
Distributed Blockchain Price Oracle

Léonard Lys1,2 and Maria Potop-Butucaru1

1 LIP6, UMR 7606 Sorbonne University - CNRS, 4 place Jussieu 75252 Paris Cedex
05, France

2 Palo IT, 6 rue de l’Amiral Coligny 75001 Paris, France

Abstract. Blockchain oracles are systems that connect blockchains with
the outside world by interfacing with external data providers. They pro-
vide decentralized applications with the external information needed for
smart contract execution. In this paper, we focus on decentralized price
oracles, which are distributed systems that provide exchange rates of
digital assets to smart contracts. They are the cornerstone of the safety
of some decentralized finance applications such as stable coins or lending
protocols. They consist of a network of nodes called oracles that gather
information from off-chain sources such as an exchange market’s API and
feed it to smart contracts. Among the desired properties of a price oracle
system are low latency, availability, and low operating cost. Moreover,
they should overcome constraints such as having diverse data sources
which is known as the freeloading problem or Byzantine failures.
In this paper, we define the distributed price oracle problem and present
PoWacle, the first asynchronous decentralized oracle protocol that copes
with Byzantine behavior.

Keywords: Blockchain oracle · price oracle · Decentralized finance.

1 Introduction

Decentralized finance (DeFi) is a term that emerged during the past few years
to describe financial instruments that do not rely on centralized intermediaries
such as brokerages exchanges or banks. In order to implement those instru-
ments, DeFi protocols make use of smart contracts hosted on blockchain sys-
tems. Those smart contracts are programs that implement the logic of classical
financial instruments. A wide range of applications is already in production,
from interest-earning saving accounts to lending protocols to synthetic assets or
trading platforms, etc. This industry is quickly gaining in popularity both in
terms of the number of users and in market capitalization.

In order to function, a lot of those DeFi protocols make use of what is called
blockchain oracles and more specifically blockchain price oracles. A price oracle
is a system that provides exchange rates or prices to DeFi protocol’s smart
contracts. They gather data from off-chain sources, such as an API, and feed it
to a smart contract on-chain. For example, a popular DeFi application consists
in issuing a number of tokens to a user in exchange for collateral that will be
locked in a smart contract, until the user pays back his debt. Obviously, for the

2 L. Lys et al.

process to be fair, it is necessary to know the current exchange rate between the
token issued and the token locked as collateral. This is where prices oracles come
into the picture.

Price oracles can be split into two categories, centralized and decentralized.
A centralized oracle relies on the observations of a single trusted entity while
decentralized oracles gather information from several sources. In this paper, we
focus on decentralized ones, as we consider that DeFi protocols should not rely
on a single trusted entity.

Although decentralized price oracles have a central role in designing DeFi
applications, there is very little academic literature that addresses fault-tolerant
decentralized oracles. To the best of our knowledge, the only academic work
addressing this problem is [2]. However, several non-academic reports propose
ad hoc solutions practical solutions. In the line of non-academic work, the most
interesting contributions are the band protocol [1] and DOS network [6].

Band protocol [1] is a public blockchain network that allows users to query
off-chain APIs. It is built on top of the Cosmos-SDK and uses the Tendermint
consensus engine to reach instant finality. The oracles in the band protocol are
selected pseudo-randomly to produce observations that they gathered from off-
chain data sources. Much like in a proof-of-stake-based chain, they have tokens
staked on the chain and their chances of being elected to produce an observation
are proportional to their share of the total stake. When an oracle produces an
observation, this observation is published to the bandchain, and a proof is gen-
erated. This proof can be later used by smart contracts on other blockchains to
verify the existence of the data as well as to decode and retrieve the result stored.
This process obviously requires a bridge contract on the targeted blockchain in
order to interpret the proof. While Band protocol’s approach is interesting, we
think that it lakes interoperability concerns. Indeed a bridge contract has to be
implemented for each new integration. Our proposal is integrated by design as
it leverages the target blockchain’s keys.

