
Doubly Efficient Interactive Proofs over Infinite and
Non-Commutative Rings

Eduardo Soria-Vazquez

Cryptography Research Centre, Technology Innovation Institute, Abu Dhabi, UAE.
ORCID: 0000-0002-4882-0230

eduardo.soria-vazquez@tii.ae

Abstract. We introduce the first proof system for layered arithmetic circuits over an arbitrary ring R
that is (possibly) non-commutative and (possibly) infinite, while only requiring black-box access to its
arithmetic and a subset A ⊆ R. Our construction only requires limited commutativity and regularity
properties from A, similar to recent work on efficient information theoretic multi-party computation
over non-commutative rings by Escudero and Soria-Vazquez (CRYPTO 2021), but furthermore covering
infinite rings.

We achieve our results through a generalization of GKR-style interactive proofs (Goldwasser, Kalai
and Rothblum, Journal of the ACM, 2015). When A is a subset of the center of R, generalizations of
the sum-check protocol and other building blocks are not too problematic. The case when the elements
of A only commute with each other, on the other hand, introduces a series of challenges. In order to
overcome those, we need to introduce a new definition of polynomial ring over a non-commutative ring,
the notion of left (and right) multi-linear extensions, modify the layer consistency equation and adapt
the sum-check protocol.

Despite these changes, our results are compatible with recent developments such as linear time provers.
Moreover, for certain rings our construction achieves provers that run in sublinear time in the circuit
size. We obtain such result both for known cases, such as matrix and polynomial rings, as well as
new ones, such as for some rings resulting from Clifford algebras. Besides efficiency improvements in
computation and/or round complexity for several instantiations, the core conclusion of our results is
that state of the art doubly efficient interactive proofs do not require much algebraic structure. This
enables exact rather than approximate computation over infinite rings as well as “agile” proof systems,
where the black-box choice of the underlying ring can be easily switched through the software life cycle.

1 Introduction

Interactive proofs (IPs) are a natural extension of the standard notion of a mathematical proof,
where the verifier checking a proof is allowed to interrogate the prover who is providing it. They
were introduced by Goldwasser, Micali and Rackoff [GMR89] in the 1980s and they soon made
a huge impact in complexity theory. IPs have also been influential to practical proof systems, for
which a lot of progress took place during the last decade. Usually, in those schemes, the prover tries
to convince a verifier about the correctness of the evaluation of a circuit consisting of addition and
multiplication gates. Moreover, the arithmetic of this circuit is often over a finite field, no matter
how well represented under these constraints is the original computation whose correctness is being
checked.

In 2008, Goldwasser, Kalai and Rothblum (GKR) presented the first doubly-efficient interactive
proof [GKR15], where the prover is only required to perform a polynomial amount of work in the
size of the (layered, over a finite field) arithmetic circuit and the verifier only needs to be quasi-
linear in the same parameter. The prover’s effort was later improved to quasi-linear [CMT12] and
finally linear [XZZ+19] for the same family of circuits in 2019. Recently, the restriction to layered
circuits was removed [ZLW+21] without affecting the linear complexity of the prover and only a

slight increase in the verifier’s work for non-layered circuits. In this work we are interested in a
different kind of generalization of the GKR protocol. Namely, we set out to answer the following
question:

“Let C be a layered arithmetic circuit over a ring R. What algebraic properties does R
need to satisfy in order to construct a doubly-efficient IP for C’s correct evaluation, without
emulating R’s arithmetic?”

The most relevant part of our quest is that of avoiding the emulation of R’s arithmetic, which
we refer to as being black-box over R. We answer this question in a partial but constructive way by
providing a doubly-efficient IP for rings R that are possibly non-commutative as well as infinite.

The black-box nature of our constructions has a theoretical interest, in the tradition of finding
lower bounds and reducing (cryptographic) assumptions. Namely, it helps us understand what are
the minimum algebraic properties that need to be assumed for proof systems and their underly-
ing techniques to go through, and how does this affect their complexity. Whereas this path has
been more explored in the context of Multi-Party Computation (MPC, see e.g. [CFIK03, CDI+13,
ACD+19, DLS20, ES21] just to name a few), it has been strangely overlooked in the context of
proof and argument systems, with notable exceptions [AIK10, HR18, CCKP19, GNS21, BCFK21,
BCS21]. The main take-away of our work is that, when it comes to GKR-style protocols and their
complexity, the algebraic properties of the ring do not matter much as long as it contains a big
enough set with “good enough” regular and commutative properties. Interestingly, since infinite
rings are allowed, this is a superset of the rings for which we know how to build efficient information-
theoretic MPC protocols in a black-box manner [ES21].

Besides the theoretical aspects of our work, we expect its generality to find applications in
practice. Practically relevant infinite rings (such as the integers) and fields (such as rational or
real numbers) as well as non-commutative rings (such as matrices and quaternions) did not fit
previous systems. Their arithmetic had to be emulated (at best) or approximated (at worst) when
compiled into circuits over either finite fields or finite commutative rings [CCKP19]. Avoiding this
compilation step can bring improvements in several fronts. First of all, removing this stage simplifies
the practitioners’ work, who can now be agile with respect to the choice of rings that are more
commonplace than finite fields. If, after deployment, they need to provide a new proof system
with a different underlying arithmetic, they could simply change the underlying data type that
represents the ring, rather than having to develop an ad-hoc compiler. Moreover, working natively
over such data types (algebraic structures) allows them to easily use existing software libraries for
those, since their arithmetic does not need to be compiled into circuits. This, in turn, results in
circuits with significantly less gates, which can ultimately result in better concrete efficiency in
terms of computation and round complexity. Finally, the soundness error of our black-box IP can
also benefit from working over these rings.

Related work. In [AIK10] Applebaum, Ishai and Kushilevitz show how to construct a verifiable
computation protocol out of message authentication codes (MACs) and randomized encodings
(REs). For their construction to be a proof rather than an argument system, it would need to
use information-theoretic MACs and statistically secure REs. It is a longstanding open problem
whether such statistical REs could efficiently support layered arithmetic circuits over the non-
commutative and infinite rings that we support, or even finite fields. In particular, such REs would
imply efficient constant-round statistically secure protocols for such circuits, which in turn also
solves an open problem about Locally Decodable Codes of quasi-polynomial parameters [IK04].

2

1.1 Technical overview

The GKR protocol [GKR15] is a doubly-efficient interactive proof for the evaluation of a layered
arithmetic circuit, which consists of addition and multiplication gates of fan-in two. Parties move
from the output (0-th layer) to the input layer (D-th layer) one layer at a time. Each gate in the
i-th layer is supposed to take inputs from two wires in layer i+1, and so the output wires of the i-th
layer gates are checked to be consistent with the ones in the preceding layer. Let V (i) : {0, 1}si → F
be the function that maps the string x to the value of the x-th wire in layer i. Thus, layer i has (up
to) 2si wires. Furthermore, let add(i+1) : {0, 1}si × {0, 1}si+1 × {0, 1}si+1 → {0, 1} be the function
satisfying add(i+1)(z, x, y) = 1 if the z-th wire on layer i is the addition of the x-th and y-th wires
in layer i + 1, otherwise add(i+1)(z, x, y) = 0. Define mult(i+1) analogously. If we use f̂ ∈ F[~X] to
denote a (low degree) multivariate polynomial such that for all a ∈ {0, 1}s, f̂(a) = f(a), we can
express layer consistency as follows:

V̂ (i)(~Z) =
∑

x,y∈{0,1}si+1

(
m̂ult

(i+1)
(~Z, x, y) ·

(
V̂ (i+1)(x) · V̂ (i+1)(y)

)
+

+ âdd
(i+1)

(~Z, x, y) ·
(
V̂ (i+1)(x) + V̂ (i+1)(y)

))
. (1)

The advantage of using the polynomial extensions V̂ (i), V̂ (i+1), m̂ult
(i+1)

and âdd
(i+1)

is that
the previous equation can be easily checked using the sum-check protocol [LFKN92]. Originally, as
well as for most of its subsequent literature, the GKR protocol only worked for circuits over finite
fields. Chen et al. [CCKP19] showed how to extend this result to finite commutative rings as long
as the points used to define the polynomial extensions and the random challenges from the verifier
belong to a set A = {a1, . . . , an} where ∀i 6= j, ai − aj is not a zero divisor. In our work, we denote
such A a regular difference set.

As we realized, it turns out that removing the finiteness assumption from [CCKP19] does not
introduce any additional problems. Even if R is infinite, we only need a finite regular difference set
A. From a practical point of view, one could envision different mechanisms to deal with issues such
as sending messages of unknown length (for example, using the first bit of every message block to
denote whether the message has been fully sent) or e.g. irrational numbers (the same way we write
π rather than 3.14159 . . .).

On the other hand, when R is not commutative, we are presented with several issues. First, the
definition of a polynomial ring with coefficients inR is not straightforward. One easily finds obstacles
related to whether polynomial evaluation is a ring homomorphism (i.e., whether f(a) + g(a) =
(f + g)(a) and f(a) · g(a) = (f · g)(a)) or other crucial results, such as Euclidean division or
bounding the number of roots of a polynomial. Nevertheless, if we further restrict the regular
difference set A to be contained in the center of the ring (i.e., ∀r ∈ R, a ∈ A, a · r = r · a), then
Equation (1) (and multi-linear extensions, the sum-check protocol, etc.) behave as we would expect.
In this scenario, we use the most common definitions for polynomial over non-commutative rings
(Definition 10, the same as in [QBC13, ES21]). We discuss this case in Section 4.

The most challenging part of our work comes from relaxing the commutativity requirement on
A, so that rather than A ⊂ Z(R), we only ask that ∀ai, aj ∈ A, ai ·aj = aj ·ai. This was also the most
difficult family of rings in [ES21], where Escudero and Soria-Vazquez showed how to build efficient

3

information-theoretic MPC protocols with black-box access to such a ring1. Employing the same
polynomial ring definition as in that work fails in our context. This poses the question of whether
there are inherently more algebraic limitations for doubly-efficient IPs than there are for information
theoretic MPC, potentially ruling out these “less commutative” rings where A 6⊂ Z(R). Fortunately,
we overcome most problems by putting forward a new polynomial ring definition (Definition 13)
in Section 3, the notion of sandwich (and toast) polynomials (Section 3.1) and reworking many
basic algebraic results related to these new polynomials. In Section 3.2 we show that there is no
unique notion of multi-linear extension (MLE) in this setting, so we have to define both left and
right MLEs. This part of our work is lengthier, but it is insightful and it highly simplifies every
following step towards our doubly-efficient IPs. Equipped with these results, in Section 5 we show
how to modify the layer consistency equation so that it becomes a sandwich polynomial. We need
to do this carefully, so that it is a toast polynomial on every indeterminate. Finally, we need to
provide a new sum-check protocol for this layer consistency equation (Section 5.3), which we show
how to run in linear time by the prover in Section 5.4.

1.2 Instantiations and applications

The main practical appeal of our constructions, being black-box on the choice of the underlying ring,
is their versatility. They provide a single system that can fit many instances and applications at a
reasonable cost, as they preserve the state of the art complexity of their finite field counterparts.
Practitioners need to worry less: First, they can work with existing software libraries for whichever
ring R becomes relevant in their application. Second, expressing computation directly over R, rather
than emulating its arithmetic, simplifies readability and any compilation steps into the arithmetic
circuit. Besides this flexibility, we highlight a few interesting instantiations forR and their associated
applications.

Improved efficiency, sublinear provers. In Section 4.1 we show how, for rings R which are free
modules of rank d over a smaller ring S, our doubly-efficient IP over R can have reduced costs
for the prover. We can even have the prover to run in sublinear time in the size of the layered
arithmetic circuit over R. Examples include matrix and polynomial rings, as well as (large enough)
Clifford algebras.

Geometric algebra. Clifford algebras have many applications in physics and engineering [BS10],
such as computer vision [RAS08]. One of the most familiar Clifford algebras are quaternion rings.
Quaternions are particularly advantageous for describing rotations in a three-dimensional space,
both in terms of efficiency and in order to avoid (potentially devastating) gimbal locks, i.e. the loss of
one degree of freedom in a three-dimensional, three-gimbal mechanism. Gimbal locks happen when
the axes of two of the three gimbals end up parallel to each other, restricting the system to rotations
in a two-dimensional space. In robotics, they are sometimes referred to as “wrist flips” or “wrist
singularities”. Besides avoiding gimbal lock, quaternions are also more compact and numerically
stable than rotation matrices. This results in their application to the domains of computer graphics,
robotics and aerospace, including satellite navigation. Dual quaternions are an even better tool to
describe rigid body dynamics, which is interesting in the same settings.

1 In fact, in [ES21] they only show how to work with finite rings in that family. An example interesting ring in this
setting is Mn×n(F2), which has F2n as a subfield.

4

Exact computation. This application is enabled since we can compute black-box over infinite rings.
We can, for example, work directly with the field of (computable) real numbers, rather than using
fixed/floating point arithmetic to represent elements of the field. The latter only provide approxi-
mate computation, and errors are likely to occur due to the lack of precision. Perhaps contrary to
popular belief, the magnitude of these errors can be quite significant. Let us illustrate this with an
example from [GNSW07], the logistic map defined by x0 = 0.5 and xn+1 = 3.999·xn ·(1−xn). Using
IEEE 754 floating point numbers, the 10000th element of the sequence is 0.780738. Using exact
computation, on the other hand, the output (rounded to six digits of precision after performing the
computation) is 0.354494. We recommend [GNSW07] to any reader interested in an overview of the
different approaches to computing on real numbers.

Approximating infinite arithmetic requires not only costly subcircuits for rounding and a care-
ful analysis as in [CCKP19]. It also requires to consider the use of words and adjusting the circuit
(or the underlying finite ring) depending on the bit length of circuit inputs2. Since the amount
of multiplications depends on the word size and the cost of each multiplication on the underly-
ing algebraic structure, this becomes an optimization problem for practitioners. What is more,
fixed/floating point numbers do not have a ring structure, in particular they lack the distributive
property. Hence, the optimization algorithm providing the circuit description becomes a new attack
vector in the broader system, allowing whoever provides it to bias results towards their interest.

Due to the above and further issues, critical applications might benefit from performing exact
rather than approximate computation over the reals, for which there was no proof system before
our work. For example, implementations of differential privacy have been found to be insecure
due to the use of a floating point representation when using the Laplace [Mir12] or Gaussian
mechanism [JMRO22]. Even for non-critical applications, the enormous simplification in terms of
circuit description (which for exact arithmetic is independent of the inputs) is, in the last instance,
of practical interest.

Symbolic computation. Many software products for symbolic computation such as Magma, Maple,
Sage, Wolfram, etc. run cloud services, where the clients need not run these computations locally.
Since the appeal of these systems is the many algebraic structures they support, it is interesting
for any proof system on top of them to be as generic as ours on the choice of the underlying ring.

2 Preliminaries

Notation. We use [i, j], where i < j, to represent the set of positive integers {i, i + 1, . . . , j},
and simply [n] to represent {1, 2, . . . , n}. Sometimes, we may use arrows to denote vectors, e.g. ~b =
(b1, . . . , bn). For a “sub-interval” of the elements of a vector, we might denote use~b[i,j] = (bi, . . . , bj).

2.1 Interactive proofs and the GKR protocol

In order to capture more naturally our results, we present these definitions in terms of the prover
P trying to convince a verifier V that the application of an arithmetic circuit C over a ring R on
some input inp results on a specific output out, where inputs and outputs are elements of R.

2 That is, if that information (e.g. the number of decimals for real numbers) can be upper-bounded in advance. In
particular, arbitrary computation on irrational numbers such as e and π cannot be emulated over a fixed finite
field in a exact way.

5

Definition 1. Let C be an arithmetic circuit over a ring R. A pair of interactive machines 〈P,V〉
is an ε-sound interactive proof (IP) for C if, on a claimed output out by P:

– Completeness: For every inp s.t. C(inp) = out, it holds that Pr[〈P,V〉(inp) = accept] = 1.
– ε-Soundness: For any inp s.t. C(inp) 6= out, and any P∗, it holds that Pr[〈P∗,V〉(inp) =

accept] ≤ ε.

We say that an interactive proof has the succinct property if the running time of V and the
total communication between P and V is poly(|x|, log(|C|)).

The sum-check protocol Given an n-variate polynomial f : Fn → F, the sum-check protocol
[LFKN92] allows a verifier to outsource the computation of

∑
~b∈{0,1}n f(~b) to a prover. If the verifier

was to do this on their own, it would take them O(2n) time. Let d be an upper bound on the degree
of each individual variable of f . The sum-check protocol is an n-round interactive proof for this task,
where both the proof size and the verifier’s work is O(n·d) and the soundness error is ε = n·d·|F|−1.
Its full description appears Figure 1.

Algorithm Sumcheck Finite Field(f)

Input: f ∈ F[X1, . . . , Xn].

Output: Accept if S =
∑
~b∈{0,1}n f(~b), or reject otherwise.

– In the first round, P sends the univariate polynomial given by:

f1(X1) =
∑

b2,...,bn∈{0,1}

f(X1, b2, . . . , bn),

V checks whether f1(0) + f1(1) = S. If so, V chooses a random element r1 ∈ F and sends it to P.
– For rounds 2 ≤ i ≤ n− 1, P sends the univariate polynomial given by:

fi(Xi) =
∑

bi+1,...,bn∈{0,1}

f(r1, . . . , ri−1, Xi, bi+1, . . . , bn),

V checks whether fi(0) + fi(1) = fi−1(ri−1). If that is the case, V chooses a random element ri ∈ F and
sends it to P.

– In the n-th round, P sends the univariate polynomial given by:

fn(Xn) = f(r1, . . . , rn−1, Xn),

V checks whether fn(0) + fn(1) = fn−1(rn−1). If that is the case, V chooses a random element rn ∈ F.
Given oracle access to the evaluation of f(X1, . . . , Xn) at (r1, . . . , rn), V accepts if and only if fn(rn) =
f(r1, . . . , rn−1, rn).

Fig. 1. Sum-check protocol over a finite field.

The GKR protocol The basics of how circuits and wire values are represented in the GKR
protocol have been explained at the beginning of Section 1.1. Here we give a bit more details about
how Equation (1) is combined with the sum-check protocol and how to progress from the output to
the input layer. P first sends the claimed output to V, consisting of 2s0 different values. V defines a
multi-linear polynomial V̂ (0) : Fs0 → Fs0 which extends V (0), samples a random γ ∈ Fs0 and sends
it to P. Both parties then evaluate V̂ (0)(γ) and run a sum-check protocol on Eq. (1) for i = 0 and

6

evaluated at γ. Let fi(~Z,~X,~Y) be the function such that Eq. (1) is V̂ (i)(~Z) =
∑

x,y∈{0,1}si+1 fi(~Z, x, y).
At the end of the protocol, V needs to compute f0(γ, χ, ψ), where χ, ψ ∈ Fs1 are two random

values produced throughout the sum-check execution. Whereas V can evaluate âdd
(1)

(γ, χ, ψ) and

m̂ult
(1)

(γ, χ, ψ) on their own, it has to ask P for V̂ (1)(χ), V̂ (1)(ψ), since those evaluations require the
knowledge of the wire values on layer 1. This way, a claim about the output layer has been reduced
to two claims about layer one, V̂ (1)(χ) and V̂ (1)(ψ). V and P could run one sum-check protocol
for each of those claims using Eq. (1) for i = 1, but the number of sum-check executions would
eventually become exponential in the depth of the circuit by following such a route. In order to
avoid this, both claims are combined into a single claim. The full description of the GKR protocol
appears in Figure 2. Below, we state the complexity and soundness of its current most efficient
version.

Algorithm GKR Finite Field

Let F be a finite field. Let C : Fn → Fk be a layered arithmetic circuit over F with depth D. Without loss of
generality, we assume that n and k are powers of 2.
Input: Circuit input inp and claimed output out.
Output: Accept or reject.

– Compute V̂ (0)(X) as the multi-linear extension (MLE) of out. V chooses a random γ ∈ Fs0 and sends it to
P. Both parties compute V̂ (0)(γ).

– Run a sum-check protocol on Equation (1) for i = 0 and evaluated at γ. Let χ(0), ψ(0) ∈ Fs1 denote the
challenge vectors corresponding to the ~X and ~Y variables within that execution. P sends V̂ (1)(χ(0)) and
V̂ (1)(ψ(0)) to V.

