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Abstract

The problem of Secure Merge consists of combining two sorted lists (which are either held
separately by two parties, or secret-shared among two or more parties), and outputting a single
merged (sorted) list, secret-shared among all parties. Just as insecure algorithms for comparison-
based sorting are slower than merging (i.e., for lists of size n, Θ(n log n) versus Θ(n)), we explore
whether the analogous separation exists for secure protocols; namely, if there exist techniques
for performing secure merge that are more performant than simply invoking a secure multiparty
sort.

We answer this question affirmatively by constructing a semi-honest protocol with optimal
Θ(n) communication and computation, and Θ(log log n) rounds of communication. Our results
are based solely on black-box use of basic secure primitives, such as secure comparison and secure
shuffle. Since two-party secure primitives require computational assumptions, while three-party
secure primitive do not, our result imply a computationally secure two-party secure merge
protocol and an information-theoretically secure three-party secure merge protocol with these
bounds.

Secure sort is a fundamental building block used in many MPC protocols, e.g., various
private set intersection protocols and oblivious RAM protocols. More efficient secure sort can
lead to concrete improvements in the overall run-time. Since secure sort can often be replaced
by secure merge – since inputs (from different participating players) can be presorted – an
efficient secure merge protocol has wide applicability. There are also a range of applications
in the field of secure databases, including secure database joins, as well as updatable database
storage and search, whereby secure merge can be used to insert new entries into an existing
(sorted) database.

In building our secure merge protocol, we develop several subprotocols that may be of
independent interest. For example, we develop a protocol for secure asymmetric merge (where
one list is much larger than the other).
Keywords. Secure Merge, Secure Sort, Secure Databases, Private Set Intersection.
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1 Introduction

As the practice of collecting and analyzing data has increased in recent decades, combined with
the growing desire of examining data of different types held by different organizations, there has
been a corresponding desire for protocols that are able to compute on aggregated data without
actually requiring the raw data to be combined or exposed. Indeed, the field of secure multiparty
computation (MPC) within cryptography seeks to address exactly such scenarios. Meanwhile, with
the sort functionality being a prominent component of several desired analyses, there has been
significant work in optimizing secure sort functionality (e.g. sort under MPC), as well other basic
secure functionalities that require sort as a subroutine. For example, in research in the MPC
subfields of Private-Set Intersection (PSI) [9, 24, 40] and Oblivious RAM (ORAM) [33, 38], it is
often the case that the secure sort is the bottleneck in resulting protocols in these areas.

While MPC protocols for sort – and related functionalities that build upon it – have become
extremely efficient, there is an unavoidable cost of e.g., a security parameter multiplier in measuring
of the complexity of any secure computation, on top of the Θ(n log n) cost of performing (insecure)
sort. Given the common scenario in which a handful of organizations each have access to their own
data, and require a sort on their aggregated lists, it is natural to ask if one can avoid the inherent
overhead of securely implementing sort by first having parties locally sort their own data (which
can be done insecurely, and hence without incurring this overhead), and then performing a secure
merge on the individual sorted lists. Indeed, this approach has the promise of adding security at
minimal cost, since the overhead of adding security is now only applied to the Θ(n) merge protocol,
which effectively means there is an extra Θ(log n) cushion to absorb the overhead cost of performing
the computation securely, and still having an overall Θ(n log n) secure sort protocol.

Unfortunately, attempting to minimize the overhead of secure computation by first performing
a local (insecure) sort followed by secure merge has to-date been an ineffective strategy, due to the
fact that much less is known about secure merge protocols than secure sort protocols. Indeed, prior
to our work, there was no known secure merge protocol that simultaneously achieved near-optimal
asymptotic performance in the three key metrics: computation, communication, and round com-
plexity. In this work, we present a secure merge protocol that effectively eliminates all inefficiencies,
thereby substantially reducing the cost of secure sort (where the above strategy of first locally sort-
ing one’s own data can be employed) and any secure protocol that builds on top of it. Namely, we
construct a protocol that instantiates the following:

Theorem 1 (Informal). There exists a secure merge protocol for two or three parties with Θ(n)
run-time (computation and communication) and Θ(log log n) rounds that relies only on black-box
access to the secure functionalities defined in §4.4: comparison, shuffle, reveal, and conditional-
addition.

Theorem 1 is asymptotically optimal in two of the three key metrics (computation and communi-
cation), and near-optimal in round-complexity. Our theorem gives a two-party secure merge under
standard cryptographic assumptions, a and three-party secure merge with information-theoretic
setting with semi-honest security and no collusion. Indeed, in the two-party case, all black-box
functionalities referenced in the theorem above can be efficiently realized using two standard cryp-
tographic assumptions: Oblivious transfer (OT) and the existence of an additively homomorphic
public key cryptosystem. Meanwhile, in the three-party case, these black-box functionalities can
be realized with information-theoretic security, see e.g., [14]. While there are ways to extend our
results to more parties beyond three, see for example the discussion in Remark 1, we do not explore
these extensions directly in this paper.
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Besides being useful as a stand-in for secure sort in scenarios where two or more parties can each
locally sort their own data (“in the clear”), the secure merge functionality has broader relevance
in many other applications as well. In the area of database management, for example, in settings
where records are encrypted, our secure merge protocol can be used for database operations such
as joins, or for inserting new records into the database [2, 12,26,48].

1.1 Paper Structure

In §2 we summarize previous work on the secure sort/merge problem, and provide a comparison
table of our main result with relevant earlier works in Table 1. In §3 we provide a survey of
applications whose performance could be improved by the adoption of our secure merge protocol.
In §4 we set notation and discuss the high level techniques and primitives on which our merge
protocols rely. We present our main secure merge protocols, together with statements and proofs
of their properties, in §5. In §6 we present the two underlying secure merge protocols required by
our protocols in §5. Supplementary material with expanded discussion and additional protocols
– including the description of a separate constant round secure merge protocol in the asymmetric
case that is a generalization of the protocol ΠSAM-n1/3 of §6 (where one list has size n and the
other nα for fixed α < 1) – can be found in Sections 7 - 10.

2 Previous Work

As the merging/sorting of lists is a fundamental problem in computer science, there has been
enormous research in this area. Consequently, we summarize here only the most relevant works;
please see cited works and references therein for a more complete overview and discussion. Not
surprisingly, many of the protocols for securely merging/sorting lists draw inspiration from their
insecure counterparts (not to mention the generic approach of converting insecure protocols to se-
cure protocols, e.g., via garbled circuits or ORAM or Garbled RAM (GRAM) or fully-homomorphic
encryption). We discuss below previous work for both insecure and secure variants, and compare
previous results to our main result in Table 1.

2.1 Insecure Merge Algorithms

Sorting Networks. The relationship between secure merging and secure sorting can be traced
back to [4], which built a sorting network of size O(n log2 n) from log n merging networks, each of
size O(n log n). There are (2n)! = 2O(n logn) permutations on 2n elements, but

(
2n
n

)
= 2O(n) possible

ways two sorted lists can be merged together. This gives combinatorial lower bounds of Ω(n log n)
and Ω(n) comparators for sorting and merging networks, respectively. Although an asymptotically
optimal sorting network of size O(n log n) was later achieved by Ajtai, Komlos, and Szemeredi [1],
merging networks cannot achieve the combinatorial lower bound of n comparators. A merging
network on lists of size Θ(n) require Ω(n log n) comparators, as shown by Yao and Yao [47], and
depth of Ω(log n), as shown by Hong and Sedgewick [23].

RAM and PRAM. The classical merge algorithm requires O(n) work on a RAM machine, see
e.g., [35]. As discussed below, the approach of [13] uses an approach that is inspired by this classical
merge algorithm, and achieves matching asymptotic work (albeit with O(n) round-complexity).

A parallel RAM machine (PRAM) allows multiple processors to act on the same set of memory
in parallel. We are in particular interested in Concurrent-Read-Exclusive-Write (CREW) PRAM,
where all processors can read the same memory simultaneously, but processors cannot write to the
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same memory address at the same time, see e.g., [5] for more formal definitions and a discussion of
various PRAM models.

For PRAM machines, Valiant showed in [45] that O(n) processors could merge two lists of
size O(n) in time O(log log n). This was improved by Borodin and Hopcroft [5] to O(n/ log log n)
processors, who also showed that the time bound of O(log log n) is optimal when limited to O(n)
processors. As a rough heuristic, we expect the number of processors and total work done by a
PRAM algorithm to serve as a lower bound for the round complexity and communication complexity
of a corresponding secure protocol, motivating the following:

Conjecture. Any linear-time protocol for two parties to securely merge their lists (each of
size Θ(n)) requires Ω(log logn) rounds of communication.

Notice that if the above conjecture is valid, then our secure merge protocol (§5) is asymptotically
optimal in all three key metrics.

To lend weight to this conjecture, we note that if a 2-party protocol Π securely realizes some
functionality F in R rounds and C communication, and each party can execute each round of the
protocol in O(1) time on a CREW PRAM with C processors, then there exists an algorithm A that
realizes F on a single CREW PRAM machine with C processors, O(RC) total work, and O(R)
time. Indeed, A merely executes Π, playing the role of all parties. If a protocol for secure merge
existed with C = n, R = o(log log n), this would immediately imply an insecure merge algorithm
with O(n) processors and o(log log n) time, contradicting the lower bound of [5] cited above. Thus
the conjecture is true for the special case of secure merge protocols where each round of the protocol
can be executed in O(1) time on a CREW PRAM with O(n) processors.

Both the Valiant and the Borodin-Hopcroft algorithms rely on the following basic construction:
Split each list into blocks of size

√
n, with

√
n medians. Running all pairwise comparisons between

medians identifies which block of the opposite list each median is mapped to; then another round of
pairwise comparisons identifies the exact position the median is mapped to within that block. This
creates

√
n subproblems of size

√
n, giving the recurrence c(n) =

√
n · c(

√
n), if c(n) is the cost of

merging two lists of length n. With sufficiently many processors, this recurrence yields O(log log n)
run-time. Our protocols in §5 use similar techniques as a starting point, though many additional
ideas are needed to handle the secure setting, e.g. securely handling the case where blocks from
one list potentially span more than one block of the other list.

Remark 1. A follow-up work by Hayashi, Nakano, and Olariu [22] demonstrates a protocol with
O(log log n+log k) run-time for merging k lists of size O(n). Following the intuition that run-time in
the PRAMmodel roughly corresponds to (a lower-bound on) round-complexity in the secure setting,
this suggests that a linear-time secure merge protocol for k parties could have round complexity
O(log log n + log k). For example, this would imply that an optimal secure merge protocol for
k = O(log n) parties (each with a list of size O(n)) could have linear run-time and O(log log n)
round complexity. However, because our protocols in §5 rely on black-box use of a constant-round
secure shuffle subprotocol with O(n) communication, and since currently known instantiations of
secure shuffle with linear communication have linear or worse dependence on the number of parties
(in terms of round-complexity) [14, 32], direct extension of our secure merge protocol to k > 3
parties would have O(log log n+ k) round complexity.

2.2 Secure Merge Algorithms

Notation. To compare prior work with our protocols as concretely as possible, we introduce
the following constants: κ is a computational security parameter (e.g., κ = 128 is standard),
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βHE (resp. βFHE) is the ciphertext expansion in our chosen additively homomorphic (resp. fully
homomorphic) cryptosystem, γ is the cost of decryption, and µ is the cost of multiplication in the
FHE cryptosystem.

The parameters βHE , βFHE , γ, and µ depend on the cryptosystem and on κ. Asymptotically,
κ ≫ log n is necessary so that a random bit-string of length κ cannot be guessed in the time it
takes to traverse the list, and (for suitable choice of cryptosystems) βHE and βFHE approach 1 as the
plaintext size grows. In practice, fully homomorphic encryption schemes are more costly to realize
than additive-only homomorphic schemes, so we expect βFHE > βHE and µ > γ.

We assume the objects to be sorted are contained in O(1) memory words of size W bits. Unless
explicitly stated otherwise, our communication and computational complexity numbers are given
in terms of memory words and primitive operations on memory words.

Security via Generic Transformation. We explore here two näıve solutions for transforming
an insecure merge algorithm to a secure one (see Table 1 for a succinct comparison of our secure
merge protocol to these näıve solutions):

Garbled Circuits. By choosing any (insecure) sorting algorithm that can be represented as a
circuit, the parties can use garbled circuits to (securely) sort their list in O(1) rounds. As discussed
above in §2, for comparison-based merging networks, Ω(n log n) comparisons and Ω(log n) depth
are necessary, and achievable by the Batcher merging network [4].

Additionally, we note that obtaining κ bits of computational security when merging lists whose
elements have size W bits requires κ ·W bits, or κ words of communication for each comparison.
Thus, obtaining secure merge via a garbled circuit approach (for a circuit representing a merging
network) would result in a constant-round protocol with Ω(κ · n log n) communication.

On the other hand, using GMW-style circuit evaluation (see [17]) instead of garbled circuits
can reduce the overhead of each comparison (from κ down to constant), but it incurs a hit in round
complexity (proportional to the depth of the circuit instead of constant-round).

Fully Homomorphic Encryption. We can also construct a O(1) round protocol by having one
party encrypt their inputs under fully homomorphic encryption (FHE) and send the result to the
other party, who performs the desired calculations on ciphertexts. The other party then subtracts
a vector of random values r from the (encrypted) merged list and sends the result back to the
first party, who decrypts to obtain the merged list shifted by r. Now the parties hold an additive
sharing of the sorted list.

As with garbled circuits, however, the calculations the second party performs on the ciphertexts
must be input-independent (in order to avoid information leakage), and so the calculation must
be represented by a circuit. This means that communication is (asymptotically) lower than the
garbled circuit approach, since the first party need only provide ciphertexts of his list (which
correspond to inputs to the circuit), as opposed to providing information for each gate. Therefore
the communication required for the FHE approach is only O(βHEn).

