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Verifiable and Forward private Conjunctive keyword
Search from DIA Tree

Laltu Sardar · Sushmita Ruj

Abstract In a dynamic searchable encryption (DSE) scheme, a cloud server
can search on encrypted data that the client stores and updates from time
to time. Due to information leakage during the search and update phase,
DSE schemes are prone to file injection attacks. If during document addi-
tion, a DSE scheme does not leak any information about the previous search
results, the scheme is said to be forward private. A DSE scheme that supports
conjunctive keyword search should be forward private. There has been a fair
deal of work on designing forward private DSE schemes in the presence of an
honest-but-curious cloud server. However, a malicious cloud server might not
run the protocol correctly and still want to be undetected. In a verifiable DSE,
the cloud server not only returns the result of a search query but also provides
proof that the result is computed correctly.

We design a forward private DSE scheme that supports conjunctive key-
word search. At the heart of the construction is our proposed data structure
called dynamic interval accumulation tree (DIA tree). It is an accumulator
based authentication tree that efficiently returns both membership and non-
membership proofs. Using the DIA tree, we can convert any single keyword
forward private DSE scheme to a verifiable forward private DSE scheme that
can support conjunctive query as well. Our proposed scheme has the same
storage as the base DSE scheme and low computational overhead at the client-
side. We have shown the efficiency of our design by comparing it with existing
conjunctive DSE schemes. The comparison also shows that our scheme is suit-
able for practical use.
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1 Introduction

Sensitive data is often encrypted before storing it in outsourced servers (clouds).
This makes searching difficult. In this paper we consider the problem of key-
word search. A searchable encryption (SE) scheme allows a server to search
on encrypted data and return the results of the search query to the client. In
an SE scheme, a data owner outsources encrypted data, together with an en-
crypted search index, to a cloud. A search query includes an encrypted search
trapdoor that allows the cloud to perform search and return the results, with-
out leaking information of the database. A dynamic SE (DSE) scheme not
only allows search but also supports updates on the database. DSE schemes
are designed depending upon the type of data and query. When the data is
a set of documents, each containing a set of keywords, some popular queries
over them include single keyword search, conjunctive or boolean search on a
set of keywords, etc. In a conjunctive keyword search scheme, given a set of
keywords, the cloud returns the set of documents that contains all of them.

In a DSE scheme, updating the database may reveal the relation between
the updated set of keywords and the previous search result. In such a scenario,
a file injection attack ([1]) can be performed by a curious server. A forward
private DSE scheme does not leak any information about the previous search
results when new documents are added [2].

Moreover, if a curious server becomes malicious, it may not return the
actual search result for monetary or other benefits. For example, a verifiable
DSE guarantees correctness and completeness of the search result even when
the server is malicious. A server not only sends the search result but also a
proof that the result is correct. Any conjunctive DSE scheme should be forward
private and verifiable.

There are conjunctive SE schemes by Miao et al. [3], Wang et al. [4], Li
et al. [5], Azraoui et al. [6] etc. Though the schemes are verifiable, they work
only for the static databases. Dynamic conjunctive DSE schemes have been
studied in [7], [8], [9]. However, they are either forward private or are verifiable
but not both. In the presence of a malicious adversary, we need both the
properties to be present in a conjunctive DSE.

In this paper, we study a conjunctive SE scheme with both forward privacy
and verifiability. We present a generic scheme that converts any forward private
DSE scheme to a verifiable conjunctive DSE scheme preserving its forward
privacy. For verifiability, we propose a new cryptographic accumulator called
dynamic interval accumulation tree (DIA tree).

Cryptographic accumulators are used for proving membership as well as
non-membership of elements in a set. When the size of the set is large, proof
generation and (or) proof size becomes expensive. Though the existing accu-
mulator scheme like [10] can build an accumulation tree for a static database
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that can provide the proof of membership as well as non-membership, it is
inefficient for a dynamic set. Papamanthou et al. [11] presented a scheme
that dealt with the dynamic set that generates membership proofs efficiently.
They extended their scheme with an additional authenticated tree that allows
non-membership checks. However, this additional structure does not support
updates.

In this chapter, we have proposed a Dynamic Interval Accumula-
tion tree (DIA tree) that efficiently works for both membership and non-
membership witnesses and returns proofs even on large dynamic dataset effi-
ciently. We have used the DIA Tree in our conjunctive DSE scheme for verifia-
bility. Please note that DIA trees are of important interest and can be applied
to the other applications not just constructing DSE schemes.

Our contributions In this work, we make the following contributions.

– We propose an accumulator using a new data structure called Dynamic
Interval Accumulation tree (DIA tree) that supports efficient proofs of
membership and non-membership. To the best of our knowledge, there is
no previous scheme in the literature that provides a single authentication
data structure supporting both membership and non-membership proofs
efficiently together with update support. We provide formal security proof
for the accumulator.

– We propose a generic verifiable conjunctive search DSE scheme Blasu that
converts any forward private DSE scheme conjunctive without losing its
forward privacy property and without using any extra client storage for
verifiability. To the best of our knowledge, our proposed scheme is the first
forward private as well as verifiable conjunctive SE scheme in a dynamic
setting. Moreover, we have given security proof of the scheme. We have
shown that the proposed scheme Blasu is secure against adaptive chosen
query attack.

– We compare our proposed scheme Blasu with the existing schemes and
show that the scheme is practical.

1.1 Organization

We summarize our work in the paper as follows. We describe the literature
related to our proposed scheme in Section 2. We briefly introduce the required
cryptographic tools in Section 3. We propose an authenticated data structure
DIA tree in Section 4, together with its security proof. Using the tree, in
Section 5, we propose a DSE scheme Blasu that provides verifiability without
extra client storage. In Section 6, we compare our scheme Blasu with a few of
the existing similar schemes. Finally, in Section 7, we give the conclusion of
our work.
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2 Related Works

Though the term Searchable Encryption was first introduced in the year 2000
for static database, it got popularity when the first SE for dynamic database
[12] was published in 2012. Thereafter, while researchers were focused on de-
veloping the literature of searchable encryption scheme and several works pub-
lished for static as well as dynamic searchable encryption, file-injection attack
by Zhang et al. [1] provided a new direction of research. [1] forced the re-
searchers to think about dynamic SE schemes to be forward private.

Though ORAM based DSE schemes ([13] etc.) can achieve forward privacy
easily, they are impractical since communication, computation, as well as stor-
age costs, are too high in them. The first non-ORAM based forward private
DSE scheme, presented by Raphael Bost [2], was for a single keyword search
only. If we consider backward privacy, there are several works like [14], [15]
etc., that have this property. However, we do not consider backward private
DSE schemes as there are no formal attacks against schemes that do not have
the property.

Again, in most of the works, the cloud service providers are considered
semi-honest i.e., honest to follow the protocol but curious about the data and
queries. That is why they become vulnerable when the cloud server behaves
maliciously. Being verifiable, an SE or a DSE scheme becomes protected from
such cloud servers.

While discussing privately verifiability and static database, using trie-like
tree data structure, verifiable SE was first introduced by Chai and Gong [16].
Each node in the tree corresponds to some keywords and stored identifiers
containing it. A verifiable SE scheme for static data, based on the secure in-
distinguishability obfuscation, was presented by Cheng et al. [17]. The scheme
supports Boolean queries with public verifiability. A no-dictionary generic ver-
ifiable SE scheme was proposed by Ogata and Kurosawa [18]. The scheme was
first to allow searching any binary sting as keyword still maintaining private
verifiability using Cuckoo hash table. In the case of multiple owners, Miao
et al. [19] presented a verifiable SE for a single keyword search. For static
data, public verifiability was achieved by Soleimanian and Khazaei [20]. Their
scheme was only for single keyword searches.

Moving to complex queries, works by Miao et al. [3], Miao et al. [21], Wang
et al. [4], Li et al. [5] etc. supports private verifiability, whereas work by Azraoui
et al. [6], Xu et al. [22] etc. were publicly verifiable. [22] is a blockchain-based
scheme that supports Boolean range queries keeping the encrypted data index
and queries on a blockchain having a good amount of monetary cost for each
search whereas [6] only supports conjunctive search.

The above-mentioned schemes were for static databases only. There are
few works on the literature of verifiable dynamic SE schemes. For example,
the schemes by Yoneyama and Kimura [23], Sardar and Ruj [24] etc. are for
single keyword search and provides verifiability as well. Also, the algebraic
PRF based SE scheme by Yoneyama and Kimura [23] was privately verifiable.
A publicly verifiable SE scheme is recently also proposed by Miao et al. [25].
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On the other hand, if we consider complex queries, for dynamic data, a
dynamic fuzzy keyword search scheme was proposed by Zhu et al. [8] which
is privately verifiable. Again, publicly verifiable dynamic SE scheme by Jiang
et al. [9] allows the query to be Boolean where Sun et al. [7] allows only
conjunctive searches.

Discussing forward privacy on dynamic database, we can see schemes being
forward private and verifiable [23] but not conjunctive, verifiable, and conjunc-
tive but not forward private [9], conjunctive as well as forward private but not
verifiable [26].

In this paper, we have proposed the first forward private conjunctive DSE
scheme that is verifiable too. The scheme uses a forward private single keyword
DSE scheme as the base. Moreover, our scheme does not use any extra client-
storage for verifiability.

3 Preliminaries

3.1 System model

In our model of conjunctive verifiable DSE, there are three entities– client,
cloud and auditor. The system model is shown in Figure 1. Here, we briefly
describe the system model as follows.

Fig. 1: The system model
1. Client sends encrypted data, 2. Client sends query token to the Cloud, 3. After

searching, Cloud sends Result, 4. Cloud sends proof to the Auditor, 5. Client sends proof
of received result, 6. Auditor sends verification result.

Client: The client owns the database and requires outsourcing its data. It is
assumed to be a trusted party. Before outsourcing the data, it builds a secure
search index. Then, it encrypts and sends the data together with the index.
It is the user of the database as well. For every query made, it generates an
encrypted query token and sends it to the cloud. Finally it receives the result
from the cloud.

Cloud: The entity cloud is assumed to be malicious. It provides both storage
and computation services. It stores the encrypted data. When a search query
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is given, it computes over the data and returns result to the client. It also
sends proof of its correct execution to the auditor.

Auditor: The entity auditor is an authority that tells, verifying the proof
received from the client and the cloud, whether the returned result is correct
or not. Any party, including the client, can be an auditor.

3.2 Design Goals

While designing such a scheme, assuming the above system model and aiming
to provide a solution toward a verifiable conjunctive search DSE scheme, with
keeping it forward private, we achieve the following objectives.

Confidentiality: From the uploaded data and issued query token, the cloud
should not get any information about the actual database or query. The auditor
should not get the same from the received proofs.

Efficiency: We consider the client to be computationally weak, but the cloud
has a large amount of storage and large computational power. Thus, in the
designed scheme, computational and storage costs should be low for the client,
while performing verifiability.

Scalability: It is desirable to scale the solution to support a large database.

Forward privacy: Since a DSE scheme, without forward privacy, is vulner-
able to even honest-but-curious adversary, it is desirable the scheme to be
forward private while achieving public verifiability for a conjunctive search
result.

