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Abstract. We prove a bound that approaches Duc et al.'s conjecture
from Eurocrypt 2015 for the side-channel security of masked imple-
mentations. Let Y be a sensitive intermediate variable of a cryptographic
primitive taking its values in a set Y. If Y is protected by masking (a.k.a.
secret sharing) at order d (i.e., with d + 1 shares), then the complexity
of any non-adaptive side-channel analysis � measured by the number
of queries to the target implementation required to guess the secret key
with su�cient con�dence � is lower bounded by a quantity inversely
proportional to the product of mutual informations between each share
of Y and their respective leakage. Our new bound is nearly tight in
the sense that each factor in the product has an exponent of −1 as
conjectured, and its multiplicative constant is O

(
log |Y| · |Y|−1 · C−d

)
,

where C ≤ 2 log(2) ≈ 1.38. It drastically improves upon previous proven
bounds, where the exponent was −1/2, and the multiplicative constant

was O
(
|Y|−d

)
. As a consequence for side-channel security evaluators, it

is possible to provably and e�ciently infer the security level of a masked
implementation by simply analyzing each individual share, under the
necessary condition that the leakage of these shares are independent.

1 Introduction

Evaluating the side-channel security of a cryptographic implementation is a
sensitive task, in part due to the challenge of de�ning the adversary's capa-
bilities [ABB+20]. One approach to deal with this problem is to consider the
worst-case security of the implementation, which is characterized by the mutual
information between its sensitive intermediate variables and the leakage [SMY09].
Worst-case analysis can be viewed as a natural extension of Kerckho�s' laws
to side-channel security, where all the implementation details are given to the
evaluator who can even pro�le (i.e., estimate the statistical distribution of the
leakage) in an o�ine phase where he controls the implementation (including its
keys and the random coins used in countermeasures). This approach has the
advantage of leading to a simple de�nition of security matching the standard
practice of modern cryptography. It has been known for a while that the link
between the mutual information metric and the security of an unprotected
implementation is nearly tight [MOS11]. It is also known that if an evaluator
can estimate this metric for an implementation with countermeasures, the link



with its security level is nearly tight as well [dCGRP19]. This state of the
art essentially leaves evaluators with the problem of estimating the mutual
information between sensitive intermediate variables and the leakage of an imple-
mentation protected with countermeasures, which can be much more challenging
since countermeasures typically make leakage distributions more complex.

In this paper, we are concerned with the important case of the masking
countermeasures [CJRR99]. Its high-level idea is to split any sensitive variable
of an implementation into d + 1 shares and to compute on those shares only.
As a result, evaluating the worst-case security of a masked implementation
requires the characterization of high-order and multivariate distributions, which
rapidly turns out to be expensive as the number of shares increases [SVO+10].
In order to mitigate this di�culty, a sequence of works has focused on the formal
understanding of the masking countermeasure [PR13,DDF14], and its link with
concrete evaluation practice [DFS15a]. In this last reference, a lower bound on
the minimum number of queries N⋆

a required to recover a target secret with a
success rate at least β thanks to a side-channel attack was established as:

N⋆
a ≥ log(1− β)

log

(
1−

(
|Y|√
2

)d+1∏d
i=0 MI(Yi;Li)

1/2

) ≈ log(1− β)(
|Y|√
2

)d+1

d∏
i=0

MI(Yi;Li)
−1/2

,

where |Y| stands for the size of the group over which masking is applied. Such
bounds are interesting since they reduce the assessment of the success rate of
an attack to the evaluation of the d + 1 mutual information values between
the shares and their corresponding leakage MI(Yi;Li). Each of these mutual
information values is substantially simpler to estimate than MI(Y;L) since the
distribution of the leakage random variable Li is a �rst-order one. Unfortunately,
is was also shown in the same paper that this proven bound is no tight. More
precisely, empirical attacks suggest that the −1/2 exponent for each MI(Yi;Li)

factor might be decreased to −1 and that the |Y|d factor would actually be
a proof artifact. Halving the exponent has a strong practical impact since it
implies that the required number of shares needed to provably reach a given
security level might be doubled compared to what is strictly necessary, and the
implementation overheads caused by masking scale quadratically in the number
of shares. As a result, Duc et al. conjectured that, provided that the shares'
leakage is su�ciently small, the lower bound might be tightened as:

N⋆
a ≥ f(β)

d∏
i=0

MI(Yi;Li)
−1

, (1)

where f(β) = H(Y) − (1 − β) · log2(2n − 1) − H2(β) is a function of the attack
success rate β, given by Fano's inequality [CT06], as shown in [dCGRP19].1

In this note, we prove a lower bound on N⋆
a that ful�lls almost all the

conditions of Duc et al.'s conjecture. More precisely, we establish a lower bound

1 H2 stands for the binary entropy function [dCGRP19].



like the one in Equation 1 with the function f(β) divided by a factor |Y| · Cd,
with C = 2 log(2) ≈ 1.38, regardless of the nature of the group Y.

The proof is simple to establish. It mixes Chérisey et al.'s inequality and
Dziembowski et al.'s XOR lemma [dCGRP19,DFS16], and holds for any group-
based masking, such as Boolean or arithmetical masking. The former is expressed
with the mutual information metric while the latter is expressed with the stati-
stical distance. We bridge the gap between both by converting Dziembowski et
al.'s XOR lemma into a variant that is based on the mutual information.

Related works. Prest et al. used the Rényi divergence in order to improve
the tightness of masking security proofs but do not get rid of the square root
loss (i.e., the −1/2 exponent) on which we focus [PGMP19]. Nevertheless, their
bound has a logarithmic dependency on the �eld size |Y|. Liu et al. used the
α-information in order to improve Chérisey's bound [LCGR21]. It could be used
to improve our results (at the cost of a slightly less readable bound). In a paper
published on the IACR ePrint at the same time as ours (now accepted at CCS
2022), Ito et al. independently obtained a result very similar to ours [IUH22].
Although it is only valid for binary �elds (whereas ours is valid for any �nite
�eld), their bound is slightly tighter, as the |Y| is replaced by a |Y| − 1 factor.
Interestingly, they also conjecture through the derivation of another bound that
is leakage-dependent, and through experimental veri�cations similar to ours, that
the obtained MI-dependent bound is far from being tight in practical cases.

2 Background

2.1 Problem Statement

Let Y be a �nite set. Let Y ∈ Y be a random variable denoting the sensitive
intermediate variable targeted by a side-channel adversary. In the �standard
DPA setting� we consider [MOS11], Y depends on both a uniformly distributed
public plaintext and a secret chunk. We assume an implementation that is
protected by a d-th order masking. This means that Y is encoded into d + 1
shares Y0, . . . ,Yd such that Y1, . . . ,Yd are drawn uniformly at random from
the group (Y, ⋆) and Y0 = Y ⋆ (Y1 ⋆ . . . ⋆Yd)

−1
, with ⋆ the operation over

which the masking is applied (e.g., ⊕ for Boolean masking, modular addition +
for arithmetic masking, . . . ). As required by masking security proofs, we further
assume that the shares' leakage vectors Li are the output of a memoryless side-
channel and depend only on the realization Yi, so that the random vectors
L0, . . . ,Ld are mutually independent.2 Intuitively, the goal of a worst-case side-
channel security evaluation is to quantify the distance of the random variable Y
to the uniform distribution over Y given the observation of L = (L0, . . . ,Ld).

2 This typically captures a software implementation manipulating the shares
sequentially, but as discussed in [BDF+17], Lemma 1, it generalizes to parallel (e.g.,
hardware) implementations as long as the leakage due to the manipulation of shares
in parallel can be written as a linear combination of the Li vectors.



To simplify our computations, we use (in the proof of Theorem 3) Dziembowski
et al.'s reduction to random walks [DFS16, Proof of Lemma 3]. Namely, it is
equivalent to consider Y0 to be uniformly distributed over Y and to quantify
the distance of the variable Y = Y0 ⋆ . . . ⋆Yd to the uniform distribution given
the observations of L.

2.2 Quantifying the Distance to Uniform

To quantify the notion of distance to the uniform distribution over Y, we will
use two di�erent metrics. The �rst one is widely known in information theory.

