice’s transaction and activate P1. Then, T2 after P1 is activated, Bob would send an
empty message to C1. As long as 1/poly(λ) fraction of the mining power is honest, P1 and C1
will be activated in polynomial time except with negligible probability. As a result, Bob’s utility is
$vb − $v > 0.

Next, we analyze the case where Bob drops out. In this case, Alice always posts a transaction
containing prea, and except with negligible probability, P1 and C1 will always be activated. Thus,
Alice’s utility is always $v − $va > 0.

To sum up, in all cases, the utility of the remaining party is always non-negative except with
negligible probability.

4.3 Ponyta Disincentivizes a 100% Coalition

So far, to prove our coalition-resistant fairness notions, we assumed that the coalition wields strictly
less than 100% of the mining power. If Bob can solicit a coalition of 100% of the mining power,
then its best strategy is to wait for Alice to post prea, and then activate P2 and C1. In this way,
Bob and the coalition effectively learns the secret prea for free.

14

4.3.1 The Meta-Game of Coalition Formation

We argue that Ponyta provides strong disincentives for such a 100% coalition to form, even in
a world where one can post bribery contracts [Bon16, JSZ+19, MHM18b, WHF19] or other smart
contracts in an attempt to openly solicit everyone.

To see this, we can view the process of soliciting coalition members as a meta-game. Imagine
that Bob openly invites miners to join, e.g., through some smart contract. If the coalition wins,
the additional gain of at most $v (relative to the honest case) will be split off among all miners
proportional to their mining power, e.g., distributed to each miner who mined a block that starves
P1 and C2.

In this meta-game, each miner has two choices, to join or not to join the coalition. It is not
hard to see that everyone joining is not an equilibrium of this meta-game. Specifically, if every
other miner joined, then I would be strictly better off not joining the coalition. If I do not join, the
moment P2 is activated, I have a T2 lead in time to mine a block in which I can redeem $v from
the C2 branch. In particular, we may assume that every miner in the coalition commits to starving
C2 in every block they mine, e.g., by placing a collateral that it will honor its commitment — if
not, then the coalition will not be stable since a coalition member will be incentivized to defect
from the coalition and claim C2 itself. This means that if I mine a block during the T2 window
after the activation of P2, I can claim $v from C2 for myself. Now, suppose I have γ fraction of
mining power, and suppose that T2 > 1. The probability that I mine a block in a window of T2
length is 1 − (1 − γ)T2 > γ. Therefore, if I do not join the coalition, my expected gain would be
strictly greater than $v ·γ which is the expected gain had I joined the coalition. This means that if
everyone else joins the coalition, my best strategy is not to join. In other words, a 100% coalition
is not an equilibrium of the coalition-forming meta-game.

4.3.2 Comparison with Prior Approaches

Using this coalition formation meta-game perspective, we can give a (hopefully clearer) re-exposition
of some incentive attacks described in prior works [MHM18a,Bon,WHF19]. In particular, the earlier
work of MAD-HTLC [TYME21] is motivated by the fact that the standard HTLC contract (see
Section 2.2), has some coalition formation meta-games in which a 100% coalition is the equilibrium.

Meta-games for HTLC. Bob can post a bribery contract soliciting participation of miners: if
Alice’s redeeming transaction is censored until Bob claims the $v back through preb, then, Bob
will equally re-distribute $(v − ε) to every miner that helped to mine a block that starved Alice’s
transaction where $ε is a small amount Bob keeps for himself. Suppose the transaction fees are 0,
then every miner’s best strategy is to join the coalition, and thus a 100% coalition is an equilibrium
of the meta-game.

If Alice is offering a transaction fee of $f for her transaction, and assuming that $f < $v/T1.
Then, Bob can offer $(v−ε)/T1 to everyone who helps to censor Alice’s transaction until Bob could
claim the $v back for himself. In this case, every miner’s best strategy is to take the bribe which
also effectively leads to a 100% coalition.

Tsabary et al. [TYME21] also describes the following meta-game. Suppose that the mining
power of the smallest miner is γmin. Bob can offer to pay $f ′ to whoever mines the block immediately
after T1 that helps him claim his $v back. Let $f be the fee offered by Alice. Suppose that
$f ′ · γmin > $f , then everyone joining is also an equilibrium of this meta-game (assuming non-
myopic miners), effectively leading to a 100% coalition. Roughly speaking, this is because if I give
up on my immediate gain $f right now, there is at least γmin probability that I will be the miner
who mines the first block after T1 which allows me to claim the richer reward $f ′ instead.

15

MAD-HTLC. The result of MAD-HTLC [TYME21] can be viewed as follows: by allowing the
miner to claim $v itself through (prea, preb), it removes the undesirable 100%-coalition equilibrium
in the coalition formation meta-game — the design of Ponyta is inspired by this elegant idea.
Unfortunately, the design of MAD-HTLC incentivizes coalitions (with binding side contracts) to
deviate in the protocol game itself. As mentioned earlier in Section 2.2, Bob colluding with a miner
should always deviate: if it happens to be the miner when Alice posts prea, the coalition should
always starve Alice’s transaction and claim the $v itself by posting (prea, preb).

5 Application: Atomic Swap

Atomic swap allows two parties to exchange cryptocurrencies in the same chain or accross two
different chains. In this section, we describe how to realize atomic swap by using Ponyta, and we
show that the protocol satisfies CSP fairness.

We will describe our protocol for a cross-chain scenario since cross-chain swap is more general
than over the same chain. We take Bitcoin and Ethereum as an example. We use Bx′ to denote x′

units of Bitcoin, and use Ex to denote x units of Ether. We use the notation Bx′ + Ex to denote
x′ units of Bitcoin and x units of Ether. In general, our atomic swap protocol can be used on any
two chains where the mining process picks block proposers at random proportional either to their
mining power or stake.

5.1 Model and Utility

We may assume that Alice and Bob are not in the same coalition. Therefore, we effectively consider
the following three types of strategic players or coalitions: 1) Alice-miner coalition (including Alice
alone); 2) Bob-miner coalition (including Bob alone); and 3) miner-only coalition.

Given some strategic player or coalition, we assume that it has some specific valuation of each
unit of Bitcoin and each unit of Ether. For convenience, we use the notation $AV(·) to denote the
valuation function of Alice of an Alice-miner coalition; specifically, $AV(Ex+Bx′) = $va ·x+$v′a ·x′
where $va ≥ 0 and $v′a ≥ 0 denote how much Alice or the Alice-miner coalition values each Ether
and Bitcoin, respectively. Similarly, we use the notation $BV(·) to denote the valuation function of
Bob or a Bob-miner coalition, and we use $MV(·) to denote the valuation function of a miner-only
coalition. Throughout this section, we may make the following assumption which justifies why
Alice wants to exchange her Bx′ with Bob for Ex, and vice versa.

Assumption: $AV(Ex− Bx′) > 0, $BV(Bx′ − Ex) > 0

Utility. Let Bd′a,Eda ≥ 0 be the cryptocurrencies that Alice or an Alice-miner coalition deposit
into the smart contracts. Let Br′a,Era ≥ 0 be the payment Alice or an Alice-miner coalition receive
from the smart contracts during the protocol. Now, we can define the utility $ua of Alice or the
Alice-miner coalition as follows:

$ua = $AV(Br′a − Bd′a + Era − Eda)

Similarly, we can define the utility $ub of Bob or a Bob-miner oalition, and the utility $um of
a miner-only coalition as follows:

$ub = $BV(Br′b − Bd′b + Erb − Edb),

$um = $MV(Br′m − Bd′m + Erm − Edm),

16

where Br′b,Erb ≥ 0, denote the payment the Bob-miner coalition or Bob receives during the protocol,
and Bd′b,Edb ≥ 0 denote the deposit the Bob-miner coalition or Bob sends to any smart contract
during the protocol. The variables Br′m,Erm,Bd

′
m,Edm,≥ 0 are similarly defined but for the miner-

only coalition.
Like before, we assume that the total utility of all players from the protocol cannot exceed a

polynomial function in the security parameter λ.

Modeling time. In our cross-chain atomic swap application, since the two blockchains have dif-
ferent block intervals, we use the following convention for denoting time. Without loss of generality,
we may assume that the moment the protocol execution begins, the current lengths of the Bitcoin
and Ethereum chains are renamed to 0. We use the terminology Ethereum time T to refer to the
moment the Ethereum chain reaches length T , and similarly, we use the terminology Bitcoin time
T ′ to refer to the moment when the Bitcoin chain reaches length T ′.

