
A CONCRETE approach to
torus fully homomorphic encryption

Maria Ferrara and Antonio Tortora∗

Dipartimento di Matematica e Fisica, Università della Campania “Luigi Vanvitelli”

viale Lincoln, 5 - 81100 - Caserta, Italy

E-mail: maria.ferrara1@unicampania.it, antonio.tortora@unicampania.it

Abstract

The homomorphic encryption allows to operate on encrypted data,
making any action less vulnerable to hacking. The implementation
of a fully homomorphic cryptosystem has long been impracticable. A
breakthrough was achieved only in 2009 thanks to Gentry and his
innovative idea of bootstrapping. TFHE is a torus-based fully homo-
morphic cryptosystem using the bootstrapping technique. This paper
aims to present TFHE from an algebraic point of view, starting from
the CONCRETE library which implements TFHE.

Keywords: TFHE, fully homomorphic encryption, bootstrapping,
learning with errors

1 Introduction

A fundamental tool in the field of data security and privacy is of course
provided by cryptography. However, in traditional cryptographic schemes,
data must be decrypted before being manipulated. A completely different ap-
proach is given by homomorphic encryption, which allows to operate directly
on encrypted data, with advantages in terms of privacy and simplification
of processes. The term “homomorphic” refers to a cryptosystem where the
encryption function is a homomorphism between algebraic structures.

∗The authors are members of National Group for Algebraic and Geometric Structures,
and their Applications (GNSAGA–INdAM), and members of the non-profit association
Advances in Group Theory and Applications.

1

Recall that a cryptosystem is a five-tuple (P , C,K, E ,D) of finite sets,
where P , C and K are respectively the sets of plaintexts, ciphertexts and
keys, E = {ek : P → C | k ∈ K}, D = {dk : C → P | k ∈ K}, and such that
for any encryption function ek1 ∈ E there is a decryption function dk2 ∈ D
such that dk2(ek1(x)) = x for all x ∈ P . The cryptosystem is probabilistic if,
for some finite set S, each ek is a function from P × S to C and each dk is a
function from C to P . This allows to encrypt the same plaintext in different
ways.

1.1 Homomorphic encryption

In literature, a cryptosystem (P , C,K, E ,D) is called partially homomorphic
if, for some binary operations · on P and ∗ on C, the algebraic structures

(i) (P , ·) and (C, ∗) are semigroups, and

(ii) the encryption function ek1 is a homomorphism, that is

ek1(x) ∗ ek1(y) = ek1(x · y)

for all x, y ∈ P . This implies that dk2(ek1(x)∗ek1(y)) = x·y. Here, we say that
the cryptosystem is somewhat homomorphic if P and C are each equipped
with two operations, say +, · for P and ⊕, ∗ for C, and

(i) (P ,+, ·) and (C,⊕, ∗) are rings,

(ii) there exist X, Y ⊆ P , with X, Y 6= ∅, such that

dk2(ek1(x1)⊕ ek1(x2)) = x1 + x2, (1)

dk2(ek1(y1) ∗ ek1(y2)) = y1 · y2, (2)

for all x1, x2 ∈ X and y1, y2 ∈ Y .

Notice that in this latter case we do not require that ek1 is a (ring) homomor-
phism. More generally, we say that the cryptosystem is fully homomorphic
if (1) and (2) hold for all xi, yi ∈ P . As a consequence, for P = C and any
function

f : P × · · · × P︸ ︷︷ ︸
m

→ P ,

we have
dk2(f(ek1(x1), , ek1(xm))) = f(x1, , xm).

for all xi ∈ P .

2

The origin of fully homomorphic encryption (FHE) is the pioneering paper
[10], where Rivest, Adleman and Dertouzos introduced the concept of privacy
homomorphism and showed some examples of homomorphic cryptosystems,
one of which was RSA. Among other things, they posed the following ques-
tion: For what algebraic systems does a useful privacy homomorphism exist ?
This question remained unsoved until 2009 when Gentry put forward a first
fully homomorphic cryptosystem [5]. His innovative idea consists in taking a
probabilistic somewhat homomorphic cryptosystem and make it fully homo-
morphic. To this aim, it is needed to “clean” data before proceeding with fur-
ther operations. This technique is called bootstrapping and can be described
as follows.