However, while communication in the FHE approach may be (asymptotically) reduced (com-
pared to the garbled circuit approach), notice that the computation is still Ω(µn log n), where µ is
the cost of a multiplication under FHE, as the circuit requires Ω(n log n) comparison (multiplica-
tion) operations. Additionally, since the circuit has depth Ω(log n), the FHE scheme will require
bootstrapping to avoid ciphertext blowup, which will be expensive in practice.

ORAM and GRAM. ORAM incurs at least an Ω(log n) overhead [18,31]. Currently known GRAM
constructions are built using ORAM as a building block. Therefore, if one is to take an insecure
merge implementation and try to compile it into a secure circuit using ORAM or GRAM, both
the computational and communication complexity will be O(n log n), and thus these techniques are
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inapplicable if we aim to achieve linear complexity.

Shuffle-Sort Paradigm. One challenge facing any comparison-based secure merge (or sort) pro-
tocol is that the results of each comparison must be kept secret from each party, or else security
is lost. One approach to allowing the results of the comparisons to be known without information
leakage is to first shuffle (in an oblivious manner) the input lists. However, since this shuffling
inherently destroys the property that the two input lists are already sorted, this approach reduces
a secure merge problem to a secure sort problem, hence incurring the log n efficiency loss.

Comparison-based sorting requires O(n log n) communication and computation and O(log n)
rounds, while secure shuffling requires O(n) communication and O(1) rounds, see e.g., [14, 21].
Therefore a secure sort using the shuffle-sort paradigm requires O(n log n) communication and
computation and O(log n) rounds, which is worse than our secure merge approach on all three
metrics.

Oblivious Sort. Because the constant from [1] is too large for practical applications, a number
of other approaches to secure sorting have been explored. The shuffle-sort paradigm mentioned
above is one example of a large family of oblivious sort protocols, which allow for a variable mem-
ory access pattern as long as it is independent of the underlying list values, or data oblivious.
We mention here the radix sort of Hamada, Ikarashi, Chida, and Takahashi [20], which achieves
O((W logW + W )n + n log n) communication (in memory words) and O(1) round complexity in
the three-party honest majority setting with constant bit lengths of elements. The communication
complexity was later improved by Chida et. al [9], to O(n log n) memory words. However, the round
complexity depends linearly on W , so when W ≈ log n, this matches the round complexity of the
other protocols.

Secure Merge Protocols. There are several works that investigate secure merge directly. The
first, due to Falk and Ostrovsky [14], achieves O(n log log n) communication complexity with
O(log n) round complexity. The second, due to Falk, Nema, Ostrovsky [13], achieves the asymptot-
ically optimal O(n) communication complexity (with small constants), but requires O(n) rounds
of communication. For many cryptographic applications, a high round complexity causes more of
a bottleneck than a high communication complexity due to network latency. Therefore, the secure
merge protocol of [13], while both simple and asymptotically optimal in terms of communication,
may still not be practical due to high round complexity.

Three Party Sort and Merge protocols. The three party honest majority setting is a natural
fit for real-world protocols in the client-server model, including ORAM and PSI protocols. Prior
work in this area has shown how the use of three parties facilitates more efficient protocols, includ-
ing through the use of one party to generate randomness for the other parties and more efficient
shuffling protocols (see e.g., [14]). The oblivious sort protocols mentioned above [9, 20] use three
parties for shuffling and to enable the use of a Shamir secret sharing scheme. In [7] Chan et al. give
a three-server merge protocol in the course of building a three-server ORAM scheme. This merge
protocol, which requires three servers and an honest client, is most similar to the FNO protocol [13],
and similarly requires O(n) round complexity.

2.3 Comparison of Results

In Table 1 we give the communication, computation, and round complexity of our secure merge pro-
tocols, in comparison with the approaches described above. Our main result is a secure merge pro-
tocol that has (optimal) communication and computation O(n), and round complexity O(log log n)
(see Theorem 1). Notice that O(log log n) round complexity is superior to all other protocols in
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Table 1 except the constant-round garbled circuit and FHE approaches, each of which is inferior in
the other two metrics (computation and communication).

The parameters βHE and γ arise out of the use of homomorphic encryption for two-party shuffle,
and so are only relevant for comparing secure merge protocols against two-party merge networks
with standard MPC. Namely, in the three-party setting (which is assumed for [9, 21]), we can set
βHE = γ = 1 for the last four protocols of Table 1.

We also give an asymmetric merge protocol on lists of size (nα, n) for fixed α < 1 that achieves
the same asymptotic complexity as our general secure merge protocol, while requiring only O(1)
rounds.

Protocol Computation Communication Rounds

(Garbled) Merge Network [Folklore] O(κ · n log n) O(κ · n log n) O(1)

(GMW) Merge Network [Folklore] O(n log n) O(n log n) O(log n)

(FHE) Merge Network [Folklore] O(µ · n log n) O(βFHEn) O(1)

Shuffle-Sort [21] O(n log n) O(n log n) O(log n)

Oblivious Radix Sort [9] O(n log n) O(n log n) O(W )

Secure Merge of [14] O(nlog log n+γn) O(n log log n+βHEn) O(log n)

Secure Merge of [13] O(γn) O(βHEn) O(n)

Our Secure (nα, n) Merge [Fig. 5] O(21/(1-α)
3
γn) O(21/(1-α)

3
βHEn) O(1/(1-α)3)

Our Secure (n, n) Merge [Fig. 4] O(γn) O(βHEn) O(loglog n)

Table 1: Comparison of secure merge protocols, with parameters as in §2.2; namely: n is the list
size, α < 1 is any fixed constant, κ is a computational security parameter, µ is the cost of FHE
multiplication, βHE and βFHE are ciphertext expansions, and γ is the decryption cost (βHE = γ = 1
in the three-party setting).

3 Applications

We give here a brief survey of areas of cryptography where our secure merge protocol could be used
to improve performance. Determining how competitive these secure merge-based improvements
would be in practice depends on concrete choices about implementation, especially the choice of
shuffling protocol and the point in the recursion where we switch to a simpler merging protocol,
and is outside the scope of this work.

3.1 Private Set Intersection

Private Set Intersection (PSI), where two parties wish to learn the elements in the intersection of
their two lists, or some function on the intersection, is one of the most widely used applications
of multiparty computation to a specialized setting. We survey the results in this area, and then
mention particular protocols where secure merge could improve performance.

Many of the approaches are designed by identifying powerful cryptographic machinery. Among
public key encryption protocols, we mention the early protocol built off of Diffie-Hellman key
agreement protocols first presented in Meadows [34]; see also [25, 41], recent advances including
the OPRF approach of [15], the blind-RSA approach of Cristofaro and Tsudik [10], and the Bloom
filter based approach first introduced in Debnath and Dutta [11]. Among the OT-based family of
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approaches, we cite [39] and the follow-up work [40], as well as [29], which applied OPRF tools
to the OT-based approach. As an example of the homomorphic encryption based approach, we
mention [8], as well as [44], which specialized to the case of PSI-cardinality, and [27], which gives
publicly verifiable PSI.

In contrast to these approaches, the circuit-based family of approaches aims to use generic tools
of multiparty computation. The garbled circuit based approach of Huang, Evans, and Katz, [24]
outperforms prominent public key based approaches and is more flexible than the OT-based ap-
proaches (because any generic computation on the outputs of the PSI protocol can be performed
by simply appending additional gates to the merging network circuit and garbling). These com-
parisons were explored further in [40], which also benchmarked an implementation of a merging
network under the GMW paradigm, and approaches using a näıve quadratic comparison-based sort
after hashing elements into sufficiently small buckets. In the circuit-based family of approaches we
also mention the earlier work of Jonsson, Kreitz, and Uddin [28] and an approach based on radix
sort in the three-party with honest majority setting [9].

A PSI protocol could be built off of our merge protocol. As our merge protocol requires an
additive homomorphic encryption system for shuffling but otherwise can be built from generic
GMW machinery, this would situate a derived PSI protocol in between the bespoke protocols and
the generic approaches. It can merge two sorted lists in time O(n), unlike the Yao and GMW-based
approaches which each require O(n log n) time, and shares with them the flexibility of being able
to perform any generic MPC protocol on the outputs of the PSI protocol.

3.2 Oblivious RAM

Oblivious RAM, introduced by Goldreich and Ostrovsky [18], is a cryptographic data structure
that behaves like a standard Random Access Machine, but disguises the locations of the encrypted
memory being accessed from an adversary that can observe the sequence of data reads. This allows
for the direct emulation of a RAM program in zero knowledge and multiparty computation settings,
without requiring unrolling the program and converting to a circuit (see e.g., [33]).

The seminal work of Goldreich and Ostrovsky [18] established that any Oblivious RAM machine
must have Ω(log n) overhead for accessing a RAM of size n, and gave a construction with overhead
O(log3 n) that was unlikely to be practical on machines at the time. There has been substantial
progress since then, both in closing the theoretical gap between upper and lower bound, and in
bring Oblivious RAM towards the realm of practical applications.

Among the practical Oblivious RAM protocols, there are two primary families of approaches.
The first was the hierarchical-based approach of [18], where the data is stored in a series of hash
tables arranged “hierarchically”, top-to-bottom, improved in a series of works, including in [19,30,
38]. The second approach is the tree-based approach of [42], where data is stored in a binary tree
that is updated as it is traversed. This approach inspired other lines of work, such as the related
Path ORAM [43], Circuit ORAM [46], and the optimization [16]. In terms of asymptotic overhead,
improvements over the years culminated in the two hierarchical-based protocols PanORAMa [37],
with O(log n log logn) overhead, and finally OptORAMa [3], with the optimal O(log n) overhead.

The tree-based protocols often do not require oblivious sorting, but most of the hierarchical
protocols do, and so could potentially be improved by the introduction of secure merge. Since
OptORAMa achieves the lower bound for ORAM overhead, secure merge could not improve the
asymptotics of ORAM constructions, but could improve the concrete constants of existing con-
structions, or improve the asymptotics of non-optimal constructions, perhaps leading to a simpler
realization of optimal ORAM. The major obstacle to making progress in this way is that the ele-
ments being sorted in hierarchical ORAM are generally random elements that have been removed
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into a stash or series of stashes, and so are guaranteed to be randomly shuffled, the opposite of
what we need for secure merge. A new idea is necessary to embed structure into an Oblivious RAM
construction so that secure merge can exploit that structure without leaking information through
the pattern of memory accesses to that structure.

3.3 Secure Database Management

The power of cloud computing has grown alongside concerns about privacy and security on those
platforms. There has therefore been a great deal of research into secure database management
applications, including secure searchable encryption [19, 26], where a database is encrypted and
can be securely searched, oblivious analytics [48] where specific metrics can be computed on an
encrypted database, and oblivious query processing [2,12], where an encrypted database can obliv-
iously process a streaming set of queries analogous to SQL queries.

The secure searchable encryption tools are built on top of ORAM, and so any improvements
to ORAM due to secure merge will be inherited by them. For oblivious analytics and oblivious
query processing, ORAM is used as one cryptographic tool, but there are also a number of calls to
oblivious sorts to, for example, join lists from two separate parties. In some cases, these lists are
guaranteed to be already sorted, and secure merge can be inserted directly into the protocol. In
other cases, these lists are already secret-shared and shuffled, and further alterations to the protocol
would be necessary to preserve the ordering on the lists to be sorted and thus access the efficiency
gains of secure merge while preserving obliviousness.

Additionally, we note that in the special case when an encrypted database only rarely needs to
be accessed obliviously, but needs to be frequently updated, the database can efficiently add new
data using secure merge much more efficiently than using a secure sorting protocol.

4 Overview of Techniques

At a high level, the strategy of our secure merge protocols is to partition the original lists into several
blocks, then align these blocks (find the appropriate block(s) from the other list that span the
“same” range of values); perform secure merge on these blocks; and finally combine (concatenate)
the blocks together to obtain the final merged list. Ignoring for the moment issues in aligning the
blocks (e.g. a block from one list spanning numerous blocks from the other list), this “partition-align”
strategy – of using partitioning to achieve secure merge on larger lists via several smaller secure
merge subproblems – has the following appeal: Imagine we can partition to form k blocks, each
with n/k elements. Then for e.g. k = n/ log logn, we could apply the linear protocol of [13] to each
block. Since each block contains n/k = log log n elements, each subproblem requires O(log log n)
communication, computation, and round-complexity. Furthermore, since each subproblem can be
performed in parallel, the total cost across all k = n/ log log n blocks will be O(n) computation and
communication, but still only O(log log n) rounds. This matches our target complexity in all three
metrics.
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Figure 1: Merging the k medians from one list into the other list.

Figure 2: Merging a smaller list into a larger list, and then classifying the elements in the first
list and blocks from the second list that are “poorly-aligned:” namely, when multiple (in this case
three or more) elements from the first list map to the same block of the second list (pictured in
white and with dashed arrows).

4.1 Identifying Poorly-Aligned Blocks

Of course, the above simplified strategy and analysis ignores several challenges that arise in practice:

Block Alignment. In order for the partition-align strategy to make sense when merging together
two blocks (one from each list): Given a block (contiguous set of values) from the first list, we
must identify the appropriate block(s) from the second list that contains the “same” range of
values.

Poorly-Aligned Blocks. If we partition say the first list into equal block sizes of n/k elements, the
simplified analysis above assumed these blocks precisely align with exactly one block from the
second list. In practice, a given block from the first list can align with arbitrarily many blocks
from the second list, including e.g. the extreme case where a single block from the first list has
a range of values that encompasses the entirety of the second list (see Figure 2).

Obliviousness of Alignment. Notice that being able to observe how the blocks from one list
overlap with the blocks of the other list can leak information about the (relative) values on each
list, thereby compromising overall security. In particular, any secure merge protocol employing
the partition-align approach must hide all information regarding the nature of the alignments.