– V queries their oracles for m̂ult
(1)

(γ, χ(0), ψ(0)) and âdd
(1)

(γ, χ(0), ψ(0)), so as to check that

âdd
(1)

(γ, χ(0), ψ(0)) · (V̂ (1)(χ(0)) + V̂ (1)(ψ(0))) + m̂ult
(1)

(γ, χ(0), ψ(0)) · V̂ (1)(χ(0)) · V̂ (1)(ψ(0)) equals the last
message of the sumcheck execution.

– For circuit layers i = 1, . . . , D − 1:
• V samples α(i), β(i) ∈ F and sends them to P. P and V run a sumcheck protocol on:

α(i)V̂ (i)(χ(i−1)) + β(i)V̂ (i)(ψ(i−1)) =
∑

x,y∈{0,1}si+1(
(α(i) + β(i)) · m̂ult

(i+1)
(χ(i−1), x, y) · V̂ (i+1)(x) · V̂ (i+1)(y) +

+ (α(i) + β(i)) · âdd(i+1)
(ψ(i−1), x, y) · (V̂ (i+1)(x) + V̂ (i+1)(y))

)
Let χ(i), ψ(i) denote the challenge vectors corresponding to the ~X, and ~Y variables within that execution.

At the end of the protocol, P sends V̂ (i+1)(χ(i)) and V̂ (i+1)(ψ(i)) to V, so that V can check the validity
of the last message in the sumcheck execution. If the check passes, they proceed to the (i+ 1)-th layer,
otherwise, V outputs reject and aborts.

– At the input layer D, V has received two claims V̂ (D)(χ(D−1)) and V̂ (D)(ψ(D−1)). V queries the evaluation
oracles of V̂ (D) at χ(D−1) and ψ(D−1) in order to check that they equal the sumcheck claims. If they do, V
outputs accept, otherwise, V outputs reject.

Fig. 2. The GKR protocol over a finite field.

Theorem 1 ([XZZ+19]). Let C : Fn → Fk be a depth-D layered arithmetic circuit. The GKR
protocol is an interactive proof for C with soundness error O(D log |C|/|F|). Its communication
and round complexity is O(D log |C|). The prover complexity is O(|C|) and the verifier complexity

7

is O(n + k + D log |C| + T), where T is the optimal time to evaluate every âdd
(i)
, m̂ult

(i)
wiring

predicate. For log-space uniform circuits, T = poly log(|C|).

2.2 Algebraic background

We turn now to recall some useful results from ring theory. Unless otherwise specified, whenever we
talk about a ring R we mean a ring with identity 1 6= 0, for which we assume neither commutativity
nor finiteness. This generality requires to be careful about the potential lack of commutativity and
the presence of zero divisors and non-invertible (regular) elements. We start by recapping some
basic definitions and results in non-commutative algebra.

Definition 2. Let R be a ring. An element a ∈ R is a unit if there exists b ∈ R such that a · b =
b · a = 1. The set of all units is denoted by R∗.

Definition 3. An element a ∈ R \ {0} is a left (resp. right) zero divisor if ∃ b ∈ R \ {0} such that
a · b = 0 (resp. b · a = 0).

Lemma 1. Let R be a finite ring. Then all elements of R \ {0} are either a unit or a zero divisor.

Sets of elements whose pairwise differences are either regular or invertible will play a crucial
role in our constructions.

Definition 4. Let A = {a1, . . . , an} ⊂ R. We say that A is a regular difference set, or R.D. set
for short, if ∀i 6= j, ai − aj ∈ R is not a zero divisor. We define the regularity constant of R to be
the maximum size of an R.D. set in R.

Definition 5. Let A = {a1, . . . , an} ⊂ R. We say that A is an exceptional set if ∀i 6= j, ai − aj ∈
R∗. We define the Lenstra constant of R to be the maximum size of an exceptional set in R.

When R is a finite ring, as a consequence of Lemma 1, every R.D. set is an exceptional set.
Nevertheless, there are infinite rings, such as Z, which have an infinite regularity constant whereas
their Lenstra constant is 2.

Besides “how regular” or “how invertible” are certain subsets of ring elements, we might also
be interested in “how commutative” they are. The following definitions and results look into this.

Definition 6. The center of a ring R, denoted by Z(R) consists of the elements a ∈ Z(R) such
that ∀b ∈ R, a · b = b · a.

Definition 7 ([QBC13]). Let A = {a1, . . . , an} ⊂ R. We say that A is a commutative set if
∀ai, aj ∈ A, ai · aj = aj · ai.

Definition 8. Let R be a ring and A ⊂ R. The centralizer of the set A in R is:

CR(A) = {b ∈ R : b · a = a · b,∀a ∈ A}.

Centralizers are also referred to as commutants sometimes in the literature. Note that CR(R) =
Z(R). We will often refer to the following, trivial lemma.

Lemma 2. Let R be a ring and A ⊂ R a commutative set. Then CR(A) ⊇ (A∪Z(R)). Furthermore,
if A ⊆ Z(R), then CR(A) = R.

8

3 Polynomials over non-commutative rings

There is no unique choice for how to define a polynomial ring with coefficients on a non-commutative
ring R. Usually, as in [QBC13, ES21], univariate polynomials are defined in such a way that “the
indeterminate commutes with coefficients”, so as to uniquely express any polynomial f ∈ R[X]≤d
as the formal sum f(X) =

∑d
i=0 fiX

i, where fi ∈ R. In the language of centralizers, this approach
enforced CR[X]({X}) = R[X]. In the multivariate case, one can choose whether to define the ring so
that indeterminates commute with each other or not. For rings where A ⊆ Z(R), we will stick with
the former case and refer to it as a ring of non-commutative polynomials. Before giving a formal
definition of this approach, we recall the definition of a monoid.

Definition 9. A set M equipped with a binary operation · : M ×M → M is a monoid if the
operation is associative (∀a, b, c ∈ M, (a · b) · c = a · (b · c)) and there is an identity element
(∃e ∈M : ∀a ∈M, a · e = e · a = a).

Definition 10. Let (R,+, ∗) be a ring and let Σ = {X1, . . . , Xn}. Let Σ∗ be the free commuta-
tive monoid generated by Σ, i.e. the monoid whose binary operation is the concatenation of finite
strings and the letters of the alphabet Σ commute with each other. The ring of non-commutative
polynomials R[X1, . . . , Xn] is the monoid ring of Σ∗ over R. Explicitly, a ∈ R[X1, . . . , Xn] is of the
form a =

∑
m∈Σ∗ amm, where am ∈ R and there is only a finite amount of am 6= 0. Addition and

multiplication are defined as follows:

– Addition: a+ b =
∑

m∈Σ∗(am + bm)m

– Multiplication: a · b =
∑

m1,m2∈Σ∗(am1 · bm2)m1m2.

Furthermore, for any set S ⊆ R, we define S[X1, . . . , Xn]≤d to be the subset of polynomials in
R[X1, . . . , Xn] of degree at most d whose coefficients belong to S.

The previous definition has many advantages, but it requires to be careful about polynomial
evaluation, which we next show to be a ring homomorphism if and only if the evaluation points
belong to Z(R). For example, consider polynomials f(X) = f0 + f1X and g(X) = g1X + g2X

2. We
would have that h(X) = f(X) · g(X) = f0g1X+ (f0g2 + f1g1)X

2 + f1g2X
3. Unless α commutes with g1

and g2, this results in h(α) 6= f(α) · g(α).

Lemma 3. Let A = {αi}ni=1 ⊂ R be a commutative set and let α = (α1, . . . , αn). Denote by
Evα : R[X1, . . . , Xn]→ R the map that takes a polynomial f ∈ R[X1, . . . , Xn] to its evaluation3 at α,
by replacing each appearance of Xi with αi and applying the product operation of R. Then:

1. ∀f, g ∈ R[X1, . . . , Xn], Evα(f) + Evα(g) = Evα(f + g).

2. Evα(f) · Evα(g) = Evα(f · g) holds ∀f, g ∈ R[X1, . . . , Xn] if and only if A ⊆ Z(R).

Proof. We first observe that the condition of A = {αi}ni=1 ⊂ R being a commutative set is necessary
for the map to be well defined, since we did not define an order for the variables {Xi}ni=1 ⊂ Σ and
the symbols of the alphabet commute with each other. Let f =

∑
m∈Σ∗ fmm, g =

∑
m∈Σ∗ gmm as

per Definition 3. Note that Evα(
∑

m∈Σ∗ amm) =
∑

m∈Σ∗ am · Evα(m), from which we prove:

3 Throughout the text, we implicitly refer to Evα(f) whenever we write either f(α) or f(α1, . . . , αn) and f ∈
R[X1, . . . , Xn].

9

1. Evα(f + g) = Evα(
∑

m∈Σ∗(fm + gm)m) =
∑

m∈Σ∗(fm + gm) · Evα(m) =
∑

m∈Σ∗ fm · Evα(m) +∑
m∈Σ∗ gm · Evα(m) = Evα(f) + Evα(g).

2. First, assume A ⊆ Z(R). Then Evα(f ·g) = Evα(
∑

m1,m2∈Σ∗(fm1 ·gm2)m1m2) =
∑

m1,m2∈Σ∗(fm1 ·
gm2 · Evα(m1m2)) =

∑
m1,m2∈Σ∗(fm1 · gm2 · Evα(m1) · Evα(m2)). Since A ⊆ Z(R) and Z(R) is

a ring, we have that Evα(m1), Evα(m2) ∈ Z(R). Hence we can conclude that
∑

m1,m2∈Σ∗(fm1 ·
gm2 ·Evα(m1) ·Evα(m2)) =

∑
m1,m2∈Σ∗(fm1 ·Evα(m1) ·gm2 ·Evα(m2)) = (

∑
m1∈Σ∗ fm1 ·Evα(m1)) ·

(
∑

m2∈Σ∗ gm2 · Evα(m2)) = Evα(f) · Evα(g).

For the other implication, we will prove the contrapositive. Assume ∃αi ∈ A such that αi /∈
Z(R), we will show that ∃f, g ∈ R[X1, . . . , Xn] such that Evα(f) · Evα(g) 6= Evα(f · g). Since
αi /∈ Z(R), then CR({αi}) 6= R. Let f1, g1 ∈ R \ CR({αi}). Consider the polynomials f = f1Xi
and g = g1Xi, we have that Evα(f) · Evα(g) = f1 · αi · g1 · αi 6= f1 · g1 · α2

i = Evα(f · g).

A different way to define the polynomial ring arises from treating the indeterminate X as a
formal, non-commuting symbol. Polynomial addition works as usual, whereas the product looks
more similar to string concatenation (e.g. for the same f(X) and g(X) of the example in the previous
paragraph, f(X)·g(X) = f0 ·g1X+f1Xg1X+f0 ·g2X2+f1Xg2X

2). Looking at the problem again in terms
of centralizers, in this approach we enforce CR[X]({X}) = ∅. The advantage of this strategy4 is that
polynomial evaluation at any α ∈ R becomes a ring homomorphism, in contrast with Definition 10
where that is only true if α ∈ Z(R) (Lemma 3). On the other hand, not being able to simplify
polynomial expressions as in Definition 10 not only results on lengthier polynomials, but it also
eliminates the possibility to prove many useful, typical results about polynomials. We will refer to
this construction as the ring of totally non-commutative polynomials.

Definition 11. Let (R,+,�) be a ring and let Σ = R ∪ {X1, . . . , Xn}. Let ∗ denote the string
concatenation operation. Let M be the monoid generated by Σ according to the non-commutative
binary operation · : M×M→M, which we restrict to finite strings and where:

r · s =

{
r � s, if r, s ∈ R
r ∗ s, if (r ∈ R ∧ s ∈ {Xi}ni=1) ∨ (r ∈ {Xi}ni=1 ∧ s ∈ R) ∨ (r, s ∈ {Xi}ni=1)

(2)

The ring of totally non-commutative polynomials RJX1, . . . , XnK consists of elements a ∈ RJX1, . . . , XnK
of the form a =

∑
m∈M am ·m, where am ∈ R and there is only a finite amount of am 6= 0. Addition

(inherited from R) and multiplication (inherited from M) are defined as follows:

– Addition: a+ b =
∑

m∈M(am + bm) ·m
– Multiplication: a · b =

∑
m1,m2∈M am1 ·m1 · bm2 ·m2.

Lemma 4. RJX1, . . . , XnK is a ring.

Proof. (RJX1, . . . , XnK,+) being an abelian group follows from inspection. Next, (RJX1, . . . , XnK, ·) is
a monoid, since m1 · bm2 ·m2 ∈M and only a finite number of am1 are non-zero. The distributive
property follows from making string concatenation (the operation ∗) distribute over addition.

Note 1. In terms of notation, the ring of totally non-commutative polynomials RJX1, . . . , XnK should
not be confused with a formal power series ring over R.

4 This advantage would also apply to a slight variant where the ring would be constructed so that CRX = Z(R).

10

Note 2. The only difference between (M, ·) in Definition 11 and the free (non-commutative) monoid
over Σ is that, in M, strings containing sub-strings of the form Xi ∗ a ∗ b ∗ Xj do not exist, since in
M those are “simplified” to Xi ∗ c ∗ Xj where c = a� b.

Note 3. RJX1, . . . , XnK allows for limited simplifications in polynomial expressions. Namely, those
inherited from the associative and distributive properties if we go from the “outside” to the “inside”
of a monomial. For example, it is true that XrX3 + XsX3 = X(r + s)X3, but for any m1 6= m2 ∈M,
we cannot simplify beyond XrX3m1 + XsX3m2 = X(rX3m1 + sX3m2), since m1 6= m2 is “blocking”
any simplification from the right end (besides any common factor at the right end of m1,m2).

The rationale behind defining the ring of non-commutative polynomials as in Definition 10, as
they do in e.g. [QBC13, ES21], is that in those works unique polynomial interpolation is the most
crucial property. In our case, the most important requirement is that polynomial evaluation is a ring
homomorphism, so that we can meaningfully apply a sumcheck protocol to the layer consistency
Equation (1). Unfortunately, the approach from Definition 11, where CRX = ∅, does not serve
us either, since the layer consistency equation is cubic. As it will become clearer later on, when
proving results about Euclidean division (Theorem 2) and Lemma 7, we cannot bound the number
of roots of the product of three polynomials by simply following that route. Such bound is in turn
necessary to establish the soundness error of our new interactive proofs.

Due to the above, we introduce a novel polynomial ring definition, somewhere between Def-
initions 10 and 11. We define the polynomial ring with evaluation set A, RA[X], by taking into
account the specific set of points A ⊂ R on which polynomials will be ever evaluated. Rather than
constructing the ring so that CR[X1,...,Xn]({Xi}ni=1) = R[X1, . . . , Xn] (as in Defn. 10) or such that
CRJX1,...,XnK({Xi}ni=1) = ∅ (as in Defn. 11), we will enforce CRA[X1,...,Xn]({Xi}

n
i=1) = CR(A) ∪ {Xi}ni=1.

Hence, in RA[X1, . . . , Xn], indeterminates commute with each other and “an indeterminate com-
mutes with a coefficient c ∈ R if and only if c ∈ CR(A)”. Formally, we construct RA[X1, . . . , Xn]
by taking the quotient of the ring of totally non-commutative polynomials RJX1, . . . , XnK with a
“commutator ideal” IA that enforces our precise commutativity requirements.

Definition 12. Let RJX1, . . . , XnK and let A ⊂ R. For i, j = 1, . . . n, let Si,j = {XiXj − XjXi} and
Si = {Xic−cXi : c ∈ CR(A)}. The two-sided ideal generated by

⋃n
i=1

⋃i−1
j=1 Si,j∪Si is the commutator

ideal of A, which we denote by IA.

For our specific goals, we will impose that the set A is commutative (see Definition 7). This is
to ensure that CR(A) ⊇ (A ∪ Z(R)).

Definition 13. Let A ⊂ R be a commutative set and let IA be the commutator ideal it defines. We
define the ring of polynomials with evaluation set A to be RA[X1, . . . , Xn] = RJX1, . . . , XnK/IA. For
any set S ⊆ R, we define SA[X1, . . . , Xn] to be the subset of polynomials in RA[X1, . . . , Xn] whose
coefficients belong to S.

Claim. Let S ⊆ R. Any f ∈ SA[X1, . . . , Xn] can be uniquely expressed as

f =

s∑
k=1

(m∏
`=1

(
rk,`

n∏
i=1

(X
di,`
i)

))
,

where rk,` ∈ S ∪ {1}, di,` ∈ Z and m is the maximum length of any monomial in f . We consider X0i
to be the empty string, for any i = 1, . . . , n.

11

By Lemma 2, when A ⊆ Z(R) we have that CR(A) = R, in which case the commutator ideal
enforces CRA[X1,...,Xn]({Xi}

n
i=1) = RA[X1, . . . , Xn]. Intuitively, in this situation, the polynomial ring

RA[X1, . . . , Xn] behaves the same way as R[X1, . . . , Xn] in Definition 10: R[X1, . . . , Xn] also satis-
fies that CR[X1,...,Xn]({Xi}ni=1) = R[X1, . . . , Xn] and, when the evaluation points are in A ⊆ Z(R),
evaluating polynomials from R[X1, . . . , Xn] is a ring homomorphism too (Lemma 3). The two fol-
lowing results show in more detail how both definitions are interchangeable for our purposes when
A ⊆ Z(R).

Proposition 1. Let A be a commutative set and let S ⊆ CR(A). Let φ be:

φ : SA[X1, . . . , Xn]→ RA[X1, . . . , Xn]

f =

s∑
k=1

(m∏
`=1

(
rk,`

n∏
i=1

(X
di,`
i)

))
7→ φ(f) =

s∑
k=1

(m∏
`=1

(rk,`)

n∏
i=1

(X
∑m
`=1 di,`

i)
)
,

the map which uses the commutator ideal IA to “regroup indeterminates Xi on the right hand
side, and the product of the coefficients in S on the left hand side”. Let ψ : φ(SA[X1, . . . , Xn]) →
R[X1, . . . , Xn] be the map that reinterprets the resulting polynomial as an element of R[X1, . . . , Xn].
∀f ∈ SA[X1, . . . , Xn], let F = ψ ◦ φ(f). Then, ∀a ∈ An, it holds that F (a) = f(a).

Proof. First, observe that φ(f)(a) = f(a), since the elements of both {Xi}ni=1 and A commute
with {rk,`}k∈[s],`∈[m] (because rk,` ∈ (S ∪ {1}) ⊂ CR(A)). Second, ψ ◦ φ(f)(a) = φ(f)(a), since the
evaluation map for a polynomial in R[X1, . . . , Xn] or a polynomial in φ(SA[X1, . . . , Xn]) has the exact
same description.

Corollary 1. Let A ⊆ Z(R) and let φ and ψ be the maps from Proposition 1. Then, ∀f ∈
RA[X1, . . . , Xn], ∀a ∈ An, it holds that ψ ◦ φ(f)(a) = f(a). In other words, when A ⊆ Z(R), rein-
terpreting polynomials from RA[X1, . . . , Xn] as polynomials from R[X1, . . . , Xn] does not affect the
results of polynomial evaluation.

Proof. If A ⊂ Z(R), then CR(A) = R (Lemma 2). Take S = R in Prop. 1.

For the sake of generality, we will state and prove our results using the more general ring
RA[X1, . . . , Xn] from Definition 13. Nevertheless, when A ⊂ Z(R), it is conceptually simpler to treat
polynomials as elements from R[X1, . . . , Xn] (Definition 10). For basic algebraic results that we will
present in Section 3.1, such as Euclidean division or the number of roots of a polynomial, simplified
statements and proofs for R[X1, . . . , Xn] can be found in e.g. [ES21]. For more involved results, such
as the generalization of the sumcheck protocol to non-commutative rings, multi-linear extensions
and ultimately our protocol for doubly-efficient interactive proofs over general rings, we will provide
remarks along the way stating how they are simplified when A ⊂ Z(R) and how this affects their
complexities.

3.1 Sandwich polynomials

In the previous block of results, we have seen that when A ⊂ Z(R), the ring RA[X1, . . . , Xn] from
Definition 13 behaves the same way as R[X1, . . . , Xn] in Definition 10. It is when A is merely a
commutative set –and hence CRA[X1,...,Xn](Xi) ⊇ (A∪Z(R)∪{Xj}nj=1)– that our new Definition 13 will

12

be necessary to enable our GKR-style protocol over a ring R ⊃ A. This extends the applicability of
our results, since for example the ringMn×n(Z/2kZ) contains a commutative exceptional set of size
2m [ES21, Proposition 3], whereas the biggest regular difference set contained in Z(Mn×n(Z/2kZ))
has size two.