Let ek1 : P × S → C and dk2 : C → P be the encryption function and
the decryption function, respectively, of a probabilistic cryptosystem, and let
X, Y be non-empty sets of S such that

dk2(ek1(x1, r1)⊕ ek1(x2, r2)) = x1 + x2

and
dk2(ek1(y1, s1) ∗ ek1(y2, s2)) = y1 · y2,

for all xi, yi ∈ P and all ri ∈ X, si ∈ Y . Suppose further that, for a given
plaintext x, the element (x, r) ∈ P × S is noisy, in the sense that r 6∈ X.
Then, for a new encryption function gk : C → C, depending on the bootstrap-
ping key k = ek3(k1) for some k3, the bootstrapping enables to reduce the
noise: indeed, it yields an element r′ ∈ X such that gk(ek1(x, r)) = ek1(x, r

′).
Similarly, if y ∈ P and s 6∈ Y , we get gk(ek1(y, s)) = ek1(y, s

′) for some
s′ ∈ Y . This procedure guarantees that

dk2(ek1(xi, ri)⊕ ek1(x, r′)) = xi + x

and
dk2(ek1(yi, si) ∗ ek1(y, s′)) = yi · y.

1.2 Fully homomorphic encryption over the torus

Following Gentry’s scheme, many other FHE cryptosystems were introduced
but all these had a common issue: the bootstrapping took too long to run
(minutes) and the bootstrapping key was too large (gigabytes). In 2015,
Ducas and Micciancio [4] presented a new method to reduce the running time
of the bootstrapping procedure. Their work inspired the birth of the TFHE
cryptosystem [1], which runs the bootstrapping in terms of milliseconds and
produces a bootstrapping key whose size is measured in megabytes rather
than gigabytes.

3

The letter T in TFHE stands for torus, indeed the real torus T = R/Z.
The algebraic structure (T,+) is an abelian group and thus it can be seen
as a Z-module in a canonical way. TFHE is implemented in the CONCRETE

library of ZAMA [2]. Of course, working with finite precision of 32 or 64 bits,
the elements of T are actually those of its submodule

Tq =

{
i

q
| i ∈ Zq

}
=

{
0,

1

q
, . . . ,

q − 1

q

}
where q = 2r and r is either 32 or 64; here Zq is the group of integers modulo
q. Notice also that in CONCRETE, for technical requirements, the elements of
Tq are identified with the elements of Zq.

We point out that, over Zq, TFHE is fully homomorphic only with re-
spect to the addition. Nevertheless, the bootstrapping is programmable, in
the sense that it allows to evaluate at the same time a given function on
the input ciphertext while reducing the noise. This implies that the product

x · y = (x+y)2

4
− (x−y)2

4
of two real numbers can be computed using two boot-

strapping operations with the real function z 7→ z2

4
. Hence, TFHE is a fully

homomorphic cryptosystem over the field of real numbers.
This paper aims to present TFHE starting directly from CONCRETE. It is

mostly a survey of [2] and [3], although the approach is more algebraic.

2 A variant of TFHE

2.1 Learning with errors

TFHE is based on the learning with errors problem and its version on rings.
The learning with errors (LWE) problem, introduced by Regev in [9], asks
to recover a secret s = (s1, . . . , sn) ∈ Znq given a system of m linear equations
with small error terms e1, . . . , em, such as the following

a11s1 + a12s2 + . . .+ a1nsn + e1 = b1 (mod q)

a21s1 + a22s2 + . . .+ a2nsn + e2 = b2 (mod q)
...

...
...

am1s1 + am2s2 + . . .+ amnsn + em = bm (mod q),

in which q and all aij, bi are known. Of course, for a fixed value of e, it
is possible to derive s in polynomial time using Gaussian elimination. In
general each ei is randomly selected from a discretized gaussian distribution
with mean zero and low standard deviation.

4

More generally, for a ring R, the ring learning with errors (RLWE) prob-
lem is to find s ∈ R, given many equations bi = ais + ei where the ai’s are
uniformly random in R and the ei’s are “small” in R [7]. The LWE and RWE
problems are considered hard and secure even against quantum algorithms.

2.2 The encryption and decryption process

Following TFHE’s implementation [3], CONCRETE encrypts plaintexts into
LWE ciphertexts, and deals with RLWE ciphertexts for the bootstrapping.

