
Chaghri — an FHE-friendly Block Cipher

Tomer Ashur1,2

tomer.ashur@esat.kuleuven.be

Mohammad Mahzoun2

m.mahzoun@tue.nl

Dilara Toprakhisar 1

Dilara.Toprakhisar@esat.kuleuven.be

1imec-COSIC, KU Leuven, Belgium
2 Eindhoven University of Technology, Netherlands

Abstract

The Recent progress in practical applications of secure computation protocols
has also attracted attention to the symmetric-key primitives underlying them.
Whereas traditional ciphers have evolved to be efficient with respect to certain
performance metrics, advanced cryptographic protocols call for a different focus.
The so called arithmetic complexity is viewed through the number and layout of
non-linear operations in the circuit implemented by the protocol. Symmetric-
key algorithms that are optimized with respect to this metric are said to be
algebraic ciphers. Previous work targeting ZK and MPC protocols delivered
great improvement in the performance of these applications both in lab and in
practical use. Interestingly, despite its apparent benefits to privacy-aware cloud
computing, algebraic ciphers targeting FHE did not attract similar attention.

In this paper we present CHAGHRI, an FHE-friendly block cipher enabling
efficient transciphering in BGV-like schemes. A complete CHAGHRI circuit can be
implemented using only 16 multiplications, 32 Frobenius automorphisms and
32 rotations, all arranged in a depth-32 circuit. Our HElib implemention achieves
a throughput of 0.26 seconds-per-bit which is 65% faster than AES in the same
setting.

1 Introduction

Traditional block ciphers are built with carefully chosen linear and non-linear layers
to resist well studied attacks. Besides being secure, traditional block ciphers are
designed to be efficient in their hardware and software implementations. Depending
on the target application domain, their design optimizes the running time, gate
count, or memory/power consumption. For instance, while an IoT device calls for
lower memory/power consumption and gate count, a high speed router calls for
lower latency. Different efficiency metrics come into consideration when the target
application domain is a secure computation protocol. Multi-Party Computation
(MPC), Zero-Knowledge (ZK) proofs, and Fully Homomorphic Encryption (FHE) are

1

examples of such secure computation protocols that are described via algebraic
operations. These operations can be translated into arithmetic computations and
vice versa. Converting computations into a sequence of algebraic operations over a
finite field is called arithmetization and it was first applied to cryptographic protocols
by Lund et al. [1].

Consider the following scenario in which a secure computation protocol employs
a block cipher: a client sends its data encrypted under an FHE scheme to a cloud
server that operates on encrypted data. However, depending on the complexity
of the function performed by the server, the scheme’s parameter set might result
in a drastic increase in the size of the freshly encrypted ciphertext. Consequently,
this increase would add unwanted overhead to the communication. One solution
to this problem is transciphering meaning all the private data sent by a client can
be encrypted using a block cipher. Then, the server decrypts homomorphically,
and consequentially they are able to operate on encrypted data without additional
overhead to the communication [2].

The increase in the popularity of advanced cryptographic protocols gave rise to
new designs known as algebraic ciphers such as Mimc [3], Poseidon [4], Vision, and
Rescue [5]. Unlike traditional block ciphers, the design of these algorithms is driven
by arithmetic complexity improving the efficiency of the protocol employing them.
Therefore, the relevant attacks and security of these algorithms are also different.

As the design of algebraic ciphers is an evolving research area, there are several
design strategies introduced as a framework. The Marvellous design strategy [5] and
the Hades design strategy [6] are examples of such design strategies. The ciphers that
are proposed following these design strategies are shown to be efficient in ZK and
MPC applications. Although numerous algebraic ciphers were proposed for ZK and
MPC applications, there are not many algebraic ciphers proposed in the context of
FHE. Yet, FHE is an effective tool to remove privacy barriers obstructing data sharing.
Therefore, designing an FHE-friendly algebraic cipher still stands as a research area
that needs to be improved.

In this work we address the key factors affecting the efficiency and present a novel
FHE-friendly algebraic cipher CHAGHRI. Implemented using the HElib software li-
brary CHAGHRI performs 65% faster than AES, making it, to the best of our knowledge,
the most efficient block cipher in this setting.

This paper is structured as follows: in Section 2 we recall the Marvellous design
strategy, the ciphers designed following it, the notion of non-procedural computa-
tion, and BGV-based fully homomorphic encrytpion. In Section 3 we motivate the
decisions taken in designing CHAGHRI, and in Section 4 we give the specifications
of the cipher. Following this, we argue the security and efficiency of CHAGHRI by
presenting a security analysis against the applicable statistical and structural attacks
in Section 5, and the performance numbers together with the benchmarking figures
in Section 6. This paper does not include a “conclusion” section.

2

2 Preliminaries

In this section we mention some related previous work, and some prior knowledge
that is required for the design of CHAGHRI.

2.1 The Marvellous Design Strategy

The Marvellous design strategy [5] introduces a set of decisions to be taken when
designing a secure and efficient algebraic cipher. The state of a Marvellous design is
an element in the vector space F`q , with q either a power of 2 or a prime number and
`> 1. A Marvellous design is an SP network that repeatedly applies its round function
to its state for N iterations. Figure 1 depicts a schematic description of the encryption
operation of a Marvellous design. A plaintext and a master key are the inputs to the
first round. Each round consists of two steps and each step employs three layers:
S-box, linear, and subkey injection. The subkeys used in subkey injection are derived
from the master key by means of a key schedule algorithm.

Figure 1: The encryption operation of Vision and Rescue

The S-box layer of a Marvellous round applies an S-box to each of the ` state
elements. Each S-box consists of a power map g : xα and possibly followed by an
invertible affine transformation. The motivation behind employing a power map S-
boxes is their well studied cryptanalytic properties [7]. The two steps of a Marvellous
round employ different S-boxes in terms of their degrees. Let the S-box employed
in the first step be denoted by θ0, and the S-box employed in the second step be
denoted by θ1. θ0 is chosen such that it has a high degree when the encryption is
performed and a low degree when the decryption is performed. θ1 is chosen such
that it serves the opposite goal: it has a low degree when the encryption is performed
and a high degree when the decryption is performed. This construction provides a
high degree in both encryption and decryption, and consequently results in the same
cost for both.

The linear layer diffuses local properties to the entire state. This is realized by
multiplying the Marvellous state vector by a maximum distance separable (MDS)
matrix. The authors [5] offer to use `×2` Vandermonde matrices using powers of an
Fq primitive element. To obtain the MDS matrix, the Vandermonde matrix is echelon
reduced and the `×` identity matrix is removed.

3

The key schedule algorithm of a Marvellous design is indeed the iteratively applied
encryption round function. In order to generate the subkeys, the round function takes
the master key instead of the plaintext input, and takes additional round constants
instead of the subkeys injected. The round constants are chosen such that they do
not belong to a subfield of Fq , nor are rotational invariant. The intermediate state
after the round constant injection is provided as a subkey.

The number of rounds in a Marvellous round is set to be

2 ·max(r0,r1,5),

where r0 is set to be the maximum number of rounds that can be attacked by differen-
tial and linear cryptanalysis, higher-order differentials and interpolation attacks; r1 is
said to be the instance-specific number of rounds that can be attacked by a Gröbner
basis attack. Five is the sanity factor that protects the cipher against redundant op-
timization attempts weakening it. As a result, any Marvellous instance is set with a
minimum of 10 rounds.

Vision. Vision is a Marvellous family operating on binary fields with its native field
F2n . Most aspects of Vision are directly derived from the Marvellous design strategy.
The Vision-specific design decisions are limited to the S-box layer which consists of an
inversion (with 0 mapped to 0) followed by an affine transformation. It is constructed
by first choosing a 4th degree F2-linearized affine polynomial B(x). Then,

θ1 : F2n 7→ F2n : x 7→ B(x−1),

and

θ0 : F2n 7→ F2n : x 7→ B−1(x−1).

Rescue. Rescue is another Marvellous family, this time operating on Fp where p is an
odd prime instead of a power of 2. Same as Vision, most aspects of Rescue are directly
derived from the Marvellous design strategy. The S-box layer of Rescue consists of
a power map only. It is constructed by first finding the smallest prime α such that
gcd(p −1,α) = 1. Then,

θ0 : Fp 7→ Fp : x 7→ x1/α,

and

θ1 : Fp 7→ Fp : x 7→ xα.

Rescue-Prime. Rescue-Prime [8] is an algebraic hash function inspired by Rescue.
In Rescue-Prime the derivation of round constants is changed, the security margin is
reduced from 100% to 50%, and the order of S-Boxes is swapped. Since we propose an
algebraic cipher operating on a binary field, algorithm specific properties of Rescue-
Prime are omitted in this paper. Interested readers are referred to [8] for the complete
description of the algorithm.

4

2.2 Fully Homomorphic Encryption (FHE)

Fully homomorphic encryption (FHE) is an advanced cryptographic protocol that al-
lows users to evaluate any circuit on encrypted data without first decrypting it. FHE is
an effective solution to securely outsourcing computations. However, depending on
the size of the computation, the data might be drastically expanded when encrypted
under an FHE algorithm. In this case, recalling the example given in Section 1, tran-
sciphering combining FHE and symmetric encryption allows an efficient encrypted
data communication and computation outsourcing.

2.2.1 Brakerski-Gentry-Vaikuntanathan (BGV) Scheme

BGV is a leveled FHE scheme proposed by Brakerski, Gentry and Vaikuntanathan [9].
Leveled FHE is more restricted than FHE in that the depth of circuits it can evaluate is
bounded by the parameters of the scheme. BGV uses modulus-switching introduced
by Brakerski and Vaikuntanathan [10] to keep the noise under a threshold. Modulus
switching is proposed in [10] to be applied once to obtain a ciphertext with less noise.
However, it is iteratively applied in BGV to keep the noise under a certain threshold.

