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Abstract. On CRYPTO2021, Nishanth Chandran, Bhavana Kanukurthi, Sai Lakshmi Bha-

vana Obattu, and Sruthi Sekar presented a novel secret sharing scheme, called CKO+21

scheme. This scheme makes use of Shamir secret sharing schemes and randomness extrac-

tors as its basic components, to generate a multi-layer encapsulation structure. The authors

claimed that CKO+21 scheme satisfied “leakage resilience”, that is, the privacy still held un-

der both “not enough revealing” and “appropriate leakage”. More important is that authors

presented a bulky proof for the security of CKO+21 scheme.

In this paper we only consider the simple case of (n, t) threshold secret sharing. We

find following 5 facts about CKO+21 scheme, which are the basic reasons we negate the

security proof of CKO+21 scheme. (1) In the expression of share of CKO+21 scheme, some

bottom Shamir share is simply included, rather than encapsulated. (2) The leakage of the

share is not a random leakage, but rather related to the inquiry of the attacker, that is, a

chosen leakage. (3) The permitted leakage length of each share is proportional to the share

length. (4) The bottom Shamir scheme has such special feature: when the length of the share

l∗ is kept unchanged, it can make the number of shares n, the threshold value t, and the

difference value n− t+ 1 any large, as long as t < n. (5) There is no additional assumption

for the bottom Shamir scheme, especially no clear negating its “leakage recoverability” and

“contaminated leakage irrecoverability”, defined in this paper.

In this paper we point that, CKO+21 scheme didn’t successfully prove its security. As

long as the bottom Shamir secret sharing scheme satisfies both “leakage recoverability” and

“contaminated leakage irrecoverability”, the security proof of CKO+21 scheme is wrong. It

needs to be pointed out that “leakage recoverability” and “contaminated leakage irrecover-

ability” cannot be naturally negated by “privacy” of Shamir scheme, and up to now there

is not a proof that Shamir scheme doesn’t satisfy “leakage recoverability” or “contaminated

leakage irrecoverability”.

The detailed contribution of this paper is as follow. CKO+21 scheme designed sev-

eral leakage models: LeakB0,LeakA1,LeakB1,LeakA2,LeakB2,· · · ,LeakAh,LeakBh,LeakC, where
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LeakB0 is the practical leakage model, LeakC is a leakage model independent of the secret

message. CKO+21 scheme claimed that an attacker cannot distinguish two adjacent leakage

models, so the scheme is “leakage resilient”. We point that, if the bottom Shamir scheme sat-

isfies both “leakage recoverability” and “contaminated leakage irrecoverability”, the attacker

can distinguish LeakB0 and LeakA1 with non-negligible probability.

Besides, if the bottom Shamir scheme doesn’t satisfy “leakage recoverability”. Shamir

scheme itself has some ability to resist leakage, and the bulky structure of CKO+21 scheme

is not necessary.

Keywords: Secret Sharing (SS) · Random Extractor · Leakage Resilient Secret Sharing

(LRSS).

1 Introduction

1.1 Motivation

Secret sharing [1, 2] is such a system that, a secret message is transformed into n

shares, with a recovering algorithm, such that (1) correctness: the secret message can

be correctly recovered if “revealed shares are enough”, and (2) privacy: nothing about

the secret message can be obtained if “revealed shares are not enough”. A simple

(n, t) threshold secret sharing is such: from total n shares, the secret message can be

correctly recovered if not less than t shares are revealed, and nothing about secret

message can be obtained if not more than t− 1 shares are revealed. Because of the

danger of leakage and tampering, traditional secret sharing schemes are reformed

into “leakage resilient secret sharing schemes�LRSS�” [3–16]. A leakage resilient

secret sharing scheme is such that nothing about secret message can be obtained if

it satisfies both “revealed shares are not enough” and “appropriate leakage of other

shares”.