3.3 Cryptographic Tools

3.4 Multiset Hash

Definition 1 (Multiset Hash [27]) Let by M ⊏ B we mean a multiset M
of elements of a countable set B. Let multiset union of two multisets M =
{m1,m2, . . . ,m|M |} and M ′ = {m′

1,m
′
2, . . . ,m

′
|M ′|, } be defined as M ⊔M ′ =

{m1,m2, . . . ,m|M |,m
′
1,m

′
2, . . . ,m

′
|M ′|}.

A triplet (H,+H,≡H) of PPT algorithms is said to be a multiset hash on
B with security parameter λ when it satisfies the following properties:

1. H(M) ∈ {0, 1}λ, ∀M ⊏ B (compression)
2. H(M) ≡H H(M), ∀M ⊏ B (comparability)
3. H(M ⊔M ′) ≡H H(M) +H H(M ′), ∀M,M ′ ⊏ B (incrementality)

Clarke et al. [27] presented an incremental multiset hash function which is
set-collision resistant.
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3.5 Bilinear Map

Definition 2 (Bilinear Map [11]) Let G1, G2 and GT be three (multiplicative)
cyclic groups of prime order p. Let G1 =< g1 > and G2 =< g2 >. A map
ê : G1 × G2 → GT is said to be an admissible non-degenerate bilinear map if
is satisfies the following properties.

1. ∃ Bilinearity i.e., ê(ua, vb) = ê(u, v)ab, ∀u ∈ G1, ∀v ∈ G2 & ∀a, b ∈ Zp

2. ∃ Non-degeneracy i.e., ê(g1, g2) ̸= 1, and
3. ∃ Efficiency i.e., ê can be computed efficiently.

In our case, we consider G1 = G2 = G, and G =< g >. For our scheme we
require the group G to be a GDH group (see Definition 4). Let us consider the
following bilinear map generating algorithms .

(p,G,GT , g, ê) ← BMGen(1λ): It is a PPT algorithm (bilinear map generator)
that takes a security parameter λ as input and outputs a uniquely random
tuples (p,G,GT , g, ê) of bilinear pairing parameters.

(p,G,GT , g, ê)← BMGGen(1λ): It is a PPT algorithm (bilinear map generator)
that takes a security parameter λ as input and outputs a uniquely random
tuples (p,G,GT , g, ê) of bilinear pairing parameters where G is a GDH group.

3.6 q-Strong Diffie-Hellman Assumption

Definition 3 (q-Strong Diffie-Hellman Assumption [11]) Let λ be a security
parameter and (p,G,GT , ê, g) be a uniformly randomly generated tuple of

bilinear pairing parameters. Given an upper bound q, an element s
$←− Z∗

p

and the set {g, gs1 , gs2 , . . . , gsq}, it is said to satisfy q-strong Diffie-Hellman
(q-SDH) assumption if, any probabilistic polynomial time (PPT) adversary A
can find a pair (c, g

1
x+c ) only with negligible probability, namely

Advq-SDH
A = Pr

[
A(g, gs, gs2 , · · · , gsq )→ (s, g

1
s+c )

]
≤ neg(λ),

where c ∈ Zp.

3.7 Gap Diffie-Hellman (GDH) group

Definition 4 (GDH group [28]) Let G be a multiplicative cyclic group with
prime order p. For a, b, c,∈ Zp, given g, ga, gb, gc ∈ G, deciding whether c = ab
is called Decisional Diffie-Hellman (DDH) problem in G. Again, For a, b,∈ Zp,
given g, ga, gb ∈ G, computing gab ∈ G is called Computational Diffie-Hellman
(CDH) problem in G. The group G is said to be a Gap Diffie-Hellman (GDH)
group if, the CDH problem is hard, but the DDH problem is easy in G.
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Definition 5 ((τ, t, ϵ)-GDH group [28]) The group G is said to be (τ, t, ϵ)-
GDH group if, the DDH problem on G can be solved in at most time τ and no
algorithm which runs in time at most t can break CDH on G with probability
≥ ϵ.

3.7.1 Signature Based on GDH Groups

Boneh et al. [28] first presented a signature scheme based on bilinear map over
GDH Group. The scheme can be described as follows.

Let ê : G×G→ GT be a bilinear map where |G| = |GT | = p, a prime and
G =< g >. A BLS signature scheme S=(KeyGen, Sign, Verify) is given as a
tuple of three algorithms as follows.

– (sk, pk)← KeyGen: It selects α
$←− Zp. It keeps the private key sk = α and

publishes the public key pk = gα.
– σ ← Sign(sk,m): Given sk = α, and some message m, it outputs the

signature σ = (H(m))α where, H : {0, 1}∗ → G \ {1} is a full-domain
one-way hash function.

– {0/1} ← Verify(pk,m, σ): For a message m, signature σ with public key
pk, it checks whether (g, pk,H, σ) is a Diffie-Hellman tuple by verifying
equality between ê(σ, g) and ê(H(m), pk).

3.7.2 Dynamic universal accumulator

A dynamic universal accumulator (DUA) allows one to outsource a set of
elements, with the ability to query the existence of an element in a set. It
also allows the elements to be added/deleted to/from the set, together with
functionality to verify the result. Let us consider a DUA proposed by Au
et al. [10]. Let AC = (Init, Gen, Update, MemWitGen, MemWitVer) be such a
DUA described as follows.

Initialization. (s, tup)← AC.Init(λ):
Given a security parameter λ, let us consider a uniformly generated tuple
tup = (p,G,GT , g, ê) of bilinear pairing parameters generated with BMGGen

(see Appendix 3.5). Then ê : G × G → GT be a bilinear pairing such that
|G| = |GT | = p for some λ-bit prime p and G =< g >. Let q be the maximum
number of elements to be accumulated. Then a uniformly random element s
from Z∗

p is selected. s is treated as secret key.

Accumulator Generation. Acc(Y ) ← AC.Gen(Y, s): Given a k-size set Y =
{y1, . . . , yk}, where yi ∈ Z∗

p , let v(s) =
∏

y∈Y (y+s) mod p be a polynomial of

degree k ≤ q. Then the accumulator is Acc(Y ) = gv(s), which can be computed
efficiently.

Membership witness generation wt(ȳ)← AC.MemWitGen(PG, Y, ȳ):
For a set of elements Y = {y1, . . . , yk} ∈ Z∗

p , a membership witness wt(ȳ) for
the element ȳ ∈ Y is given by

wt(ȳ) =
[
g
∏k

i=1(yi+s)
] 1

ȳ+s

= [Acc(Y )]
1

ȳ+s .
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Membership witness verification bv ← AC.MemWitVer(Acc(Y ), ȳ, wt(ȳ)):
Membership witness is verified by checking if ê(Acc(Y ), g) = ê(wt(ȳ), gȳ+s).
Finally, a bit bv is returned where bv = 1 if equality holds and bv = 0 otherwise.

Correctness: of membership verification follows from

ê(wt(ȳ), gȳ+s) = ê(g
∏

y∈Y ,y ̸=ȳ(y+s), gȳ+s) = ê(g
∏

y∈Y (y+s), g)

= ê(Acc(Y ), g)

Updating accumulator Acc(Y ′)← AC.Update(Acc(Y ), s, ȳ, op): Let Acc(Y )
be the accumulator value for a set of elements Y = {y1, . . . , yk} ∈ Gp. If ȳ is
added, i.e., op = add, the new accumulator value will be Acc(Y ′) = Acc(Y )ȳ+s,
where Y ′ = Y ∪{ȳ}. Similarly, if an element ȳ is deleted, i.e., op = delete, the

accumulator changes to Acc(Y ′) = Acc(Y )
1

ȳ+s , where Y ′ = Y \ {ȳ}. For both
case, the secret value s is needed to compute updated value.

3.8 Definitions and Terminologies

3.8.1 Notations

Let identifiers of the documents belong to the space of document identifiers
D. Let DB ⊆ D. Let each document contains some keywords belonging to a
keyword spaceW. For each keyword w ∈ W, letDB(w) = {idw1 , idw2 , . . . , idwnw

}
be the set of document identifiers that contains w, where nw = |DB(w)| and
idwi ∈ DB is the ith identifier. nw is also called the frequency of the keyword
w ∈W . Thus,

⋃
w∈W DB(w) ⊆ DB.

Let EDB = {cid : id ∈ D} where by cid we mean the encrypted document
that has id as identifier. Let us consider the existence of a one-way function
which maps every document identifier to a random number. However, when
we say cloud returns documents to the client, we assume the cloud performs
the function on every identifier before returning them.

Let, R : {0, 1}∗ → {0, 1}∗ be a PRNG and F : {0, 1}λ × {0, 1}∗ → {0, 1}λ
be a PRP. A stateful algorithm stores its previous states and use them to
compute the current state. In Table 1, we have shown some notations used in
this paper.

3.8.2 Dynamic Searchable Encryption (DSE) scheme

A dynamic searchable encryption (DSE) scheme Σ consists of algorithms
(KeyGen, Build, SrchTkn, Search, UptdTkn, Update), between a client and
a server, briefly described as follows.

KΣ ← KeyGen(1λ): is a PPT algorithm run by the client that takes a security
parameter 1λ and outputs the secret key KΣ .

(ξ, EDB) ← Build(DB,KΣ): is a client-side PPT algorithm that takes the
dataset and the secret key as input and outputs a pair (ξ, EDB) where EDB
the encrypted database, and ξ an encrypted index.
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Table 1: Notations

Symbol Meaning Symbol Meaning
S Set of elements from {0, 1}∗ DT DIA tree
Bi ith bucket d root of DT
Si sorted set of elements in Bi s secret key of client for DT
li lower bound of Bi ai ith accumulators
ri upper bound of Bi W the keyword set
So
i Si ∪ {li, ri} wi ith keyword in W
G a bilinear group x, x′, x′′ elements of G
ê a bilinear map wt(x) membership witness of x
e an elements from {0, 1}∗ wtn(x) non-membership witness of x
g a generator of G idwj jth file that contains w

H a one-way hash ϕ(v) membership proof of v
{0, 1}∗ → G \ {1} SL(v) set of siblings of v

τΣw ← SrchTkn(w,KΣ): is also a client-side PPT algorithm that generates an
encrypted search trapdoor τΣw for a keyword w with the help of KΣ .

Rw ← Search(ξ, τΣw ): with this PPT algorithm, the server perform search over
ξ for τΣw and returns the search result Rw to the client.

τΣu ← UptdTkn(KΣ , w, id): Given a keyword-document pair (w, id) the client
generates an token, encrypted with KΣ , for update with the help of this PPT
algorithm.

ξ′ ← Update(ξ, τΣu , op) is a cloud-side algorithm that updates ξ according to
the op for the update token τΣu , and keeps the updated index ξ′.

Confidentiality of a DSE

Definition 6 (CKA2-security of a DSE scheme) [12] Let Σ =(KeyGen, Build,
SrchTkn, Search, UptdTkn, Update) be a DSE scheme. Let A be a stateful ad-

versary, C be a challenger, S be a stateful simulator and LΣ = (Lbld
Σ ,Lsrch

Σ ,Lupdt
Σ )

be a stateful leakage algorithm. Let us consider the following two games.

