
Towards Practical Homomorphic Time-Lock
Puzzles: Applicability and Verifiability

Yi Liu1,3, Qi Wang1,2, and Siu-Ming Yiu3

1 Research Institute of Trustworthy Autonomous Systems & Guangdong Provincial
Key Laboratory of Brain-inspired Intelligent Computation,

Department of Computer Science and Engineering,
Southern University of Science and Technology, Shenzhen 518055, China

liuy7@mail.sustech.edu.cn, wangqi@sustech.edu.cn
2 NaCAM-CETGC Network Information System Modeling & Computing Lab,

National Center for Applied Mathematics,
Southern University of Science and Technology, Shenzhen 518055, China

3 Department of Computer Science, The University of Hong Kong, Hong Kong, China
smyiu@cs.hku.hk

Abstract. Time-lock puzzle schemes allow one to encrypt messages for
the future. More concretely, one can efficiently generate a time-lock puz-
zle for a secret/solution s, such that s remains hidden until a specified
time T has elapsed, even for any parallel adversaries. However, since
computation on secrets within multiple puzzles can be performed only
when all of these puzzles are solved, the usage of classical time-lock puz-
zles is greatly limited. Homomorphic time-lock puzzle (HTLP) schemes
were thus proposed to allow evaluating functions over puzzles directly
without solving them.

However, although efficient HTLP schemes exist, more improvements are
still needed for practicability. In this paper, we improve HTLP schemes to
broaden their application scenarios from the aspects of applicability and
verifiability. In terms of applicability, we design the first multiplicatively
HTLP scheme with the solution space over Z∗

n, which is more expressible
than the original one, e.g., representing integers. Then, to fit HTLP into
scenarios requiring verifiability that is missing in existing schemes, we
propose three simple and fast protocols for both the additively HTLP
scheme and our multiplicatively HTLP scheme, respectively. The first
two protocols allow a puzzle solver to convince others of the correctness
of the solution or the invalidity of the puzzle so that others do not need
to solve the puzzle themselves. The third protocol allows a puzzle gen-
erator to prove the validity of his puzzles. It is shown that a puzzle in
our scheme is only 1.25KB, and one multiplication on puzzles takes sim-
ply 0.01ms. Meanwhile, the overhead of each protocol is less than 0.6KB
in communication and 40ms in computation. Hence, HTLP still demon-
strates excellent efficiency in both communication and computation with
these versatile properties.

Keywords: Public-key cryptography · (Homomorphic) time-lock puz-
zles · Repeated modular squaring · Zero-knowledge.

1 Introduction

The notion of time-lock puzzle [18] was proposed in 1996 and has become a
widely used cryptographic primitive. Time-lock puzzle schemes allow one to ef-
ficiently encrypt a secret/solution4 s for the future, such that s remains hidden
until a specified time T has elapsed, even for parallel adversaries. In other words,
an efficiently generated time-lock puzzle can force a solver to complete a com-
putational task that costs no less than time T to recover the solution. With this
property, time-lock puzzles lead to tremendous applications, such as sealed-bid
auction [18], fair contract signing [3], zero-knowledge argument [7], non-malleable
commitment [13], publicly verifiable covert security [8,19].

However, the performance of classical time-lock puzzle schemes within large-
scale protocols is far from satisfactory. For example, we may need to perform
computation on secrets within many puzzles. This computation can only be done
after all puzzles are solved, leading to colossal computation overhead.

In 2019, Malavolta and Thyagarajan [15] introduced a new notion called
homomorphic time-lock puzzles (HTLP). Using HTLP schemes, we can perform
computation on hidden secrets within puzzles and derive the computation result
by solving only the resulting puzzle. They proposed two partially HTLP schemes:
an additively HTLP scheme with the solution space Zn and a multiplicatively
HTLP scheme with the solution space Jn. Here n is a strong RSA modulus,
and Jn = {x ∈ Z∗

n | Jn(x) = 1}, where Jn(x) denotes the Jacobi symbol of x.
Then they showed that with the help of the homomorphic property, these two
efficient schemes could be used in several scenarios, such as e-voting, multi-party
coin flipping, and fair contract signing. Moreover, HTLP, as a key component,
has recently been involved in several cryptographic protocols, such as verifiable
timed signatures [22], fair and sound secret sharing [12].

Nevertheless, for the two partially HTLP schemes, limitations in terms of
practicability still exist.

– The solution space of the multiplicatively HTLP scheme in [15] is the multi-
plicative group Jn. However, the solution space Z∗

n is preferred than Jn, since
Z∗
n is more expressible in representation, such as for integers. In addition,

we note that some RSA-related schemes, e.g., the threshold RSA signature
scheme [21], are over Z∗

n, and they require an HTLP scheme with solution
space Z∗

n for the multi-party contract signing paradigm introduced in [15].
– It is common for HTLP-enabled applications (e.g., [15,22]) that all parties

perform the same computation on puzzles and derive an identical solution.
However, even if the identical solution has been obtained by one party, there
is a lack of methods for others to quickly verify the correctness of this solution
and thus avoid solving puzzles.

– For the additively HTLP schemes in [15], malicious parties may generate
invalid puzzles, which also invalidate the resulting puzzle, while solvers can
know this fact only after time T . Hence, to reach a consensus that a puzzle
is invalid, all parties have to carry out the time-T puzzle-solving process.

4 In this paper, “secret” and “solution” are the same concept and used interchangeably.

2

1.1 Our Results

In this work, we provide the following practical solutions to address the afore-
mentioned limitations of the HTLP schemes [15].

Applicability We propose the first multiplicatively HTLP scheme with the
more expressible solution space Z∗

n for a strong RSA modulus n.
Verifiability To avoid the redundant cost of the puzzle-solving process, we

provide three simple and fast protocols for both the additively HTLP scheme
with the solution space Zn in [15] and our multiplicatively HTLP scheme,
respectively, to verify the following three properties.
(1) Correctness. A puzzle solver is able to convince other parties of the

correctness of the solution that he solves from a puzzle.
(2) Invalidity. Upon finding that a puzzle is invalid, one can convince other

parties of the invalidity of the puzzle.
(3) Validity. A puzzle generator can convince other parties of the validity

of the puzzle he generated.
Note that all of these protocols can be compiled by Fiat-Shamir heuristic [9]
to be non-interactive. The first two protocols enable parties to outsource the
puzzle-solving process to one party. Moreover, the second one can be com-
bined with smart contracts to penalize malicious puzzle generators via such
proofs of invalid puzzles. Furthermore, puzzle generators can use the third
protocol to prove their innocence at the beginning of the puzzle generation.

According to our implementations and analysis in Section 5, a puzzle of the new
scheme is only 1.25KB, and one multiplication on puzzles costs only 0.01ms.
Meanwhile, each of the three properties has less than 0.6KB communication
overhead and less than 40ms computation overhead. Therefore, equipped with
applicability and verifiability, the application scenarios of HTLP can be greatly
broadened, and HTLP schemes are thereby more practical.

1.2 Technical Overview

The original multiplicatively HTLP scheme with the solution space Jn can be
regarded as a combination of the ElGamal encryption scheme [10] over Jn and the
RSW time-lock puzzle scheme [18]. Roughly speaking, the puzzle for a solution
s ∈ Jn is of the form Z = (u = gr, v = hrs) ∈ J2n for a random r and public

parameters (g, h = g2
T

) ∈ J2n. Then s is recovered via s ← vu−2T by repeated
squaring of u for T times. Intuitively, the reason why the secret s ∈ Jn can be
hidden is similar to the semantic security of the ElGamal encryption scheme
based on the decisional Diffie-Hellman (DDH) assumption over Jn. However,
extending the solution space to Z∗

n is highly nontrivial since the DDH assumption
over Z∗

n does not hold. More concretely, given v = hrs for s ∈ Z∗
n, we can easily

learn the Jacobi symbol of s from Jn(v). We overcome this barrier by encoding
s ∈ Z∗

n using elements in Jn. Given an element χ ∈ Z∗
n\Jn, s ∈ Z∗

n can be encoded
by (m = sχσ, σ) ∈ Jn×{0, 1}, where σ = (−Jn(s)+1)/2, i.e., σ = 0 if Jn(s) = 1
and σ = 1 if Jn(s) = −1. Since m ∈ Jn, we can use the original multiplicatively

3

HTLP scheme for Jn to encrypt m, such that the multiplicatively homomorphic
property for m is preserved. Similarly, σ can be carried by an additively HTLP,
such that additions of σ are supported. Now a puzzle in this new scheme is a
tuple of two puzzles carrying m and σ, respectively. The multiplication of secrets
within puzzles of this new scheme is performed entry-wise for multiplication and
addition for the two puzzles inside, respectively. To solve a puzzle in the new
scheme, we solve the two inside puzzles to obtain m =

∏
i mi =

∏
i siχ

∑
i σi and

σ =
∑

i σi, and the resulting secret s =
∏

i s can be easily derived.
The first two properties (solution correctness and puzzle invalidity) for veri-

fiability share a similar idea to the verifiable delay function (VDF) [1]. VDF is
a function that needs a prescribed time to compute, even for parallel comput-
ers, while anyone can quickly verify the output. For the VDF scheme in [23],
given a tuple (g, h, T), a VDF evaluator can generate a proof for the statement

h = g2
T

. This pattern is also adopted in time-lock puzzle schemes over RSA
groups. Hence, a puzzle solver can utilize this technique to help verifiers speed
up the puzzle-solving process to verify these two properties.