On CRYPTO2021, Nishanth Chandran, Bhavana Kanukurthi, Sai Lakshmi Bha-

vana Obattu, and Sruthi Sekar presented a novel secret sharing scheme [16], called

CKO+21 scheme. This scheme makes use of Shamir secret sharing schemes and ran-

domness extractors as its basic components, to generate a multi-layer encapsulation

structure. The authors claimed that CKO+21 scheme satisfied “leakage resilience”,

that is, the privacy still held under both “not enough revealing” and “appropriate
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leakage”. For the simple case of (n, t) threshold secret sharing, they claimed that

nothing about secret message can be obtained if both “not more than t − 1 shares

are revealed” and “other n− t+1 shares are appropriately leaked”. More important

is that authors presented a bulky proof for the security of CKO+21 scheme. For

this they designed several leakage models: LeakB0, LeakA1, LeakB1, LeakA2, LeakB2,

· · · , LeakAh, LeakBh, LeakC, where LeakB0 is the practical leakage model, LeakC is a

leakage model independent of the secret message. CKO+21 scheme claimed that an

attacker cannot distinguish two adjacent leakage models, that is, an attacker can-

not distinguish LeakB0 and LeakA1, LeakA1 and LeakB1, LeakB1 and LeakA2, LeakA2

and LeakB2, · · · , LeakAh and LeakBh, LeakBh and LeakC. So the scheme is “leakage

resilient”.

In this paper we only consider the simple case of (n, t) threshold secret sharing.

We find following 5 facts about CKO+21 scheme, which are the basic reasons we

negate the security proof of CKO+21 scheme. Five facts are stated as follows.

(1) In the expression of share of CKO+21 scheme, some bottom Shamir share is

simply included, rather than encapsulated.

(2) The leakage of the share is not a random leakage, but rather related to the

inquiry of the attacker, that is, a chosen leakage. By combining last fact, an attacker

can choose to inquire “some bits of Shamir share which is simply included”.

(3) The permitted leakage length of each share is proportional to the share

length.

(4) The bottom Shamir scheme has such special feature: when the length of the

share l∗ is kept unchanged, it can make the number of shares n, the threshold value

t, and the difference value n− t + 1 any large, as long as t < n. By combining last

fact, the total leakage length the attacker obtains can be far larger than the share

length of the bottom Shamir scheme.

(5) There is no additional assumption for the bottom Shamir scheme, especially

no clear negating its “leakage recoverability” and “contaminated leakage irrecover-

ability”. “Leakage recoverability” is defined as follow. Suppose an attacker obtains

any t− 1 revealed shares {Share(1), Share(2), · · · , Share(t−1)} and the leakage part
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{share∗(1), share∗(2), · · · , share∗(n−t+1)} of other n−t+1 shares {Share∗(1), Share∗(2),

· · · , Share∗(n−t+1)}. Then there is an efficient algorithm to recover the secret message

with non-negligible probability. Under the condition that “leakage recoverability”

is true, “contaminated leakage irrecoverability” is defined as follow. Suppose the

attacker obtains any t− 1 revealed shares {Share(1), Share(2), · · · , Share(t−1)} and

the leakage part of other shares {Share∗(1), Share∗(2), · · · , Share∗(n−t+1)}, but from

{Share∗(1), Share∗(2), · · · , Share∗(n−t+1)} there are t − 1 shares which come from

another secret message (That is, the leakage is contaminated leakage. Of course we

should assume t − 1 ≤ n − t + 1). Then the probability with which the attacker

uses above mentioned efficient algorithm to output a “secret message” is negligible.

The reasonability of “leakage recoverability” can be obtained by considering last

fact, where we can make the leakage part {share∗(1), share∗(2), · · · , share∗(n−t+1)}

has total length far larger than the length of a single share. “Contaminated leakage

irrecoverability” can also be easily understood, for over large invalid data may pro-

duce incompatibility, leading the originally efficient algorithm into a forced stop or

an infinite loop.

1.2 Contribution

In this paper we point that CKO+21 scheme didn’t successfully prove its security,

that is, its proof about “leakage resilience” has a loophole. As long as the bottom

Shamir secret sharing scheme satisfies both “leakage recoverability” and “contami-

nated leakage irrecoverability”, the security proof of CKO+21 scheme is wrong. It

needs to be pointed out that “leakage recoverability” and “contaminated leakage

irrecoverability” cannot be naturally negated by “privacy” of Shamir scheme, and

up to now there is not a proof that Shamir scheme doesn’t satisfy “leakage recover-

ability”, or although it does satisfy “leakage recoverability” but not “contaminated

leakage irrecoverability”.

Detailed contribution of this paper is as follow. We point that, if the bottom

Shamir scheme satisfies both “leakage recoverability” and “contaminated leakage
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irrecoverability”, an attacker can distinguish LeakB0 and LeakA1 with non-negligible

probability.