Another non-academic work is DOS network [6]. The DOS network leverages
verifiable random functions, distributed key generation, and threshold signature
scheme to implement their Decentralized Oracle Service. The system is made
of a network of oracle nodes connected to off-chain data sources. The time is
divided into rounds and for each round, a group of nodes is randomly selected
to provide the observations. Each member of the group is given a share of a
distributed private key. Members of the group exchange messages containing
their signed observations until one of them has received enough signatures to
generate the group signature. This node will be responsible for publishing the
report containing the group’s observations and group signature. The smart con-
tract will then verify the signature and execute the payout. The idea proposed
by this scheme is interesting however it has a major drawback. The probability
that two or more members of the group are able to construct the group signature
at the same time is high. This will result in several nodes publishing the same
reports simultaneously. Although this can be resolved on-chain by a proxy that
only accepts the first response, the cost of the transaction is permanently lost

Distributed Blockchain Price Oracle 3

for the following reporters. Our approach based on proof-of-work can be used in
asynchronous settings it allows us to better sample the probability of finding a
valid report.

In this paper, we follow the line of research opened by [2]. Differently from
their approach, we consider an asynchronous communication model. In [2], Chain-
link presents the ”Off-chain Reporting Protocol”, an oracle system designed,
among other goals, to minimize transaction fees. Transaction fees for some
blockchains have become quite prohibitive, motivating the need for such sys-
tems. The system consists of n Oracles that exchange messages through off-chain
communication channels. The Oracles and their respective public keys are listed
in a smart contract C. Time is divided into epochs, and a leader taken from
the list of oracles is associated with each epoch. Epochs are mapped to leaders
through a deterministic function. A simple modulus that can be calculated by
anyone in the network. The Oracles make observations (such as price observa-
tions), sign them with their private keys, and submit them to the leader. When
he received a sufficient amount of observations, the leader builds a report that
lists them all, as well as the signatures, and submits it to a transmission proto-
col. Finally the transmission protocol hands out the report to the smart contract
C. A new epoch associated with a new leader starts whenever the oracles think
that the current leader does not perform correctly. While this protocol shows
good resilience and low transaction fees, they assume a partially synchronous
model. Formally, they assume that clocks in the system are not synchronized
until a point in time called global stabilization time (GST). Afterward, all cor-
rect nodes behave synchronously. Outside those synchronous periods of time,
the liveness of the protocol is not ensured. We think that by using proof-of-work
for leader election, we could ensure similar properties in a fully asynchronous
timing model.

Our contribution In this paper, we formalize the distributed price oracle problem
in the context of decentralized finance applications. Furthermore, we propose a
protocol and prove that it verifies the specification of the problem in asyn-
chronous communication environments prone to Byzantine failures. The proto-
col combines a gossip module with a light proof-of-work module and incentives
oracles via a simple reputation mechanism to have a correct behavior.

2 Model

We consider a similar model as the one used by the chainlink off-chain reporting
protocol [2]. The main difference is the communication model which is partially
synchronous while in our system it is asynchronous.

Oracle network. The system consists in a set of n Oracles P = {p1, ..., pn} that
are referred to as nodes. Each oracle node pi makes time-varying observations
over the price of an asset pair. The set of oracles is determined by an oracle
smart contract C that records the public keys of the nodes. The owner of the

4 L. Lys et al.

smart contract has administrative powers which allow him to update the list of
oracles. As we are working with time-varying quantities, there is no proper way
to evaluate if an observation is correct or not. Thus the protocol only guarantees
that the report contains a sufficient number of observations signed by honest
oracle nodes.

Nodes exchange messages through peer-to-peer, bi-directional communica-
tion channels. Nodes are identified by unique identifiers and authenticated by
digital signatures. All communications are authenticated and encrypted, which
means any node can authenticate any other node based on the oracle list recorded
in the smart contract C. We consider an asynchronous communication model,
which means that there is no global clock shared among the nodes. Moreover, we
make no assumption over the reliability of the network, meaning that messages
can be delayed or lost. Furthermore, messages can be delivered in a different or-
der than the order they were sent. In the following, we assume that the network
does not partition.

Failures. We consider that any f < n/3 nodes may exhibit Byzantine faults,
which means that they may behave arbitrarily and as if controlled by an imag-
inary adversary. All non-faulty nodes are called honest or correct. We consider
that these faults can occur adaptively meaning an adversary can choose and
control the faulty nodes on the fly.

