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Abstract

In recent years, permisionless blockchains have received a lot of attention both from in-
dustry and academia, where substantial effort has been spent to develop consensus protocols
that are secure under the assumption that less than half (or a third) of a given resource (e.g.,
stake or computing power) is controlled by corrupted parties. The security proofs of these
consensus protocols usually assume the availability of a network functionality guaranteeing
that a block sent by an honest party is received by all honest parties within some bounded
time. To obtain an overall protocol that is secure under the same corruption assumption,
it is therefore necessary to combine the consensus protocol with a network protocol that
achieves this property under that assumption. In practice, however, the underlying network
is typically implemented by flooding protocols that are not proven to be secure in the set-
ting where a fraction of the considered total weight can be corrupted. This has led to many
so-called eclipse attacks on existing protocols and tailor-made fixes against specific attacks.

To close this apparent gap, we propose a flooding protocol that provably delivers sent
messages to all honest parties after a logarithmic number of steps. We prove security in
the setting where all parties are publicly assigned a positive weight and the adversary can
corrupt parties accumulating up to a constant fraction of the total weight. This can directly
be used in the proof-of-stake setting, but is not limited to it. To prove the security of
our protocol, we combine known results about the diameter of Erdés—Rényi graphs with
reductions between different types of random graphs. We further show that the efficiency
of our protocol is asymptotically optimal.

The practicality of our protocol is supported by extensive simulations for different num-
bers of parties, weight distributions, and corruption strategies. The simulations confirm our
theoretical results and show that messages are delivered quickly regardless of the weight
distribution, whereas protocols that are oblivious of the parties’ weights completely fail if
the weights are unevenly distributed. Furthermore, the average message complexity per
party of our protocol is within a small constant factor of such a protocol. Hence, security in
a weighted setting essentially comes for free with our techniques.
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award, a JP Morgan Faculty Fellowship, a PNC center for financial services innovation award, and a Cylab seed
funding award.
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1 Introduction

Since Nakamoto proposed the first decentralized permisionless blockchain protocol [Nak08], a
significant line of works has been done. In such protocols, one considers a setting where different
parties are weighted according to how much amount of a resource they own (mining power, stake,
space, etc.), and security relies on the fact that a certain fraction of the total weight (typically
a majority, or two thirds) is owned by the honest parties.

Current blockchain protocols are proven secure assuming in addition a multicast network,
which allows each party to distribute a value among the parties within some delivery time A.
While provably-secure blockchain protocols have been proposed assuming an ideal multicast
network (see e.g. [GKL15, PS17a, DGKR18, PS18, CM19, DPS19, AMN*20, DMM*20]), very
little attention has been devoted to the construction of provably-secure multicast networks
themselves.

In practice, the multicast network is typically implemented via a message-diffusion mech-
anism, where in order for a party P to distribute a message, P sends the message towards a
subset of its neighbors, who then forward the message to their neighbors and so on. The idea is
that if the honest parties remain connected, the message will reach all the honest parties after
sufficiently many iterations. Intuitively, this works if the induced graph from the honest parties
is connected. Indeed, there have been works that study how to randomly select the neighbors
so that the induced graph remains connected (see e.g. [KMGO03, RT19, MNT22]).

Unfortunately, to the best of our knowledge, currently analyzed diffusion mechanisms con-
sider only the setting where all parties have the same weight, and can only be proven secure
when a certain constant fraction of the honest parties (not a fraction of the total weight owned
by honest parties) is honest.

This has two main drawbacks. First, when such a message diffusion mechanism is used to
build a blockchain, the overall protocol relies on both the constant-honest-weight assumption
and the constant-honest-fraction-of-parties assumption.

Second, the message-diffusion protocol does not take advantage of the actual distribution
of weights in terms of efficiency. In fact, the incurred communication complexity of current
multicast protocols is inversely proportional to the maximum number of tolerated corruptions:
the higher the corruption threshold is, the lower the efficiency (intuitively, to guarantee security,
each party needs to send to more neighbors). In particular, this means that in many of the
current weight distributions where there are very few people owning a large fraction of the
total weight, but thousands of parties owning a tiny little fraction of the weight, the incurred
concrete communication complexity to achieve security significantly blows up (see an example
in Figure 1, where even for large sizes of neighborhood sizes, the protocol fails).

The need for an efficient multicast network assuming solely the constant-honest-weight as-
sumption is therefore apparent.