This paper doesn’t claim that CKO+21 scheme is not secure, but only negates its

security proof. This paper doesn’t construct detailed algorithm to realize “leakage

recoverability” and “contaminated leakage irrecoverability” either, but only shows

that no one said such algorithm doesn’t exist, and that a necessary condition of

CKO+21 security proof is to prove such algorithm doesn’t exist. An interesting

question is whether such security proof can be revised. Besides, if bottom Shamir

scheme doesn’t satisfy “leakage recoverability”, Shamir scheme itself has some ability

to resist leakage, and bulky structure of CKO+21 scheme is not necessary.

1.3 Organization

Section 2 is preliminary, stating secret sharing, leakage, leakage recoverability and

contaminated leakage irrecoverability, Shamir scheme. In this section an emphasis

is the analysis of leakage recoverability of Shamir scheme. Section 3 states CKO+21

secret sharing scheme [16], including bottom components, important parameter,

shares generation, secret message recovering, and security proof. Because the result

of this paper only has relation with two leakage models LeakB0 and LeakA1, this

section only states such two leakage models in detail. Other leakage models for the

security proof of CKO+21 scheme can be found in subsection 4.3 of [16]. Section

4 presents the conclusion of this paper, that is, for some specific leakage inquir-

ing and “leakage recoverability/contaminated leakage irrecoverability of the bottom

Shamir scheme”, an attacker can distinguish LeakB0 and LeakA1 with non-negligible

probability. Section 5 presents some more notes about this paper.

2 Preliminary

2.1 Secret Sharing

Definition 1. (Partially ordered set class) Suppose the set {1, 2, · · · , n} has a sub-

set class A. If for any A ∈ A, any B ⊃ A,we always have B ∈ A, then A is called

a partially ordered set class of {1, 2, · · · , n}.
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(Following Definition 2 and Definition 3 simply state secret sharing, which are

enough for the reasoning of this paper. Formal definition needs more strict descrip-

tion of “indistinguishability”.)

Definition 2. ((n,A) secret sharing scheme) Suppose A is a partially ordered set

class of {1, 2, · · · , n}. A scheme is called an (n,A) secret sharing scheme, if any

secret message m can be transformed into n shares {Share1, Share2, · · · , Sharen},

such that (1) correctness: for any A ∈ A, there is an efficient algorithm to recover

m by {Sharei, i ∈ A}; (2) privacy: for any A /∈ A, nothing about m can be obtained

by {Sharei, i ∈ A}.

Definition 3. ((n, t) threshold secret sharing scheme) A scheme is called an (n, t)

threshold secret sharing scheme, if any secret message m can be transformed into

n shares {Share1, Share2, · · · , Sharen}, such that (1) correctness: by any not less

than t shares, there is an efficient algorithm to recover m; (2) privacy: by any not

more than t− 1 shares, nothing about m can be obtained.

Definition 4. (The rate of a secret sharing scheme) The rate of a secret sharing

scheme is defined as l/l∗, where l is the bit length of the secret message, l∗ is the bit

length of the longest share.

2.2 Leakage, leakage rate, leakage recoverability, contaminated leakage

irrecoverability

From now on we only consider (n, t) threshold secret sharing scheme. Suppose some

t− 1 shares belong to malice users, and they try to obtain leakage of other shares,

for the purpose of recovering the secret message.

Definition 5. (Leakage function and leakage rate) Leakage function of the share

value Share is defined as f (Share). Leakage rate is defined as τ/l∗, where τ is the

bit length of the leakage function value, l∗ is the bit length of the longest share.

(Following Definition 6 simply states leakage recoverability and contaminated

leakage irrecoverability, which is enough for the reasoning of this paper. Formal

definition needs more strict description of “difficulty”.)
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Definition 6. (Leakage recoverability and contaminated leakage irrecoverability)

Suppose the attacker owns any t−1 shares {Share(1), Share(2), · · · , Share(t−1)} and

leakage {share∗(1), share∗(2), · · · , share∗(n−t+1)} of other n− t+1 shares {Share∗(1),

Share∗(2), · · · , Share∗(n−t+1)}.

(1) If there is an efficient algorithm that recovers the secret message with non-

negligible probability, we say that the scheme satisfies leakage recoverability.