Cryptographic primitives. The protocol uses public-key digital signatures.
We assume an idealized public-key infrastructure: each process is associated with
its public/private key pair that is used to sign messages and verify signatures
of other nodes. A message m sent by a process pi that is properly signed with
the private key of pi is said to be properly authenticated. We denote by mσi

a
message m signed with the private key of a process pi. In practice, we would use
the standard EdDSA and ECDSA schemes for digital signatures. It is assumed
that signatures cannot be forged.

Oracle smart contract and report. The goal of the system is to produce
reports containing a sufficient number of signed observations from the oracle
nodes when a client requests them. Differently from Breidenbach et. al in [2],
the reports are submitted to the oracle smart contract C by some node during a
proof-of-work inspired cryptographic race. The smart contract C corresponds to
a single asset pair (e.g. BTC/USD). When submitted a report, the oracle smart
contract C verifies the signatures of each observation as well as the proof-of-
work. If they are valid, the oracle smart contract updates its variable lastPrice
to the median of observation values contained in the report. Using the median
value among more than 2f observations guarantees that the reported value is
plausible in the sense that malicious nodes cannot move the value outside the
range of observations produced by honest nodes. The value lastPrice can then
be consumed by the requesting client or by any other user. The requesting client
pays a fee for each new report he requests, which will be distributed equally
among the observant nodes.

Distributed Blockchain Price Oracle 5

3 Decentralized price Oracle problem

In this section, we will define the decentralized oracle problem and review ma-
jor threats and constraints that must be taken into account when designing a
decentralized oracle system.

The blockchain Oracle problem is well known in the ecosystem and the grey
literature. It is also described in [4] by Cardelli et al. The oracle problem de-
scribes the ambivalence between blockchain systems that are supposed to be
immutable through decentralization and oracles that, by definition, input out-
side world data that cannot be verified by the blockchain itself. A blockchain is
a self-contained environment with its own validation rules and consensus mecha-
nism. This isolation is what makes blockchain transactions safe and immutable.
However, when data is inputted from off-chain data sources, the said data cannot
be verified by the blockchain itself. A piece of software, in this case an oracle, is
required to guarantee the veracity of the inputted data. As the safety of a system
is limited by its weakest element, in a system where the execution of a smart
contract depends on the data provided by an oracle, the oracle may be a single
point of failure. This oracle problem has already led to several exploits. In 2019,
an oracle reported a price a thousand times higher than the actual price [5],
which led to a one billion U.S. dollars loss. Funds have then been recovered but
it shows how crucial is it to have reliable oracles. To be best of our knowledge
there is no formal definition of the blockchain price oracle problem.

The price oracle smart contract can be seen as a particular single-writer
multi-reader shared register. The variable of this particular shared register,
lastPrice, can be read by any client of the system. This variable can be modified
only by the smart contract C, and the modification is triggered each time clients
invoke requestNewPrice(). We propose below a definition of the blockchain
price oracle problem in terms of liveness, integrity and uniformity.
Definition 1 (Decentralized blockchain price oracle) A decentralized blockchain
price oracle should satisfy the following properties :

– ∆-Liveness: There exist a ∆ > 0 such that if a client invokes a price request
to the smart contract C at time t > 0 then a corresponding report r will be
retrieved from C within t+∆ time.

– Observation integrity: If a report with v is declared final by C, then v is
the observation of a correct oracle or in the range of the observations of the
two correct oracles in the system.

– Uniformity: If two clients, c1 and c2 read the oracle lastPrice at time t > 0
then the same price report will be retrieved by both of them.

The price oracle smart contract can be seen as a shared register. The vari-
able of this particular shared register, lastPrice, can be read by any client of
the system. This variable can be modified only by the smart contract and the
modification is triggered each time clients invoke price requests.

Designing distributed price oracles is not an easy task. In the following, we
discuss several difficulties.

6 L. Lys et al.

Freeloading attacks The freeloading attack, also known as mirroring is for-
mally described in [7]. It refers to the technique employed by malicious oracles,
that instead of obtaining data from their data source, replicate the data fetched
by another oracle. Since oracle systems are often comprised of a reputation sys-
tem, a ”lazy” oracle could simply copy the values provided by a trusted oracle
instead of making the effort of fetching the data itself. By doing so, the lazy
oracle maximizes its chances of receiving its payout and avoids the cost of re-
questing data from sources that might charge per-query fees. As explained in [9],
this freeloading attack weakens the security of the system by reducing the di-
versity of data sources and also disincentivizes oracles from responding quickly:
Responding slowly and freeloading is a cheaper strategy.