Our protocols will be concerned with a particular subset of the polynomials in RA[X1, . . . , Xn],
concretely the ones for which monomials have a single coefficient, possibly “surrounded” by inde-
terminates on both sides. We will refer to these as sandwich polynomials, metaphorically thinking
of the indeterminates as bread and the coefficient as the content5. The goal of this subsection is to
generalize the Schwartz-Zippel lemma to these polynomials, to the extent that it is possible.

Definition 14 (Sandwich polynomials). Let A be a commutative subset of a ring R and let
RA[X1, . . . , Xn] be the ring of polynomials with evaluation set A. Let i = (i1, . . . , in), j = (j1, . . . , jn).
We define the set of sandwich polynomials over R with left-degree at most d′ and right-degree at
most d to be:

RA[X1, . . . , Xn]≤d′,≤d = {f(X1, . . . , Xn) =
∑

i∈[0,d′]n,j∈[0,d]n
Xinn · . . . · X

i1
1 fi,jX

j1
1 · . . . · X

jn
n | fi,j ∈ R}

The subset of polynomials with right-degree exactly d, RA[X1, . . . , Xn]≤d′,d ⊂ RA[X1, . . . , Xn]≤d′,≤d,
is given by further imposing that, for every Xk, the polynomial must have at least one monomial
of right-degree d in Xk. Formally: ∀k ∈ [n] ∃i ∈ [0, d′]n, j1, . . . , jk−1, jk+1, . . . , jn ∈ [0, d] such that
fi,(j1,...,jk−1,d,jk+1,...,jn) 6= 0. The subset of polynomials with left-degree exactly d′, RA[X1, . . . , Xn]d′,≤d,
is defined analogously.

Furthermore, for any set S ⊆ R, we define SA[X1, . . . , Xn]≤d′,≤d as the subset of polynomials in
RA[X1, . . . , Xn]≤d′,≤d whose coefficients fi,j all belong to S. Polynomials of exact degrees are defined
as in the previous paragraph.

Definition 15 (Toast polynomials). Let ~X = (X1, . . . , Xn). A sandwich polynomial f is a left
(resp. right) toast polynomial if it is of right (resp. left) degree zero, i.e. f ∈ RA[~X]≤d′,0 (resp.
f ∈ RA[~X]0,≤d). If we do not want to specify the position of the indeterminate, we may simply refer
to it as a toast polynomial.

In the previous definitions, it is important to note that a polynomial in RA[X1, . . . , Xn]≤d′,≤d has
at most ((d′+1)·(d+1))n monomials, i.e. for fixed powers i ∈ [0, d′]n, j ∈ [0, d]n, an expression of the

form
∑

` X
in
n · . . . ·X

i1
1 f

(`)
i,j X

j1
1 · . . . ·X

jn
n is simplified into Xinn · . . . ·X

i1
1 fi,jX

j1
1 · . . . ·X

jn
n , where fi,j =

∑
` f

(`)
i,j .

Furthermore, when we talk about polynomials of exact right degree d or left degree d′, we assume
that all possible simplifications have taken place. In particular6, for f ∈ RA[X]≤d′,d, we assume that
fi,d is not simplified away with terms of the form Xi+kfi+k,d−kX

d−k, where k ∈ {1, . . . , d}, when
fi,d, fi+k,d−k ∈ CR(A).

Lemma 5. Let ~X = (X1, . . . , Xn). For ` = 1, . . .m, let f (`) ∈ RA[~X]≤d′f ,≤df , a(`) ∈ CR(A)[~X]≤d′a,≤da

and b(`) ∈ CR(A)[~X]≤d′b,≤db. Let g =
∑m

`=1 a
(`)f (`)b(`). Then:

g ∈ RA[~X]≤(d′a+da+d′f),≤(d
′
b+db+df)

.

5 The reader might find funny to think about multiplication as “stacking sandwiches” and addition as putting
sandwiches next to each other. The commutativity of indeterminates with elements in CR(A), simplifications
enabled by the distributive property and other results in this section provide some (metaphorical) food for thought!

6 We give this example in the univariate case in order to avoid heavier notation.

13

Proof. Let i(f) = (i
(f)
1 , . . . i

(f)
n), j(f) = (j

(f)
1 , . . . j

(f)
n) and so on for i(a), j(a) and i(b), j(b). For ` =

1, . . . ,m, let:

f (`)(X1, . . . , Xn) =
∑

i(f)∈[0,d′f]n

∑
j(f)∈[0,df]n

Xi
(f)
n
n · . . . · Xi

(f)
1
1 f

(`)

i(f),j(f)
X
j
(f)
1
1 · . . . · Xj

(f)
n
n

a(`)(X1, . . . , Xn) =
∑

i(a)∈[0,d′a]n

∑
j(a)∈[0,da]n

Xi
(a)
n
n · . . . · Xi

(a)
1
1 a

(`)

i(a),j(a)
X
j
(a)
1
1 · . . . · Xj

(a)
n
n

b(`)(X1, . . . , Xn) =
∑

i(b)∈[0,d′b]n

∑
j(b)∈[0,db]n

Xi
(b)
n
n · . . . · Xi

(b)
1
1 b

(`)

i(b),j(b)
X
j
(b)
1
1 · . . . · Xj

(b)
n
n

By reasoning about the commutator ideal IA (Definition 12), we can rewrite

a(`)(X1, . . . , Xn) =
∑

i(a)∈[0,d′a]n

∑
j(a)∈[0,da]n

a
(`)

i(a),j(a)
X
i
(a)
1 +j

(a)
1

1 · . . . · Xi
(a)
n +j

(a)
n

n

b(`)(X1, . . . , Xn) =
∑

i(b)∈[0,d′b]n

∑
j(b)∈[0,db]n

Xi
(b)
n +j

(b)
n

n · . . . · Xi
(b)
1 +j

(b)
1

1 b
(`)

i(b),j(b)
.

Let
∑

i∈I,j∈J replace the notation
∑

i(a)∈[0,d′a]n
∑

j(a)∈[0,da]n
∑

i(f)∈[0,d′f]n
∑

j(f)∈[0,df]n
∑

i(b)∈[0,d′b]n
∑

j(b)∈[0,db]n .

Then, by substituting on g =
∑m

`=1 a
(`)f (`)b(`), we obtain:

g =
m∑
`=1

∑
i∈I,j∈J

a
(`)

i(a),j(a)
Xi

(a)
n +j

(a)
n +i

(f)
n

n · . . . · Xi
(a)
1 +j

(a)
1 +i

(f)
1

1 f
(`)

i(f),j(f)
X
i
(b)
1 +j

(b)
1 +i

(f)
1

1 · . . . ·

· Xi
(b)
n +j

(b)
n +i

(f)
n

n b
(`)

i(b),j(b)
=

m∑
`=1

∑
i∈I,j∈J

Xi
(a)
n +j

(a)
n +i

(f)
n

n · . . . · Xi
(a)
1 +j

(a)
1 +i

(f)
1

1 a
(`)

i(a),j(a)
·

f
(`)

i(f),j(f)
· b(`)
i(b),j(b)

X
i
(b)
1 +j

(b)
1 +i

(f)
1

1 · . . . · Xi
(b)
n +j

(b)
n +i

(f)
n

n

Where in the first equality we used the fact that Xα ·Xβ = Xβ ·Xα for all α, β ∈ [n] and, for the second

one, the fact that a
(`)

i(a),j(a)
and b

(`)

i(b),j(b)
are in CR(A) and hence commute with the indeterminates.

The resulting expression is clearly an element of RA[X1, . . . , Xn]≤(d′a+da+d′f),≤(d
′
b+db+df)

.

Lemma 6. Let f ∈ RA[X1, . . . , Xn]≤d′,≤d and let a` ∈ A. Then, ∀` ∈ {1, . . . , n}:

f(X1, . . . X`−1, a`, X`+1, . . . , Xn) ∈ RA[X1, . . . X`−1, X`+1, . . . , Xn]≤d′,≤d.

Proof. Since A is a commutative set (required by the definition of RA[X1, . . . , Xn]), we have that
A ⊂ CR(A). Making use of the commutator ideal, we “push” the powers of a` to the middle of the
polynomial, obtaining:

f(X1, . . . X`−1, a`, X`+1, . . . , Xn) =

=
∑

i∈[0,d′]n,j∈[0,d]n
Xinn . . . X

i`+1

`+1 · X
i`−1

`−1 . . . X
i1
1 · a

i`
` · fi,j · a

j`
` · X

j1
1 . . . X

j`−1

`−1 · X
j`+1

`+1 . . . X
jn
n . �

14

The advantage of sandwich polynomials is that they can be divided by monic polynomials in
SA[X], where S = CR(A) (recall notation from Definition 13).

Theorem 2 (Euclidean division). Let f(X) ∈ RA[X]d′,d be a non-zero sandwich polynomial
and let g(X) ∈ CR(A)A[X]0,m be a monic polynomial7. There exist unique sandwich polynomials
q`(X), r`(X) (resp. qr(X), rr(X)) such that f(X) = q`(X) ·g(X)+r`(X) (resp. f(X) = g(X) ·qr(X)+rr(X)),
where q`(X) ∈ RA[X]≤d′,≤d−m and r`(X) ∈ RA[X]≤d′,≤m−1 (resp. qr(X) ∈ RA[X]≤d−m,≤d, rr(X) ∈
RA[X]≤m−1,≤d).

Proof. We only prove the result for q`(X) and r`(X). The result for qr(X) and rr(X) follows in a similar
manner. We first prove the statement regarding the existence of q`(X) and r`(X) by induction on the
right degree of f . Consider a degree-zero f . If m = 0, then g(X) = 1 and we may take q`(X) = f(X)
and r`(X) = 0. If m ≥ 1, then we may take q`(X) = 0 and r`(X) = f(X).

Suppose the statement is true for polynomials f of right degree D. We will now show that the
statement also holds for f of right degree D+ 1. If D+ 1 < m, we take q`(X) = 0 and r`(X) = f(X).

Otherwise, let f(X) =
∑d′

i=0

∑D+1
j=0 Xifi,jX

j .

We define f̃(X) = f(X)− q̂(X) · g(X), where q̂(X) =
∑d′

i=0 X
ifi,D+1X

D+1−m. As the right degree of
f̃ is smaller or equal than D, by the induction hypothesis we have that f̃(X) = q̃`(X) · g(X) + r̃`(X),
where the right degree of r̃`(X) is strictly smaller than m. We can conclude the existence part of the
proof by setting q`(X) = q̃`(X) + q̂(X) (which is a sandwich polynomial by virtue of Lemma 5, and
it is in RA[X]≤d′,≤D+1−m) and r`(X) = r̃`(X) ∈ RA[X]≤d′,≤m−1, as shown by the following equalities:

f(X) = f̃(X) + q̂(X) · g(X) = q̃`(X) · g(X) + r̃`(X) + q̂(X) · g(X) = (q̃`(X) + q̂(X)) · g(X) + r̃`(X).

Regarding uniqueness, suppose that f(X) = q`(X) · g(X) + r`(X) and f(X) = q′`(X) · g(X) + r′`(X),
where r`(X), r′`(X) ∈ RA[X]≤d′,≤m−1. This implies that (q′`(X) − q`(X)) · g(X) = r`(X) − r′`(X), but if
q`(X) 6= q′`(X) we would have that the right degree of (q′`(X)− q`(X)) · g(X) is at least m, which is a
contradiction with the fact that r`(X)− r′`(X) ∈ RA[X]≤d′,≤m−1.

Given the previous theorem, we can now prove the following result with respect to the maximum
number of roots of toast polynomials on their evaluation set A, when A is not only commutative
but also regular difference (Definition 4).

Lemma 7. Let A be a commutative, regular difference set of R and let f ∈ RA[X]0,≤d (resp.
f̃ ∈ RA[X]≤d,0) be a non-zero toast polynomial. Then f (resp. f̃) has at most d roots in A.

Proof. We reason by induction on the right-degree d of the non-zero polynomial f . The procedure
is analogous for f̃ ∈ RA[X]≤d,0, so we omit that part of the proof. The statement is clear when
d = 0. Assume the result true for d − 1 and let us look at f ∈ RA[X]0,d. If f does not have any
roots, or if it only has one root, then the result holds (since we have considered d = 0 as a separate
case). Else, let a, b ∈ A be two different roots of f(X). As g(X) = X − a is a monic polynomial in
CR(A)A[X], by Theorem 2 there exist a sandwich polynomial q(X) ∈ RA[X]0,≤d−1 and r ∈ R (since
the reminder has both left and right degree zero) such that f(X) = q(X) · g(X) + r.

Since we have that 0 = f(a) = q(a) · g(a) + r = q(a) · 0 + r, we conclude that r = 0. From
this, it follows that 0 = f(b) = q(b) · (b− a). Since A is a regular difference set, b− a is not a zero

7 I.e. g(X) = Xm +
∑m−1
`=0 g`X

`. Note that since g` ∈ CR(A) ∀` ∈ [0,m− 1], it is also true that g(X) ∈ CR(A)A[X]m,0,
that g(X) ∈ CR(A)A[X]m−1,1, etc.

15

divisor, so it has to be that q(b) = 0. By the inductive hypothesis, q(X) ∈ R[X]0,≤d−1 has at most
d− 1 roots in A, so we can conclude that f(X) has at most d roots in A.

Whereas, given Theorem 2 and Lemma 7, one could hope to be able to bound the number of
roots of any polynomial f ∈ RA[X]≤d′,≤d, we were unable to prove such a result. This is due to the
fact that the Euclidean division of sandwich polynomials by a polynomial gi(X) = (X − αi), where
αi is a root of f , provides us with a remainder that is of degree zero only on the side from which
gi(X) is dividing. If α1 is a root of f , by calling Theorem 2 so that g1(X) “divides on the right”, we
can prove that f(X) = f1(X)(X−α1) + r1(X), where f1 ∈ RA[X]≤d′,≤d−1, r1 ∈ RA[X]≤d′,0. If we divide
r1(X) by g1(X) on the left, we get to f(X) = f1(X)(X−α1) + (X−α1)f2(X), where f2 ∈ RA[X]≤d′−1,0.
The problem now is that, if α2 ∈ A is another root, we find no way forward from the expression
0 = f(α2) = f1(α2)(α2 − α1) + (α2 − α1)f2(α2). Alternative strategies also beared no positive
results. This important limitation will condition the generalization of almost every building block
of our doubly-efficient IP over non-commutative rings when A is merely commutative, rather than
A ⊆ Z(R).

Lemma 8 is a generalization of the Schwartz-Zippel lemma to toast polynomials over possibly
infinite, possibly non-commutative rings.

Lemma 8 (Schwartz-Zippel Lemma). Let A ⊆ R be a finite, commutative regular difference
set. Let ~X = (X1, . . . , Xn) and let f ∈ (RA[~X]≤d,0 ∪RA[~X]0,≤d) be a non-zero toast polynomial. Then:

Pr
~a←An

[f(~a) = 0] ≤ n · d
|A|

Proof. We prove by induction on the number of variables n. For simplicity, we will assume that
f ∈ RA[~X]≤d,0, the reasoning is symmetric when f ∈ RA[~X]0,≤d. The case n = 1 follows from
Lemma 7.

Assume the result holds for polynomials in RA[X1, . . . , Xn−1]≤d,0. For the n-variate case, given

any f ∈ RA[X1, . . . , Xn]≤d,0, we have that f(~X) =
∑d

`=0 X
`
n·g`(X1, . . . , Xn−1), where g` ∈ RA[X1, . . . , Xn−1]≤d,0.

Let ~a = (a1, . . . , an) and let dXn denote the degree of f in Xn, i.e. the biggest dXn ≤ d such that
gdXn is not the zero polynomial. Denote by E1 the event gdXn (~a) = 0. Since it is a non-zero toast
polynomial, by the induction hypothesis

Pr
(a1,...,an−1)←An−1

[E1] ≤
(n− 1) · d
|A|

.

For the event ¬E1, i.e. when gdXn (~a) 6= 0, let us define f¬E1(Xn) =
∑dXn

`=0 X
`
n · g`(a1, . . . , an−1).

Notice that f¬E1 ∈ RA[Xn]≤dXn ,0 and f¬E1(an) = f(~a). Then:

Pr
~a←A

[f(~a) = 0|¬E1] = Pr
~a←A

[f¬E1(an) = 0|¬E1] ≤ dXn/|A|,

where the last inequality follows from Lemma 7. Given the previous bounds, we conclude our proof
by substituting in the following series of inequalities:

Pr[f(~a) = 0] = Pr[f(~a) = 0|¬E1] · Pr[¬E1] + Pr[f(~a) = 0|E1] · Pr[E1]

≤Pr[f(~a) = 0|¬E1] + Pr[E1] ≤
(n− 1)d

|A|
+
dXn
|A|
≤ n · d
|A|

. �

16

Lagrange interpolation for sets of points (xi, yi) ∈ R2 can be computed, as long as all the xi are
part of the same commutative exceptional set A ⊂ R.

Proposition 2. Let A = {x1, . . . , xd+1} ⊂ R be a commutative exceptional set and let B =
{y1, . . . , yd+1} ⊂ R. Then there exists a unique polynomial f ∈ RA[X]0,≤d (resp. g ∈ RA[X]≤d,0)
such that f(xi) = yi (resp. g(xi) = yi) for i = 1, . . . , d + 1. Furthermore, if A ∪ B constitutes a
commutative set, f = g.

Proof. Let Li(X) =
∏
j 6=i(X − xj) ∈ AA[X]. Observe that for all j = 1, . . . , d + 1 it holds that

Li(xj) ∈ R∗, since (xi − xj) ∈ R∗. It is easy to verify that the two following polynomials show the
existence of solutions:

f(X) =

d+1∑
i=1

yiLi(xi)
−1Li(X); g(X) =

d+1∑
i=1

Li(X)Li(xi)
−1yi

The uniqueness of f (resp. g) is a consequence of Lemma 7. The fact that f(X) = g(X) when A∪B
constitutes a commutative set follows from inspection.

3.2 Multi-Linear Extensions over non-commutative rings

Multi-linear extensions were introduced in [CMT12] as an improvement over the low-degree exten-
sions used in [GKR15]. Here, we generalize their definition to toast polynomials (Definition 15).

Lemma 9. Let A be a regular difference, commutative set s.t. {0, 1} ⊂ A ⊂ R. Given a function
V : {0, 1}m → R, there exist unique multilinear polynomials V̂L ∈ RA[X1, . . . , Xm]≤1,0 and V̂R ∈
RA[X1, . . . , Xm]0,≤1 extending V , i.e. V̂L(a) = V (a) = V̂R(a) for all a ∈ {0, 1}m. We call V̂L (resp.
V̂R) the left (resp. right) multilinear extension of V , which we will abbreviate by LMLE (resp.
RMLE).

When A ⊂ Z(R), or when V : {0, 1}m → CR(A), it furthermore holds that V̂L(X1, . . . , Xm) =
V̂R(X1, . . . , Xm), in which case we will simply refer to the multilinear extension (MLE) of V and
denote it by V̂ (X1, . . . , Xm).

Proof. Let us start by showing the existence of left (resp.) right MLEs. Let a, b ∈ {0, 1}m, where
a = (a1, . . . , am), b = (b1, . . . , bm). Define χb(X1, . . . , Xm) =

∏m
i=1(Xi(2bi−1)+1−bi), which satisfies

that χb(a) = 1 if a = b and χb(a) = 0 otherwise. Observe that the coefficients of each monomial
of χb(X1, . . . , Xm) are in Z(R). Hence, we can e.g. consider that either χb ∈ RA[X1, . . . , Xm]≤m,0
or χb ∈ RA[X1, . . . , Xm]0,≤m according to the situation. The left multilinear extension of V is
V̂L(X1, . . . , Xm) =

∑
b∈{0,1}m χb(X)·V (b) and the right multilinear extension of V is V̂R(X1, . . . , Xm) =∑

b∈{0,1}m V (b) · χb(X).
We next prove the uniqueness of LMLEs (the same reasoning applies to RMLEs). Assume

f, g ∈ RA[X1, . . . , Xm]≤1,0 are LMLEs of V such that f 6= g and let h = f − g. Since f 6= g, then
h ∈ RA[X1, . . . , Xm]≤1,0 is not the zero polynomial. Let S = {(d1, . . . , dm) ∈ {0, 1}m : h(d1,...,dm) 6= 0}
denote the set of indices of non-zero monomials in h and let (D1, . . . , Dm) ∈ arg min

(d1,...,dm)∈S
(
∑m

i=1 di)

be the index of any of the monomials with the least amount of indeterminates. Denote D =
(D1, . . . , Dm). We are about to show that h(D) 6= 0. First of all, the evaluation at D of the D-th
monomial is the coefficient of such monomial, which is non-zero by the definition of S. Furthermore,

17

every other monomial evaluates to zero according to how D was chosen (any monomial with an
indeterminate Xj such that Dj = 0 will evaluate to zero). But h(D) 6= 0 is in contradiction with the
facts that h(D) = f(D)− g(D) and that both f and g are LMLEs of V , i.e. f(D) = g(D) = V (D).
Hence, it has to be that f = g.