Our main contribution in this paper can be viewed as resolving the above three challenges. Namely:

1. We resolve the “Block Alignment” challenge by running a secure merge protocol to identify
where the k partition points (“medians”) of one list belong within the second list. This
requires a secure asymmetric (since one of the lists – of size k – is smaller than the other
list – of size n) merge protocol. However, since this protocol is only invoked twice (once in
each direction to merge the k medians of one list into the other), it can have complexities
proportional to the larger list size n and still achieve our overall target metrics; we leverage
this fact in our secure asymmetric merge protocol (Figure 5).
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2. We resolve the “Poorly-Aligned Blocks” challenge as follows. First, we classify a block as
“poorly-aligned” if (the range of values in) it spans “too many” blocks of the other list (or
vice-versa). Then for merging poorly-aligned blocks, we again employ a secure asymmetric
merge (merging one block from one list with multiple blocks from the other list). Depending
on how “poor” the alignment (e.g. a single block from one list might span all blocks of the
other list), this secure asymmetric merge protocol might have the larger list of size comparable
to the original list.

3. We resolve the “Obliviousness of Alignment” challenge in three ways. First, we hide the clas-
sification of which blocks are well/poorly-aligned. Second, for the merging of “well-aligned”
blocks, we apply a remarkable lemma about k-medians (given in Section 10) that allows
the introduction of dummy elements to each block to ensure they are perfectly aligned, and
then merge the resulting (slightly larger) blocks (see Figure 3). Third, for the poorly-aligned
blocks, we observe that a “worst possible” alignment scenario can be defined, which provides
a bound on the number and nature of the poorly-aligned blocks. In particular, we bound the
number of highly unbalanced invocations of the secure asymmetric merge protocols – those
in which a single block from one list spans many blocks from the other – which are costly to
run. In particular, we always perform the same set of secure asymmetric merges (i.e. for a
(fixed, known) set of list sizes) for the poorly-aligned blocks, regardless of how many blocks
are actually classified as poorly-aligned (and the specific nature of their “poor” alignment).

Figure 3: The Expanding Medians strategy for converting “well-aligned” to perfect alignment: The
k-medians of L1 and L2 are identified (top-left) and merged into the opposite list (top-right). Then
each median is duplicated in place n

k times (bottom), and the resulting lists are broken into 2k
blocks.

While several details need to be worked out – such as tuning parameters and specifying how to
handle dummy values and superfluous merging of (phantom/ non-existent) poorly-aligned blocks,
the above strategy describes our high level approach. After introducing the notation that will be
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used in the remainder of this paper, we next go into more detail on the specific techniques and
subroutines that will be employed in our secure merge protocols.

For a given block from one list, we need to identify which block(s) from the other list span a
similar range of values. We first count (in a secure manner) the number of blocks from the second
list that are required to span the range of values in the first list, and then classify the blocks
as “poorly-aligned” if the number of blocks from the second list is too large (greater than some
constant). We then collect all poorly-aligned blocks/elements from L1 and L2 (marked white in
Figure 2) and treat them as an additional subproblem, after padding with dummy elements to
avoid leaking information, and explain how to bound the number of poorly-aligned blocks in §5.4.

4.2 The Tag-Shuffle-Reveal Paradigm

We make repeated use of the tag-shuffle-reveal paradigm, which should be considered analogous to
the shuffle-sort paradigm of prior sorting protocols, see e.g. [21], or an extension of the shuffle-reveal
paradigm of [20]. Our tag-shuffle-reveal paradigm is used implicitly in [14], but we expand its use
here, and so describe it in more detail.

In the tag-shuffle-reveal paradigm, each element of a list is (obliviously) tagged with some label.
This label can be (a secret sharing of) its current index, or it can be the result of some multiparty
computation, for example a bit representing the output of a comparison against another value.
Then, after shuffling the list, the tag or some part of the tag is revealed, and the list entries are
rearranged accordingly. Because the shuffle step ensures that the tags are randomly ordered, the
only requirement to ensure security is to ensure that the set of values the revealed tags take on do
not depend on the underlying data. We use x̂i to denote the element x in position i after shuffling.

4.3 Extraction Protocols

One central application of the tag-shuffle-reveal paradigm is our collection of extraction protocols
for pulling marked elements from a larger list into a smaller list or set of lists. Marked elements can
be extracted and kept in their original order, or extracted and shuffled, or extracted into bins based
on a tag they are marked with. Of course, each of these protocols should reveal nothing about the
location or number of tagged elements, and so the outputs will be padded with dummy elements
where necessary. Full protocols and proofs can be found in Section 8. The protocol ΠExtract for
extracting and shuffling marked elements is described in §8.1; the protocol ΠExt-Ord for extracting
marked elements in order in §8.3; and the protocol ΠExt-Bin for extracting marked elements into
bins in §8.5. We use extraction protocols in a black box way in §5-6.

4.4 Primitive Functionalities

We recall the secure merge protocol from [13] discussed above, which requires O(n) communication
and O(n) rounds, which we call ΠSM−FNO in this work. Additionally, we use the trivial O(n2)
communication, O(1) round merge protocol, which makes every possible pair of comparisons. We
call this protocol ΠSM-ALL and give it formally in §9.1 for completeness.

The protocols we present below are realized with black box calls to the following four “primi-
tive” functionalities: ΠReveal, ΠComp, ΠSel,ΠShuffle that act on additively shared secret values.
Oblivious transfer and the existence of an additively homomorphic rerandomizable public key cryp-
tosystem are sufficient assumptions to realize these functionalities (and ΠSM-FNO), as described
below.

In ΠReveal, the parties begin with secret-shares of a value [x] and end with the underlying value
x.
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In ΠComp, the parties have shares of two values x and y, and as output they receive shares of
a bit denoting the result of a comparison operator [x > y], [x ≥ y] or [x == y]. These comparisons
can be computed by converting to shares of bits and applying garbled circuits, which requires at
least O(W logW ) boolean gates on words of W bits. A promising alternative is the GMW-based
approach of Nishide and Ohta [36], which requires O(W ) bits of communication and O(1) rounds
of communication and is concretely efficient.

In ΠSel, the parties perform multiplication of two values [b] and [x], where b is either 0 or 1,
and x can be any value. Equivalently, the parties compute shares of the ternary operator b ? x : 0.
The value b can be XOR shared or additively shared over a larger field. The protocol ΠSel can be
realized using any standard MPC multiplication, or via string-OTs with rerandomizable encryption.

In ΠShuffle, the parties begin with shares of a list, and end with shares of the same list, in
a new (unknown) order. To get the desired asymptotics, we require that the shuffle have O(1)
rounds and O(n) total communication. Such protocols exist and can be realized via an additively
homomorphic, semantically secure cryptosystem with constant ciphertext expansion. At a high
level, the shuffle works by allowing each party to hold an encryption of the list under the other
party’s secret key, and then shuffling and re-randomizing; see [14] for the full protocol and a more
thorough treatment.

4.5 Security Model

We provide security analyses of our protocols within the Universally Composable (UC) framework,
against a semi-honest adversary corrupting one of the two parties. UC security is essential since
our protocols are built on recursive calls to sub-protocols. We present the protocol in the input
setting where each party holds shares of each list being sorted, although, as mentioned in the
introduction, the protocol can be adapted to other, more specific settings. We remark that the
adversary does not have direct access to the memory access pattern of the other party. However,
outside of the shuffling protocol, both parties have identical memory access patterns, and so the
adversary can deduce most of the memory accesses of the honest party, and our proofs of security
show the adversary learns nothing from these memory accesses.

We prove UC security of the protocols in this paper against static semi-honest adversaries
under the standard simulator definition of security, see e.g. [6]. It is straightforward to simulate
the behavior of the adversary during the protocol in any environment, since the adversary is semi-
honest and must follow the protocol. What remains to be checked is the behavior of the adversary
on the input, i.e. that the adversary input is still extractable without the simulator being able to
“rewind” the adversary. We address this in the standard by way requiring both parties to commit
to their inputs under an extractable commitment, so that the adversary input can be recovered
without rewinding. We omit the details.

Therefore the ideal functionality F for each protocol interacts with the parties in the following
way in the ideal world:

- Setup. Each party sends their inputs to F, who stores them plus an id sid.

- Execution. The parties send the command (Execute, sid) to F , who computes the desired
output and stores it.

- Reveal. The parties send the command (Reveal, sid) to F , who sends the output of the execute
step to each party.

Note that we could instead combine multiple ideal functionalities into a black-box functionality
Fblack-box with a family of execution commands (Executei) corresponding to each of the protocols
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defined in this paper. This provides an alternate way to address the matter of composability, and
guarantees that inputs to one protocol match outputs from another protocol.

4.6 Notation

For any two sorted lists L1 and L2, let
⊔

denote the “merge” of two lists (i.e.
⊔

is functionally
equivalent to (multi-)set union followed by sort): L1

⊔
L2 = Sort(L1 ∪ L2). For any sorted list Lj

of size n, and for any k|n, let Mj,k denote the k “medians” of Lj . Namely, if list Lj = {u1, . . . , un},
then:

Mj,k := {u ℓ·n
k
}kℓ=1 (2)

Basic properties that follow from the definition of medians are in Section 10.
Throughout the paper we distinguish between secure symmetric merge ΠSSM and secure asym-

metric merge ΠSAM. In a symmetric merge, the lists are of roughly the same size, or differ by at
most a constant factor (since then one list can be padded with dummies to match the length of the
other). In an asymmetric merge, the ratio of list sizes is larger than constant. Finally, in analyzing
performance of a protocol, RCost will denote the round-complexity, and CCost the computation
and overall communication complexity.

5 Description of Secure Merge Protocols

Our merge protocols come in two variants: symmetric merge, where the two lists are of equal size,
and asymmetric merge, where one list is significantly smaller than the other. One useful technique
that we employ in both of our symmetric and asymmetric merge protocols (Figures 4 and 5) is using
black box calls to one flavor of merge to solve the other. This iterative process then terminates
with a “base” version of each variant (symmetric and asymmetric merge), and we introduce in §6
two efficient protocols – ΠSSM- log logn and ΠSAM−n1/3 – that can be used as the base protocols,
allowing us to achieve our overall target metrics for secure merge as stated in Theorem 1. We
summarize the dependency of our main protocols on these subprotocols in Table 2. That table,
together with the asserted metrics of the primitive functionalities (such as ΠExtract), is sufficient
to establish the stated asymptotics of Theorem 1.

Name [Figure #] Calls to Subprotocols Cost

ΠSSM(n) [4] 2 ·ΠSAM(k, n), 2k ·ΠSSM(n/k) O(n)

ΠSAM(k, n) [5] 2 ·ΠSSM(k), k ·ΠSSM(n/k) O(n+ k log log k)

ΠSSM-loglog(n) [7] O(loglog n) · [ΠShuf(n), O(n) ·ΠRev,Comp,Sel] O(n loglog n)

ΠSAM-n1/3(n1/3, n) [9] 2n1/3 ·ΠSM-ALL(n
1/3, n1/3) O(n)

Table 2: Protocol and subprotocol relations. The Cost column uses:

- For ΠSSM(n): Set k = n
loglogn , ΠSAM(k, n) = Fig. 5, ΠSSM(nk) = ΠSM-FNO

- For ΠSAM(k,n): ΠSSM(k) = ΠSSM-loglog(k) (Fig. 7),ΠSSM(nk) = ΠSM-FNO

In this section, we present our secure symmetric and asymmetric merge protocols. Each follows
the partition-align approach, which has four phases:

• Partition. We invoke a subprotocol to determine where the partition points (medians) of one
list lie within the other list (see e.g. Figure 1).
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• Align Blocks. A (lightweight) MPC protocol is run to determine, for each block in one list,
which block(s) in the other list span the same range of values (see e.g. Figure 2).

• Merge Blocks. This phase can be further specified as the merging of “well-aligned” blocks and
the merging of “poorly-aligned” blocks (see e.g. Figure 3 for well-aligned blocks).

• Combine Blocks. The results from the previous step are combined, and any dummy elements
added there are removed, producing the final merged list.

5.1 Secure Symmetric Merge

Our Secure Symmetric Merge protocol ΠSSM(n) is sketched in Figure 4. For the Partition phase,
it uses a secure asymmetric merge protocol to merge the k-medians of one list into the other list
(and vice-versa). For the Align Blocks phase, we expand each median (in its merged location within
the other list) into k-copies; which by Lemma 10.1 (Section 10) guarantees that each block of n/k
elements is perfectly aligned (see Figure 3). Thus, there are no “poorly-aligned” blocks for the
Merge Blocks phase, and each block is merged via a secure symmetric merge protocol (for lists of
size n/k). Specification of our “abstract” secure symmetric merge protocol is presented in Figure 4;
this protocol is made concrete by specifying choices for partition/block size k and the specific merge
sub-protocols used in the Partition and Merge Blocks phases. In particular, the metrics of Theorem
1 are obtained by setting k = n/ log logn and using ΠSSM′(n/k) = ΠSSM-FNO and ΠSAM(k, n) =
ΠSAM(k, n,ΠSSM-FNO,ΠSSM- log logn), which refers to the secure asymmetric merge protocol of
Figure 5, using for its subprotocols ΠSSM′(n/k) = ΠSSM- log logn and ΠSSM′′(k) = ΠSSM-FNO.

Secure Symmetric Merge Protocol

Input. Two parties P1, P2 (additively) secret-share two sorted lists L1 and L2, each of size n. Also as input, a
parameter k with k|n, and specifications of subprotocols ΠSSM′(n/k) and ΠSAM(k, n).

Output. The two lists have been merged (i.e. combined so that the final list is sorted) into an output list
L1

⊔
L2, which has size 2n and is (additively) secret-shared amongst the two parties.

Protocol (sketch).

1. Partition. Invoke secure asymmetric merge protocol ΠSAM(k, n) (Figure 5) to merge the k medians of L2

with list L1 (and vice-versa).

2. Align Blocks. Invoke the Expanding Medians approach (Figure 3) by running the duplicate values ΠDup

protocol (Fig. 16) twice, which expands the sizes of the output lists from Step 1 to be 2n and ensures they
are “aligned”.

