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Abstract. Unlike conventional ABE systems, which support Boolean attributes
(with only 2 states: 1 and 0, or "Present" and "Absent"), weighted Attribute-
based encryption schemes also support numerical values attached to attributes,
and each terminal node of the access structure contains a threshold for a minimum
weight. We propose a weighted ABE system, with access policy of logarithmic
expansion, by dividing each weighted attribute in sub-attributes. On top of that,
we show that the decryption can be parallelized, leading to a notable improvement
in running time, compared to the serial version.
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1 Introduction

As interest in Cloud Computing and Internet of Things grew significantly, so did the
interest in more expressive encryption and access control possibilities. In this context,
Attribute-based encryption (ABE), introduced in (Sahai and Waters, 2005) as an refine-
ment for Identity-based Encryption (Shamir, 1984), witnessed great attention in the past
decade.

Depending on how the access policy is linked to the ABE systems, we have two
main types:

– Key-policy ABE (KP-ABE), first introduced in (Goyal et al., 2006) encrypts a mes-
sage alongside some attributes; the decryption keys have an access structure (such
as a Boolean formula) attached. The decryption is possible if and only if the key’s
access structure is satisfied with the ciphertext’s attributes.

– Ciphertext-policy ABE (CP-ABE), in contrast with KP-ABE, links the access struc-
ture to the ciphertext, and attributes to the decryption keys. First such system was
proposed in (Bethencourt et al., 2007).

Researchers are trying to find more and more flexible access structures that can be
used in ABE systems. Starting from well known ABE systems for Boolean Access Trees



2 A. Ioniţă

(Goyal et al., 2006; Bethencourt et al., 2007) and Linear Secret Sharing Schemes (Wa-
ters, 2011), more complex ones are created for Boolean Circuits (Ţiplea and Drăgan,
2014; Hu and Gao, 2017), non-monotonic access structures (Ostrovsky et al., 2007) or
compartmented access structures (Tiplea et al., 2020).

While conventional ABE supports only two states for each attribute ("True"/"False"
or "Present"/"Absent"), a Weighted ABE system extends the supported access structures
to more complex structure: Each attribute can have a value associated to it. For exam-
ple, in order to describe a role in a software company, we could assign to each position
an integer, decreasing according to the company’s hierarchy: "ROLE:4" could be a Ju-
nior Developer, "ROLE:3" a Senior Developer, "ROLE:2" - Manager, and "ROLE:1"
- Director. Therefore, different types of ABE were constructed in order to meet these
needs, such as ABE with Range Attributes (Gay et al., 2015; Attrapadung et al., 2018),
or Weighted ABE (Wang et al., 2016; Li et al., 2021; Liu et al., 2014).

Imagine that in a large company, which uses a Cloud service to share files and
important data with customers, all files are encrypted using depictive attributes, such
as file type ("TYPE:Java") or last modification date ("YEAR":2020). Then consider
a Manager that must be have access to all "SQL" or "CSV" files written (and later
encrypted) by developers in the last year. Using KP-ABE with a weighted "ROLE"
attribute, this problem could be solved using an access policy describing:

("ROLE>2" AND "YEAR>2020" AND

("TYPE:SQL" OR "TYPE:CSV") )

Without weighted attributes, in order to perform this task, the access policy would
need to have an attribute for each year and each role. This will become less and less effi-
cient with the increase of the maximum possible attribute numerical value. Our system
provides a more efficient solution to this problem.

1.1 Related Work

The problem of weighted attributes and integer comparisons in the access structure has
been a problem of high interest, being addressed even from the first CP-ABE system
proposed by Bethencourt et al. (Bethencourt et al., 2007) in 2007. They described a
method for realizing integer comparisons using access trees, and by splitting every nu-
merical attribute in 2log(N) values, two for each bit of information.

One of the first Weighted ABE was proposed in (Liu et al., 2014), a key-policy
scheme which used chained components in order to describe a weighted attribute. Thus,
their system is inefficient, the length of the chain being equal to the weight of the at-
tribute, resulting in linear number of components for each attribute.