Finally, let us look at the simplification to MLE. When A ⊂ Z(R), since CR(A) = R, using the
commutator ideal of RA[X1, . . . , Xm] we have

V̂L(X1, . . . , Xm) =
∑

b∈{0,1}m
χb(X) · V (b) =

∑
b∈{0,1}m

V (b) · χb(X) = V̂R(X1, . . . , Xm)

For the case when V : {0, 1}m → CR(A), we reason analogously.

4 Doubly-efficient IP over non-commutative rings: Regular difference set
contained in Z(R)

We can now introduce our first generalization of the GKR protocol [GKR15] to layered arithmetic
circuits over possibly infinite, possibly non-commutative rings. In this variant, we assume that A
is a regular difference set such that A ⊂ Z(R). This greatly simplifies our protocol compared with
the one we will present in Section 5, where we only assume that A is commutative.

As most building blocks work essentially as in the finite commutative ring case [CCKP19], we
only give a high level overview of this simpler variant. Since A ⊂ Z(R), all polynomials can be
expressed as elements from R[X1, . . . , Xn] (the ring in Definition 10) rather than RA[X1, . . . , Xn] (see
Corollary 1). This simpler polynomial ring definition is good enough in this case, since polynomial
evaluation at elements in A is a ring homomorphism (Lemma 3) and furthermore we can bound the
number of roots of these polynomials in A. The latter has been proved in [QBC13, ES21], where
they use exceptional rather than R.D. sets, but such assumption can be weakened for that result.
Furthemore, we have unique MLEs rather than LMLEs and RMLEs (see Lemma 9) and both the
layer consistency equation (Eq. (1)) and sum-check protocol generalize naturally.

The only state-of-the-art tool for doubly-efficient IPs that requires more care in this scenario
is the linear time prover sum-check protocol presented in Libra [XZZ+19]. These are all problems
which we encounter and solve in the more restrictive case of Section 5 and hence they can also
be solved at least as efficiently here. We give an overview of the issues for readers familiarized
with [XZZ+19]. First of all, if the Lenstra constant of R is not at least 3, the prover needs to
send intermediate polynomials by giving away their coefficients, rather than their evaluation at
three different points. Additionally, for non-commutative rings, we need to be careful about terms
that get reordered in [XZZ+19]. Namely, during “phase two” of their sum-check algorithm, the
authors rewrite expressions of the form

∑
x,y∈Hm f1(g, x, y)f2(x)f3(y) as

∑
x∈Hm f2(x)·hg(x), where

hg(x) =
∑

y∈Hm f1(g, x, y)f3(y). We cannot assume this in our setting, since f2(x) ∈ R might not
commute with f1(g, x, y). Nevertheless, if we rewrite Eq. (1) so that the the wiring predicates
multiply on the right rather than the left, almost no modifications are needed. Otherwise, if we
want to keep Eq. (1) as is (because we want to hardcode multiplication by constants not in Z(R)
on the left), we can still exploit the sparsity of wiring predicates to enable a linear time prover, as
we demonstrate in the more complex case of Section 5.4.

Theorem 3. Let R be a ring and A ⊂ Z(R) a regular difference set. Let C : Rn → Rk be
a depth-D layered arithmetic circuit. There is an interactive proof for C with soundness error

18

O(D log |C|/|A|). Its round complexity is O(D log |C|) and it communicates O(D log |C|) elements
in R. In terms of operations in R, the prover complexity is O(|C|) and the verifier complexity
is O(n + k + D log |C| + T), where T is the optimal time to evaluate every wiring predicate. For
log-space uniform circuits, T = poly log(|C|) and hence the IP is succinct.

4.1 Improved efficiency

The generality of our construction opens up possibilities for concrete efficiency improvements. One
such example is the case when the ring R over which the circuit is defined can be seen as a free
module of rank d over a ring S with a R.D. set A ⊆ Z(S). Namely, as long as a product of elements in
R takes more than d products in S, we have achieved our goal: Once the circuit has been evaluated,
all operations the prover performs are the (sum of) evaluation of polynomials in R[X] at random
elements from A. Polynomial evaluation is (the sum of) the product of elements of R with elements
of S. Hence, if the ratio between the product of two elements in R and the product of an element of
R with an element of S is bigger than the constants hidden in the O(|C|) complexity of the prover,
this results in a sublinear time prover! We are only aware of two previous examples in the literature
where the prover is sublinear in the size of the circuit: Matrix multiplication [Fre79, Tha13] and
Fast Fourier Transforms (FFT) [LXZ21].

In [LXZ21], the authors provide a sum-check protocol for FFTs where the prover only needs
to do additional O(d) work to produce a proof for a vector of size d. This is sublinear, since the
FFT complexity is O(d log d). If FFTs are used for fast polynomial multiplication, we also obtain
sublinear time provers by taking R to be the polynomial ring and S its coefficient ring. Multiplying
two degree-d polynomials requires either O(d2) or O(d log d) operations in S (since in practice, for
smaller values of d the former approach might be preferable). Multiplying such a polynomial with
an element of S, on the other hand, requires exactly d operations in S, which is a gap of either
O(d) or O(log d) between both approaches. Thus, with our protocol we obtain a sublinear prover
for polynomial multiplication regardless of whether FFT is actually employed in practice.

For a matrix ring R = Mn×n(S), we have that R is a free module of rank n2 over S. Since
the best matrix multiplication algorithms we know require way more than n2 operations, we once
again obtain a sublinear prover by applying the observation at the beginning of this subsection.
All in all, when taking every other complexity metric into account, Thaler’s optimal MATMUL
protocol [Tha13] is still preferable to our approach in terms of concrete efficiency. Nevertheless, we
find interesting the extent to which our construction is versatile: We can obtain sublinear provers
as simple, natural instantiations, rather than having to design a specific protocol. Furthermore, as
far as we know, ours is only the third conceptually different method allowing for sublinear provers
when dealing with matrix multiplication [Fre79, Tha13].

Even if they do not necessarily achieve sublinear time provers, many other rings R benefit from
the improvement implied from being a rank-d module over a ring S. This is the case of many Clifford
algebras, whose applications we discussed in Section 1.2. For example, let R = H(S) denote the
quaternions with coefficients over a ring S. We have that Z(R) = Z(S), and R is a free module
of rank 4 over S. Multiplying two elements in R requires at least 7 multiplications in S for a
commutative ring S (or at least 8 in the non-commutative case) [HL75]. Dual quaternions are of
rank 8 over their coefficient ring S, whereas their product consists on three quaternion products.
Hence, if S is commutative, the prover would roughly obtain a factor of 21/8 = 2.625 improvement
compared with running over [CCKP19] over S.

19

Theoretical improvements. If we furthermore assumed that addition and multiplication of elements
of the chosen non-commutative ring R can be performed at unit cost, we can obtain a series of
theoretical results. Even though one could imagine to have specific hardware for that goal, these
observations remain mostly theoretical, as they require to work with exponential sized rings.

First of all, in [HY11] Hrubeš and Yehudayoff show that given a polynomial f (over a ring S)
of degree d in n variables, there is a non-commutative extension ring R such that S ⊂ Z(R) and
f has a a formula of size O(dn) over R. On the other hand, if S is an algebraically closed field, no
commutative extension ring R can reduce the formula or circuit complexity of f . These would all
seem good news for us: Non-commutativity might be a requirement, the resulting formula is really
small and furthermore R could potentially be a free module over S. Unfortunately, the dimension
of this ring extension is roughly nd.

In [SS10], Schot and Staples show how many NP-complete and]P-complete problems can be
moved to class P if addition and multiplication in a Clifford algebra can be assumed to have unit
cost. These include: Hamiltonian cycle problem, set covering problem, counting the edge-disjoint
cycle decompositions of a finite graph, computing the permanent of an arbitrary matrix, computing
the girth and circumference of a graph, and finding the longest path in a graph. Thus, in this model
of computation, Theorem 3 provides us with a doubly-efficient IP for those languages8. Remember
that, since for a language to have a doubly-efficient IP it has to belong to BPP, this was out of
reach in the non-algebraic complexity world! Once again, the problem is that he algebra has an
exponential dimension.

5 Doubly-efficient IP over non-commutative rings: Commutative, regular
difference set

We can now introduce our most general doubly-efficient IP. Its description and properties follow
nicely from the definitional work we did in Section 3 and the results we proved for toast and
sandwich polynomials. It works for rings that are possibly infinite and non-commutative as long
as they contain a commutative R.D. set A such that A ⊂ R. At several points, and merely as a
writing simplification, we will add the condition {0, 1} ⊂ A. If we remove that assumption, we
can work with polynomials in RA∪{0,1}[~U,~W,~X,~Y]≤2,≤2 rather than RA[~U,~W,~X,~Y]≤2,≤2, since if A is a
commutative set, so is A ∪ {0, 1}. Still, in order to avoid complicating the notation, we state our
results in the simpler scenario.

An example ring to which this section applies is R = Mn×n(Z/pkZ) for a prime p. Since we
can embed the Galois Ring S = GR(pk, n) into R and S contains an exceptional set A of size pn,
we can pick that same A as our commutative, R.D. set [ES21]. On the other hand, we have that
Z(R) = {a · Id : a ∈ Z/pkZ}, so the biggest regular difference set contained in Z(R) is of size p.
Hence, for small values of p, Section 4 might not be enough for soundness.

Our construction follows the archetype of [GKR15], which we described in Sections 1.1 and
2.1. Let us now provide an overview of the required changes. First of all, we must adapt the layer
consistency equation (Eq. (1)), as we describe in Section 5.1. Second, we need a way to avoid an
exponential amount of sum-check executions as we progress through the layers of the circuit. We
show two ways of dealing with this, one in Section 5.2 and another in Appendix B. These new
equations require to design new sum-check protocols, which appear in Section 5.3 and Appendix B.

8 In all precision, Theorem 3 only deals with layered arithmetic circuits, but our result can be generalized to general
arithmetic circuits the same way as in [ZLW+21].

20

Finally, in Section 5.4, we provide detailed algorithms for the prover to run in linear time when
executing such sum-check protocols, as in Libra [XZZ+19]. Our final protocol appears in Figure 4
(Section 5.5).

5.1 A new layer consistency equation

Let us look at Equation (1). The first problem that we encounter when trying to generalize it
to this setting, is that we are no longer able to define MLEs of the Vi : {0, 1}si → R functions
which map b ∈ {0, 1}si to the b-th wire in the i-th layer. Instead, we need to content ourselves
with either LMLEs or RMLEs for those functions (see Section 3.2). A natural impulse would

be to settle for e.g. the LMLE V̂
(i)
L (~Z) and express the consistency with layer i + 1 as follows,

where âdd
(i+1)

(~Z,~X,~Y), m̂ult
(i+1)

(~Z,~X,~Y) ∈ RA[~X,~Y,~Z]≤1,0, V̂
(i+1)
L (~X) ∈ RA[~X]≤1,0 and V̂

(i+1)
R (~Y) ∈

RA[~Y]0,≤1:

V̂
(i)
L (~Z) =

∑
x,y∈{0,1}si+1

(
m̂ult

(i+1)
(~Z, x, y) ·

(
V̂

(i+1)
L (x) · V̂ (i+1)

R (y)
)

+

+ âdd
(i+1)

(~Z, x, y) ·
(
V̂

(i+1)
L (x) + V̂

(i+1)
R (y)

))
. (3)

Both the good and the bad thing about this attempt is that the right hand side is a sandwich
polynomial in RA[~X,~Y,~Z]≤1,≤1, since the coefficients of the wiring predicates belong to Z(R). Having
such a sandwich is problematic when defining a sum-check protocol, which would progress through
univariate polynomials in each indeterminate by partially evaluating the right hand side of Eq. (3).
More specifically, the problem is with the Yj indeterminates (for j = 1, . . . , si+1), as the partial
evaluations sent by the prover would be sandwich polynomials RA[Yj]≤1,≤1. Since our Schwartz-
Zippel lemma (Lemma 8) only copes with toast polynomials, this will not provide us with a sound
protocol.

In order to have toast polynomials at every step of the sum-check protocol, we replace âdd
(i+1)

(~Z,~X,~Y),

m̂ult
(i+1)

(~Z,~X,~Y) ∈ RA[~Z,~X,~Y]≤1,0 in Equation (3) with âdd
(i+1)
L (~Z,~X,~W), m̂ult

(i+1)

L (~Z,~X,~W) ∈ RA[~Z,~X,~W]≤1,0,
still evaluating ~W in y. This seemingly minor change requires to develop a new sum-check protocol
which ensures that P evaluates ~Y and ~W in the same y. We postpone its description to Section 5.3.

For the layer consistency equations featuring V̂
(i)
R (~Z) ∈ RA[~Z]0,≤1, we will also do a change of vari-

ables, as we describe in the following lemma. For easier reference, as it will be important to keep
track of which variables appear in every polynomial and whether it is a MLE, LMLE or RMLE,
we display that information in Table 1.

Lemma 10. Let ~Z = (Z1, . . . , Zsi). Toast multilinear polynomials V̂
(i)
L ∈ RA[~Z]≤1,0 and V̂

(i)
R ∈

RA[~Z]0,≤1 are equal to the following expressions:

V̂
(i)
L (~Z) =

∑
x,y∈{0,1}si+1

(
m̂ult

(i+1)

L (~Z, x, y) ·
(
V̂

(i+1)
L (x) · V̂ (i+1)

R (y)
)

+

+ âdd
(i+1)
L (~Z, x, y) ·

(
V̂

(i+1)
L (x) + V̂

(i+1)
R (y)

))
. (4)

21

V̂
(i)
R (~Z) =

∑
x,y∈{0,1}si+1

((
V̂

(i+1)
L (x) · V̂ (i+1)

R (y)
)
· m̂ult

(i+1)

R (~Z, x, y) +

+
(
V̂

(i+1)
L (x) + V̂

(i+1)
R (y)

)
· âdd(i+1)

R (~Z, x, y)
)
. (5)

Where, in Eq. (4), âdd
(i+1)
L (~Z,~X,~W), m̂ult

(i+1)

L (~Z,~X,~W) ∈ RA[~X,~W,~Z]≤1,0 and in Eq. (5), âdd
(i+1)
R (~Z,~U,~Y),

m̂ult
(i+1)

R (~Z,~U,~Y) ∈ RA[~Y,~U,~Z]≤1,0.

Proof. The term on each side of Eq. (4) (resp. Eq. (5)) is a multilinear polynomial in RA[~Z]≤1,0
(resp. RA[~Z]0,≤1), so by the uniqueness of LMLEs (resp. RMLEs), we are done if their evaluation

at every z ∈ {0, 1}si coincides. The latter follows from the definitions of âdd
(i+1)
L , m̂ult

(i+1)

L (resp.

âdd
(i+1)
R , m̂ult

(i+1)

R).

Remark 1. An interesting detail about this construction, in which A 6⊂ Z(R), is that it is necessary
for wiring predicates to be MLEs, rather than simply LMLEs or RMLEs. Otherwise, we would not
obtain toast polynomials (in the Xi variables for Equation (4), in Yi variables for Equation (5))
throughout the execution of the sumcheck protocol and we would be unable to apply Lemma 8 to
determine soundness. Whereas for the standard addition and multiplication gates (since {0, 1} ⊆
Z(R) ⊆ CR(A)) we always obtain MLEs, if we use more complex wiring predicates which enable
multiplication by hard-coded constants, those constants have to belong to CR(A).

5.2 2-to-1 reduction

Polynomial âdd
(i+1)
L , m̂ult

(i+1)

L âdd
(i+1)
R , m̂ult

(i+1)

R V̂
(i+1)
L V̂

(i+1)
R V̂

(i)
L V̂

(i)
R

(L/R)MLE MLE MLE LMLE RMLE LMLE RMLE

Ring RA[~X,~W,~Z]≤1,0 RA[~Y,~U,~Z]≤1,0 RA[~X]≤1,0 RA[~Y]0,≤1 RA[~Z]≤1,0 RA[~Z]0,≤1

Table 1. Polynomials involved in layer consistency equations. Note that MLEs such as âdd
(i+1)
L could be considered

as either polynomials in RA[~X,~W,~Z]≤1,0 or RA[~X,~W,~Z]0,≤1.

Our protocol starts with a simple layer consistency equation, which relates the output layer
with layer 1 in the circuit according to the following equation:

V̂
(0)
L (γ) =

∑
x,y∈{0,1}s1

(
m̂ult

(1)

L (γ, x, y) ·
(
V̂

(1)
L (x) · V̂ (1)

R (y)
)
+

+âdd
(1)
L (γ, x, y) ·

(
V̂

(1)
L (x) + V̂

(1)
R (y)

))
. (6)

At the conclusion of the sumcheck protocol which is run to verify Equation (6), V encounters one
of the usual obstacles in this kind of constructions. Namely, V needs to evaluate the following
expression:

m̂ult
(1)

L (γ,~X,~W) · (V̂ (1)
L (~X) · V̂ (1)

R (~Y)) + âdd
(1)
L (γ,~X,~W) · (V̂ (1)

L (~X) + V̂
(1)
R (~Y))

22

by replacing ~X,~Y,~W with respective random values χ(0), ψ(0), ω(0) ∈ As1 . In our protocol, we assume

that V has access to oracles that return the required evaluations9 m̂ult
(i+1)

L (γ, χ(i), ω(i)), âdd
(i+1)
L (γ, χ(i), ω(i))

(for i = 0, . . . , D − 1). However, V cannot compute neither V̂
(1)
L (χ(0)) nor V̂

(1)
R (ψ(0)) on their own,

so P will provide those values. These new values claimed by the Prover have to satisfy the two
following layer consistency equations:

V̂
(1)
L (χ(0)) =

∑
x,y∈{0,1}s2

(
âdd

(2)
L (χ(0), x, y) · (V̂ (2)

L (x) + V̂
(2)
R (y)) +

+ m̂ult
(2)

L (χ(0), x, y) · (V̂ (2)
L (x) · V̂ (2)

R (y))
)
. (7)

V̂
(1)
R (ψ(0)) =

∑
x,y∈{0,1}s2

(
(V̂

(2)
L (x) + V̂

(2)
R (y)) · âdd(2)R (ψ(0), x, y) +

+ (V̂
(2)
L (x) · V̂ (2)

R (y)) · m̂ult
(2)

R (ψ(0), x, y)
)
. (8)

In order to avoid an exponential blow-up in the depth of the circuit, we perform a reduction

from the two claimed values V̂
(1)
L (χ(0)), V̂

(1)
R (ψ(0)) to a single one. We do so by sampling random

values α(1), β(1) ∈ A and combining Equations (7) and (8) as described in the next, more general
equation:

α(i)V̂
(i)
L (χ(i−1)) + β(i)V̂

(i)
R (ψ(i−1)) =

∑
x,y∈{0,1}si+1(

α(i) · m̂ult
(i+1)

L (χ(i−1), x, y) · (V̂ (i+1)
L (x) · V̂ (i+1)

R (y)) +

+ β(i) · (V̂ (i+1)
L (x) · V̂ (i+1)

R (y)) · m̂ult
(i+1)

R (ψ(i−1), x, y) +

+ α(i) · âdd(i+1)
L (χ(i−1), x, y) · (V̂ (i+1)

L (x) + V̂
(i+1)
R (y)) +

+ β(i) · (V̂ (i+1)
L (x) + V̂

(i+1)
R (y)) · âdd(i+1)

R (ψ(i−1), x, y)
)

(9)

Lemma 11. Let α(i), β(i) ∈ A be chosen uniformly at random. Except with probability 2/|A|, Equa-
tion (9) holds only if Equations (7) and (8) hold.