3. Merge Blocks. Run the secure symmetric merge protocol ΠSSM′(n/k), in parallel, on each of the 2k
(aligned) blocks.

4. Combine Blocks. Concatenate the results of the 2k parallel invocations of secure symmetric merge from the
previous step, and run the secure ordered extract ΠExt-Ord protocol (Fig. 13) to remove dummy elements.

Figure 4: Overview of the Secure Symmetric Merge Protocol. For the top-level protocol, we
take k = n/ log log n, and use ΠSAM(k, n,ΠSSM−FNO,ΠSSM- log logn) for the asymmetric merge
protocol in Step 1, and use ΠSSM−FNO for each of the symmetric merge protocols run in parallel
in Step 3.

5.2 Analysis of Abstract Secure Symmetric Merge Protocol of §5.1

Security.
The security of the ΠSSM(n) protocol follows immediately from the security of the underlying
ΠDup, ΠExt-Ord, ΠSSM′ , and ΠSAM protocols.

Correctness.
Assuming correctness of ΠSSM′(n/k), ΠSAM(k, n), ΠDup, and ΠExt-Ord subprotocols, we need
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only demonstrate that the concatenation done in Step 4 above is correct, that is, that the blocks
“align” as per the partitioning. Namely, this follows from Lemma 10.1, which demonstrates that
lists L′′

1 and L′′
2 have the same list of 2k medians (both equal M1,k

⊔
M2,k).

Cost.

• Step (1) invokes the ΠSAM(k, n) protocol (Figure 5) twice.

• Step (2) invokes the ΠDup(k, n/k) protocol (Figure 16) twice.

• Step (3) invokes the ΠSSM′(n/k) protocol 2k times.

• Step (4) invokes the secure ordered extract ΠExt-Ord(4n, 2n) protocol.

Using the ΠDup(k, n/k) protocol of Figure 16 and the ΠExt-Ord(4n, 2n) of Figure 13, and assuming
constant-round and linear secure protocols forΠComp, ΠReveal, andΠShuffle, adding up these costs
yields:

RCost(ΠSSM(n)) = RCost(ΠSAM(k, n)) + RCost(ΠDup(k, n/k))+

RCost(ΠSSM′(n/k)) + RCost(ΠExt-Ord(4n, 2n))

= O(1) + RCost(ΠSAM(k, n)) + RCost(ΠSSM′(n/k))

CCost(ΠSSM(n)) = 2 · CCost(ΠSAM(k, n)) + 2 · CCost(ΠDup(k, n/k)) +

2k · CCost(ΠSSM′(n/k)) + CCost(ΠExt-Ord(4n, 2n))

= 2 · CCost(ΠSAM(k, n)) + 2k · CCost(ΠSSM′(n/k)) +O(n)

Using ΠSM−FNO for ΠSSM′(n/k), and using for ΠSAM(k, n) our protocol of Fig. 5 – with subpro-
tocols ΠSSM−FNO for ΠSSM′(n/k) and ΠSSM- log logn for ΠSSM′′(k) – and using k = n/ log log n,
the cost becomes:

RCost(ΠSSM(n)) = [RCost(ΠSSM- log log(k) + RCost(ΠSSM-FNO(n/k)] +

RCost(ΠSSM-FNO(n/k))

= O(log log k) +O(n/k) = O(log log n).

CCost(ΠSSM(n)) = 2 · [2 · CCost(ΠSSM-log log(k) + k ·CCost(ΠSSM-FNO(n/k)] +

2k · CCost(ΠSSM-FNO(n/k)) +O(n)

= [O(k log log k) + k ·O(n/k)] + 2k ·O(n/k) +O(n) = O(n).

5.3 Secure Asymmetric Merge

Our Secure Asymmetric Merge protocol ΠSAM(k, n) is sketched in Figure 5. For the Partition
phase, it uses a secure symmetric merge protocol to merge the k medians of the larger list with
the (entirety of the) smaller list. For the Align Blocks phase, we use the ΠExt-Bin protocol (§4.3)
to securely perform the classifications of elements/blocks as poorly-aligned vs. well-aligned. For
the Merge Blocks phase: for the well-aligned items, we apply a secure symmetric merge protocol
to merge (at most) n/k elements from L1 into the appropriate block of n/k elements of L2. For
the poorly-aligned items, we first argue that the cumulative number of elements in L2 that lie
in a poorly-aligned block is at most k (and the same is trivially true for L1, which only has k
elements), and therefore we use another secure symmetric merge protocol (for lists of size k) to
merge poorly-aligned elements from L1 into poorly-aligned blocks of L2.

The “abstract” secure asymmetric merge protocol in Figure 5 is made concrete by specify-
ing choices for the specific merge sub-protocols used in the Partition and Merge Blocks phases.
In particular, the metrics of Theorem 1 are obtained by using ΠSSM′(n/k) = ΠSSM-FNO and
ΠSSM′′(k) = ΠSSM- log log.
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Secure Asymmetric Merge Protocol ΠSAM(k, n)

Input. Two parties P1, P2 (additively) secret-share sorted list L1 of size k and L2 of size n. Also, specification
of subprotocols ΠSSM′(n/k) and ΠSSM′′(k).

Output. The two lists have been merged into an output list L1

⊔
L2, which has size k + n and is (additively)

secret-shared amongst the two parties.

Protocol.
1. Partition (Fig.1). Run ΠSSM′′(L1,M2,k) to merge L1 and the k medians of L2.

2a. Align Blocks: Label (Fig.2). Partition L2 into k blocks, each of size n/k (the k medians of L2 define the
right-boundary of each block). Define a block of L2 to be “well-aligned” if it has fewer than n/k elements
of L1 that map to it. Well-aligned blocks are identified by doing (in parallel, via ΠComp) a linear scan of
the merge positions of L1 (from Step 1), and comparing whether elements i and (i + n/k + 1) are in the
same block. Meanwhile, define elements of L1 to be “well-aligned” if they lie in a well-aligned block.

2b. Align Blocks: Extract Poorly-Aligned (Fig.2). Using the merge positions from the previous step, run
the ΠExt-Ord protocol on L1 (respectively on L2) to extract all “poorly-aligned” (i.e. not well-aligned)
elements of L1 (resp. L2), and let LPA

1 (resp. LPA
2 ) denote the extracted elements. Note that there are at

most k poorly-aligned elements from each list (Observation 5.2), so LPA
1 and LPA

2 will each have size k,
with ΠExt-Ord extracting dummy-elements to pad each list to exactly this size.

2c. Align Blocks: Extract Well-Aligned (Fig. 2). For the well-aligned elements of L1, run the ΠExt-Bin

protocol to extract the well-aligned elements of L1 into the separate lists (each of size n/k), based on
which block of L2 they lie in (this information is available from the merge done in Step 1). By definition
of “well-aligned,” there are at most n/k such elements for each block, and ΠExt-Bin extracts exactly this
many elements into each list, padding with dummy elements when necessary. Let {LWA

1,m }m denote the k
output lists of the ΠExt-Bin protocol. Meanwhile, for L2, we simply extract all elements of the ith block
into LWA

2,i if and only if block i is well-aligned (otherwise LWA
2,i is filled with dummy elements). Using the

labels created in Step 2, this can be done by running the ΠExt-Ord protocol on each block of L2.

3a. Merge Blocks: Poorly-Aligned. Run ΠSSM′′(k) on LPA
1 and LPA

2 .

3b. Merge Blocks: Well-Aligned. Run ΠSSM′(n/k), in parallel, on each of the k (aligned) blocks {LWA
1,m }m

and {LWA
2,m }m.

4. Combine Blocks. The final index of any element in the merged list is:(
#LeftWA

1

)
+

(
#LeftPA

1

)
+

(
#LeftWA

2

)
+

(
#LeftPA

2

)
+Block Index

where e.g. #LeftWA
1 denotes the number of well-aligned elements of L1 that lie in a block to the left

of this element’s block, and Block Index is this element’s index within its block. Each element’s final
index is computed from the outputs of the merges done in Steps 1, 3a, and 3b, as per the analysis in the
Correctness argument (Section 5.4).

Figure 5: Secure Asymmetric Merge Protocol. In our main protocol, we take k = n/ log log n,
ΠSSM′ := ΠSSM-FNO, and ΠSSM′′ := ΠSSM- log logn.
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5.4 Analysis of Abstract Secure Asymmetric Merge Protocol of §5.3

For all steps in this subsection, we refer to Figure 5.
Security.
For Steps 1, 2a, 2b, 2c, 3a, and 3b: security follows from the security of the underlying subproto-
cols. Namely, a simulator for the protocol for either party calls the simulator for each subprotocol:
ΠSSM′′ , ΠComp, ΠExt-Ord, ΠExt-Bin, ΠSSM′′ , and ΠSSM′ , respectively. Meanwhile, the correct-
ness property ensures that the indices revealed in Step 4 are unique and are a (random) permutation
of the values in [1, . . . , (k+n)]. Therefore, the simulator for Step 4 generates a random permutation
of (k + n) elements.

Correctness.
We first clarify that the merges done in Steps 1, 3a, and 3b are done “in-place”: rather than actually
constructing an output merged list, these merges instead determine each element’s index in what
would be the merged list, and then append (shares of) this index as a tag applied to the element
(in its original list). In this way, we may manipulate (add, subtract, etc.) the indices produced by
the merges in Steps 1, 3a, and 3b, to compute each element’s index in the final merged list based
on its indices in the outputs of the earlier “in-place” merges.

To verify correctness, it will be useful to set notation corresponding to the formula in Step 4 of
Figure 5 as follows:

(U, V ) =
(
#LeftWA

1, #LeftPA
1

)
: (#(L1.WA),#(L1.PA)) in all blocks to the left

(W,X) =
(
#LeftWA

2, #LeftPA
2

)
: (#(L2.WA),#(L2.PA)) in all blocks to the left

(Y, Z) = (#Same1, #Same2): (#L1,#L2) in same block but to the left

where Block Index = Y +Z denotes the index of an element in its own block. Thus, any element’s
final index in the merged list is: U +V +W +X +Y +Z. This quantity can be computed for each
element based on information available from Steps 1-3, as follows:

L1.WA: (U + V + Y ) is available from each element’s original position in L1; (W +X) is available
as j ·n/k, where j is the block of L2 that this element maps to (from Step 1); (Y +Z) is the output
index from Step 3b; and −Y is this element’s position after merging its well-aligned block (Step
2c).

L2.WA: (U + V ) is available from Step 2a; (W +X) is available as j · n/k, where j is the block of
L2 that this element lies in; and (Y + Z) is the output index from Step 3b.

L1.PA: (U + V + Y ) is available from each element’s original position in L1; (W +X) is available
as j · n/k, where j is the block of L2 that this element maps to (from Step 1); (V +X + Y + Z)
is the output index from Step 3a; (−V − Y ) is from Step 2b; and −X is n/k times the number of
poorly-aligned blocks to the left, which is computable from the info in Step 2a.

L2.PA: (U + V ) is available from Step 2a, while −V is available by using the information from
Step 1 applied just to the poorly-aligned items extracted in Step 2b; (W +X) is available as j ·n/k,
where j is the block of L2 that this element lies in; (V +X +Y +Z) is the output index from Step
3a; and −X is n/k times the number of poorly-aligned blocks to the left, which is computable from
the info in Step 2a.

It remains to show that the pre-conditions of the ΠExt-Ord and ΠExt-Bin protocols are satisfied.
Namely, how to (efficiently) construct the input parameters C and T ′ of the ΠExt-Bin protocol;
and that at most n/k elements are extracted from each list into each well-aligned block and at most
k elements are extracted from each list into the poorly-aligned block. These are stated and proved
in the following observations:
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Observation 5.1. (Shares of) the parameters C and T ′ to the ΠExt-Bin protocol used in Step 2c
can be securely computed locally in O(n) computation.

Proof. For each i ∈ [1..k], let ιi denote the position of the kth median of L2 in the output list of
Step 1; and let δi be an indicator on whether ti > 0. Then formulas for C = {cj} and T ′ = {t′j}
can be expressed iteratively as:

t′1 = ι1 − 1 and t′j+1 = ιj+1 − j −
∑

i≤j t
′
i

c1 = δ1 and cj+1 = δj+1 · (1 +
∑

i≤j t
′
i)

While the expressions above can be computed securely without introducing additional overhead
to the overall protocol, the multiplication by δi in the expression of cj+1 would require a secure
(non-local) computation. However, we leverage the fact that our ΠExt-Bin protocol of Fig. 14 works
correctly even if cj is an arbitrary value when t′j = 0. Thus, the δi terms can be dropped from
the above expression, and then, by linearity of the secret-sharing scheme, each party can locally
compute their shares of C and T ′ by using their shares of the relevant variables on the RHS of each
of the above expressions for t′j and cj .

Observation 5.2. For both L1 and L2, the number of poorly-aligned elements in Step 2b of the
ΠSAM(k, n) protocol of Figure 5 is at most k.

Proof. Since L1 has size k, this statement is trivially true for L1. Meanwhile, for each poorly-
aligned segment of L2, by definition there are at least n/k + 1 elements from L1 that are assigned
this segment. Thus, the k elements of L1 can cause at most m = k/(n/k+1) < k2/n poorly-aligned
segments. Since each segment has size n/k, this corresponds to at most m · n/k < k elements of
L2.

Observation 5.3. For both L1 and L2, the number of well-aligned elements in each block of Step
2c of the ΠSAM(k, n) protocol of Figure 5 is at most n/k.

Proof. Blocks are defined as the n/k elements to the left of (and including) each (of the k) median
of L2, so this is trivially true for L2. Meanwhile, for L1, any block that contains more than n/k
elements of L1 will be a poorly-aligned block, and consequently the corresponding elements from
L1 will all be labelled “poorly-aligned,” which means no elements from L1 will be extracted by
ΠExt-Bin in Step 2c for this block.

Cost.