Wang et al. (Wang et al., 2016) proposed in 2016 a weighted CP-ABE system which
resolves the key escrow problem for use in Cloud Systems. They support both weighted
and binary attributes. However, the size of the ciphertext and the encryption time grow
linear on the attribute weight, with each new weighted attribute.

A more efficient solution for the ciphertext-policy variant was proposed in (Xue
et al., 2017) where the authors achieved logarithmic expansion for each weighted at-
tribute, by using 0- and 1- Encodings of the weights.
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A very recent work (Li et al., 2021) presents another Weighted CP-ABE approach
using 0- and 1-Encodings, which proves to be the most efficient in practical perfor-
mance tests among the existing CP-ABE scheme with weighted attribute support. Their
system also support online and offline encryption, and it is designed for the Internet of
Health Things.

Another work in this area was proposed by Attrapadung et al. (Attrapadung et al.,
2018) in 2018, which addresses the problem of range attributes. Unlike weighted at-
tributes, which have only a lower bound on the attribute weight, a range attribute can
also have an upper bound for it’s value. Their system is the first one with sub-linear
complexity and no restrictions upon the access tree policy.

ABE with parallel decryption. Although most ABE systems could be implemented us-
ing parallelized algorithms, there are few works addressing this issue. The only relevant
previous work we could found being an ABE system for Internet of Vehicles, very re-
cently proposed in (Feng et al., 2020). They describe a general method for outsourcing
the decryption over multiple machines for parallel computation in ABE systems with
trees as access policy. They ensure that the parallel outsourcing decryption is secure on
a honest, but curious outsourcing server. We show that in our system the parallelization
of the decryption can be done very easily, without other alterations of the system, but
not supporting, out of the box, outsourcing to an external server.

1.2 Our Contribution

Using a similar idea to that described in (Bethencourt et al., 2007) for integer compar-
isons (using sub-trees in leaf nodes), we have constructed on top of (Goyal et al., 2006)
a weighted KP-ABE system. However, this approach works just as good for CP-ABE.

Compared to other Weighted ABE schemes, our system uses a simpler mathematical
construction, while having similar performance in terms of algorithms running time.

Our main goal is to show that this simple construction leads to an efficient and
versatile weighted ABE system. When compared to existing weighted ABE system, our
system will not be the most efficient, but it is not far off either. The theoretical analysis
of our schemes compared to the existing ones shows that there not a big difference
between them.

The main strength of our scheme is the simplicity of the construction, which opens
the possibility of adding with ease new features to our scheme: access revocation, en-
cryption/decryption outsourcing or decentralization.

Furthermore, we have shown that our decryption algorithm can be parallelized in
order to make it faster. We have compared the parallelized version with the sequential
one, in order to highlight the practical efficiency gain of this optimization.

2 Preliminaries

Notations and abbreviations
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Notation Meaning
Γ An node in an access tree
kΓ threshold value for node Γ

σΓ number of children of node Γ

WA weight of attribute A
kΓ/σΓ A "k out of σ" threshold gate
attr(Γ) attribute corresponding to node Γ

ωΓ Minimum weight required for attr(Γ)
InΓ Set of input nodes for gate Γ

∆i,S(x) Lagrange coefficient: ∏ j∈S, j 6=i
x− j
i− j

Bilinear maps (Goyal et al., 2006) Given G1 and G2 two multiplicative cyclic groups
of prime order p, a map e : G1×G1→ G2 is called bilinear if it satisfies:

– e(xa,yb) = e(x,y)ab, for any x,y ∈ G1 and a,b ∈ Zp;
– e(g,g) is a generator of G2, for any generator g of G1.

G1 is called a bilinear group if the operation in G1 and e are both efficiently computable.

Decisional Bilinear Diffie-Hellman Assumption Let a,b,c,z ∈ Zp chosen randomly,
and g a generator of G1.

The decisional BDH Assumption (Sahai and Waters, 2005) is that no polynomial-
time algorithm B can distinguish between (A = ga,B = gb,C = gc,eg,gabc) and (A =
ga,B = gb,C = gc,eg,gz) with a non-negligible advantage.