Proof. Let L1, R1 denote the left (resp. right) hand side of Equation (7). Let L2, R2 denote the
left (resp. right) hand side of Equation (8). Assume the verification of Equation (9) passes (i.e.
α(L1 −R1) + β(L2 −R2) = 0) but any of Li 6= Ri. By Lemma 8, that would mean that (α, β) is a
root of the bivariate polynomial p(T1, T2) = T1(L1 − R1) + T2(L2 − R2), which only happens with
probability 2/|A|.

As we are about to see in Section 5.3, this 2-to-1 reduction will lead to a sum-check protocol
that runs in 4m rounds, sends a total of 14m ring elements and has a soundness error of 8m|A|−1,
where m is the amount of variables in each vector ~X,~Y,~W,~U. In Appendix B we provide a different

9 For circuits with enough structure, the oracles can be either computed or verified by V in poly(si, si+1) time, as
shown in prior works.

23

approach using a 4-to-2 reduction, for which the underlying sum-check protocol only requires 3m
rounds and sending 9m ring elements, with a soundness error of 6m|A|−1. The downside of the
alternative is that two parallel sumcheck protocols need to be executed for (almost) every layer of
the circuit, resulting in a communication complexity of 18m ring elements per circuit layer.

5.3 Sum-check for non-commutative layer consistency

In this subsection, we generalize the sum-check protocol to work for the layer consistency equations
of our doubly-efficient IP. Specifically, we provide the protocol for Equation (9)10. This description
is simple enough to analyze its soundness error, communication and round complexity. We postpone
the specific algorithm run by the prover and its complexity analysis to Section 5.4. Remember that
A is an R.D. commutative set that contains H = {0, 1}.

Sum-check protocol for Equation (9): Let ~x = (x1, . . . , xm), ~y = (y1, . . . , ym). We provide a
sum-check protocol for

∑
~x,~y∈Hm f(~x, ~y, ~x, ~y) = β, where f ∈ RA[~U,~W,~X,~Y]≤2,≤2 is the multi-variate

sandwich polynomial given by Equation (9). If any of the checks throughout the protocol are not
satisfied, V rejects.

1. In the first round, for b ∈ {0, 1}, P computes the univariate toast polynomials g1,b ∈ RA[U1]0,≤1
given by:

g1,b(U1) =
∑

x2,...,xm∈H
~y∈Hm

f(U1, x2, . . . , xm, ~y, b, x2, . . . , xm, ~y),

and sends them to V. Then V checks whether g1,0, g1,1 ∈ RA[U1]0,≤1 and
∑

b∈H g1,b(b) = β. If
that is the case, V chooses a random element r1 ∈ A and sends it to P.

2. For rounds 2 ≤ i ≤ m, define ~x(i,m] = (xi+1, . . . , xm) and ~x[1,i) = (x1, . . . , xi−1). P sends the
univariate toast polynomials gi,0, gi,1 ∈ RA[Ui]0,≤1 given by:

gi,b(Ui) =
∑

~x[1,i)∈Hi−1,~x(i,m]∈Hm−i

~y∈Hm

f(r1, . . . , ri−1, Ui, ~x(i,m], ~y, ~x[1,i), b, ~x(i,m], ~y),

V checks whether gi,b ∈ RA[Ui]0,≤1 and
∑

b∈H gi,b(b) − gi−1,b(ri−1) = 0. If that is the case, V
chooses a random element ri ∈ A and sends it to P.

3. For rounds m+ 1 ≤ i ≤ 2m, P, define j = i−m, ~r[1,i) = (r1, . . . , ri−1), ~y(j,m] = (yj+1, . . . , ym)
and ~y[1,j) = (y1, . . . , yj−1). P sends the univariate toast polynomials gi,0, gi,1 ∈ RA[Wj]≤1,0 given
by:

gi,b(Wj) =
∑

~y[1,j)∈Hj−1,~y(j,m]∈Hm−j

~x∈Hm

f(~r[1,i), Wj , ~y(j,m], ~x, ~y[1,j), b, ~y(j,m]),

V checks whether gi,0, gi,1 ∈ RA[Wj]≤1,0 and
∑

b∈H gi,b(b) − gi−1,b(ri−1) = 0. If that is the case,
V chooses a random element ri ∈ A and sends it to P.

10 The simpler protocol for Equation (6) can be found in Appendix B.2

24

4. For round i = 2m + 1, define ~r[1,2m+1) = (r1, . . . , r2m) and ~x(1,m] = (x2, . . . , xm). P sends the
toast polynomial g2m+1 ∈ RA[X1]≤2,0 given by:

g2m+1(X1) =
∑

~x(1,m]∈Hm−1,~y∈Hm

f(~r[1,2m+1), X1, ~x(1,m], ~y),

V checks whether g2m+1 ∈ RA[X1]≤2,0 and
∑

b∈H g2m+1(b) − g2m,b(r2m) = 0. If so, V chooses a
random element r2m+1 ∈ A and sends it to P.

5. For rounds 2m+2 ≤ i ≤ 3m, define j = i−2m, ~r[1,i) = (r1, . . . , ri−1) and ~x(j,m] = (xj+1, . . . , xm).
P sends the toast polynomial gi ∈ RA[Xj]≤2,0 given by:

gi(Xj) =
∑

~x(j,m]∈Hm−j ,~y∈Hm

f(~r[1,i), Xj , ~x(j,m], ~y)

V checks whether gi ∈ RA[Xj]≤2,0 and
∑

b∈H gi(b) = gi−1(ri−1). If that is the case, V chooses a
random element ri ∈ A and sends it to P.

6. For rounds 3m+1 ≤ i ≤ 4m, define j = i−3m, ~r[1,i) = (r1, . . . , ri−1) and ~y(j,m] = (yj+1, . . . , ym).
P sends the toast polynomial gi ∈ RA[Yj]0,≤2 given by:

gi(Yj) =
∑

~y(j,m]∈Hm−j

f(~r[1,i), Yj , ~y(j,m]),

V checks whether gi ∈ RA[Yj]0,≤2 and
∑

b∈H gi(b) = gi−1(ri−1). If that is the case, V chooses a
random element ri ∈ A and sends it to P.

7. After the 4m-th round, V checks whether g4m(r4m) = f(r1, . . . , r4m) by querying11 its oracles
at (r1, . . . , r4m).

Theorem 4. Let A be a commutative R.D. set such that {0, 1} ⊆ A. Let f ∈ RA[~U,~W,~X,~Y]≤2,≤2 be
the multi-variate sandwich polynomial given by Equation (9). The sum-check protocol is a public
coin interactive proof with soundness error ≤ 8m · |A|−1. The communication complexity is 14m
elements in R.

Proof. Completeness and communication complexity follow from inspection of the protocol, and
hence we will concentrate on the soundness claim.

Let P̃ denote an arbitrary malicious prover, trying to convince the verifier of a false claim∑
~x,~y∈Hm f(~x, ~y, ~x, ~y) = β̃, where β̃ 6= β. During each of the 4m rounds, P̃ has to send toast

polynomials, specifically g̃i,0, g̃i,1 ∈ RA[Ui]0,≤1 for i ∈ [m], g̃i,0, g̃i,1 ∈ RA[Wi−m]≤1,0 for i ∈ [m+1, 2m],
g̃i ∈ RA[Xi−2m]≤2,0 for i ∈ [2m + 1, 3m] and g̃i ∈ RA[Yi−3m]0,≤2 for i ∈ [3m + 1, 4m]. Notice that
the honest polynomials are indeed toasts, since the random challenges r1, . . . , ri−1 are in A and can
hence be “pushed to the middle” with the rest of the coefficients of each monomial. The verifier
can easily check whether the polynomials received from P̃ are also toasts of the right degree.

Let V denote the event where P̃ succeeds cheating V. For i ∈ [1, 2m], let Ei denote the event
that

∑
b∈H g̃i,b =

∑
b∈H gi,b and for i ∈ [2m + 1, 4m], let Ei denote the event that g̃i = gi. Notice

that Pr[V |E1] = 0, since V checks whether β̃ is equal to
∑

b∈H g̃1,b(b) =
∑

b∈H g1,b(b) = β.

11 As usual in the GKR protocol, some values are actually provided by P, unless the input layer has been reached.
This step is more detailed in Figure 4, but we need to provide a simpler description here for self-containment.

25

Following reverse induction, we will prove that for i = 4m, . . . , 1, Pr[V] ≤ (4m − i + 1) · 2 ·
|A|−1 + Pr[V |Ei ∧ . . . ∧ E4m]. Once we prove the case i = 1 we will be done, since then Pr[V] ≤
4m · 2 · |A|−1 + Pr[V |E1 ∧ . . . ∧ E4m] ≤ 4m · 2 · |A|−1 + Pr[V |E1] ≤ 8m · |A|−1.

For i = 4m, we have that Pr[V] ≤ Pr[V |E4m] + Pr[V |E4m] ≤ 2/|A|+ Pr[V |E4m]. The inequality
Pr[V |E4m] ≤ 2/|A| follows from Lemma 8 as we explain next. Define G4m(Ym) = g̃4m(Ym) −
g4m(Ym) ∈ RA[Ym]0,≤2. Since we are in the case E4m, then g̃4m 6= g4m and G4m(Ym) is not the
zero polynomial. As the Verifier checks whether g̃4m(r4m) = f(r1, . . . , r4m) and we know that
g4m(r4m) = f(r1, . . . , r4m), passing the check implies that G4m(r4m) = 0.

As an intermediate step towards proving that the statment is true for the (i − 1)-th case,
let us show that for i = 4m, . . . , 2, we have Pr[V |Ei−1 ∧ Ei ∧ . . . ∧ E4m] ≤ 2 · |A|−1. First, for
i = 4m, . . . , 3m+ 1, define the toast polynomial

Gi−1(Yi−3m−1) = g̃i−1(Yi−3m−1)− gi−1(Yi−3m−1) ∈ RA[Yi−3m−1]0,≤2,

which is non-zero in the event (V |Ei−1 ∧ Ei ∧ . . . ∧ E4m). Since P successfully passes the check∑
b∈H gi(b) = g̃i−1(ri−1) and we know that

∑
b∈H gi(b) = gi−1(ri−1), by applying Lemma 8 we

conclude that Pr[V |Ei−1 ∧ Ei ∧ . . . ∧ E4m] ≤ |A|−1 ≤ 2 · |A|−1. For i = 3m, . . . , 2m + 2 we apply
the same reasoning of the previous paragraph, this time for the toast polynomial

Gi−1(Xi−2m−1) = g̃i−1(Xi−2m−1)− gi−1(Xi−2m−1) ∈ RA[Xi−2m−1]≤2,0.

For i = 2m+ 1, . . . ,m+ 2 we apply Lemma 8 to the toast polynomial:

Gi−1(Wi−m−1) =
∑
b∈H

g̃i−1,b(Wi−m−1)− gi−1,b(Wi−m−1) ∈ RA[Wi−m−1]≤1,0.

Finally, for i = m+ 1, . . . , 2, we apply Lemma 8 to the toast polynomial:

Gi−1(Ui−1) =
∑
b∈H

g̃i−1,b(Ui−1)− gi−1,b(Ui−1) ∈ RA[Ui−1]0,≤1.

Assume the induction hypothesis is true for i. Using our recently proved fact that Pr[V |Ei−1 ∧
Ei ∧ . . . ∧ E4m] ≤ 2 · |A|−1, we have the following:

Pr[V] ≤ (4m− i+ 1) · 2 · |A|−1 + Pr[V |Ei ∧ . . . ∧ E4m]

≤ (4m− i+ 1) · 2 · |A|−1 + Pr[V |Ei−1 ∧ Ei ∧ . . . ∧ E4m] + Pr[V |Ei−1 ∧ Ei ∧ . . . ∧ E4m]

≤ (4m− i+ 1) · 2 · |A|−1 + 2 · |A|−1 + Pr[V |Ei−1 ∧ Ei ∧ . . . ∧ E4m]

Hence, Pr[V] ≤ (4m − i + 2) · 2 · |A|−1 + Pr[V |Ei−1 ∧ . . . ∧ E4m] and the statment is true for the
(i − 1)-th case. This finishes our reverse induction and concludes our proof by reaching the case
i = 1.

5.4 Linear time Prover for Equation (9)

Multi-linear extensions were key for [CMT12] to improve the complexity of the Prover in [GKR15]
from poly(|C|) to O(|C| log(|C|)). In this section, we will show how to improve upon this to a com-
plexity of O(|C|), in a style similar to Libra [XZZ+19]. In order to achieve this, we will show how the

26

Prover can execute the sum-check algorithm of Section 5.3 for Equation (9). Recall that P has to
sum the evaluations of f ∈ RA[~U,~W,~X,~Y]≤2,≤2 in the hypercube H4m, where H = {0, 1}. Our follow-
ing algorithms assume that P has an initial lookup table (LUT) Tf with these evaluations, as well
as the same kind of lookup tables for its constituent (L/R)MLEs T

m̂ultL
,TâddL

,TV̂L ,T
m̂ultR

,TâddR
,TV̂R .

We also assume that P has received and stored the 2-to-1 reduction challenges α, β ∈ A. For
a simpler write-up, we write the different algorithms as if P already knew the challenge vector
~r = (r1, . . . , r4m) ∈ A4m, even though they will receive the different ri values as the progress
through the execution of the sum-check protocol.

In constrast with [XZZ+19], we make the Prover provide the Verifier with explicit polynomials,
rather than with their evaluations at (up to) three different points. We do this for the sake of
generality12, since interpolation requires exceptional rather than regular-difference sets, and the
target ring (e.g. Z) might not contain a commutative exceptional set of size three.

In order to avoid filling the following pages with its detailed description, we only provide a high
level view of the algorithm in the main body. The different subroutines within it are detailed in
Appendix A.

Algorithm Linear P Consistency(Tf ,Tm̂ultL
,TâddL

,TV̂L
,Tm̂ultR

,TâddR
,TV̂R

, ~χ, ~ψ, α, β, ~r)

All figures referenced within this algorithm are in Appendix A.
Input: f ∈ RA[~U,~W,~X,~Y]≤2,≤2 from Equation (9) and its initial lookup table Tf . Initial lookup tables of its
constituent polynomials Tm̂ultL

,TâddL
,TV̂L

,Tm̂ultR
,TâddR

,TV̂R
. Challenge vector ~r = (r1, . . . , r4m) ∈ A4m and 2-to-1

reduction challenges α, β ∈ A.
Output: Sum-check messages for the layer consistency Equation (9).

1. Run Sumcheck {U, W}(f,Tf , ~r[1,2m]) as described in Figure 6.

2. Run Setup X(m̂ultL,Tm̂ultL
, âddL,TâddL

, m̂ultR,Tm̂ultR
, âddR,TâddR

, ~χ, ~ψ, ~r[1,2m]) as described in Figure 9 in order

to obtain {Tm̂ultL
(x),TâddL

(x),Tm̂ultR
(y),TâddR

(y)}.
3. FV̂L

← Function Evaluations(V̂L,TV̂L
, r2m+1, . . . , r3m).

4. Run Sumcheck X Left(m̂ultL,Tm̂ultL
, âddL,TâddL

,FV̂L
, V̂R,TV̂R

, ~r[2m+1,3m]) as described in Figure 10 in order

to obtain {gmultL2m+i(Xi), g
addL
2m+i(Xi)}

m
i=1.

5. Run Sumcheck X Right(m̂ultR,Tm̂ultR
, âddR,TâddR

,FV̂L
, V̂R,TV̂R

, ~r[2m+1,3m]) as described in Figure 11 in order

to obtain {gmultR2m+i(Xi), g
addR
2m+i(Xi)}

m
i=1.

6. For i ∈ [m], compute:

g2m+i(Xi) = α ·
(
g
multL
2m+i(Xi) + g

addL
2m+i(Xi)

)
+ β ·

(
g
multR
2m+i(Xi) + g

addR
2m+i(Xi)

)
.

7. Run Setup Y(m̂ultL,Tm̂ultL
, âddL,TâddL

, ~r[2m+1,3m]) as described in Figure 12.

8. In order to obtain {g3m+i(Yi)}mi=1, run Sumcheck Y(m̂ultR,Tm̂ultR
, âddR,TâddR

, V̂R,TV̂R
, V̂L(~r[2m+1,3m]), α ·

m̂ultL(~χ,~r[m+1,3m]), α · âddL(~χ,~r[m+1,3m]), ~r[3m+1,4m], β) as described in Figure 13.

Fig. 3. Linear time prover for the sum-check protocol in Section 5.3.

12 It would be easy to modify our algorithms to work by providing polynomial evaluations instead. In fact, the set
{0, 1, γ} is commutative and exceptional as long as γ and γ − 1 are invertible. If 2 is not a zero divisor, we can
always pick γ = 2. Otherwise we may still find such γ easily (as e.g. in F2d ,GR(2k, d),Mn×n(Z/2kZ)) or resort to
ring extensions (e.g. embed Z/2kZ in GR(2k, d) or Z in R).

27

~U,~W variables (Step 1). This is the easiest phase, since we can directly reason about f ∈
RA[~U,~W,~X,~Y]≤2,≤2 from Equation (9) and its LUT Tf . Sumcheck {U, W} (Figure 6) provides with
the polynomials for these first 2m messages. All terms in the sums of Figure 6 can be found, in
turn, in the lookup table F produced by Function Evaluations {U, W} (Figure 5).

The algorithm in Figure 5 follows from the simple observation that, because of linearity, any
RMLE f(~r, Ui,~t) ∈ RA[Ui]0,≤1 satisfies that f(~r, Ui,~t) = (f(~r, 1,~t)− f(~r, 0,~t)) · Ui + f(~r, 0,~t). Notice
that, whereas the initial lookup table Tf contains all the 24m evaluations of f from Equation (9) in
H = {0, 1}, modifications only occur on the first 2m indices, which are the ones related to variables
U and W.

~X variables (Steps 2-6). In this phase, rather than reasoning about f ∈ RA[~U,~W,~X,~Y]≤2,≤2
from Equation (9), we look at its constituent polynomials (m̂ultL, âddL, V̂L, m̂ultR, âddR, V̂R)
separately. Dealing with non-commutative rings is the main reason for the different algorithms in
these steps, compared with the simpler description in Libra [XZZ+19]. Whereas in Libra expressions
of the form

∑
~x,~y∈Hm wp(~g, ~x, ~y)f2(~x)f3(~y) are rewritten as

∑
~x∈Hm f2(~x) · h~g(~x), where h~g(~x) =∑

~y∈Hm wp(~g, ~x, ~y)f3(~y), we cannot assume this to be possible in our setting, since f2(~x) ∈ R might
not commute with f1(~g, ~x, ~y).

Instead, we start by using the algorithm SetupX (Figure 9), which substitutes the ~Z,~U,~W vari-
ables in the LUTs of m̂ultL, âddL, m̂ultR and âddR with their corresponding challenges. Next,
applying Function Evaluations (Figure 7) to the (updated) LUTs, we can produce LMLEs in the
~X variables for V̂L (in Step 3) and m̂ultL, âddL (which happens within Sumcheck X Left). Given
two multi-linear polynomials f(X), g(X), we know that we can compute the sum-check protocol on
their product f(X) ·g(X) in linear time [Tha13]. That is what we do in algorithms Sumcheck X Left

(Figure 10) and Sumcheck X Right (Figure 11), where we compute, in linear time and without
reordering its terms, the sum-check messages for

∑
~x,~y∈Hm wp(~g, ~x, ~y)f2(~x)f3(~y) corresponding to

the ~X variables. The key observation for the latter two algorithms is that, for i ∈ [m], ~x ∈ Hm−i

and wp ∈ {âddL, m̂ultL, âddR, m̂ultR}, the set

N i
~x = {~y ∈ Hm : ∃~z ∈ Hm, (x1, . . . , xi) ∈ H i s.t. wp(~z, (x1, . . . , xi), ~x, ~y) 6= 0},

is s.t.
∑

~x∈Hm−i |N i
~x| ∈ O(2m−i). We exploit the sparseness of our wiring predicates to keep an

O(2m)-time prover without reordering the terms of Eq. (9).

~Y variables (Steps 7-8). Setup Y (Figure 12) substitutes the ~X variables with ~r[2m+1,3m] ∈ Am in

the LUTs of m̂ultL, âddL, so that P obtains values âddL(~g, ~r[m+1,2m], ~r[2m+1,3m]) and m̂ultL(~g, ~r[m+1,2m], ~r[2m+1,3m]).