• Step (1) has RCost(ΠSSM′′(k)) and CCost(ΠSSM′′(k)).

• Step (2a) has RCost(ΠComp) and Θ(k) · CCost(ΠComp).

• Step (2b) has RCost(ΠExt-Ord(k, k)) + RCost(ΠExt-Ord(n, k)) and
CCost(ΠExt-Ord(k, k)) + CCost(ΠExt-Ord(n, k)).

• Step (2c) has RCost(ΠExt-Bin(k, k, n/k)) + k · RCost(ΠExt-Ord(n/k, n/k))
and CCost(ΠExt-Bin(k, k, n/k)) + k · CCost(ΠExt-Ord(n/k, n/k)).

• Step (3a) has RCost(ΠSSM′′(k)) and CCost(ΠSSM′′(k)).

• Step (3b) has RCost(ΠSSM′(n/k)) and k · CCost(ΠSSM′(n/k)).

• Step (4) has RCost(ΠExtract(2(k + n), k + n)) + RCost(ΠReveal) and
CCost(ΠExtract(2(k + n), k + n)) + (k + n) · CCost(ΠReveal).
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Using the costs of subprotocols ΠExtract, ΠExt-Ord, and ΠExt-Bin, and assuming constant-round
and linear secure protocols for ΠComp, ΠReveal, and ΠShuffle, we add up the contributions from
each step to obtain:

RCost(ΠSAM(k,n)) =RCost(ΠSSM′′(k)) + RCost(ΠSSM′(n/k))+

RCost(ΠComp) + RCost(ΠReveal)+

RCost(ΠExt-Ord(k, k)) + RCost(ΠExt-Ord(n, k))

RCost(ΠExt-Bin(k, k, n/k)) + RCost(ΠExt-Ord(n/k, n/k))

RCost(ΠExtract(2(k + n), k + n))

=O(1) + RCost(ΠSSM′′(k)) + RCost(ΠSSM′(n/k))

CCost(ΠSAM(k,n)) =2 · CCost(ΠSSM′′(k)) + k · CCost(ΠSSM′(n/k))+

Θ(k) · CCost(ΠComp) + (k + n) · CCost(ΠReveal)+

CCost(ΠExt-Ord(k, k)) + CCost(ΠExt-Ord(n, k))

CCost(ΠExt-Bin(k, k, n/k))+k ·CCost(ΠExt-Ord(n/k, n/k))

CCost(ΠExtract(2(k + n), k + n))

=O(k+n)+2 ·CCost(ΠSSM′′(k)) + k ·CCost(ΠSSM′(n/k))

Using ΠSM−FNO for ΠSSM′(n/k) and ΠSSM- log log for ΠSSM′′(k), the cost is:

RCost(ΠSAM(k,n))= O(log log k) +O(n/k) = O(n/k + log log k) = O(log log n)

CCost(ΠSAM(k,n))= O(k+n)+O(k log log k)+O(n) = O(n+k log log k) = O(n)

where the final equality for costs comes as a result of setting k = n/ log log n.

6 Description of Base Protocols: ΠSSM-loglog and ΠSAM-n1/3

In this section, we present our ΠSSM- log logn and ΠSAM−nα base protocols (for α = 1/3; the
general case for α < 1 can be found in §7.3).

6.1 Secure Symmetric Merge with O(n log log n) Communication

As an ingredient for ΠSAM(k, n), we need a secure symmetric merge with O(n loglog n) communi-
cation and O(loglog n) rounds, which we call ΠSSM-log log. We give this protocol in Figure 7. For
the Partition phase, it uses a secure asymmetric merge protocol (namely, the ΠSAM-n1/3 in the
next section) to merge the k = n1/3 medians of each list into the other list. The 2k medians of
both lists thus partition each list into 2k blocks of size at most n/k. For the Align Blocks phase,
we group each block from L1 with the corresponding block from L2, as shown in Figure 6, and pad
each block with dummies so that it has length exactly n/k. For the Merge Blocks phase, each pair
of matching blocks are merged together; and then the Combine Blocks phase simply concatenates
and removes dummy elements that were introduced to hide the alignment of blocks.

The protocol is recursive, and, if implemented näıvely, the problem sizes would double at each
step of the recursion, for O(n log n) computation (instead of the desired O(n log logn)), because
there are log log n steps total. In Fig. 7, we show how to discard sub-problems along the way to
avoid this blow-up.
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Figure 6: Each list is partitioned into 2k blocks by the k medians from both lists. The two grey
blocks appended to the end of the top list are made up entirely of dummy elements, and show
how to handle medians from one list that merge to a location outside the other list. Each block is
padded with the appropriate number of dummy elements to ensure it has n/k elements. Each pair
of aligned blocks (visualized via the connecting line segments) are then merged in 2k sub-problems
(run in parallel) for ΠSSM(n/k), with the final result obtained by concatenating the results of these
2k merges and removing dummy elements.

6.2 Analysis of the ΠSSM-log log(n) Protocol of §6.1

Security.
To simulate either player’s view during an execution of the protocol, a simulator can call the
simulator of the sub-protocols on every step except for Step 11, since that is the only step where
values are revealed to the parties. For Step 11, the parties only see a random permutation of
{1, 2, . . . , 2n}, so their views can be simulated by randomly sampling such a permutation.
Correctness.
The overall goal will be to show that the subproblems extracted in Step 10 contain a partition of the
2n elements into well-ordered blocks, so that the real elements of each block are either all greater
than or all less than the real elements from another block. We must show this well-orderedness
property and that all elements are included, so that it is truly a partition. We proceed step-by-step.

In Step 4, we note that, as in §5.4, the ΠSAM-n1/3 protocols are performed “in-place”, so that
each element gets a (secret-shared) tag of their destination under this merge. These tags can be
transformed into shares of the number of medians from the opposite list less than a given element,
or shares of the number of elements from the opposite list less than a given median.

In Step 5, the shares of the destination block are computed by adding the shares of the number
of medians of the opposite list less than a given element to the floor of the element’s index divided

by n
2/3
k−1, which counts the number of medians from the same list less than a given element, and is

a public value.
In Step 6, again, the number of elements less than a given median from the opposite list is a

secret shared value generated in Step 4, and the number of elements less than a given median in
the same list is a public value. This time, when we run ΠSM-ALL, we do not run it “in-place”,
but return the output list of tagged medians. Note that we tag all medians first with an A1-tag
(counting elements from A1 less than that median), then with an A2-tag, so that after merging,
the A1 medians and A2 medians are indistinguishable, and we can compute the correct auxiliary
information without leaking information.

The index of the first element of A1 (resp. A2) in the j-th bin is the A1-tag (resp. A2-tag), since
the first element in the j-th bin is the first element not less than the j-th median. The number of
elements from A1 (resp. A2) in the j-th bin is equal to the (j + 1)-th A1-tag (resp. A2-tag) minus
the j-th tag, since this is the difference between the start index of two adjacent bins.

For Step 7, we have just shown the correctness of the auxiliary information generated for
ΠExt-Bin. It remains to show that the assumed bound on the size of each bin holds. The union of
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Secure Symmetric Merge ΠSSM- log logn

Input. Parties P1, P2 (additively) secret-share sorted lists L1, L2 of size n.

Output. The two lists have been merged (i.e. combined so that the final list is sorted) into an output list
L1

⊔
L2, which has size 2n and is (additively) secret-shared amongst the two parties.

RCost. O(log log n) rounds.

CCost. O(log log n) · [n ·CCost(ΠReveal+ΠComp+ΠSel)+CCost(ΠShuffle(n))].

Protocol.
1. Compute d = log logn

log(3/2)
−O(1) such that 4 ≤ n(2/3)d < 8.

2. Define P0 := {(L1, L2, 0)}, to be the top-level array of sub-problems of size n. Each subproblem consists

of two lists L1, L2 and a final offset ω. Define nk := n(2/3)k . Then, for k = 1, . . . , d, do Steps 3 through
10.

3. For each tuple (A1, A2, ω) ∈ Pk−1, do Steps 4 through 8.

4. Partition (Fig. 6). Run ΠSAM-n1/3 twice to merge the n
1/3
k−1 mediansM

1,n
1/3
k−1

of A1 with A2 and the

n
1/3
k−1 mediansM

2,n
1/3
k−1

of A2 with A1.

5. Align Blocks: Label Label each element of A1 and A2 with a destination block by counting the
number of medians from either list that are less than that element, which can be computed from the
(secret-shared) destination indices under the merges in the previous step.

6. Align Blocks: Auxiliary Information Tag each of the medians from both lists with the number
of elements less than it from A1. Then tag all medians from both lists with the number of elements
less than it from A2. Run ΠSM-ALL to merge the tagged medians M

1,n
1/3
k−1

with the tagged medians

M
2,n

1/3
k−1

. Then each party computes locally the auxiliary information: The number of elements from

each list in each bin, and the index of the first element from each list in each bin.

7. Align Blocks: Extract Run the ΠExt-Bin protocol to extract all elements from A1 into 2n
2/3
k−1 = 2nk

bins of size n
1/3
k−1. Run the same ΠExt-Bin protocol for A2. This requires the auxiliary information

computed in the previous step.

8. Match corresponding bins from these two ΠExt-Bin outputs to give new subproblems (Bj,1, Bj,2, ωj);
compute the new offsets ωj by adding auxiliary information to ω. Append these subproblems to Pk.

9. Compute: Sk := 1 + 2
∑k

i=1 n
(1− 2i

3i
)
.

10. Call ΠExtract on Pk to extract all the subproblems with at least one non-dummy element. There are at
most Sk such subproblems by Lemma 6.1.

11. Block Merge Phase. Perform ΠSM-ALL on every pair (A1, A2, [ω]) ∈ Pd, and add [ω] to all resulting
destination indices to give the final destination index of all real elements. Call ΠExtract on the union
of all lists in Pd to extract the 2n real elements, open the secret-shared destination tags, and place each
element in its correct destination.

Figure 7: O(n log log n) Secure Symmetric Merge Protocol

the values from M
1,n

1/3
k−1

and M
2,n

1/3
k−1

will partition each list A1 and A2 into 2n
1/3
k−1 blocks (since

the list of both medians includes the maximum of both lists, no non-median element can lie to the
right of all medians, see Fig. 6). Each block will have at most nk real elements, since each block is
either composed of the interval between two adjacent medians of the same list, which has exactly
nk elements, or a sub-interval of such an interval.

In Step 8, we obtain the new offset ωj by adding ω (the offset for the current subproblem) to
the j-th A1-tag and the j-th A2 tag. These two tags count the number of elements from A1 and A2

less than the j-th median, but we must verify that all of these elements are real. But all dummy
elements are sorted to the right of all real-valued medians, so either the entire subproblem will be
dummy, and the subproblem will be discarded in Step 10, or all elements counted by the A1-tag
and the A2-tag are non-dummy, and our computation of ωj is correct.
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The value Sk and the bound on non-dummy subproblems in Step 10 follow from Lemma 6.1,
below. The correctness of the final indices in Step 11 follows from the correctness of the offsets
ωj computed along the way and the correctness of ΠSM-ALL, and since we have verified that Pd

contains a partition of the 2n real elements, the bound on real elements for the final ΠExtract call
is also correct. We now return to the lemma establishing the bound on the size of subproblems:

Lemma 6.1. At a depth of d, there are at most Sd := 1 + 2
∑d

i=1 n
1−2i

3i sub-problems without all

elements dummy. For d = log logn
log(3/2) −O(1), Sd ≤ 4n1−(2/3)d .

Proof. Let Nk be the number of subproblems at depth k with at least one non-dummy element,
that is, the cardinality of the set |Pk| after the extraction in Step 10. Then we have N0 = 1 and
we will prove the recurrence relation:

Nk+1 ≤ Nk + 2n1−(2/3)k ,

which is sufficient to prove the lemma.
To prove this recurrence relation, we will divide the subproblems generated before the extraction

in Step 10 into three categories: A group of subproblems that have an average density of at least
1/2 real elements, one special subproblem, and a group of subproblems made up entirely of dummy

elements. Since subproblems at level k have 2n(2/3)k elements, and there are 2n real elements total,
there can be at most 2n/n(2/3)k = 2n1−(2/3)k subproblems in the first category. There will also
be, of course, Nk special subproblems, which will prove the recurrence. It remains to describe this
categorization.

Let (A1, A2, ω) be a subproblem at level k − 1, and let m1 and m2 be the number of median
elements that are real in A1 and A2 respectively. Then the first m1 + m2 blocks (as determined

in Step 5) will include at least the first m1n
(2/3)k real elements of A1 and the first m2n

(2/3)k real

elements of A2. Thus these m1+m2 subproblems will have 2(m1+m2)n
(2/3)k elements and at least

(m1 + m2)n
(2/3)k real elements, which proves that their average density is at least 1/2. Because

the next median of each list is a dummy element, all remaining real elements of both A1 and A2

will be mapped into the m1 +m2 + 1-th block, which is the special subproblem.
For the final bound on Sd, note that there exists a unique value of d, with d < log logn

log(3/2) , such

that 4 ≤ n(2/3)d< 8. We thus have for k < d the desired bound:

n1−(2/3)k

n1−(2/3)k+1 = n
− 2k

3k+1 ≤ 1

2
⇒ Sd ≤ 2n(2/3)d

d∑
i=0

(
1

2

)d−i

< 4n(2/3)d .

Cost.
At a depth k, Steps 4 through 8 of Figure 7 require O(n(2/3)k) communication and computation and
O(1) rounds for each element of Pk, since the computations in each of Steps 4 through 8 are linear.