The advantage of B is:

|Pr[B(A,B,C,e(g,g)abc)]−Pr[B(A,B,C,e(g,g)z)]|

where the probability is taken over the random choice of the generator g, the random
choice of a,b,c,z ∈ Zp, and the random bits consumed by B

Access Structures (Beimel, 2011) Let p1, . . . , pn be a set of parties. A collection A ⊆
2{p1,...,pn} is monotone if B ∈ A and B ⊆ C imply that C ∈ A. An access structure is a
monotone collection A⊆ 2{p1,...,pn} of non-empty subsets of {p1, . . . , pn}. Sets in A are
called authorized, and sets not in A are called unauthorized.

Weighted Access Tree. A weighted access tree is a tree access structure where
each internal node Γ represents a threshold gate: it has an output wire (which leads

to it’s parent node in the tree), a number of input wires (σΓ) and a threshold value kΓ,
1 ≤ kΓ ≤ σΓ. A node of such type is considered to be satisfied if at least kΓ of it’s σΓ

children are satisfied.
For every leaf node Γ, there exist a corresponding attribute referred as attr(Γ).

These gates can be of two types:

– boolean - the node is satisfied if the corresponding attribute is present, and it is
unsatisfied (evaluated with ⊥) if the attribute is missing.

– weighted - the node has a minimum required weight ωΓ attached to it. This gate
receives as input an attribute A = attr(Γ) with an integer weight attached WA. The
gate is satisfied if and only if WA ≥ ωΓ.

The weighted access tree is satisfied, if its root node is satisfied.
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KP-ABE Model. A Key-Policy Attribute-Based Encryption scheme, as first described
in (Goyal et al., 2006), consists of four algorithms:

setup(λ) A randomized algorithm that takes as input the implicit security parameter λ

and return the public and secret keys (MPK and MSK).
encrypt(m,A,MPK) A probabilistic algorithm that encrypts a message m under a set

of attributes A with the public key MPK, and outputs the ciphertext E.

keygen(C ,MPK,MSK) This algorithm receives an access structure, public and master
keys, and outputs corresponding decryption keys DK.

decrypt(E,DK,MPK) Given the ciphertext E and the decryption keys DK, the algo-
rithm decrypts the ciphertext and outputs the original message.

Selective-Set Model for ABE. Goyal et al. propose in (Goyal et al., 2006) a Selective-Set
Model for ABE. This security model also applies to our system, with the observation
that the attributes can be weighted or binary, and the access structure has thresholds in
the leaf nodes for the weighted attributes.

Init The adversary declares the set of attributes (weighted and binary) A , that he wishes
to be challenged upon.

Setup The challenger runs the Setup algorithm of ABE and gives the public parameters
to the adversary.

Phase 1 The adversary is allowed to issue queries for private keys for many access
structures A j , where A /∈ A j for all j.

Challenge The adversary submits two equal length messages M0 and M1. The chal-
lenger flips a random coin b, and encrypts Mb with A . The ciphertext is passed to
the adversary.

Phase 2 Phase 1 is repeated.
Guess The adversary outputs a guess b′ of b. The advantage of an adversary A in this

game is defined as Pr[b′ = b]− 1
2 .

3 Our Construction

We present a concrete KP-ABE construction for our system. We make use of an al-
teration of the access tree, similar to the one propose in (Bethencourt et al., 2007), in
order to support integer comparisons. At each leaf node we incorporate a sub-tree of
logarithmic size which simulates the comparison between the attribute weight and the
required attribute threshold weight in the access structure.

The construction from (Bethencourt et al., 2007) presumes that for each attribute
with values in {0 · · ·N} we will have 2log2(N) sub-attribute, two for each bit positions,
covering the cases when each bit is either 0, or 1. Our proposal is to have sub-attribute
only for the bits that are set to 1. In this way, we slightly reduce the number of attributes
needed in the encryption phase: Instead of giving exactly log(N) attributes, one for each
bit of information.

In (Bethencourt et al., 2007), in order to model a weighted attribute A with weight
13= (01101) in a system which supports a maximum weight of 31, 5 sub-attributes will
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Fig. 1: sub-circuit for comparison "> 13" (13 = (1101)2)

be needed: A0∗∗∗∗,A∗1∗∗∗,A∗∗1∗∗,A∗∗∗0∗,A∗∗∗∗1. Our proposal consists in having sub-
attributes only for the bits set to 1 in the weight’s binary representation. Thus, in our
model, for the weight 13 we will have sub-attributes: A0,A2,A3, since 13= 20+22+23.