RealΣA(λ): At first C generates a key KΣ ← KeyGen(1λ). In the same time,
A chooses a set of documents DB and sends it to C. Then, C computes
(ξ, EDB)← Build(DB,KΣ) and sends (ξ, EDB) to A. During search phase,
A makes a polynomial number of adaptive queries. In each query A sends
either a search query for a keyword w or an update query for (id, op) for
a document with identifier id operation op. Depending on the query, C re-
turns either the search token tΣw ← SrchTkn(w,KΣ) or the update token
tΣu ← UptdTkn(KΣ , w, id) to A. Finally A returns a bit b that is output by
the experiment.

IdealΣA,S(λ): At first, A generates DB and gives it to S together with and

Lbld
Σ (DB). On receiving Lbld

Σ (DB), S generates (ξ, EDB) and sends it to A.
A makes a polynomial number of adaptive queries q ∈ {w, (id, op)}. For each
query, S is given either Lsrch

Σ (w) or Lupdt
Σ (id, op). Depending on the query q,

S returns to A either search token tΣw or update token tΣu . Finally A returns
a bit b that is output by the experiment.
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We say Σ is LΣ-secure against adaptive dynamic chosen-keyword attacks
if for any PPT (probabilistic polynomial-time) adversary A, there exists a
simulator S such that

|Pr[RealΣA(λ) = 1]− Pr[IdealΣA,S(λ) = 1]| ≤ µ(λ) (1)

Correctness: The correctness of a DSE scheme ensures that the every search
protocol must return the correct result for every query, except with negligible
probability.

A DSE scheme Σ that does not leak any information about the previous search
results, is said to be forward private.

The schemes [29], [2], etc., are good examples of a forward private DSE
schemes. In our proposed scheme, we use any forward private DSE scheme Σ
as a black box. We assume the black box scheme Σ is correct and LΣ-secure
against adaptive dynamic chosen-keyword attacks.

3.8.3 Verifiable Dynamic Conjunctive Searchable Encryption (VDCSE)

A dynamic conjunctive SE (DCSE) scheme supports conjunctive keyword
search in dynamic database. In the presence of a malicious adversary, a verifi-
able dynamic conjunctive SE scheme provides the ability to verify whether the
returned result is consistent with the updated database. We define a VDCSE
scheme formally as follows.

Definition 7 ( Verifiable Dynamic Conjunctive Searchable Encryption) A ver-
ifiable dynamic conjunctive searchable encryption (VDCSE) scheme Ψ is a
tuple (VCKeyGen, VCBuild, VCSrchTkn, VCSearchCD,VCSearchCT, VCUpdtTkn,
VCUpdate) of algorithms defined as follows.

– KΨ ← VCKeyGen(λ): Given a security parameter λ, this PPT algorithm,
run by the client, outputs a key KΨ .

– (st, EDB, γ, I ) ← VCBuild(DB,KΨ ): This is PPT algorithm run by the
client. Given KΨ and a set of documents DB, it outputs the encrypted
set of documents EDB together with an encrypted search index γ and an
auxiliary data structure I for verifiability. It also outputs state st of the
database.

– τΨs ← VCSrchTkn(KΨ , ŵ, st): Given KΨ , st and a set of keywords ŵ, the
client runs this PPT algorithm and outputs a search token τΨs .

– (pfc, R̂ŵ, Xŵ) ← VCSearchCD(γ, I, tΨs ): Given γ, I and τΨs , in this cloud-
run PPT algorithm, the cloud returns result set R̂ŵ of document ids, a
proof pfc.

– (pfu)← VCSearchCT(R̂ŵ, t
Ψ
s ): Given R̂ŵ, in this client-run PPT algorithm,

the client returns a proof pfu.
– νŵ ← VCVerify(d, pfu, pfc, R̂ŵ) This is a PPT algorithm that takes the

proofs pfu, pfc together with the result R̂ŵ and outputs the verification
bit νŵ
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– (τΨu , st′)← VCUpdtTkn(K, id, st): Taking a key KΨ , a document identifier
id and the present state st, the cloud runs this PPT algorithm and outputs
an update token τΨu and a new state st′.

– (EDB′, γ′, I ′)← VCUpdate(γ,EDB, I, τΨu , op): It is a cloud-run PPT al-
gorithm which takes an update token τΨu , operation bit op, EDB, the index
γ and the auxiliary information I and outputs updated (EDB′, γ′, I ′).

Correctness A VDCSE scheme Ψ is said to be correct if ∀λ ∈ N, ∀KΨ

generated using KeyGen(λ) and all sequences of search and update operations,
every search outputs the correct set of identifiers, except with a probability
neg(λ).

Verifiability By verification, we mean verification of a search result. We verify
whether the search is performed on the current state of the database. We do
not include verification of updates on the cloud-side. If the cloud cheats, and
updates incorrectly, it will fail verification test when a search result includes
such updated information.

3.8.4 Security Definitions

We follow security definition of [20]. Security of a VDCSE scheme is divided
into two parts– confidentiality and soundness, described as follows.

Confidentiality: This property protects the client to leak only allowed
amount of information, not more than that. We define the confidentiality of a
VDCSE as follow.

Definition 8 (CKA2-Confidentiality) Let Ψ = (VCKeyGen, VCBuild, VCSrchTkn,
VCSearchCD, VCSearchCT, VCUpdtTkn, VCUpdate) be a verifiable dynamic con-
junctive searchable Encryption scheme. Let A, C and S be a stateful adversary,
a challenger and a stateful simulator respectively. Let LΨ=(Lbld

Ψ ,Lsrch
Ψ ,Lupdt

Ψ )
be a stateful leakage algorithm. Let us consider the following two games.

RealΨA(λ): At first, a key KΨ ← VCKeyGen(λ) is generated by the challenger
C. Then a database DB is chosen by the adversary A and sent to C. The
encrypted database EDB is built and an encrypted search index is generated
by C as (st, EDB, γ, I)← VCBuild(DB,KΨ ) and then (EDB, γ, I) is sent to
A. In the next phase a polynomial number of adaptive queries are made by A.
In each of them, either a search query for a keyword set ŵ or an update query
for a keyword-document pair (w, id) and operation bit op is sent to C by it. In
sequence, C returns either a search token τΨs ← VCSrchTkn(KΨ , ŵ, st) or an
update token τΨu ← VCUpdtTkn(K, id, st) to A. Finally, a bit b, that is output
of the experiment, is returned by A.
IdealΨA,S(λ): At first, a database DB is chosen by A and is given to S together

with Lbld
Ψ (DB). Then, a simulated database and index (EDB, γ) is generated

by S and sent to A. Then a polynomial number of adaptive queries are made
by A. For each query, either Lsrch

Ψ (ŵ,DB) or Lupdt
Ψ (op, w, id), depending on the

query, is given to S. Accordingly, S returns either search token τΨs or update
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token τΨu to A. Finally, a bit b′, that is output of the experiment, is returned
by A.

We say Ψ is LΨ -secure against adaptive dynamic chosen-query attacks if ∀
PPT adversary A, ∃ a simulator S such that

|Pr[RealΨA(λ) = 1]− Pr[IdealΨA,S(λ) = 1]| ≤ µ(λ) (2)

where µ(λ) is negligible in λ.

Soundness The soundness property ensures the client gets complete result
with respect to the present state of database. The game-based definition of
soundness property of a VDCSE scheme is given as follow.

Definition 9 (Soundness) Let Ψ be a VDCSE scheme with Ψ = (VCKeyGen,
VCBuild, VCSrchTkn, VCSearchCD, VCSearchCT, VCUpdtTkn, VCUpdate). Let
us consider the following game.

soundΨ
A(λ): At first, a key KΨ ← VCKeyGen(λ) is generated by the challenger

C. Then, a database DB is chosen by the adversary and sent to C. The en-
crypted database is computed as (st, EDB, γ, I) ← VCBuild(DB,KΨ ) by C
and then (EDB, γ, I) is sent to A. A polynomial number of adaptive queries
are made by A. In each of them, either a search query, for a keyword set ŵ,
or an update query, for a keyword-document pair (w, id) and operation bit
op, is sent to C. In response, depending on the query, either a search token
τΨs ← VCSrchTkn(KΨ , ŵ, st) or an update token τΨu ← VCUpdtTkn(K, id, st)
is returned to A.

In the challenge phase, a target keyword set ŵ is chosen by A and a search
query for ŵ is sent to C. In response, a search token τΨs is returned from
which (Rŵ, νŵ) is searched by A, where νŵ = accept is verification bit from C.
Finally, a pair (R∗

ŵ, ν
∗
w) for a keyword set ŵ is generated by A. If ν∗ŵ = accept

even when R∗
ŵ ̸=

⋂
w∈ŵ DB(w), A returns 1 as output of the game, otherwise

returns 0.
We say that Ψ is sound if ∀ PPT adversaries A, Pr[soundΨ

A(λ) = 1] ≤
µ(λ).

4 Dynamic Interval Accumulation tree (DIA tree)

If we consider membership witnesses, they can not be updated without the
secret key. However, the client computes them initially by itself and stores them
in the cloud. It fetches and updates them each time a new element is added or
deleted. For a given set of elements, if only one accumulator is generated for
the set, then the generating membership witness for a new element x becomes
inefficient. This is because the membership witness generation considers all
elements belong to the set in the computation i.e., computational complexity
grows with the size of the set. If the set is too large, the computation of the
witness becomes impractical.
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This is why, instead of generating a single accumulator, the set is divided
into buckets and a separate accumulator is generated for every bucket. In
the next level, this set of accumulators becomes input set and another set
of accumulators is generated for them. The process continues until only one
element, i.e., the root is left. The generated tree is an accumulation tree.

Papamanthou et al. [11] studied the above approach previously in their
work of authenticated hash table. In spite of the work is good for membership-
proof and supports updates, it has a serious issue. For non-membership poof,
they take an additional accumulation tree which is based on intervals. This
tree does not support deletion. This makes the tree an append-only tree.

We take a different interval approach and construct DIA tree. The tree
gives the ability to perform both membership and non-membership in a single
tree, even in case the set is dynamic and large.

4.1 DIA Tree construction

For a given set S, in our proposed DIA tree construction, the set is stored sep-
arately. A tree is constructed to give proof of whether an element exists in the
given set S. We describe a DIA tree scheme DIAT as a tuple (Init, BuildTree,
Search, Update) of algorithms as follows.

Initialization [(s, tup) ← DIAT.Init(1λ)]: Given a security parameter λ, a
tuple (p,G,G, ê, g) ← BMGen(1λ) is generated. Let tup = (p,G,G, ê, g). An
element s is chosen randomly from Z∗

p and finally (tup, s) is returned.