By Lemma 6.1, at a depth of k, there are at most Sk = 2n1−(2/3)k +O(n1−(2/3)k+1
) = O(n1−(2/3)k)

subproblems, so the total work for Steps 4 through 8 is O(n) communication and computation and
O(1) rounds. Steps 4 through 8 have the effect of doubling the total number of elements, so the

total size of the lists in Pk before the extraction in Step 10 is 2Skn
1−(2/3)k = O(n), and so Step 10

requires O(n) work each time it is called. Since Steps 3-10 are called log log n − O(1) times, the
total communication is O(n log logn) and the round complexity is O(log log n), as desired.
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6.3 Secure Asymmetric Merge on (n1/3, n)

For the special case where |L1| = O(n1/3) and |L2| = O(n), we present in Figure 9 an asymmetric
merge protocol with communication complexity O(n) and round complexity O(1). By calling
ΠSM-ALL (see Figure 15) on L1 and the n2/3 medians of L2, we can identify every block of L2

which contains an element of L1 after merging the two lists. Because there are O(n1/3) elements
of L1, there are O(n1/3) such blocks of L2. After extracting these blocks, we run ΠSM-ALL again
on L1 and the O(n2/3) elements of the extracted blocks of L2. After some careful accounting of
the index shifts during these steps, we get the destination indices for all the elements, which gives
the desired merge protocol. We give a sketch of the ΠSAM-n1/3 protocol in Figure 8 and the full
protocol in Figure 9.

Cubic Secure Asymmetric Merge ΠSAM-n1/3(n1/3, n)

Input. Two parties (additively) secret-share sorted lists (L1, L2) of sizes (n
1/3, n).

Output. The two lists have been merged into an output list L1

⊔
L2, which has size n+n1/3 and is (additively)

secret-shared amongst the two parties.

Protocol (Sketch).
1. Partition. Invoke the ΠSM-ALL on L1 and the n2/3-medians of L2, thus identifying which block of L2 that

each element of L1 lies within.

2. Align Blocks. Run ΠExtract to securely perform the classification of all blocks of L2 as “poorly-aligned”
or “well-aligned”, where here a block of L2 is well-aligned if at least one element of L1 lies within that block.

3. Merge Blocks. Invoke the secure merge via compare all protocol on L1 and the entire list of well-aligned
blocks from L2 extracted in Step 2.

4. Combine Blocks. Remove dummy elements (introduced in Steps 2 and 3).

Figure 8: Cubic Secure Asymmetric Merge (n1/3, n) Protocol

7 Full Description and Analyses of Protocols in §6

In this section, we give the full protocol descriptions for the merge protocols described in Section
6: O(n log log n) Secure Symmetric Merge, and Cubic Secure Symmetric Merge. We also give
the (nα, n) asymmetric merge in §7.3, and associated subprotocols in the following subsections.
We specify the inputs and outputs of each party under an ideal world execution, give proofs of
correctness and security, and derive the round cost RCost and the communication cost CCost of
each protocol in terms of the cost of underlying sub-protocols or underlying primitives.

7.1 Description of the ΠSAM-n1/3(n1/3, n) Protocol of §6.3
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Cubic Secure Asymmetric Merge ΠSAM-n1/3(n1/3, n)

Input. Two parties P1, P2 (additively) secret-share sorted list L1 of size n1/3 and L2 of size n.

Output. The two lists have been merged (i.e. combined so that the final list is sorted) into an output list

L1

⊔
L2, which has size n+ n1/3 and is (additively) secret-shared amongst the two parties.

RCost. O(1).

CCost. (3n+ 2n2/3 + 2n1/3)CCost(ΠComp) + (4n+ 2n2/3)CCost(ΠReveal) + 3CCost(ΠShuffle)(n+ n2/3).

Protocol.

1. Initial Phase. Invoke ΠSM-ALL(L1,M2,n2/3) in the “in-place” setting, to obtain secret shares of the
destinations of L1 andM2,n2/3 after merging.

2. Label Phase. Construct a shared list T := ([ιi,2]− i) ▷◁ ([ιi,2− ιi−1,2 > 1]) of length n2/3, and a second
list Tn formed by copying each element of T a total of n1/3 times, so that Tn has total length n. Define
τi to be i plus the first coordinate of the ith element of Tn, that is, write Tn := ([τi] − i) ▷◁ (υi). Note
that [τi] denotes the correct index of ai,2 after merging if no elements of L1 lie in the block to which the
ith element of L2 belongs, and υi is an indicator for whether ai,2 lies in a block that contains an element
of L1 after merging.

3. Construct L2 := L2 ▷◁ ([τi]) ▷◁ ([i]) ▷◁ ([υi]), a sequence of ordered 4-tuples.

4. Construct L
′
2 similarly, but reverse the condition tested by T , that is, replace each element ([τi], [υi]) ∈ Tn

with ([τi], 1− [υi]).

5. Align Blocks. Define LA
2 := ΠExtract(L2, n

2/3) and LB
2 := ΠExtract(L

′
2, n), so that the union of the

nun-dummy elements of LA
2 and LB

2 is L2.

6. Merge Blocks. Compute: (̂̂L1, L̂
A
2 ) := ΠSM-ALL(L1, L

A
2 ). Write elements of ̂̂L1 as ([ai,1], [κi,1]) and

elements of L̂A
2 as ([aA

i ], [τi,2], [̂i], [κi,2]).

7. Define L
A
2 := ([aA

i ], [̂i] + [κi,2]− i, [̂i]).

8. Construct the list LC
2 := ΠShuffle(L

A
2 ∪ LB

2 ) := (ℓi) ▷◁ (ϕi,2) ▷◁ (̂i).

9. Reveal the values î. Discard the dummy elements with î = 0 and arrange the remaining values (ℓi, ϕi,2)
in order based on these values. Call the resulting list LD

2 .

10. Return (L1, i+ n1/3 · ([ιi,1]− i) + [κi,1 mod n1/3]) and LD
2 .

Figure 9: Cubic Secure Asymmetric Merge (n1/3, n) Protocol

7.2 Analysis of Secure Asymmetric Merge Protocol of §6.3

Security.
Security follows from the security of the underlying protocols, after verifying that the conditions
for the calls to ΠExtract are satisfied and that nothing is revealed in the ΠReveal call in Step 9.
We verify both of these conditions in our proof of correctness, below.

Correctness.
The indicator υi introduced in Step 2 tests whether any elements of L1 map into the ith block of
L2. Because there are n

1/3 total elements of L1, there are at most n1/3 such blocks, and so at most
n2/3 elements in the blocks, since the blocks have size n1/3. Thus the condition for calling ΠExtract

to generate LA
2 in Step 5 is satisfied. Since there are n elements total in L2, the condition for LB

2

is also satisfied.
For elements of L1, ιi,1 − i counts the number of blocks of L2 situated entirely to the left, and

κi,1 counts the number of elements of L2 situated to the left, plus some additional blocks that are
double counted. Thus, after modding out by n1/3, The indices for L1 computed in Step 10 are
correct.
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For elements ℓ ∈ LA
2 , the value κi,2 − i counts the total number of elements from all of L1 that

end left of ℓ, so adding back in î gives the desired destination index. For element ℓ ∈ LB
2 , the value

τi computed in Step 2 is already the correct destination index, since no elements from L1 maybe
into the block of ℓ. Thus in Step 9, all elements of L2 are given the correct destination index.

Cost.
Step 1 requires n1/3 · n2/3 = n calls to ΠComp. Step 2 requires n2/3 calls to ΠComp. Step 3 and 4
can both be computed locally. Step 5 requires n + n2/3 comparisons, 3n + n2/3 calls to ΠReveal,
and two calls to ΠShuffle(n). Step 6 again requires n comparisons. Step 7 is free. Step 8 requires
another call to ΠShuffle. Step 9 requires n + n2/3 calls to ΠReveal. Finally, Step 10 requires n1/3

modular reductions, which in turn requires 2n1/3 calls to ΠComp.
This gives a total cost of O(1) rounds and communication:

(3n+ 2n2/3 + 2n1/3) · CCost(ΠComp) + (4n+ 2n2/3) · CCost(ΠReveal) +

3 · CCost(ΠShuffle)(n+ n2/3). (3)

7.3 Secure nα Asymmetric Merge Protocols

In this section, we describe how to generalize the Secure Asymmetric Merge protocol from §6.3
to work on a pair of lists L1 of size nα (for any constant α < 1), and L2 of size n, that runs in
time O(n) with O(1), for any fixed α < 1, where the implied constants depend on α. As we show
below, the implied constants are small for α = 1/3, and bounded above by 22/(1−α)3 in general for
communication and 2/(1− α)3 for round complexity.

Our protocol works by bootstrapping up from our cubic merge protocolΠSM−n1/3 via a compiler
from asymmetric merge on (nβ, n) (starting with β = 1/3) to asymmetric merge on (nγ , n), with:

γ =
1

β2 − 3β + 3
.

We write ΠSM−nβ for a particular secure merge protocol for the constant β < 1, and ΠSAM−γ−β

for the protocol that bootstraps from ΠSM−nβ to ΠSM−nγ .
Note that the construction of ΠSM−n1/3 , which is the only subprotocol needed for our main

ΠSSM protocol, was presented above in §6.3, and its analysis is given in §7.2. We give the boot-
strapping protocol in Figure 11 and the full protocol and analysis in §7.4.

We begin with the top-level protocol for performing secure asymmetric merge in time O(n)
and O(1) rounds for fixed α < 1. In terms of α, we give the upper bound of O(n22/(1−α)3)
communication and O(1/(1− α)3) rounds as α → 1.

The correctness and security of the ΠSAM−nα protocol follows immediately from correctness
and security of ΠSAM−n1/3 and ΠSAM−γ−β, as long as the sequence (γi) constructed in Step 1
of this protocol actually terminates. We show that in fact it terminates in at most 2/(1 − α)3

steps, from which the above bounds on communication and round complexity follow from the
communication and round complexity of the previous two protocols.

But indeed, for any β < α, we have

1

β2 − 3β + 3
− β =

(1− β)3

(1− β)(2− β) + 1
≥ (1− β)3/3 ≥ (1− α)3/3.

Since we begin with β = 1/3, it requires at most

α− 1/3

(1− α)3/3
≤ 2

(1− α)3

steps of the recurrence before the sequence of (γi)’s becomes greater than α.
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Secure Asymmetric Merge (nα, n)ΠSAM-nα(nα, n)

Input. Two parties P1, P2 (additively) secret-share sorted list L1 of size nα and L2 of size n (for α ≤ 1/2).

Output. The two lists have been merged (i.e. combined so that the final list is sorted) into an output list
L1

⊔
L2, which has size n+ nα and is (additively) secret-shared amongst the two parties.

RCost. O(1/(1− α)3).

CCost. O(n · 22/(1−α)3).

Protocol.

1. Construct a finite sequence (γi) as follows:

• Set γ1 := 1/3, and i = 1.

• While γi < α, set γi+1 ← 1
γ2
i −3γi+3

and i← i+ 1.

2. Let ℓ be the length of (γi). Then for i ∈ [1..(ℓ − 1)], construct the protocol ΠSAM−γi+1 by calling
ΠSAM−γi+1−γi(n

γi+1 , n,ΠSAM−γi). This gives a protocol ΠSAM−γℓ , for γℓ > α.

3. Pad the list L1 with nγℓ − nα dummy elements, and call the result L1.

4. Call ΠExtract(ΠSAM−γℓ(L1, L2)) to obtain the desired result, extracting all non-dummy elements.

Figure 10: Secure Asymmetric Merge (nα, n) Protocol

7.4 Bootstrapping Protocol ΠSAM−β−γ Protocol

We give in Figure 11 a protocol that bootstraps from ΠSAM−nβ to ΠSAM−nγ , for γ close to β,
in O(1) rounds and roughly twice the communication of the previous level of bootstrapping. In
particular, by setting e.g. β = 1/3, this yields a secure asymetric merge protocol on lists of size
(nγ , n) for any γ ∈ [1/3, (1− ϵ)], for any fixed ϵ > 0.

Secure Asymmetric Merge Recursion Step ΠSAM-β-γ(n
γ , n,ΠSAM−β)

Input. Two parties P1, P2 (additively) secret-share sorted list L1 of size nγ and L2 of size n. Additionally, an
algorithm ΠSAM−β) is given, with:

γ =
1

β2 − 3β + 3
.

Output. The two lists have been merged (i.e. combined so that the final list is sorted) into an output list
L1

⊔
L2, which has size n+ nγ and is (additively) secret-shared amongst the two parties.

Protocol.
1. Partition. Merge in the n1−γ medians of L2 with L1 using ΠSM-ALL, thus identifying which block of

L2 the elements of L1 lie within.

2. Align Blocks. Use calls to ΠExt-Bin and ΠExt-Ord to extract “well-aligned” blocks of L2 to which at
most nβγ elements from L1 are assigned, and the remaining “poorly-aligned” blocks and elements.

3a. Merge Blocks: Well-Aligned. Iterate through each of the n1−γ well-aligned blocks of L2, merging in
the appropriate ≤ nβγ elements in L1 (as identified in Step 2) using ΠSAM-nβ .

3b. Merge Blocks: Poorly-Aligned. Merge the poorly-aligned elements of L1 with the remaining poorly-
aligned elements of L2, using ΠSAM-nβ again.

4. Combine Blocks. Remove dummy elements (introduced in Steps 3a-b).

Figure 11: Secure Asymmetric Merge (nγ , n) Bootstrapping Protocol

26



7.5 Analysis of the Bootstrapping Protocol of §7.4

Security.
Security follows from the security of the underlying protocols, after verifying that the conditions
for the calls to ΠExtract are satisfied and that nothing is revealed in the ΠReveal call in Steps 12,
13, and 15. We verify both of these conditions in our proof of correctness, below.
Correctness.
The lists (LA

1,k) contain the first nβγ elements mapped to each block of size nγ of L2, and so we can

call ΠSM−nβ on these pairs of blocks. We extract into LB
1 all elements after the first nβγ . There

are at most nγ such elements. We extract into LB
2 all blocks which have more than nβγ elements

mapped to them. There are at most nγ(1−β) such blocks, and so at most nγ(2−β) such elements.
After dividing LB

1 into blocks in Step 4, there are n1−γ(2−β) subproblems, which each have
size (n(γ(3−β))−1, nγ(2−β)). By the assumption that γ = 1/(β2 − 3β + 3), we have β · γ(2 − β) =
((γ(3− β))− 1), so we can apply the ΠSM−nβ protocol here as well, in Step 4.