Applying Function Evaluations (Figure 7) to the LUT of V̂R and the LUTs of m̂ultR and âddR
(which were previously updated in SetupX, Figure 9), we can produce the different RMLEs in the
~Y variables that are required for the execution of Sumcheck Y (Figure 13): For i ∈ [m], ~y ∈ Hm−i,
polynomials V̂R(~r[3m+1,3m+i−1], Yi, ~y), âddR(~r[3m+1,3m+i−1], Yi, ~y) and m̂ultR(~r[3m+1,3m+i−1], Yi, ~y).

5.5 Putting everything together

Figure 4 contains the description of our doubly-efficient interactive proof in the setting where A is a
commutative, R.D. set. The following theorem captures its complexity and soundness, which follow
from the analysis of its building blocks throughout this section. Remember that the {0, 1} ⊂ A
condition is not a strict requirement, but a writing simplification. We could instead work with

28

Doubly-efficient interactive proof over a non-commutative ring

Let R be a ring and A a commutative regular difference set such that {0, 1} ⊂ A ⊂ R. Let C : Rn → Rk be a
layered arithmetic circuit over R with depth D. Without loss of generality, we assume that n and k are powers
of 2.
Input: Circuit input inp and claimed output out.
Output: Accept or reject.

– Compute V̂
(0)
L (X) as the LMLE of out. V chooses a random γ ∈ As0 and sends it to P. Both parties compute

V̂
(0)
L (γ).

– Run a sum-check protocol on Equation (6) as described ina Appendix B.2. Let χ(0), ψ(0), ω(0) denote the

challenge vectors corresponding to the ~X, ~Y and ~W variables within that execution. P sends V̂
(1)
L (χ(0)) and

V̂
(1)
R (ψ(0)) to V.

– V queries their oracles for m̂ult
(1)

L (γ, χ(0), ω(0)) and âdd
(1)
L (γ, χ(0), ω(0)), so as to check that

âdd
(1)
L (γ, χ(0), ω(0)) · (V̂

(1)
L (χ(0)) + V̂

(1)
R (ψ(0))) + m̂ult

(1)

L (γ, χ(0), ω(0)) · (V̂
(1)
L (χ(0)) · V̂ (1)

R (ψ(0))) equals the
last message of the sumcheck execution.

– For circuit layers i = 1, . . . , D − 1:
• V samples α(i), β(i) ∈ A and sends them to P. They run a sumcheck protocol on Equation (9) as

described in Figure 3. Let χ(i), ψ(i) denote the challenge vectors corresponding to the ~X, and ~Y variables
within that execution. At the end of the protocol, P sends V̂

(i+1)
L (χ(i)) and V̂

(i+1)
R (ψ(i)) to V, so that V

can check the validity of the last message in the sumcheck execution. If the check passes, they proceed
to the (i+ 1)-th layer, otherwise, V outputs reject and aborts.

– At the input layer D, V has received two claims V̂
(D)
L (χ(D−1)) and V̂

(D)
R (ψ(D−1)). V queries the evaluation

oracles of V̂
(D)
L and V̂

(D)
R at χ(D−1) and ψ(D−1) respectively, and checks that they equal the sumcheck claims.

If they do, V outputs accept, otherwise, V outputs reject.

a The most detailed version of P’s algorithm is not provided in there. It is, anyway, a simpler version of the one
for Equation (9) in Section 5.4.

Fig. 4. Doubly-efficient IP over a ring containing a commutative, regular difference set.

29

polynomials in RA∪{0,1}[~U,~W,~X,~Y]≤2,≤2 rather than RA[~U,~W,~X,~Y]≤2,≤2, since if A is a commutative
set, so is A ∪ {0, 1}.

Theorem 5. Let R be a ring and A ⊂ R a commutative, regular difference set such that {0, 1} ⊂ A
Let C : Rn → Rk be a depth-D layered arithmetic circuit. There is an interactive proof for C
with soundness error O(D log |C|/|A|). Its round complexity is O(D log |C|) and it communicates
O(D log |C|) elements in R. In terms of operations in R, the prover complexity is O(|C|) and the
verifier complexity is O(n + k + D log |C| + T), where T is the optimal time to evaluate every

wiring predicate (âdd
(i)
L , m̂ult

(i)

L , âdd
(i)
R , m̂ult

(i)

R). For log-space uniform circuits, T = poly log(|C|)
and hence the IP is succinct.

Proof. Completeness follows from the completeness of the sumcheck protocol and the complexity
metrics follow from the analysis of previous building blocks.

Regarding soundness, assume that C(inp) 6= out. This means that the prover must have sent
an incorrect message at some point, either within one of the D sum-check executions or otherwise

some value(s) among {V̂ (i+1)
L (χ(i)), V̂

(i+1)
R (ψ(i))}D−1i=0 . For a given layer i, the probability that the

former goes unnoticed is at most 8si · |A|−1, whereas the probability that the latter is undetected is
at most 2 · |A|−1 (see Lemma 11). Thus, if we denote by Ei the event that any of these two things
happen at layer i, we have that Pr[Ei] ∈ O(si/|A|). Applying the union bound, we obtain that

Pr[C(inp) 6= out ∧ V outputs 1] = Pr[∪Di=1Ei] ≤
D∑
i=1

Pr[Ei] ≤
D∑
i=1

O(si/|A|) ≤ O(D log(|C|) · |A|−1)

References

ACD+19. Mark Abspoel, Ronald Cramer, Ivan Damg̊ard, Daniel Escudero, and Chen Yuan. Efficient information-
theoretic secure multiparty computation over Z/pkZ via galois rings. In Dennis Hofheinz and Alon Rosen,
editors, TCC 2019, Part I, volume 11891 of LNCS, pages 471–501. Springer, Heidelberg, December 2019.

AIK10. Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. From secrecy to soundness: Efficient verification
via secure computation. In Samson Abramsky, Cyril Gavoille, Claude Kirchner, Friedhelm Meyer auf der
Heide, and Paul G. Spirakis, editors, ICALP 2010, Part I, volume 6198 of LNCS, pages 152–163. Springer,
Heidelberg, July 2010.

BCFK21. Alexandre Bois, Ignacio Cascudo, Dario Fiore, and Dongwoo Kim. Flexible and efficient verifiable com-
putation on encrypted data. In Juan Garay, editor, PKC 2021, Part II, volume 12711 of LNCS, pages
528–558. Springer, Heidelberg, May 2021.

BCS21. Jonathan Bootle, Alessandro Chiesa, and Katerina Sotiraki. Sumcheck arguments and their applications.
In Tal Malkin and Chris Peikert, editors, CRYPTO 2021, Part I, volume 12825 of LNCS, pages 742–773,
Virtual Event, August 2021. Springer, Heidelberg.

BS10. Eduardo Bayro-Corrochano and Gerik Scheuermann. Geometric algebra computing: in engineering and
computer science. Springer Science & Business Media, 2010.

CCKP19. Shuo Chen, Jung Hee Cheon, Dongwoo Kim, and Daejun Park. Verifiable computing for approximate
computation. Cryptology ePrint Archive, Report 2019/762, 2019. https://eprint.iacr.org/2019/762.

CDI+13. Gil Cohen, Ivan Bjerre Damg̊ard, Yuval Ishai, Jonas Kölker, Peter Bro Miltersen, Ran Raz, and Ron D.
Rothblum. Efficient multiparty protocols via log-depth threshold formulae - (extended abstract). In
Ran Canetti and Juan A. Garay, editors, CRYPTO 2013, Part II, volume 8043 of LNCS, pages 185–202.
Springer, Heidelberg, August 2013.

CFIK03. Ronald Cramer, Serge Fehr, Yuval Ishai, and Eyal Kushilevitz. Efficient multi-party computation over
rings. In Eli Biham, editor, EUROCRYPT 2003, volume 2656 of LNCS, pages 596–613. Springer, Heidel-
berg, May 2003.

30

https://eprint.iacr.org/2019/762

CMT12. Graham Cormode, Michael Mitzenmacher, and Justin Thaler. Practical verified computation with stream-
ing interactive proofs. In Shafi Goldwasser, editor, ITCS 2012, pages 90–112. ACM, January 2012.

DLS20. Anders P. K. Dalskov, Eysa Lee, and Eduardo Soria-Vazquez. Circuit amortization friendly encodingsand
their application to statistically secure multiparty computation. In Shiho Moriai and Huaxiong Wang, edi-
tors, ASIACRYPT 2020, Part III, volume 12493 of LNCS, pages 213–243. Springer, Heidelberg, December
2020.

ES21. Daniel Escudero and Eduardo Soria-Vazquez. Efficient information-theoretic multi-party computation
over non-commutative rings. In Tal Malkin and Chris Peikert, editors, CRYPTO 2021, Part II, volume
12826 of LNCS, pages 335–364, Virtual Event, August 2021. Springer, Heidelberg.

Fre79. Rūsiņš Freivalds. Fast probabilistic algorithms. In International Symposium on Mathematical Foundations
of Computer Science, pages 57–69. Springer, 1979.

GKR15. Shafi Goldwasser, Yael Tauman Kalai, and Guy N Rothblum. Delegating computation: interactive proofs
for muggles. Journal of the ACM (JACM), 62(4):1–64, 2015.

GMR89. Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of interactive proof
systems. SIAM Journal on computing, 18(1):186–208, 1989.

GNS21. Chaya Ganesh, Anca Nitulescu, and Eduardo Soria-Vazquez. Rinocchio: Snarks for ring arithmetic. Cryp-
tology ePrint Archive, Report 2021/322, 2021. https://eprint.iacr.org/2021/322.

GNSW07. Herman Geuvers, Milad Niqui, Bas Spitters, and Freek Wiedijk. Constructive analysis, types and exact
real numbers. Mathematical Structures in Computer Science, 17(1):3–36, 2007.

HL75. Thomas D Howell and Jean-Claude Lafon. The complexity of the quaternion product. Technical report,
Cornell University, 1975.

HR18. Justin Holmgren and Ron Rothblum. Delegating computations with (almost) minimal time and space
overhead. In Mikkel Thorup, editor, 59th FOCS, pages 124–135. IEEE Computer Society Press, October
2018.

HY11. Pavel Hrubeš and Amir Yehudayoff. Arithmetic complexity in ring extensions. Theory of Computing,
7(1):119–129, 2011.

IK04. Yuval Ishai and Eyal Kushilevitz. On the hardness of information-theoretic multiparty computation. In
Christian Cachin and Jan Camenisch, editors, EUROCRYPT 2004, volume 3027 of LNCS, pages 439–455.
Springer, Heidelberg, May 2004.

JMRO22. J. Jin, E. McMurtry, B. Rubinstein, and O. Ohrimenko. Are we there yet? timing and floating-point
attacks on differential privacy systems. In 2022 2022 IEEE Symposium on Security and Privacy (SP)
(SP), pages 1547–1547, Los Alamitos, CA, USA, may 2022. IEEE Computer Society.

LFKN92. Carsten Lund, Lance Fortnow, Howard Karloff, and Noam Nisan. Algebraic methods for interactive proof
systems. Journal of the ACM (JACM), 39(4):859–868, 1992.

LXZ21. Tianyi Liu, Xiang Xie, and Yupeng Zhang. zkCNN: Zero knowledge proofs for convolutional neural
network predictions and accuracy. In Giovanni Vigna and Elaine Shi, editors, ACM CCS 2021, pages
2968–2985. ACM Press, November 2021.

Mir12. Ilya Mironov. On significance of the least significant bits for differential privacy. In Ting Yu, George
Danezis, and Virgil D. Gligor, editors, ACM CCS 2012, pages 650–661. ACM Press, October 2012.

QBC13. Guillaume Quintin, Morgan Barbier, and Christophe Chabot. On generalized reed–solomon codes over
commutative and noncommutative rings. IEEE transactions on information theory, 59(9):5882–5897,
2013.

RAS08. Mikel D Rodriguez, Javed Ahmed, and Mubarak Shah. Action MACH a spatio-temporal maximum
average correlation height filter for action recognition. In 2008 IEEE conference on computer vision and
pattern recognition, pages 1–8. IEEE, 2008.

SS10. René Schott and G. Stacey Staples. Reductions in computational complexity using clifford algebras.
Advances in applied Clifford algebras, 20(1):121–140, 2010.

Tha13. Justin R Thaler. Practical verified computation with streaming interactive proofs. PhD thesis, 2013.
XZZ+19. Tiancheng Xie, Jiaheng Zhang, Yupeng Zhang, Charalampos Papamanthou, and Dawn Song. Libra:

Succinct zero-knowledge proofs with optimal prover computation. In Alexandra Boldyreva and Daniele
Micciancio, editors, CRYPTO 2019, Part III, volume 11694 of LNCS, pages 733–764. Springer, Heidelberg,
August 2019.

ZLW+21. Jiaheng Zhang, Tianyi Liu, Weijie Wang, Yinuo Zhang, Dawn Song, Xiang Xie, and Yupeng Zhang.
Doubly efficient interactive proofs for general arithmetic circuits with linear prover time. In Proceedings
of the 2021 ACM SIGSAC Conference on Computer and Communications Security, pages 159–177, 2021.

31

https://eprint.iacr.org/2021/322

A Appendix to Section 5.4: Linear time Prover for Equation (9)

Here we provide the protocols for Section 5.4 that could not fit in the main body.

Algorithm Function Evaluations {U, W}(f,Tf , r1, . . . , r2m)

Input: f ∈ RA[~U,~W,~X,~Y]≤2,≤2 from Equation (9), initial lookup table Tf , random challenges ~r = (r1, . . . , r2m) ∈
A2m.
Output: Polynomials f(r1, . . . , ri−1, Ui,~ti,b) ∈ RA[Ui]0,≤1 for i ∈ [1,m] and ~ti,b ∈ H4m−i. Polynomials
f(r1, . . . , ri−1, Wi−m,~ti,b) ∈ RA[Wi−m]≤1,0 for i ∈ [m+ 1, 2m] and ~ti,b ∈ H4m−i.

– For i ∈ [1, 2m] let ~0 be the length-(i− 1) zero vector and r[1,i) = (r1, . . . , ri−1).

• For i ∈ [1,m]: For b ∈ H, and for every ~y ∈ Hm, ~x(i,m] ∈ Hm−i, ~x[1,i) ∈ Hi−1, define ~ti,b =
(~x(i,m], ~y, ~x[1,i), b, ~x(i,m], ~y) ∈ H4m−i and do:

f(r[1,i), Ui,~ti,b)← Tf [~0, 1,~ti,b] · Ui + Tf [~0, 0,~ti,b] · (1− Ui) (10)

Tf [~0, 0,~ti,b]← Tf [~0, 1,~ti,b] · ri + Tf [~0, 0,~ti,b] · (1− ri)

• For i ∈ [m + 1, 2m]: For b ∈ H, and for every ~x ∈ Hm, ~y(i−m,m] ∈ H2m−i, ~y[1,i−m) ∈ Hi−m−1, define
~ti,b = (~y(i−m,m], ~x, ~y[1,i−m), b, ~y(i−m,m]) ∈ H4m−i and do:

f(r[1,i), Wi−m,~ti,b)← Wi−m · Tf [~0, 1,~ti,b] + (1− Wi−m) · Tf [~0, 0,~ti,b] (11)

Tf [~0, 0,~ti,b]← ri · Tf [~0, 1,~ti,b] + (1− ri) · Tf [~0, 0,~ti,b]

– Let F contain all polynomials in RA[Ui]0,≤1 (resp. RA[Wi]≤1,0) defined at Equation (10) (resp. Equation (11))
throughout the execution.

Fig. 5. Evaluations of toast multi-linear polynomials prior to sum-check.

B Doubly-efficient IP over non-commutative rings: Better round complexity

We introduce a variant of the protocol from Section 5 which has a better round complexity (3m
rounds per layer of the circuit, where m is the width of the layer) at the cost of a more expen-
sive communication complexity (18m ring elements). The main idea behind this improvement is
explained in Appendix B.1 and the high level description of this variant appears Figure 14. The
necessary sum-check protocols appear in Appendix B.2 and B.3. P’s most detailed algorithms are
not provided in those two appendices, but they are a simpler version of the one used in Section 5.4.

B.1 4-to-2 reduction

The GKR protocol starts with a simple layer consistency equation, which relates the output layer
with layer 1 in the circuit according to the following equation:

V̂
(0)
L (γ) =

∑
x,y∈{0,1}s1

(
m̂ult

(1)

L (γ, x, y) ·
(
V̂

(1)
L (x) · V̂ (1)

R (y)
)
+

+âdd
(1)
L (γ, x, y) ·

(
V̂

(1)
L (x) + V̂

(1)
R (y)

))
. (14)

32

Algorithm Sumcheck {U, W}(f,Tf , r1, . . . , r2m)

Input: f ∈ RA[~U,~W,~X,~Y]≤2,≤2 from Equation (9), initial lookup table Tf , random challenges ~r = (r1, . . . , r2m) ∈
A2m.
Output: First 2m sumcheck messages for f .

– F ← Function Evaluations {U, W}(f,Tf , r1, . . . , r2m)
– For i ∈ [1,m] and b ∈ H, define ~ti,b = (~x(i,m], ~y, ~x[1,i), b, ~x(i,m], ~y) ∈ H4m−i for every ~y ∈ Hm, ~x(i,m] ∈ Hm−i,
~x[1,i) ∈ Hi−1. Compute and send:

gi,b(Ui) =
∑

~ti,b∈H4m−i

f(r1, . . . , ri−1, Ui,~ti,b).

– For i ∈ [m + 1, 2m] and b ∈ H, define ~ti,b = (~y(i−m,m], ~x, ~y[1,i−m), b, ~y(i−m,m]) ∈ H4m−i for every ~x ∈ Hm,
~y(i−m,m] ∈ H2m−i, ~y[1,i−m) ∈ Hi−m−1. Compute and send:

gi,b(Wi−m) =
∑

~ti,b∈H4m−i

f(r1, . . . , ri−1, Wi−m,~ti,b).

– Return {gi,b(Ui)}b∈H,i∈[1,m], {gi,b(Wi−m)}b∈H,i∈[m+1,2m].

Fig. 6. Sum-check polynomials for the block of ~U,~W variables.

Algorithm Function Evaluations(f ,Tf ,r1,. . . ,rm)

Input: Lookup table Tf corresponding to either f ∈ RA[X1, . . . , Xm]≤1,0 or f ∈ RA[Y1, . . . , Ym]0,≤1, random
challenges ~r = (r1, . . . , rm) ∈ Am.

Output: Polynomials f(r1, . . . , ri−1, Xi,~b) ∈ RA[Xi] (or f(r1, . . . , ri−1, Yi,~b) ∈ RA[Yi]) for i ∈ [1,m] and ~b ∈
{0, 1}m−i.

– For i = 1, . . . ,m let ~0 be the length-(i− 1) zero vector and do:

• For ~b = (bm−i, . . . , b1) ∈ Hm−i do:
∗ If f ∈ RA[Y1, . . . , Ym]0,≤1, define:

f(r1, . . . , ri−1, Yi,~b)←
(
Tf [~0, 1,~b]− Tf [~0, 0,~b]

)
· Yi + Tf [~0, 0,~b] (12)

Tf [~0, 0,~b]←
(
Tf [~0, 1,~b]− Tf [~0, 0,~b]

)
· ri + Tf [~0, 0,~b]

∗ Else (i.e. if f ∈ RA[X1, . . . , Xm]≤1,0), define:

f(r1, . . . , ri−1, Xi,~b)← Xi ·
(
Tf [~0, 1,~b]− Tf [~0, 0,~b]

)
+ Tf [~0, 0,~b] (13)

Tf [~0, 0,~b]← ri ·
(
Tf [~0, 1,~b]− Tf [~0, 0,~b]

)
+ Tf [~0, 0,~b]

– Let F contain all polynomials in RA[Xi]≤1,0 (resp. RA[Yi]0,≤1) defined at Equation (13) (resp. Equation (12))
throughout the execution.

Fig. 7. Evaluations of toast multi-linear polynomials for sum-check.

Algorithm Precompute(g1, . . . , g`)

Input: Random challenge ~g = (g1, . . . , g`) ∈ A`.
Output: Lookup table {T~g[~b]}~b∈{0,1}` containing the evaluations of I(~g,~b) =

∏m
i=1

(
gi · bi + (1− gi) · (1− bi)

)
.

– Set T~g[~0]← (1− g1) and T~g[0, . . . , 0, 1]← g1.
– For i = 1, . . . , `− 1, do:
• For (bi, . . . , b1) ∈ {0, 1}i, do:

∗ T~g[~0, 0, bi, . . . , b1]← T~g[~0, bi, . . . , b1] · (1− gi+1).
∗ T~g[~0, 1, bi, . . . , b1]← T~g[~0, bi, . . . , b1] · gi+1.