Majority attacks Much like in blockchain systems, oracle systems may be
threatened by majority attacks. If an entity controls a majority of oracles in a
network, it may be able to manipulate the data to provide prices that diverge
from the real observable data.

Price slippage Price slippage refers to the fact that the price returned by an
oracle may differ from the actual price. This may be intentional or unintentional
but the result is the same. Price slippage may be the consequence of delays
generated by the transaction validation time. Indeed real-world prices evolve
continuously while the events on a blockchain are discrete. The state of the
chain only changes when a new block is added.

Data source manipulation The source which the data is gathered from might
also be a vector of attack. Indeed, if the data source or the communication
channel between the oracle and the data source can be altered, the resulting
observation will ultimately be altered too.

4 PoWacle Protocol Overview

In this section, we propose first a high-level overview of the PoWacle protocol
then propose the protocol pseudo-code.

The goal of the protocol is to publish reports containing price observations
from the oracles when a client makes a request. The oracle nodes are connected
to external data sources such as a market’s APIs where they find their price data.
When a client requests a price, the oracles will exchange messages containing
hash-signed observations of the asset’s price. It is very important to note that
the content of the observations exchanged is not readable by the other oracles,
as they are hashed observations. This is to avoid the freeloading problem. Each
oracle node listens for incoming hash-signed observation messages and much
like in a proof-of-work-based blockchain builds a pool of messages in their local
memory. The difference with a proof-of-work-based blockchain is that instead
of transactions, the pool contains hash-signed price observations, and instead
of producing a block of transactions, the goal is to produce a report containing

Distributed Blockchain Price Oracle 7

the said observations. To select the oracle that will be responsible for proposing
and publishing the report, a proof-of-work protocol is applied. Once they have
received hash-signed observations from a sufficient number of nodes, i.e. more
than 2f + 1, the oracles start the report mining process. They try to build a
report proposal whose hash value is inferior to some target difficulty number.
When a node finds a report proposal whose hash value is inferior to the target
difficulty number, he broadcasts the report proposal to the network. On receiving
the report proposal, the other nodes return the readable pre-image of their hash-
signed observations. For each received observation, the proposer verifies that the
observation matches its hash. Once he has collected at least 2f+1 clear observa-
tions, he submits the report proposal to the oracle smart contract along with the
proof-of-work. The oracle smart contract verifies the proof-of-work, the match
between observations and their hashes, and the signatures. Once all verifications
are done, the smart contract calculates the median of the received observations
and updates the price of the asset. The price can then be consumed by the
client. The smart contract calculates the payout and updates the reputation of
the oracle nodes.

The incentive mechanism is designed such that each oracle that produced an
observation will be paid equally. Thereby, the report proposer, the one that won
the proof-of-work and published the report to the chain, has not more incentives
than the other oracles. This should help to limit the computing power that the
oracles will put in the network, and thus the operating cost of the system. In
the meantime, the oracles are still encouraged to find valid reports regularly,
as this is the way they get paid. The goal is to have an incentive equilibrium
between producing reports regularly and having a low operating cost in terms
of computing power.

Let us unfold the main steps of the protocol:

1. The client requests a new price to the smart contract C and pays a fee.
2. The oracles pick up the request and gather price data from their data sources.

They create their observations, hash and sign them. They broadcast it to
the oracle network through gossiping.

3. On receiving the hashed signed observations, the nodes verify the signatures.
If they are correct, they add the observation to their local memory. Once
they have received a sufficient number of hashed signed observations, i.e.,
above the 2f +1, the oracles sequentially rearrange their report and a nonce
until they find a report proposal whose hash value is below a target difficulty
number.

4. The first oracle to find a valid report proposal broadcast it to the oracle
network via gossiping.

5. On receiving a valid report proposal, the oracles whose observations were
contained in the report return the readable pre-images of their hashed signed
observations to the candidate leader.

6. Once he has collected enough pre-images, the proposer verifies that they
match their hashes. If they do match, he submits the report to the smart
contract C.

8 L. Lys et al.

7. On receiving a report proposal, the smart contract C verifies the signatures of
each individual observation as well as the matching between clear observation
and their hash. If everything matches, the smart contract verifies the proof
of work. It also verifies that there are at least 2f + 1 clear observations in
the report. Once all checks are passed, the smart contract updates the price,
making it available to the client. The report becomes final.