Correctness follows from similar index chasing as in the previous protocols.
Cost.
Step 1 requires n comparisons. Step 2 requires o(n) comparisons. Step 3 is free. Step 4 requires n
calls to min which gives n calls to ΠComp. Step 5 requires o(n) calls to ΠComp and ΠSel. Because
nγ(2−β) = o(n), Step 6 requires n+ o(n) calls to ΠReveal and o(n) calls to ΠComp. Similarly, Step
7 requires 2n · ΠComp + 3n · ΠReveal + n · ΠSel plus o(n) communication. Step 8 requires n1−γ

calls to ΠSM−nβ (nβγ , nγ), and similarly Step 9 requires n1−γ calls to ΠSM−nβ (nβγ , nγ). Finally,
Steps 10 through 15 require 3n+ o(n) calls to ΠReveal and 3 shuffles.

This gives a total cost of O(1) + RCost(ΠSM−nβ ) rounds and

(4n+o(n))·CCost(ΠComp)+(7n+o(n))·CCost(ΠReveal)+6·CCost(ΠShuffle)(n)+

n ·CCost(ΠSel)+n
1-γ ·CCost(ΠSM-nβ (nγ))+n1-γ(2-β) ·CCost(ΠSM-nβ (nγ(2-β)))

communication, and the last two terms can be bounded by 2CCostΠSM-nβ (n).

8 Extraction Protocols

8.1 Extracting Unordered Marked Elements

Figure 12 has pseudo-code for our Unordered Extract protocol ΠExtract(A, t).
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Extraction Protocol ΠExtract(A, t)

Input. Two parties P1, P2 (additively) secret-share a list A of size n of elements of the form (ai, ιi), of which
t′ ≤ t elements are marked by ιi = 1, and the other elements have ιi = 0.

Output. Each party holds additive shares of a list B of length t containing all elements ai with ιi = 1, together
with (t− t′) dummy elements, shuffled randomly.

RCost. O(1) + RCost(ΠShuffle(n)).

CCost. CCost(ΠShuffle(n)) + tRCost(ΠComp) + (n+ t)RCost(ΠReveal).

Protocol.
1. Append a “is-non-dummy” tag di = 1 to each element in A, so that each element i in A has form:

(ai, ιi, di)

2. Generate shares of the total number of marked elements [t′] := [
∑n

i=1 ιi]. This can be done locally.

3. For i = n+ 1, . . . , n+ t, append to A the element:

(ai, ιi, di) := (0, δi, 0), where δi is an indicator on (i− n) > t′ (4)

so that exactly t elements will have ι tag equal to ‘1’. Each party sets their share of ai and di to 0, and
computes their share of ιi as per (4) using parallel invocations of a secure comparison protocol.

4. Invoke the shuffling protocol, denoting the output Â := ΠShuffle(A).

5. Reveal all values ι̂i (exactly t of which will have value ‘1’).

6. Initialize B to an empty list.

7. For i = 1, . . . (n+ t), if ι̂i = 1, each party copies their share of (âi, d̂i) to B
(ι̂i is not copied over, since this tag has been revealed). Notice this will result in B having size t, with t′

elements having “is-non-dummy” tag d̂ = 1, and the remaining (t− t′) elements having “is-non-dummy”

tag d̂ = 0.

Figure 12: Extract and Shuffle Marked Elements Protocol

8.2 Analysis of the Unordered Extract protocol ΠExtract(A, t)

Security.
Security of Steps 1, 2, and 3 follow from security of the underlying comparison and shuffling proto-
cols. By correctness (shown below), the values ι̂i will contain t 1’s and n 0’s, and after calling the
ΠShuffle protocol, these values will be randomly arranged in Â, and so both party’s view in Step 4
can be generated uniformly at random by a simulator.

Correctness.
There are exactly t− t′ values in {n+1, . . . , n+ t} with i− n > t′, and so Step 2 adds t− t′ values
with ιi = 1 to the existing t′ values with ιi = 1 in A. These are the values placed into B in Step 6,
and they are randomly distributed by the correctness of ΠShuffle.

Cost.
Step 2 requires t comparison operationsΠComp and Step 4 requires n+t revealing operations. Com-
bining with Step 3 givesO(1)+RCost(ΠShufflle(n)) rounds and CCostΠShuffle(n)+tRCost(ΠComp)+
(n+ t)RCost(ΠReveal).
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8.3 Extracting Ordered Marked Elements

Figure 13 has pseudo-code for our Ordered Extract protocol ΠExt-Ord(A, t).

Extraction Protocol ΠExt-Ord(A, t)

Input. Two parties P1, P2 (additively) secret-share a sorted list A of size n of elements of the form (ai, ιi), of
which t′ ≤ t elements are marked by ιi = 1, and the other elements have ιi = 0.

Output. Each party holds additive shares of a list B of length t containing all elements ai with ιi = 1, in their
original order, followed by (t− t′) dummy elements.

RCost. O(1) + RCost(ΠShuffle(n)).

CCost. CCost(ΠShuffle(n)) + t · RCost(ΠComp) + (n+ 2t) · RCost(ΠReveal).

Protocol.

1. Compute the extracted position ei of each element of A that has ιi = 1. Namely, the lowest-indexed
(leftmost) element of A with ιi = 1 will have ei = 1, the second lowest-indexed element will have ei = 2,
and so on. For all non-extracted elements of A (those with ιi = 0), define ei := 0.

2. Append two additional tags (ei, di) to each element in A, where ei denotes each element’s extracted index
(or ‘0’, for non-extracted elements), as per Step 1, and di = 1 represents (shares of) an “is-non-dummy”
tag (so all original elements in A have di = 1).

3. Generate shares of the total number of marked elements [t′] := [
∑n

i=1 ιi].

4. For i = n+ 1, . . . , n+ t, append to A the element:

(ai, ιi, ei, di) := (0, δi, (i− n+ t′), 0),

where δi is an indicator on (i − n) > t′ (so that exactly (t − t′) new elements will have ι tag equal to
‘1’), and ei denotes the extracted index of this element (in case it is to be extracted). Each party sets
their share of ai and di to 0 and their share of ei = (i− n+ t′) using their shares of t′ from Step 3, and
computes their share of ιi = δi by invoking a secure comparison protocol.

5. Invoke the shuffling protocol, denoting the output Â := ΠShuffle(A).

6. Reveal all values ι̂i (exactly t of which will have value ‘1’).

7. Reveal all values êi for the elements that had ι̂i = 1.

8. Initialize B to an empty list.

9. For i = 1, . . . t, set the ith element of B to the (unique) element (âj , d̂j) with êj = i (ι̂j and êj are not
copied over, since these tags have been revealed). This will result in B having size t, with t′ elements

having “is-non-dummy” tag d̂ = 1, and the remaining (t− t′) elements with “is-non-dummy” tag d̂ = 0.

Figure 13: Stably Extract Marked Elements Protocol
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8.4 Analysis of Ordered Extract protocol ΠExt-Ord(A, t)

Security.
Security of Steps 1, 3, 4, and 5 follow from security of the underlying selection, comparison, and
shuffling protocols. By correctness (shown below), the values êi correspond to the integers from 1
to t, and after calling the ΠShuffle protocol, these values will be randomly arranged in Â, and so
both party’s view in Step 6 can be generated uniformly at random by a simulator. All remaining
steps are performed locally, and can be imitated by a simulator.

Correctness.
As in ΠExtract, there are exactly t values in {1, . . . , n + t} with ei ̸= 0, the values which will be
extracted into B. For the t′ non-dummy values from A with ιi = 1, the index [ei] counts the
number of non-dummy values to the left of ai in A, and so [ei] holds the destination index of ai,
and collectively, the indices [ei] take on the values {1, . . . , t}.

The remaining t− t′ values in {n+ 1, . . . , n+ t} with i− n > t′ are in fact n+ t′ + 1, . . . , n+ t,
and so the corresponding values [ei] are t

′+1, . . . , t. Thus the nonzero values of ei, for 1 ≤ i ≤ n+t,
collectively cover the values {1, . . . , t}, with the first t′ values being the non-dummy elements of A,
in ordered, as desired.

Cost.
Note that Step 1 requires linear computation when implemented via the recursion [ei] = [ιi]+[ei−1],
and zero communication, since it can be performed locally. Step 2 requires t comparison operations
ΠComp and Step 4 requires n + t revealing operations. Combining with Step 3 gives O(1) +
RCost(ΠShufflle(n)) rounds and CCostΠShuffle(n) + t · RCost(ΠComp) + (n+ 2t) · RCost(ΠReveal).
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8.5 Stable Extraction into Bins

Figure 14 has pseudo-code for our Stable Bin Extract protocol ΠExt-Bin(A,t).

Stable Bin Extraction Algorithm ΠExt-Bin(A, k, t, C, T ′)

Input. Two parties P1, P2 (additively) secret-share a sorted list A of size n of elements of the form (ai, ιi), with
ιi ∈ {0, . . . , k}, and t′j ≤ t elements have ιi = j, for each j = 1, . . . , k. Additionally, we are guaranteed that all
elements with ιi = j, for j ̸= 0, are in a contiguous block (of t′j consecutive elements). Finally, all parties hold
(shares of) another pair of lists (C = {cj}, T ′ = {tj}), each of length k, with the property that cj is (a share
of) the index i of the first element of A with ιi = j, and t′j is (a share of) the number of elements of A with
ιi = j (if no such element with ιi = j exists, then cj and t′j are (shares of) 0).

Output. Each party holds additive shares of a sequence of lists {Bj}, for j = 1, . . . , k, where each list Bj has
length t and contains all elements ai from A with ιi = j, in their original order in A, followed by (t− t′j) dummy
elements.

RCost. O(1) + RCost(ΠShuffle(n+ tk)).

CCost. Θ(n+tk) · (CCost(ΠComp)+CCost(ΠRev)+CCost(ΠSel))+CCost(ΠShuf(n+tk)).

Protocol.
1. Compute the extracted “within-bucket” position ei of each element of A. Namely, for any j ∈ [1..k], the

element of A at position i = cj , (which is the first/leftmost element of A with ιi = j) will have ei = 1,
and – by the Input guarantee of ι tags being in contiguous blocks – the next (t′j − 1) elements will get
position tags: ei′ = (1 + i′ − i). For non-extracted elements of A (whose ιi tag is not in [1..k]), define
ei := 0.

2. Append two additional tags (ei, di) to each element in A, where ei is as per Step 1, and di = 1 represents
(shares of) an “is-non-dummy” tag (so all original elements in A have di = 1).

3. For each j ∈ [1..k] and for each i = 1, . . . , t, append to A the element:

(aj,i, ιj,i, ej,i, dj,i) := (0, j · δj,i, i+ t′j , 0),

where δj,i is an indicator on i ≤ (t− t′j) (so that exactly (t− t′j) new elements will have ι tag equal to j),
and ei denotes the extracted “within-block” index of this element (in case it is to be extracted). Each
party sets their share of aj,i and dj,i to 0 and their share of ej,i = i + t′j using their shares of t′j , and
computes their share of ιj,i = j · δj,i by invoking a secure comparison protocol.

4. Invoke the shuffling protocol, denoting the output Â := ΠShuffle(A).

5. Reveal all values ι̂i (exactly tj of which will have value j, for each j ∈ [1..k]).

6. Reveal all values êi for the elements that had ι̂i ∈ [1..k].

7. Initialize {Bj} as a sequence of k lists of length t.

8. Set the ℓth element of Bj equal to the (unique) element of Â with ι̂i = j and êi = ℓ. This will result in

Bj having size t, with t′j elements having “is-non-dummy” tag d̂ = 1, and the remaining (t− t′j) elements

with d̂ = 0.

Figure 14: Stably Extract Marked Elements By Bin Protocol

8.6 Analysis of Ordered Bucketed Extract protocol ΠExt-Bin(A, t).

Security.
A simulator can simulate the view of either party during Steps 1, 3, and 5 by invoking a simulator of
the underlying protocols, and can imitate Steps 2, 7, and 8 exactly, since these steps are performed
locally. Security for these steps follows from the security of the underlying protocol.

We show in our discussion of correctness that, in Step 6, the parties learn a random permutation
of the tk ordered pairs (i, j) with 1 ≤ i ≤ t and 1 ≤ j ≤ k, while in Step 4, the parties learn the
first coordinates of all terms in that permutation. During Step 4 of a simulated execution of the
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protocol, the simulator generates and stores the permutation for Step 6 uniformly at random, and
then computes the resulting values for Step 4.

Correctness.
As in ΠExtract and ΠExt-Ord, the comparison operation in Step 1 adds t− t′j elements with ιi = j.
The sequence of values κi for these dummy values is {t′j+1, . . . , t−1, 0}, since the term with κi = t
is reduced modulo t.

Before Step 5, the remaining non-dummy values with ιi = j have values κi equal to the sequence
{cj , cj +1, . . . , cj + t′j − 1}, taken modulo t, where entry cj +(h− 1) corresponds to the hth element
of A with ιi = j. Therefore, after Step 5, the values κi take on the values {1, 2, . . . , t′j}, where entry
k corresponds to the hth element of ιi = j.

Therefore, for 1 ≤ h ≤ t and 1 ≤ j ≤ k, every pair (h, j) occurs exactly once in Step 6, and,
for a fixed j, the first t′j entries of Bj are the non-dummy elements of A with ιi = j, in order, as
desired.

Cost.
Step 1 requires tk comparisons. Steps 4 and 6 require revealing (n+ tk) values. Step 5 requires tk
subtractions (which can be performed locally), tk comparisons (to zero), and tk selection operations.
Steps 2, 7, and 8 are performed locally. Each of Steps 1, 4, 5, and 6 therefore require O(1) rounds.
This gives a total round cost of O(1) + RCost(ΠShuffle(n + tk)) and a total communication cost
of Θ(n + tk) · (CCost(ΠComp) + CCost(ΠReveal) + CCost(ΠSel)) + CCost(ΠShuffle(n + tk)), with
linear total computation by each party.