The third property (puzzle validity) requires zero knowledge to preserve se-
crets while proving puzzle validity. At first glance, it seems that this is similar
to classical zero-knowledge protocols for the knowledge of discrete logarithms.
However, since puzzles of the two HTLP schemes are over Z∗

n and Z∗
n2 , where n

is an RSA modulus, the order of these two groups are hidden from parties, and
thus protocols and security proofs are much more involved. We solve this prob-
lem by carefully choosing the value interval of related parameters and proving
the zero-knowledge property in a statistical sense. Then to extract the witness
in the security proof, we perform divisions of exponents directly over integers
rather than modulo the order and then show that it is divisible unless the prover
breaks the strong RSA assumption (see the details in Section 4.2).

1.3 Related Work

Besides the two partially HTLP schemes, a fully HTLP scheme based on in-
distinguishability obfuscation was proposed in [15], and another one based on
fully homomorphic encryption was given in [4]. They are both based on costly
primitives and are mostly of theoretical interest at present.

Very recently, a generic construction of HTLP schemes was proposed in [5].
This construction uses existing classical time-lock puzzle schemes and homomor-
phic encryption schemes in a black-box manner. Its setup algorithm generates
a key pair of the homomorphic encryption scheme, together with a time-lock
puzzle for the random coins used in the key generation, and outputs the public
key and puzzle as public parameters. Then homomorphic puzzles of this con-
struction are ciphertexts encrypting secrets via the public key. Parties can solve
the puzzle for random coins, derive the private key from random coins, and then
decrypt puzzles (ciphertexts) using the private key. We remark that the setup
is for one-time use, and all secrets are revealed after time T from the setup.
Hence, it can only be applied to scenarios where all puzzles are generated simul-
taneously, and public parameters should be periodically re-initialized. Moreover,

4

we often require a multi-party protocol to perform the setup, which is costly for
one-time use and complicated to prevent malicious parties from obtaining public
parameters in advance to gain advantages. Alternatively, HLTP schemes in [15]
only need one setup of public parameters, and a secret within a puzzle is hidden
for time T , starting from the generation of that puzzle.

2 Preliminaries

We write x←$S for uniformly sampling an element x from the set S and use [a, b]
for integers a and b to denote the set {a, a+1, . . . , b−1}. The variable κ represents
the computational security parameter. A non-negative function negl : N→ R is
called negligible if negl(κ) = o(κ−c) for every constant c > 0. We say that 1− f
is overwhelming if the function f is negligible. We call an integer n = pq a strong
RSA modulus, where p and q are distinct safe primes having equal length. Here
primes p and q are called safe if p = 2p′ +1 and q = 2q′ +1 for primes p′ and q′,
respectively. Let Jn = {x ∈ Z∗

n | Jn(x) = 1}, where Jn(x) is the Jacobi symbol
of x. If n is a strong RSA modulus, then Jn is a cyclic multiplicative group with
order ϕ(n)/2 = 2p′q′. Let g0←$Z∗

n and g ← −g20 , then g is a generator of Jn
with overwhelming probability. For the RSA modulus n, ⌈n/2⌉ is statistically
close to 2p′q′. The security of protocols in this paper is proved under standard
security definitions (see [14] for more information). Computational assumptions
involved in this paper are summarized in Appendix A. We state Lemma 1 as
follows, and its proof is in Appendix C.1. This lemma is extensively used in the
proof of Theorem 4 (for the property “puzzle validity”) to prove the security of
the protocol under the strong RSA assumption via reduction.

Lemma 1. For an RSA instance (n, e, y), finding x ∈ Z∗
n and e′ coprime to e,

such that xe ≡ ye
′
is equivalent to finding an e-th root of y modulus n.

3 Homomorphic Time-Lock Puzzles

We use the definition of HTLP scheme in [15] (see also Appendix B) for our
scheme. Briefly, an HLTP scheme achieves the homomorphic property for a class
of functions/circuits and should be compact, i.e., puzzles have the same length,
and homomorphic operations do not depend on the time parameter T while
the time of puzzle-solving only depends on T . Of course, the scheme should be
correct, i.e., solving a puzzle generated by the puzzle generation algorithm with
the input of a secret s should obtain s.

3.1 Additively HTLP Scheme with Solution Space Zn

First, we briefly restate the additively HTLP scheme with the solution space Zn

in [15]. Its protocols with respect to verifiability are given in Section 4.2. We
denote the circuit class of the additively HTLP scheme by +n, which indicates
the circuit for addition in Zn. For example, let f : ZN

n → Zn be f(s1, . . . , sN) =

5

s1 + · · · + sN mod n, where variables si ∈ Zn for 1 ≤ i ≤ N , and N can be
arbitrary polynomials in κ. Then f ∈ +n.

– Setup(1κ, T): On input 1κ and a time parameter T , sample a strong RSA
modulus n = pq, where p = 2p′ + 1 and q = 2q′ + 1. Then pick a random

generator g of Jn and compute h ← g2
T

mod n, where 2T mod 2p′q′ can
be computed first to speed up the computation. Finally, output the public
parameter pp = (T, n, g, h).

– Gen(pp, s): On input pp and a secret s ∈ Zn, pick r←$ [0, ⌈n/2⌉], compute
u← gr mod n and v ← hr·n·(1+n)s mod n2, and output a puzzle Z = (u, v).

– Solve(pp, Z): On input pp and a puzzle Z = (u, v), compute w ← u2T mod n

by repeated squaring. Then compute s← [v/wn mod n2]−1
n . If s ∈ Zn, output

s. Otherwise, output ⊥ to indicate that Z is invalid.
– Eval(pp, f, Z1, . . . , ZN): On input pp, function f ∈ +n, and a set of puzzle

(Zi)i=1,...,N , do the following two steps.
1. Parse pp = (T, n, g, h), Zi = (ui, vi) for i ∈ 1, . . . , N .

2. Output the resulting puzzle Z = (u, v), where u =
∏N

i=1 ui mod n and

v =
∏N

i=1 vi mod n2.

It is easy to verify the additively homomorphic property. Given two puzzles Z1 =
(u1 = gr1 , v1 = hr1·n(1+n)s1) and Z2 = (u2 = gr2 , v2 = hr2·n(1+n)s2) for secrets
s1 and s2, respectively, the puzzle Z3 = (u1u2, v1v2) = (gr1+r2 , h(r1+r2)n(1 +
n)s1+s2) ∈ Jn × Z∗

n2 is the puzzle for the secret s3 = s1 + s2 mod n and
Solve(pp, Z3) = s3.

3.2 Our Multiplicatively HTLP Scheme with Solution Space Z∗
n

We now present our multiplicatively HTLP scheme MHTLP with the solution
space Z∗

n, following the idea in Section 1.2. We denote the circuit class of our
multiplicatively HTLP scheme by ×n, which indicate the circuit for multipli-
cation of (less than n) elements in Zn. For example, let f : Z∗

n
N → Z∗

n be

f(s1, . . . , sN) =
∏N

i si mod n, where variables si ∈ Zn for 1 ≤ i ≤ N , and we
need to ensure that N < n. Then f ∈ ×n.

– Setup(1κ, T): On input 1κ and a time parameter T , sample a strong RSA
modulus n = pq, pick a random generator g of Jn and χ←$Z∗

n for Jn(χ) =

−1, compute h← g2
T

mod n, and output pp = (T, n, g, h, χ).
– Gen(pp, s), On input pp and a secret s ∈ Z∗

n, sample r←$ [0, ⌈n/2⌉] and
r′←$ [0, ⌈n/2⌉], and then compute u ← gr mod n, u′ ← gr

′
mod n, and

σ = (−Jn(s)+1)/2. Given σ, compute v ← hr ·χσs mod n and θ ← hr′·n(1+
n)σ mod n2. Finally, output a puzzle Z = (u, u′, v, θ).