Let B = {0, 1} and q = 2r. The parameter r is called the bit precision
(usually r = 32 or 64). For 0 < j < r − 1, let

P = {µ ∈ Zq |µ = µj · 2j + . . .+ µr−1 · 2r−1, µi ∈ B}

be the plaintext space and let C = Zq be the ciphertext space. Consider also
the set

E = {e ∈ Zq | e = ε0 · 20 + . . .+ εj−1 · 2j−1, εi ∈ B}.
According to [2], for a secret key s = (s1, . . . , sn) ∈ Bn and a random mask
a = (a1, . . . , an) ∈ Znq , the encryption function is given by

LWEs : (µ, a, e) ∈ P × Znq × E 7→ (a, b) ∈ Znq × C

where

b =
n∑
i=1

siai + µ+ e (mod q).

The element e is called noise.
Conversely, the decryption function is π ◦ ϕ, indeed the composition of

functions

π : µ0 · 20 + . . .+ µr−1 · 2r−1 ∈ Zq 7→ µj · 2j + . . .+ µr−12r−1 ∈ P (3)

and

ϕ : (a, b) ∈ Znq × C 7→ b−
n∑
i=1

siai ∈ Zq.

In fact, if b =
n∑
i=1

siai + µ+ e (mod q), then

π(ϕ(b)) = π(µ+ e) = µ.

Actually π(µ + e) = 2jbµ+e
2j
e, provided that e < 2j−1 or εj−1 = 0; here bαe

stands for the nearest integer to α. In fact, if

µ+ e = ((µj · 2j + . . .+ µr−1 · 2r−1) + ε0 · 20 + . . .+ εj−2 · 2j−2),

5

then

2j
⌊ µ

2j
+

e

2j

⌉
= 2j

(µ
2j

+
⌊ e

2j

⌉)
= µ. (4)

For the ring setting, let Zq,N [x] = Zq[x]/I where N > 1 is a power of 2
and I is the ideal generated by the polynomial xN + 1. Throughout, we will
use the notation modulo I for the elements of Zq,N [x]. Consider then the sets

ZN [x] = {s(x) ∈ Zq,N [x] | s(x) = s0 + s1x+ . . .+ sN−1x
N−1, si ∈ B}

and

E ′ = {e(x) ∈ Zq,N [x] | e(x) = e0 + e1x+ . . .+ eN−1x
N−1, ei ∈ E}.

Now the plaintext space is

P ′ = {µ(x) ∈ Zq,N [x] |µ(x) = µ0 + µ1x+ . . .+ µN−1x
N−1, µi ∈ P}

and the ciphertext space is C ′ = Zq,N [x]. As above, for a secret key s(x) =
(s1(x), . . . , sk(x)) ∈ ZN [x]k and a public random mask a(x) = (a1(x), . . . ,
ak(x)) ∈ Zq,N [x]k, the encryption function is given by

RLWEs(x) : P ′ × Zq,N [x]k × E ′ → Zq,N [x]k × C ′

(µ(x), a(x), e(x)) 7→ (a(x), b(x))

where

b(x) =
k∑
i=1

si(x)ai(x) + µ(x) + e(x)

and e(x) is the noise.
The decryption function is π′ ◦ ϕ′ where π′ maps

(α0 + α1x+ . . .+ αN−1x
N−1) ∈ Zq,N [x]

to
(π(α0) + π(α1)x+ . . .+ π(αN−1)xN−1) ∈ P ′,

and

ϕ′ : (a(x), b(x)) ∈ Zq,N [x]k × C ′ 7→ b(x)−
k∑
i=1

si(x)ai(x) ∈ C ′.

If b(x) =
k∑
i=1

si(x)ai(x) + µ(x) + e(x), then

π′(ϕ′(b(x))) = π′(µ(x) + e(x)).

On the other hand, µ(x) + e(x) = (µ0 + e0) + (µ1 + e1)x + . . . + (µN−1 +
eN−1)xN−1 with µi ∈ P and ei ∈ E . Since π(µi + ei) = µi for any i, we have
π′(µ(x) + e(x)) = µ(x).

6

2.3 The encoding and decoding process

CONCRETE allows to work with real numbers, encoding any real number of
a closed interval I = [a, b] with an element of P . Of course, a decoding
function is applied after decryption. There are two different ways for the
encoding/decoding process.

Let h be an integer such that 0 < j ≤ h ≤ r − 1, and set

M = {µ∗ ∈ Zq |µ∗ = µ0 · 20 + . . .+ µh · 2h, µi ∈ B}.