8. The smart contract C calculates the payouts and updates the reputations.

5 Protocol detailed description

We provide a detailed description of the protocols using an event-based notation
(e.g. [3] Chap. 1).

The protocol consists of an oracle smart contract hosted on a blockchain
presented in Algorithm 1 and an oracle network. The nodes in the oracle network
react to events triggered by the oracle smart contract C. The oracle nodes can
at any time read the state and the variables of C. Protocol instances that run
on the same oracle node (instances of Algorithm 2,3 and 4) also communicates
trough events. In the following, Algorithm 1 is the oracle smart contract C,
Algorithm 2, executed by every node is a daemon that reacts to events triggered
by C. Algorithm 3 is the observation gossip protocol and Algorithm 4 is the
report mining protocol.

5.1 The Smart Contract (C)

The protocol Algorithm 1 is orchestrated by an oracle smart contract C hosted
on a blockchain. Each oracle smart contract represents a price feed for a single
pair of assets, for example, USD/BTC for bitcoin versus U.S. dollars. The oracle
smart contract C consists of four primitives; identity, proof-of-work, incentive,
and reputation. We will review individually each primitive in this section.

Identity. The oracle smart contract is responsible for storing the identity of
the oracles nodes. It maintains a list of oracle nodes and their public keys.
The set of oracles is managed by an owner with administrative power. How the
administrator curates the list of authorized oracles is behind the scope of this
document. The oracle list is used to verify signatures.

Proof-of-work. The proof-of-work primitive is responsible for verifying the
proof-of-work that is submitted along with each report. It verifies the match
between hash-signed and clear observation, verifies that there are more than 2f
clear observations, requests the identity primitive to verify the signatures, and
finally verifies the proof-of-work. To do so, it checks that the submitted report
header hash value is below the target difficulty number. If so, the report is final
and the contract updates the last price value, making it available to the client.

The proof-of-work primitive is also responsible for adjusting the difficulty
target number. To do so it uses a system similar to Bitcoin’s difficulty adjustment

Distributed Blockchain Price Oracle 9

[8]. For each new request, the smart contract C records the time difference
between the moment the request was made by the client, and the moment the
corresponding report was submitted. Then for every new report, the contract
calculates the average report generation time over the last hundred reports.
It then adjusts the target difficulty number to have a stable average report
generation time. To do so, it multiplies the current difficulty target number
by a ratio between observed and desired report generation time. Target report
generation time is specified by the owner with administrative power. What value
should be chosen is out of the scope of this document and would require further
analysis.

Incentive. The incentive primitive calculates and broadcasts the payouts to
the oracles. For each final report, the contract C pays an equal share of the total
fee to each oracle that produced an observation that was included in the report.

As introduced earlier, the incentive system must be designed to create an
incentive equilibrium between producing reports regularly and having a low op-
erating cost in terms of computing power. Thus, the payout received by the
report publisher will be equal to the payouts received by the other oracles that
produced an observation contained in the report. The only difference is that the
report producer gets his transaction fees refunded.

In order to reduce transaction fees, the payout is not automatically trans-
ferred at each report. Instead, the smart contract C records the total payout
each oracle is eligible to, and they can cash out on request.

Reputation. The reputation system is primarily used by the oracles to prioritize
the observation they will include in their report proposal. Indeed, an adversarial
oracle could choose not to send back his clear observation at stage 7, thus slowing
down protocol execution. To minimize this risk, each oracle is associated with
a reputation number corresponding to the number of his observations that have
been included in past valid reports. When an oracle tries to find a valid report
proposal, it is in his interest to prioritize observations from nodes that have
a high reputation number. When a submitted report becomes final, the smart
contract increases by one the reputation number of each oracle that produced
an observation contained in the said report.