De�nition 1 (Mutual Information). Let p,m be two Probability Mass Func-
tions (PMFs) over the �nite set Y.3 We denote by DKL(p ∥ m) the Kullback-
Leibler (KL) divergence between p and m:

DKL(p ∥ m) =
∑
y∈Y

p(y) log2

(
p(y)

m(y)

)
. (2)

Then, we de�ne the Mutual Information (MI) between a discrete random variable
Y and a continuous random vector L as follows:

MI(Y;L) = E
L

[
DKL

(
p
Y | L

∥∥∥ p
Y

)]
, (3)

where p
Y
and p

Y | L respectively denote the PMF of Y and the PMF of Y given
a realization l of the random vector L, with the expectation taken over L.

The second metric is well-known in the cryptographic community.

De�nition 2 (Statistical Distance). Let p,m be two PMFs over the �nite set
Y. We denote by TV(p;m) the Total Variation (TV) between p and m:

TV(p;m) =
1

2

∑
y∈Y

|p(y)−m(y)| . (4)

Then, we de�ne the Statistical Distance (SD) as follows:

SD(Y;L) = E
L

[
TV
(
p
Y | L; pY

)]
. (5)

Note that both the MI and the SD are so-called global metrics and are similarly
constructed as the expectation over the marginal leakage distribution of so-called
local quantities, namely the KL divergence and the TV.

Remark 1. Equation 5 is not a distance between the distributions of L and Y
per se, as both random variables are not even de�ned on the same support.
Actually, the TV (local) metric is denoted as SD in the work of Dziembowski et
al. [DFS16], whereas our de�nition of SD coincides with their de�nition of bias.
Nevertheless, we keep this notation for the SD metric in order to keep consistency
with the notations for the MI, as previously done by Prest et al. [PGMP19].

3 We assume without loss of generality that both p and m have full support over Y.



In previous works such as the ones of Prou� et al. [PR13], Duc et al. [DFS15a]
or Prest et al. [PGMP19], all the inequalities used are stated in terms of global
metrics. The idea of our proof is to rely on some similar inequalities between the
local quantities, since they are arguably stronger. We introduce such inequalities
hereafter. The �rst one is the well-known Pinsker's inequality.

Proposition 1 (Pinsker's inequality [CT06, Lemma 11.6.1]). Let p,m be
two distributions over the � not necessarily �nite � set Y. Then:

TV(p;m)
2 · 2 log2(e) ≤ DKL(p ∥ m) . (6)

Pinsker's local inequality implies the global inequality

2 SD(Y;L)2 ≤ MI(Y;L)

used by Duc et al. [DFS15a, Thm. 1], and Prest et al. [PGMP19, Prop. 2].

Remark 2. It is possible to �nd tighter distribution-dependent constants for
Equation 6 [OW05]. Nevertheless, the universal constant denoted in the inequality
remains the tightest possible if m is the uniform distribution � which is our case
of interest.

The second inequality we need is a reversed version of Pinsker's inequality.

Theorem 1 (Reversed Pinsker's Inequality [SV15, Thm. 1]). Let p be a
PMF over the �nite set Y, and let u denote the uniform PMF over Y. Then:

DKL(p ∥ u) ≤ log2

(
1 + 2 |Y|TV(p; u)2

)
≤ 2 log2(e) |Y| · TV(p; u)2 . (7)

Again, the reversed Pinsker's inequality is stronger than some previous results
from Prest et al. as it implies the following global inequality established by the
authors of [PGMP19]: MI(Y;L) ≤ 2RE(Y;L) ·SD(Y;L), where RE(Y;L) stands
for the Relative Error (RE) between Y and L, another global distance metric
introduced in this reference. The reversed Pinsker's (local) inequality is even
strictly stronger than Prest et al.'s global inequality, as the former one enables
to show that the KL divergence and the squared TV are equivalent metrics (up
to a multiplicative constant) whereas, to the best of our knowledge, it is not
possible to state that the MI and the squared SD are equivalent global metrics,
as the latter one is always bounded by 1, whereas the former one is only bounded
by log2 |Y|, which can be arbitrarily high. The third inequality we need is the so-
called XOR lemma stated by Dziembowski et al. at TCC 2016 [DFS16, Thm. 2].
We next provide a slightly looser version of this result with a simpler proof.