Building the Tree [(DT, d) ← DIAT.BuildTree(tup, s, S)]: We consider in
the given set S = {e1, e2, . . . , en}, each ei is of fixed length and sorted. Let
the complete range of elements be [0, 2λ). We divide the range into b half-
open intervals, each of size 2η. Then the number of intervals will be b = 2λ−η.
Let the ith intervals be [2i−1, 2i) and it corresponds to the ith bucket Bi.
Finally, we take range of bucket Bi as closed intervals [2i−1 − 1, 2i]. Let Si =
{ei,1, ei,2, . . . , ei,ni

} be the sorted set of elements from S, falls into the bucket
Bi. We consider So

i = Si ∪ {li, ri}, i = 1, . . . , b, where li = 2i−1 − 1, ri = 2i,
∀i = 1, . . . , b, and l0 = −∞ and rni = +∞. Now, we treat each So

i separately
as follow.

Let Ii,j = (ei,j , ei,j+1),∀j = 0, . . . , ni, where ei,0 = li and ei,ni
= ri. Then,

we map each of the intervals in G as xi,j = H(Ii,j), where H : {0, 1}∗ → G
that brings each interval to an element in G. Let S̄i = {(xi,j) : j = 0, . . . , ni}.
Thus, the set of elements belongs to Si transfers to the set of S̄i.

Finally, we get the sets S̄1, S̄2, . . . , S̄b and make accumulators for each of
them. The elements of the set S̄i are kept in the leaves, say at Level-h, where
h is the height of the tree. For each set S̄i, the accumulator is generated as

ai ← AC.Gen(S̄i, s) where ai = g
∏

x∈S̄i
(H′(x)+s) ∈ G and H′ : G→ Z∗

p.
Next, we start from the set {a1, a2, . . . , ab}, recursively make anm-ary tree,

above the leaves, until we reach only one accumulator, say d, the digest of the
tree. If h is the height of the tree then mh−1 = b. Thus, every internal node
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of the tree DT stores the accumulator corresponding to its set of children.
Moreover, every node, including leaf nodes and excluding the root, contains
membership proof with respect to its parent. Thus if v is a node, it keeps

membership proof as ϕ(v) = g
∏

x∈SL(v)(H
′(x)+s) ∈ G where SL(v) is the

set of siblings of v. We can see that the each internal node has same number
of children, whereas Level-(h − 1) nodes stores random number of children.
Finally, the accumulation tree DT is returned to the cloud, and the client
stores d.

Search [(bx, we) ← DIAT.Search(DT, e)]: Given an element e, this algorithm
tells whether it exists together with a witness. This is done as follows.

Let Bk be the bucket for e. If e /∈ Sk, it finds other two elements e′, e′′ ∈ So
k

such that e′ < e < e′′ in the bucket corresponding to e. Then it computes
x ← H(I) where I = (e′, e′′). Then it gives membership witness wt(x) = πI

for x in DT . Let v0, v1, . . . , vh nodes in the path corresponding to the node x
where vh is the root of the tree. Then, wt(x) is of the form (e′, e′′, πI) where
πI = (π1, π2, . . . , πh) and each πi is a pair (αi, βi) defined as

αi = Φ(vi−1) and βi = g
∏

u∈SL(vi−1)(H(Φ(u))+s)
, i = 1, 2, . . . , h (3)

Note that, in our proposed scheme, we pre-compute both αi and βi.
Now, if e ∈ Sk, it finds another two elements e′, e′′ ∈ So

k such that e′ < e <
e′′. Then the witness of non-existence of x is given by wtn(x) = (e′, e′′, πI′ , πI′′)
where I ′ = (e′, e) and I ′′ = (e, e′′).

be = 1 indicates existence and we = wt(x) is set whereas bx = 0 indicates
the opposite and we = wtn(x) is set.

Verify Search [b ← DIAT.VerifySearch(d, be, we, e)]: If be = 1, verifier ver-

ifies whether β
H(αi−1)+s
i = αi, ∀i = 1, 2, . . . , h. It recomputes the element

x = H′(e′, e′′) and computes αi = x. Then, it verifies

ê(αi, g) = ê(βi−1, g
(H(αi−1)+s)), i = 1, 2, . . . , h,

Additionally, it is checked if ê(d, g) = ê(βl, g
(H(αh)+s)) where d is the root

digest. The result is accepted if all are verified correctly.
If be = 0, it recomputes the element x1 = H′(e′, e) and x2 = H′(e, e′′).

verifies the same for both intervals. It returns accept if, witnesses are verified
for both intervals. verification is done similarly as above.

Update [d′ ← DIAT.Update(DT, T, s, d, e, op)]: Given an element e let Bk be
its bucket. Then it finds two elements e′, e′′ ∈ So

k, such that e′ < e < e′′.
Then x′ ← H′(e′, e), x′′ ← H′(e, e′′) and x ← H′(e′, e′′) are computed. Let
v1, v2, vh be the path above them. Let ϕ(v), wt(v) denotes accumulator and
witness stored in v resp. Now, for op = add, we do the following.

1. At level h, x′, x′′ are inserted and x is removed. The client can calculate

and upload their witnesses as wt(x′) ← {ϕ(v1)}
(H(x′)+s)
(H(x)+s) and wt(x′′) ←

{ϕ(v1)}
(H(x′′)+s)
(H(x)+s)
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2. For v1, client computes ϕ1(v1)← {ϕ(v1)}H(x′)+s, ϕ2(v1)← {ϕ1(v1)}H(x′′)+s

and ϕ0(v1)← {ϕ2(v1)}
1

H(x)+s .
It computes

ϕ1(vi) ← (ϕ(vi))
(H(ϕ0(vi−1))+s) and ϕ0(vi) ← (ϕ1(vi))

1
(H(ϕ(vi−1))+s) , for

other vis. Thus, the new accumulator values along the path are ϕ0(v1),
ϕ0(v2), . . ., ϕ0(vh).

3. For each child u of v1, server computes updated witness wt0(u) without
using s directly as follow.

(a) Compute wt1(u)← ϕ(v1).(wt(u))
(H(x′)−H(u))

(b) Compute wt2(u)← ϕ1(v1).(wt1(u))
(H(x′′)−H(u))

(c) compute wt0(u)←
(
wt2(u)

ϕ0(v1)

) 1
H(x)−H(u)

4. Finally for any other child u of vi new witnesses computed by the server
are

wt1(u)← ϕ(v1).(wt(u))
H(ϕ0(vi))−H(u)

and

wt0(u)←
(
wt1(u)

ϕ0(v1)

) 1
H(ϕ(vi))−H(u)

5. The client keeps d′ = ϕ(vh) as the new digest of the root

The client needs to keep the new digest only. Verification of the update is
not required. If the server changes something, no search result will be verified
correctly.

If op = delete, the tree can be updated in a similar way. The only changes
in the algorithm are membership witnesses update of the leaf nodes (of the
same bucket) and updating ϕ(v1). During deletion, at Level-h, x is inserted
and x′, x′′ are removed and the tree is updated accordingly as follows.

1. For v1, client computes updated witness ϕ0(v) of ϕ(v) as

ϕ1(v1)← {ϕ(v1)}(H(x)+s),

ϕ2(v1)← {ϕ1(v1)}
1

H(x)+s , and

ϕ0(v1)← {ϕ2(v1)}
1

H(x′′)+s .

For 1 < i <= h, similarly as in delete, it computes the new accumulator
values ϕ0(v1), ϕ0(v2), . . . , ϕ0(vh).

2. For each child u of v1, server computes updated witness wt0(u) without
using s directly as follow.

(a) Compute wt1(u)← ϕ(v1).(wt(u))
(H(x)−H(u))

(b) Compute wt2(u)←
(
wt1(u)

ϕ2(v1)

) 1
H(x′)−H(u)

(c) compute wt0(u)←
(
wt2(u)

ϕ0(v1)

) 1
H(x′′)−H(u)

3. Additionally, at Level-h, x is inserted and x′, x′′ are removed. Client com-

putes the witnesses wt(x)← {ϕ(v1)}
1‘

(H(x′)+s)(H(x′′)+s) .
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4. Finally, for any other child u of vi (i > 1) new witness wt0(u) computed

similarly as wt0(u)←
(
wt1(u)

ϕ0(v1)

) 1
H(ϕ(vi))−H(u)

where

wt1(u) = ϕ(v1).(wt(u))
(H(ϕ0(vi))−H(u))

5. The client keeps d0 = ϕ(vh) as the new digest of the root

4.2 Example of a DIA tree

Let us consider a 3-ary tree with height h = 3. Then there are h + 1 levels
where Level-0 is the root. Then Level-2 has 9 elements. Each node at Level-2
can hold at most 5 elements. Then, all possible elements can be mapped in
[0,44]. The ith element at Level-2 corresponds to the bucket [5i, 5(i+ 1)− 1].
However, for construction, we want them to be in some open interval which
allows any operation to effect one bucket only. So, we take ith interval as
Ii = (li, ri) = (5i− 1, 5(i+ 1)) (see Figure 2).

Now, given a set S = {6, 7, 9, 13, 21, 24}, we consider the following 15 (open)
intervals, (−1, 5), (4, 6), (6, 7), (7, 9), (9, 10), (9, 13), (13, 15), (14, 20), (19, 21),
(21, 24), (24, 25), (24, 30), (29, 35), (34, 40), (39, 45). Let Ii be the ith interval.
Then we take hash xi = H(Ii), for each i, to map them as an element of
G. Then the 2nd Level-2 node stores {x2, x3, x4, x5}, 5th Level-2 node stores
{x9, x10, x11}, 6th stores x12 etc.

x1

Level-0

1

2(0,4) (5,9) (10,14) (15,19) (20,24) (25,29) (30,34) (35,39) (40,44)

x3

x2 x4
x5

x9 x10 x11x6
x7

x8 x12 x13 x14 x15

Fig. 2: DIA tree for S

In addition, any node, except leaves, stores accumulator for its set of chil-
dren. Moreover, any node, except the root, stores witness of membership in
the parent node.

Search: To search an element e = 21, at first, its corresponding interval is
searched. Let its boundaries be l = 19 and r = 25. And then it searches two
elements e′ = 13 and e′′ = 24 in S such that e′ < e < e′′. Finally, it sets
e′ = max{e′, l} and e′′ = min{e′′, r}. This is equivalent to say that we are
choosing two elements e′ and e′′ in the left and the right of e respectively from
the bucket corresponding to e (see Figure 3).
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Level-0

1

2(0,4) (5,9) (10,14) (15,19) (20,24) (25,29) (30,34) (35,39) (40,44)

x1 x3

x2 x4
x5

x9 x10 x11x6
x7

x8 x12 x13 x14 x15
returned x9 and x10 while searching for e=21

returned x6while searching for e=10

Fig. 3: search for e = 21 and e = 10

Since, 21 is in S, it considers the intervals as I ′ = (e′, e) = (19, 21) and
I ′′ = (e, e′′) = (21, 24). Then calculate the hashes x′ = H(I ′) and x′′ = H(I ′′).
We see that both x′ and x′′ are in the tree. So, for each of them, with the result,
cloud returns proof of their existence. The proof contains accumulators and
witnesses stored in every node from leaf to root in the path of the bucket.

Similarly, if 10 is searched, the proof for the interval (9, 13) is returned.
This is because if some element belongs to S, it appears in two intervals– in
one as the right boundary and in another as the left boundary. When it is not
in S, there exists an interval that contains the searched element.