(2) Suppose the scheme satisfies leakage recoverability, and from {Share∗(1), Share∗(2),

· · · , Share∗(n−t+1)} there are t − 1 shares which come from another secret mes-

sage (That is, the leakage is contaminated leakage. Of course we should assume

t − 1 ≤ n − t + 1). If the attacker uses above mentioned efficient algorithm to out-

put a “secret message” with negligible probability, we say that the scheme satisfies

contaminated leakage irrecoverability.

2.3 The first secret sharing scheme——Shamir (n, t) threshold secret

sharing scheme [1]

The system chooses a prime number p (p should be exponentially large). The secret

message m is a number from the field GF(p). Randomly choose t − 1 numbers

{c1, c2, · · · , ct−1} from GF(p), to obtain a mask polynomial P (x) of m, P (x) =

m+c1x+c2x
2+ · · ·+ct−1x

t−1 (modp). Randomly choose n numbers {x1, x2, · · · , xn}

from GF(p), and compute {P (x1) , P (x2) , · · · , P (xn)}. Then n users respectively

own {(x1, P (x1)) , (x2, P (x2)), · · · , (xn, P (xn))}. It is clear that, any t users can

obtain {m, c1, c2, · · · , ct−1} by solving the linear equations group over GF(p); any

t− 1 users can only obtain a linear equation of {m, c1} over GF(p); any t− 2 users

can only obtain a linear equation of {m, c1, c2} over GF(p); any t− 3 users can only

obtain a linear equation of {m, c1, c2, c3} over GF(p); · · · ; any 1 user can only obtain

a linear equation of {m, c1, c2, · · · , ct−1} over GF(p). Because Shamir scheme didn’t

clearly illustrate which is the share, there are two different explainings on parameter

setting of Shamir scheme.
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The first explaining: the system public parameters are {p, n, t, x1, x2, · · · , xn},

and n users respectively own the shares {P (x1) , P (x2) , · · · , P (xn)}. In this case

secret message and share have equal length, l = l∗ = ⌈log p⌉ , and the rate is l/l∗ = 1.

The second explaining: the system public parameters are {p, n, t}, and n users

respectively own the shares {(x1, P (x1)) , (x2, P (x2)) , · · · , (xn, P (xn))}. In this

case secret message has the length l = ⌈log p⌉, the share has the length l∗ = 2⌈log p⌉,

and the rate is l/l∗ = 1/2.

It is easy to understand about Shamir scheme that, when the length of the share

l∗ is kept unchanged, it can make the number of shares n, the threshold value t, and

the difference value n− t+ 1 any large, as long as t < n.

2.4 Leakage recoverability of Shamir scheme

Consider the first explaining. When an attacker obtains t − 1 revealed shares, he

obtains a linear equation of {m, c1} over GF(p): a0m+ a1c1 + b (modp) = 0, where

{a0, a1, b} are known by the attacker. Now suppose the attacker obtains leakage of

other n− t+ 1 shares, the permitted leakage length of each share is τ(τ < l∗). The

attacker cannot obtain new (linear or nonlinear) equation of {m, c1} over GF(p),

because each share is not totally leaked. However, the attacker obtains (n− t+ 1) τ

new nonlinear equations of {m, c1} over GF(2). According to former state, we can

assume (n− t+ 1) τ is far larger than l∗. Our question is that, is there an efficient

algorithm to obtain {m, c1} with non-negligible probability, by a linear equation of

{m, c1} over GF(p) and (n− t+ 1) τ nonlinear equations of {m, c1} over GF(2)?

Such question seems no way to answer.

Then we consider the second explaining. When the attacker obtains t − 1 re-

vealed shares, he obtains a linear equation of {m, c1} over GF(p). Suppose the at-

tacker obtains leakage of other n − t + 1 shares, then he obtains (n− t+ 1) τ new

nonlinear equations of {m, c1, x1, x2, · · · , xn} over GF(2). Our another question is

that, is there an efficient algorithm to obtain m with non-negligible probability,

by a linear equation of {m, c1} over GF(p) and (n− t+ 1) τ nonlinear equations
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of {m, c1, x1, x2, · · · , xn} over GF(2)? Although such solving task seems much more

difficult than last one, there is no way to say it is a hard task.

More important is that, up to now there is no one to answer these two questions.

In other words, leakage recoverability of Shamir scheme has never been negated.