Define the function ψ : I →M by the rule

ψ(y) =
⌊
2j(2h−j+1 − 1)

y − a
b− a

⌉
.

The integer h − j + 1 represents the number of bits reserved to store y,
while j is the number of bits reserved to the noise. Notice that 2h−j+1 − 1 =
1 · 2h−j + 1 · 2h−j−1 + . . .+ 1 · 20, hence

2j(2h−j+1 − 1) = 1 · 2j + . . .+ 1 · 2h−1 + 1 · 2h.

Obviously, 2j(2h−j+1 − 1)y−a
b−a ≤ 2j(2h−j+1 − 1). Thus⌊

2j(2h−j+1 − 1)
y − a
b− a

⌉
= µ0 · 20 + . . .+ µh · 2h ∈M.

The first encoding function is then E1 = π ◦ ψ, where π is defined as in (3)
and therefore π(µ0 · 20 + . . .+ µh · 2h) = µj · 2j + . . .+ µh · 2h ∈ P .

The decoding function is

D1 : µ∗ ∈M 7→ a+
µ∗(b− a)

2j(2h−j+1 − 1)
∈ I.

Actually a + µ∗(b−a)
2j(2h−j+1−1)

∈ I. In fact, if a + µ∗(b−a)
2j(2h−j+1−1)

> b then µ∗ >

2j(2h−j+1 − 1), which is impossible. Moreover, D1(E1(y)) ≈ y for any y ∈ I.
The second encoding function is

E2 : y ∈ I 7→ 2j
⌊
(2h−j+1 − 1)

y − a
b− a

⌉
∈ P .

Since (2h−j+1 − 1)y−a
b−a ≤ (2h−j+1 − 1), we have⌊

(2h−j+1 − 1)
y − a
b− a

⌉
= µ0 · 20 + . . .+ µh−j · 2h−j ∈M

and so 2j
⌊
(2h−j+1 − 1)y−a

b−a

⌉
∈ P .

7

In this case the decoding function is

D2 : µ ∈ P 7→ a+
µ(b− a)

2j(2h−j+1 − 1)
∈ I.

Of course a + µ(b−a)
2j(2h−j+1−1)

< b, otherwise µ > 2j(2h−j+1 − 1), and as before

D2(E2(m)) ≈ y for any y ∈ I.

3 Operations on ciphertexts

Two LWE ciphertexts can easily be added, but their sum could be a noisy
LWE ciphertext. In order to bootstrap such a ciphertext and hence reduce
its noise, in [1], following the GSW construction [6], the authors introduced
an “external product” of an RLWE ciphertext by an RGSW ciphertext. The
result is an approximation of an RLWE ciphertext. This operation depends
on some properties of the gadget matrix [8].

3.1 Addition of LWE ciphertexts

In P × Znq × E we define

(µ1, a
(1), e1)+(µ2, a

(2), e2) =

{
(µ1 + µ2, a

(1) + a(2), e1 + e2) if e1 + e2 ∈ E
0 if e1 + e2 ∈ Zq\E .

Let

LWEs(µ1, a
(1), e1) =

(
a(1),

n∑
i=1

sia
(1)
i + µ1 + e1

)
= (a(1), b1)

and

LWEs(µ2, a
(2), e2) =

(
a2,

n∑
i=1

sia
(2)
i + µ2 + e2

)
= (a(2), b2).

Then, provided that e1 + e2 ∈ E , it follows that

LWEs((µ1, a
(1), e1) + (µ2, a

(2), e2)) = LWEs(µ1 + µ2, a
(1) + a(2), e1 + e2) =(

a(1) + a(2),
n∑
i=1

si(a
(1)
i + a

(2)
i) + (µ1 + µ2) + (e1 + e2)

)
= (a(1)+a(2), b1+b2).

This shows that, without bootstrapping, TFHE is somewhat homomorphic
with respect to the addition.

8

Notice also that, for any (µ, a, e) ∈ P × Znq × E and any h ∈ Z such that
h ≥ 0 and he ∈ E , we have

h · LWEs(µ, a, e) = LWEs(µ, a, e) + . . .+ LWEs(µ, a, e)︸ ︷︷ ︸
h

=

(
ha,

n∑
i=1

sihai + hµ+ he

)
= LWEs(ha, hµ, he).