Update: When we want to add e = 11, we find similarly e′ = 9 and e′′ = 13
such that e′ < e < e′′, in the bucket corresponding to 3 (see Fig. 4a). Then
we just remove x6 corresponding to the interval I = (9, 13) and then add two
intervals I ′ = (9, 11) and I ′′ = (11, 13). For that we remove x6 = H(I) and
add both x′ = H(I ′) and x′′ = H(I ′′). After doing the same, accumulators in
the path of the bucket from leaf to root and and witnesses for each of their
children are updated.

Again, we delete an element only if it exists in S. So, in that case, given
an element e = 7, we can find two intervals I ′ and I ′′ where e is left and right
bound i.e., I ′ = (6, 7) I ′′ = (7, 9). So, e′ = 6 and e′′ = 9 (see Fig. 4b). Let
I = (e′, e′′) = (6, 9). To delete the element e = 7, we remove both x′ = H(I ′)
and x′′ = H(I ′′), and then add x = H(I) and update the tree accordingly.

4.3 Complexity of DIA tree

Let h be the height of the tree. Since, the leaves store elements inG correspond-
ing to the intervals, parents of the leaves store different numbers of elements.
However, the tree is a complete m-ary tree from Level-0 to Level-(h− 1), i.e.,
without leaves.

Storage Cost: Since, the tree is an m-ary tree without the leaves, it can hold
upto b = m(h−1) elements in Level-(h − 1) and each node at Level-(h − 1)

can hold at most 2λ

m(h−1) elements. However, there may be some nodes at
Level-(h − 1) that may not contain only one element. If the size of the set
is n, then the number of leaves is n + 1 +m(h−1). Now, each node stores an
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Level-0

1

2

x’
x7x’’

removed x6, inserted x’ and x’’

(0,4) (5,9) (10,14) (15,19) (20,24) (25,29) (30,34) (35,39) (40,44)

x9 x10 x11x8 x12 x13 x14 x15x1 x3

x2 x4
x5

(a) Adding e = 11

x1

Level-0

1

2

x
x2

x5
x6

x7 removed x3, x4; and inserted x

(0,4) (5,9) (10,14) (15,19) (20,24) (25,29) (30,34) (35,39) (40,44)

x9 x10 x11x8 x12 x13 x14 x15

(b) deleting e = 7

Fig. 4: Updating the tree

accumulator of its children and a witness of its parent. The root only keeps an
accumulator and every leaf keeps an element in G corresponding to its interval.
Number of internal nodes, from root to Level-(h − 1) is m(h−1) + m(h−2) +
. . . + 1 = (m(h) − 1)/(m − 1). Thus, the number of elements the DIA tree

store is 2(m
h−1

m−1 +m(h−1) + 1 + n) − 1. This is stored at the cloud-side. The
client keeps only the root and the secret key.

Building Cost: The numbers of accumulators at internal nodes is mh−1
m−1 .

Among them, m(h−1)−1
m−1 accumulators, in the Level above h− 1, are for set of

size m each. The accumulators at Level-(h− 1) are for the set of average size
n−1
mh . Besides, the number of witnesses to be generated is (m

h−1
m−1 +m(h−1) +

1) + (n − 1) = mh−1
m−1 + m(h−1) + n The above cost is a one time client-side

cost.

Search Cost: During a search, the cloud has to return the accumulators and
witnesses in the paths corresponding to the given intervals. The cloud can
retrieve them O(2(h+ 1)) or O(h+ 1) time depending on whether the search
element exists or not. Thereafter, the cloud returns 4(h+ 1) group elements
if the searched element exists, else returns 2(h+ 1) group elements.

Verification Cost: To verify the result, the verifier needs to compute 4(h+1)
and 2h powers in G. The cost is half if the searched element does not exist.

Update Cost: During an update, an interval, the client retrieves all nodes in
the path corresponding to the interval and all witnesses that are affected due to
this change. The client only retrieves and updates 2(m(h−1)+1) accumulators
and sends them back to the cloud. The cloud stores them and updates the
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witnesses to their children. The number of such witnesses is m(h− 1) for the
nodes above Level-h. Other than that, there can have 2λ/b witnesses at the
bottom at most whereas the number is |S|/b on average . The cost is double
when the searched interval exists in the database.

4.4 Advantages of DIA tree

We have seen how the system works in a DIA tree, using on interval-approach.
For a given set S, in both of [11] and our proposed DIA tree construction, the
set is stored separately. In [11], leaf nodes stores H(x),∀x ∈ S where H maps
each element in a bilinear group G. However, in our case, we store maps of the
open intervals as H((x, y));x, y ∈ S.

Papamanthou et al. [11] used an interval-based approach for non-membership
proof only. They store the given set S, and an accumulation tree correspond-
ing to the open intervals. However, there is no formal description of how it
works. Secondly, they have to maintain two trees, one for membership proof
and another for non-membership proof where the second one works only when
the given set S is static.

Our proposed accumulation tree, DIA tree, gives proof of membership as
well as non-membership even the set S is dynamic. Moreover, it uses a single
tree, resulting reduction of cloud storage. We achieve those at the cost of
computation. In DIA tree, the update time is thrice, and the search time is at
most twice than that in [11]. However, the required time is asymptotically the
same for both. We give computational complexity of DIA tree in Appendix 4.3.

There is another basic difference between the two constructions. In [11], the
computation of witnesses is done by the server when verification is required.
This is useful when the frequency of the search is very low. However, if a
frequent search is there, we have to return only proofs fast. So, in the DIA tree
we pre-compute all witnesses which enable the frequent search. For the same,
the client has to update the O(mh) witnesses during each interval update.

Moreover, we can see that the sorted Merkle tree can solve the problem of
both membership and non-membership proof with very efficiently. However,
one downside of sorted Merkle hash trees is that even if a single element in
the data set S is changed, that element may need to move to a different leaf,
and the entire hash tree will need to be recomputed from scratch. This can
take O(|S|) hash computations. DIA tree provide the same functionality as
Merkle trees, but also support an efficient update, requiring at most O(log|S|)
calculations to update an element. This is the advantage of any accumulation
tree over Merkle tree including our proposed one.

4.5 Security of a DIA tree

We see that Φ(v) gives an accumulator corresponding to the subset of the set
S rooted at v. Thus, Φ(v) is also called the bilinear digest of the tree rooted
at v.
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Theorem 1 (Acc Tree Security) Given a security parameter λ and a set
U= {x1, x2, . . ., xn}, xi ∈ G, let DT be the accumulation tree constructed with
AC.Gen() as above. Under the q-strong Diffie-Hellman assumption, the proba-
bility that a PPT adversary A, knowing only the bilinear pairings parameters
(p,G,G, ê, g) and the elements {g, gs1 , gs2 , . . . , gsq}, of G, for some randomly
chosen s from Z∗

p and n ≤ q, can find another set V , with elements from G,
such that V ̸= U and Φ(V ) = Φ(U) is neg(k).

Proof Follows from the proof of Papamanthou et al. [11].

Theorem 2 (Security of our construction) Given a security parameter λ
and a set S = {e1, e2, . . ., en}, where ei ∈ {0, 1}∗, let DIAT be the accumula-
tion tree constructed as above. Under the q-strong Diffie-Hellman assumption,
the probability that a PPT adversary A, knowing only the bilinear pairings
parameters (p,G,G, ê, g) and the elements {g, gs1 , gs2 , . . . , gsq} of G, for some
randomly chosen s from {0, 1}∗ and n ≤ q, can find another set S′, with
elements from G, such that S′ ̸= S and Φ(S′) = Φ(S) is neg(λ).

Proof Here, we use Theorem 1 with reduction method. We show that if The-
orem 2 is false, then so is Theorem 1. But, since Theorem 1 is true, it implies
Theorem 2 is true.

The main difference between our DIAT and Papamanthou et al. [11] is that
our scheme supports efficient updates.

Since H is public, if S = {e1, e2, . . ., en} is given then so is S̄ = {x1,
x2, . . ., xn}. Let us consider Theorem 2 does not hold, then there exists a
PPT algorithm A, which finds another set S′ = {e′1, e′2, . . ., e′n′} such that
Φ(S′) = Φ(S) with probability ≥ neg(λ).

Let U = S̄ and V = S̄′ where S̄′ = {H(I ′0),H(I ′1), . . . ,H(I ′n′)} and I ′i =
(e′i, e

′
i+1),∀i. Thus, given U , we have found a PPT adversary A that finds

another set V with probability ≥ neg(λ). This contradicts Theorem 1. Thus
our assumption that Theorem 2 does not hold is false. Hence Theorem 2 is
true.

5 Our proposed VDCSE scheme

In this section, we propose our scheme which is forward secure and verifiable.
Our scheme does not use any extra storage for verification. We see in the next
that verifiability with O(|W |) client storage is very easy for any single keyword
search scheme.

5.1 Single keyword search DSE with O(|W |) extra storage for verifiability

For single keyword searches [24] shows that when there is client storage of
O(|W |), verifiability can be achieved with any hash function for static data.
Whereas, the same can be achieved with multiset hash ([27]) when the data
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is dynamic. These schemes are for single keyword search only. Besides, for
dynamic data, when forward privacy is concerned, the solution [23,24] shows
how forward privacy can be achieved without extra client storage and still with
keeping them verifiable. We see that if for every keyword w ∈ W , the client
is able to store a digest of the set of identifiers DB(w), then any multiset
hash H solves the problem of verifiability for a single keyword search. The
client can compute an aggregated hash using multiset hashing, which can be
updated with every update done by the client. The client can recompute the
aggregated hash when receives search results for the keyword and can match
with the stored one. In such a scenario, since all computations are done by the
client and nothing is outsourced to the cloud, there is no forgery. Thus, with
O(|W |) client storage, the client can verify the result, using multiset hashing,
in any single keyword search DSE scheme, without affecting the forward or
backward privacy.

A conjunctive forward private keyword search scheme can be either static
or dynamic. A dynamic conjunctive search may have forward privacy. With
non-trivial solution1, [9] deals with verifiability when data is static and [7,23]
deal when they are dynamic. However, when forward privacy is concerned,
the above solutions are not applicable. Also, they used at least O(|W |) client
storage as well. In a conjunctive dynamic SE scheme, if the client is able to
store the accumulator corresponding to each keyword w ∈W , then the client is
able to verify the received result. It can verify whether all resulted identifiers
are present in a keyword or not. Since this requires extra computation the
client can outsource this computation to a proxy server too. Thus, the extra
O(|W |) client storage makes the scheme easier to verify the search result for
any conjunctive dynamic SE scheme without effecting its forward or backward
privacy if there is any.

DSE without O(|W |) extra storage: We see that O(|W |) client storage
can make any conjunctive as well as single and Boolean keyword search scheme
verifiable. Trivially, if the client issues a single keyword search token for each
keyword in the conjunctive query and server returns the search result for each
of them, Then it can compute the intersections of them to get the final result.
This can also be done using [24] without extra client storage. However, the
trivial approach has two issues. Firstly, it leaks the complete result for each
keyword instead of the required. Secondly, searching for identifiers containing
each keyword requires extra computation power. Thus, it is inefficient for a
conjunctive search.