3 CKO+21 secret sharing scheme

3.1 A bottom component: randomness extractor

Randomness extractor Ext (w, s) is a mechanism to generate random bit string,

where w is a public parameter called source, s is a secret parameter called seed.

The functionality of randomness extractor is similar to stream cipher, for which

(w, s) has fixed length while the output Ext (w, s) has any length. CKO+21 scheme

uses h randomness extractors {Ext1 (., .) ,Ext2 (., .) , · · · ,Exth (., .)}, with decreas-

ing output length (without losing generality, we can simply understand in such

way: the length of Exth−1 (., .) is double of Exth (., .), the length of Exth−2 (., .) is

triple of Exth (., .),· · · , the length of Ext1 (., .) is h times of Exth (., .). h random-

ness extractors respectively use seeds {s1, s2, · · · , sh}, that is, CKO+21 scheme uses

{Ext1 (., s1) ,Ext2 (., s2) , · · · ,Exth
(
., sh

)
}. These randomness extractors satisfy some

special properties, called “adaptive randomness extractors”. Because the work of

this paper has no relation with randomness extractor, we don’t restate these special

properties.

3.2 Another bottom component: Shamir secret sharing scheme

CKO+21 scheme repeatedly uses Shamir secret sharing scheme h+1 times, respec-

tively denoted as{{MShare (.) ,MRec (.)}, {SdShare1 (.) , SdRec1 (.)}, {SdShare2 (.) ,

SdRec2 (.)}, · · · ,
{
SdShareh (.) , SdRech (.)

}
}, where MShare generates shares of se-

cret message m, MRec recovers secret message m, SdSharei generates shares of the

seed si for randomness extractor Exti, SdReci recovers the seed si for randomness

extractor Exti, i ∈ {1, 2, · · · , h}.
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3.3 About the important parameter h

The meaning of h is such: CKO+21 scheme is an h-layer encapsulation structure,

where h =
⌈
n−t+1
t−1

⌉
. Roughly speaking, h (t− 1) ≈ n− t+1. For a fixed t, the larger

the number of users n, the larger the number of encapsulation layers h.

3.4 Generating shares of CKO+21 secret sharing scheme[ [16],

subsection 4.2, Fig.3]

Suppose a secret message is m. Then the share generation procedure is composed

of the following 6 steps.

Step 1: Compute (m1, · · · ,mn)← MShare (m);

Step 2: For each i ∈ {1, 2, · · · , h}, choose random seed si, and compute (sdi1, · · · , sdin)

← SdSharei (si);

Step 3: For each i ∈ {1, 2, · · · , h}, j ∈ {1, 2, · · · , n}, choose random source wi
j;

Step 4: For each j ∈ {1, 2, · · · , n},

(4.1)Define yh+1
j = mj;

(4.2) For each i← h to 1, compute xi
j = yi+1

j ⊕Exti
(
wi

j, s
i
)
, yij =

(
xi
j, sd

i
j

)
;

Step 5: For each j ∈ {1, 2, · · · , n}, define Shj = (w1
j , · · · , wh

j , y
1
j ) = (w1

j , · · · , wh
j , x

1
j , sd

1
j);

Step 6: Output n shares {Sh1, · · · , Shn}.

Another description: we can describe the share generation procedure as an h-

layer encapsulation, as following Fig.1.

Encapsulation initialization: yh+1
j = mj ;

The first layer encapsulation: (wh
j , y

h+1
j ⊕ Exth

(
wh

j , s
h
)
, sdhj ) = (wh

j , y
h
j );

The second layer encapsulation: (wh−1
j , wh

j , y
h
j ⊕ Exth−1

(
wh−1

j , sh−1
)
, sdh−1

j ) = (wh−1
j , wh

j , y
h−1
j );

· · · ;

The k’th layer encapsulation: (wh−k+1
j , · · · , wh

j , y
h−k+2
j ⊕ Exth−k+1

(
wh−k+1

j , sh−k+1
)
, sdh−k+1

j ) =

(wh−k+1
j , · · · , wh

j , y
h−k+1
j );

· · · ;

The h’th layer encapsulation: (w1
j , · · · , wh

j , y
2
j ⊕ Ext1

(
w1

j , s
1
)
, sd1j ) = (w1

j , · · · , wh
j , y

1
j ).