– Solve(pp, Z): On input pp and a puzzle Z = (u, u′, v, θ), compute w ←
u2T mod n and w′ ← u′2T mod n by repeated squaring. Then compute

d ← [θ/w′n mod n2]−1
n . If d /∈ Zn, output ⊥ to indicate that Z is invalid.

Otherwise, output the solution s← vw−1χ−d mod n.

6

– Eval(pp, f, Z1, . . . , ZN): On input pp, a function f ∈ ×n, and a set of puzzle
(Zi)i=1,...,N , do the following two steps.
1. Parse pp = (T, n, g, h, χ), Zi = (ui, u

′
i, vi, θi) for i ∈ 1, . . . , N .

2. Output Z = (u, u′, v, θ), where u =
∏N

i=1 ui mod n, u′ =
∏N

i=1 u
′
i mod n,

v =
∏N

i=1 vi mod n, and θ =
∏N

i=1 θi mod n2.

It is straightforward to verify the multiplicatively homomorphic property. For
instance, given puzzles Zi = (ui, u

′
i, vi, θi) = (gri , gr

′
i , hri ·χσisi, h

r′i·n(1+n)σi) ∈
J3n × Z∗

n2 for the secret si for i = 1, . . . , N , the puzzle Z defined as

Z = (

N∏
i=1

ui,

N∏
i=1

u′
i,

N∏
i=1

vi,

N∏
i=1

θi) = (

N∏
i=1

gri ,

N∏
i=1

gr
′
i ,

N∏
i=1

hriχσisi,

N∏
i=1

hr′in(1 + n)σi)

= (g
∑N

i=1 ri , g
∑N

i=1 r′i , h
∑N

i=1 riχ
∑N

i=1 σi

N∏
i=1

si, h
n·

∑N
i=1 r′i(1 + n)

∑N
i=1 σi)

= (gr, gr
′
, hrχσ

N∏
i=1

si, h
n·r′(1 + n)σ) = (u, u′, v, θ) ∈ J3n × Z∗

n2 , (1)

where r =
∑N

i=1 ri, r
′ =

∑N
i=1 r

′
i, and σ =

∑N
i=1 σi, is the puzzle for the secret

s =
∏N

i=1 si mod n, since Solve(pp, Z) = s. Note that this scheme supports
homomorphic multiplication for N < n. Since n is exponentially large in κ,
assuming N < n does not limit practical usage. Here we recall the definition of
reusable security for HTLP schemes and present Theorem 1 for our scheme.

Definition 1 ([15]). An HTLP scheme (Setup,Gen,Solve) with a solution space
S is reusable-secure with gap ε < 1 if there exists a polynomial T̃ (·), such that
for all polynomial T (·) ≥ T̃ (·) and all polynomial-size adversaries (A1,A2) =
{(A1,A2)κ}κ∈N, where the depth of A2 is bounded from above by T ε(κ), we have

Pr

b← A2(Z, τ) :

pp← Setup(1κ, T (κ));

(τ, s0, s1)← A1(pp);

b←$ {0, 1};Z ← Gen(pp, sb);

 ≤ 1

2
+ negl(κ) ,

where s0, s1 ∈ S.

Theorem 1. MHTLP is a reusable-secure HTLP scheme with the solution space
Z∗
n supporting homomorphic multiplication of N(< n) elements in n.

Proof. The correctness is straightforward. For the puzzle Z = (u, u′, v, θ) as

in (1) above, the Solve algorithm computes w ≡ u2T ≡ g2
T r ≡ hr (mod n) and

w′ ≡ u′2T ≡ g2
T r′ ≡ hr′ (mod n). Then the algorithm computes θ/w′n mod

n2 = (1 + n)σ mod n2 = 1 + σn, where σ =
∑N

i=1 σi < n. Hence, we can derive

d = [θ/w′n mod n2]−1
n = σ and s ≡

∑N
i=1 si ≡ vw−1χ−d (mod n).

The compactness is evident. It is easy to verify that the length of puzzles
derived from homomorphic operations is the same as that of a puzzle output by

7

Gen and does not depend on the number of multipliers N . The running time of
the Solve algorithm does not depend on N , either. Moreover, the running time
of homomorphic multiplications does not depend on the time parameter T .

Finally, we prove the reusable security by the following sequence of hybrids.

Hybrid0 This is the original experiment in Definition 1.
Hybrid1 The element v now is generated via v←$ Jn instead of computing

v ← hr · χσs mod n.
We claim that Hybrid1 is indistinguishable from Hybrid0 for adversaries.
Otherwise, given a distinguisher (A1,A2) for Hybrid0 and Hybrid1, where
the depth of A2 is less than T , we can construct the following polynomial-size
adversary (D1,D2) to break the strong sequential squaring assumption.

Upon receiving (n, g, T), D1 computes h ← g2
T

mod n, picks χ←$Z∗
n for

Jn(χ) = −1, and sets pp ← (T, n, g, h, χ). Then D1 runs A1(pp), obtains
(τ, s0, s1) from A1, and outputs τ ′ = (h, τ, s0, s1). Then D2 will be invoked
with input (x, y, τ ′). D2 sets u ← x, v ← y · χσbsb, u

′ ← gr
′
mod n, and

θ ← hr′·n(1 + n)σb mod n2 for r′←$ [0, ⌈n/2⌉] and b←$ {0, 1}. Here σb =
(−Jn(sb) + 1)/2. Then D2 invokes A2 with input Z = (u, u′, v, θ) and τ ,
and outputs whatever A2 outputs. Note that D1 is efficient since T is a
polynomial, and the depth of D2 is identical (up to a constant factor) to
that of A2. We have the following two cases for this reduction.

– The case y = x2T mod n: Since g is a generator of Jn and x ∈ Jn, there
exists r, such that x = gr mod n. Then the puzzle is of the form:

Z = (u, u′, v, θ) = (x, gr
′
, x2T · χσbsb, h

r′·n(1 + n)σb)

= (gr, gr
′
, hr · χσbsb, h

r′·n(1 + n)σb) ∈ J3n × Z∗
n2 ,

which is identically distributed as that in Hybrid0.
– The case y←$ Jn: The puzzle now is of the form:

Z = (u, u′, v, θ) = (x, gr
′
, y · χσbsb, h

r′·n(1 + n)σb)

= (gr, gr
′
, z, hr′·n(1 + n)σb) ∈ J3n × Z∗

n2 ,

where z = y · χσbsb mod n can be regarded as a random element in Jn
since y is independently random. Hence, Z is identically distributed as
that in Hybrid1.

Therefore, (D1,D2) wins the strong sequential squaring experiment with a
probability significantly higher than 1

2 , contradicting the assumption.
Hybrid2 The element θ is generated via θ ← ρn(1 + n)σ mod n2 for ρ←$ Jn

instead of computing θ ← hr′(1 + n)σ.
We claim that Hybrid2 is indistinguishable from Hybrid1 for adversaries.
Otherwise, given a distinguisher (A1,A2) where the depth of A2 is less than
T , we can construct a polynomial-size adversary (D1,D2) to break the strong
sequential squaring assumption as follows. D1 receives (n, g, T), generates the
public parameter pp, and derives τ ′ = (h, τ, s0, s1) as that for the reduction

8

in Hybrid1. Then D2 is invoked with (x, y, τ ′). D2 sets u and v as the exper-
iment of Hybrid1. Let u′ ← x and θ ← yn(1 + n)σb mod n for b←$ {0, 1}.
Here σb = (−Jn(sb) + 1)/2. Then D2 invokes A2 with input Z = (u, u′, v, θ)
and τ , and outputs whatever A2 outputs. Note that D1 is efficient since T
is a polynomial, and the depth of D2 is identical (up to a constant factor)
to that of A2. We have the following two cases for this reduction.

– The case y = x2T mod n: Since g is a generator of Jn and x ∈ Jn, there
exists r′, such that x = gr

′
mod n. Then the puzzle is of the form:

Z = (u, u′, v, θ) = (u, x, v, yn(1 + n)σb) = (u, x, v, x2Tn(1 + n)σb)

= (u, gr
′
, v, hr′·n(1 + n)σb) ∈ J3n × Z∗

n2 .

Hence, Z is identically distributed as that in Hybrid1.
– The case y←$ Jn: The puzzle now is of the form:

Z = (u, u′, v, θ) = (u, gr
′
, v, zn(1 + n)σb) ∈ J3n × Z∗

n2 ,

where z←$ Jn. Hence, Z is identically distributed as that in Hybrid2.