Execution model. Since the cross-chain swap application involves two different chains, we need
to make a few changes to the execution model. Recall that earlier in Section 3, users can post
messages or smart contracts at the beginning of each time step t, and then a miner will be chosen
to mine the block of the current time step t. The block mined can contain messages posted at any
time less than or equal to t.

Now, we may imagine that users can post messages or at any (wall-clock) time. At any wallclock
time t when there is a mining event for either the Bitcoin or Ethereum chain, a miner is chosen,
and the newly mined block may contain any message posted at any time less than or equal to t.

In this section, without loss of generality, we may assume that our honest protocol involves one
contract on each of the two chains — if there are multiple contracts on the same chain, we can
always merge them into a single one. The moment both contracts are posted to their respective
blockchains and take effect, we define the current time to be 0, and this marks the start of the
protocol execution. The deposit phase in which users deposit money into the two contracts is
considered part of the execution.

5.2 Construction

Overview and notations. To realize a cross-chain atomic swap, we use two Ponyta contract
instances, denoted Ponyta and Ponyta’, for the Ethereum and Bitcoin chains, respectively. The
idea is that Alice would act first and redeem Ethers from Ponyta by revealing prea, and prea is
exactly the secret Bob needs to redeem Bitcoins from Ponyta’.

In Section 4.1, we specify the parameters for a Ponyta contract to be a 7-tuple: (ha, hb, T1,
T2, $v, $ca, $cb). Since we need two contracts now, we denote the parameters for Ponyta as (ha,
hb, T1, τ , Ex, Eca, Ecb), and the parameters for Ponyta’ as (h′b, h

′
a, T

′
1, τ
′,Bx′,Bc′b,Bc

′
a). Here, T1

and T ′1 are the absolute Ethereum time and Bitcoin time, respectively. By contrast, τ and τ ′ are
the number of time intervals measured in terms of the number of Ethereum and Bitcoin blocks,
respectively.

Before deploying the contracts, Alice samples prea and pre ′a from {0, 1}λ, and Bob samples
preb from {0, 1}λ uniformly at random. They then post the Ponyta and Ponyta’ contracts on
the Ethereum and Bitcoin blockchains, respectively. At this moment, the execution begins and we
may rename the current time to be 0. During the protocol execution, Alice and Bob will have a T ′

window measured in Bitcoin time to deposit Bitcoin into the Ponyta’ contract first, and then they
will have a T window measured in Ethereum time to deposit Ether into the Ponyta contract.

Parameter choices. The parameters must satisfy the following constaints for the protocol to

17

satisfy CSP-fairness against coalitions with at most γ fraction of mining power.

Parameter Constraints for Atomic Swap
Constraints for Ponyta (on Ethereum):

• ha = H(prea) and hb = H(preb).

• T1 > T .

• Eca > Ex and Ecb > 2 · Ex.

Constraints for Ponyta’ (on Bitcoin):

• h′b = H(prea) and h′a = H(pre ′a).
a

• Bitcoin time T ′ < Ethereum time T , i.e., the Bitcoin block of length T ′ is mined before
the Ethereum block of lengthb T .

• Bitcoin time T ′1 > Ethereum time T1, i.e., the Bitcoin block of length T ′1 is mined after
the Ethereum block of length T1.

• Bc′a > 2 · Bx′ and Bc′b > Bx′.

Choice of timeouts: // γ is the coalition’s fraction of mining power

• τ ≥ 1, τ ′ ≥ 1.

• γτ ≤ $AV(Eca−Bx′)
$AV(Eca)

, γτ
′ ≤ $AV(Bc′a−Bx′)

$AV(Bc′a)
, and γτ ≤ $BV(Ecb−Ex)

$BV(Ecb)
.

aNotice that ha = h′
b and Alice holds both prea and pre ′

a initially.
bIn practice, this constraint must be respected except with negligible probability despite the the variance in

inter-block times.

Intuitively, the collateral values must be sufficiently large such that a coalition involving either
Alice or Bob would never want to trigger the “bombs” in the protocol that cause their collateral to
be (partially) burnt. The timeouts τ and τ ′ must be sufficiently large w.r.t. γ, such that a coalition
involving Alice or Bob would never want to take any gamble that would risk getting their collateral
(partially) burnt. Finally, the choices of T1 and T ′1 account for the fact that we want the users to
deposit into Ponyta’ first before depositing into Ponyta; but the execution order would be the
opposite, i.e., Ponyta is executed first and and then Ponyta’.

The contracts. We call the activation points of Ponyta as P1, P2, C1 and C2. Similarly, we
call the activation points of Ponyta’ as P1’, P2’, C1’ and C2’. We now specify the two contract
instances needed for realizing cross-chain atomic swap. Like before, activation points of the same
type are mutually exclusive. Although not explicitly noted, we assume that before both parties
have made deposits, the contract lets any party back out and withdraw its deposit. When both
parties have made deposits, however, redistribution of the money is only possible by invoking one
or more activation points of the contract. We assume that the Ponyta contract speaks Etheurem
time and the Ponyta’ contract speaks Bitcoin time, respectively.

Ponyta contract (on Ethereum) // Parameters: (ha, hb, T1, τ , Ex, Eca, Ecb)

Alice deposits Eca, and Bob deposits Ex+ Ecb.

18

P1: On receiving prea from Alice such that H(prea) = ha, send Ex to Alice.

P2: Time T1 or greater: on receiving preb from Bob such that H(preb) = hb, or on receiving
from Alice, send Ex to Bob.

C1: At least τ after either P1 or P2 is activated: on receiving from anyone, send Eca to
Alice and send Ecb to Bob.

C2: On receive (prea, preb) from anyone P such that H(prea) = ha and H(preb) = hb, send
Ex to player P . All remaining coins are burnt.

Ponyta’ contract (on Bitcoin) // Parameters: (h′b, h
′
a, T

′
1, τ
′,Bx′,Bc′b,Bc

′
a)

Alice deposits Bx′ + Bc′a, and Bob deposits Bc′b.

P1’: On receiving pre ′b from Boba such that H(pre ′b) = h′b or on receiving from Alice, send
Bx′ to Bob.

P2’: Time T ′1 or greater: on receiving pre ′a from Alice such that H(pre ′a) = h′a or on receiving
from Bob, send Bx′ to Alice.

C1’: At least τ ′ after either P1’ or P2’ is activated: on receiving from anyone, send Bc′a to
Alice and send Bc′b to Bob.

C2’: On receiving (pre ′b, pre ′a) from anyone P such that H(pre ′b) = h′b and H(pre ′a) = h′a, send
Bx′ to player P . All remaining coins are burnt.

aBob will let pre ′
b be the prea he learns in the Ponyta instance.

In the above, allowing Alice to invoke P1’ by sending and allowing Bob to invoke P2’ by
sending are needed for dropout resilience — we will discuss these subtleties in more detail after
describe the full coin swap protocol. Additionally, we let Alice post an empty message to invoke
P2.

Coin swap protocol. We now describe our coin swap protocol.

• Miner. In the honest protocol, a miner watches all transactions posted to P1, P2, C2, P1’, P2’,
and C2’, and see if they contain correct values for prea = pre ′b, preb, and pre ′a. As soon as it
observes both prea and preb, it posts (prea, preb) to C2. As soon as it observes both pre ′a and
pre ′b = prea, it posts (pre ′b, pre ′a) to C2’.

• Alice and Bob. Below, we define the honest protocol for Alice and Bob. Unless otherwise noted,
Alice and Bob speak absolute wall-clock time. As mentioned, the start of the execution (i.e.,
time 0) is defined to be the moment both contracts have been posted and take effect.

Atomic Swap Protocol
Deposit Phase:

1. At t = 0, Alice and Bob deposit Bx′ + Bc′a and Bc′b into Ponyta’, respectively.

2. At Bitcoin time T ′: if at least one party has not deposited the appropriate amount into
Ponyta’, go to the abort phase; else, Alice and Bob deposit Eca and Ex+Ecb into Ponyta,

19

respectively.

3. At Ethereum time T : if at least one party has not deposited the appropriate amount into
Ponyta, then go to the abort phase; else go to the swap phase.

Swap Phase:

1. At Ethereum time T , Alice sends prea to P1. As soon as P1 has been activated, Alice sends
an empty message to P1’.

2. If Alice does not send prea to P1 before Ethereum time T1, Bob sends preb to As soon as
P2 has been activated, Bob sends an empty message to P2’.