Theorem 2 (XOR Lemma). Let Y1,Y2 be independent random variables on
a group Y, and let u denote the uniform PMF over Y. Then:

TV
(
p
Y1⋆Y2

; u
)
≤ 2 · TV

(
p
Y1

; u
)
· TV

(
p
Y2

; u
)

. (8)



Proof. Equation 8 is actually a corollary of Young's convolution inequality [Gra14,
Thm. 1.2.10]. Denoting by ∗ the convolution product between two PMFs over
Y, we have:

TV
(
p
Y1⋆Y2

; u
)
=

1

2

∥∥p
Y1⋆Y2

− u
∥∥
1
=

1

2

∥∥p
Y1

∗ p
Y2

− u
∥∥
1

(9)

=
1

2

∥∥(p
Y1

− u
)
∗
(
p
Y2

− u
)∥∥

1
(10)

≤ 1

2

∥∥(p
Y1

− u
)∥∥

1
·
∥∥(p

Y2
− u
)∥∥

1
(11)

= 2TV
(
p
Y1

; u
)
· TV

(
p
Y2

; u
)

, (12)

where Equation 10 comes from the fact that the uniform PMF is absorbing for
the convolution, and Equation 11 comes from Young's convolution inequality.

Theorem 2 is the core of the noise ampli�cation result of Dziembowski et al.
and will also be used to argue about it in our proofs. More precisely, we will use
the following corollary that is straightforwardly implied by Theorem 2.

Corollary 1. Let Y0, . . . ,Yd be independent random variables on a group Y.
Denote Y0 ⋆ . . . ⋆Yd by Y. Then, we have:

TV(p
Y
; u) ≤ 2d ·

d∏
i=0

TV
(
p
Yi

; u
)

. (13)

3 Nearly Tight Bounds

We now provide new provable bounds for the worst-case side-channel security of
masked cryptographic implementations. We start with an upper bound on the
mutual information and follow with a lower bound on the security level.

3.1 Upper Bounding the Mutual Information

We �rst establish noise ampli�cation in terms of KL divergence.

Proposition 2. Let Y0, . . . ,Yd be independent but not necessarily identically
distributed random variables over Y, with PMFs respectively worth p

Yi
. Let C =

2 log(2) ≈ 1.3862. Denote the PMF of Y0 ⋆ . . . ⋆Yd as p
Y
. Then:

DKL(pY ∥ u) ≤ log2

(
1 + |Y| ·

d∏
i=0

(
C · DKL

(
p
Yi

∥∥ u
)))

. (14)



Proof. Using the inequalities introduced in subsection 2.2, we get:

DKL(pY ∥ u) ≤
(7)

log2

(
1 + 2 |Y|TV(p

Y
; u)2

)
(15)

≤
(13)

log2

(
1 + |Y| ·

d∏
i=0

(
2TV

(
p
Yi

; u
))2)

(16)

≤
(6)

log2

(
1 + |Y| ·

d∏
i=0

(
2

log2(e)
DKL

(
p
Yi

∥∥ u
)))

. (17)

Having established an ampli�cation result at a local scale, we can now extend
it towards the (global) MI metric by taking the expectation over the marginal
distribution of the leakage, as stated by the following theorem.

Theorem 3 (MI upper bound (main result)). Let Y0, . . . ,Yd be d + 1
Independent and Identically Distributed (IID) shares uniformly distributed over
Y. Let L0, . . . ,Ld be the leakages occurred by each share. Denote Y = Y0 ⋆ . . . ⋆
Yd, and L = (L0, . . . ,Ld). Then:

MI(Y;L) ≤ log2

(
1 + |Y| ·

d∏
i=0

C ·MI(Yi;Li)

)
. (18)

Proof. We apply Proposition 2 to the random variables

Y
′
0 = (Y0 | L0), . . . ,Y

′
d = (Yd | Ld).