Fig. 1. h-layer encapsulation
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We have two notes. Note 1: In step 4 it is an h-layer encapsulation, each layer

encapsulation makes share length longer (without losing generality, we can simply

understand in such way: the length of yhj is double of yh+1
j , the length of yh−1

j is

triple of yh+1
j , · · · , the length of y1j is h + 1 times of yh+1

j ). Note 2: in the final

generated share expression, the bottom Shamir share sd1j is simply included, rather

than encapsulated. In other words, when the attacker chooses leakage target, he can

choose to inquire some bits of sd1j .

3.5 Recovering secret message of CKO+21 secret sharing scheme[ [16],

subsection 4.2, Fig.3]

Suppose t shares are obtained. Without losing generality, suppose {Sh1, · · · , Sht}

are obtained, where Shj = (w1
j , · · · , wh

j , x
1
j , sd

1
j).

Step 1: For each i← 1 to h, compute

(1.1) si ← SdReci(sdi1, · · · , sdit).

(1.2) For each j ∈ {1, 2, · · · , t}, yi+1
j ← xi

j ⊕ Exti
(
wi

j, s
i
)
. If i ≤ h − 1,

denote yi+1
j =

(
xi+1
j , sdi+1

j

)
; if i = h, denote yi+1

j = mj.

Step 2: Compute m← MRec(m1, · · · ,mt).

Step 3: Output the secret message m.

3.6 Leakage model LeakB0, regulated by CKO+21 scheme[ [16],

subsection 4.1, Fig.2]

First, an attacker makes leakage inquiring to n − t + 1 shares, that is, for each

share Share he chooses a leakage function f , inquires the value of f(Share), then

he records {serial number of Share, f , f(Share)}. Second, the attacker asks the

remaining t−1 shares to be revealed, then he records each {serial number of Share,

Share}. Now the total information the attacker owns is {serial number of Share,

Share} of t− 1 shares and {serial number of Share, f , f(Share)} of other n− t+1

shares. For example, the total information the attacker owns is {{1, Sh1}, · · · , {t−

1, Sht−1}} and {{t, ft, ft (Sht)}, · · · , {n, fn, fn (Shn)}}.

We have two notes. Note 1: leakage function f : {0, 1}l
∗
→ {0, 1}τ , where l∗ is

the length of the share, τ is the permitted length of leakage for each share. CKO+21



12 Y. Hu et al.

scheme regulates leakage rate τ/l∗ to be a constant, that is, leakage rate τ/l∗ has

no relation with {n, t}. Note 2: leakage function f is not randomly sampled, but

“adaptively chosen” by the attacker.

3.7 Security Proof of CKO+21 secret sharing scheme[ [16], subsection

4.3]

Authors of CKO+21 scheme presented a bulky proof for the security of CKO+21

scheme. For this they designed several leakage models: LeakB0, LeakA1, LeakB1,

LeakA2, LeakB2, · · · , LeakAh, LeakBh, LeakC, where LeakB0 is the practical leakage

model (that is, the leakage model stated in our subsection 3.6), LeakC is a leakage

model independent of the secret message. CKO+21 scheme claimed that the attacker

cannot distinguish two adjacent leakage models, that is:

An attacker cannot distinguish LeakB0 and LeakA1 (LeakB0 and LeakA1 are very

alike);

An attacker cannot distinguish LeakA1 and LeakB1 (LeakA1 and LeakB1 are very

alike);

An attacker cannot distinguish LeakB1 and LeakA2 (LeakB1 and LeakA2 are very

alike);

An attacker cannot distinguish LeakA2 and LeakB2 (LeakA2 and LeakB2 are very

alike);

· · · ;

An attacker cannot distinguish LeakAh and LeakBh (LeakAh and LeakBh are

very alike);

An attacker cannot distinguish LeakBh and LeakC (LeakBh and LeakC are very

alike).

The final conclusion is that an attacker cannot distinguish LeakB0 and LeakC

(LeakB0 and LeakC are very alike). So the scheme is “leakage resilient”.

In [16], subsection 4.3, Fig.4 and Fig.5, detailed description of { LeakB0, LeakA1,

LeakB1, LeakA2, LeakB2, · · · , LeakAh, LeakBh, LeakC } are presented. Because this
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paper only shows that LeakB0 and LeakA1 are distinguishable, and LeakB0 has been

stated in our subsection 3.6, in the follow we only state LeakA1.