3. When τ Ethereum time has passed after P1 or P2 is activated, Alice and Bob posts an
empty message to C1.

4. If Alice sends prea to P1 before Ethereum time T1, Bob sends pre ′b = prea to P1’ at Ethereum
time T1.

5. When τ ′ Bitcoin time has passed after P1’ or P2’ is activated, Alice and Bob each posts an
empty message to C1’.

Abort Phase:

1. For either Ponyta or Ponyta’: if Alice (or Bob) has submitted a deposit transaction, then
submit a corresponding withdrawal transactiona.

2. Alice posts pre ′a to P2’. Once P2’ has been activated, she posts to P2.

3. Bob posts preb to P2 (regardless of whether deposits have been made). Once P2 has been
activated or Bob has withdrawn his deposit from Ponyta or Bob entered the abort phase
prior to depositing into Ponyta, Bob posts to P2’;

4. If τ ′ Bitcoin time has passed since P1’ or P2’ is activated, send to C1’; similarly, if τ
Ethereum time has passed since P1 or P2 is activated, send to C1.

aWe may assume that Alice’s withdrawal transaction is valid only if it is included after Alice’s deposit trans-
action, and moreover, Bob’s deposit transaction has not been included. The same holds for Bob’s withdrawal
transaction.

As mentioned, the coin swap protocol consists of two contract instances, one running on each
blockchain. Once the players have deposited money into the contracts, Alice will redeem Ether
from the Ponyta contract first by posting prea to P1. This in turn allows Bob to redeem Bitcoin
from Ponyta’ by posting pre ′b = prea to P1’.

Some subtleties. Observe that users deposit into Ponyta’ first before Ponyta, but the execution
order is reversed, i.e., Ponyta is executed first before Ponyta’. This is to prevent the attack where
Alice redeems the Ethers from Ponyta first, but does not deposit into Ponyta’ which prevents
Bob from redeeming Bitcoins from Ponyta’.

In comparison with our contract in Section 4.1, there are a couple small modification in
Ponyta’. We now additionally allow Alice to trigger P1’ by posting an empty message , and
allow Bob to trigger P2’ by posting . These modifications are needed for dropout resilience.
Specifically, the latter modification is needed in the following situation: if Alice aborts prior to
posting her prea, we want to make sure that Bob can activate P2’ (after activating P2 or with-
drawing his deposit from Ponyta), so that he can get his deposit back from Ponyta’. The former
modification is needed in the following situation. Suppose Alice has posted prea to P1 but Bob

20

aborts. In this case, Alice should be able to trigger either P1’ or P2’. Since Alice has already
posted prea, it is not safe for her to post pre ′a to P2’ since making both prea and pre ′a public can
cause the bomb to be triggered. Therefore, we want Alice to be able to trigger P1’ by posting
after P1 is activated, such that she can eventually get her deposit back from Ponyta’.

5.3 Proof of CSP-Fairness

Lemma 5.1. Let C be any coalition that consists of Alice and an arbitrary subset of miners con-

trolling at most γ fraction of mining power. Then, as long as γτ ≤ $AV(Eca−Bx′)
$AV(Eca)

and γτ
′ ≤

$AV(Bc′a−Bx′)
$AV(Bc′a)

, for any (even unbounded) coalition strategy SC,

utilC(SC , HS−C) ≤ utilC(HSC , HS−C)

where HS−C denotes the honest strategy for everyone not in C.

Proof. If C follows the honest strategy, P1, C1, P1’, and C1’ will be activated, and the utility of C
is $AV(Ex− Bx′) > 0. Now, we analyze the cases if C deviates from the honest strategy, and show
that the utility never exceeds the honest case. We may assume that the coalition does not post
any new smart contract on the fly and deposit money into it (see the definition of strategy space
in Section 3.2) — if it did so, it cannot recover more than its deposit since any player not in C will
not invoke the smart contract. In the following, we do the case analysis for each phase.

Bob goes to the abort phase at Bitcoin time T ′. In this case, Alice fails to make her
deposit into Ponyta’ by Bitcoin time T ′. Further, Bob never deposits anything into Ponyta,
so the activation points of Ponyta are never invoked. Henceforth we may assume that C can
withdraw whatever it deposits into Ponyta. If Alice deposits Bx′ + Bc′a into Ponyta’ before Bob
withdraws Bc′b, both parties make their deposits into Ponyta’. Then, Bx′ + Bc′a is the optimal
amount that C can get from Ponyta’ (from P2’ and C1’), which is the same amount that Alice
deposits into Ponyta’. On the other hand, if Alice does not deposit Bx′+Bc′a into Ponyta’ before
Bob withdraws Bc′b, the activation points of Ponyta’ are never invoked. No matter in which case,
the utility of C is 0.

Bob goes to the abort phase at Ethereum time T . In this case, both parties make their
deposits into Ponyta’, and Bob also already deposited Ex+ Ecb into Ponyta. If Alice does not
deposit Eca into Ponyta before Bob withdraws Ex + Ecb, the activation points of Ponyta are
never invoked. Then, the optimal utility of C is 0 by activating P2’ and C1’.

Below, we focus on the case when Alice has deposited Eca into Ponyta before Bob withdraws
Ex + Ecb, i.e., both parties make their deposits into Ponyta. Since Eca > Ex and Bc′a > 2 · Bx′,
the utility of C exceeds $AV(Ex− Bx′) only if P1, C1, P2’, and C1’ are activated, where C has the
utility $AV(Ex). In the following, we will show that, because C only controls at most γ fraction of
mining power, its expected utility cannot exceed $AV(Ex− Bx′) if P1 is activated.

Suppose P1 is activated at some Ethereum time t∗. Because Bob goes to the abort phase at
Ethereum time T , Alice must make her deposit into Ponyta at some Ethereum time t∗ ≥ T . Since
Bob sends preb to P2 at Ethereum time T as part of the abort procedure, both prea and preb are
publicly known after t∗. Thus, during Ethereum time t = (t∗, t∗+ τ], any miner in −C will activate
C2 if it mines a block. We say C loses the race if a non-colluding miner mines a new block during
Ethereum time (t∗, t∗ + τ]. Otherwise, we say C wins the race. If C loses the race, it gets nothing
from C1 or C2, so its utility is $AV(Ex−Eca) (from P1, P2’ and C1’). Else if C wins the race, then
its utility is at most $AV(Ex), and the maximum utility can be obtained only by activating P1, C1,

21

P2’ and C1’. The probability p that C wins the race is upper bounded by p ≤ γτ . Therefore, the
expected utility of C is upper bounded by

$AV((Ex− Eca) · (1− p) + Ex · p).

Since p ≤ γτ ≤ $AV(Eca−Bx′)
$AV(Eca)

, we have

$AV((Ex− Eca) · (1− p) + Ex · p) < $AV(Ex− Bx′).

Bob goes to the swap phase. In this case, Alice and Bob both make their deposits into Ponyta
and Ponyta’, so the four activiation points of each contract can be activated. In the swap phase,
C can behave in the following ways.

1. Suppose Alice sends prea to P1 before Ethereum time T1. As we have shown, the utility of C
exceeds $AV(Ex − Bx′) only if P1, C1, P2’, and C1’ are activated. Suppose P2’ is activated
at some Bitcoin time t∗ ≥ T ′1, and pre ′a is publicly known afterward. Moreover, because
the parameter constraints guarantee that the Bitcoin block of height T ′ is mined after the
Ethereum block of height T is mined, when P2’ is activated, prea is also publicly known.
Thus, during Bitcoin time (t∗, t∗ + τ ′], any miner in −C will activate C2’ if it wins a block.
We say C loses the race if a non-colluding miner mines a new block during Bitcoin time
(t∗, t∗ + τ ′]. Otherwise, we say C wins the race. If C loses the race, it gets nothing from C1’
or C2’, and it gets at most $AV(Eca) from the union of C1 and C2 since Eca > Ex. Thus,
its utility is at most $AV(Ex− Bc′a) (from P1, C1 and P2’). Else if C wins the race, then its
utility is at most $AV(Ex) which can be achieved by activating P1, C1, P2’ and C1’. The
probability p that C wins the race is upper bounded by p ≤ γτ

′
. Therefore, the expected

utility of C is upper bounded by

$AV((Ex− Bc′a) · (1− p) + Ex · p).