In this work we use a BGV variant proposed by Gentry, Halevi and Smart [11]
where both ciphertexts and secret keys are represented as vectors over a polynomial
ring A, and the plaintext space is all polynomials over Ap for p ≥ 2 defined by cy-
clotomic polynomials Φm(X). Additionally, at any point during the homomorphic
evaluation, there are current integer modulus q and current secret key s that evolve
as the homomorphic operations are applied. Decryption is done by taking the inner
product of the ciphertext c and the current secret key s over Aq . Then the result is
reduced modulo p:

a ← [[〈c, s〉 modΦm(X)] q︸ ︷︷ ︸
noise

] p . (1)

Addition, multiplication and automorphism are used to evaluate circuits and
therefore, alter the data encrypted under these ciphertexts. Key-switching and
modulus-switching are used to control the complexity of the evaluation and there-
fore, do not affect the underlying data.

Addition. Homomorphic addition is simply performed by means of a vector ad-
dition overAq (with respect to the same secret key and modulus q). This operation
slightly increases the noise of the ciphertext, and does not change the current secret
key and the current modulus.

Multiplication. Homomorphic multiplication is performed by means of a ten-
sor product overAq . If the two arguments of this operation have dimension n over
Aq , the output then has dimension n2. The change in the dimension of the ciphertext
consequently results in a change in the dimension of the secret key. This is because
the output ciphertext would then be valid with respect to the secret key s′ of dimen-
sion n2. Therefore, the operation changes the current secret key, but not the current
modulus. Homomorphic multiplication significantly increases the noise of the
ciphertext.

5

Automorphism. Automorphismmaps a polynomial a(X) ∈A to a(i)(X) = a(X i) mod
Φm(X). The set of transformations {a 7→ ai : i ∈ (Z/mZ)∗} forms a group under the
composition operation, and this group is isomorphic to (Z/mZ)∗. Let c be a valid ci-
phertext encrypting a with respect to s and q . Then the output of the automorphism
operation c(i) is a valid ciphertext encrypting a(i) with respect to s(i) and q . Different
than the addition and the multiplication, this operation does not increase the
noise of the ciphertext.1

Key-switching and modulus-switching. Key-switching is used after the opera-
tions increasing the dimension of the secret key and Modulus-switching is applied
to reduce the noise of the ciphertext.

Packed ciphertexts. This FHE scheme allows performing operations on packed
ciphertexts. Smart and Vercauteren [12] proposed using the Chinese Remainder
Theorem to represent the plaintext space Ap as a vector of plaintext slots. This
applies when Φm(X) factors modulo p into l irreducible polynomials such that
Φm(X) = ∏l

j=1 F j (X) mod p. Then, a plaintext polynomial a(X) ∈Ap can be repre-
sented as encoding l different plaintext polynomials with a j = a mod F j . Addition
and multiplication operations are then performed slot-wise. However, this is not
the case for automorphism. If i is a power of two, then the transformation a 7→ a(i)

can be realized for each slot separately, and this transformation is called a Frobenius
automorphism. Conversely, if i is not a power of two, then the transformation acts as
a shift operation between the different slot elements.

2.3 Non-procedural Computation

Procedures simply consist of a series of computational steps. In procedural compu-
tation, the system’s state at any point in time is a function of the system’s state at a
previous point in time. However, the algebraic operations employed by the advanced
cryptographic protocols are better interpreted with respect to an alternative timeline.
This interpretation is said to be a non-procedural computation. For instance, masked
operations in MPC offer non-procedural properties by referring certain computations
to an offline phase.

Non-procedural computations allow constant-time execution in operations that
would otherwise have resulted in variable running time when the size of the native
field changes. Therefore, exploiting non-procedural computation can improve the
efficiency of advanced cryptographic protocols. In addition to efficiency, employing
non-procedural computations can offer security properties without the need to
increase the number of rounds.

1Each automorphism requires a key-switching operation, which increases the noise in principle but is
practically insignificant and is therefore ignored in this work.

6

3 Design Rationale

In this section we explain and motivate the design decisions made for CHAGHRI in
accordance with the discussion in Section 2.

3.1 Motivation of CHAGHRI

CHAGHRI takes Vision as a starting point, and improves it with respect to the efficiency
metrics specific to BGV rather than ZK-STARK. FHE/BGV-specific efficiency metrics
are stated in [13] reasoned by a comparative analysis of Vision, Rescue, and AES.

Our starting point is the comparative analysis performed in [13] for 128-bit secu-
rity in terms of latency (i.e. the time it takes the encryption function to finish).

Benchmarking with a 128-bit state. It is stated in [13] that AES performs 88% faster
than Vision, and 96% faster than Rescue. The reason Vision and Rescue are slower
than AES is that they require deeper circuits which in turn require a larger cyclotomic
polynomialΦ(m) to evaluate. Therefore, apart from requiring more primitive opera-
tions (i.e., multiplications, additions, and automorphisms), the running time of each
primitive operation is longer due to the largerΦ(m).

Benchmarking with larger state sizes. [13] also describes a benchmark for higher
throughputs. The motivation behind this is that by increasing the number of state
elements in Vision its throughput increases while keeping latency constant; whereas
for AES the increase in throughput forces a linear increase in latency. However, even
though Vision’s latency asymptotically grows slower than that of AES for a higher
throughput, the latter still outperforms the former by 45% for a 2048-bit state.

This comparative analysis concludes that the computation of the inversion and
the dense affine polynomial are the most expensive operations for larger extensions of
the base field. Even though Vision and Rescue achieve a compact algebraic description
in ZK and MPC, they do not seem to perform well in BGV. This is because both Vision
and Rescue make heavy use of ZK and MPC specific non-procedural operations.
For instance, inversion is efficiently computed in MPC by means of masking and
offloading the heavy operations to the offline phase. However, in FHE this is being
unavailable; the number of operations required to compute inversion increases as
the degree of the field extension increases. It follows that, different considerations are
involved in FHE applications such as circuit depth, suggesting that a novel instance
of Marvellous may be appropriate.

3.2 Frobenius Automorphism as a Non-procedural Computation

In the variant of the BGV cryptosystem [11] used in this work, converting the polyno-

mial a(X) ∈A to a(i)(X)
def= a(X i) modΦm(X) where m is a cyclotomic polynomial is

another primitive operation. When i is in the form p i , the automorphism is applied
to each slot separately and said to be a Frobenius automorphism. The Frobenius

7

automorphisms increase the noise by a negligible amount when compared to other
primitive operations.

We identify Frobenius automorphism as a non-procedural computation since it

computes an exponentiation of the form X p i
over Fpn while the running time of this

operation is independent of the exponent.

3.3 Non-linearity

Power maps are widely used in S-box layers owing to their cryptanalytic properties [7].
In Vision, inversion is used to construct the S-box. Algorithm 4 describes the pseudo-
code for implementing inversion over F2n . This algorithm requires logn Frobenius
automorphisms and 2(logn −1) multiplications arranged in a depth-logn circuit.
Therefore, the running time of the inversion operation grows logarithmically as the
degree of the field extension increases.

To choose a power map that can be computed more efficiently in FHE, we

reviewed some other well studied power maps: x 7→ x2k+1 (Gold exponents) [7],

x 7→ x22m−2m+1 (Kasami exponents) [14], and x 7→ x2m−2m/2−1 (Niho exponents) [15].
In BGV computation of a Gold exponent requires one Frobenius automorphism and
one multiplication, a Kasami exponent requires m Frobenius automorphisms and m
multiplications, and a Niho exponent requires m −2 Frobenius automorphism and
m −2 multiplications. A Gold exponent is clearly the most efficient power map to be
implemented in this setting.

3.4 Affine Polynomials

F2-linearized affine polynomials (i.e. A(X) = a0+∑n−1
i=0 ai ·X 2i

over F2n) are efficient to
compute with respect to the normal basis. There exists an element α ∈ F2n such that

the set {α,α2, ...,α2n−1
} constitutes a basis of F2n over F2 which is said to be a normal

basis. Then, any element x ∈ F2n can be represented as a vector (a0, a1, ..., an−1) as
follows:

x =
n−1∑
i=0

aiα
2i

,

such that squaring is simply a right cyclic shift in this representation.

In ZK, to compute x2k
, the intermediate value x2k−1

must be computed first,
and this motivates the choice of a dense F2-linearized affine polynomial in Vision.

However, this is not the case in BGV as x2k
can be directly computed by a Frobenius

automorphism. Therefore, a sparse F2-linearized affine polynomial is a natural choice
for CHAGHRI.

4 Description Of Chaghri

Following the discussion on its design rationale, we now describe CHAGHRI. CHAGHRI

is a substitution-permutation (SP) network that has a vector state of three field
elements x0, x1, x2. A single CHAGHRI round consists of two identical steps. Each step

8

employs three layers: S-box, linear and subkey injection. The S-box layer applies an
S-box π to each of the three state elements, the linear layer is a multiplication of the
output vector of the S-box layer by an MDS matrix M of size 3×3, and the subkey
injection layer is an XOR operation between the state and the corresponding subkey.

4.1 Primitive Operations

We now describe the primitive operations used in CHAGHRI.

Gold exponent A Gold exponent is employed in the S-box. Conversely to inversion,
a Gold exponent can be computed via a single Frobenius automorphism indepen-
dently of the degree of the field extension. The security properties of Gold exponents
were analyzed in [7] where it was shown to be highly non-linear and safe against
differential- and linear-cryptanalysis. Nevertheless, their low algebraic degree pose
a problem which we mitigate in the same way as AES and Vision by employing a
carefully chosen F2-linearized affine polynomial.