5.2 The oracle network

In this section, we detail the algorithms executed by nodes in the oracle network.
It consists of three algorithms. Algorithm 2 is a daemon that listens for event
triggered by C. Algorithm 3 is instantiated by every pi for each new request by
the daemon. Its role is to propagate and collect observations among the network.
Algorithm 4 is the report mining protocol. Its role is to build a report proposal
out of the delivered observation and eventually submit this report to the oracle
smart contract C. The oracle smart contract C maintains a list of oracles, their
public keys, and their reputation. The client makes his request to the smart
contract C. The instances of Algorithm 3 and Algorithm 4 can read the state of

10 L. Lys et al.

Algorithm 1 Oracle smart contract
state

lastPrice← ⊥ : last valid reported price
reports← [⊥] : table of valid reports
oracles← [⊥]n : list of oracles’ public keys and their reputation
targetDifficulty ← 0 : current difficulty target number
tergetReportT ime← 0 : Target report generation time

function requestNewPrice()
reports[requestID].requestSubmitted← time.now
Emit event newRequest()

function verifyProofOfWork(reportHeader)
return hash(reportHeader) ≤ targetDifficulty

function verifySignatures(hashSignObs)
return ∀ hσi ∈ hashSignObs|verifyi(hσi)|

function verifyHashes(hashSignObs, observe)
return ∀oi ∈ observe|hash(hashSignObs[i] = hash(oi))|

function submitReport(requestID, [reportHeader, hashSignObs, observe])
if verifyProofOfWork(reportHeader) ∧ verifySignatures(hashSignObs) ∧
verifyHashes(hashSignObs, observe) ∧ observe.length ≥ 2f + 1 then

reports[requestID]← [reportHeader, observe, hashSignObs]
reports[requestID].requestFulfilled← time.now
lastPrice← median(observe)
∀oi ∈ observe|oracles[i].reputation← oracles[i].reputation+ 1|
adjustDifficulty()
Emit event finalReport(requestID)

end if

function adjustDifficulty()
l = reports.length
sum←

∑l

i=l−100
reports[i].requestFulfilled− reports[i].requestSubmitted

averageReportT ime← sum/100 ▷ Calculate the average report generation time
over the last 100 reports
targetDifficulty ← targetDifficulty ∗ averageReportTime

targetReportT ime
▷ Adjust the difficulty

by a factor of the ratio between observed and desired report generation time

function registerOracle(publicKey) ▷ Function restricted to administrator
oracles.append([publicKey, 0]) ▷ Register new oracle and set reputation to 0

function setTargetReportT ime(time) ▷ Function restricted to administrator
targetReportT ime← time

Distributed Blockchain Price Oracle 11

C at any time. They can access the list of oracles, their public keys, reputation,
current request-id, and current target difficulty number. Those public variables
are used implicitly in the pseudo-code presented here. We denote by signi(m) the
function that signs the message m with the private key of process pi producing
the signed message mσi

. Similarly verifyi(mσi
) verifies the signature of signed

message mσi
with the public key of process pi.

The daemon. Algorithm 2 is a deamon that is executed continuously by every
process. This deamon awaits for newRequest events from C to instantiate the
observation gossip protocol presented in Algorithm 3. It is also responsible for
stopping instances of Algorithm 3 and Algorithm 4 when a finalReport event
is emitted by C.

Algorithm 2 Oracle daemon executed continuously by every pj ∈ P

Upon event newRequest(requestID) from C do
initialize instance (requestID) of observation gossip protocol

Upon event finalReport(requestID) from C do
abort instance gossip protocol (requestID)
abort instance report mining (requestID)

The observation gossip protocol. Algorithm 3 is the observation gossip pro-
tocol. Its goal is for the nodes to propagate observations messages among the
network. It is instantiated by Algorithm 2 upon new request event emitted by
C. Oracle nodes gather data from sources, hash and sign their observation, and
broadcast it to every pi ∈ P . Every oracle pi maintains a list hashSignObs of
hashed-signed observations delivered by any pj ∈ P . When a node pi has re-
ceived at least 2f + 1 hashed-signed observations, he starts the report mining
protocol presented in Algorithm 4. For the sake of simplicity and readability, we
separated Algorithm 3 and Algorithm 4. In practice, those algorithms will be
executed in parallel on a single machine and thus share the same local memory.
This means that when Algorithm 3 starts a report mining instance for request
requestID, the list of hashed observations hashSignObs can still be updated by
the observation gossip protocol. The report gossip protocol continues execution
even if the report mining process has started. It is in the interest of the nodes
to include as many observations as possible in their report proposal to minimize
the chances of an adversarial oracle blocking execution. This will be further de-
veloped in the paragraph about the report mining process. Yet it must be noted
that the abort condition of the observation gossip process is a finalReport event
from C.