There are conjunctive DSE schemes that are either verifiable without for-
ward privacy ([4]) or are forward private without verifiability ([26]). There are
other conjunctive schemes which are neither forward private nor conjunctive.
In the next, we have shown it is difficult to extend them to a verifiable DCSE
scheme without that extra storage.

1 A trivial solution is downloading search results for all keywords present in a conjunctive
query and taking the intersection of them at client-side



Verifiable and Forward private Conjunctive keyword Search from DIA Tree 23

5.2 Difficulty in Extending existing schemes to a VDCSE scheme

It is an important question that whether existing conjunctive DSE without
forward privacy [26] or without verifiability [4] can be extended with having
both properties.

The key point of [26] is that modification of documents is not allowed here
and the files are always unchanged. So, if we keep the accumulators at the
leaf node of VBTree corresponding to every document, the accumulators will
be always unchanged. However, the solution is not complete. If we keep the
accumulators in the leaf then, for membership or non-membership proof, it
must reveal what are the elements in the set. Thus the tree structure will
be revealed and the scheme can not be forward private anymore. The cloud
sends which tuple is not present in a node in the path. So we have to keep
the accumulators in the nodes of the tree. However, if some new file is added
then the complete path of the file may be revealed to add new elements in
the nodes. Thus, it is hard to extend [26] to be verifiable without extra client
storage.

Besides, [4] is for static data. So forward privacy is not applicable to it.
If we extend the scheme to be dynamic then we can only try to make it
forward private. We can see that it keeps the accumulator corresponding to
every keyword on the cloud-side. When an update happens, the cloud has to
update the accumulators too, and updating it reveals whether the keyword
was searched previously. So, its extension to forward private is not possible in
this way.

5.3 Overview of our proposed scheme Blasu

In this section, we present a generic forward private conjunctive DSE scheme
with verifiability that makes any forward private single keyword search scheme
to conjunctive one. However, we want to reduce this extra client storage for
verifiability. Our proposed forward private conjunctive DSE scheme with ver-
ifiability does not use any extra client storage for verifiability. Here, we give a
short overview of our scheme Blasu.

In most of the conjunctive schemes, including ours, the least-frequency
method is considered (exception [26]). In this method, the least frequent key-
word is taken and its result is found. Then for each resulting document,
the presence of all other keywords is checked. For example, given a query
ŵ = {w1, w2, . . . , wk}, let Rw1

= {idw1
1 , idw1

2 , . . . , idw1
nw1
} be the single key-

word query result for the lowest frequent keyword w1. The frequency of a
keyword is the number of documents that contain it. The server computes
Rw1 and checks if id1

i , for 1 ≤ i ≤ nw1 , contains all the keywords in ŵ \ {w1}
and includes it in the search result Rŵ, in the case does.

Our proposed scheme Blasu uses a forward private DSE schemeΣ as a black
box.At the time of building two data structures, a hash table, and a DIA tree
are built in addition to the encrypted index. For each keyword-document pair,
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a unique element is created. The element stores a signature generated using
the corresponding keyword and the document identifier. It is kept in the hash
table that gives it efficient access. After all the elements are generated, a DIA
tree is built on them.

To search, we use the least-frequency approach. The client first generates a
search token and sends it to the cloud. The cloud performs a search using Σ for
a minimal frequent keyword. Then, for each document identifier in the result,
the cloud checks its existence of other keywords. It returns the documents,
each of which contains all searched keywords together with proof of its correct
execution. The elements and DIA tree help the cloud to return the proof. To
update a new keyword-document pair, the client generates the corresponding
element and sends it to the cloud, which then updates both the table and the
tree accordingly.

5.4 Technical Details

There are three phases in our proposed VDCSE scheme Ψ which is an algo-
rithm tuple (VCKeyGen, VCBuildIndex, VCSrchTknGen, VCSearchCD, VCSearchCT,
VCUpdtTknGen, VCUpdate)– initialization, search and update. The interaction
between the entities, during those phases, are shown in Fig 5. The phases are
described as follows.
Initialization: It is divided into two parts– key generation and building an
encrypted search index, given as below.

Key Generation: is given Algo. 1. Let E = (Enc, Dec) be a CPA-secure
symmetric encryption scheme with key-space {0, 1}λ. Given some security pa-
rameter λ, the key KΣ is generated for Σ. Moreover, three λ-bit stings Ks,
Kt and Ks̄ are picked at random to use them as secret.

Algorithm 1: Ψ.VCKeyGen(1λ)

1 KΣ ← Σ.KeyGen(1λ) ; (sk, pk)← S.KeyGen(1λ) ;

2 Ks,Kt,Ks̄ ← {0, 1}λ; s← {0, 1}λ /*for DIAT*/;
3 return KΨ = (Ks,Kt,Ks̄, sk, pk,KΣ , s);

For each keyword, Ks is used as a key, together with the keyword, for
generating a seed. This seed is used to generate a sequence of random num-
bers. Similarly, for each keyword, Kt helps to generate a tag that helps to
find some random positions in a table (Tsig). Whereas Ks̄ generates a unique
key for the symmetric encryption scheme E . A BLS signature scheme S =
(KeyGen, Sign, Verify) is generated together with a tuple tup = (p,G,G, ê, g)
and a key pair (sk, pk). A λ-bit secret key s is chosen for DIA tree DT . Finally,
KΨ = (Ks,Ks̄,Kt, sk, pk,KΣ) is returned

Encrypted Index Building: is given in Algo 2. Instead of DB(w), for
each w ∈ W , we consider DB(w) ∪ {idw0 }, where {idw0 } is a random unas-
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Fig. 5: Interaction between entities in different phases
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signed identifier. Doing so prevents the server to return an empty set of
identifiers. Whenever the cloud returns the actual file it neglects the first
identifier. Without loss of generality, we take DB(w) = DB(w) ∪ {idw0 } and
DB = {DB(w)∪{idw0 } : w ∈W}. In rest of the paper, we consider the same.

Algorithm 2: Ψ.VCBuild(DB,KΨ )

1 Tsig ← An empty list of size |W| ;
2 for w ∈ W do
3 sw ← F (Ks, w); tagw ← F (Kt, w); s̄w ← F (Ks̄, w);
4 for i = 0 to cw(= |DB(w)|) do
5 rwi ← R(sw||i);
6 mw

i ← rwi .idwi mod q; poswi ← F (tagw, idwi ||i);
7 σw

i ← S.Sign(sk,mw
i ) ; vwi ← E.Enc(s̄w, i) ;

8 Tsig [pos
w
i ]← (σw

i , vwi );

9 end

10 end
11 P = {poswi : w ∈ W and i = 0, 1, . . . , nw};
12 (DT, d)← DIAT.BuildTree(tup, s, P );
13 DB = {DB(w) : w ∈W};
14 (ξ, EDB)← Σ.Build(DB,KΣ) ;
15 Client keeps the root digest d;
16 return (ξ, EDB, Tsig , DT ) to cloud;

To generate an encrypted search index, the client takes an empty hash table
Tsig where it keeps a key-value pair (pos

w
i , (σ

w
i , v

w
i )) for each keyword-doc pair

(w, idwi ). The key poswi indicates the position in the table where value (σw
i , v

w
i )

keeps two things– a signature σw
i for the pair and encrypted file-sequence-

number vwi for the keywords. A symmetric key encryption scheme Enc can be
taken to get vwi . Finally, the client builds a DIA tree DT for the set P of all
such positions. The tree DT is constructed with DIAT.BuildTree(tup, s, P ) as
described in Section 4. The root of the tree is kept at client-side. Moreover, the
documents are kept encrypted. The encrypted index ξ for them is generated
using Σ. Here γ = {ξ, TSig} and I = DT .

Search Phase: The search phase consists of three steps. At first, the client
generates a search token to search for a set of keywords and sends it to the cloud
server. Then, the cloud server performs a search on the encrypted database
and generates a proof of the search result. The client also generates a proof of
the received result and gives it to the auditor. Finally, an auditor verifies the
result and the proofs.

Search token generation: Given a query ŵ = {w1, w2, . . . , w|ŵ|}, the client
first generates search token τΣw1

for w1 (the lowest frequent keyword), accord-
ing to the base searchable encryption scheme Σ (Algo. 3). This helps to find
file identifiers that contain w1. Then, it generates corresponding set of tags
{tagw1 , tagw2 , . . . , tagw|ŵ|} for all keywords. These tags help to find whether
the keyword-document pairs exist without revealing the actual keyword. Ad-
ditionally, sŵ = {sw1

, sw2
, . . . , sw|ŵ|} and s̄ŵ = {s̄w1

, s̄w2
, . . . , s̄w|ŵ|} are gen-
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erated by the client. Finally, τΨs = (τΣw1
, tagw1 , tagw2 , . . . , tagw|ŵ|) is issued as

a search token for the cloud and sŵ, s̄ŵ are stored at client-side.

Algorithm 3: Ψ.VCSrchTknGen(ŵ,KΨ )

1 {w1, w2, . . . , w|ŵ|} ← ŵ, where w1 is minimal frequent ;

2 (Ks,Kt,Ks̄, sk, pk,KΣ , s)← KΨ ;

3 τΣw1
← Σ.SearchToken(w1,KΣ);

4 for i = 1 to i = |ŵ| do
5 tagwi ← F (Kt, wi); swi ← F (Ks, wi); s̄wi ← F (Ks̄, wi);
6 end

7 τΨs ← (τΣw1
, tagw1 , . . . , tagw|ŵ| );

8 sŵ ← (sw1 , sw2 , . . . , sw|ŵ| ); s̄ŵ ← (s̄w1 , s̄w2 , . . . , s̄w|ŵ| );

9 return τΨs for cloud and (sŵ, s̄ŵ) only for client;

Search and proof generation: After receiving the search token τΨs from the
client, at first, the cloud finds single keyword search result Rw1

={idw1
0 , idw1

1 ,
. . . , idw1

nw1
} for the keyword w1 using Σ. Then from Rw1

and the tag tagw1
, it

finds the position of the keyword-file pairs corresponding to w1 and retrieves
signatures of them from the table Tsig. After that, it multiplies them as an

aggregate signature for w1 which is treated proof pf
(0)
c for w1.

Then, for each file in Rw1 , it checks whether other keywords are present
in the file by verifying the existence of the keyword-file pairs. To verify them,
corresponding positions are regenerated and checked whether the table Tsig

contains them. If for some jth file id, the position does not exist, the cloud

computes non-membership proof pf
(i)
c for that positions. If all keywords are

contained in jth file, then the product of their signatures is returned as proof

corresponding to the keyword, and the set a
(j)
c of vji s are returned to the

client. R̂ŵ keeps the identifiers that contain all keywords.
Thus, for each file in Rw1

, if it is in R̂ŵ, then the cloud returns the product
of the signatures corresponding to the keyword file pairs and the set of vji s.

In case a file in Rw1 is not present in R̂ŵ, it returns a non-membership proof
for the position corresponding to a non-existing keyword-file pair. Finally, the
cloud server returns its part of the proof pfc and (R̂ŵ, Xŵ) to the client where
Xŵ = (Rw1

, ac) and ac is the auxiliary information from cloud.
After receiving(R̂ŵ, Xŵ = (Rw1

, ac)), the client generates its part of the
proof pfu. For w1, it regenerates all the random numbers mw1

i for each of the
files in Rw1 . Then it generates the product of them as m0 =

∑nw1
i=0 mw1

i mod p
(see step 3 to step 10 in in Algo. 5).