However, with this approach, we lose the possibility of creating other type of com-
parisons except "greater than" (">").

Since we want to check if the attribute’s value is greater than the value ωΓ required
in the leaf node Γ, we process ωΓ’s bits b` . . .b1b1 in order to create the sub-tree. First,
we eliminate the trailing (least significant) zero’s from it’s binary representation to ob-
tain ω′

Γ
= (b` . . .bi+1bi) such that bi = 1 and bi−1 = · · · = b0 = 0 (These bits are irrel-

evant when checking if some weight WA, with A = attr(Γ) is greater than ωΓ). Then,
for each bit b j from the binary representation of ω′

Γ
, excluding the last bit i, add a new

gate to the system: if the bit is equal to 1, add an AND gate, otherwise add an OR gate.
This new gate will have as parent the previous created gate (or will be connected to the
original tree, if this is the first gate created) and two children:

– the leaf node for the sub-attribute A j (corresponding to the j-th bit from the weight
of attribute A)

– the next internal node (AND or OR gate) to be created.

At the end, create a new leaf node for attribute Ai, corresponding to bit i, and set its
parent to the last created node.

For better understanding, an example sub-tree for the comparison ">13" is described
in Figure 1 (a)

Comparison sub-tree optimization. We observe that our sub-tree for comparisons are
formed out of chained OR and AND gates. Therefore, we can compress this sub-tree,
grouping together similar gates:
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– each k consecutive OR gates can be compressed in one "1 out of k+ 1" threshold
gate.

– each k consecutive AND gates can be compressed in one "k+1 out of k+1" thresh-
old gate.

This optimization can be seen in Figure 1 (b). The complete algorithm, including
the above-mentioned optimization is described in detail in Algorithm 1.

Algorithm 1: transform(T )
1 `N ← log2(N);
2 for every leaf node Γ in T corresponding to a weighted attribute do
3 Let ωΓ = (b` · · ·b1b0)2 the minimum required weight ;
4 Find i such that bi = 1 and bi−1 = · · ·= b0 = 0 ;

// Lest significant bit from ωΓ set to 1
5 Parent← Γ ;

// This is a temporary variable to store the last gate created
6 for every j in {`, · · · i+2, i+1} do
7 Γ j← new leaf node ;
8 if b j = 1 then
9 if b j = b j+1 then

10 kParent ← kParent +1 // increases the threshold, as we will
add another child to this node, but we want it to
remain an AND node.

11 else
12 T mp← new (2/2)-gate (simple AND gate). ;
13 parent(T mp)← Parent ;
14 Parent← T mp ;

15 else
16 if b j = b j+1 then
17 continue ;
18 else
19 T mp← new (1/2)-gate (simple OR gate). ;
20 parent(T mp)← Parent ;
21 Parent← T mp ;

22 parent(Γ j) = Parent // Link the leaf node to the last node
created

23 parent(Γi) = Parent // Link the last leaf, corresponding to bit i, to
the last node created

3.1 Weighted KP-ABE scheme

We describe further the construction of our Weighted KP-ABE scheme. We consider
our attribute universe to be U = {1,2 · · ·M}, each attribute being either a Boolean or a
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numeric attribute. The numeric attributes can have a maximum value of N. Denote with
`= log2(N) the number of bits required to describe these values.

setup(λ) This algorithm receives a security parameter λ, which is used to choose two
multiplicative groups G1 and G2 of prime order p, g a generator of G1, and a bilinear
map e : G1×G1→ G2.
For each attribute, we have two cases, depending on the attribute type:

– If i it is a weighted attribute, then consider ` new sub-attributes: i.0, i.1, · · · i.`.
For each sub-attribute generate random ti. j, i ∈U,1≤ j ≤ `

– If i is a Boolean attribute, choose randomly ti.
Next, choose random y ∈ Zp, and then set the public key as:

MPK = 〈p,G1,G2,e,g,n,Y = e(g,g)y,Tα = gtα〉

and the master key:
MSK = 〈y,(tα)〉

Note that tα can be of type ti or ti. j depending on the attribute type.