Therefore, we introduce Y′ = Y
′
0 ⋆ . . . ⋆ Y′

d. As a consequence, each term

DKL

(
p
Y

′
i

∥∥∥ u
)
becomes a random variable depending only on the realization

of Li. Furthermore, as stated in subsection 2.1, thanks to Dziembowski et al.'s
reduction to random walks, the random variables L0, . . . ,Ld are mutually inde-
pendent. As a consequence:

MI(Y;L) = E
L

[
DKL

(
p
Y | L

∥∥∥ p
Y

)]
= E
L

[DKL(pY′ ∥ u)] (19)

≤
(14)

E
L

[
log2

(
1 + |Y| ·

d∏
i=0

(
C · DKL

(
p
Y

′
i

∥∥∥ u
)))]

(20)

≤ log2

(
1 + |Y| · E

L

[
d∏

i=0

(
C · DKL

(
p
Y

′
i

∥∥∥ u
))])

(21)

≤ log2

(
1 + |Y| ·

d∏
i=0

(
C · E

Li

[
DKL

(
p
Y

′
i

∥∥∥ u
)]))

(22)

≤ log2

(
1 + |Y| ·

d∏
i=0

C ·MI(Yi;Li)

)
, (23)



where Equation 21 comes from Jensen's inequality applied to the logarithm, as
it is concave, Equation 22 comes from the independence of the leakages, and
Equation 19, Equation 23 come from the de�nition of MI in Equation 3.

Corollary 2. Using the same notations as in Theorem 3, we have:

MI(Y;L) ≤ 2 · |Y|Cd
d∏

i=0

MI(Yi;Li) . (24)

Proof. Direct by applying the inequality log2(1 + x) ≤ x log2(e) to Equation 18.

Veri�cation on Simulated Measurements. To verify the soundness of the
previous bound, we consider a standard simulated setting where the leakage of
each share corresponds to its Hamming weight with additive Gaussian noise with
variance σ2. We �rst estimate the exact MI(Y;L) with Monte-Carlo simulations
for one, two, four and eight shares [MDP20]. Then, we use the estimatedMI(Yi;Li)
of one share (assuming it is equal for all the shares) to derive an upper bound for
two, four and eight shares. Figure 1 shows the resulting information theoretic
curves in function of the variance of the additive Gaussian noise. It con�rms
that the bound is nearly tight for binary targets. By contrast, as the the size
of the masking �eld increases, the factor |Y| of Equation 24 makes it less tight.
Based on the results of [DFS15b], we expect it to be a proof artifact, of which
the removal in our bound is an interesting open problem.

d = 0 d = 1 d = 2 d = 3 Theoretical bound
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Fig. 1: MI (plain) and new MI upper bound (dashed) for di�erent �eld sizes.

3.2 From a MI Upper Bound to a Security Lower Bound

Combining Chérisey's bound in [dCGRP19] with Equation 18 leads to following
corollary that bounds the number of measurement queries needed to guess a
target secret with su�cient con�dence thanks to side-channel leakage.



Corollary 3. Let A be any random-plaintext side-channel adversary against an
implementation masked at the order d, with each share leaking respectively an
amount of information MI(Yi;Li). Let

1
|Y| ≤ β ≤ 1. Then, for A to succeed in

guessing the secret Y with probability higher than β, at least

N⋆
a ≥ f(β)

log2

(
1 + |Y| ·

∏d
i=0 C ·MI(Yi;Li)

) ≥ f(β)

2 |Y|Cd

d∏
i=0

MI(Yi;Li)
−1

(25)

measurement queries to the target leaking implementation are needed.

Veri�cation on Simulated Measurements. To verify the soundness of the
proposed bound, we simulate a bit recovery using the same leakage model as in
our previous simulations, for one, two and three shares, and di�erent levels of
noise � captured by the Gaussian noise variance σ2.4 The results are depicted
in plain curves on Figure 2. Based on the Monte-Carlo simulation of the MI for
one share � still assuming that the shares verify the same leakage model � we
also compute the right hand-side of Equation 25, for β ∈ [0.5, 1]. This gives the
dotted upper bounds of β depicted on Figure 2. Figure 2a shows that the bound
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Fig. 2: Success rate of concrete bit recoveries and MI-based upper bounds.

derived in Equation 25 may not be tight when the MI is high. Nevertheless,
we can see from Figure 2b, Figure 2c and Figure 2d that the higher the noise
variance (and the lower the MI) the tighter the expected upper bounds.