Since the cost of implementing a Gold exponent x2k+1 is independent of k we
would like to maximize its security benefits. For s = gcd(k,n) where n is the degree of

the field extension x2k+1 is a permutation if and only if n
s is odd. Moreover, if n is odd,

and co-prime to k the Gold exponent is a differentially 2-uniform permutation which
may influence the choice of n. A larger n increases the throughput for a fixed number
of elements. As n = 64 does not satisfy that n

s is odd we set n = 63 and k = 32 which
in combination with the F2-linearized affine polynomial provides a high polynomial
degree.

S-Box The S-box of a CHAGHRI round,π, is a power map xα composed with an affine
transformation. Following the design rationale explained in Sections 3.3 and 3.4, the
S-box π is described as

π : F263 7→ F263 : x 7→ B(G(x)).

where G(x) = x232+1 and B(x) = c1x8 + c2 with

c1 = t 61 + t 57 + t 56 + t 55 + t 54 + t 52 + t 50 + t 49 + t 45 + t 44 + t 41+
t 37 + t 34 + t 32 + t 31 + t 30 + t 29 + t 27 + t 26 + t 25 + t 24 + t 23 + t 22+

t 19 + t 16 + t 12 + t 11 + t 10 + t 8 + t 6 + t 5 + t 4 + t 3 +1,

c2 = t 60 + t 57 + t 52 + t 47 + t 44 + t 41 + t 39 + t 37 + t 35 + t 34 + t 31+
t 30 + t 29 + t 28 + t 24 + t 23 + t 21 + t 20 + t 19 + t 18 + t 14+

t 13 + t 11 + t 10 + t 8 + t 6 + t 5 + t 3 + t 2 +1.

In the above relations, t is a primitive element of F263 . The details regarding the
selection criteria of c1 and c2 are discussed in Section 5.2.1.

9

Table 1: This table describes for each attack (left column) the lower bound we ob-
tained on its complexity (middle column) and derive a safe number of rounds (right
column).

Method Attack complexity Safe number of rounds

Differential cryptanalysis 24·62N N ≥ 1
Linear Cryptanalysis 28·31N N ≥ 1

Higher-order differentials 2(4N) N ≥ 4
Gröbner basis attack Appendix B N ≥ 3

Linear Layer The linear layer diffuses local properties to the entire state. This is
realized by a matrix multiplication with an MDS matrix. We follow the same strategy
to create our MDS matrices as explained in Section 2.1. Any MDS matrix having the
right dimension can be used in the linear layer as the choice of a specific MDS matrix
does not contribute to the security arguments.

4.2 Number of Rounds

Let λ be the largest number of rounds that can be attacked using the approaches
described in Section 5. Then the safe number of rounds is determined by the following
relation:

N = 1.5max(λ,5),

where the constant 5 is a sanity factor suggested by the Marvellous designers [5], and
1.5 is a safety margin proposed in [8]. In Table 1, the number of rounds λ that can be
attacked using different methods is analyzed.

Concretely, the analysis results in 1.5max(λ,5) = 7.5 and since both steps in a
CHAGHRI round are identical, there is no issue with using a non-integral number of
rounds. However, for compliance with the Mavellous design strategy we round up
and set N = 8 as the total number of rounds.

4.3 Decryption

Recalling the transciphering example in Section 1, encryption happens on the client
side and decryption is realized homomorphically on the server side and is the part
we are aiming to optimize. We therefore first describe the decryption algorithm using
the BGV-friendly operations we identified, then describe the encryption algorithm
using their (heavier) inverses.

CHAGHRI decryption applies the round function 8 times. A key injection takes
place before the first round, between every two steps and after the last round. Figure 2
depicts a CHAGHRI round in a decryption flow. The ciphertext and the master key are
the inputs to the first round function, and the plaintext is the output of the last round
function. Pseudo-code of CHAGHRI decryption function is listed in Algorithm 1.

10

Figure 2: A CHAGHRI decryption round function

Algorithm 1: Chaghridec

Input : Ciphertext C, subkeys Ks for 0 ≤ s ≤ 2N
Output: Chaghridec (K, C)
S0 =C +K0

for j ← 1 to N do
for i ← 0 to 2 do

Inter j [i] =G(S j−1[i])
Inter j [i] = B(Inter j [i])

for i ← 0 to 2 do
S j [i] =∑2

k=0 M [i ,k]Inter j [k]+K2 j−1[i]

for i ← 0 to 2 do
Inter j [i] =G(S j [i])
Inter j [i] = B(Inter j [i])

for i ← 0 to 2 do
S j [i] =∑2

k=0 M [i ,k]Inter j [k]+K2 j [i]

return SN

4.4 Encryption

The S-box flow in the encryption function is described as

π : F263 7→ F263 : x 7→G−1(B−1(x)).

where G−1(x) = x l , l = 22048 −1

264 −1
and B−1(x) is given in Appendix D. Figure 3 depicts

the a round of the encryption function.

Figure 3: A CHAGHRI encryption round function

4.5 Key Schedule

The key schedule algorithm is indeed the iteratively applied CHAGHRI decryption
round function. In order to generate the subkeys, the round function takes the

11

master key instead of the ciphertext input, and takes additional round constants
instead of the subkeys injected. The intermediate state after the round constant
injection is provided as a subkey. Round constants are used to prevent possible
symmetries and self-similarities in the algorithm to thwart certain type of attacks
(e.g., rotational cryptanalysis). The round constants should be chosen such that they
are not rotational-invariant and they do not belong to any subfield of Fq . The round
constants used in CHAGHRI are given in Appendix E.

5 Security Analysis

In this section we analyze the security of CHAGHRI against applicable statistical and
structural attacks. CHAGHRI is secure against statistical attacks due to the large
field size and the properties of its Sbox. Each round consists of two polynomial
transformations having specific properties to assure the resistance against structural
and algebraic attacks. The high degree Gold exponent combined with the affine
linearized polynomial ensure that the description is dense and has high degree across
all possible polynomial descriptions. In the rest of this section we show that this is
indeed the case.

5.1 Statistical Attacks

The most common way to argue the security of a block cipher against differential
and linear cryptanalysis is the wide trail strategy [16]. A CHAGHRI round involves two
maps: a linearized affine transformation B , and a power map G which is non-linear;
whose linear and differential properties were studied in [7]. For an n-bit Boolean
function f , the difference propagation probability δ is defined as

δ= 2−n max
i , j

∣∣{x| f (x)⊕ f (x ⊕ i) = j }
∣∣ ,

and the maximum absolute correlation between any pair of linear combinations of n
input bits and n output bits is defined as

ω= max
α,β∈Fn

2

(
2 Pr

x∈Fn
2

[
αx ⊕β f (x) = 0

]−1

)
.

CHAGHRI has δ = 2−62 and ω = 2−31, see [7] for the details. Since the MDS matrix
activates at least m +1 = 4 Sboxes in each round (2 steps), the differential transition
probability over N rounds is at most

2(4)(−62)N

and the absolute correlation for any N -round linear trail is at most

2(4)(−31)N .

The necessary number of rounds to achieve 128 bits of security is N = 2 and attacking
more rounds of CHAGHRI using statistical attacks is unlikely due to the safety margins
we use.

12

5.2 Structural and Algebraic Attacks

5.2.1 Invariant Subfield Attacks

CHAGHRI operates over the binary field F263 with subfields of the form F2k such
that 2k −1 divides 263 −1. An example of such subfields are F23 or F27 . CHAGHRI

may be vulnerable to the invariant subfield attack [5] if there exists two subfields
Fq1 ⊂ F263 and Fq2 ⊂ F263 such that for any input to the round function x ∈ Fq1, the
corresponding output y lies in Fq2. In order to ensure the security of CHAGHRI against
this attack, we chose the coefficients of the polynomial B and the constants used in
the key schedule so that they do not lie in any subfield of F263 .

5.2.2 Higher-Order Differential Attacks

A higher-order differential attack [17] is an attack targeting the low algebraic degree
of transformations used in block ciphers over binary fields. The algebraic degree of a
function f is the degree of the monomial with the highest degree when f is given in
algebraic normal form. It is shown in Appendix C that in a single round of CHAGHRI,
the algebraic degree is 4. By estimating the algebraic degree of the state after N
rounds to be 4N , we achieve the security of 128 bits in N = 3 rounds. Note that 4N is a
very loose bound, but since the actual number of round is going to be about three
times higher we find this crude analysis to be sufficient.

5.2.3 Interpolation Attacks

The interpolation attack [18] targets the low degree of the polynomial description
of a block cipher. The attacker reconstructs the polynomial description using plain-
text/ciphertext pairs by means of Lagrange interpolation. The complexity of the
interpolation is O(d logd) where d is the degree of the polynomial. In CHAGHRI,
the degree of the power map G is 232 +1 and the degree of polynomial B is 8. The
composition of B and G makes the interpolation attack impractical even after a single
round.

5.2.4 Gröbner basis attack

Gröbner basis attacks is believed to be a threatening attack in the literature against
algebraic ciphers because their complexity is analogous to the efficiency of the cipher
itself. In the Gröbner basis attack, a primitive like a block cipher or a hash function is
modeled using a multivariate system of polynomials such that the set of solutions
jeopardizes the security claims about the primitive. If the system of polynomials that
describes it is easy to solve, the primitive is vulnerable to the attack.

Folklore is that the most successful method in solving a general system of poly-
nomials used in algebraic ciphers is Gröbner basis algorithms such as F4 [19] and
F5 [20]. In general, it is hard to compute the exact complexity of the attack for alge-
braic ciphers. Therefore, we follow the same approach used in [5], and extrapolate
the complexity of the attack against the full cipher by running the attack for round
reduced versions.