Therefore, (D1,D2) wins the strong sequential squaring experiment with a
probability significantly higher than 1

2 , which contradicts the assumption.
Hybrid3 The element θ now is generated via θ←$Z∗

n2 instead of computing
θ ← ρn(1 + n)σ mod n2 for ρ←$ Jn.
We claim that Hybrid3 is indistinguishable from Hybrid2 for adversaries.
Otherwise, given a distinguisher (A1,A2), we can construct a probabilistic
polynomial-time adversary D to break the decisional composite residuosity
assumption. Upon receiving the pair (n, y), D picks g←$ Jn and χ←$Z∗

n

for Jn(χ) = −1, computes h ← g2
T

mod n, and sets pp ← (T, n, g, h, χ). D
also chooses ŷ←$Z∗

n, such that Jn(ŷ) = Jn(y). Then D invokes A1(pp) and
receives (τ, s0, s1). Let u, u

′, and v be generated as the reduction in Hybrid2

and θ ← yŷn(1+n)σb mod n2 for b←$ {0, 1}. Here σb = (−Jn(sb)+1)/2. Let
Z = (u, u′, v, θ). D invokes A2 with input Z and τ , and outputs whatever
A2 outputs. The two cases for this reduction are as follows.

– The case y = xn mod n2 for x←$Z∗
n: The puzzle is of the form:

Z = (u, u′, v, yŷn(1 + n)σb) = (u, u′, v, (xŷ)n(1 + n)σb) ∈ J3n × Z∗
n2 .

Here xŷ ∈ Jn is a random element. Hence, Z is identically distributed as
that in Hybrid2.

– The case y←$Z∗
n2 : The puzzle is of the form:

Z = (u, u′, v, yŷn(1 + n)σb) = (u, u′, v, ỹ) ∈ J3n × Z∗
n2 ,

where ỹ = yŷn(1 + n)σb mod n2. Since y←$Z∗
n2 , ỹ is a random element

in Z∗
n2 . Hence, Z is identically distributed as that in Hybrid3.

Therefore, D wins the DCR experiment with a probability significantly
higher than 1

2 , which contradicts the assumption.

9

Since the puzzle in Hybrid3 information-theoretically hides the solution sb, the
proof is then completed. ⊓⊔

Remark 1. Both the additively HTLP scheme [15] and our MHTLP scheme need
a one-time trusted setup. Their Setup algorithms can be executed by a trusted
party or a group of parties using actively secure multi-party computation pro-
tocols.

4 Protocols for Verifiability

In this section, we introduce three protocols for verifiability for the additively
HTLP scheme (Section 3.1) and our MHTLP scheme (Section 3.2), respectively.
Note that for the RSA modulus n = (2p′ + 1)(2q′ + 1), we let p′, q′ be larger
than 2κ. Note that all protocols are public-coin, which means that all challenges
from the verifier are uniformly random. Thus, they can be compiled by the Fiat-
Shamir heuristic [9] to be non-interactive and secure against malicious verifiers.

4.1 Building Block

We recall the protocol for VDF proposed by Wesolowski [23] as a building block.
This protocol is a succinct public-coin interactive argument for the language

LEXP =
{
(T, n, u, w) : w = u2T mod n

}
,

where u,w ∈ Zn and n is a strong RSA modulus. We denote this protocol by
ΠEXP. Let Prime(2κ) be the set of the first 22κ primes. The description of the
protocol between a prover P and a verifier V is as follows.

1. V randomly picks a prime ℓ from Prime(2κ) and sends ℓ to P.
2. Let 2T = qℓ + r, where q, r ∈ Z and 0 ≤ r < ℓ. P computes π ← uq mod n

and sends it to V.
3. V computes r ← 2T mod ℓ. Then V outputs accept if π ∈ Zn and w =

πℓur mod n, and reject otherwise.

We note that π ← uq mod n can be efficiently computed by T · 3/ log(T) group
operations that are allowed to be parallelized (see [23] for more information).

4.2 Protocols for Additively HTLP Scheme

Correctness This protocol allows a puzzle solver to prove to others that the
solution s ∈ Zn he derived from solving a puzzle Z = (u, v) ∈ Jn×Z∗

n2 is correct.
We denote this protocol by ΠACorSol, and its corresponding language is

LACorSol =
{
(T, n, u, v, s) : v = u2T ·n(1 + n)s mod n2

}
,

for an RSA modulus n. The idea is that the puzzle solver can reveal w =

u2T mod n and prove that (T, n, u, w) is in LEXP via ΠEXP. Then given w, veri-
fiers can quickly solve the puzzle and verify the correctness of the solution s. The
description of ΠACorSol between a prover P and a verifier V is in the following.

10

1. P sends w ← u2T mod n to V.
2. P and V engage in ΠEXP for the tuple (T, n, u, w).
3. V outputs accept if the argumentΠEXP is accepted and v = wn(1+n)s mod n.

Otherwise, V outputs reject.

It is direct to have the theorem below and its proof is given in Appendix C.2.

Theorem 2. The protocol ΠACorSol is a public-coin honest-verifier argument cor-
responding to the language LACorSol.

Invalidity This protocol allows a puzzle solver to prove to others that the
output of the algorithm Solve for a puzzle Z = (u, v) ∈ Jn × Z∗

n2 is ⊥, i.e., Z
is invalid. The idea is similar to ΠACorSol, i.e., the puzzle solver helps verifiers
quickly solve the puzzle to know that it is invalid. This protocol is denoted by
ΠAInvalid and its corresponding language is

LAInvalid =
{
(T, n, u, v) : ∀s ∈ Zn, v ̸= u2T ·n(1 + n)s mod n2

}
.

The description ofΠAInvalid between a prover P and a verifier V is in the following.

1. P sends w ← u2T mod n to V.
2. P and V engage in ΠEXP for the tuple (T, n, u, w).
3. V outputs accept if the argument ΠEXP is accepted and n does not divide

([vw−n mod n2]− 1). Otherwise, V outputs reject.

Similarly, we have the following theorem.

Theorem 3. The protocol ΠAInvalid is a public-coin honest-verifier argument cor-
responding to the language LAInvalid.

Validity This protocol allows a puzzle generator to show the validity of Z
by proving in zero-knowledge the knowledge of the solution and randomness
for a puzzle Z = (u, v) ∈ Jn × Z∗

n2 , i.e., the solution exists. Inspired by the
commitments of integers [6], we follow the approach introduced in Section 1.2
to overcome the hidden-order problem. This protocol is denoted by ΠAValid and
its corresponding relation is defined as

RAValid = {(T, n, g, h, u, v) : ∃(r, s) ∈ Z× Zn,

s.t. u = ±gr mod n ∧ v = hr·n · (1 + n)s mod n2} .

We relax the requirement of u = gr mod n to u = ±gr mod n. Since u2T ≡
(−gr)2T ≡ (gr)2

T

(mod n), this does not compromise the correctness and secu-
rity of the protocol. The description of ΠAValid between a prover P and a verifier
V is presented below.

1. P randomly picks x←$ [0, ⌈n/2⌉·22κ] and t←$Zn, and computes a← gx mod
n and b← hx·n(1 + n)t mod n2. Then P sends a and b to V.

11

2. V randomly chooses e←$ [0, 2κ] and sends it to P.
3. P computes α← re+ x, β ← se+ t mod n.
4. If α ∈ [0, ⌈n/2⌉ · 2κ + ⌈n/2⌉ · 22κ], β ∈ Zn, g

α ≡ uea (mod n), and hα·n(1 +
n)β ≡ veb (mod n2) hold, V outputs accept, and otherwise reject.

Theorem 4. The protocol ΠAValid is a public-coin honest-verifier zero-knowledge
argument of knowledge corresponding to the relation RAValid.

Proof. For the completeness, we have gα ≡ gre+x ≡ uea (mod n2) and

hαn(1 + n)β ≡ h(re+x)n(1 + n)[se+t mod n]

≡ hre·n(1 + n)[se mod n]hx·n(1 + n)[t mod n] ≡ veb (mod n2) .

Since α = re + x, r < ⌈n/2⌉, e < 2κ, and x < ⌈n/2⌉ · 22κ, we have α ∈
[0, ⌈n/2⌉ · 2κ + ⌈n/2⌉ · 22κ].

For honest-verifier zero-knowledge, we construct the following simulator S.

1. S randomly choose a challenge e←$ [0, 2κ].
2. S picks random responses α←$ [0, ⌈n/2⌉ · 22κ] and β←$Zn.
3. S computes a ← gαu−e mod n and b ← hα·n(1 + n)βv−e mod n2 as the

messages sent by the prover in Step 1.

The simulated transcript is ((a, b), e, (α, β)). We now prove that it is statistically
indistinguishable from a real transcript by a sequence of hybrids as follows.

Hybrid0 This is the transcript of the real execution. The elements are generated
as x←$ [0, ⌈n/2⌉ · 22κ], t←$Zn, e←$ [0, 2κ], a ← gx mod n, b ← hx·n(1 +
n)t mod n2, α = re+ x, and β = se+ t mod n.