Obviously, if h < 0, then h · LWEs(µ, a, e) = (−h) · (−LWEs(µ, a, e)) =
(−h) · LWEs(−µ,−a,−e).

3.2 The gadget matrix

Given the positive integers k, l, β, with lβ ≤ r, and the element g = (2r−β,
2r−2β, . . . , 2r−lβ) ∈ Zq,N [x]l, let consider the following block diagonal matrix,
also known as the gadget matrix,

GT = diag(gT , . . . , gT︸ ︷︷ ︸
k+1

) =


gT 0 . . . 0
0 gT . . . 0
...

...
...

...
0 0 . . . gT

 ∈ Zq,N [x](k+1)l×(k+1).

Let d ∈ Zq. We can see d as an integer in (− q
2
, q

2
]: in fact, if d > q

2
, then

d = q
2

+α for some 0 < α < q
2
; but d is congruent to d− q = α− q

2
modulo q,

where − q
2
< α − q

2
< 0. Write next the representation of b2lβ d

q
e to the base

2β, taking into account that −2lβ−1 ≤ 2lβ d
q
≤ 2lβ−1:⌊

2lβ
d

q

⌉
= δ0 + δ12β + . . .+ δl−12(l−1)β.

Naturally each δi ∈ Z is such that −2β < δi < 2β. Then we have the following
approximation of d:

d ≈ q

2lβ

⌊
2lβ

d

q

⌉
= 2r−lβ

⌊
2lβ

d

q

⌉
= δ02r−lβ + δ12r−(l−1)β + . . .+ δl−12r−β

or, equivalently, d ≈
l∑

i=1

di2
r−iβ = g−1(d)gT with g−1(d) = (d1, . . . , dl) =

(δl−1, . . . , δ0).
By extension, for a polynomial a(x) = a0+a1x+. . .+aN−1x

N−1 ∈ Zq,N [x],
we set g−1(aj) = (dj1, . . . , djl) and

g−1(a(x)) =
N−1∑
j=0

g−1(aj)x
j =

(
N−1∑
j=0

dj1x
j, . . . ,

N−1∑
j=0

djlx
j

)
.

9

Since aj ≈
l∑

i=1

dji2
r−iβ, it follows that

a(x) ≈
l∑

i=1

d0i2
r−iβ +

l∑
i=1

d1i2
r−iβx+ . . .+

l∑
i=1

d(N−1)i2
r−iβxN−1

=

(
N−1∑
j=0

dj1x
j

)
2r−β +

(
N−1∑
j=0

dj2x
j

)
2r−2β + . . .+

(
N−1∑
j=0

djlx
j

)
2r−lβ

=g−1(a(x))gT .

More generally, define the function G−1 : Zq,N [x]k+1 → Zq,N [x](k+1)l such
that

G−1(a1(x), . . . , ak+1(x)) = (g−1(a1(x)), . . . , g−1(ak+1(x))),

for any (a1(x), . . . , ak+1(x)) ∈ Zq,N [x]k+1. Thus

G−1(a1(x), . . . , ak+1(x))GT = (g−1(a1(x))gT , . . . , g−1(ak+1(x))gT)

≈ (a1(x), . . . , ak+1(x)).
(5)

3.3 RGSW ciphertexts

An RGSW ciphertext is a matrix encrypting a polynomial in ZN [x]. Unlike
TFHE, we deal here with the particular case where the polynomial is 0 or 1.

With k and l as in 3.2, put k̄ = (k+1)l. For a secret key s(x) = (s1(x), . . . ,
sk(x)) ∈ ZN [x]k, let

RLWEs(x)(0, a11(x), . . . , a1k(x), e1(x)) = (0, a11(x), . . . , a1k(x), b1(x))

...

RLWEs(x)(0, ak̄1(x), . . . , ak̄k(x), ek̄(x)) = (0, ak̄1(x), . . . , ak̄k(x), bk̄(x))

where each bi =
k∑
j=1

sj(x)aij(x) + ei(x) for some ei(x) ∈ E ′. Taking

Z =

a11(x) . . . a1k(x) b1(x)
...

...
...

...
ak̄1(x) . . . ak̄k(x) bk̄(x)

 ∈ Zq,N [x]k̄×(k+1),

we define a new encryption function, as follows

RGSWs(x) : m ∈ B 7→ Z +mGT ∈ Z(k+1)l×(k+1)
q,N .