Since p ≤ γτ ′ ≤ $AV(Bc′a−Bx′)
$AV(Bc′a)

, we have

$AV((Ex− Bc′a) · (1− p) + Ex · p) < $AV(Ex− Bx′).

2. Suppose Alice does not send prea to P1 before Ethereum time T1. In this case, Bob will send
preb to P2 at Ethereum time T1. If it turns out that P2 is activated, the utility of C is at most
0 (from C1, P2’ and C1’), which is less than the honest case. On the other hand, suppose P1
is activated at some Ethereum time t∗ ≥ T1. Then, both prea and preb are publicly known
after Ethereum time t∗. Using the same argument we used for the case “Bob goes to the abort

phase at Ethereum time T”, since p ≤ γτ ≤ $AV(Eca−Bx′)
$AV(Eca)

, the utility of C is upperbounded

by
$AV((Ex− Eca) · (1− p) + Ex · p) < $AV(Ex− Bx′).

Lemma 5.2. Suppose that the hash function H(·) is a one-way function. Let C be any coalition
that consists of Bob and a subset of miners controlling at most γ fraction of mining power. Then,

as long as γτ ≤ $BV(Ecb−Ex)
$BV(Ecb)

, for any PPT coalition strategy SC, it must be that there is a negligible

function negl(·) such that

utilC(SC , HS−C) ≤ utilC(HSC , HS−C) + negl(λ) .

22

Proof. If C follows the honest strategy, P1, C1, P1’, and C1’ will be activated, and the utility of C
is $BV(Bx′ − Ex) > 0. Now, we analyze the cases if C deviates from the honest strategy, and show
that the utility never exceeds the honest case. We may assume that the coalition does not post
any new smart contract on the fly and deposit money into it — if it did so, it cannot recover more
than its deposit since any player not in C will not invoke the smart contract.

Alice aborts. In this case, Alice never sends prea to P1. Since H(·) is one-way and the coalition
C is PPT, except with negligible probability, P1’ is never activated. Since Bc′b > Bx′, the coalition
C can get at most Bc′b from Ponyta’ which is the same as its deposit.

We now analyze the Ponyta contract. There are three cases:

• Alice never deposited into Ponyta— this can happen if Alice aborts at Bitcoin time T ′. In
this case, the coalition C cannot gain anything from Ponyta.

• Alice deposited into Ponyta (which can happen if Alice aborts at Ethereum time T) but Bob
fails to deposit into Ponyta before Alice makes her withdrawal from Ponyta. In this case,
the four activation points of Ponyta are never activated, and C cannot gain anything from
Ponyta.

• Alice deposited into Ponyta and Bob manages to deposit into Ponyta before Alice makes her
withdrawal from Ponyta. Since Ecb > Ex, the coalition C can get at most E(cb + x) from
Ponyta which is the same its deposit.

In all cases, C’s utility is at most 0.

Alice goes to the swap phase. In this case, Alice and Bob both make their deposits into
Ponyta and Ponyta’, so the four activiation points of each contract can be activated. Recall that
if C plays honestly, P1, C1, P1’, and C1’ will be activated and its utility is $BV(Bx′−Ex). Because
Ecb > 2 ·Ex and Bc′b > Bx′, the utility of C exceeds $BV(Bx′−Ex) only if P2, C1, P1’, and C1’ are
activated, where C has the utility $BV(Bx′).

Because Alice is honest, she always sends prea to P1 at Ethereum time T . Now, suppose P2 is
activated at t∗. Notice that P2 can be activated only after T1 > T , at which prea is already publicly
known. Notice that the activation of P2 implies preb is publicly known. Thus, during Ethereum
time (t∗, t∗ + τ], any miner in −C will activate C2 if it mines a block. We say C loses the race if
a non-colluding miner mines a new block during Ethereum time (t∗, t∗ + τ]. Otherwise, we say C
wins the race. If C loses the race, it gets nothing from C1 or C2, and since Bc′b > Bx′, C can get
at most $BV(Bc′b) from the union of C1’ and C2’. Thus its utility is at most $BV(Bx′−Ecb) which
is achieved by activating from P2, P1’ and C1’. Else if C wins the race, then its utility is at most
$BV(Bx′) which is achieved by invoking P2, C1, P1’ and C1’. The probability p that C wins the
race is upper bounded by p ≤ γτ . Therefore, the expected utility of C is upper bounded by

$BV((Bx′ − Ecb) · (1− p) + Bx′ · p).

Since p ≤ γτ ≤ $BV(Ecb−Ex)
$BV(Ecb)

, we have

$BV((Bx′ − Ecb) · (1− p) + Bx′ · p) < $BV(Bx′ − Ex).

Theorem 5.3 (CSP fairness for coin swap). Suppose that the hash function H(·) is a one-way

function. Moreover, suppose γτ ≤ $AV(Eca−Bx′)
$AV(Eca)

, γτ
′ ≤ $AV(Bc′a−Bx′)

$AV(Bc′a)
, and γτ ≤ $BV(Ecb−Ex)

$BV(Ecb)
. Then,

the atomic swap protocol satisfies γ-CSP-fairness.

23

Proof. Lemma 5.1 and Lemma 5.2 proved γ-CSP-fairness for the cases when the coalition consists
of either Alice or Bob, and possibly some miners. Since by our assumption, Alice and Bob are not
in the same coalition, it remains to show γ-CSP-fairness for the case when the coalition consists
only of some miners whose mining power does not exceed γ.

Henceforth, we consider the miner-only coalition, so Alice and Bob always follow the protocol.
In the protocol, Alice and Bob decide whether they will go to the abort phase at Bitcoin time T ′

and at Ethereum time T , i.e., they make this decision using on-chain state when the blockchains
have reached lengths T ′ and T , respectively. Therefore, both Alice and Bob go to the swap phase
or both of them go to the abort phase. Now, a miner-only coalition can get positive utility only if
C2 or C2’ is activated (or both). If both Alice and Bob go to the swap phase, they would never post
any transaction containing preb or pre ′a. Since H(·) is one-way and the coalition is PPT, C2 and
C2’ are never activated except with negligible probability. On the other hand, if both Alice and
Bob go to the abort phase, they would never post any transaction containing prea = pre ′b. Since
H(·) is one-way and the coalition is PPT, C2 and C2’ are never activated except with negligible
probability. To sum up, except with negligible probability, the utility of the coalition is at most 0,
which is the same as the honest case.

5.4 Proof of Dropout Resilience

We now prove dropout resilience.

Theorem 5.4 (Dropout resilience of coin swap). Our atomic swap protocol is dropout resilient. In
other words, suppose at least 1/poly(λ) fraction of the mining power is honest. If either Alice or
Bob plays honestly but drops out before the end of the protocol, then with 1 − negl(λ) probability,
the other party’s utility should be non-negative.

Proof. We first analyze the case where Alice drops out. There are three possible cases:

1. Bob goes to the abort phase at Bitcoin time T ′.

2. Bob goes to the abort phase at Ethereum time T .

3. Bob goes to the swap phase.

In the first case, Alice does not make her deposit into Ponyta’, and both parties have not deposited
into Ponyta. By assumption, Bob can always withdraw his deposit in Ponyta’. In the second
case, both parties already made their deposits into Ponyta’, while Alice does not make her deposit
into Ponyta. Then, Bob can always withdraw his deposit in Ponyta. Moreover, Bob will send

to P2’ after he has withdrawn his deposit from Ponyta, and send to C1’ sufficiently long after
P2’ is activated. Therefore, except with negligible probability, P2’ and C1’ will always be activated.
Thus, Bob simply gets all his deposit back. In the third case, if Alice sends prea to P1 before she
drops out, Bob learns pre ′b = prea so he can send it to P1’. Consequently, P1, C1, P1’ and C1’ will
always be activated except with negligible probability. Then, Bob’s utility is $BV(Bx′ − Ex) > 0.
On the other hand, if Alice drops out before sending prea to P1, Bob will send preb to P2 at t = T1
and he will send to P2’ when P2 has been activated. Except with negligible probability, P2, C1,
P2’ and C1’ will always be activated. Then, Bob’s utility is 0, since he simply gets all his deposit
back.