The report mining protocol Algorithm 4 presents the report mining process.
Much like in a proof-of-work-based blockchain the principle is for the oracles to

12 L. Lys et al.

Algorithm 3 Observation gossip protocol instance requestID (executed by
every oracle pi)

state
observe← [⊥]n : table of observations received in OBSERVATION messages
hashSignObs ← [⊥]n : table of hashed signed observations received in HASHED-
OBSERVATION messages

Upon initialization do
v ← gather price value from data source
observe[i]← [time.now, assetPair, v]
hashSignObs[i]← signi(hash(observe[i]))
send message[HASHED-OBSERVATION, hashSignObs[i]] to all pj ∈ P

Upon receiving message [HASHED-OBSERVATION, hσj] from pj do
if verifyj(hσj) then

hashSignObs[j]← hσj

end if

Upon |{pj ∈ P |hashSignObs[j] ̸= ⊥}| = 2f + 1 do
initialize instance report mining (requestID)

Upon receiving message [REPORT-PROPOSAL,hashSignObs′,reportHeader]
from pl do
if hashSignObs[i] ∈ hashSignObs′ then

if {∀ hσj ∈ hashSignObs′|verifyj(hσj)|} ∧ hash(reportHeader) ≤
targetDifficulty ∧ hashSignObs′.length ≥ 2f + 1 then

send message[OBSERVATION, observe[i]] to pl
end if

end if

rearrange the content of the report until the hash value of the report header is
below a target difficulty number. Each report maintains a pool hashSignObs of n
pending observations that have not been yet included in a report. An observation
has three attributes, the target asset pair, the observed price, and a timestamp.
To this observation correspond an observation header that contains the public
key of the oracle, the hash of the observation, and the oracle’s signature. When
oracle nodes try to find a valid report, they don’t hash the full report. Instead,
much like in a proof-of-work-based blockchain, they only hash the header of
the report. This header consists of a timestamp a nonce and most importantly
the observations hash. The observations hash would correspond in a proof-of-
work blockchain to the Merkle root. But because we don’t need simple payment
verification, building a Merkle tree out of the list of observations is unnecessary.
Hashing the concatenated list of observations is sufficient in our case.

The way nodes rearrange their hash-signed observation list to find a valid
report proposal is not explicitly developed in Algorithm 4. Indeed, similarly to
proof-of-work-based mining, it is the responsibility of the nodes to find a strategy

Distributed Blockchain Price Oracle 13

that maximizes their rewards and reduces their costs. However, we would advise
that they rearrange their list according to the reputation of the other nodes.
Indeed, the only way for an adversarial oracle to slow down or block protocol
execution is not to respond with an OBSERVATION message on receiving a
REPORT-PROPOSAL message. In order not to include dishonest parties in
their report proposal, oracles should prioritize observations from oracles that
have a good reputation. It is to be noted that to be considered valid by the
smart contract C, a report does not need to have a clear observation for every
hash-signed observation contained in the hashSignObs list. Indeed, the only
requirement is that the report contains at least 2f + 1 clear observations.

Algorithm 4 Report mining algorithm instance requestID executed by every
pi that has delivered more than 2f + 1 hash-signed observation
state

reportHeader ← ⊥

Upon initialization do
loop

nonce← 0
hashSignObs′ ← prioritize(hashSignObs) ▷ Create a prioritized copy of the

hash-signed observation list
while reportHeader = ⊥ ∨ nonce ̸= 232 do

if hash(time.now, nonce, hash(hashSignObs′)) ≤ targetDifficulty then
reportHeader ← [time.now, nonce, hash(hashSignObs′)]
send message[REPORT-PROPOSAL, hashSignObs′, reportHeader] to

all pj ∈ P
break

end if
nonce← nonce+ 1

end while
end loop

Upon receiving message [OBSERVATION, oj] from pj do
if hash(oj) = hashSignObs[j] then

observe[j]← oj
end if

Upon observe.length ≥ 2f + 1
C.submitReport(requestID, [reportHeader, hashSignObs′, observe]

6 Analysis

In this section, we prove that the PoWacle protocol satisfies the properties of
the oracle problem definition as presented in Section 3.