Hybrid1 The elements are generated as e←$ [0, 2κ], α←$ [re, re+ ⌈n/2⌉ · 22κ],
β←$Zn, a← gα−re mod n, and b← h(α−re)·n(1 + n)[β−se mod n] mod n2. It
is clear that the distribution of the transcript is identical to that inHybrid0.

Hybrid2 Different from Hybrid1, let a ← gαu−e mod n, and b ← hα·n(1 +
n)βv−e mod n2. It is easy to see that the distribution of the transcript is
still identical to that in Hybrid1.

Hybrid3 This is the simulated transcript. Let e←$ [0, 2κ], α←$ [0, ⌈n/2⌉ · 22κ],
β←$Zn, a← gαu−e mod n, and b← hα·n(1 + n)βv−e mod n2.

The distance between distributions of Hybrid2 and Hybrid3 is equivalent to
the distance between distributions of α’s in these two hybrids. Let X and Y
be the random variables for the distributions of α’s in Hybrid2 and Hybrid3,
respectively. Then the statistical distance ∆(X;Y) between X and Y is

∆(X;Y) =
1

2

∑
α∈[0,re+⌈n/2⌉·22κ]

|Pr[X = α]− Pr[Y = α]|

=
1

2

re−1∑
α=0

⌈n/2⌉−12−2κ +
1

2

⌈n/2⌉·22κ+re−1∑
α=⌈n/2⌉·22κ

⌈n/2⌉−12−2κ

= re⌈n/2⌉−12−2κ ≤ ⌈n/2⌉2κ · ⌈n/2⌉−12−2κ = 2−κ .

12

The distribution ofHybrid3 is thus statistically indistinguishable fromHybrid2,
and also Hybrid0. The honest-verifier zero-knowledge property then follows.

We now focus on the witness-extended emulation property. Suppose that
verifiers interact with P∗ and output accept with non-negligible probability ε.
We construct an emulator that runs P∗ as a subroutine. After receiving a and b
from P∗, the emulator gives e1←$ [0, 2κ] to P∗. If the output α1 and β1 from P∗

consist of an accepting transcript, the emulator needs to use an extractor E to
extract the witness. E rewinds P∗ to Step 2 (challenge phase) and runs it again
with a new random challenge from [0, 2κ] until having an accepting transcript
for a challenge e2. The expected running time for the rewinding is 1/ε, and
thus polynomial. Since challenges are randomly sampled from [0, 2κ], we have
e1 ̸= e2 except for negligible probability. Let S abort if e1 = e2. This does not
affect our analysis since it happens with negligible probability. We assume that
e1 ̸= e2 in the remaining analysis. We denote the two accepting transcripts by
((a, b), e1, (α1, β1)) and ((a, b), e2, (α2, β2)), satisfying

gα1 ≡ ue1a (mod n) , hα1·n(1 + n)β1 ≡ ve1b (mod n2) ,

gα2 ≡ ue2a (mod n) , hα2·n(1 + n)β2 ≡ ve2b (mod n2) .

Without loss of generality, we assume that e1 > e2. Let e′ ← e1 − e2, α
′ ←

α1 − α2, and β′ ← β1 − β2 mod n. We can easily derive gα
′ ≡ ue′ (mod n) and

hα′n(1 + n)β
′ ≡ ve

′
(mod n2). We focus on the equation gα

′ ≡ ue′ (mod n).

Firstly, we analyze the case that e′ divides α′. Let r ← α′

e′ . If e
′ is odd, it is

obvious that e′ is coprime to λ = 2p′q′, and thus u = gr mod n. Therefore, we
extract the witness r. If e′ is an even number, it can be expressed as e′ = 2dρ,
where d ≥ 1 and ρ is odd. It is obvious that ρ is coprime to λ. Now we obtain

g2
dr ≡ u2d (mod n), and thus (gru−1)2

d ≡ 1 (mod n). We can further simplify
the equation as (gru−1)2 ≡ 1 (mod n). Hence, gru−1 is a square root of 1.

– If gru−1 is a nontrivial square root of 1, i.e., gru−1 ̸≡ ±1 (mod n), we
know that (gru−1)2 − 1 ≡ (gru−1 − 1)(gru−1 + 1) ≡ 0 (mod n), where
(gru−1 − 1) ̸≡ 0 (mod n) or (gru−1 + 1) ̸≡ 0 (mod n). Hence, a nontrivial
factor of the RSA modulus n can be computed from gcd(gru−1±1, n). Since
we assume that factoring n is hard, this happens with negligible probability.

– If gru−1 ≡ ±1 (mod n), then we have gr ≡ ±u (mod n), and thus the
witness r is extracted.

Then we analyze the case that e′ does not divide α′. Let γ = gcd(e′, α′),

τ = e′

γ , and ω = α′

γ . Note that ω
τ is the irreducible fraction form of α′

e′ . We now

show that we can break the strong RSA assumption if e′ does not divide α′.

– If γ is an odd number, since γ < e′, γ is coprime to λ. Hence, from gα
′ ≡ ue′

(mod n), we know that gω ≡ uτ (mod n). Then, we are able to construct
an attacker to break the strong RSA assumption. More concretely, given an
RSA challenge (n, g0), we set g ← −g20 mod n in the public parameter pp.
Then, if this is the case, we have (−g20)ω ≡ uτ (mod n).

13

If ω is an even number, we have (−g20)ω ≡ g2ω0 ≡ uτ (mod n). Since ω
is an even number, τ must be odd, and thus gcd(2ω, τ) = 1. Now given
gcd(2ω, τ) = 1 and g2ω0 ≡ uτ (mod n), we can derive the τ -th root of g0
according to Lemma 1, and thus break the strong RSA assumption.
If ω is an odd number, we have −g2ω0 ≡ uτ . Since g2ω0 ∈ QRn and −1 ∈
Jn\QRn for the strong RSA modulus n, we know that −g2ω0 ∈ Jn\QRn,
and thus τ is also an odd number. This implies that gcd(2ω, τ) = 1 and
g2ω0 ≡ (−u)τ . Hence, we can derive the τ -th root of g0 according to Lemma 1
and break the strong RSA assumption.

– If γ is an even number, we denote γ by 2dρ. Since ρ < γ < e′, ρ is coprime to

λ. Then we know that g2
dω ≡ u2dτ (mod n), and thus g2ω ≡ u2τ (mod n).

If gω ̸≡ ±uτ (mod n), we can write (gω + uτ)(gω − uτ) ≡ 0 (mod n), where
gω + uτ ̸≡ 0 (mod n) or gω − uτ ̸≡ 0 (mod n). Hence, a nontrivial factor of
the RSA modulus n can be computed from gcd(gω ± uτ , n).
If gω ≡ ±uτ (mod n), we can construct an attacker to break the strong RSA
assumption. Given an RSA challenge (n, g0), we set g ← −g20 mod n in pp.
• If gω ≡ uτ (mod n), we have (−g20)ω ≡ uτ (mod n).
When ω is an odd number, −g2ω0 ≡ uτ (mod n). Following the same
argument as above, τ should be odd, and thus gcd(2ω, τ) = 1. Then we
have g2ω0 ≡ (−u)τ (mod n). Hence, we can derive the τ -th root of g0
according to Lemma 1, and thus break the strong RSA assumption.
When ω is an even number, we have g2ω0 ≡ uτ (mod n) and gcd(2ω, τ) =
1. Then we can derive the τ -th root of g0 according to Lemma 1, and
thus again break the strong RSA assumption.
• If gω ≡ −uτ (mod n), we have (−g20)ω ≡ −uτ (mod n).
When ω is an even number, we know that g2ω0 ≡ −uτ (mod n) and τ is
an odd number. So we have g2ω0 ≡ (−u)τ (mod n) and gcd(2ω, τ) = 1.
Hence, we can derive the τ -th root of g0 according to Lemma 1 and break
the strong RSA assumption.
When ω is an odd number, we have g2ω0 ≡ uτ (mod n). If τ is an odd
number, we have gcd(2ω, τ) = 1. Therefore, we can derive the τ -th root
of g0 according to Lemma 1, and thus break the strong RSA assumption.
Finally, if τ is an even number, since gcd(2ω, τ) = 2, we can find integer
x̄ and ȳ, such that 2ω · x̄ + τ · ȳ = 2. Then we have g20 ≡ g2ω·x̄+τ ·ȳ

0 ≡
uτ ·x̄gȳ·τ0 ≡ (ux̄gȳ0)

τ (mod n). Let τ ′ ← τ/2 and z ← ux̄gȳ0 mod n. We

have g20 ≡ zτ
′·2 (mod n), i.e., (g0z

−τ ′
)2 ≡ 1 (mod n). Hence, g0z

−τ ′
is

a square root of 1 modulo n.
If g0z

−τ ′
is a nontrivial square root of 1, i.e., g0z

−τ ′·2 ̸≡ ±1 (mod n),
we can easily derive a nontrivial factor of the RSA modulus n using the
same approach as above, i.e., by computing gcd(g0z

−τ ′ ± 1, n).
If g0z

−τ ′ ≡ ±1 (mod n), i.e., g0 ≡ ±zτ
′
(mod n), we consider two cases.