encrypt(m,A ,MPK) The encryption algorithm receives a message m, and encrypts it
under the set of attributes A = {(A,WA) | A ∈ U, WA < N}, with the public key
MPK. Normal (Boolean) attributes, can be considered to have weight 0, or 1.
For each attribute A, it chooses the bits j set to 1 from it’s weight WA binary repre-
sentation, and computes for them the values T s

i. j = gti. js, where j is the index of the
respective bit, and i the index of the attribute.
Then, generate a random element s, and compute the ciphertext as:

E = 〈A,E ′ = mY s,T s
i. j = gti. js,gs〉, i ∈U,1≤ j ≤ `i

keygen(MPK,T ) We first need to modify the access tree T such that we include at
the leaf nodes the sub-trees required to make the comparisons for the weighted
attributes, using the function defined in Algorithm 1:

T ′ = transform(T )

First, it generates a random y, and shares it through the tree, starting from the root
node. For each node Γ which has a threshold of kΓ, it generates a polynomial qΓ of
degree kΓ−1.
For the root node, it sets qroot = y, and then chooses kroot−1 more points randomly
to completely define the polynomial. For every internal node Γ, it sets qΓ(0) =
qparent(index(Γ)) and then chooses kΓ − 1 more points randomly. Finally, every
leaf node Γ should receive a value qΓ(0), which is used to compute the key for the
respective node:

DΓ = gqΓ(0)/tx

Note that x is of type i. j, it is a sub-attribute corresponding for bit j in attribute
A = attr(Γ).
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decrypt(E,DK) This algorithm receives a valid ciphertext and a decryption key, and
returns the original message. The simplest form of representation for the decryption
algorithm is as an recursive procedure. Let DecNode(E,D,Γ) be this algorithm,
applied to node Γ with ciphertext E, and decryption key D. For every leaf node:

DecNode(E,D,Γ) =


e(DΓ,T s

x ) = e(g,g)qΓ(0)·s,

if x = attr(Γ) ∈ A
⊥,

otherwise

For the recursive case, we will consider an internal node Γ with threshold kx. Con-
sider the children z of this node such that DecNode(E,D,z) 6=⊥. If the number of
such nodes is smaller than kΓ, then return ⊥, as there is insufficient data to recom-
pute the polynomial. Otherwise, compute the value:

DecNode(E,D,Γ) =

= ∏
z∈InΓ

DecNode(E,D,z)
∆i,In′

Γ

(0)

where i = index(z), In′Γ = {index(z)|z ∈ InΓ}

= ∏
z∈InΓ

(e(g,g)s·qz(0))
∆i,In′

Γ

(0)

= ∏
z∈InΓ

(e(g,g)s·qparent(z)(0))
∆i,In′

Γ

(0)

= ∏
z∈InΓ

(e(g,g)s·qx(0))
∆i,In′

Γ

(0)

= e(g,g)s·qΓ(0)

Calling the function on the root of the tree, we obtain:

R = DecNode(E,D,root) = e(g,g)s·qroot (0)

= e(g,g)ys

Finally, we can recover the message by computing:

m = E ′/R = m · e(g,g)ys/e(g,g)ys

3.2 Security & Extensions

Our system is, actually, an instance of Goyal’s KP-ABE system (Goyal et al., 2006)
with some attribute relabeling. The only concrete change is in the structure of the ac-
cess tree. Therefore, it inherits the latter’s security properties. If an attacker would have
a non-negligible advantage against our scheme, then an attacker with non-negligible
advantage against (Goyal et al., 2006) would also exist. Any access tree with compari-
son sub-trees in the leaf nodes is also a valid input for Goyal’s KP-ABE system (Goyal
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et al., 2006). (We can simply relabel the sub-attributes of form i. j to a single integer
αi. j).

Since Goyal’s KP-ABE system (Goyal et al., 2006) is secure in the Selective Set
Model for ABE, under the decisional Bilinear Diffie-Hellman Problem, this also proves
that our system is secure in the Selective Set Model for ABE, under the same hardness
assumption.

Theorem 1. The Weighted KP-ABE system is secure in the Key-Policy Attribute-based
Selective-Set Model under the bilinear Decisional Diffie-Hellman problem.