Next, we analyze the case where Bob drops out. There are three possible cases:

1. Alice goes to the abort phase at Bitcoin time T ′.

24

2. Alice goes to the abort phase at Ethereum time T .

3. Alice goes to the swap phase.

In the first case, Bob does not make his deposit into Ponyta’, and both parties have not deposited
into Ponyta. By assumption, Alice can always withdraw her deposit in Ponyta’. In the
second case, both parties already made their deposits into Ponyta’, while Bob does not make his
deposit into Ponyta. Then, Alice always sends pre ′a to P2’ and to C1’. Except with negligible
probability, P2’ and C1’ will always be activated. Moreover, Alice can always withdraw her deposit
in Ponyta. Thus, Alice simply gets all her deposit back. In the third case, both parties already
made their deposits into Ponyta’ and Ponyta. In this case, Alice always sends prea to P1, and
except with negligible probability, P1 and C1 will be activated in polynomial-time. Then, Alice
will sends an empty message to P1’, and except with negligible probability, P1’ and C1’ will be
activated in polynomial-time. Consequently, because P1, C1, P1’ and C1’ are activated, Alice’s
utility is $AV(Ex− Bx′) > 0.

6 Instantiating Ponyta in Bitcoin

First, we show how to instantiate Ponyta using Bitcoin scripts. We start by introducing notation
for payments in Bitcoin.

6.1 Notation and Background

As described earlier, with general smart contracts, users send coins to contracts, the contracts then
hold the coins until some logic is triggered to pay part to all of the coins to one or more user(s).
Instead, Bitcoin uses an Unspent Transaction Output (UTXO) model, where coins are stored in
addresses denoted by Adr ∈ {0, 1}λ and addresses are spendable (i.e., used as input to a transaction)
exactly once. An address in Bitcoin is typically associated with a script Φ : {0, 1}λ → {0, 1} which
states what conditions need to be satisfied for the coins to be spent from the address. In contrast
to smart contracts that can verify arbitrary conditions for coins to be transacted, the scripting
language of Bitcoin has limited expressiveness.

Transactions can be posted on the Bitcoin blockchain to transfer coins from a set of input
addresses to a set of output addresses, and any remaining amount of coin is collected by the
miner of the block as transaction fee. More precisely, in Bitcoin transactions are generated by the
transaction function tx . A transaction txA, denoted

txA := tx

(
[(Adr1,Φ1, $v1), . . . , (Adrn,Φn, $vn)],
[(Adr ′1,Φ

′
1, $v

′
1), . . . , (Adr ′m,Φ

′
m, $v

′
m)]

)
,

charges vi coins from each input address Adr i for i ∈ [n], and pays v′i coins to each output address
Adr ′j where j ∈ [m]. It must be guaranteed that

∑
i∈[n] $vi ≥

∑
j∈[m] $v

′
j . The difference $f =∑

i∈[n] $vi −
∑

j∈[m] $v
′
j is offered as the transaction fee to the miner who includes the transaction

in his block. A transaction is considered authorized if it is attached with witnesses [x1, . . . , xn] such
that Φi(xi) = 1 (publicly computable) for all i ∈ [n], where Φi’s were the scripts associated with
the input addresses of the transaction. A transaction is confirmed if it is included in the blockchain.

Thus, for Bitcoin, the logic of Ponyta must be encoded in scripts of addresses where the
scripts are of limited expressiveness and the addresses are spendable exactly once. As we show, our
Ponyta instantiation only requires some of the most standard scripts used currently in Bitcoin.

25

We largely rely on the following scripts: (1) computation of hash function6 H : {0, 1}∗ → {0, 1}κ,
(2) transaction timestamp verification wrt. current height of the blockchain denoted by NOW7

and (3) digital signature verification. The signature scheme consists of the key generation algorithm
KGen(1λ) generating the signing key sk and the verification key pk, the signing algorithm Sign(sk,m)
generating a signature σ on the message m using sk, and the verification algorithm Vf(pk,m, σ)
validating the signature wrt. pk. 8 We say an address Adr (associated script Φ) is controlled by a
user if the user knows a witness x s.t. Φ(x) = 1.

6.2 High-Level Idea

Recall that earlier we described that Alice and Bob deposit coins into a smart contract and the
coins are held by the smart contract. In Bitcoin, Alice and Bob instead prepare a setup transaction
tx stp which deposit their coins into a payment address Adrpay and a collateral address Adr col. They
also prepare and sign all the redeeming transactions upfront which allow them to later redeem from
the addresses Adrpay and Adr col. The script associated with Adrpay specifies the two conditions
under which the coins in the address Adrpay can be redeemed, corresponding to the earlier P1 and
P2, respectively. The script associated with Adr col encodes the spending conditions C1 and C2,
respectively.

For some parts of the Ponyta protocol, the limited scripting capability of Bitcoin presents a
technical challenge. Specifically, it is not immediately clear how to instantiate conditional timelock
redeem, that allows the players to redeem from Adr col only some time after Adrpay has been spent,
and how to achieve conditional burn, that allows players to burn a fraction of the coins in Adr col if
either Alice or Bob misbehaves. To achieve the former, we introduce two auxiliary addresses which
are specified as output addresses of the payment redeem transactions. The auxiliary addresses
receive a small ε amount of coin (e.g., 1 Satoshi) when the payment redeem transactions spend
from Adrpay. The collateral redeem transactions that redeem from Adr col through C1 additionally
specify one of the auxiliary addresses as an input address (depending on whether P1 or P2 was
invoked). The script associated with the auxiliary addresses can now specify the timelock condition
for the collateral redeem transactions. To achieve the latter we ensure that a redeeming transaction
that redeems the collateral coins according to C2 is prepared in advance by Alice and Bob, and is
made available to every other player in the network. This transaction is set such that the coins to
be burnt in Adr col are transferred to some irredeemable address, while the rest of the coins are left
as transaction fee for the miner including the transaction in his block. We discuss the instantiation
in more detail below.

6.3 Addresses, Scripts, and Transactions for Ponyta

We now describe all the transactions, addresses, and scripts needed in Ponyta’s Bitcoin instanti-
ation.

Setup. In Ponyta’s Bitcoin instantiation, the players place their deposits into two addresses, the
payment address Adrpay and the collateral address Adr col. During the preparation phase, Alice and

6κ = 160 in Bitcoin when using the opcode OP HASH160.
7Instantiated using the opcode OP CHECKSEQUENCEVERIFY in Bitcoin checking if the height of the

blockchain has increased beyond some threshold after the script first appeared on the blockchain. It can also
be instantiated with opcode OP CHECKLOCKTIMEVERIFY in Bitcoin that checks if the current height of the
blockchain is beyond a threshold.

8 The signature scheme can be instantiated with either Schnorr or ECDSA in Bitcoin. ECDSA signatures are
verified using the opcode OP CHECKSIG and Schnorr signatures via the taproot fork.

26

Table 1: Ponyta’s transcations in Bitcoin.

Description

tx stp tx

(
[(AdrA0 ,Φ

A
0 , $ca), (AdrB0 ,Φ

B
0 , $v + $cb)],

[(Adrpay,Φpay, $v), (Adr col,Φcol, $ca + $cb)]

)
txP1 tx

(
[(Adrpay,Φpay, $v)],

[(AdrA1 ,Φ
A
1 , $v − $ε), (Adrax

P1,Φ
ax
P1, $ε)]

)
txP2 tx

(
[(Adrpay,Φpay, $v)],

[(AdrB1 ,Φ
B
1 , $v − $ε), (Adrax

P2,Φ
ax
P2, $ε)]

)
tx 1

C1 tx

(
[(Adr col,Φcol, $ca + $cb), (Adrax

P1,Φ
ax
P1, $ε)],

[(AdrA2 ,Φ
A
2 , $ca + $ε), (AdrB2 ,Φ

B
2 , $cb)]

)
tx 2

C1 tx

(
[(Adr col,Φcol, $ca + $cb), (Adrax

P2,Φ
ax
P2, $ε)],

[(AdrA3 ,Φ
A
3 , $ca), (AdrB3 ,Φ

B
3 , $cb + $ε)]

)
txC2 tx

(
[(Adr col,Φcol, $ca + $cb)],

[(Adrburn,Φburn, $ca + $cb − $v)]

)

Bob prepare the setup transaction tx stp that moves their coins into the payment address Adrpay

and the collateral address Adr col.

Payment redeem. The payment redeem transactions txP1 and txP2 (see Figure 2) redeem from
the payment address Adrpay, with $v − $ε coins paid to Alice’s or Bob’s address, respectively, and
$ε coins paid to an auxiliary address which will later be needed for implementing a conditional
timelock redeem. The script Φpay associated with the address Adrpay provides two ways to redeem
(see Figure 1), corresponding to the activation points P1 and P2 in our earlier meta-contract. The
two redeem transactions txP1 and txP2 redeem from each of these branches, respectively.