Fig. 8. Computing LUT for identity polynomial evaluated at a challenge.

33

Algorithm Setup X(f1,Tf1 , f2,Tf2 , f3,Tf3 , f4,Tf4 , ~χ,
~ψ, ~r)

Input: Multi-linear f1(z, x, y), f2(z, x, y) ∈ RA[~X,~W,~Z]≤1,0, f3(z, x, y), f4(z, x, y) ∈ RA[~Y,~U,~Z]≤1,0 and their initial

look-up tables. Random challengesa ~χ, ~ψ ∈ Am, ~r ∈ A2m.
Output: Look-up tables Tfi for the block of ~X variables.

– T~χ[~z]← Precompute(~χ).

– T~ψ[~z]← Precompute(~ψ).
– T~r[1,m]

[~x]← Precompute(~r[1,m]).
– T~r[m+1,2m]

[~y]← Precompute(~r[m+1,2m]).
– ∀~x, ~y ∈ {0, 1}m, set Tf1 [~x] = Tf2 [~x] = Tf3 [~y] = Tf4 [~y] = 0.
– For i = 1, 2 and for every (~z, ~x, ~y) ∈ H3m such that fi(~z, ~x, ~y) 6= 0, do:

Tfi [~x]← Tfi [~x] + T~χ[~z] · T~r[m+1,2m]
[~y] · fi(~z, ~x, ~y).

– For i = 3, 4 and for every (~z, ~x, ~y) ∈ H3m such that fi(~z, ~x, ~y) 6= 0, do:

Tfi [~y]← Tfi [~y] + fi(~z, ~x, ~y) · T~ψ[~z] · T~r[1,m]
[~x].

– Return Tf1 [x],Tf2 [x],Tf3 [y],Tf4 [y].

a For a shorter write-up, we describe this algorithm as if ~z, ~x, ~y ∈ {0, 1}m. In practice, since ~z comes from a
different layer, it might have different length.

Fig. 9. Substituting ~Z,~U,~W in LUTs with their corresponding challenges.

Algorithm Sumcheck X Left(m̂ultL,Tm̂ultL
(~x), âddL,TâddL

(~x),FV̂L
, V̂R,TV̂R

(~y), ~r[2m+1,3m])

Input: Parse ~X = (X1, . . . , Xm) and ~Y = (Y1, . . . , Ym). Toast polynomials

m̂ultL(~χ,~r[m+1,2m],~X), âddL(~χ,~r[m+1,2m],~X), V̂L(~X) ∈ RA[~X]≤1,0 and V̂R(~Y) ∈ RA[~Y]0,≤1, given by their lookup
tables Tm̂ultL

(x),TâddL
(x),TV̂R

(y) containing all evaluations at Hm. Random challenges ~r[2m+1,3m] ∈ Am and

table FV̂L
← Function Evaluations(V̂L,TV̂L

, r2m+1, . . . , r3m).

Output: 2m partial sumcheck messages, half for
∑
~x,~y∈Hm g

multL
2m+i(~x, ~y) and half for

∑
~x,~y∈Hm g

addL
2m+i(~x, ~y). Each

message is a polynomial in RA[Xi]≤2,0.

– Fm̂ultL
← Function Evaluations(m̂ultL,Tm̂ultL

, r2m+1, . . . , r3m).

– FâddL
← Function Evaluations(âddL,TâddL

, r2m+1, . . . , r3m).

– Compute Y =
∑
~y∈Hm V̂R(~y) from TV̂R

(~y) and store it for the next steps.
– For i ∈ [m], compute as follows:

g
multL
2m+i(Xi) =

∑
~x∈Hm−i

m̂ultL(~r[2m+1,2m+i−1], Xi, ~x) · V̂L(~r[2m+1,2m+i−1], Xi, ~x) · Y.

g
addL
2m+i(Xi) =

∑
~x∈Hm−i

âddL(~r[2m+1,2m+i−1], Xi, ~x) ·
(
V̂L(~r[2m+1,2m+i−1], Xi, ~x) + Y

)
.

– Return each polynomial {gmultL2m+1(X1), g
addL
2m+1(X1), . . . , g

multL
3m (Xm), g

addL
3m (Xm)}.

Fig. 10. Sumcheck polynomials for ~X variables and “V̂
(i)
L -side” of Equation (9).

34

Algorithm Sumcheck X Right(m̂ultR,Tm̂ultR
(~y), âddR,TâddR

(~y),FV̂L
, V̂R,TV̂R

(~y), ~r[2m+1,3m])

Input: Parse ~X = (X1, . . . , Xm) and ~Y = (Y1, . . . , Ym). Table FV̂L
with all evaluations of V̂L(~X) ∈ RA[~X]≤1,0

in Hm. Toast polynomials m̂ultR(~ψ,~r[1,m],~Y), âddR(~ψ,~r[1,m],~Y), V̂R(~Y) ∈ RA[~Y]0,≤1 given by their lookup tables
Tm̂ultR

(~y),TâddR
(~y),TV̂R

(~y), containing all evaluations at Hm. Random challenges ~r[2m+1,3m] ∈ Am and table

FV̂L
← Function Evaluations(V̂L,TV̂L

, r2m+1, . . . , r3m).

Output: 2m partial sumcheck messages, half for
∑
~x,~y∈Hm g

multR
2m+i(~x, ~y) and half for

∑
~x,~y∈Hm g

addR
2m+i(~x, ~y). Each

message is a polynomial in RA[Xi]≤1,0.

– For i ∈ [m], compute g
multR
2m+i ∈ RA[Xi]≤1,0 as follows. Notice

∑
~y∈Hm V̂R(~y) · m̂ultR(~y) can be computed once

and in time O(2m) from TV̂R
(~y) and Tm̂ultR

(~y) for all the steps.

g
multR
2m+i(Xi) =

∑
~x∈Hm−i

V̂L(~r[2m+1,2m+i−1], Xi, ~x) ·
(∑
~y∈Hm

V̂R(~y) · m̂ultR(~y)
)
.

– For i ∈ [m], compute g
addR
2m+i ∈ RA[Xi]≤1,0 as follows. First, compute

∑
~y∈Hm âddR(~y). Next, compute∑

~y∈Hm V̂R(~y) · âddR(~y). Given those, the next expression can be computed in O(2m−i) time.

g
addR
2m+i(Xi) =

∑
~x∈Hm−i

∑
~y∈Hm

(
V̂L(~r[2m+1,2m+i−1], Xi, ~x) + V̂R(~y)

)
· âddR(~y).

– Return each polynomial {gmultR2m+1(X1), g
addR
2m+1(X1), . . . , g

multR
3m (Xm), g

addR
3m (Xm)}.

Fig. 11. Sumcheck polynomials for ~X variables and “V̂
(i)
R -side” of Equation (9).

Algorithm Setup Y(m̂ultL,Tm̂ultL
(~x), âddL,TâddL

(~x), ~r[2m+1,3m])

Input: m̂ultL(~χ,~r[m+1,2m],~X), âddL(~χ,~r[m+1,2m],~X) ∈ RA[~X]≤1,0 and their look-up tables after Setup X (Figure 9).
Random challenge ~r[2m+1,3m] ∈ Am.

Output: Values m̂ultL(~g, ~r[m+1,2m], ~r[2m+1,3m]) and âddL(~g, ~r[m+1,2m], ~r[2m+1,3m]).

– T~r[2m+1,3m]
[~x]← Precompute(~r[2m+1,3m]).

– Compute:

âddL(~χ,~r[m+1,2m], ~r[2m+1,3m]) =
∑
~x∈H

T~r[2m+1,3m]
[~x] · TâddL

[~x].

m̂ultL(~χ,~r[m+1,2m], ~r[2m+1,3m]) =
∑
~x∈H

T~r[2m+1,3m]
[~x] · Tm̂ultL

[~x].

– Return m̂ultL(~g, ~r[m+1,2m], ~r[2m+1,3m]) and âddL(~g, ~r[m+1,2m], ~r[2m+1,3m]).

Fig. 12. Substituting ~X with ~r[2m+1,3m] ∈ Am in the LUTs of m̂ultL, âddL.

35

Algorithm Sumcheck Y (m̂ultR,Tm̂ultR
(y), âddR,TâddR

(y), V̂R,TV̂R
(y), V̂L(~r[2m+1,3m]),mL, aL, ~s, β)

Input: Toast polynomials m̂ultR(~ψ,~r[1,m],~Y), âddR(~ψ,~r[1,m],~Y), V̂R(~Y) ∈ RA[~Y]0,≤1 given by their lookup tables

Tm̂ultR
(~y),TâddR

(~y) (after the execution of Setup X (Figure 9)) and TV̂R
(~y). Values mL = α · m̂ultL(~χ,~r[m+1,3m])

and aL = α · âddL(~χ,~r[m+1,3m]). Random challenges ~s = ~r[3m+1,4m] ∈ Am.
Output: Last m sumcheck messages for Equation (9). Each message is a polynomial g3m+i(Yi) ∈ RA[Yi]≤2,0.

– FV̂R
← Function Evaluations(V̂R,TV̂R

, s1, . . . , sm).

– FâddR
← Function Evaluations(âddR,TâddR

, s1, . . . , sm).

– Fm̂ultR
← Function Evaluations(m̂ultR,Tm̂ultR

, s1, . . . , sm).

– For i ∈ [m], compute g3m+i(Yi) = (gL3m+i(Yi) + gR3m+i(Yi)) ∈ RA[Yi]0,≤2 as follows. Notice that given
FV̂R

,FâddR
,Fm̂ultR

, computation takes O(2m−i) time:

gL3m+i(Yi) = aL · V̂L(~r[2m+1,3m]) +
∑

~y∈Hm−i

(
aL · V̂R(~s[1,i−1], Yi, ~y)

+mL · V̂L(~r[2m+1,3m]) · V̂R(~s[1,i−1], Yi, ~y)
)
.

gR3m+i(Yi) = β ·
(∑
~y∈Hm−i

(
V̂L(~r[2m+1,3m]) + V̂R(~s[1,i−1], Yi, ~y)

)
· âddR(~s[1,i−1], Yi, ~y)

+ V̂L(~r[2m+1,3m]) · V̂R(~s[1,i−1], Yi, ~y) · m̂ultR(~s[1,i−1], Yi, ~y)
)
.

– Return each polynomial {g3m+1(Y1), . . . , g4m(Ym)}.

Fig. 13. Sumcheck polynomials for the block of ~Y variables

At the conclusion of the sumcheck protocol which is run to verify Equation (14), V encounters one
of the usual obstacles in the GKR protocol. Namely, V needs to evaluate the following expression:

m̂ult
(1)

L (γ,~X,~W) · (V̂ (1)
L (~X) · V̂ (1)

R (~Y)) + âdd
(1)
L (γ,~X,~W) · (V̂ (1)

L (~X) + V̂
(1)
R (~Y))

by replacing ~X,~Y,~W with respective random values χ
(0)
L , ψ

(0)
L , ω(0) ∈ As1 . In our protocol, we assume

that V has access to oracles that return the required evaluations13 of m̂ult
(i+1)

L (γ,~X,~W), âdd
i+1
L (γ,~X,~W)

(for i = 0, . . . , D − 1). However, V cannot compute neither V̂
(1)
L (χ

(0)
L) nor V̂

(1)
R (ψ

(0)
L) on their own,

so P will provide those values. These new values claimed by the Prover have to satisfy the two
following layer consistency equations:

V̂
(1)
L (χ

(0)
L) =

∑
x,y∈{0,1}s2

(
âdd

(2)
L (χ

(0)
L , x, y) · (V̂ (2)

L (x) + V̂
(2)
R (y))+

+m̂ult
(2)

L (χ
(0)
L , x, y) · (V̂ (2)

L (x) · V̂ (2)
R (y))

)
. (15)

V̂
(1)
R (ψ

(0)
L) =

∑
x,y∈{0,1}s2

(
(V̂

(2)
L (x) + V̂

(2)
R (y)) · âdd(2)R (ψ

(0)
L , x, y) +

+ (V̂
(2)
L (x) · V̂ (2)

R (y)) · m̂ult
(2)

R (ψ
(0)
L , x, y)

)
. (16)

13 For circuits with enough structure, the oracles can be either computed or verified by V in poly(si, si+1) time, as
shown in prior works.

36

Usually, at this point and in order to avoid an exponential blow-up in the depth of the circuit, a

reduction from the two claimed values V̂
(1)
L (χ

(0)
L), V̂

(1)
R (ψ

(0)
L) to a single one is performed, as we did

in Section 5.2. In the alternative approach we present in this section, we proceed with the individual
verification of Equations (15) and (16). As we are about to show, this will not lead up to computing
O(2D) executions of the sumcheck protocol.

Let χ
(1)
L , ψ

(1)
L , ω(1) ∈ As2 (resp. χ

(1)
R , ψ

(1)
R , υ(1) ∈ As2) be the random challenges resulting from

the execution of the sumcheck protocol for Eq. (15) (resp. Eq. (16)). Similar to what happened at
the conclusion of the sumcheck protocol used to verify Eq. (14), V ends up needing to compute

(besides the values they can obtain by querying the oracles), the values of V̂
(2)
L (χ

(1)
L), V̂

(2)
R (ψ

(1)
L) and

V̂
(2)
L (χ

(1)
R), V̂

(2)
R (ψ

(1)
R). For V to meet their efficiency requirements, they need to resort to P, but this

time the four values can be reduced to two as described in Equations (17) and (18) instantiated for

i = 2. Values α
(i)
L , α

(i)
R , β

(i)
L , β

(i)
R ∈ A are sampled by V and sent to P.

α
(i)
L · V̂

(i)
L (χ

(i−1)
L) + β

(i)
L · V̂

(i)
L (χ

(i−1)
R) =

∑
x,y∈{0,1}si+1(

α
(i)
L · m̂ult

(i+1)

L (χ
(i−1)
L , x, y) ·

(
V̂

(i+1)
L (x) · V̂ (i+1)

R (y)
)

+

+ β
(i)
L · m̂ult

(i+1)

L (χ
(i−1)
R , x, y) ·

(
V̂

(i+1)
L (x) · V̂ (i+1)

R (y)
)

+

+ α
(i)
L · âdd

(i+1)
L (χ

(i−1)
L , x, y) ·

(
V̂

(i+1)
L (x) + V̂

(i+1)
R (y)

)
+

+ β
(i)
L · âdd

(i+1)
L (χ

(i−1)
R , x, y) ·

(
V̂

(i+1)
L (x) + V̂

(i+1)
R (y)

))
. (17)

α
(i)
R · V̂

(i)
R (ψ

(i−1)
L) + β

(i)
R · V̂

(i)
R (ψ

(i−1)
R) =

∑
x,y∈{0,1}si+1(

α
(i)
R ·

(
V̂

(i+1)
L (x) · V̂ (i+1)

R (y)
)
· m̂ult

(i+1)

R (ψ
(i−1)
L , x, y) +

+ β
(i)
R ·

(
V̂

(i+1)
L (x) · V̂ (i+1)

R (y)
)
· m̂ult

(i+1)

R (ψ
(i−1)
R , x, y) +

+ α
(i)
R ·

(
V̂

(i+1)
L (x) + V̂

(i+1)
R (y)

)
· âdd(i+1)

R (ψ
(i−1)
L , x, y) +

+ β
(i)
R ·

(
V̂

(i+1)
L (x) + V̂

(i+1)
R (y)

)
· âdd(i+1)

R (ψ
(i−1)
R , x, y)

)
. (18)

The advantage of this approach is that, as Eq. (17) (resp. Eq. (18)) only mixes polynomials in
RA[~X,~W,~Y]≤2,≤1 (resp. RA[~X,~U,~Y]≤1,≤2) with each other, the sumcheck protocol will now check 3m-
variate polynomials, rather than 4m-variate polynomials as in Section 5. This directly translates
into the claimed reduction on round complexity.

B.2 Sum-check protocol for Equations (6), (15) and (17)

For j ∈ {1, 2}, let ~tj = (tj,1, . . . , tj,m). We provide a sum-check protocol for
∑
~t1,~t2∈Hm f(~t1,~t2,~t2) =

β, where f ∈ RA[~X,~W,~Y]≤2,≤1 is the multi-variate sandwich polynomial given by Equation (6).

If any of the checks throughout the protocol are not satisfied, V rejects.

37

Doubly-efficient IP over a non-commutative ring, using 4-to-2 reduction

Let R be a ring and A a commutative regular difference set such that {0, 1} ⊂ A ⊂ R. Let C : Rn → Rk be a
layered arithmetic circuit over R with depth D. W.l.o.g. we assume that n and k are powers of 2.
Input: Circuit input inp and claimed output out.
Output: Accept or reject.

– Compute V̂
(0)
L (X) as the LMLE of out. V chooses a random γ ∈ As0 and sends it to P. Both parties compute

V̂
(0)
L (γ).

– Run a sumcheck protocol on Equation (6) as described in Appendix B.2. Let χ
(0)
L , ψ

(0)
L , ω(0) denote the

challenge vectors corresponding to the ~X, ~Y and ~W variables within that execution. P sends V̂
(1)
L (χ

(0)
L) and

V̂
(1)
R (ψ

(0)
L) to V.

– V queries their oracles for m̂ult
(1)

L (γ, χ
(0)
L , ω(0)) and âdd

(1)
L (γ, χ

(0)
L , ω(0)), so as to check that

âdd
(1)
L (γ, χ

(0)
L , ω(0)) · (V̂

(1)
L (χ

(0)
L) + V̂

(1)
R (ψ

(0)
L)) + m̂ult

(1)

L (γ, χ
(0)
L , ω(0)) · (V̂

(1)
L (χ

(0)
L) · V̂ (1)

R (ψ
(0)
L)) equals the

last message of the sumcheck execution.
– Run a sumcheck protocol on Equation (15) (resp. Equation (16)) as described in Appendix B.2 (resp.

Appendix B.3). Let χ
(1)
L , ψ

(1)
L , ω(1) (resp. χ

(1)
R , ψ

(1)
R , υ(1)) denote the challenge vectors corresponding to the ~X,

~Y and ~W (resp. ~X, ~Y and ~U) variables within that execution. P sends V̂
(2)
L (χ

(1)
L) and V̂

(2)
R (ψ

(1)
L) (resp. V̂

(2)
L (χ

(1)
R)

and V̂
(2)
R (ψ

(1)
R)) to V.

– V queries their oracles for m̂ult
(2)

L (χ
(0)
L , χ

(1)
L , ω(1)) and âdd

(2)
L (χ

(0)
L , χ

(1)
L , ω(1)), so as to check that

âdd
(2)
L (χ

(0)
L , χ

(1)
L , ω(1)) · (V̂ (2)

L (χ
(1)
L) + V̂

(2)
R (ψ

(1)
L)) + m̂ult

(2)

L (χ
(0)
L , χ

(1)
L , ω(1)) · (V̂ (2)

L (χ
(1)
L) · V̂ (2)

R (ψ
(1)
L)) equals

the last message of the sumcheck protocol for Equation (15).

– V queries their oracles for m̂ult
(2)

R (ψ
(0)
L , χ

(1)
R , υ(1)) and âdd

(2)
R (ψ

(0)
L , χ

(1)
R , υ(1)), so as to check that (V̂

(2)
L (χ

(1)
R)+

V̂
(2)
R (ψ

(1)
R)) · âdd(2)R (ψ

(0)
L , χ

(1)
R , υ(1)) + (V̂

(2)
L (χ

(1)
R) · V̂ (2)

R (ψ
(1)
R)) · m̂ult

(2)

R (ψ
(0)
L , χ

(1)
R , υ(1)) equals the last message

of the sumcheck protocol for Equation (16).
– For circuit layers i = 2, . . . , D − 1:
• V samples α

(i)
L , α

(i)
R , β

(i)
L , β

(i)
R ∈ A and sends them to P. They run a sumcheck protocol on Equation

(17) (resp. Equation (18)) as described in Appendix B.2 (resp. Appendix B.3). Let χ
(i)
L , ψ

(i)
L ∈ Asi+1

(resp. χ
(1)
R , ψ

(1)
R ∈ Asi+1) denote the challenge vectors corresponding to the ~X, and ~Y variables within

that execution. At the end of the protocol, P sends V̂
(i+1)
L (χ

(i)
L) and V̂

(i+1)
R (ψ

(i)
L) (resp. V̂

(i+1)
L (χ

(i)
R) and

V̂
(i+1)
R (ψ

(i)
R)) to V, so that V can check the validity of the last message in the sumcheck execution. If the

check passes for both Equation (17) and Equation (18), they proceed to the (i+ 1)-th layer, otherwise,
V outputs reject and aborts.