Proof. A formal proof is provided in Appendix.

OR and AND gates optimization. In most previous ABE system, OR and AND gates
are simply treated as general threshold gates, k out of n: For OR gate k = 1, and for
AND, k = n. Thus, the secret sharing for these gates is realized in the same manner as
for regular threshold gates, by using Shamir’s secret sharing technique (Shamir, 1979).
While applied to ABE systems, this requires the computation of expensive exponenti-
ations in GT during the reconstruction phase. More exactly, the OR gate requires one
exponentiation, but the AND gate requires n exponentiations. Therefore, we will use in
our system a more efficient method of secret sharing though AND and OR gates, which
was proposed by Tiplea-Dragan in (Ţiplea and Drăgan, 2014). Their method works as
follows:

– OR gates: For this gate, simply forward the value received at the output node to all
children, as each of them should be able to decrypt using it’s own secret.

– AND gates: For this gate, generate for each child node a secret value, such that the
sum of those values equal the value from the output wire of the AND gate.

Since our scheme uses many AND and OR gates for the comparison sub-trees, this
optimization should have a noticeable effect on the running time of our scheme. Con-
crete test results can be seen in Section 5

This secret sharing method for OR and AND gates has been proven to be secure and
successfully used in previous ABE constructions, such as (Ţiplea and Drăgan, 2014).

Parallelized decryption During the decryption phase, we can observe that the sub-
trees referring to attribute comparisons are independent one of each other. This means
that the decryption can be done simultaneously on these parts of the access structure,
by creating a new thread for each sub-tree. When the execution of the sub-threads is
finished, the algorithm may resume and compute the reconstruction of the secret on the
rest of the tree.

A graphical representation of the parallelization computation over the comparison
sub-trees can be seen in Figure 2: For each sub-tree corresponding to a weighted at-
tribute we create a new thread which reconstructs the secret for that sub-tree.

Outsourced parallelized decryption Since every comparison sub-structure can be see
as an access tree by itself, we can consider that we have p+1 distinct access trees, for
which we can outsource the decryption (in parallel) of the first p, and then join the rest
with the tree. However, this would require a more complex solution, in order to securely
outsource the decryption on the respective nodes, on untrusted cloud servers.
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Fig. 2: Parallel decryption

3.3 Other Extensions

The tree transformation method can be applied to any CP-ABE or KP-ABE scheme
that has an access tree as policy. Therefore, many existing systems can be extended to
support weighted attributes alongside other features, such as: encryption and decryption
outsourcing (Asim et al., 2014), multi-authority ABE (Chase, 2007), revocation in a
multi-authority system (Qian et al., 2015).

Our proposed alteration for access trees can also be made to Boolean circuits, in
order to add support for weighted attributes, one example of such scheme being (Ţiplea
and Drăgan, 2014) or (Hu and Gao, 2017). The idea is the same as for access trees:
Replacing terminal nodes with small sub-circuits for comparisons.

4 Theoretical analysis

We stress that our construction could easily be applied to any CP-ABE supporting ac-
cess trees. We will thus consider in our comparisons Bethencourt et al.’s - BSW(Bethencourt
et al., 2007) with our construction for weighted attributes.

Key-Policy Schemes The only weighted KP-ABE system we have identified is the one
in (Liu et al., 2014), which has liner expansion in key and encryption/decryption time
per attribute. Some of the CP-ABE systems proposed do have a KP variant, but we have
compared them with our variant of CP-ABE.

Ciphertext-Policy Schemes Although we have not given a proper definition for a CP-
ABE system, it is easy to observe that the tree transformation algorithm can be applied
to the Bethencourt et al.’s system (Bethencourt et al., 2007).

We can also modify the scheme from (Hu and Gao, 2017) in order to obtain a
weighted CP-ABE system for Boolean circuits, but not efficient enough to be used in
practice. However, if we consider the subset of Boolean circuits representing Boolean
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Table 1: Notations used for theoretical analysis

Notation Meaning

N Bit-length of attribute weights
Su Number of attributes in user set.
Sum Number of weighted attributes in user set.
Sun Number of Boolean attributes in user set.
St Number of attributes in access policy.
Stm Number of weighted attributes in AP.
Stn Number of Boolean attributes in AP.
Ep cost of a pairing operation
EG1 One exponentiation in G1
EGT One exponentiation in GT
T Number of interior nodes satisfying the AP

hw(x) Hamming weight

formulas (which can be represented as access trees), we can slightly reduce the com-
plexity compared to the variant in which we used Bethencourt et al.’s system by a con-
stant factor of 2.