Collateral redeem. The collateral redeem transactions denoted tx 1
C1, tx 2

C1 and txC2 (see Table 1)
redeem coins from the collateral address Adr col. The script Φcol associated with the collateral
address Adr col provides two ways of redeeming, corresponding to C1 and C2 in our earlier meta-
contract, respectively. The transaction txC2 redeems from C2 branch, paying $ca + $cb − $v coins
to a burn-address Adrburn, and the remaining to the miner who mines the block.

The transactions tx 1
C1 and tx 2

C1 redeem from the C1 branch, depending on which payment
transaction txP1 or txP2 respectively, was activated earlier.

To implement the timeout condition associated with the C1 branch, tx 1
C1 and tx 2

C1 also each
refer to an auxiliary input address, Adrax

P1 and Adrax
P2, respectively. These two auxiliary addresses

are outputs of payment transactions txP1 and txP2 respectively. Addresses Adrax
P1 and Adrax

P2 have
scripts Φax

P1 and Φax
P2, respectively that enforce the timeouts.

We provide the list of all transactions in Table 1, the scripts associated with all addresses
in Figure 1, and the relationship between the transactions, addresses, and scripts is depicted in
Figure 2.

To make sure that Alice and Bob cannot unilaterally spend from the payment address Adrpay,
the collateral address Adr col, and the auxiliary addresses Adrax

P1 and Adrax
P2, their associated scripts

require signatures from both Alice and Bob to spend from these addresses. Note also that the
transactions txP1 and txP2 needed to spend from P1 and P2 must be signed with different public
keys of Alice and Bob, i.e., pka, pkb, and pk′a, pk′b, respectively. This ensures that Bob cannot
invoke P1 with txP2 which specifies Bob, rather than Alice, as the recipient address. In summary,

27

Φpay(tx , prea, preb, σa, σb)

P1: if (H(prea) = ha) ∧ (Vf(pka, tx , σa) = 1)

∧ (Vf(pkb, tx , σb) = 1) then return 1

P2: if (NOW > T1) ∧ (H(preb) = hb)

∧ (Vf(pk′a, tx , σa) = 1) ∧ (Vf(pk′b, tx , σb) = 1)

return 1

// Values ha, hb, pka, pkb, T1, pk
′
a, pk

′
b are hardwired

Φcol(tx , prea, preb, σa, σb)

C1: if (Vf(pka, tx , σa) = 1) ∧ (Vf(pkb, tx , σb) = 1)

return 1

C2: if (Vf(pk′a, tx , σa) = 1) ∧ (Vf(pk′b, tx , σb) = 1)

∧ (H(prea) = ha) ∧ (H(preb) = hb) then return 1

// Values ha, hb, pka, pkb, pk
′
a, pk

′
b are hardwired

Φax
P1(tx , σa, σb)

if (NOW > T2) ∧ (Vf(pka, tx , σa) = 1)

∧ (Vf(pkb, tx , σb) = 1) then return 1

// Values T2, pka, pkb are hardwired

Φax
P2(tx , σa, σb)

if (NOW > T2) ∧ (Vf(pka, tx , σa) = 1)

∧ (Vf(pkb, tx , σb) = 1) then return 1

// Values T2, pka, pkb are hardwired

Figure 1: The description of scripts Φpay,Φcol,Φ
ax
P1 and Φax

P2. Here tx is the transaction spending
from the script. Keys pka and pk′a belong to Alice, pkb and pk′b belong to Bob. In Φpay (and Φcol)
either activation point P1 (C1) or activation point P2 (C2) must be satisfied for the script to return
1.

28

Figure 2: The transaction flow of Ponyta in Bitcoin. Rounded boxes denote transactions, rect-
angles within are outputs of the transaction. Incoming arrows denote transaction inputs, outgoing
arrows denote how an output can be spent by a transaction at the end of the arrow. Solid lines in-
dicate the transaction output can be spent only if both users sign the spending transaction. Dotted
lines indicate that the output can be spent by one user (A for Alice, and B for Bob). The timelock
(T1 and T2) associated with a transaction output is written over the corresponding outgoing arrow.

assuming security of the signature scheme, no other transaction is able to spend from the addresses
Adrpay, Adr col, and the auxiliary addresses Adrax

P1 and Adrax
P2, besides those that they are connected

to through a solid line in Figure 2.

6.4 Conditional Timelock Redeem and Conditional Burning

We highlight the ideas needed to realize conditional timelock redeem and conditional burning.

Conditional Timelock Redeem. For enforcing a timelock on the collateral coins, general smart
contracts let the contracts check if T2 time has passed since the payment coins were redeemed. In
the absence of general smart contracts, we have to rely on the one-time spendability of Bitcoin
addresses.

To do this, we rely on the auxiliary address Adrax
P1 (Adrax

P2) to ensure that the coins in the
collateral address Adr col are timelocked for time T2 after the coins from the payment address
Adrpay are redeemed by Alice (Bob). Note that Adrax

P1 (Adrax
P2) is an address created when the

payment address is redeemed via txP1 by Alice (txP2 by Bob). Adrax
P1 is set such that its associated

script only allows the coins from the address to be redeemed, if (1) both Alice and Bob sign and
(2) time T2 has passed since Adrax

P1 was created on the blockchain (similar for Adrax
P2). By allowing

only transactions tx 1
C1 and tx 2

C1 to spend from branch C1 of Adr col and requesting that they also
spend from Adrax

P1 or Adrax
P2, we design a mechanism such that for branch C1 the collateral coins in

Adr col can be redeemed only if the coins from the auxiliary address Adrax
P1 or Adrax

P2 are redeemed
simultaneously. This effectively enforces a timelock of T2 (after txP1 or txP2 is published on the
blockchain) on the redeeming of the collateral coins by Alice and Bob. We refer to this technique
of enforcing a conditional timelock on coins through simultaneous spending of a timelocked address

29

as conditional timelock redeem. The addresses Adrax
P1 and Adrax

P2 only hold a very small amount of
value $ε, their only role is to enable the above mechanism. The auxiliary address scripts Φax

P1 and
Φax
P2 are described in Figure 1.

Conditional burning. The transaction txC2 achieves conditional burning. txC2 transfers $ca +
$cb − $v coins from Adr col to a burn-address Adrburn (with associated script Φburn not controlled
by anyone9), thus leaving $v coins as transaction fee to any miner mining the transaction into his
block. This transaction is set to be valid only if (1) both Alice and Bob have signed it, and (2) the
values prea and preb are attached.

6.5 Protocol

During the preparation phase, Alice and Bob prepare the setup transaction tx stp. The transaction
must be signed by both Alice and Bob to take effect. However, before signing tx stp, Alice and
Bob prepare and sign all redeeming transactions, including txP1, txP2, tx 1

C1, tx 2
C1, and txC2. Alice

and Bob now broadcast all10 these transactions and both of their signatures — notice that they
cannot be published on the Bitcoin blockchain yet because the addresses they depend on, Adrpay

and Adr col, are not ready yet.
At this moment, Alice and Bob both reveal their signatures on tx stp. Once tx stp is published on

the Bitcoin blockchain, the execution phase starts. During the execution phase, either Alice reveals
prea and publishes transaction txP1 (along with signatures on the transaction), or Bob reveals preb
and publishes transaction txP2 (along with signatures on the transaction) after T1 time has passed
since publishing tx stp. In the honest run of the protocol, after either of the above redeem paths
are published on the blockchain, Alice and Bob can redeem the collateral after waiting for time
T2 using either tx 1

C1 (if Alice redeemed the payment) or tx 2
C1 (if Bob redeemed the payment). If

one of the users misbehave, and try to activate both redeem paths, for instance, a strategic Alice
reveals prea (along with txP1) when Bob has already revealed preb and txP2, any miner in the
system can immediately spend from the C2 branch of φcol, and burn the collateral of Alice and Bob
while redeeming $v coins as transaction fee for himself. Note that this is possible, because at the
end of the preparation phase Alice and Bob had broadcast all redeem transactions and signatures,
including the transaction txC2 and their signatures on the transaction. As both prea and preb are
revealed, the miner has enough information to authorize the transaction txC2 on the blockchain,
and thus publish the transaction, the signatures (from Alice and Bob), and the values prea and
preb, in his own block. He obtains $v coins as fee from the transaction while $ca + $cb − $v are
burnt.