If τ ′ is an odd number, we have g0 ≡ (±z)τ ′
(mod n), and thus break the

strong RSA assumption. If τ ′ = 2dρ, where ρ is an odd number, we have

g0 ≡ (±z2d)ρ (mod n), and we again break the strong RSA assumption.

In summary, if e′ does not divide α′, we can break the strong RSA assumption,
with at most negligible probability. Hence, with an overwhelming probability, e′

14

divides α′ and E can successfully extract r such that u = ±gr (mod n). We can
also compute x← α− re, which satisfies a = gx mod n.

According to [16], there is an isomorphism from Z∗
n × Zn to Z∗

n2 . Since we
obtain two accepting transcripts, we know that there exist t ∈ Zn and s ∈ Zn,
such that v = h[r mod λ]·n(1 + n)s mod n2 and b = h[x mod n]·n(1 + n)t mod n2,
for the same r and x. Hence, we can compute the witness s and t from β1 ←
e1s+ t mod n and β2 ← e2s+ t mod n for given e1, e2, β1, and β2.

It is easy to verify that E runs in expected probabilistic polynomial time,
and thus the protocol achieves witness-extended emulation. ⊓⊔

4.3 Protocols for Our Multiplicatively HTLP

Correctness Denote the protocol by ΠMCorSol and its corresponding language
by

LMCorSol = {(T, n, χ, Z = (u, u′, v, θ), s) : ∃σ ∈ Zn,

s.t. v = u2T · χσs mod n ∧ θ = u′2T ·n
(1 + n)σ mod n2} .

The idea of this protocol is similar to ΠACorSol. Its description between P and V,
together with the related theorem are in the following.

1. P sends w ← u2T mod n and w′ ← u′2T mod n to V.
2. P and V engage in ΠEXP twice5 for tuples (T, n, u, w) and (T, n, u′, w′), re-

spectively.

3. V computes σ ← [θw′−n mod n2]−1
n . Then V outputs accept if the two runs of

ΠEXP are accepted, σ ∈ Zn, and v = wχσs. Otherwise, V outputs reject.

Theorem 5. The protocol ΠMCorSol is a public-coin honest-verifier argument
corresponding to the language LMCorSol.

Invalidity Denote this protocol by ΠMInvalid. It is easy to see that a puzzle
Z = (u, u′, v, θ) for the MHTLP scheme is invalid if and only if (u′, θ) is an invalid
puzzle with respect to the additively HTLP scheme in Section 3.1. Therefore,
ΠMInvalid is exactly the same as ΠAInvalid for the pair (u′, θ).

Validity A puzzle Z = (u, u′, v, θ) ∈ J3n × Z∗
n2 output by Gen is valid if there

exists a bit σ ∈ {0, 1}, such that θ = u′2T ·n
(1 + n)σ mod n2. This is equivalent

to proving the knowledge of r′ ∈ Z, such that u′ = gr
′
mod n and meanwhile

θ = hr′·n mod n2 or θ = hr′·n(1 + n) mod n2. Denote the protocol by ΠMValid

and its corresponding relation by

RMValid = {(T, n, g, h, u, v) : ∃(r′, σ) ∈ Z× {0, 1}, s.t. u′ = ±gr
′
mod n

∧ θ = hr′·n(1 + n)σ mod n2} .
5 These two proofs can be aggregated, see [23] for more information.

15

We require u′ = ±gr′ mod n as that in ΠAValid. The description of the protocol
ΠMValid between a prover P and a verifier V is presented below.

1. Both P and V set θ0 ← θ, and θ1 ← θ/(1 + n) mod n2.
2. For σ ∈ {0, 1}, P chooses e1−σ ←$ [0, 2κ], α1−σ ←$ [0, ⌈n/2⌉ · 22κ]. Then P

computes a1−σ ← gα1−σu′−e1−σ mod n and b1−σ ← hα1−σ·nθ
−e1−σ

1−σ mod n2.
3. P randomly picks x←$ [0, ⌈n/2⌉ · 22κ], computes aσ ← gx mod n and bσ ←

hx·n mod n2. Then P sends a0, a1, b0, and b1 to V.
4. V randomly chooses e←$ [0, 2κ] and sends it to P.
5. P computes eσ ← e⊕ e1−σ. Then P computes ασ ← r′eσ + x. After that, P

sends α0, α1, e0, and e1 to V.
6. V checks whether αi ∈ [0, ⌈n/2⌉ · 2κ + ⌈n/2⌉ · 22κ], e = e0 ⊕ e1, g

αi ≡ u′eiai
(mod n), and hαi·n ≡ θeii bi (mod n2) for both i ∈ {0, 1}. If they all hold, V
outputs accept, and reject otherwise.

We have the theorem for ΠMValid below, and its proof is put in Appendix C.3.

Theorem 6. The protocol ΠMValid is an honest-verifier zero-knowledge argu-
ment of knowledge corresponding to the relation RMValid.

5 Analysis

5.1 Communication Cost

Denote by µ the length of the RSA modulus n in bits. An MHTLP puzzle Z =
(u, u′, v, θ) ∈ J3n × Z∗

n2 is represented by 5µ bits. For practical usage, we set
µ = 2048, and thus a puzzle only occupies 1.25KB. In Table 1, We summarize
the numbers of bits for the six protocols in this paper when they are compiled
by the Fiat-Shamir heuristic. It is easy to see that the communication cost of
our MHTLP scheme and the protocols for verifiability are satisfactory.

Table 1: Length of the six non-interactive arguments.

ΠACorSol ΠAInvalid ΠAValid ΠMCorSol ΠMInvalid ΠMValid

Total µ+ 2κ µ+ 2κ 2µ+ 3κ 2µ+ 4κ µ+ 2κ 2µ+ 6κ

µ = 2048, κ = 128 0.28KB 0.28KB 0.55KB 0.56KB 0.28KB 0.59KB

5.2 Computation Cost

We implement our MHTLP scheme and protocols in C++ using the NTL [20] and
OpenSSL [17] libraries for the underlying modular arithmetic and hash function,
respectively. SHA256 is used to implement the random oracle. Experiments are
conducted on a Windows 11 laptop of Windows Subsystem for Linux 2 (WSL2)
with AMD Ryzen 9 5900HS, 16GB of RAM using a single thread. Set µ = 2048

16

Table 2: Mul cost of MHTLP.

of Mul Time

100, 000 0.9576s

1, 000, 000 10.8318s

Table 3: Computation cost of ΠAValid and ΠMValid.

ΠAValid ΠMValid

Prover Time 18.85ms 37.98ms

Verifier Time 19.14ms 38.60ms

and κ = 128 in our implementation.6 Table 2 provides the computation cost
of multiplications on secrets within puzzles for our MHTLP scheme. Note that
for one multiplication, 3 multiplications over Z∗

n and 1 multiplication over Z∗
n2

are involved, and they cost only around 0.01ms. Table 3 presents the compu-
tation cost of the protocols ΠAValid and ΠMValid. It is easy to see that both the
prover and verifier spends only around 19ms to generate and verify a proof for
ΠAValid and 38ms for ΠMValid. For ΠEXP, according to the analysis in [23], the

Table 4: Computation cost of ΠACorSol, ΠAInvalid, ΠMCorSol, and ΠMInvalid.

ΠACorSol ΠAInvalid ΠMCorSol ΠMInvalid

Solve and Prove 16.3072s 16.232s 21.725s 21.738s

Verification 8.319ms 8.301ms 8.673ms 8.766ms

prover takes O(T/ log(T)) group operations based on intermediate values from
computing the sequential squaring computation to generate the proof. For prac-
tical parameters, the total time to generate a proof in ΠEXP is around 1/(20s)T ,
where s is the number of cores for a computer. In Table 4, for protocols ΠACorSol,
ΠAInvalid, ΠMCorSol, and ΠMInvalid, we provide the time for the verifier, given the
representative total time for a prover to solve a puzzle and generate a proof. We
can see that all verifications spend around 8.5ms. Therefore, the computation
cost of our MHTLP scheme and the protocols for verifiability are satisfactory.