14 L. Lys et al.

Lemma 1. The PoWacle protocol satisfies the liveness property of a decentral-
ized blockchain price oracle.

Proof. Consider a client request made to C at time t. Every correct node is
triggered by this event and broadcasts its observation to every pj ∈ P . Recall
that correct oracles resend every message until the destination acknowledges it.
Even if an adversary coalition can choose faulty nodes on the fly, they can not
control more than f < n/3 process. Thus every correct oracle should eventually
deliver a hash-signed observation from every correct node. This also holds for
the process where nodes send clear observations to the proposer. Consequently,
every correct node should be able to start the mining process. Let d > 0 be the
difficulty target number. Due to the uniformity and non-locality properties of
hash functions (outputs should be uniformly distributed), for each trial, there
is a non-zero chance of finding a report whose hash value h is less or equal
than the difficulty d. Consequently, there is a finite ∆ within which an oracle
should find and submit a valid report to C. Because the observations contained
in the report are from correct nodes, C should declare the report final. Thus the
protocol satisfies the ∆-Liveness property of a decentralized blockchain price
oracle.

Lemma 2. The PoWacle protocol satisfies the observation integrity property of
a decentralized blockchain price oracle.

Proof. Consider a protocol execution where a report with value v has been de-
clared final by C. To be considered final by C, a report must contain at least
2f +1 observations that have been individually signed by each oracle. The value
v is the median of those observations. Since there are at most f faulty nodes, out
of the 2f+1 observations, more than half have been produced by a correct node.
Trivially, the median of those observations is either the one of a correct node or
the one of a faulty node but in the interval between a larger and a smaller value
provided by honest nodes. Thus, the protocol satisfies the observation integrity
property of a decentralized blockchain price oracle.

Lemma 3. The PoWacle protocol satisfies the uniformity property of a decen-
tralized blockchain price oracle.

Proof. Recall that the value lastPrice of C can only be updated by the smart
contract itself when requestNewPrice is invoked by a client. Thus trivially, if
two clients c1 and c2 read this value at some time t > 0, the value they will read
corresponds to the same report.

7 Conclusions

Price oracles are at the core of various applications in Decentralized Finance. It
should be noted that due to security attacks these oracles are difficult to design
in a distributed fashion. In this paper, we propose and prove correct the first dis-
tributed price oracle designed for asynchronous Byzantine prone environments.

Distributed Blockchain Price Oracle 15

Price oracles have some similarities with classical distributed shared registers
however, the presence of smart contracts (pieces of code) that automatically
execute on an underlying blockchain make their particularity. In future works,
we would like to investigate how price oracles can benefit from the existing
distributed system literature. In the same vein, we will like to investigate new
distributed abstractions that encapsulate the blockchain technology specificity.

References

1. Bandchain: Band protocol system overview, https://docs.bandchain.org/whitepaper/system-
overview.html

2. Breidenbach, L., Cachin, C., Coventry, A., Juels, A., Miller, A.: Chainlink off-
chain reporting protocol. URl: https://blog. chain. link/off-chain-reporting-live-on-
mainnet (2021)

3. Cachin, C., Guerraoui, R., Rodrigues, L.: Introduction to reliable and secure dis-
tributed programming. Springer Science & Business Media (2011)

4. Caldarelli, G., Ellul, J.: The blockchain oracle problem in decentralized finance—a
multivocal approach. Applied Sciences 11(16), 7572 (2021)

5. Connell, J.: Sophisticated trading bot exploits synthetix oracle, funds recov-
ered (7 2019), https://cointelegraph.com/news/sophisticated-trading-bot-exploits-
synthetix-oracle-funds-recovered

6. DOS: A decentralized oracle service boosting blockchain usabil-
ity with off-chain data & verifiable computing power (2011),
https://s3.amazonaws.com/whitepaper.dos/DOS+Network+Technical+Whitepaper.pdf

7. Murimi, R.M., Wang, G.G.: On elastic incentives for blockchain oracles. Journal of
Database Management (JDM) 32(1), 1–26 (2021)

8. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system. Decentralized Busi-
ness Review p. 21260 (2008)

9. Paradigm: Chainlink: Detailed review on the project (3 2019),
https://medium.com/paradigm-fund/chainlink-detailed-review-on-the-project-
9dbd5e050974