10

For a matrix C = (c1(x), . . . , ck̄(x)) ∈ Zq,N [x]1×k̄, we remark that

CZ =

(
k̄∑
i=1

ci(x)ai1(x), . . . ,
k̄∑
i=1

ci(x)aik(x),
k̄∑
i=1

ci(x)bi(x)

)

where

k̄∑
i=1

ci(x)bi(x) =
k̄∑
i=1

ci(x)

(
k∑
j=1

sj(x)aij(x) + ei(x)

)

=
k∑
j=1

sj(x)

(
k̄∑
i=1

ci(x)aij(x)

)
+

k̄∑
i=1

ci(x)ei(x).

This implies that, up to the noise, CZ can be seen as an RLWEs(x) ciphertext.
In fact,

CZ = RLWEs(x)

(
0,

k̄∑
i=1

ci(x)ai1(x), . . . ,
k̄∑
i=1

ci(x)aik(x),
k̄∑
i=1

ci(x)ei(x)

)
(6)

provided that
k̄∑
i=1

ci(x)ei(x) ∈ E ′.

3.4 External product of ciphertexts

Given m ∈ B, µ(x) ∈ Zq,N [x] and a secret key s(x) ∈ ZN [x]k, put Cm =
RGSWs(x)(m) and let cµ(x) be the RLWE ciphertext of µ(x) encrypted using

s(x). Denote by Cm�cµ(x) the matrix multiplication of G−1(cµ(x)) ∈ Z1×(k+1)l
q,N

by Cm ∈ Z(k+1)l×(k+1)
q,N . We claim that, if the noise keeps “small”, then Cm �

cµ(x) is an approximation of RLWEs(x)(mµ(x), a′(x), e′(x)), for some a′(x) ∈
Zq,N [x]k and e′(x) ∈ E ′.

First, notice that

G−1(cµ(x))Cm = G−1(cµ(x))(Z +mGT) = G−1(cµ(x))Z +m(G−1(cµ(x))G
T).

According to (6), we may assume that G−1(cµ(x))Z = RLWEs(x)(0, a(x), e(x))
for some a(x), e(x). On the other hand, we saw in (5) that G−1(cµ(x))G

T ≈
cµ(x). Therefore

Cm � cµ(x) ≈ RLWEs(x)(0, a(x), e(x)) +mcµ(x).

11

In particular, if RLWEs(x)(0, a(x), e(x)) = (a(x),
k∑
i=1

si(x)ai(x) + ei(x)),

cµ(x) =

(
ā(x),

k∑
i=1

si(x)āi(x) + µ(x) + ēi(x)

)

and e(x) +mēi(x) ∈ E ′, we conclude that

Cm � cµ(x) ≈ RLWEs(x)(mµ(x), a(x) +mā(x), e(x) +mēi(x)), (7)

as claimed.

4 Bootstrapping algorithms

In TFHE the bootstrapping procedure involves two main algorithms, the
blind rotation and the sample extraction. The blind rotation requires first a
switch modulus algorithm to scale by 2N

q
each component of the LWE cipher-

text. Whereas the sample extraction is usually followed by a key switching
algorithm which converts a ciphertext under a key into a ciphertext under
another key.

4.1 Blind rotation

Let b =
n∑
i=1

siai+µ
∗, with µ∗ = µ+e, be a noisy LWE ciphertext corresponding

to the mask (a1, . . . , an), and let consider the so-called test polynomial

t(x) = t0 + t1x+ . . .+ tN−1x
N−1 ∈ Zq,N [x],

where each tj = π(q
2N
j) and π is defined as in (3). Suppose further that b

has at least one bit of padding left, that is b < 2r−1. Then µ∗ < 2r−1 and so,
arguing as in (4), we obtain µ̄∗ = b2N

q
µ∗e ≤ N − 1. Hence, tµ̄∗ = µ.

The blind rotation consists in finding an RLWE ciphertext of the poly-
nomial x−µ̄

∗
t(x), whose constant term is actually tµ̄∗ . In what follows we will

rely on

µ̃∗ = b̄−
n∑
i=1

siāi,

where b̄ = b2N
q
be and āi = b2N

q
aie. This approximation may produce a small

additional error, which is called drift.
Let s = (s1, . . . , sn) and s(x) = (s1(x), . . . , sk(x)) be the secret keys used

to encrypt the input LWE ciphertexts and RLWE ciphertexts, respectively.