6.6 Estimated Transaction Costs

Standard Bitcoin transactions let addresses of Alice and Bob to be pay-to-public key-hash scripts,
and the scripts Φpay and Φcol can be initiated using pay-to-script-hash scripts as done in [TYME21].
We can optimize the size of the scripts by using shared public keys between Alice and Bob instead of
separate keys. For example, instead of requiring signatures wrt. pka and pkb for the payment redeem
txP1, we require a single signature wrt. pkab which is a shared public key between Alice and Bob.
This means that users need to jointly generate a single signature instead of separately generating 2
signatures under independent public keys. With this, we estimate the size of our payment address
script to be 121 bytes and our collateral address script to be 115 bytes. Excluding the standard

9In Bitcoin setting the script Φburn to be the opcode OP RETURN makes the coins sent to this address to be
unspendable

10In practice, Alice and Bob only need to broadcast the transaction tx stp, and the transaction txC2 and its signatures.

30

Bitcoin transaction overhead like version number, transaction id, number of inputs, outputs etc,
the size of the setup transaction tx stp is 320 bytes, our payment redeem transactions (both txP1 and
txP2) are 290 bytes each when using ECDSA signatures. Our collateral redeem transactions tx 1

C1

and tx 2
C1 each are of size 366 bytes, while txC2 is of size 228 bytes, again excluding the standard

overheads.

7 Instantiating Ponyta in Ethereum

We implemented Ponyta in Solidity, the smart contract language used in Ethereum which supports
general smart contracts. In Ethereum, the price of a transaction depends on its gas usage, which
describes the cost of each operation performed by the transaction in units specific to Ethereum
implementation. In Table 2, we compare the gas costs of various operations of Ponyta with those
of MAD-HTLC and HTLC. The gas cost for the initial deployment of the contract far outweighs
those of the redeem transactions. As expected, Ponyta incurs costs that are a bit higher than
those of MAD-HTLC, as Ponyta contains slightly more code (103 LoC in Ponyta vs. 72 in
MAD-HTLC).

Our implementation in Ethereum is straight-forward and consists of a single contract which
includes the initialization as well as all redeem paths.

We deployed Ponyta on Rinkeby, Ethereum’s testnet. We posted transactions redeeming the
payment through paths P1 and P2 (see Section 4.1), as well as the transaction redeeming the
collateral through path C1, and the transaction which sends a payout to a user and causes coin
burning through path C2 (Section 4.1).

Table 2: Ethereum gas cost comparison.

Contract Deploy (Gas) Redeem path Gas

HTLC 380,159
Alice redeem 35,851
Bob redeem 34,932

MAD-HTLC 581,002

Dep. Alice 60,239
Dep. Bob 62,345

Dep. Miner 61,008
Col. Bob 42,266

Col. Miner 46,063

Ponyta 759,859

Dep. Alice 67,748
Dep. Bob 69,785

Col. Alice/Bob 53,698
Col. Miner 51,936

References

[AHS22] Sepideh Avizheh, Preston Haffey, and Reihaneh Safavi-Naini. Privacy-preserving fair-
swap: Fairness and privacy interplay. Proc. Priv. Enhancing Technol., 2022.

[Aso98] N. Asokan. Fairness in Electronic Commerce. PhD thesis, 1998.

[ASW97] N. Asokan, Matthias Schunter, and Michael Waidner. Optimistic protocols for fair
exchange. In ACM CCS, 1997.

31

[atoa] Submarine swap in lightning network. https://wiki.ion.radar.tech/tech/

research/submarine-swap.

[atob] What is atomic swap and how to implement it. https://www.axiomadev.com/blog/

what-is-atomic-swap-and-how-to-implement-it/.

[BBSU12] Simon Barber, Xavier Boyen, Elaine Shi, and Ersin Uzun. Bitter to better – how to
make bitcoin a better currency. In Financial Cryptography and Data Security (FC),
2012.

[BDM] Wac law Banasik, Stefan Dziembowski, and Daniel Malinowski. Efficient zero-knowledge
contingent payments in cryptocurrencies without scripts. In Computer Security – ES-
ORICS 2016.

[Bis] Bryan Bishop. Bitcoin vaults with anti-theft recovery/clawback mechanisms.
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2019-August/

017231.html.

[BKa] Iddo Bentov and Ranjit Kumaresan. How to use bitcoin to design fair protocols. In
CRYPTO.

[BKb] Sergiu Bursuc and Steve Kremer. Contingent payments on a public ledger: Models and
reductions for automated verification. In ESORICS 2019.

[BK14] Iddo Bentov and Ranjit Kumaresan. How to Use Bitcoin to Design Fair Protocols. In
CRYPTO, 2014.

[Bon] Joseph Bonneau. Why buy when you can rent? - bribery attacks on bitcoin-style
consensus. In Financial Cryptography Workshops 2016.

[Bon16] Joseph Bonneau. Why buy when you can rent? In International Conference on
Financial Cryptography and Data Security, pages 19–26. Springer, 2016.

[BZ17] Massimo Bartoletti and Roberto Zunino. Constant-deposit multiparty lotteries on
bitcoin. In Financial Cryptography and Data Security, 2017.

[CCWS21] Kai-Min Chung, T-H. Hubert Chan, Ting Wen, and Elaine Shi. Game-theoretic fairness
meets multi-party protocols: The case of leader election. In CRYPTO. Springer-Verlag,
2021.

[CGGN] Matteo Campanelli, Rosario Gennaro, Steven Goldfeder, and Luca Nizzardo. Zero-
knowledge contingent payments revisited: Attacks and payments for services. In ACM
CCS 2017.

[CGJ+17a] Arka Rai Choudhuri, Matthew Green, Abhishek Jain, Gabriel Kaptchuk, and Ian Miers.
Fairness in an unfair world: Fair multiparty computation from public bulletin boards.
In ACM CCS, 2017.

[CGJ+17b] Arka Rai Choudhuri, Matthew Green, Abhishek Jain, Gabriel Kaptchuk, and Ian Miers.
Fairness in an unfair world: Fair multiparty computation from public bulletin boards.
In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communica-
tions Security, CCS ’17, page 719–728, New York, NY, USA, 2017. Association for
Computing Machinery.

32

https://wiki.ion.radar.tech/tech/research/submarine-swap
https://wiki.ion.radar.tech/tech/research/submarine-swap
https://www.axiomadev.com/blog/what-is-atomic-swap-and-how-to-implement-it/
https://www.axiomadev.com/blog/what-is-atomic-swap-and-how-to-implement-it/
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2019-August/017231.html
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2019-August/017231.html

[CGL+18] Kai-Min Chung, Yue Guo, Wei-Kai Lin, Rafael Pass, and Elaine Shi. Game theoretic
notions of fairness in multi-party coin toss. In TCC, volume 11239, pages 563–596,
2018.

[CS21] Hao Chung and Elaine Shi. Foundations of transaction fee mechanism design, November
2021. arXiv:2111.03151. URL: https://arxiv.org/pdf/2111.03151.pdf.

[DEF18] Stefan Dziembowski, Lisa Eckey, and Sebastian Faust. Fairswap: How to fairly ex-
change digital goods. In ACM CCS, 2018.

[DEFM19] Stefan Dziembowski, Lisa Eckey, Sebastian Faust, and Daniel Malinowski. Perun:
Virtual payment hubs over cryptocurrencies. In IEEE Symposium on Security and
Privacy, 2019.

[DFH18] Stefan Dziembowski, Sebastian Faust, and Kristina Hostáková. General state channel
networks. In ACM CCS, CCS ’18, page 949–966, 2018.

[DW15] Christian Decker and Roger Wattenhofer. A fast and scalable payment network with
bitcoin duplex micropayment channels. In Stabilization, Safety, and Security of Dis-
tributed Systems, 2015.

[EFS20] Lisa Eckey, Sebastian Faust, and Benjamin Schlosser. Optiswap: Fast optimistic fair
exchange. In ASIA CCS, 2020.

[Eth22] Ethereum. The Solidity contract-oriented programming language, 2022. URL: https:
//github.com/ethereum/solidity.

[Fuc] Georg Fuchsbauer. Wi is not enough: Zero-knowledge contingent (service) payments
revisited. In ACM CCS 2019.

[GKL15] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol:
Analysis and applications. In Eurocrypt, 2015.