9 Other Sub-Protocols

In this section, we present other sub-protocols invoked by any of the Secure Merge protocols above.

9.1 Secure Merge via Compare All

The following protocol (Figure 15) is a näıve protocol that simply performs all n2 possible com-
parisons (securely) and is useful for terminating iterative/recursive processes when the reduced list
size n is sufficiently small.

Secure Merge - Compare All ΠSM-ALL(n1, n2)

Input. Two parties P1, P2 (additively) secret-share two sorted lists L1 and L2, of size n1, n2, with elements
ℓi,j , for j ∈ {1, 2}. When n1 = n2 = n, we write ΠSM-ALL(n).

Output. Lists L̂1, L̂2, with L̂j = Lj ▷◁ (ιi,j)i, where ιi,j denotes the index of ℓi,j in L1

⊔
L2.

RCost. O(1) rounds.

CCost. n1n2 · CCost(ΠOp).

Protocol.

1. Compute shares [ei,j ] = [(ℓi,1 > ℓj,2)] for every pair (i, j) ∈ {1, . . . , n1} × {1, . . . , n2}.
2. Locally compute [ιi,1] =

∑n2
j=1[ei,j ] and [ιi,2] = n1 −

∑n1
j=1[ej,i].

3. Return (L̂1, L̂2) := (L1 ▷◁ (i+ ιi,1)i, L2 ▷◁ (i+ ιi,2)i)

Figure 15: Secure Merge - Compare All Protocol
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9.1.1 Analysis of the ΠSM-ALL(n1, n2) Protocol

Security.
Security follows from the security of the underlying comparison protocol used in Step 1, since Steps
2 and 3 are performed locally.

Correctness.
By convention, we require elements from L1 to be to the left of elements from L2 if their values are
equal.

The value ei,j is nonzero precisely when ℓi,1 > ℓj,2, so ιi,1 counts the number of such values ℓj,2.
In the merged list L1

⊔
L2, the entry ℓi,1 will have (i − 1) elements from L1 to its left, and ιi,1

elements from L2 to its left, giving its final position as i+ ιi,1.
Similarly

∑n1
j=1 ej,i counts values ℓj,1 > ℓi,2, and so n2 −

∑
ej,i counts the number of values

ℓj,1 ≤ ℓi,2, and i+ ιi,2 gives the destination index of ℓi,2.

Cost.

• Step (1) incurs 2n1n2CCost(ΠComp) and O(1) round cost (the cost of the underlying comparison
protocol), since the shares [ei,j ] and [fi,j ] can all be computed in parallel, and there are 2n1n2

such comparisons to compute.

• Steps (2) and (3) can be performed locally.

9.2 Duplicate Values ΠDup
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Duplicate Values ΠDup(k,m, t, L)

Input. Two parties P1, P2 (additively) secret-share list L = {(ai, ιi)} of size n. Exactly k elements have tag
ι = t. Also as input is desired duplication factor m.

Output. Output list L′ of size n+ k · (m− 1) is shared between the two parties, where each element of L that
had ι = t appears replicated m times (m− 1 new elements appearing consecutively after the original element),
and otherwise all elements of L′ appear in the same order as they did in L. Also, in terms of security, it is
okay for the parties to learn the (unordered) set of original tag values σ({ιi}) for some unknown permutation
σ, although they should not learn the order of these values, i.e. which tag values belong to which elements.

RCost. RCost(ΠComp) + RCost(ΠShuffle(n+ k ·m)).

CCost. O(n) · CCost(ΠComp) + O(1) · CCost(ΠShuffle(n+ k ·m)) + O((n+ k ·m)).

Protocol.

1. By running a secure comparison protocol (in parallel) to compare actual tag values to t, we can reduce
to the case that t = 1, and all elements that do not have this tag value have tag value zero.

2. (Locally) determine (shares of) the final index/position that each element in L will have in L′, by keeping
a running counter:

ei+1 = ei + 1 + (m− 1) · ιi, (5)

where ιi = 1 if and only if the ith element is to be duplicated. Notice that, by linearity of the secret-
sharing scheme, (5) can be computed locally. Append shares of position tag ei to each element i of L.

3. Invoke a secure shuffling protocol, denoting the output L̂ := ΠShuffle(L).

4. Reveal original tag values: exactly k elements will have revealed tag value ι̂=1.

5. For each element (âi, êi) that has revealed tag ι̂ = 1: introduce (m− 1) new elements {(âi, êi + j)}m−1
j=1

that have the same value âi and increasing position tags êi + j. Let L̃ denote the resulting list, which
has size n+ k · (m− 1).

6. Invoke a secure shuffling protocol ΠShuffle(L) on L̃.

7. Reveal all values ẽi, and arrange elements in output list L′ as per this revealed (position) tag.

Figure 16: Duplicate Values Protocol

9.2.1 Analysis

Security.

• Step 1: Security follows from the security of the ΠComp protocol.

• Step 2: This is done locally, so is automatically secure.

• Step 3: Security follows from the security of the ΠShuffle protocol.

• Step 4: Leakage of the set of tag values is permitted (see ‘Output’ condition), and so se-
curity follows from the security of the ΠShuffle protocol, which guarantees that the shuffle
permutation σ is unknown to both parties.

• Step 5: This is done locally, so is automatically secure.

• Step 6: Security follows from the security of the ΠShuffle protocol.

• Step 7: By Correctness of this protocol, the revealed tag values will necessarily be a random
permutation on the indices [1..(n+ k · (m− 1))].

Correctness.
This is immediate based on the formula for computing final positions in (5), which leave a gap of
size (m − 1) each time an element to be duplicated is encountered, and then in Step 5 these gaps
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are exactly filled by the (copies of the) duplicated elements.

Cost.
Costs are computing by adding the contributions of each step, noting that steps involving local
computation do not contribute to round complexity:

• Step 1: n invocations (in parallel) of the ΠComp protocol.

• Step 2: O(n) local computation.

• Step 3: ΠShuffle(n) protocol.

• Step 4: O(n) local computation.

• Step 5: O(n+ k · (m− 1)) local computation.

• Step 6: ΠShuffle(n+ k · (m− 1)) protocol.

• Step 7: O(n+ k · (m− 1)) local computation.

10 Results on Medians

Notice that if we write Mj,k = {v1, v2, . . . , vk}, then:

(a) |Mj,k| = k

(b) If k = 1, then: Mj,1 = {un} (the last element of Lj)

(c) If k= n= |Lj |, then: Mj,n = Lj

(d) ∀vi ∈ Mj,k: At least i ·
(
n
k

)
items in Lj that are ≤ vi (6)

(e) ∀vi ∈ Mj,k and
vi > v ∈ Lj : Less than i ·

(
n
k

)
items in Lj that are ≤ v

(f) ∀vi ∈ Mj,k: At least 1 + (k − i) ·
(
n
k

)
items in Lj that are ≥ vi

(g) ∀vi ∈ Mj,k and
vi < v ∈ Lj : Less than 1 + (k − i) ·

(
n
k

)
items in Lj that are ≥ v

(h) vk = un (the last element of Mj,k is the last element of Lj)

For any value v ∈ S, where S is a totally ordered set, let:

LTLj (v) = Number of elements in Lj that are less than v

LTELj (v) = Number of elements in Lj that are less than or equal to v

GTLj (v) = Number of elements in Lj that are greater than v

GTELj (v) = Number of elements in Lj that are greater than or equal to v

Note that each of the above four functions are monotone step functions with respect to v (increasing
for LT and LTE and decreasing for GT and GTE), with jumps at each v ∈ Lj . Then for any
v ∈ Lj and any vi ∈ Mj,k:
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n = LTELj (v) +GTLj (v) = LTLj (v) +GTELj (v) (7a)

LTELj (vi) ≥ i ·
(n
k

)
(7b)

LTELj (v) < i ·
(n
k

)
⇔ vi > v (7c)

LTELj (v) ≥ i ·
(n
k

)
⇔ vi ≤ v (7d)

LTELj (v) = i ·
(n
k

)
⇒ vi = v (7e)

GTELj (vi) ≥ 1 + (k − i) ·
(n
k

)
(7f)

GTELj (v) < 1 + (k − i) ·
(n
k

)
⇔ vi < v (7g)

GTELj (v) ≥ 1 + (k − i) ·
(n
k

)
⇔ vi ≥ v (7h)

GTELj (v) = 1 + (k − i) ·
(n
k

)
⇒ vi ≤ v (7i)

where (7a) is by definition; (7b) is (6.d) and (7f) is (6.f); the left implication of (7c) and (7g) are
(6.e) and (6.g), and the right implication is from (7b) and (7f) together with the fact that LTE
and GTE are monotone (increasing/decreasing, respectively) functions in v; (7d) and (7h) are the
contrapositive of (7c) and (7g), respectively; and (7e) is because vi ≤ v (by (7c)) and also vi ≥ v
by (7h) together with (7a) (and similarly (7i) follows from (7a), (7g), and (7d)).

The correctness of the above protocols will rely on the “alignment” property claimed in the
Secure Symmetric Merge rubric above. Formally:

Lemma 10.1. Let L1 and L2 denote two (sorted) lists of size n, and let M1,k and M2,k denote
their k medians (as per ( 2)). Let L′

1 = L1
⊔
M2,k denote the list (of size 2n) resulting from

merging M2,k with L1, with each element in M2,k duplicated n/k times in L′
1. Let M′

2k denote the
2k medians of L′

1. Then the 2k medians of L′
1 are exactly the (merged) k medians of L1 and L2:

M′
2k = M1,k

⊔
M2,k

Proof. Denote the lists of k medians as:

M1,k = {u1, u2, . . . , uk}
M2,k = {v1, v2, . . . , vk}

Let M2k = M1,k
⊔
M2,k, and denote M2k and M′

2k as:

M2k = {w1, w2, . . . , w2k}
M′

2k = {z1, z2, . . . , z2k}

Then the claim is that M′
2k = M2k, which we argue by demonstrating that zi = wi for all

1 ≤ i ≤ 2k. Notice that |L′
1| = 2n and |M′

2k| = 2k, and by definition M′
2k evenly partitions L′

1

into 2k blocks, with each block of size n/k. Furthermore, notice that L′
1 is the merge of two lists:

• n elements are L1

• n elements are the k elements of M2,k, each duplicated n/k times.
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In particular, if L′
2 :=

⋃
n
k
M2,k (i.e. L′

2 is M2,k duplicated n/k times), then observe that the

k medians of L′
2 are exactly the same as the k medians of L2, namely M2,k. Therefore, if (as

multi-sets): L′
1 = L1 ∪ L′

2, then (as per (6)):

For any ui ∈M1,k: At least i ·
(
n
k

)
items in L′

1, from L1, are ≤ ui.
At least 1 + (k - i) ·

(
n
k

)
items in L′

1, from L1, are ≥ ui.
(8)

For any vi ∈M2,k: At least i ·
(
n
k

)
items in L′

1, from L′
2, are ≤ vi.

At least (1 + k - i) ·
(
n
k

)
items in L′

1, from L′
2, are ≥ vi.

Notice that the last statement in (8) (unlike the second statement) does not come directly from
(6.e). In particular, it relies on the fact that the medians of L′

2 are exactly described by M2,k (the
medians of L2), and each such median appears a total of n/k times in L′

2. This is why the ‘1’
appears inside the parentheses (as a multiplicative factor of the n/k) as opposed to outside (as an
additive constant). We conclude the proof by showing that zi = wi for all 1 ≤ i ≤ 2k by showing
both inequalities:

zi ≥ wi. By (7d), this will follow if we can show that there are at least i · 2n
2k values in L′

1

that are less than or equal to wi. Let x = xi denote the maximal index such that ux ∈ M1,k

appears among the first i coordinates of M2k. Similarly, let y = yi denote the the maximal
index such that vy ∈ M2,k appears among the first i coordinates of M2k. By definition of
M2k (as the merge of M1,k and M2,k), we have that xi + yi = i. And then by (8) above, we
have that there are at least xi · n

k elements in L1 that are less than or equal to ux, and since
ux is in the first i coordinates of M2k, we have that ux ≤ wi, and hence (by monotonicity
of LTE) there are at least xi · n

k elements in L1 that are less than or equal to wi. Similarly,
there are at least yi · n

k elements in L′
2 that are less than or equal to wi. Consequently, there

are at least (xi + yi) · n
k = i · n

k values in L′
1 that are less than or equal to wi, as required.

zi ≤ wi. By (7h), this will follow if we can show that there are at least 1+ (2k− i) · 2n2k values
in L′

1 that are greater than or equal to wi. Let x = xi denote the minimal index such that
ux ∈ M1,k appears at or after coordinate i of M2k (or define xi = k+ 1 if none of the values
in M1,k appear at or after coordinate i of M2k). Similarly, let y = yi denote the the minimal
index such that vy ∈ M2,k appears at or after coordinate i of M2k (or define yi = k + 1 if
none of the values in M2,k appear at or after coordinate i of M2k). By definition of M2k

(as the merge of M1,k and M2,k), we have that xi + yi = i+ 1. By (8) above, we have that
there are at least max(0, 1+ (k− xi) · nk ) elements in L1 that are greater than or equal to ux,
and since ux has index at least i in M2k, we have that ux ≥ wi, and hence (by monotonicity
of GTE) there are at least max(0, 1 + (k − xi) · n

k ) elements in L1 that are greater than or
equal to wi. Similarly, there are at least (1 + k − yi) · n

k elements in L′
2 that are greater than

or equal to wi. Consequently, there are at least 1 + (1 + 2k − (xi + yi)) · n
k = 1 + (2k − i) · n

k
values in L′

1 that are greater than or equal to wi, as required.
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