This is due to the fact that (Hu and Gao, 2017), when limited to Boolean formulae,
offers a CP-ABE system for access trees, which is more efficient than (Bethencourt
et al., 2007).

As shown from the theoretical and experimental analysis from (Li et al., 2021), we
can observe that the best weighted CP-ABE systems by a considerable margin are LYL+
(Li et al., 2021) and CABE (Xue et al., 2017). These systems are also the only ones
with logarithmic expansion per weighted attribute. Therefore, we will compare our two
variants which rely on BSW(Bethencourt et al., 2007) and HG(Hu and Gao, 2017) with
these two weighted CP-ABE schemes (CABE(Xue et al., 2017) and LYL+(Li et al.,
2021)).

In Table 2 we have listed the theoretical cost of key generation encryption and de-
cryption of the systems described above. The only algorithm with notable theoretical
difference is the decryption algorithm. For the key generation and encryption algorithm,
our scheme has a similar computational overhead compared to CABE and LYL+.

The key generation and decryption algorithm add a computational overhead of
hw(N) per attribute to our scheme, where hw(x) is the Hamming weight (the num-
ber of ones in the binary representation) of x. This is slightly better than log(N) in the
average case, but in worst case, still logarithmic.

5 Experimental results

The single weighted KP-ABE scheme that we have found, is clearly more slow com-
pared to our solution, as it can be seen from the theoretical analysis, excluding the need
of an experimental comparison between the two of them.
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Table 2: Theoretical analysis of weighted CP-ABE schemes
Scheme KeyGeneration

Ours (BSW(Bethencourt et al., 2007)
variant)

[2(hw(N) ·Sum +Sun)+1]EG1

Ours (HG (Hu and Gao, 2017) variant) (hw(N) ·Sum +Sun +1)EG1

CABE(Xue et al., 2017) [2(log2(N) ·Sum +Sun)+1]EG1

LYL+ (Li et al., 2021) (log2(N) ·Sum +Sun +2)EG1

Scheme Encryption

Ours (BSW(Bethencourt et al., 2007)
variant)

[2log2(N) · (Stm +Stn)+1]EG1 +EGT

Ours (HG (Hu and Gao, 2017) variant) [log2(N) · (Stm +Stn)+1]EG1 +EGT

CABE(Xue et al., 2017) (log2(N) ·Stm +2Stn +1)EG1 +EGT

LYL+ (Li et al., 2021) ((log2(N)+2) ·Stm +2Stn +1)EG1 +EGT

Scheme Decryption

Ours (BSW(Bethencourt et al., 2007)
variant)

2(log2(N) ·Sum +Sun)Ep +T ·EGT

Ours (HG(Hu and Gao, 2017) variant) (log2(N) ·Sum +Sun)Ep +T ·EGT

CABE(Xue et al., 2017) (2Su +1)Ep +T EGT

LYL+ (Li et al., 2021) (2Su +1)Ep +T EGT

However, we do want to find out how useful is parallel decryption and the optimiza-
tion of AND and OR gates in practice. We have thus implemented and ran performance
tests over three variants of our scheme:

– "Threshold": this variant uses threshold gates instead of AND and OR gates. No
parallelization is present in this implementation

– "Serial": this variant uses improved secret sharing through AND and OR gates, but
still no parallelization was performed.

– "Parallel": this variant computes in parallel the secret over each comparison sub-
tree.

The implementation was made in C++, using the Pairing Based Cryptography Li-
brary (Lynn, 2010), and the tests were performed under a Debian 10 system, with 16GB
of RAM and an Intel Core i7-3630QM Processor.