[GKM+22] Vipul Goyal, Abhiram Kothapalli, Elisaweta Masserova, Bryan Parno, and Yifan Song.
Storing and retrieving secrets on a blockchain. In PKC, 2022.

[GM] Matthew Green and Ian Miers. Bolt: Anonymous payment channels for decentralized
currencies. In ACM CCS 2017.

[Ham] Matthew Hammond. Blockchain interoperability series: Atomic swaps. https://

medium.com/@mchammond/atomic-swaps-eebd0fa8110d.

[Her18] Maurice Herlihy. Atomic cross-chain swaps. In Proceedings of the 2018 ACM Sym-
posium on Principles of Distributed Computing, PODC ’18, page 245–254, New York,
NY, USA, 2018. Association for Computing Machinery.

[HZ20] Jona Harris and Aviv Zohar. Flood & loot: A systemic attack on the lightning network.
In AFT, 2020.

[JMM14] Danushka Jayasinghe, Konstantinos Markantonakis, and Keith Mayes. Optimistic fair-
exchange with anonymity for bitcoin users. In 2014 IEEE 11th International Conference
on e-Business Engineering, pages 44–51, 2014.

33

https://arxiv.org/pdf/2111.03151.pdf
https://github.com/ethereum/solidity
https://github.com/ethereum/solidity
https://medium.com/@mchammond/atomic-swaps-eebd0fa8110d
https://medium.com/@mchammond/atomic-swaps-eebd0fa8110d

[JSZ+19] Aljosha Judmayer, Nicholas Stifter, Alexei Zamyatin, Itay Tsabary, Ittay Eyal, Peter
Gazi, Sarah Meiklejohn, and Edgar R Weippl. Pay-to-win: Incentive attacks on proof-
of-work cryptocurrencies. IACR Cryptol. ePrint Arch., 2019:775, 2019.

[JSZ+21] Aljosha Judmayer, Nicholas Stifter, Alexei Zamyatin, Itay Tsabary, Ittay Eyal, Pe-
ter Gazi, Sarah Meiklejohn, and Edgar Weippl. Pay to win: Cheap, crowdfundable,
cross-chain algorithmic incentive manipulation attacks on pow cryptocurrencies. In FC
WTSC, 2021.

[KB16] Ranjit Kumaresan and Iddo Bentov. Amortizing secure computation with penalties.
In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communica-
tions Security, CCS ’16, page 418–429, New York, NY, USA, 2016. Association for
Computing Machinery.

[KMS+16] Ahmed Kosba, Andrew Miller, Elaine Shi, Zikai Wen, and Charalampos Papamanthou.
Hawk: The blockchain model of cryptography and privacy-preserving smart contracts.
In 2016 IEEE Symposium on Security and Privacy (SP), pages 839–858, 2016.

[Max] Gregory Maxwell. The first successful zero-knowledge con-
tingent payment. https://bitcoincore.org/en/2016/02/26/

zero-knowledge-contingent-payments-announcement/.

[MB17] Andrew Miller and Iddo Bentov. Zero-collateral lotteries in bitcoin and ethereum. In
EuroS&P Workshops, 2017.

[MBB+] Andrew Miller, Iddo Bentov, Surya Bakshi, Ranjit Kumaresan, and Patrick McCorry.
Sprites and state channels: Payment networks that go faster than lightning. In Finan-
cial Cryptography 2019.

[MD19] Mahdi H. Miraz and David C. Donald. Atomic cross-chain swaps: Development, trajec-
tory and potential of non-monetary digital token swap facilities. In Annals of Emerging
Technologies in Computing (AETiC), 2019.

[MES16] Malte Möser, Ittay Eyal, and Emin Gün Sirer. Bitcoin covenants. In Financial Cryptog-
raphy Workshops, volume 9604 of Lecture Notes in Computer Science, pages 126–141.
Springer, 2016.

[MHM18a] Patrick McCorry, Alexander Hicks, and Sarah Meiklejohn. Smart contracts for bribing
miners. In Financial Cryptography Workshops, 2018.

[MHM18b] Patrick McCorry, Alexander Hicks, and Sarah Meiklejohn. Smart contracts for bribing
miners. In International Conference on Financial Cryptography and Data Security,
pages 3–18. Springer, 2018.

[Mic03] Silvio Micali. Simple and fast optimistic protocols for fair electronic exchange. In
PODC, 2003.

[MMA] Patrick McCorry, Malte Möser, and Syed Taha Ali. Why preventing a cryptocurrency
exchange heist isn’t good enough. In Security Protocols Workshop 2018.

[MMS+] Giulio Malavolta, Pedro Moreno-Sanchez, Clara Schneidewind, Aniket Kate, and Mat-
teo Maffei. Anonymous multi-hop locks for blockchain scalability and interoperability.
In NDSS 2019.

34

https://bitcoincore.org/en/2016/02/26/zero-knowledge-contingent-payments-announcement/
https://bitcoincore.org/en/2016/02/26/zero-knowledge-contingent-payments-announcement/

[MMSH] Patrick Mccorry, Malte Möser, Siamak F. Shahandasti, and Feng Hao. Towards bitcoin
payment networks. In Proceedings, Part I, of the 21st Australasian Conference on
Information Security and Privacy - Volume 9722, 2016.

[PD] Joseph Poon and Thaddeus Dryja. The bitcoin lightning network: Scalable off-chain
instant payments. https://lightning.network/lightning-network-paper.pdf.

[PG99] Henning Pagnia and Felix C. Gartner. On the impossibility of fair exchange without a
trusted third party. Technical report, 1999.

[PS17a] Rafael Pass and Elaine Shi. Fruitchains: A fair blockchain. In PODC, 2017.

[PS17b] Rafael Pass and Elaine Shi. Rethinking large-scale consensus. In CSF, pages 115–129.
IEEE Computer Society, 2017.

[PSS17] Rafael Pass, Lior Seeman, and Abhi Shelat. Analysis of the blockchain protocol in
asynchronous networks. In Advances in Cryptology - EUROCRYPT 2017 - 36th Annual
International Conference on the Theory and Applications of Cryptographic Techniques,
Paris, France, April 30 - May 4, 2017, Proceedings, Part II, pages 643–673, 2017.

[rin22] Rinkeby testnet, 2022. URL: https://www.rinkeby.io/.

[TYME21] Itay Tsabary, Matan Yechieli, Alex Manuskin, and Ittay Eyal. MAD-HTLC: because
HTLC is crazy-cheap to attack. In IEEE Symposium on Security and Privacy, pages
1230–1248. IEEE, 2021.

[vdM19] Ron van der Meyden. On the specification and verification of atomic swap smart
contracts. In IEEE ICBC, 2019.

[WAS22] Ke Wu, Gilad Asharov, and Elaine Shi. A complete characterization of game-
theoretically fair, multi-party coin toss. In Eurocrypt, 2022.

[WHF19] Fredrik Winzer, Benjamin Herd, and Sebastian Faust. Temporary censorship attacks
in the presence of rational miners. In 2019 IEEE European Symposium on Security and
Privacy Workshops (EuroS PW), pages 357–366, 2019.

[ZHL+19] A Zamyatin, D Harz, J Lind, P Panayiotou, A Gervais, and W Knottenbelt. Xclaim:
trustless, interoperable, cryptocurrency-backed assets. In IEEE S& P, 2019.

35

https://lightning.network/lightning-network-paper.pdf
https://www.rinkeby.io/

	Introduction
	Our Results and Contributions
	Additional Related Work

	Technical Roadmap
	Problem Statement and Assumptions
	Strawman and Prior Approaches
	Our Approach

	Model
	Blockchain, Transaction, and Smart Contracts
	Players and Strategy Spaces
	Protocol Execution
	Utilities
	Convention for Writing Smart Contracts
	Incentive Compatibility Definitions

	Ponyta: A CSP-Fair Fair Exchange Protocol
	Construction
	Proofs
	Ponyta Disincentivizes a 100% Coalition
	The Meta-Game of Coalition Formation
	Comparison with Prior Approaches

	Application: Atomic Swap
	Model and Utility
	Construction
	Proof of CSP-Fairness
	Proof of Dropout Resilience

	Instantiating Ponyta in Bitcoin
	Notation and Background
	High-Level Idea
	Addresses, Scripts, and Transactions for Ponyta
	Conditional Timelock Redeem and Conditional Burning
	Protocol
	Estimated Transaction Costs

	Instantiating Ponyta in Ethereum