13

In Appendix B we provide a detailed description of our analysis against the Gröbner
basis attack on CHAGHRI. The analysis shows that after three rounds, the complexity
of the attack is at least 2128.

5.2.5 Conclusion

we analyzed the security of CHAGHRI against the most promising attacks and found
the maximum number of rounds they can break for 128-bit security. In the case of
statistical attacks, the largest number of rounds that can be attacked is N = 1. We
believe other statistical attacks such as truncated differentials attacks [21] or rebound
attacks [22, 23] are thwarted by the high safety margins.

In the case of algebraic attacks, the largest number of rounds that can be attacked
by higher-order differentials cryptanalysis is N = 4. The largest number of rounds
that can be attacked using Gröbner basis algorithm is N = 3. Other kinds of algebraic
attacks do not seem to outperform this. The security against the interpolation attack
is achieved by the large polynomial degree and the security against the invariant
subfield attack is achieved by a careful choice of constants.

Table 2: A comparison of the running times of AES and CHAGHRI. We see that
CHAGHRI offers better throughout and a lower running time even when the FHE
scheme is using more secure parameters.

Algorithm State
Throughput

(bits)
Cyclotomic
Polynomial

FHE Security
(bits)

No.
Rounds

Running
Time (sec.)

Seconds
Per Bit

AES F16
28 128 Φ53261 141.924 10 97.84 0.76

CHAGHRI F3
263 189 Φ48133 172.24 8 50,47 0.26

6 Benchmark

To present the benefits of CHAGHRI we implemented it using HElib, a software library
implementing the BGV variant described in Section 2.2.1. The library is written in
C++ and uses the NTL mathematical library. We compare this to the performance of
AES-128 using the implementation by Gentry et al. [24] that is built into HElib and
used in this work without any modification.

6.1 Implementation Details of CHAGHRI

The packed representation of CHAGHRI is as follows:

[α1,α2,α3], where αi ∈ F263 .

The power map of the CHAGHRI S-Box requires one Frobenius automorphism
and one multiplication. The F2-linearized affine polynomial is likewise simple and
requires one Frobenius automorphisms and one constant multiplication. The S-Box

14

Algorithm 2: Chaghri S-Box

Input : Chaghri state: x

y = x232
; // Frobenius automorphism

x = y x ; // Multiplication (-1 level)
// Frobenius automorphism + constant multiplication (-0.5 levels)

sum = c1 · x23

sum += c2

return sum

is implemented via a depth-1.5 circuit and listed in Algorithm 2 and requires one
multiplication and two Frobenius automorphisms in total.

The pseudo-code of the linear layer is listed in Algorithm 3.

Algorithm 3: Chaghri Matrix Multiplication

Input : Preprocessed MDS Matrix Rows: MDS, Chaghri state: x
x ′ = MDS[1] · (x À 1) ; // Constant multiplication -0.5 levels
x ′′ = MDS[2] · (x À 1)
x = MDS[0] · x
return x +x ′+x ′′

Subkey injection is simply an addition of the ciphertexts encrypting the state and
the subkey.

Expected Cost of a CHAGHRI Round. A Single CHAGHRI round consists of two mul-
tiplications, four Frobenius automorphisms and four rotations arranged in a depth-
four circuit.

6.2 Evaluation

We benchmarked the AES implementation built into HElib, and our CHAGHRI imple-
mentation in an environment that runs Ubuntu Server 18.04 LTS with 3 TB RAM and
4 x Intel(R) Xeon(R) Gold 6136 CPU @ 3.00GHz.

Table 2 presents the running times of AES and CHAGHRI. When their running
times per bit are compared, CHAGHRI achieves a more compact algebraic descrip-
tion outperforming AES by 65%!

Acknowledgement Tomer Ashur is an FWO post-doctoral fellow under Grant Num-
ber 12ZH420N. This work was supported by CyberSecurity Research Flanders with
reference number VR20192203. In addition, this work was partially supported by
the Research Council KU Leuven, C16/18/004 through the IF/C1 on New Block Ci-
pher Structures and by the Flemish Government through FWO Project Locklock
G0D3819N.

15

References

[1] C. Lund, L. Fortnow, H. J. Karloff, and N. Nisan, “Algebraic Methods for Inter-
active Proof Systems,” in 31st Annual Symposium on Foundations of Computer
Science, St. Louis, Missouri, USA, October 22-24, 1990, Volume I, pp. 2–10, IEEE
Computer Society, 1990.

[2] M. Naehrig, K. E. Lauter, and V. Vaikuntanathan, “Can homomorphic encryp-
tion be practical?,” in Proceedings of the 3rd ACM Cloud Computing Security
Workshop, CCSW 2011, Chicago, IL, USA, October 21, 2011 (C. Cachin and T. Ris-
tenpart, eds.), pp. 113–124, ACM, 2011.

[3] M. R. Albrecht, L. Grassi, C. Rechberger, A. Roy, and T. Tiessen, “MiMC: Efficient
Encryption and Cryptographic Hashing with Minimal Multiplicative Complex-
ity,” in Advances in Cryptology - ASIACRYPT 2016 - 22nd International Conference
on the Theory and Application of Cryptology and Information Security, Hanoi,
Vietnam, December 4-8, 2016, Proceedings, Part I (J. H. Cheon and T. Takagi,
eds.), vol. 10031 of Lecture Notes in Computer Science, pp. 191–219, 2016.

[4] L. Grassi, D. Kales, D. Khovratovich, A. Roy, C. Rechberger, and M. Schofnegger,
“Starkad and poseidon: New hash functions for zero knowledge proof systems,”
IACR Cryptol. ePrint Arch., p. 458, 2019.

[5] A. Aly, T. Ashur, E. Ben-Sasson, S. Dhooghe, and A. Szepieniec, “Design of
Symmetric-Key Primitives for Advanced Cryptographic Protocols,” IACR Trans.
Symmetric Cryptol., vol. 2020, no. 3, pp. 1–45, 2020.

[6] L. Grassi, R. Lüftenegger, C. Rechberger, D. Rotaru, and M. Schofnegger, “On a
generalization of substitution-permutation networks: The HADES design strat-
egy,” in Advances in Cryptology - EUROCRYPT 2020 - 39th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Zagreb,
Croatia, May 10-14, 2020, Proceedings, Part II (A. Canteaut and Y. Ishai, eds.),
vol. 12106 of Lecture Notes in Computer Science, pp. 674–704, Springer, 2020.

[7] K. Nyberg, “Differentially Uniform Mappings for Cryptography,” in Advances
in Cryptology - EUROCRYPT ’93, Workshop on the Theory and Application of
of Cryptographic Techniques, Lofthus, Norway, May 23-27, 1993, Proceedings
(T. Helleseth, ed.), vol. 765 of Lecture Notes in Computer Science, pp. 55–64,
Springer, 1993.

[8] A. Szepieniec, T. Ashur, and S. Dhooghe, “Rescue-prime: a standard specification
(sok),” IACR Cryptol. ePrint Arch., p. 1143, 2020.

[9] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(leveled) fully homomorphic
encryption without bootstrapping,” in Innovations in Theoretical Computer
Science 2012, Cambridge, MA, USA, January 8-10, 2012 (S. Goldwasser, ed.),
pp. 309–325, ACM, 2012.

16

[10] Z. Brakerski and V. Vaikuntanathan, “Efficient Fully Homomorphic Encryption
from (Standard) LWE,” in IEEE 52nd Annual Symposium on Foundations of
Computer Science, FOCS 2011, Palm Springs, CA, USA, October 22-25, 2011
(R. Ostrovsky, ed.), pp. 97–106, IEEE Computer Society, 2011.

[11] C. Gentry, S. Halevi, and N. P. Smart, “Fully homomorphic encryption with
polylog overhead,” in Advances in Cryptology - EUROCRYPT 2012 - 31st An-
nual International Conference on the Theory and Applications of Cryptographic
Techniques, Cambridge, UK, April 15-19, 2012. Proceedings (D. Pointcheval and
T. Johansson, eds.), vol. 7237 of Lecture Notes in Computer Science, pp. 465–482,
Springer, 2012.

[12] N. P. Smart and F. Vercauteren, “Fully Homomorphic Encryption with Relatively
Small Key and Ciphertext Sizes,” in Public Key Cryptography - PKC 2010, 13th
International Conference on Practice and Theory in Public Key Cryptography,
Paris, France, May 26-28, 2010. Proceedings (P. Q. Nguyen and D. Pointcheval,
eds.), vol. 6056 of Lecture Notes in Computer Science, pp. 420–443, Springer, 2010.

[13] D. Toprakhisar, M. Mahzoun, and T. Ashur, “A Comparative Study of Vision and
AES in FHE Setting,” August 2021. The Conference for Failed Approaches and
Insightful Losses in Cryptology, CFail; Conference date: 14-08-2021.

[14] D. Hertel, “A note on the kasami power function,” IACR Cryptol. ePrint Arch.,
vol. 2005, p. 436, 2005.

[15] H. Dobbertin, “Almost perfect nonlinear power functions on gf(2n): The niho
case,” Inf. Comput., vol. 151, no. 1-2, pp. 57–72, 1999.

[16] J. Daemen and V. Rijmen, The Design of Rijndael: AES - The Advanced Encryption
Standard. Information Security and Cryptography, Springer, 2002.

[17] L. R. Knudsen, “Truncated and higher order differentials,” in Fast Software
Encryption (B. Preneel, ed.), (Berlin, Heidelberg), pp. 196–211, Springer Berlin
Heidelberg, 1995.