In conclusion, our MHTLP scheme and the protocols demonstrates great ef-
ficiency in both communication and computation and will significantly broaden
the application scenarios of HTLP. HTLP schemes are thereby more practical.

6 Future Work

We propose the following interesting questions that deserve explorations.

1. Our MHTLP scheme requires to execute two sequential squaring processes
in parallel. It will be nice if we can design a specific multiplicatively HTLP
scheme with solution space Z∗

n, such that one sequential squaring is enough
to solve a puzzle.

2. Some practical homomorphic encryption schemes support a wider range of
operations. For example, [2] supports an unlimited number of additions and

6 The implementation is available at https://github.com/liu-yi/HTLP.

17

up-to-one multiplication on encrypted values, [11] supports polynomial-size
branching programs. It will be interesting if we can extend these results and
design a practical HTLP scheme that supports a wider range of operations
(richer than addition/multiplication).

3. For some applications, we may need to ensure that the secrets are in a speci-
fied range. We know that there are some range-proof protocols for encryption
and commitment schemes. How to design range-proof protocols for HTLP
schemes is an interesting problem.

4. The solution spaces of the additively HTLP scheme (Zn) and our multi-
plicatively HTLP scheme (Z∗

n) are compatible. It seems that this may lead
to some interesting applications. For example, can we design a mechanism
that can use this fact to support a wider range of homomorphic operations,
for example, via switching the underlying HTLP scheme of a time-lock puz-
zle?

Acknowledgments. We thank the reviewers and the shepherd Steve Schnei-
der for their detailed and helpful comments. Y. Liu and Q. Wang were par-
tially supported by the Shenzhen fundamental research programs under Grant
no. 20200925154814002 and Guangdong Provincial Key Laboratory (Grant No.
2020B121201001). Y. Liu and S.-M. Yiu were partially supported by the theme-
based research project (T35-710/20-R) and the HKU-SCF FinTech Academy.

References

1. Boneh, D., Bonneau, J., Bünz, B., Fisch, B.: Verifiable delay functions. In:
Shacham, H., Boldyreva, A. (eds.) Advances in Cryptology - CRYPTO 2018 -
38th Annual International Cryptology Conference, Santa Barbara, CA, USA, Au-
gust 19-23, 2018, Proceedings, Part I. Lecture Notes in Computer Science, vol.
10991, pp. 757–788. Springer (2018)

2. Boneh, D., Goh, E., Nissim, K.: Evaluating 2-dnf formulas on ciphertexts. In: Kil-
ian, J. (ed.) Theory of Cryptography, Second Theory of Cryptography Conference,
TCC 2005, Cambridge, MA, USA, February 10-12, 2005, Proceedings. Lecture
Notes in Computer Science, vol. 3378, pp. 325–341. Springer (2005)

3. Boneh, D., Naor, M.: Timed commitments. In: Bellare, M. (ed.) Advances in Cryp-
tology - CRYPTO 2000, 20th Annual International Cryptology Conference, Santa
Barbara, California, USA, August 20-24, 2000, Proceedings. Lecture Notes in Com-
puter Science, vol. 1880, pp. 236–254. Springer (2000)

4. Brakerski, Z., Döttling, N., Garg, S., Malavolta, G.: Leveraging linear decryp-
tion: Rate-1 fully-homomorphic encryption and time-lock puzzles. In: Hofheinz, D.,
Rosen, A. (eds.) Theory of Cryptography - 17th International Conference, TCC
2019, Nuremberg, Germany, December 1-5, 2019, Proceedings, Part II. Lecture
Notes in Computer Science, vol. 11892, pp. 407–437. Springer (2019)

5. Chvojka, P., Jager, T., Slamanig, D., Striecks, C.: Versatile and sustainable
timed-release encryption and sequential time-lock puzzles (extended abstract). In:
Bertino, E., Shulman, H., Waidner, M. (eds.) Computer Security - ESORICS 2021
- 26th European Symposium on Research in Computer Security, Darmstadt, Ger-
many, October 4-8, 2021, Proceedings, Part II. Lecture Notes in Computer Science,
vol. 12973, pp. 64–85. Springer (2021)

18

6. Damg̊ard, I., Fujisaki, E.: A statistically-hiding integer commitment scheme based
on groups with hidden order. In: Zheng, Y. (ed.) Advances in Cryptology - ASI-
ACRYPT 2002, 8th International Conference on the Theory and Application of
Cryptology and Information Security, Queenstown, New Zealand, December 1-5,
2002, Proceedings. Lecture Notes in Computer Science, vol. 2501, pp. 125–142.
Springer (2002)

7. Dwork, C., Naor, M.: Zaps and their applications. SIAM J. Comput. 36(6), 1513–
1543 (2007)

8. Faust, S., Hazay, C., Kretzler, D., Schlosser, B.: Generic compiler for publicly ver-
ifiable covert multi-party computation. In: Canteaut, A., Standaert, F. (eds.) Ad-
vances in Cryptology - EUROCRYPT 2021 - 40th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Zagreb, Croatia, Oc-
tober 17-21, 2021, Proceedings, Part II. Lecture Notes in Computer Science, vol.
12697, pp. 782–811. Springer (2021)

9. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) Advances in Cryptology - CRYPTO
’86, Santa Barbara, California, USA, 1986, Proceedings. Lecture Notes in Com-
puter Science, vol. 263, pp. 186–194. Springer (1986)

10. Gamal, T.E.: A public key cryptosystem and a signature scheme based on discrete
logarithms. In: Blakley, G.R., Chaum, D. (eds.) Advances in Cryptology, Pro-
ceedings of CRYPTO ’84, Santa Barbara, California, USA, August 19-22, 1984,
Proceedings. Lecture Notes in Computer Science, vol. 196, pp. 10–18. Springer
(1984)

11. Ishai, Y., Paskin, A.: Evaluating branching programs on encrypted data. In: Vad-
han, S.P. (ed.) Theory of Cryptography, 4th Theory of Cryptography Conference,
TCC 2007, Amsterdam, The Netherlands, February 21-24, 2007, Proceedings. Lec-
ture Notes in Computer Science, vol. 4392, pp. 575–594. Springer (2007)

12. Knapp, J., Quaglia, E.A.: Fair and sound secret sharing from homomorphic time-
lock puzzles. In: Nguyen, K., Wu, W., Lam, K., Wang, H. (eds.) Provable and Prac-
tical Security - 14th International Conference, ProvSec 2020, Singapore, November
29 - December 1, 2020, Proceedings. Lecture Notes in Computer Science, vol. 12505,
pp. 341–360. Springer (2020)

13. Lin, H., Pass, R., Soni, P.: Two-round and non-interactive concurrent non-
malleable commitments from time-lock puzzles. SIAM J. Comput. 49(4) (2020)

14. Lindell, Y.: Parallel coin-tossing and constant-round secure two-party computation.
J. Cryptology 16(3), 143–184 (2003)

15. Malavolta, G., Thyagarajan, S.A.K.: Homomorphic time-lock puzzles and applica-
tions. In: Boldyreva, A., Micciancio, D. (eds.) Advances in Cryptology - CRYPTO
2019 - 39th Annual International Cryptology Conference, Santa Barbara, CA, USA,
August 18-22, 2019, Proceedings, Part I. Lecture Notes in Computer Science, vol.
11692, pp. 620–649. Springer (2019)

16. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) Advances in Cryptology - EUROCRYPT ’99, Inter-
national Conference on the Theory and Application of Cryptographic Techniques,
Prague, Czech Republic, May 2-6, 1999, Proceeding. Lecture Notes in Computer
Science, vol. 1592, pp. 223–238. Springer (1999)

17. Project, O.: Openssl project, https://www.openssl.org/

18. Rivest, R.L., Shamir, A., Wagner, D.A.: Time-lock puzzles and timed-release
crypto. Tech. rep., Massachusetts Institute of Technology, USA (1996)

19

https://www.openssl.org/

19. Scholl, P., Simkin, M., Siniscalchi, L.: Multiparty computation with covert security
and public verifiability. IACR Cryptol. ePrint Arch. 2021, 366 (2021), https:
//eprint.iacr.org/2021/366

20. Shoup, V.: Ntl: A library for doing number theory, http://www.shoup.net/ntl
21. Shoup, V.: Practical threshold signatures. In: Preneel, B. (ed.) Advances in Cryp-

tology - EUROCRYPT 2000, International Conference on the Theory and Applica-
tion of Cryptographic Techniques, Bruges, Belgium, May 14-18, 2000, Proceeding.
Lecture Notes in Computer Science, vol. 1807, pp. 207–220. Springer (2000)