4 Conclusions

We prove a new bound approaching by Duc et al.'s conjecture for the security of
masked implementations. Our result is tight in F2, which makes it practically-
relevant since bitslice masking is currently the most e�cient way to implement

4 The success rate is estimated with bootstrapping, which gives good estimations with
a negligible bias provided that the number of simulated traces is far higher than the
value of N⋆

a such that β = 1. Due to memory constraints, not enough samples could
be drawn to get a consistent simulation in the case where σ2 = 100, d = 2.



masking for binary ciphers (especially lightweight ones) [GR17]. For larger �eld
sizes, a factor corresponding to the �eld size |Y| makes it less tight. Getting rid of
this last source of non-tightness therefore remains as an interesting direction for
further improvements. We �nally note that we can improve another bound from
TCC 2016 � which is stated in terms of statistical distance � as a side-e�ect
of our investigations. We detail this last result in section A.
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A Side-E�ect: Improving TCC 2016's Bounds

In subsection 3.1, we have proven that the MI between Y and the whole leakage
vector is bounded (up to a multiplicative constant) by the product of the shares'
MIs. Since the squared TV and the KL divergence are consistent for �nite sets
like Y, we may wonder whether an upper bound implying the SD as global
metric can be derived from the XOR lemma as well. Dziembowski et al. actually
provided such an upper bound as recalled hereafter.5

5 The original version of the theorem is stated for non-uniform secrets. In order to
avoid an unfair comparison with respect to Dziembowski et al.'s work, we present
an intermediate result of their proof [DFS16, Sec. 3.1.5].



Proposition 3 ([DFS16, Thm. 1(i)], restated). Let Y be a uniform random
variable on a group Y, encoded by the (d+ 1)-sharing Y0, . . . ,Yd. Suppose that
all the leakages are δ-noisy for i = 0, . . . , d, i.e., for 0 ≤ δ < 1/2,

SD(Yi;Li) ≤ δ .

De�ne the noise parameter θ = 1/2 − δ. Then, for all ϵ > 0, in order to get
SD(Y;L) ≤ ϵ, it is su�cient that the masking order veri�es:

d ≥ 8θ−2 log

(
3

2
ϵ−1

)
. (26)

Informally, Equation 26 gives the su�cient masking order d in order to achieve
a desired security level ϵ (expressed in terms of Statistical Distance (SD)),
depending on the noise level θ that the developer may leverage � the higher θ,
the noisier the leakage model. Unfortunately, the bound (26) is not tight, as the
authors also derive the following necessary condition [DFS16, Eq. (12)]:

d ≥
log
(
(2ϵ)−1

)
log((1− 2θ)−1)

, (27)

which is asymptotically linear in θ−1 when θ → 0, whereas it is quadratic in
Equation 26. Actually, this is mostly due to the overhead term that occurs
from the authors' so-called �reduction to unconditional random walks�. We shall
show that this reduction is not necessary, by leveraging the independence of the
leakages to compute the expectation, as in our proof of Theorem 3. As a result,
we end up with a tight upper bound, no longer involving the overhead term.

Proposition 4 (Improved bound). With the same notations as in Prop. 3,
it is su�cient that the masking order veri�es Equation 27:

Proof. Starting from the de�nition of SD (De�nition 2), we have:

SD(Y;L) = E
L

[
TV
(
p
Y
; p
Y | L

)]
(28)

≤
(13)

2dE
L

[
d∏

i=0

TV
(
p
Yi

; p
Yi | Li

)]
(29)

= 2d
d∏

i=0

E
Li

[
TV
(
p
Yi

; p
Yi | Li

)]
(30)

= 2d
d∏

i=0

SD(Yi;Li) , (31)

where Equation 30 comes from the mutual independence of the leakages Li.
Now, assuming that for all i ∈ J0, dK we have SD(Yi;Li) ≤ δ < 1

2 and de�ning
θ = 1

2 − δ, we have SD(Y;L) ≤ ϵ if (1 − 2θ)d ≤ 2ϵ. Hence, the inequality
SD(Y;L) ≤ ϵ holds if Equation 27 holds.
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