[18] T. Jakobsen and L. R. Knudsen, “The interpolation attack on block ciphers,”
in Fast Software Encryption (E. Biham, ed.), (Berlin, Heidelberg), pp. 28–40,
Springer Berlin Heidelberg, 1997.

[19] J.-C. Faugére, “A new efficient algorithm for computing gröbner bases (f4),”
Journal of Pure and Applied Algebra, vol. 139, no. 1, pp. 61–88, 1999.

[20] J. C. Faugère, “A new efficient algorithm for computing gröbner bases without
reduction to zero (f5),” in Proceedings of the 2002 International Symposium on
Symbolic and Algebraic Computation, ISSAC ’02, (New York, NY, USA), p. 75–83,
Association for Computing Machinery, 2002.

[21] L. R. Knudsen, “Truncated and higher order differentials,” in FSE, 1994.

17

[22] F. Mendel, C. Rechberger, M. Schläffer, and S. S. Thomsen, “The rebound attack:
Cryptanalysis of reduced whirlpool and grøstl,” in FSE, 2009.

[23] M. Lamberger, F. Mendel, C. Rechberger, V. Rijmen, and M. Schläffer, “Rebound
distinguishers: Results on the full whirlpool compression function,” in Advances
in Cryptology - ASIACRYPT 2009, 15th International Conference on the Theory
and Application of Cryptology and Information Security, Tokyo, Japan, December
6-10, 2009. Proceedings (M. Matsui, ed.), vol. 5912 of Lecture Notes in Computer
Science, pp. 126–143, Springer, 2009.

[24] C. Gentry, S. Halevi, and N. P. Smart, “Homomorphic Evaluation of the AES
Circuit,” IACR Cryptol. ePrint Arch., vol. 2012, p. 99, 2012.

[25] L. Bettale, J. Faugère, and L. Perret, “Solving polynomial systems over finite
fields: improved analysis of the hybrid approach,” in International Symposium
on Symbolic and Algebraic Computation, ISSAC’12, Grenoble, France - July 22 -
25, 2012 (J. van der Hoeven and M. van Hoeij, eds.), pp. 67–74, ACM, 2012.

A Inversion Algorithm in AES implementation

For completeness, we describe the AES inversion algorithm in algorithm 4.

Algorithm 4: Inversion over F2n

Input : x, n
exp ← 2
y ← x2 ; // Frobenius automorphism
z ← x2 · x = x3 ; // Multiplication (-1 level)
for i ← 2 to logn do

x = (z)2exp
; // Frobenius automorphism

y = x · y ; // Multiplication (-1 level)
if i == logn then

return y
end
z = x · z ; // Multiplication
exp = 2 ·exp

end

B Detailed GB analysis

We first describe the details of modeling the attack, then we present the results
obtained after running it. For the implementation We used Magma on a Linux
machine with 54GB of RAM and Intel(R) Xeon(R) CPU E3-1275 v6 running at 3.80GHz.

To argue the security of CHAGHRI we employ the approach offered by the Marvel-
lous design strategy as follows:

18

Figure 4: Decryption in Chaghri. P ⊕K2N is the plaintext, Si ’s are the intermediate
states and C is the ciphertext.

• First, model CHAGHRI as a system of multivariate polynomials;

• Then, compute the Gröbner basis in degrevlex order. For this we use the F4
algorithm offered in Magma.

By the Marvellous design strategy, the algorithm is designed such that computing the
Gröbner basis in degrevlex order should already be prohibitively expensive.

The cost is estimated using empirical data of reduced versions that is extrapo-
lated to the complete parameter set. In general, the complexity of computing the
Gröbner [25] basis is

O

((
n +dr eg

dr eg

)ω)
Where n is the number of variables in the polynomial system, 2 <ω< 3 is the linear
algebra constant, and dr eg is the degree of the regularity of the system.

The attack details. We model the block cipher as depicted in Figure 4.
Let us denote the number of rounds by N , the dimension by m, and the internal

states by Si : 1 ≤ i ≤ 2N −1. The round keys are denoted by Ki : 0 ≤ i ≤ 2N . Finally,
variables Ci : 0 ≤ i ≤ 2N are the round constants. The system in Figure 5 describes
CHAGHRI.

In Figure 5, the first three lines are the equations modeling the encryption of P
using K resulting in C . The last line describes the equations of round keys. There
are in total 4mN equations in 4mN variables. Variables are {Si [j]; 1 < i < 2N , j ≤
m}∪ {Ki [j]; 0 ≤ i ≤ 2N , j ≤ m}.

One of the main challenges in modeling CHAGHRI is modeling the Gold exponent

G = 2232+1, which is of a high degree. To overcome this challenge, we try to model the
polynomial F using another representation having smaller degree.

For t a primitive element of F263 , P (t) an arbitrary polynomial in t , Lemma B.1
shows that G(P (t)) = P (G (t))×P (t). This implies that if finding a low degree transfor-
mation F (t) allows to model G using a low degree polynomial and solving the system
more easily.

The following equality is derived from a sage program that computes the result of

19



B(G(C [β]⊕K0[β]))⊕
m∑
α=1

M−1[β,α](S1[α]⊕K1[α]) = 0 β ∈ [m]

B(G(Si−1[β]))⊕
m∑
α=1

M−1[β,α](Si [α]⊕Ki [α]) = 0 1 < i < 2N , β ∈ [m]

B(G(S2N−1[β]))⊕
m∑
α=1

M−1[β,α](P [α]⊕K2N [α]) = 0 β ∈ [m]

Ki [β]⊕Ci [β]⊕
m∑
α=1

M [β,α] ·B(G(Ki−1)) = 0 1 ≤ i ≤ 2N β ∈ [m]


Figure 5: The system of the polynomial equations modeling the CHAGHRI block
cipher. Ki : 0 ≤ i ≤ 2N are the variables for the round keys, P and C are the variables
for the plaintext and the ciphertext, and Si : 0 < i < 2N are the intermediate variables;
Ci : 0 ≤ i ≤ 2N are the round constants.

F (t) as a Frobenius automorphism.

F (t) = t 59 + t 58 + t 57 + t 55 + t 53 + t 52 + t 51 + t 46 + t 45 + t 44

+t 43 + t 42 + t 41 + t 39 + t 37 + t 34 + t 30 + t 29 + t 28 + t 27 + t 26

+t 25 + t 23 + t 22 + t 19 + t 17 + t 14 + t 13 + t 10 + t 8 + t 6 + t 5 + t 3

+t 2 + t

Therefore, we model G(t) as F (t)× t which is a polynomial of degree 60 instead of
degree 232 +1.

Lemma B.1. Let P be a polynomial with binary coefficients and let F (t) = t 232
be the

Frobenius transformation on F263 . Then ∀t ∈ F263 : F (P (t)) =P (F (t)).

Proof. For bi ∈ {0,1} let P (t) =∑n
i=0 bi t i . Since the characteristic of the field F263 is 2,

then (a +b)2 = a2 +b2. We obtain the following:

F (P (t)) = (P (t))232
(2)

⇒ F (P (t)) = (
n∑

i=0
bi t i)232

(3)

⇒ F (P (t)) =
n∑

i=0
bi t i (232) (4)

⇒ F (P (t)) =P (F (t)) (5)

The next step is to compute the degree of regularity of the system in order to
estimate the complexity of the attack which is:

20

O

((
4mN +dr eg

dr eg

)ω)
.

To extrapolate the degree of the regularity, we run the Gröbner basis algorithm and
compute the degree of regularity for a small number of rounds.

Our environment was not strong enough to support the computation and crashed
before halting. However, before that it reached a step degree of 220, which can be
used to lower bound the degree of regularity. The other observation is that the degree
of regularity grows linearly with the number of rounds. Using the lower bound for the
degree of regularity, we can compute the complexity of the Gröbner basis attack for
N rounds using the following relation.(

4mN +dcon.l b

dcon.l b

)2

The number of rounds that can be attacked is calculated as

l1 = min(N) subject to

(
4mN +dcon

dcon

)2

≥ 2s ,

and achieves 128 bits of security when N = 3.

C Algebraic degree of Chaghri

We analyze the version of Chaghri with state size m = 2. However, for m > 2, the same
analysis works. Let x, y be the initial state. Each round of Chaghri has two identical
steps. The algebraic degree of each step is 2 and in the following, we show that an
algebraic degree of one round is 4. One step has two transformations and one matrix
multiplication. In the first step we have:

G(x +α) = (x +α)2k+1 = x2k+1 + (2k +1)αx2k + (2k +1)α2k
x +α2k+1

B(G(x +α)) =C1

(
x2k+1 + (2k +1)αx2k + (2k +1)α2k

x +α2k+1
)8 +C2 =

C1x8(2k+1) +C1(2k +1)8α8x2k+3 +C1(2k +1)8α82k+3x8 +C1α
8(2k+1) +C2 =

C1x2k+3+8 +β1x2k+3 +β2x8 +β3

Which means that the state after two transformations G and B has the following form.

x ⇒ x ′ =C1x2k+3+8 +β1x2k+3 +β2x +β3

y ⇒ y ′ =C1 y2k+3+8 +β1 y2k+3 +β2 y +β3

It shows that the algebraic degree of B(G(x)) is 2. After multiplying the state with the
MDS matrix the state become as follow.(

m11 m12

m21 m22

)(
x ′
y ′

)
=

(
m11x ′+m12 y ′
m21x ′+m22 y ′

)

21

We observe that matrix multiplication does not change the algebraic degree because
the result is linear combination of x and y after one round. So the algebraic degree of
one step is 2. During the next step we have:

G(m11x ′+m12 y ′) = x ′2k+1 +x ′2k
y ′+x ′y ′2k + y ′2k+1 +β1x ′2k +β2 y ′2k +β3x ′+β4 y ′+β5