12

Then the bootstrapping key is defined to be a list of n RGSW ciphertexts,
each one encrypting si, namely by

(Cs1 , . . . , Csn) = (RGSWs(x)(s1), . . . ,RGSWs(x)(sn)).

Define recursively

ci = Csi � (xāici−1 − ci−1) + ci−1,

where
c0 = (0, . . . , 0︸ ︷︷ ︸

k

, x−b̄t(x)) = RLWEs(x)(x
−b̄t(x), 0, . . . , 0︸ ︷︷ ︸

k+1

).

Then, for any j ∈ {1, . . . , n}, we get

cj ≈ RLWEs(x)(x
−b̄+

j∑
i=1

siāi
t(x), a(x), e(x))

for some a(x) and e(x). In fact, applying (7) with m = sj and s0 = 0, we
have

cj ≈ Csj � RLWEs(x)((x
aj − 1)x

−b̄+
j−1∑
i=1

siāi
t(x), a(x), e(x))+

RLWEs(x)(x
−b̄+

j−1∑
i=1

siāi
t(x), a(x), e(x))

≈ RLWEs(x)(sj(x
aj − 1)x

−b̄+
j−1∑
i=1

siāi
t(x), a′(x), e′(x))+

RLWEs(x)(x
−b̄+

j−1∑
i=1

siāi
t(x), a(x), e(x))

=


RLWEs(x)(x

−b̄+
j∑

i=1
siāi

t(x), a′(x), e′(x)) if sj = 0

RLWEs(x)(x
−b̄+

j∑
i=1

siāi
t(x), a′′(x), e′′(x)) if sj = 1.

In particular,

cn ≈ RLWEs(x)(u(x), a(x), e(x)) (8)

where u(x) = x−µ̃
∗
t(x) = u0 + u1x + . . . + uN−1x

N−1 and u0 = tµ̃∗ is an
approximation of µ. Therefore cn is the desired RLWE ciphertext.

13

4.2 Sample extraction

The next step is to extract u0, as an LWE ciphertext of µ with less noise
than b. With the same notation of 4.1, let

RLWEs(x)(u(x), a(x), e(x)) = (a1(x), . . . , ak(x), b(x))

and, for any 1 ≤ i ≤ k, put

si(x) = si,0 + si,1x+ . . .+ si,N−1x
N−1,

ai(x) = ai,0 + ai,1x+ . . .+ ai,N−1x
N−1,

e(x) = e0 + e1x+ . . .+ eN−1x
N−1.

Then

b(x) =
k∑
i=1

si(x)ai(x) + u(x) + e(x)

= b0 + b1x+ . . .+ bN−1x
N−1

where, since xN = −1 in Zq,N [x], we have

b0 =

(
k∑
i=1

si,0ai,0 − (si,1ai,N−1 + . . .+ si,N−1ai,1)

)
+ u0 + e0.

Taking
s′ = (s1,0, s1,1, . . . , s1,N−1, . . . , sk,0, sk,1, . . . , sk,N−1),

it follows that

LWEs′(a1,0,−a1,N−1, . . . ,−a1,1, . . . ak,0,−ak,N−1, . . . ,−ak,1, u0, e0) =

(a1,0,−a1,N−1, . . . ,−a1,1, . . . ak,0,−ak,N−1, . . . ,−ak,1, b0).

Hence, with the above mask, b0 can be seen as an LWE ciphertext of
u0 under the key s′. In [1], in order to convert b0 into an LWE cipher-
text of u0 under the key s = (s1, . . . , sn), a key switching algorithm is
applied. This technique is similar to the bootstrapping (see [3, Appendix
A]) but it slightly makes the noise increase. Here we point out that, since
the parameters (n,N) are usually chosen such that n ≤ N , we may assume
s1(x) = . . . = sk(x) = s1 + s2x+ . . .+ snx

n−1. So, for example, if k = 2 then
s′ = (s1, . . . , sn, 0, . . . , 0︸ ︷︷ ︸

N−n

, s1, . . . , sn, 0, . . . , 0︸ ︷︷ ︸
N−n

) and

b0 = s1a1,0 − s1a1,N−1 − . . .− s1a1,N−(n−1) +

s2a2,0 − s2a2,N−1 − . . .− s2a2,N−(n−1) + u0 + e0,

14

that is

LWEs(a1,0,−a1,N−1, . . . ,−a1,N−(n−1), a2,0,−a2,N−1, . . . ,−a2,N−(n−1), u0, e0) =

(a1,0,−a1,N−1, . . . ,−a1,N−(n−1), a2,0,−a2,N−1, . . . ,−a2,N−(n−1), b0).