– At the input layer D, V has received four claims: V̂
(D)
L (χ

(D−1)
L), V̂

(D)
L (χ

(D−1)
R), V̂

(D)
R (ψ

(D−1)
L) and

V̂
(D)
R (ψ

(D−1)
R). V queries the evaluation oracle of V̂

(D)
L (resp. V̂

(D)
R) at χ

(D−1)
L and χ

(D−1)
R (resp. ψ

(D−1)
L

and ψ
(D−1)
R) and checks that they equal the sum-check claims. If they do, V outputs accept, otherwise, V

outputs reject.

Fig. 14. Doubly-efficient IP over a non-commutative ring, using 4-to-2 reduction.

38

1. In the first round, P computes the univariate toast polynomial g1 ∈ RA[X1]≤2,0 given by:

g1(X1) =
∑

t1,2,...,t1,m∈H
~t2∈Hm

f(X1, t1,2, . . . , t1,m,~t2,~t2),

and sends g1(X1) to V. Then V checks whether g1 ∈ RA[X1]≤2,0 and
∑

b∈H g1(b) = β. If that is
the case, V chooses a random element r1 ∈ A and sends it to P.

2. For rounds 2 ≤ i ≤ m, P sends the univariate toast polynomial gi ∈ RA[Xi]≤2,0 given by:

gi(Xi) =
∑

t1,i+1,...,t1,m∈H
~t2∈Hm

f(r1, . . . , ri−1, Xi, t1,i+1, . . . , t1,m,~t2,~t2),

V checks whether gi ∈ RA[Xi]≤2,0 and
∑

b∈H gi(b) = gi−1(ri−1). If that is the case, V chooses a
random element ri ∈ A and sends it to P.

3. In them+1-th round, P computes the following two univariate toast polynomials gm+1,0, gm+1,1 ∈
RA[W1]≤1,0:

gm+1,b(W1) =
∑

t2,2,...,t2,m∈H
f(r1, . . . , rm, W1, t2,2, . . . , t2,m, b, t2,2, . . . , t2,m),

and sends them to V. Then V checks whether gm+1,0, gm+1,1 ∈ RA[W1]≤1,0 and
∑

b∈H gm+1,b(b) =
gm(rm). If that is the case, V chooses a random element rm+1 ∈ A and sends it to P.

4. For rounds m + 2 ≤ i ≤ 2m, P, define ~r(i) = (r1, . . . , ri−1), ~t(i) = (t2,i−m+1, . . . , t2,m). P sends
the univariate toast polynomials gi,0, gi,1 ∈ RA[Wi−m]≤1,0 given by:

gi,b(Wi−m) =
∑

t2,1,...,t2,i−m−1∈H,
~t(i)∈H2m−i

f(~r(i), Wi−m,~t(i), t2,1, . . . , t2,i−m−1, b,~t(i)),

V checks whether gi,0, gi,1 ∈ RA[Wi−m]≤1,0 and
∑

b∈H gi,b(b) − gi−1,b(ri−1) = 0. If that is the
case, V chooses a random element ri ∈ A and sends it to P.

5. For round i = 2m+ 1, define ~r(2m+1) = (r1, . . . , r2m) and ~t(2m+1) = (t2,2, . . . , t2,m). P sends the
toast polynomial g2m+1 ∈ RA[Yi−2m]0,≤1 given by:

g2m+1(Y1) =
∑

~t(2m+1)∈Hm−1

f(~r(i), Y1,~t(2m+1)),

V checks whether g2m+1 ∈ RA[Y1]0,≤1 and
∑

b∈H g2m+1(b) − g2m,b(r2m) = 0. If so, V chooses a
random element r2m+1 ∈ A and sends it to P.

6. For rounds 2m+2 ≤ i ≤ 3m, define ~r(i) = (r1, . . . , ri−1) and ~t(i) = (t2,i−2m+1, . . . , t2,m). P sends
the toast polynomial gi ∈ RA[Yi−2m]0,≤1 given by:

gi(Yi−2m) =
∑

~t(i)∈H3m−i

f(~r(i), Yi−2m,~t(i)),

V checks whether gi ∈ RA[Yi−2m]0,≤1 and
∑

b∈H gi(b) = gi−1(ri−1). If that is the case, V chooses
a random element ri ∈ A and sends it to P.

39

7. After the 3m-th round, V checks whether g3m(r3m) = f(r1, . . . , r3m) by querying the oracle at
the point (r1, . . . , r3m).

The following theorem provides the communication complexity and soundness analysis of the
sum-check protocol we just presented. A lower soundness error of ≤ 4m · |A|−1 could be achieved by
“splitting” the ~X variables into two as we did for ~Y, at the cost of increasing the communication and
round complexity. Otherwise, hopefully, the same error can be obtained by doing a tighter analysis
in our proof.

Theorem 6. Let A be a commutative R.D. set such that {0, 1} ⊆ A. Let f ∈ RA[~X,~W,~Y]≤2,≤1 be a
sandwich multivariate polynomial as described in Equation (6). The sum-check protocol is a public
coin interactive proof with soundness error ≤ 6m · |A|−1. The communication complexity is 9m
elements in R.

Proof. Completeness and communication complexity follow from inspection of the protocol, and
hence we will concentrate on the soundness claim.

Let P̃ denote an arbitrary malicious prover, trying to convince the verifier of a false claim∑
~t1,~t2∈Hm f(~t1,~t2,~t2) = β̃, where β̃ 6= β. During each of the 3m rounds, P̃ has to send toast

polynomials, specifically g̃i ∈ RA[Xi]≤2,0 for i ∈ [m], g̃i,0, g̃i,1 ∈ RA[Wi−m]≤1,0 for i ∈ [m + 1, 2m]
and g̃i ∈ RA[Yi−2m]0,≤1 for i ∈ [2m+ 1, 3m]. Notice that the honest polynomials are indeed toasts,
since the random challenges r1, . . . , ri−1 are in A and can hence be “pushed to the middle” with
the rest of the coefficients of each monomial. The verifier can easily check whether the polynomials
received from P̃ are also toasts of the right degree.

Let V denote the event where P̃ succeeds cheating V. For i ∈ [1,m]∪ [2m+1, 3m], let Ei denote
the event that g̃i = gi and for i ∈ [m+ 1, 2m], let Ei denote the event that

∑
b∈H g̃i,b =

∑
b∈H gi,b.

Notice that Pr[V |E1] = 0, since V checks whether β̃ is equal to
∑

b∈H g̃1(b) =
∑

b∈H g1(b) = β.
Following reverse induction, we will prove that for i = 3m, . . . , 1, Pr[V] ≤ (3m − i + 1) · 2 ·

|A|−1 + Pr[V |Ei ∧ . . . ∧ E3m]. Once we prove the case i = 1 we will be done, since then Pr[V] ≤
3m · 2 · |A|−1 + Pr[V |E1 ∧ . . . ∧ E3m] ≤ 3m · 2 · |A|−1 + Pr[V |E1] ≤ 6m · |A|−1.

For i = 3m, we have that Pr[V] ≤ Pr[V |E3m] +Pr[V |E3m] ≤ |A|−1 + Pr[V |E3m]. The inequality
Pr[V |E3m] ≤ |A|−1 follows from Lemma 8 as we explain next. Define G3m(Ym) = g̃3m(Ym) −
g3m(Ym) ∈ RA[Ym]0,≤1. Since we are in the case E3m, then g̃3m 6= g3m and G3m(Ym) is not the
zero polynomial. As the Verifier checks whether g̃3m(r3m) = f(r1, . . . , r3m) and we know that
g3m(r3m) = f(r1, . . . , r3m), passing the check implies that G3m(r3m) = 0.

As an intermediate step towards proving that the statment is true for the (i − 1)-th case,
let us show that for i = 3m, . . . , 2, we have Pr[V |Ei−1 ∧ Ei ∧ . . . ∧ E3m] ≤ 2 · |A|−1. First, for
i = 3m, . . . , 2m+ 2, define the toast polynomial

Gi−1(Yi−2m−1) = g̃i−1(Yi−2m−1)− gi−1(Yi−2m−1) ∈ RA[Yi−2m−1]0,≤1,

which is non-zero in the event (V |Ei−1 ∧ Ei ∧ . . . ∧ E3m). Since P successfully passes the check∑
b∈H gi(b) = g̃i−1(ri−1) and we know that

∑
b∈H gi(b) = gi−1(ri−1), by applying Lemma 8 we

conclude that Pr[V |Ei−1 ∧ Ei ∧ . . . ∧ E3m] ≤ |A|−1 ≤ 2 · |A|−1.
For i = 2m+ 1, . . . ,m+ 2 we apply the same reasoning of the previous paragraph, this time for

the toast polynomial

Gi−1(Wi−m−1) =
∑
b∈H

g̃i−1,b(Wi−m−1)− gi−1,b(Wi−m−1) ∈ RA[Wi−m−1]≤1,0.

40

Finally, for i = m + 1, . . . , 2, the relevant toast polynomial for the application of Lemma 8 is
Gi−1(Xi−1) = g̃i−1(Xi−1)− gi−1(Xi−1) ∈ RA[Xi−1]≤2,0.

Assume the induction hypothesis is true for i. Using our recently proved fact that Pr[V |Ei−1 ∧
Ei ∧ . . . ∧ E3m] ≤ 2 · |A|−1, we have the following:

Pr[V] ≤ (3m− i+ 1) · 2 · |A|−1 + Pr[V |Ei ∧ . . . ∧ E3m]

≤ (3m− i+ 1) · 2 · |A|−1 + Pr[V |Ei−1 ∧ Ei ∧ . . . ∧ E3m] + Pr[V |Ei−1 ∧ Ei ∧ . . . ∧ E3m]

≤ (3m− i+ 1) · 2 · |A|−1 + 2 · |A|−1 + Pr[V |Ei−1 ∧ Ei ∧ . . . ∧ E3m]

Hence, Pr[V] ≤ (3m− i+ 2) · 2 · |A|−1 + Pr[V |Ei−1 ∧ . . . ∧ E3m] and the statement is true for the
(i − 1)-th case. This finishes our reverse induction and concludes our proof by reaching the case
i = 1.

B.3 Sum-check protocol for Equations (16) and (18)

For completeness, we provide the sum-check protocol missing in Section 5.3. In more details, for
j ∈ {1, 2}, let ~tj = (tj,1, . . . , tj,m). We provide a sum-check protocol for

∑
~t1,~t2∈Hm f(~t1,~t2,~t1) = β,

where f ∈ RA[~X,~Y,~W]≤1,≤2 is the multi-variate sandwich polynomial corresponding to VR and given
by Equation (5).

If any of the checks throughout the protocol are not satisfied, V rejects.

1. In the first round, P computes the two univariate toast polynomial g1,0, g1,1 ∈ RA[X1]≤1,0 given
by:

g1,b(X1) =
∑

t1,2,...,t1,m∈H
~t2∈Hm

f(X1, t1,2, . . . , t1,m,~t2, b, t1,2, . . . , t1,m),

and sends them to V. Then V checks whether g1,0, g1,1 ∈ RA[X1]≤1,0 and
∑

b∈H g1,b(b) = β. If
that is the case, V chooses a random element r1 ∈ A and sends it to P.

2. For rounds 2 ≤ i ≤ m, define ~t(i) = (t1,i+1, . . . , t1,m). P sends the univariate toast polynomials
gi,0, gi,1 ∈ RA[Xi]≤1,0 given by:

gi,b(Xi) =
∑

t1,1,...,t1,i−1∈H
~t(i)∈Hm−i,~t2∈Hm

f(r1, . . . , ri−1, Xi,~t(i),~t2, t1,1, . . . , t1,i−1, b,~t(i)),

V checks whether gi,0, gi,1 ∈ RA[Xi]≤1,0 and
∑

b∈H gi,b(b) − gi−1,b(ri−1) = 0. If that is the case,
V chooses a random element ri ∈ A and sends it to P.

3. In the m+ 1-th round, P computes the univariate toast polynomial gm+1 ∈ RA[Y1]0,≤2:

gm+1(Y1) =
∑

t2,2,...,t2,m∈H
~t1∈Hm

f(r1, . . . , rm, Y1, t2,2, . . . , t2,m,~t1),

and sends them to V. Then V checks whether gm+1 ∈ RA[Y1]0,≤2 and
∑

b∈H gm+1(b)−gm,b(rm) =
0. If that is the case, V chooses a random element rm+1 ∈ A and sends it to P.

41

4. For rounds m + 2 ≤ i ≤ 2m, P, P sends the univariate toast polynomials gi ∈ RA[Yi−m]0,≤2
given by:

gi(Yi−m) =
∑

t2,i−m+1,...,t2,m∈H,
~t1∈Hm

f(r1, . . . , ri−1, Yi−m, t2,i−m+1, . . . , t2,m,~t1),

V checks whether gi ∈ RA[Yi−m]0,≤2 and
∑

b∈H gi(b) = gi−1(ri−1). If that is the case, V chooses
a random element ri ∈ A and sends it to P.

5. For rounds 2m+1 ≤ i ≤ 3m, define ~r(i) = (r1, . . . , ri−1) and ~t(i) = (t2,i−2m+1, . . . , t2,m). P sends
the toast polynomial gi ∈ RA[Wi−2m]0,≤1 given by:

gi(Wi−2m) =
∑

t1,i−2m+1,...,t1,m∈H
f(r1, . . . , ri−1, Wi−2m, t1,i−2m+1, . . . , t1,m),

V checks whether gi ∈ RA[Wi−2m]0,≤1 and
∑

b∈H gi(b) = gi−1(ri−1). If that is the case, V chooses
a random element ri ∈ A and sends it to P.

6. After the 3m-th round, V checks whether g3m(r3m) = f(r1, . . . , r3m) by querying the oracle at
the point (r1, . . . , r3m).

The following theorem provides the communication complexity and soundness analysis of the
sum-check protocol we just presented. A lower soundness error of ≤ 4m · |A|−1 could be achieved by
“splitting” the ~Y variables into two as we did for ~X, at the cost of increasing the communication and
round complexity. Otherwise, hopefully, the same error can be obtained by doing a tighter analysis
in our proof.

Theorem 7. Let A be a commutative R.D. set such that {0, 1} ⊆ A. Let f ∈ RA[~X,~Y,~W]≤1,≤2 be a
sandwich multivariate polynomial as described in Equation (5). The sum-check protocol is a public
coin interactive proof with soundness error ≤ 6m · |A|−1. The communication complexity is 9m
elements in R.

Proof. Completeness and communication complexity follow from inspection of the protocol, and
hence we will concentrate on the soundness claim.

Let P̃ denote an arbitrary malicious prover, trying to convince the verifier of a false claim∑
~t1,~t2∈Hm f(~t1,~t2,~t1) = β̃, where β̃ 6= β. During each of the 3m rounds, P̃ has to send toast

polynomials, specifically g̃i,0, g̃i,1 ∈ RA[Xi]≤1,0 for i ∈ [m], g̃i ∈ RA[Yi−m]0,≤2 for i ∈ [m + 1, 2m]
and g̃i ∈ RA[Wi−2m]0,≤1 for i ∈ [2m+ 1, 3m]. Notice that the honest polynomials are indeed toasts,
since the random challenges r1, . . . , ri−1 are in A and can hence be “pushed to the middle” with
the rest of the coefficients of each monomial. The verifier can easily check whether the polynomials
received from P̃ are also toasts of the right degree.

Let V denote the event where P̃ succeeds cheating V. For i ∈ [1,m], let Ei denote the event
that

∑
b∈H g̃i,b =

∑
b∈H gi,b and for i ∈ [m + 1, 3m], let Ei denote the event that g̃i = gi. Notice

that Pr[V |E1] = 0, since V checks whether β̃ is equal to
∑

b∈H g̃1,b(b) =
∑

b∈H g1,b(b) = β.
Following reverse induction, we will prove that for i = 3m, . . . , 1, Pr[V] ≤ (3m − i + 1) · 2 ·

|A|−1 + Pr[V |Ei ∧ . . . ∧ E3m]. Once we prove the case i = 1 we will be done, since then Pr[V] ≤
3m · 2 · |A|−1 + Pr[V |E1 ∧ . . . ∧ E3m] ≤ 3m · 2 · |A|−1 + Pr[V |E1] ≤ 6m · |A|−1.

For i = 3m, we have that Pr[V] ≤ Pr[V |E3m] +Pr[V |E3m] ≤ |A|−1 + Pr[V |E3m]. The inequality
Pr[V |E3m] ≤ |A|−1 follows from Lemma 8 as we explain next. Define G3m(Wm) = g̃3m(Wm) −

42

g3m(Wm) ∈ RA[Wm]0,≤1. Since we are in the case E3m, then g̃3m 6= g3m and G3m(Wm) is not the
zero polynomial. As the Verifier checks whether g̃3m(r3m) = f(r1, . . . , r3m) and we know that
g3m(r3m) = f(r1, . . . , r3m), passing the check implies that G3m(r3m) = 0.

As an intermediate step towards proving that the statment is true for the (i − 1)-th case,
let us show that for i = 3m, . . . , 2, we have Pr[V |Ei−1 ∧ Ei ∧ . . . ∧ E3m] ≤ 2 · |A|−1. First, for
i = 3m, . . . , 2m+ 2, define the toast polynomial

Gi−1(Wi−2m−1) = g̃i−1(Wi−2m−1)− gi−1(Wi−2m−1) ∈ RA[Wi−2m−1]0,≤1,

which is non-zero in the event (V |Ei−1 ∧ Ei ∧ . . . ∧ E3m). Since P successfully passes the check∑
b∈H gi(b) = g̃i−1(ri−1) and we know that

∑
b∈H gi(b) = gi−1(ri−1), by applying Lemma 8 we

conclude that Pr[V |Ei−1 ∧ Ei ∧ . . . ∧ E3m] ≤ |A|−1 ≤ 2 · |A|−1.
For i = 2m+ 1, . . . ,m+ 2 we apply the same reasoning of the previous paragraph, this time for

the toast polynomial

Gi−1(Yi−m−1) = g̃i−1(Yi−m−1)− gi−1(Yi−m−1) ∈ RA[Yi−m−1]0,≤2.

Finally, for i = m + 1, . . . , 2, the relevant toast polynomial for the application of Lemma 8 is
Gi−1(Xi−1) =

∑
b∈H g̃i−1,b(Xi−1)− gi−1,b(Xi−1) ∈ RA[Xi−1]≤1,0.

Assume the induction hypothesis is true for i. Using our recently proved fact that Pr[V |Ei−1 ∧
Ei ∧ . . . ∧ E3m] ≤ 2 · |A|−1, we have the following:

Pr[V] ≤ (3m− i+ 1) · 2 · |A|−1 + Pr[V |Ei ∧ . . . ∧ E3m]

≤ (3m− i+ 1) · 2 · |A|−1 + Pr[V |Ei−1 ∧ Ei ∧ . . . ∧ E3m] + Pr[V |Ei−1 ∧ Ei ∧ . . . ∧ E3m]

≤ (3m− i+ 1) · 2 · |A|−1 + 2 · |A|−1 + Pr[V |Ei−1 ∧ Ei ∧ . . . ∧ E3m]

Hence, Pr[V] ≤ (3m− i+ 2) · 2 · |A|−1 + Pr[V |Ei−1 ∧ . . . ∧ E3m] and the statement is true for the
(i − 1)-th case. This finishes our reverse induction and concludes our proof by reaching the case
i = 1.

43

	Doubly Efficient Interactive Proofs over Infinite and Non-Commutative Rings
	Introduction
	Technical overview
	Instantiations and applications

	Preliminaries
	Interactive proofs and the GKR protocol
	Algebraic background

	Polynomials over non-commutative rings
	Sandwich polynomials
	Multi-Linear Extensions over non-commutative rings

	Doubly-efficient IP over non-commutative rings: Regular difference set contained in Z(R)
	Improved efficiency

	Doubly-efficient IP over non-commutative rings: Commutative, regular difference set
	A new layer consistency equation
	2-to-1 reduction
	Sum-check for non-commutative layer consistency
	Linear time Prover for Equation (9)
	Putting everything together

	Appendix to Section 5.4: Linear time Prover for Equation (9)
	Doubly-efficient IP over non-commutative rings: Better round complexity
	4-to-2 reduction
	Sum-check protocol for Equations (6), (15) and (17)
	Sum-check protocol for Equations (16) and (18)