Replacing x ′ and y ′ with their values and considering all constants as 1 we have:

G((x2k+3+8 +x2k+3 +x8 +1)+ (y2k+3+8 + y2k+3 + y8 +1)) =(
(x2k+3+8 +x2k+3 +x8 +1)+ (y2k+3+8 + y2k+3 + y +1)

)2k+1 =

(x2k+3+8 +x2k+3 +x8 +1)2k+1 + (x2k+3+8 +x2k+3 +x8 +1)2k
(y2k+3+8 + y2k+3 + y8 +1)+

(x2k+3+8 +x2k+3 +x8 +1)(y2k+3+8 + y2k+3 + y8 +1)2k + (y2k+3+8 + y2k+3 + y8 +1)2k+1 =

x22k+3+2k+4+8 +x22k+3+8 +x22k+3+2k+4 +x2k+4+8 +x22k+3 +x2k+4 +x22k+3+2k+3
y2k+3+8+

x22k+3
y2k+3+8 +x2k+3 y2k+3+8 + y2k+3+8 +x22k+3+2k+3

y2k+3 +x22k+3
y2k+3 +x2k+3 y2k+3+

y2k+3 +x22k+3+2k+3
y8 +x22k+3

y8 +x2k+3 y8x22k+3+2k+3 +x22k+3 +xk+3 +x2k+3+8 y22k+3+8+
x2k+3

y22k+3+8 +x8 y22k+3+8 + y2k+3+8 +x2k+3+8 y22k+3 +x2k+3
y22k+3 +x8 y22k+3 + y2k+3+

x2k+3+8 y2k+3 +x2k+3
y2k+3 +x8 y2k+3 + y2k+3 +x2k+3+8 +x2k+3+

y22k+3+2k+4+8 + y22k+3+8 + y22k+3+2k+4 + y2k+4+8 + y22k+3 + y2k+4

This shows that after 1 round, the algebraic degree is 4. Our experimental results
show that the algebraic degree grows exponentially. Therefore, we believe the sug-
gested number of rounds is enough for Chaghri to be resistant against higher-order
differential attacks.

D The Polynomial B−1(x)

B−1(x) = c63x262 + c62x261 + c59x258 + c56x255 + c53x252 + c50x249 + c47x246 + c44x243 +
c41x240 + c38x237 + c35x234 + c32x231 + c29x228 + c26x225 + c23x222 + c20x219 + c17x216 +
c14x213 + c11x210 + c8x27 + c5x24 + c2x2

where
c63 = t 62 + t 60 + t 59 + t 57 + t 50 + t 48 + t 45 + t 42 + t 40 + t 39 + t 36 + t 34 + t 30 + t 29 + t 25 +
t 22 + t 21 + t 20 + t 18 + t 17 + t 15 + t 14 + t 5 + t 4 + t 2 + t ,

c62 = t 60 + t 59 + t 57 + t 56 + t 54 + t 52 + t 50 + t 49 + t 48 + t 46 + t 45 + t 41 + t 40 + t 36 + t 34 +
t 33 + t 31 + t 28 + t 23 + t 21 + t 19 + t 16 + t 12 + t 10 + t 9 + t 7 + t 5 + t 4 + t 3 + t 2 + t +1,

c59 = t 59 + t 57 + t 54 + t 53 + t 51 + t 49 + t 45 + t 42 + t 40 + t 38 + t 34 + t 29 + t 28 + t 25 + t 24 +
t 22 + t 20 + t 18 + t 17 + t 16 + t 14 + t 9 + t 8 + t 7 + t 6 + t 5 + t 4 + t 3 + t 2 + t ,

22

c56 = t 62+t 61+t 59+t 58+t 56+t 55+t 54+t 51+t 50+t 48+t 46+t 44+t 42+t 41+t 38+t 37+
t 28+t 25+t 24+t 23+t 22+t 21+t 20+t 19+t 18+t 17+t 16+t 15+t 14+t 13+t 10+t 9+t 6+t 5+t 2,

c53 = t 62 + t 61 + t 59 + t 56 + t 55 + t 51 + t 42 + t 41 + t 40 + t 38 + t 36 + t 34 + t 32 + t 30 + t 29 +
t 25 + t 24 + t 22 + t 21 + t 20 + t 16 + t 15 + t 13 + t 12 + t 8 + t 7 + t 5 + t 4 + t 2 +1,

c50 = t 61+t 60+t 59+t 58+t 56+t 55+t 54+t 52+t 51+t 44+t 43+t 41+t 40+t 39+t 38+t 37+
t 36+t 35+t 28+t 25+t 24+t 22+t 21+t 20+t 18+t 17+t 16+t 15+t 13+t 9+t 7+t 6+t 5+t 2+t+1,

c47 = t 62 + t 57 + t 55 + t 54 + t 52 + t 50 + t 49 + t 43 + t 42 + t 41 + t 40 + t 39 + t 38 + t 37 + t 36 +
t 35 + t 34 + t 32 + t 31 + t 29 + t 28 + t 27 + t 26 + t 25 + t 24 + t 23 + t 22 + t 21 + t 18 + t 15 + t 14 +
t 12 + t 11 + t 10 + t 6 + t 5 + t 2 + t ,

c44 = t 62 + t 58 + t 54 + t 53 + t 51 + t 45 + t 44 + t 34 + t 32 + t 31 + t 30 + t 28 + t 26 + t 24 + t 20 +
t 17 + t 16 + t 15 + t 14 + t 12 + t 11 + t 9 + t 8 + t 6 + t 5 + t 4 + t 3,

c41 = t 61 + t 59 + t 58 + t 56 + t 55 + t 54 + t 52 + t 51 + t 49 + t 46 + t 44 + t 43 + t 42 + t 40 + t 39 +
t 37+t 36+t 33+t 32+t 31+t 30+t 28+t 26+t 22+t 20+t 16+t 15+t 14+t 11+t 8+t 7+t 3+t+1,

c38 = t 62 + t 58 + t 55 + t 49 + t 48 + t 46 + t 44 + t 41 + t 39 + t 38 + t 37 + t 35 + t 34 + t 29 + t 27 +
t 26 + t 25 + t 24 + t 22 + t 19 + t 18 + t 17 + t 11 + t 6 + t 4 + t 2,

c35 = t 62 + t 61 + t 59 + t 56 + t 55 + t 54 + t 47 + t 45 + t 44 + t 43 + t 42 + t 39 + t 38 + t 37 + t 36 +
t 34 + t 31 + t 29 + t 28 + t 25 + t 22 + t 21 + t 19 + t 13 + t 12 + t 8 + t 4 + t 2 + t ,

c32 = t 62+t 60+t 59+t 58+t 57+t 54+t 53+t 52+t 51+t 50+t 49+t 48+t 45+t 44+t 43+t 41+t 39+
t 38+t 37+t 33+t 32+t 31+t 28+t 27+t 26+t 25+t 19+t 16+t 14+t 13+t 12+t 8+t 7+t 5+t 4+t 3,

c29 = t 61 + t 60 + t 59 + t 57 + t 53 + t 52 + t 45 + t 43 + t 40 + t 39 + t 38 + t 37 + t 36 + t 34 + t 33 +
t 31 + t 29 + t 27 + t 26 + t 25 + t 23 + t 22 + t 20 + t 13 + t 12 + t 11 + t 10 + t 8 + t 6 + t 4 + t 3 + t ,

c26 = t 62 + t 61 + t 57 + t 52 + t 51 + t 49 + t 48 + t 45 + t 39 + t 37 + t 36 + t 35 + t 33 + t 32 + t 31 +
t 27 + t 25 + t 22 + t 19 + t 16 + t 15 + t 14 + t 9 + t 7 + t 5 + t 2 + t ,

c23 = t 59 + t 58 + t 57 + t 56 + t 55 + t 54 + t 53 + t 51 + t 50 + t 49 + t 47 + t 45 + t 42 + t 36 + t 32 +
t 31 + t 30 + t 26 + t 25 + t 24 + t 21 + t 17 + t 16 + t 13 + t 12 + t 11 + t 10 + t 9 + t 7 + t 6 + t 3 +1,

c20 = t 62 + t 61 + t 60 + t 59 + t 57 + t 56 + t 54 + t 53 + t 52 + t 51 + t 49 + t 48 + t 46 + t 43 + t 42 +
t 41+t 35+t 32+t 31+t 30+t 29+t 27+t 24+t 23+t 22+t 19+t 15+t 14+t 12+t 9+t 5+t 3+t 2+1,

c17 = t 60 + t 57 + t 52 + t 51 + t 48 + t 45 + t 44 + t 43 + t 39 + t 36 + t 34 + t 32 + t 29 + t 27 + t 26 +
t 24 + t 22 + t 21 + t 20 + t 19 + t 16 + t 10 + t 9 + t 7 + t 6 + t 4 + t 2 +1,

c14 = t 59 + t 57 + t 53 + t 52 + t 50 + t 49 + t 45 + t 42 + t 41 + t 40 + t 36 + t 35 + t 34 + t 32 + t 31 +
t 30 + t 25 + t 24 + t 23 + t 20 + t 18 + t 15 + t 14 + t 12 + t 10 + t 7 + t 6 + t 5 + t 4 + t ,

23

c11 = t 62 + t 59 + t 57 + t 56 + t 55 + t 53 + t 51 + t 50 + t 47 + t 46 + t 44 + t 43 + t 42 + t 41 + t 40 +
t 31 + t 30 + t 29 + t 27 + t 26 + t 23 + t 22 + t 19 + t 12 + t 10 + t 8 + t 2 +1,

c8 = t 60+ t 58+ t 56+ t 53+ t 52+ t 51+ t 50+ t 49+ t 48+ t 47+ t 46+ t 44+ t 43+ t 42+ t 40+ t 39+
t 38 + t 37 + t 36 + t 34 + t 33 + t 31 + t 30 + t 29 + t 28 + t 27 + t 26 + t 24 + t 22 + t 21 + t 20 + t 19 +
t 18 + t 13 + t 12 + t 8 + t 3 + t 2 + t ,

c5 = t 57+ t 55+ t 54+ t 53+ t 41+ t 40+ t 38+ t 37+ t 34+ t 32+ t 28+ t 27+ t 26+ t 25+ t 24+ t 23+
t 22 + t 21 + t 19 + t 18 + t 17 + t 16 + t 15 + t 14 + t 13 + t 10 + t 4 +1,

c2 = t 61+ t 58+ t 55+ t 52+ t 50+ t 49+ t 48+ t 46+ t 45+ t 43+ t 42+ t 41+ t 40+ t 39+ t 36+ t 33+
t 31 + t 28 + t 26 + t 25 + t 24 + t 23 + t 18 + t 17 + t 14 + t 12 + t 10 + t 7 + t 6 +1.