4.3 Programmable bootstrapping

Given a function fq : Zq → Zq, suppose now that the initial test polynomial
is

t(x) = t0 + t1x+ . . .+ tN−1x
N−1 ∈ Zq,N [x],

where tj = fq(π(q
2N
j)). Thus, as in 4.1, we obtain that the constant term

of the polynomial u(x) = x−µ̃
∗
t(x) in (8) is tµ̃∗ , namely fq(µ) up to the

drift. Hence, in this case, the bootstrapping transforms a ciphertext of µ
into a ciphertext of fq(µ) with a lesser noise. Furthermore, by using the
encoding/decoding functions defined in 2.3, it is possible to evaluate any
real-valued function of a real variable, say f : I → J . In fact, it is enough
to take fq = E ′i ◦ f ◦Di where i = 1 or 2, E ′i : J → Zq and Di : Zq → I. So,
if D′i : J → Zq and µ = Ei(x) with Ei : I → Zq, then fq(µ) ≈ E ′i(f(x)) from
which it follows that D′i(fq(µ)) ≈ f(x).

Acknowledgments. This research is supported by a grant of the Univer-
sity of Campania “Luigi Vanvitelli”, in the framework of the projects GoAL
(V:ALERE 2019) and HELM (V:ALERE 2020).

References

[1] I. Chillotti, N. Gama, M. Georgieva and M. Izabachene, TFHE: fast
fully homomorphic encryption over the torus, J. Cryptology 33 (2020),
no. 1, 34–91.

[2] I. Chillotti, M. Joye, D. Ligier, J.-B. Orfila and S. Tap, CONCRETE: Con-
crete Operates oN Ciphertexts Rapidly by Extending TfhE, Demo paper
at WAHC 2020 (8th Workshop on Encrypted Computing & Applied
Homomorphic Cryptography), pp. 6, https://whitepaper.zama.ai/

concrete/WAHC2020Demo.pdf.

[3] I. Chillotti, M. Joye and P. Paillier, Programmable bootstrapping enables
efficient homomorphic inference of deep neural networks, Cyber Secu-
rity Cryptography and Machine Learning (CSCML 2021), 1-19, Lecture
Notes in Comput. Sci., 12716, Springer, 2021.

15

[4] L. Ducas and D. Micciancio, FHEW: Bootstrapping homomorphic en-
cryption in less than a second, Advances in Cryptology – EUROCRYPT
2015, Part I, 617–640, Lecture Notes in Comput. Sci., 9056, Springer,
Heidelberg, 2015.

[5] C. Gentry, Computing arbitrary functions on encrypted data, Commu-
nications of the ACM 53 (2010), no. 3, 97–105.

[6] C. Gentry, A. Sahai and B. Waters, Homomorphic encryption
from learning with errors: conceptually-simpler, asymptotically-faster,
attribute-based, Advances in Cryptology – CRYPTO 2013, 75–92, Lec-
ture Notes in Comput. Sci., 8042. Springer, Berlin, Heidelberg.

[7] V. Lyubashevsky, C. Peikert and O. Regev. 2013. On ideal lattices and
learning with errors over rings, J. ACM 60 (2013), no. 6, Art. 43, 35 pp.

[8] D. Micciancio and C. Peikert, Trapdoors for lattices: simpler, tighter,
faster, smaller, Advances in Cryptology – EUROCRYPT 2012, 700–718,
Lecture Notes in Comput. Sci., 7237, Springer, Heidelberg, 2012.

[9] O. Regev, On lattices, learning with errors, random linear codes, and
cryptography, J. ACM 56 (2009), no. 6, Art. 34, 40 pp.

[10] R. L. Rivest, L. Adleman and M. L. Dertouzos, On data banks and pri-
vacy homomorphism, Foundations of secure computation (Workshop,
Georgia Inst. Tech., Atlanta, Ga., 1977), 169–179, Academic, New York,
1978.

16