For each file id ∈ Rw1
\{w1}, if id ∈ R̂ŵ, the client decrypts the encrypted

numbers vji s, generates random numbers corresponding to each keyword and

calculates the product mi of them as pf
(i)
u . This acts as membership proof of

all the keywords in the file. So, we do not have to generate a separate proof

for all keyword-file pairs. In case, id /∈ R̂ŵ, the client keeps pf
(i)
u as null. This

is because the cloud already keeps non-membership proof for them.
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Algorithm 4: Ψ.VCSearchCD(γ, τΨs )

1 Cloud Receives τΨs from client ;

2 (τΣw1
, tagw1 , tagw2 , . . . , tagw|ŵ| )← τΨs ;

3 Rw1 ← Σ.Search(ξ, τΣw1
);

4 {idw1
0 , idw1

1 , . . . , idw1
nw1
} = Rw1 ;

5 for i = 0 to nw1 do
6 posw1

i ← F (tagw1 , id
w1
i ||i);

7 σ′
i ← Tsig [pos

w1
i ][0]; ;

8 end

9 pf
(0)
c = σ′ ←

∏nw
i=0 σ

′
i; R̂ŵ ← Φ;

10 if |ŵ| = 1 return (Rw1 , pf
(1)
c )

11 for j = 1 to nw1 do
12 flag = 0;
13 for i = 2 to |ŵ| do
14 pos

wi
j ← F (tagwi , id

w1
j );

15 if [Tsig [pos
wi
j ]] = ⊥ then

16 pf
(j)
c ← DIAT.Search(DT, pos

wi
j );

17 a
(j)
c ← pos

wi
j ; flag = 1 ;

18 break;

19 end

20 (σi
j , v

i
j)← Tsig [pos

wi
j ];

21 end
22 if flag = 0 then

23 pf
(j)
c ←

∏|ŵ|
i=2 σ

i
j ; a

(j)
c ← (v2j , . . . , v

|ŵ|
j );

24 R̂ŵ ← R̂ŵ ∪ {idw1
j };

25 end

26 end

27 pfc = (pf
(0)
c , pf

(1)
c , . . . , pf

(nw1
)

c );

28 ac = (a
(1)
c , a

(2)
c , . . . , a

(nw1 )
c ) ; Xŵ = (Rw1 , ac);

29 return pfc and (R̂ŵ, Xŵ) ;

The auditor (or any third party) verifies the search result by taking pfc
from the cloud, and pfu, R̂ŵ and d form the client. The algorithm is given in
Algo. 5.

Verification: The auditor verifies for w1 as well as for each files in Rw1 . There
are two cases in verification. For the identifiers ∈ R̂ŵ, containing all keywords,
it verifies S.Verify(pk, pfu[k][1], pfc[k]). For the identifiers /∈ R̂ŵ that does
not contains some keyword, non-membership proof, for corresponding pos, is
verified with DIAT.VerifySearch. auditor returns accept only when all get
success (see Algo. 6).

Updating the database: Given a new file f with a new identifier id, the
client first generates an update token. From f , it extracts the set of keywords
{w1, w2, . . . , wnid

}, where nid is the number of keywords present in f . It com-
putes update token τΣu of the file according to Σ. For each keyword-doc pair,
during update, corresponding entries in Tsig and the DIA tree DT are up-
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Algorithm 5: Ψ.VCSearchCT(γ, τΨs )

1 Client Receives (R̂ŵ, Xŵ = (Rw1 , ac)) ;

2 (a
(1)
c , a

(2)
c , . . . , a

(nw1
)

c )← ac;
3 {idw1

0 , idw1
1 , . . . , idw1

n′
w1

} ← Rw1 ; nw1 ← C[w1] ;

4 if nw1 ̸= n′
w1

then return reject;

5 {sw1 , sw2 , . . . , sw|ŵ|} ← sŵ (see Algo. 3);

6 for i = 0 to nw1 do
7 rw1

i ← R(sw1 ||i);
8 mw1

i ← idw1
i .rw1

i mod p;

9 end

10 pf
(0)
u = m0 =

∑nw1
i=0 mw1

i mod p ;
11 for j = 1 to nw1 do

12 if idw1
j /∈ R̂ŵ then pf

(i)
u = (0, a

(j)
c ) ;

13 else

14 (v2j , v
3
j , . . . , v

|ŵ|
j )← a

(j)
c ;

15 for i = 2 to |ŵ| do
16 ki ← E.Dec(s̄wi , v

i
j);

17 rji ← R(swi ||ki);
18 mj

i ← R̂ŵ[i].rji mod p;

19 end

20 mj =
∑|ŵ|

i=2 m
j
i mod p;

21 pf
(j)
u = (1,mj)

22 end

23 end

24 return pfu = {pf (0)
u , pf

(1)
u , . . . , pf

(nw1
)

u };

Algo. 6: Ψ.Verify(d, pfu, pfc, R̂ŵ)

1 Receives pfu from client and pfc from cloud;
2 for k = 0 to nw1 do
3 if pfu[k][0] = 0 then
4 bv = DIAT. VerifySearch(d, pfc[k][0], pfc[k][1], pfu[k][1])
5 else
6 bv ← S.Verify(pk, pfu[k][1], pfc[k])
7 end
8 if bv = failure return reject ;

9 end
10 return accept ;

dated. Since, the client stores the frequencies of the keywords as the state, it
retrieves them to compute key-value pairs for the table Tsig.

For each keyword wi, it generates tag tagwi
, swi

and s̄wi
with the secret

key. Then it generates key-value pair (posi, vali) for every keywords wi as
given in Algo. 8. Finally, it returns τΨu = (τΣu , pos, val) to the cloud.

During the update phase, the cloud updates the file f according to Σ.
Then it inserts key-value pairs in the table Tsig. Finally, after updating them
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Algo. 7: Ψ.VCUpdtTkn(KΨ , st, f)

1 {w1, w2, . . . , wnid} ∈ f ;
2 (Kt,Ks, sk, pk,KΣ)← KΨ ;

3 τΣu ← Σ.UpdateToken(KΣ , wi, id) ∀i ∈ [nid];
4 for i = 1 to nid do
5 swi ← F (Ks, wi); tagwi ← F (Kt, wi);
6 s̄wi ← F (Ks̄, wi); nwi ← C[wi];
7 ri ← R(swi ||(nwi + 1)); C[wi] = C[wi] + 1;
8 mi ← ri.id mod p; vi ← E.Enc(s̄w, cw + 1);
9 σi ← S.Sign(sk,mwi

i );
10 posi ← F (tagwi , id); vali = (σi, vi)

11 end
12 pos← {pos1, pos2, . . . , posnid};
13 val← {val1, val2, . . . , valnid};
14 return τΨu = (τΣu , pos, val)

in the database, it updates DT for each posi and returns corresponding proof
of update for each position.

Algo. 8: Ψ.VCUpdate(Ttag, γ, op, f)

1 (τΣu , pos, val) = τΨu ;

2 Σ.Update(ξ, τΣu , op) ;
3 {pos1, pos2, . . . , posn} ← pos; {val1, val2, . . . , valn} ← val;
4 for i = 1to i = n do
5 if (op=add) then Tsig [posi]← vali;
6 else remove Tsig [posi];
7 inpt← (DT, s, posi, op, d) ;
8 d′ ← DIAT.Update(inpt)

9 end
10 Client keeps updated d′;
11 return

Extra cost for verifiability: Building the index requires O(N) key-value
pairs computation and a DIA tree for a set of size N . During the search, the
server has to compute O((|ŵ|+1).|Rw1

|) key-value pair, O(|R̂ŵ|.|Rw1
|) multi-

plications in G. It also has to compute O(|ŵ|.(|Rw1
| − |R̂ŵ|)) key-value pairs

together with proofs of their non-membership. To generate proof at the client-
side, the client only generates random numbers and computes the product of
them which makes them very efficient for lightweight clients.

5.5 Security of our proposed scheme

5.5.1 Confidentiality

We see that the DIA tree is just an additional data structure that is get
searched (updated) when the key of a key-value pair is searched (updated).
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So, it does not give any extra information about the encrypted database. (At
the time of simulation, the simulator can also keep a similar tree based on
the simulated database. The simulator only gives existential proof. So, in our
security proof, we have not taken the accumulator part.) Else, suppose we have
stored with a list of entries, then we build a simulator corresponding to that
simulated database. In either case, the simulator must be there and so is the
DIA tree. Since a verification phase is there, we can not return the random
element in that case of the DIA tree. So, we can eliminate DT from leakage,
but we should keep it with valid proof.

Leakage function: Let LΣ = (Lbld
Σ ,Lsrch

Σ ,Lupdt
Σ ) be the leakage function of

Σ, then the leakage function LΨ = (Lbld
Ψ , Lsrch

Ψ , Lupdt
Ψ ) of Ψ is given as follows.

Lbld
Ψ (DB) = {Lbld

Σ (DB), |Tsig|}
Lsrch
Ψ (ŵ) = {Lsrch

Σ (w1), {(idw1
i , posw1

i , σw1
i ) : i = 1, 2, . . . , nw1

},
{(posij , σi

j) : ∀idj ∈ Rwi
, wi ∈ ŵ, i ̸= 1}}

Lupdt
Ψ (w, id) = {id,Lupdt

Σ (w, id), posw, σw}

Since we consider any forward private DSE scheme Σ which LΣ-secure
against adaptive chosen keyword attack, we have the following theorem.

Theorem 3 Let Σ = (KeyGen, Build, SearchToken, Search, UpdateToken,
Update) be the forward private correct DSE scheme with leakage function

LΣ = (Lbld
Σ ,Lsrch

Σ ,Lupdt
Σ ). If Σ is LΣ-secure against adaptive chosen keyword

attack, under random oracle model, then for any adversary AΣ, there exists a
simulator SΣ which simulates Σ.

The proof of the above theorem depends on the scheme Σ and can be seen in
the corresponding paper (for example; [2]).

However, assuming the theorem we will proof confidentiality of Ψ . We show
that Ψ is LΨ -secure against adaptive dynamic chosen-query attacks in the
random oracle model. The proof of confidentiality is given as follows.

Theorem 4 If F is a PRF, R is a PRG and Σ is LΣ-secure against adaptive
dynamic chosen-query attacks in the random oracle model, then Ψ is LΨ -secure
against adaptive dynamic chosen-query attacks, under q-SDH assumption, in
random oracle model.