E Round Constants

Round 1:

t 61 + t 60 + t 57 + t 56 + t 55 + t 54 + t 51 + t 49 + t 47 + t 45 + t 44 + t 43 + t 41 + t 39 + t 36 + t 35 +
t 34 + t 33 + t 29 + t 27 + t 26 + t 25 + t 23 + t 21 + t 16 + t 14 + t 12 + t 8 + t 3 + t 2 + t +1,

t 62 + t 59 + t 54 + t 53 + t 52 + t 51 + t 49 + t 47 + t 45 + t 44 + t 42 + t 41 + t 38 + t 37 + t 35 + t 34 +
t 32 + t 31 + t 30 + t 29 + t 28 + t 22 + t 21 + t 19 + t 14 + t 12 + t 10 + t 8 + t 7 + t 6 + t 3 +1,

t 61 + t 60 + t 57 + t 56 + t 52 + t 51 + t 46 + t 44 + t 43 + t 42 + t 41 + t 37 + t 35 + t 31 + t 28 + t 26 +
t 22 + t 21 + t 19 + t 15 + t 2 + t +1;

t 56 + t 54 + t 52 + t 51 + t 48 + t 45 + t 41 + t 39 + t 36 + t 33 + t 28 + t 27 + t 25 + t 23 + t 19 + t 15 +
t 13 + t 12 + t 11 + t 9 + t 8 + t 6 + t 4 + t 2 + t ,

t 62 + t 61 + t 58 + t 54 + t 51 + t 50 + t 49 + t 47 + t 46 + t 42 + t 41 + t 40 + t 39 + t 34 + t 33 + t 32 +
t 27 + t 25 + t 24 + t 23 + t 21 + t 19 + t 17 + t 16 + t 14 + t 8 + t 7 + t 5 + t +1,

t 62 + t 61 + t 58 + t 54 + t 53 + t 52 + t 49 + t 44 + t 39 + t 37 + t 35 + t 33 + t 32 + t 29 + t 27 + t 21 +
t 20 + t 18 + t 17 + t 16 + t 13 + t 12 + t 10 + t 9 + t 8 + t 7 + t 5 + t 3 + t +1;

Round 2:

t 61+t 60+t 59+t 58+t 57+t 54+t 53+t 51+t 50+t 49+t 47+t 45+t 44+t 40+t 39+t 38+t 36+t 32+
t 30+t 28+t 27+t 26+t 25+t 22+t 21+t 20+t 19+t 17+t 16+t 14+t 13+t 9+t 7+t 6+t 5+t 4+t ,

t 62 + t 60 + t 59 + t 58 + t 57 + t 56 + t 55 + t 54 + t 53 + t 50 + t 47 + t 45 + t 44 + t 41 + t 40 + t 39 +
t 38 + t 37 + t 35 + t 31 + t 28 + t 26 + t 25 + t 24 + t 22 + t 19 + t 3 +1,

t 61+t 59+t 56+t 53+t 52+t 49+t 48+t 47+t 44+t 43+t 42+t 40+t 39+t 38+t 36+t 34+t 33+
t 32+t 31+t 30+t 29+t 26+t 25+t 24+t 23+t 22+t 21+t 18+t 16+t 14+t 12+t 10+t 8+t 6+t 5+1;

24

t 61 + t 59 + t 54 + t 51 + t 50 + t 48 + t 47 + t 46 + t 45 + t 44 + t 42 + t 40 + t 39 + t 38 + t 37 + t 36 +
t 33 + t 31 + t 26 + t 24 + t 13 + t 11 + t 6 + t +1,

t 62 + t 61 + t 60 + t 58 + t 52 + t 51 + t 49 + t 48 + t 46 + t 45 + t 43 + t 41 + t 40 + t 39 + t 36 + t 32 +
t 28 + t 19 + t 17 + t 16 + t 15 + t 14 + t 10 + t 8 + t 6 + t 2 +1,

t 62 + t 61 + t 60 + t 57 + t 56 + t 54 + t 53 + t 52 + t 47 + t 45 + t 38 + t 37 + t 35 + t 34 + t 33 + t 30 +
t 29 + t 23 + t 19 + t 12 + t 11 + t 8 + t 6 + t 4 + t 2 +1;

Round 3:

t 62 + t 61 + t 60 + t 53 + t 52 + t 51 + t 48 + t 46 + t 43 + t 42 + t 39 + t 38 + t 36 + t 29 + t 27 + t 23 +
t 22 + t 19 + t 17 + t 16 + t 15 + t 14 + t 11 + t 8 + t 6 + t +1,

t 60 + t 58 + t 57 + t 54 + t 52 + t 50 + t 46 + t 45 + t 42 + t 40 + t 38 + t 37 + t 36 + t 35 + t 34 + t 33 +
t 29 + t 27 + t 25 + t 23 + t 22 + t 20 + t 17 + t 16 + t 15 + t 14 + t 10 + t 5 + t 3 + t ,

t 62 + t 61 + t 58 + t 57 + t 56 + t 55 + t 48 + t 47 + t 45 + t 43 + t 41 + t 39 + t 37 + t 34 + t 30 + t 29 +
t 25 + t 24 + t 23 + t 21 + t 19 + t 16 + t 14 + t 13 + t 10 + t 9 + t 8 + t 3 +1;

t 62 + t 61 + t 60 + t 59 + t 58 + t 57 + t 53 + t 52 + t 50 + t 49 + t 48 + t 45 + t 43 + t 42 + t 41 + t 37 +
t 36+ t 35+ t 34+ t 31+ t 30+ t 29+ t 28+ t 27+ t 26+ t 24+ t 23+ t 21+ t 19+ t 18+ t 14+ t 10+ t 4,

t 62 + t 57 + t 54 + t 52 + t 51 + t 50 + t 47 + t 44 + t 43 + t 40 + t 37 + t 36 + t 35 + t 33 + t 25 + t 23 +
t 20 + t 19 + t 18 + t 12 + t 8 + t 6 + t 5 + t 2,

t 60 + t 58 + t 57 + t 56 + t 54 + t 49 + t 48 + t 47 + t 45 + t 41 + t 39 + t 38 + t 37 + t 34 + t 31 + t 27 +
t 25 + t 24 + t 21 + t 20 + t 18 + t 13 + t 9 + t 8 + t 6 + t 3 + t +1;

Round 4:

t 62 + t 61 + t 59 + t 52 + t 48 + t 45 + t 43 + t 40 + t 35 + t 34 + t 29 + t 26 + t 23 + t 20 + t 19 + t 18 +
t 17 + t 15 + t 14 + t 11 + t 9 + t 8 + t 5 + t 4 + t 3,

t 62 + t 61 + t 60 + t 56 + t 55 + t 53 + t 52 + t 49 + t 48 + t 47 + t 41 + t 38 + t 35 + t 34 + t 32 + t 31 +
t 24 + t 23 + t 20 + t 19 + t 17 + t 16 + t 15 + t 14 + t 11 + t 8 + t 5 + t 3 + t 2,

t 61 + t 60 + t 58 + t 57 + t 56 + t 55 + t 53 + t 50 + t 49 + t 44 + t 39 + t 37 + t 36 + t 35 + t 34 + t 31 +
t 30 + t 25 + t 24 + t 23 + t 19 + t 18 + t 15 + t 14 + t 13 + t 7 + t 5 + t 3 + t 2 +1;

t 60 + t 58 + t 57 + t 56 + t 52 + t 50 + t 49 + t 44 + t 40 + t 39 + t 37 + t 35 + t 32 + t 31 + t 30 + t 26 +
t 23 + t 20 + t 19 + t 18 + t 17 + t 16 + t 15 + t 14 + t 11 + t 10 + t 8 + t 4 + t ,

t 61 + t 60 + t 59 + t 58 + t 50 + t 43 + t 41 + t 38 + t 37 + t 34 + t 32 + t 31 + t 28 + t 26 + t 25 + t 24 +
t 23 + t 22 + t 19 + t 17 + t 14 + t 12 + t 5 + t ,

25

t 62 + t 61 + t 58 + t 57 + t 51 + t 50 + t 48 + t 46 + t 44 + t 42 + t 41 + t 40 + t 35 + t 32 + t 26 + t 25 +
t 21 + t 18 + t 17 + t 16 + t 15 + t 14 + t 12 + t 10 + t 8 + t 5 + t 2;