22. Thyagarajan, S.A.K., Bhat, A., Malavolta, G., Döttling, N., Kate, A., Schröder,
D.: Verifiable timed signatures made practical. In: Ligatti, J., Ou, X., Katz, J.,
Vigna, G. (eds.) CCS ’20: 2020 ACM SIGSAC Conference on Computer and Com-
munications Security, Virtual Event, USA, November 9-13, 2020. pp. 1733–1750.
ACM (2020)

23. Wesolowski, B.: Efficient verifiable delay functions. In: Ishai, Y., Rijmen, V. (eds.)
Advances in Cryptology - EUROCRYPT 2019 - 38th Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques, Darmstadt,
Germany, May 19-23, 2019, Proceedings, Part III. Lecture Notes in Computer
Science, vol. 11478, pp. 379–407. Springer (2019)

20

https://eprint.iacr.org/2021/366
https://eprint.iacr.org/2021/366
http://www.shoup.net/ntl

A Computational Assumptions

Definition 2 (Strong Sequential Squaring Assumption [15]). Let n be a
randomly generated strong RSA modulus based on κ, g be a generator of Jn, and
T (·) be a polynomial. There exists ε with 0 < ε < 1, such that for all polynomial-
size adversaries (A1,A2) = {(A1,A2)κ}κ∈N, where the depth of A2 is bounded
from above by T ε(κ), we have

Pr

[
b← A2(x, y, τ) :

τ ← A1(n, g, T (κ));x←$ Jn; b←$ {0, 1};

if b = 0, y←$ Jn; if b = 1, y = x2T (κ)

mod n;

]
≤ 1

2
+negl(κ) .

Definition 3 (Decisional Composite Residuosity Assumption). Let n be
a randomly generated strong RSA modulus based on κ. Then the decisional com-
posite residuosity (DCR) assumption is that for all probabilistic polynomial-time
(PPT) adversaries A, we have

Pr

[
b← A(n, y) :

x← Z∗
n; b← {0, 1};

if b = 0, y ← Z∗
n2 ; if b = 1, y ← xn mod n2;

]
≤ 1

2
+ negl(κ) .

Definition 4 (Strong RSA Assumption). Let n be a randomly generated
strong RSA modulus based on κ. For all PPT adversaries A, we have

Pr

[
e ≥ 2 ∧ xe = y mod n :

y←$Z∗
n;

(x, e)← A(n, y);

]
≤ negl(κ) .

B Definition of Homomorphic Time-Lock Puzzle Scheme

Definition 5 ([15]). Let C = {Cκ}κ∈N be a class of circuits. An HTLP scheme
with the solution space S with respect to C is a tuple of algorithms (Setup,Gen,
Solve,Eval) defined as follows.

– pp ← Setup(1κ, T) a probabilistic algorithm that takes as input the secu-
rity parameter 1κ and a time hardness parameter T and outputs the public
parameter pp.

– Z ← Gen(pp, s) a probabilistic algorithm that takes as input pp and a solution
s ∈ S and outputs a homomorphic time-lock puzzle Z.

– s / ⊥← Solve(pp, Z) a deterministic algorithm that takes as input pp and a
puzzle Z, and outputs a solution s ∈ S or an error message ⊥ indicating that
Z is invalid.

– Z ← Eval(pp, C, Z1, . . . , ZN) an algorithm that takes as input pp, a circuit
C ∈ Cκ, and a set of n puzzles (Z1, . . . , ZN) and outputs a puzzle Z. Note that
this algorithm defines the homomorphic operations for the HTLP scheme.

It satisfies the following two properties.

21

Correctness The scheme with respect to C is correct if for all polynomials T
in κ, all C ∈ Cκ and inputs (s1, . . . , sN) ∈ Sn, we have

Pr

C(s1, . . . , sN) ̸= s :

pp← Setup(1κ, T);

Zi ← Gen(pp, si) for i = 1, . . . , N ;

Z ← Eval(pp, C, Z1, . . . , ZN);

s← Solve(pp, Z);

 ≤ negl(κ) .

Compactness The scheme with respect to C is compact if for all polynomials
T in κ, all C ∈ Cκ, and inputs (s1, . . . , sN) ∈ Sn, when compute pp ←
Setup(1κ, T), Zi ← Gen(pp, si), and Z ← Eval(pp, C, Z1, . . . , ZN), the fol-
lowing three properties are satisfied.
– There exists a fixed polynomial p1, such that the running time of the

algorithm Solve(pp, Z) is bounded by p1(κ, T).
– There exists a fixed polynomial p2, such that the length of Z is bounded

by p2(κ, |C(s1, . . . , sN)|), where |C(s1, . . . , sN)| is the number of bits to
represent C(s1, . . . , sN).

– There exists a fixed polynomial p3, such that the running time of the
algorithm Eval(pp, C, Z1, . . . , ZN) is bounded by p3(κ, |C|), where |C| is
the size of the circuit C.

C Security Proofs

C.1 Proof of Lemma 1

Proof. Since e′ is coprime to e, we can efficiently compute integer u and v for
the Bézout relation ue + ve′ = 1. Then we have xve ≡ yve

′ ≡ y1−ue (mod n).
Therefore, we have (xvyu)e ≡ y (mod n), such that [xvyu mod n] is the e-th
root of y modulus n. ⊓⊔

C.2 Proof of Theorem 2

Proof. The completeness of the protocol is direct. Using ΠEXP, the prover will

prove that w = u2T holds. Then for a valid puzzle Z = (u, v) with solution

s, we have v ≡ u2T ·n(1 + n)s ≡ wn(1 + n)s (mod n2). Then for the soundness

property, based on the soundness of ΠEXP, it is guaranteed that w = u2T . Hence,

if v = wn(1 + n)s mod n2, we have v = u2T ·n(1 + n)s mod n2. ⊓⊔

C.3 Proof of Theorem 6

Proof. Note that α1−σ, a1−σ, and b1−σ are generated to satisfy the final ver-
ification. We can see that gασ ≡ gr

′eσ+x ≡ u′eσaσ (mod n2) and hασn ≡
h(r′eσ+x)n ≡ hr′eσ·nhx·n ≡ θeσσ bσ (mod n2). According to the analysis in the
proof of Theorem 4, αi ∈ [0, ⌈n/2⌉ · 2κ + ⌈n/2⌉ · 22κ] except for negligible prob-
ability. Hence, the protocol is complete.

22

We construct a simulator S as follows. S choose e0, e1←$ [0, 2κ], α0, α1←$ [0,
⌈n/2⌉·22κ], and sets e← e0⊕e1, ai ← gαiu−ei mod n and bi ← hαi·nθ−ei mod n2

for i ∈ {0, 1}. Then S outputs the simulated transcript ((ai, bi, ei, αi)i∈{0,1}, e).
The distance between the transcript in a real execution and the simulated tran-
script is equivalent to the distance between ασ’s in the two transcripts. Following
the same analysis as in the proof of Theorem 4, this distance is negligible, and
the honest-verifier zero-knowledge property follows.

We now focus on the witness-extended emulation property. Suppose that the
verifier interacts with P∗ and outputs accept with non-negligible probability ε,
we construct an emulator as follows. The emulator invokes P∗ and receives a0, a1,
b0, and b1. Then the emulator gives e←$ [0, 2κ] to P∗. If the output αi’s and ei’s
from P∗ forms an accepting transcript, the emulator needs to use an extractor
E to extract the witness. E rewinds P∗ to Step 2 (challenge phase) and runs it
again with a new random challenge from [0, 2κ] until an accepting transcript with
challenge e′ is obtained. The expected running time for the rewinding is 1/ε, and
thus polynomial. Since challenges are randomly sampled from [0, 2κ], we have
e ̸= e′ except negligible probability. For e ̸= e′, we must have e0 ̸= e′0 or e1 ̸= e′1.
Hence, σ is set to the bit that eσ ̸= e′σ. Without loss of generality, we assume
that eσ > e′σ. E can thus extract the witness r, such that u = gr mod n, from

gασ ≡ u′eσaσ (mod n) and gα
′
σ ≡ u′e′σaσ (mod n) using the same approach as

that in the proof of Theorem 4. Then from hασ·n ≡ θeσσ bσ (mod n2) and hα′
σ·n ≡

θ
e′σ
σ bσ (mod n2), we know that h(ασ−α′

σ)·n ≡ θ
eσ−e′σ
σ (mod n2). According to the

same analysis as that in the proof of Theorem 4, we know that the extracted
r also satisfies hr·n ≡ θ (mod n2). The solution s now can be computed via
s ← v

hrχσ . Therefore, the extracted witness is (r, σ), and the protocol achieves
witness-extended emulation. ⊓⊔

23

	Towards Practical Homomorphic Time-Lock Puzzles: Applicability and Verifiability