For CKO+21 scheme, suppose n shares {Sh1, · · · , Shn} are generated by secret

message m, sources {wi
j, i ∈ {1, 2, · · · , h}, j ∈ {1, 2, · · · , n}}, and seeds {s1, s2, · · · , sh}.

Suppose other n shares {Sh∗
1, · · · , Sh∗

n} are generated by secret message m, sources{
wi

j, i ∈ {1, 2, · · · , h}, j ∈ {1, 2, · · · , n}
}

, and seeds {s∗1, s2, · · · , sh}, where s∗1 is an

all-0 vector. That is, the unique difference of {Sh∗
1, · · · , Sh∗

n} and {Sh1, · · · , Shn}

is the difference of s∗1 and s1. For t − 1 serial numbers, the attacker obtains {se-

rial number of Share, Share} of corresponding t − 1 shares of {Sh1, · · · , Shn};

for other n − 2t + 2 serial numbers, the attacker obtains {serial number of Share,

f , f(Share)} of corresponding n − 2t + 2 shares of {Sh1, · · · , Shn}; for the re-

maining t − 1 serial numbers, the attacker obtains {serial number of Share∗, f ∗,

f ∗(Share∗)} of corresponding t − 1 shares of {Sh∗
1, · · · , Sh∗

n}. However, the at-

tacker doesn’t know which serial numbers are from {Sh∗
1, · · · , Sh∗

n}. For exam-

ple, the attacker obtains {{1, Sh1},· · · ,{t − 1, Sht−1},{t, ft, ft (Sht)},· · · ,{n − t +

1, fn−t+1, fn−t+1 (Shn−t+1)},{n−t+2, f ∗
n−t+2, f

∗
n−t+2

(
Sh∗

n−t+2

)
},· · · ,{n, f ∗

n, f
∗
n (Sh

∗
n)}},

but he doesn’t know that final t − 1 terms are from {Sh∗
1, · · · , Sh∗

n} rather than

{Sh1, · · · , Shn}. Such leakage model is called LeakA1.

We have a note here: CKO+21 scheme didn’t regulate “the attack doesn’t know

which serial numbers are from the contaminated leakage”. In fact, if we assume an

attacker of LeakA1 does know the serial numbers of the contaminated leakage, it is

easier to distinguish LeakB0 and LeakA1.

4 Distinguishability of LeakB0 and LeakA1

4.1 Chosen leakage: leaking the right side τ bits of each share

Because the leakage is a chosen leakage rather than a random leakage, the attacker

can inquire the right side τ bits of each share. On the other hand, the right side of

each share is just the right side of bottom share of the seed s1 (or the seed s∗1), so

that the leakage is just the right side τ bits of bottom share of the seed s1 (or the

seed s∗1).
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4.2 Distinguishing LeakB0 and LeakA1

Now suppose the bottom Shamir secret sharing scheme {SdShare1 (.) , SdRec1 (.)}

satisfies both “leakage recoverability” and “contaminated leakage irrecoverability”,

and the leakage of each share is just the leakage of the bottom share of the seed

s1 (or the leakage of the bottom share of the seed s∗1). For LeakB0, the attacker

uses the efficient algorithm to obtain an output with non-negligible probability. For

LeakA1, the attacker uses same efficient algorithm to obtain an output with negligible

probability.

5 More notes about this paper

Note 1: The conclusion of this paper has no relation with randomness extractor,

that is, excellent randomness extractor cannot resist our conclusion.

Note 2: This paper doesn’t show the insecurity of CKO+21 scheme, but only

negates its security proof. In fact, “leakage recoverability” and “contaminated leak-

age irrecoverability” are not enough to negate the security of CKO+21 scheme, but

only open the outside layer encapsulation.

Note 3: This paper doesn’t construct detailed algorithm to realize “leakage

recoverability” and “contaminated leakage irrecoverability” either, but only shows

that no one said such algorithm doesn’t exist, and that a necessary condition of

CKO+21 security proof is to prove such algorithm doesn’t exist.

Note 4: An interesting question is whether such security proof can be revised.

Note 5: If the bottom Shamir scheme doesn’t satisfy “leakage recoverability”,

Shamir scheme itself has some ability to resist leakage, and bulky structure of

CKO+21 scheme is not necessary.
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