Round 5:

t 62+t 58+t 57+t 54+t 53+t 52+t 50+t 49+t 48+t 46+t 40+t 38+t 37+t 35+t 34+t 33+t 28+
t 27+t 26+t 25+t 24+t 23+t 22+t 21+t 18+t 15+t 14+t 12+t 11+t 10+t 9+t 8+t 7+t 6+t 5+t+1,

t 62 + t 61 + t 60 + t 59 + t 58 + t 56 + t 54 + t 53 + t 51 + t 49 + t 48 + t 47 + t 42 + t 41 + t 39 + t 37 +
t 36 + t 35 + t 33 + t 32 + t 26 + t 24 + t 22 + t 20 + t 19 + t 18 + t 14 + t 13 + t 9 + t 8 + t 7 + t 5 + t 2 +1,

t 61 + t 60 + t 56 + t 55 + t 54 + t 53 + t 52 + t 51 + t 47 + t 42 + t 41 + t 40 + t 37 + t 36 + t 35 + t 33 +
t 29 + t 28 + t 27 + t 24 + t 23 + t 21 + t 20 + t 18 + t 16 + t 15 + t 12 + t 11 + t 8 + t 6 + t 4 + t 2 + t +1;

t 62 + t 60 + t 57 + t 56 + t 55 + t 54 + t 53 + t 49 + t 48 + t 46 + t 45 + t 42 + t 40 + t 39 + t 34 + t 33 +
t 31 + t 25 + t 24 + t 23 + t 21 + t 19 + t 17 + t 14 + t 13 + t 11 + t 10 + t 9 + t 4,

t 61 + t 59 + t 58 + t 57 + t 56 + t 54 + t 53 + t 51 + t 50 + t 46 + t 42 + t 41 + t 40 + t 39 + t 38 + t 37 +
t 35 + t 34 + t 32 + t 31 + t 29 + t 27 + t 26 + t 25 + t 22 + t 20 + t 19 + t 17 + t 13 + t 5 + t 3 + t 2 + t +1,

t 62 + t 53 + t 50 + t 48 + t 47 + t 46 + t 44 + t 42 + t 41 + t 40 + t 38 + t 36 + t 34 + t 25 + t 24 + t 22 +
t 20 + t 19 + t 18 + t 16 + t 11 + t 10 + t 9 + t 8 + t 7 + t 5 + t 3 + t ;

Round 6:

t 62 + t 59 + t 57 + t 54 + t 51 + t 47 + t 46 + t 44 + t 43 + t 41 + t 40 + t 39 + t 38 + t 36 + t 31 + t 29 +
t 27 + t 26 + t 25 + t 23 + t 22 + t 21 + t 19 + t 15 + t 13 + t 10 + t 9 + t 8 + t 6 + t 5 + t 4 + t 3 + t 2 + t ,

t 61 + t 60 + t 59 + t 52 + t 49 + t 48 + t 42 + t 40 + t 36 + t 31 + t 22 + t 21 + t 20 + t 19 + t 18 + t 16 +
t 15 + t 14 + t 12 + t 10 + t 9 + t 4 + t 2 + t +1,

t 60 + t 59 + t 56 + t 53 + t 50 + t 47 + t 46 + t 42 + t 41 + t 36 + t 35 + t 28 + t 26 + t 19 + t 15 + t 13 +
t 12 + t 11 + t 10 + t 8 + t 5 + t 2;

t 62+t 59+t 58+t 56+t 55+t 54+t 51+t 46+t 43+t 42+t 40+t 39+t 38+t 37+t 33+t 31+t 28+
t 27 + t 25 + t 24 + t 23 + t 22 + t 21 + t 20 + t 19 + t 17 + t 16 + t 14 + t 13 + t 12 + t 7 + t 6 + t 4 +1,

t 59 + t 57 + t 54 + t 49 + t 47 + t 46 + t 45 + t 44 + t 41 + t 29 + t 26 + t 22 + t 13 + t 11 + t 9 + t 7 + t 6 +
t 5 + t 4 + t 3 + t 2 + t +1,

t 62 + t 61 + t 60 + t 59 + t 58 + t 55 + t 54 + t 53 + t 49 + t 43 + t 36 + t 35 + t 34 + t 33 + t 32 + t 31 +
t 30 + t 28 + t 26 + t 25 + t 24 + t 21 + t 18 + t 15 + t 12 + t 11 + t 10 + t 8 + t 7 + t 6 + t 5 + t 3 + t +1;

Round 7:

26

t 62 + t 61 + t 57 + t 55 + t 51 + t 50 + t 49 + t 48 + t 47 + t 46 + t 45 + t 44 + t 39 + t 38 + t 37 + t 36 +
t 35+t 34+t 33+t 32+t 30+t 27+t 24+t 23+t 22+t 19+t 17+t 15+t 14+t 12+t 10+t 7+t 6+t 5+t 3,

t 62 + t 60 + t 59 + t 58 + t 57 + t 55 + t 54 + t 52 + t 50 + t 47 + t 45 + t 44 + t 41 + t 39 + t 38 + t 36 +
t 35 + t 31 + t 29 + t 28 + t 23 + t 22 + t 19 + t 17 + t 16 + t 15 + t 14 + t 12 + t 9 + t 8 + t 4 + t 2 +1,

t 61+t 60+t 56+t 55+t 52+t 50+t 49+t 46+t 44+t 43+t 40+t 39+t 38+t 37+t 36+t 34+t 32+
t 31+t 28+t 23+t 22+t 21+t 18+t 17+t 15+t 14+t 12+t 11+t 10+t 9+t 7+t 6+t 4+t 3+t 2+1;

t 59 + t 57 + t 56 + t 55 + t 54 + t 53 + t 52 + t 49 + t 47 + t 45 + t 41 + t 39 + t 38 + t 37 + t 35 + t 34 +
t 31 + t 30 + t 26 + t 25 + t 21 + t 20 + t 19 + t 18 + t 11 + t 10 + t 9 + t 8 + t 7,

t 62 + t 60 + t 58 + t 57 + t 56 + t 54 + t 51 + t 47 + t 43 + t 42 + t 41 + t 38 + t 36 + t 32 + t 31 + t 29 +
t 28 + t 25 + t 22 + t 15 + t 14 + t 7 + t 6 + t 5 + t 4 + t 3 + t ,

t 61 + t 58 + t 57 + t 56 + t 55 + t 54 + t 52 + t 51 + t 49 + t 48 + t 46 + t 37 + t 31 + t 27 + t 26 + t 23 +
t 22 + t 20 + t 19 + t 17 + t 14 + t 13 + t 9 + t 8 + t 7 + t 6 + t 4 + t +1;

Round 8:

t 61 + t 58 + t 45 + t 41 + t 36 + t 34 + t 33 + t 30 + t 29 + t 27 + t 26 + t 25 + t 24 + t 19 + t 18 + t 16 +
t 15 + t 14 + t 11 + t 10 + t 8 + t 6 + t 4 +1,

t 62 + t 61 + t 59 + t 57 + t 56 + t 55 + t 53 + t 46 + t 42 + t 40 + t 39 + t 38 + t 34 + t 32 + t 29 + t 28 +
t 27+ t 24+ t 21+ t 20+ t 19+ t 18+ t 17+ t 16+ t 15+ t 12+ t 11+ t 10+ t 9+ t 8+ t 5+ t 4+ t 3+ t 2,

t 62 + t 61 + t 60 + t 56 + t 52 + t 49 + t 48 + t 47 + t 46 + t 44 + t 43 + t 40 + t 39 + t 37 + t 33 + t 32 +
t 28 + t 26 + t 25 + t 24 + t 23 + t 20 + t 16 + t 15 + t 11 + t 9 + t 7 + t 6 + t 5 + t 2 + t +1;

t 58 + t 57 + t 56 + t 54 + t 53 + t 52 + t 51 + t 47 + t 46 + t 43 + t 41 + t 37 + t 36 + t 34 + t 30 + t 29 +
t 28 + t 27 + t 26 + t 25 + t 24 + t 23 + t 19 + t 17 + t 15 + t 14 + t 11 + t 9 + t 2 + t ,

t 62 + t 59 + t 56 + t 54 + t 53 + t 50 + t 49 + t 48 + t 47 + t 46 + t 45 + t 44 + t 43 + t 39 + t 38 + t 35 +
t 34 + t 33 + t 31 + t 30 + t 29 + t 28 + t 20 + t 18 + t 14 + t 11 + t 8 + t 2 + t +1,

t 61 + t 60 + t 59 + t 58 + t 57 + t 55 + t 51 + t 48 + t 47 + t 43 + t 39 + t 38 + t 37 + t 34 + t 33 + t 28 +
t 24 + t 22 + t 21 + t 20 + t 19 + t 18 + t 17 + t 14 + t 13 + t 11 + t 9 + t 8 + t 7 + t 6 + t 4 + t 3 + t +1.

27

	Introduction
	Preliminaries
	The Marvellous Design Strategy
	Fully Homomorphic Encryption (FHE)
	Brakerski-Gentry-Vaikuntanathan (BGV) Scheme

	Non-procedural Computation

	Design Rationale
	Motivation of Chaghri
	Frobenius Automorphism as a Non-procedural Computation
	Non-linearity
	Affine Polynomials

	Description Of Chaghri
	Primitive Operations
	Number of Rounds
	Decryption
	Encryption
	Key Schedule

	Security Analysis
	Statistical Attacks
	Structural and Algebraic Attacks
	Invariant Subfield Attacks
	Higher-Order Differential Attacks
	Interpolation Attacks
	Gröbner basis attack
	Conclusion

	Benchmark
	Implementation Details of Chaghri
	Evaluation

	Inversion Algorithm in AES implementation
	Detailed GB analysis
	Algebraic degree of Chaghri
	The Polynomial B-1(x)
	Round Constants