Proof We give the proof of the above theorem, according to Definition 8. It is
sufficient to show that, for any PPT adversary AΨ , there exists a simulator SΨ ,
for which, the output of RealΨAΨ

(λ) and IdealΨAΨ ,SΨ
(λ) are computationally

indistinguishable.
LetAΣ be the part ofAΨ forΣ, then by Theorem 3, there exists a simulator

SΣ that simulates Σ. Therefore, it is to remain to construct a simulator SΨ
to simulated extra data structure Tsig and query tokens (both search and
update). Then, SΨ simulates as follows.
Simulating F : Simulation of the PRF F is done using a table TF in random
oracle model. For a given pair (x, y) of elements in G, if TF [(x, y)] = ⊥, i.e. the
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corresponding entry does not exists, a random entry is kept as TF [(x, y)] ←
{0, 1}λ and finally TF [(x, y)] is returned.
Simulating Build: Given the leakage Lbld

Ψ (DB) = {Lbld
Σ (DB), |Tsig|}, S simu-

lates two data structure EDB and the table Tsig. The DIA tree always accu-
mulates the keys of the key-value pairs of Tsig. Again, Tsig is simulated with

a table T̃sig. While simulating, let SΣ returns D̃B while simulating EDB.

To keep the tags, a table T̃tag taken by SimΨ . It stores a random λ-bit string

for every keyword w. It acts as random oracle and returns t̃agw ← T̃tag[w]. A

table T̃ ′
sig is also kept by SimΨ to indicate whether an entry T̃sig is queried or

not.
The building of the data structures are simulated as follows.

1. T̃sig ← Φ and T̃ ′
sig ← Φ

2. For i = 1 to i = |Tsig| do
(a) posi

$←− {0, 1}λ; vali $←− {0, 1}λ
(b) T̃sig[posi]← vali; T̃

′
sig[posi]← 0

3. D̃B ← SΣ(Lbld
Σ (DB))

4. tup = (p,G,G, ê, g)← BMGen(1λ) is generated for D̃T.
5. s← {0, 1}λ
6. D̃IAT.build(tup, s, {posi : i = 1, . . . , |Tsig|})
7. return (D̃B, T̃sig, D̃T) and keeps (T̃ ′

sig, s, p)

Simulating search token: Let the search leakage Lsrch
Ψ (ŵ) is given.

A table TF is taken to keep the positions for each keyword-file pair. Given a
tuple (t̃agw, id, i) it returns a position in the table. If the position is searched
before, then it returns the previous one, else it allocate a new and return
that. These table is kept at SΨ . Let {w1, w2, . . . , wn} ∈ ŵ where w1 has least
frequency. The complete simulation of search token is done by SΨ as follows.

1. Receives τΨs from client ;
2. τΣw1

← SimΣ .SimSearch(LΣ
srch(w1));

3. For i = 1 to n′
w1

(a) t̃agwi

o←− T̃tag[wi];

(b) posw1
i

o←− TF [(t̃agw1
, idw1

i ||i)];
(c) σ′

i
o←− T̃sig[p̃os

w1

i ];

4. pf
(1)
c = σ′ ←∏nw

i=1 σ
′
i;

5. For j = 1 to n′
w1

(a) For i = 2 to nq

i. p̃os
wi

j
o←− TF [(t̃agwi

, idw1
j )];

ii. If (Tsig[pos
wi
j ] = ⊥)

– T̃sig[p̃os
wi

j ]← ⊥ ; a
(j)
c ← null;

– pf
(j)
c ← DIAT.Search (D̃T , poswi

j )
– continue for next i;

iii. (σi
j , v

i
j)← T̃sig[pos

wi
j ];
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(b) pf
(j)
c = σj ←

∏|ŵ|
i=1 σ

i
j ; a

(j)
c ← (v1j , v

2
j , . . . , v

|ŵ|
j );

6. pfc = (pf
(1)
c , pf

(2)
c , . . . , pf

(nw1 )
c );

7. ac = (a
(1)
c , a

(2)
c , . . . , a

(nw1
)

c );
8. Return pfc and (Rw1 , R̂ŵ, ac) ;
9. return τ̃Ψs = (τ̃Σ , t̃agw)

Here, oracle access is indicated by “
o←−”, if the elements is not empty, then

it is returned, else a random element is allocated and then returned.

Simulating Update token Leakage function to add a document f , with identi-
fier id, containing {w1, w2, . . . , wnw

}, is given by
LΨ
updt(f) = {H ′(id), {(LΣ

updt(wi, id)) : i = 1, 2, . . . , nid}}.
1. For each keyword wi ∈ f
(a) τ̃ iu ← SimΣ(LΣ

updt(w, id))

(b) t̃agwi

o←− T̃tag[wi]
(c) nwi

← C[wi] + 1
(d) If TF [(t̃agwi

, id||(nwi
+ 1))] is not null,

i. p̃osi ← TF [(t̃agwi
, id||(cv + 1))]

Else
i. p̃osi ← a random posi such that T̃sig[posi] is null

ii. TF [(t̃agwi
, id||(nwi

+ 1))]← p̃osi; (iii) T̃
′
sig[posi]← 1

(e) σ̃i
$←− G

2. p̃os← {p̃os1, p̃os2, . . . , p̃osnid
}; σ̃ ← {σ̃1, σ̃2, . . . , σ̃nid

}
3. Return τ̃Ψu = (p̃os, σ̃)

Since, in each entry, the signature generated in Tsig is of the form gαmr

and corresponding entry in T̃sig is of the form gαr
′
, where r is pseudo-random

(as R is so) and r′ is randomly taken, we can say that power of g in both are

indistinguishable. Hence, Tsig and T̃sig are indistinguishable.
Besides, the indistinguishability of τ̃Ψu , τ̃Ψs with respect to τΨs , τΨu respec-

tively follows from the pseudo-randomness of F .

5.5.2 Soundness

We see that the server can cheat the cloud in four ways only, by returning–
(1) incorrect number of identifiers in Rw1 , (2) some altered identifier in Rw1 ,
(3) some result Rw′ of other keyword set w1 instead of Rw1

or (4) some subset
of R̂ŵ. However, for each case, the cheating will be detected as follows.

1. Since, the client stores the frequency of each keyword as in the state of the
database, it can identify incorrect frequency.

2. If any identifier is altered, mj
i in Step 18 of Algo. 5 does not match and

consequently, signature verification will be failed.
3. Signature is bounded with keywords by sw. During proof generation at the

client-side, it is regenerated. So signature verification will be failed if result
set is changed.
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4. Finally, if some subset of R̂ŵ is returned, there will be some identifier
id ∈ R̂ŵ that is skipped in the returned set. So, the server has to find at
least one w ∈ ŵ, such that (id, w) pair does not exist. However, since this
is not true, the cloud server can not give non-membership proof for any
such pair.

6 Comparison with existing schemes

Here we discuss a few previous schemes and compare them with our proposed
one. Since we have shown that it is trivial to get a conjunctive scheme with
client storage, we are considering the schemes that have no extra client storage
for verifiability. We have summarized the comparison in Table 2.

Table 2: Comparison with existing conjunctive search SE schemes

Scheme Is ForwardVerifiable client Comm client Comp client Comm client Comp
name Dyn? Secrecy Cost to verify cost to verify Cost to update cost to update

[4] × – ✓ O(|W|.|DB|) + 2R O(|Rw1 |.|R̂ŵ|)Ex – –
[21] × – ✓ O(|W|) + 1R O(|Rŵ|)(Ex+ Hs) – –
[3] × – ✓ O(|Rŵ|) + 2R O(|Rŵ|)(Ex+ Bm) – –
[6] × – ✓ O(|ŵ| log |W|) + 1R O(|ŵ| log |W|)(Ex+ Bm+ Hs) – –
[26] ✓ ✓ × – – O(|f |) + 1R O(|f |)Hs
[5] ✓ × ✓ O(2|ŵ|(logN + 1)) + 2RO(3|ŵ| logN)M + O(3|ŵ|)Ex O(|f |) +1R O(|f |)Ex
[9] ✓ × ✓ O(|ŵ| logN) +1R O(|ŵ| logN)(Ex+ Bm) O(|f | logN)+2R O(|f | logN)Ex

Our Scheme ✓ ✓ ✓ O(|Rw1 |) + 1R O(|ŵ|.|Rw1 |)Hs O(|f |) + 1R O(|f |)Hs + O(|f |)Ex
M– multiplication in GT , Ex– exponentiation in G, R– rounds of communication, Hs–

number of hashes. Bm– bilinear map. ∗ in the complexities we considered most expensive
operations only.

We see that most of the works for verifiability are based on accumulators.
The static scheme [4] used two types of accumulators: One for each keyword
and another for the total keyword file pair. When the size of the member
set increases, generating non-membership proof takes enormous time. Thus
it becomes impractical for a large database. Moreover, it does not support
dynamic data. Moreover, to verify, the client needs to compute |Rw1 | × |R̂ŵ|
number of power of g and needs two round of communications.

The static scheme [21] used bilinear map for verifiability. Due to the ex-
istence of an auditor, the client does not need to compute anything for ver-
ification. However, during search token generation requires O(|W|) amount
of storage as well as communication which is large when the keyword set os
large.

Mio et al. [3] is a static verifiable scheme that uses an interactive challenge-
response method for verification. However, it requires O(|W|.|DB|) cloud
storage which is very large. Moreover, in verification, it requires 2 rounds
of communication. It does not discuss the case when a subset of the result is
returned.

The static scheme [6] used the cuckoo hashing. It similarly keeps an accu-
mulator for each keyword and uses polynomial interpolation to prove the set
intersection.
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The dynamic scheme Li et al. [5] used an accumulator for each keyword.
The accumulators are stored in the cloud in a Merkle tree that ensures the
integrity of them. Updates of accumulators are not discussed. One big differ-
ence of [5] with us is that [5] computes membership proofs on the go when it
requires. So, if the number of searches is high, this scheme will become slow.
As in most of the verifiable dynamic schemes, it also has two rounds of commu-
nication during an update. Though [26] is forward private, it is not verifiable.
It is also difficult to extend it to be verifiable.

[9] is a good dynamic scheme with verifiable support. It keeps an accu-
mulator for each keyword and makes an accumulator tree for them. To verify
whether the returned intersection set is correct it uses polynomial interpola-
tion with FFT. This makes the computational cost higher (O(N log2 N)) for
the server and makes the scheme unsuitable when the number of searches is
high. Moreover, the scheme is not forward private too.

In our scheme, the verification can be done via any auditor, so if the client
wants, it can outsource it. So, in the table bilinear map computation is ignored.
Moreover, we see that most of the schemes use no extra client storage for
verifiability, but they have different cloud storage requirements.

The works, including [9], [6] etc., that use intersection method, have higher
complexity as they have to find all results first. The proof includes related
information which increases communication cost too.

7 Conclusion

In this paper, we first designed an efficient authentication tree DIA tree. The
tree can be scaled to large databases when searches are too frequent than
updates. Then, we have proposed a conjunctive DSE scheme that is verifiable
too. The scheme uses a forward private single keyword DSE scheme as the base.
Moreover, our scheme does not use any extra client-storage for verifiability. We
have used our designed DIA tree for verifiability. Later, we have shown that
the scheme is practical comparing with existing schemes.

We can see that most of the verifiable conjunctive search schemes, includ-
ing ours, use public-key encryption for verifiability though some single key-
word verifiable schemes use symmetric one. Solving the same problem with a
symmetric-key encryption technique is still a good open problem in this direc-
tion. Besides, though there is no practical attacks over non-backward private
DSE schemes, still backward privacy should be present in future verifiable
conjunctive search DSE schemes which is more challenging.
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