We have divided our tests in two scenarios, depending on the attribute weight di-
mension: 8 bits and 16 bits. On each type, we have tested our system against an access
structure with variable number of weighted attribute, ranging from 20 to 100. Each
attribute was split, according to our scheme description, in 8 or 16 sub-attributes, de-
pending on the chosen scenario. The access tree was formed mostly by AND gates, and
the threshold weight from the leaf nodes was the maximum possible - it was requiring
28−1 (and 216−1 for the 16 bit variant) weight for each attribute. For each weighted
attribute, our program created a new thread which computed the result of the sub-tree
corresponding to that attribute.

Our results can be see in Figure 3: The decryption algorithm works in less than a
second up to 40-50 attributes of 16 bits for the normal version, while the parallel version
takes roughly 500 milliseconds for 100 weighted attributes.
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In both scenarios, we can see that the decryption time for the parallelized algorithm
is roughly 1

3 of the normal version, while the AND and OR gates optimizations also
offer some smaller improvements in running time.
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Fig. 3: Performance tests

6 Conclusions

While this approach is most likely not the most efficient for Weighted ABE systems, it
is not far away from the best existing solution in terms of efficiency.

However, our variant provides a more simpler mathematical construction, which
lead to more versatility, inheriting all the properties of the emblematic KP-ABE (Goyal
et al., 2006) and CP-ABE (Bethencourt et al., 2007) systems: security, fast secret-
sharing for OR and AND gates, and various extensions, such as: access revocation,
outsourcing and multi-authority.

On top of that, this weighted ABE system proves to be very suitable for parallelized
decryption, in order to make it more efficient: It is both easy to implement and offers
great practical time benefit, without any mathematical alteration of the system.

The performance tests show that this simple approach is suitable for practical use.
While for the normal version we could use access policies up to 40-50 attributes, for
the parallel one, this number will greatly increase to around 100.
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Appendix

Theorem 1. The Weighted KP-ABE system is secure in the Key-Policy Attribute-based
Selective-Set Model under the bilinear Decisional Diffie-Hellman problem.

Proof. First, denote with W −KP−ABE our scheme, and with GPSW Goyal’s KP-
ABE (Goyal et al., 2006).

Then, we will show that if there exists a non-negligible advantage adversary for
W −KP−ABE, then we can also construct an adversary with non-negligible advantage
for GPSW .

Suppose there exists an adversary A with non-negligible advantage against KP−W −
ABE. Then, construct an adversary A ′, using A as challenger for KP−W −ABE.

Setup. The challenger Ch runs the Setup algorithm and gives the public parameters,
mpk to A ′. Then, A ′ forwards them to A .
In the next steps we will need more attributes in the GPSW scheme. Therefore
we will create, for each weighted attribute Ai from W −KP−ABE, ` = log(N)
corresponding attributes in GPSW : Ai1 ,Ai` .

Phase 1. A makes repeated decryption keys inquiries for the sets of (possibly weighted)
attributes S1, ...,Sq1 . For each set of attributes Si, A ′ generates a valid answer, by
querying Ch with the corresponding set of attributes from KP−W−ABE: For each
weighted Ai A ′ will require from the challenger C decryption keys corresponding
to Ai1 ,Ai` .
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The decryption keys for A j will have the form D j = gr ·H( j)r j ,D′ j = gr j , we will
simply hide from Ai the decryption keys for the newly added attributes (D j′ and
D′ j′ for every j′)
Then respond to A by simply forwarding the decryption keys.

Challenge. A submits two equal length messages M0 and M1. In addition A gives a
challenge access structure C (a weighted access tree) such that none of the sets of
attributes S1, ...,Sq1 from Phase 1 satisfy the access structure. A ′ will transform the
access structure using the transformation algorithm from Algorithm 1, into a valid
one for GPSW : C ∗ will be a simple access tree.
Then, C ∗ will be sent to the challenger along with the message M for encryption.
Ch flips a random coin b, and encrypts Mb under the new access structure. The
ciphertext CT is given to A ′.
A ′ then simply forwards the ciphertext to A .

Phase 2. Phase 1 is repeated with the restriction that none of sets of attributes Sq1+1, ...,Sq
satisfy the access structure corresponding to the challenge.

Guess. A outputs a guess b′ of b, which is then forwarded by A ′ to Ch.

It is clearly that the advantage of A against KP−W − ABE is the same as the
advantage of A ′ against GPSW .