1.1 Owur Contributions

In this work, we investigate provably-secure protocols that implement a multicast network for
the weighted setting, relying solely on the constant-honest-weight assumption. We aim to
achieve protocols with as low communication complexity as possible, and ideally, our protocols
should incur no overhead with respect to the case where all parties own the same weight.

Is there a provably-secure multicast protocol in the weighted setting, assuming only a constant
fraction of honest weight? And if so, is there any efficiency overhead with respect to the equal-
weight setting?



Provably secure protocol. We show the first multicast protocol WFF (weighted fan-out
flooding) that relies solely on the constant-honest-weight assumption. By naturally assigning
the weights to corresponding stake quantities, the achieved guarantees match those required in
previous proof-of-stake blockchain protocols (see e.g. [DGKR18, CM19, DMM*20]), and there-
fore our protocol can be used to build a blockchain protocol from point-to-point channels without
the need for any additional assumption apart from those needed in the blockchain protocol itself.
Moreover, our protocol incurs no overhead in the communication complexity compared to state
of the art message-diffusion mechanisms designed for the equal-weights setting.

Theorem 1 (Informal). Let k be a security parameter, n be the number of parties, and v € [0, 1]
be the fraction of total weight belonging to homest parties. Further, let dcpanner be an upper
bound on the channel delays. Then, WFF is a secure flooding protocol with time complexity
A= (7 -log (bg(ﬁﬁ) + 2) - 0 Channel aNd communication complexity w.

Note that, in particular, the theorem shows that the expected communication complexity
does not depend on the weight distribution.

Asymptotic optimality and practicality. Our protocol has the property that 1) parties
accumulating large amounts of weight need to send to more parties, and 2) the number of
parties that each party sends to increases logarithmically in the total number of parties. We
prove that both properties are inherent for secure flooding protocols, meaning that Theorem 1
is asymptotically optimal. Concretely, for the first point, if a small set .S (say, of constant size)
accumulates more than a ~-fraction of the weight, then this set necessarily needs to send at
least to a linear number ©(n) of parties.

This means it is undesirable to have parties with very small weight and also to have parties
with a huge weight. A simple way to mitigate this in practice is to exclude parties with less
than i, weight and cap the maximal weight to amax. This means if we use the flooding for
a proof-of-stake blockchain, that parties with a huge amount of stake need to split their stake
over several nodes such that none has more than ay,.x weight. Parties with very little stake can
still obtain data from other nodes by requesting data from them periodically. See Section 4 for
more details.

Simulations. We use simulations to evaluate the practicality of our provably secure protocol.
Our simulations show that the protocol is practical: not only are messages diffused quickly, but
the communication complexity is also low, and this is regardless of both the weight distribution
and of the adversary strategy. In fact, this goes in line with our theoretical results. More
concretely, our simulations show our protocol guarantees the delivery of messages with high
success probability even when weights are unevenly distributed. In fact, we also show that for
equivalent neighborhood sizes, prior protocols—oblivious of the parties’ weights—fail, whereas
our provably secure protocol succeeds (See Figure 1). This in particular means that our protocol
achieves the necessary security guarantees at a much lower communication cost than current
(weight-oblivious) protocols, meaning that our protocol gives security for free.

1.2 Technical Overview

Below we elaborate on the technical contributions. Our protocol follows the structure of previ-
ous flooding protocols, where each party p samples a set of neighbours from the party set P,
according to some distribution N & N,. Then, upon receiving a message (Send, m) for the first
time, it forwards the message to all parties in V.



A fundamental question. Before we dive into how to choose the neighborhood distribution,
let us first show why some natural approaches fail to be secure in the weighted setting.

It is clear that to achieve efficient results, one must make use of the overall weight distri-
bution to decide whether a party p; forwards the message to party p;. What is perhaps less
clear, is what the required amount of dependency is. We start by arguing intuitively that the
neighborhood selection must depend (at least) on both the weights of p; and p;.

Dependency on p;’s weight. Consider a weight distribution where p;’s weight is overwhelming,
and there are many parties with very little weight (including p;). In this case, the adversary has
corruption budget to corrupt all parties except for p;. Therefore, in order to guarantee that an
honest p; receives the message, p; must send to all parties. That is, the neighborhood selection
distribution must depend on p;’s weight.

Dependency on p;’s weight. In a similar fashion, if p;’s weight is overwhelming, an honest p;
must send his message to p;, because there may be another honest p, with very little weight,
and therefore the protocol must ensure that p; obtains the message so that he can relay it to
all parties with small weights. That is, the neighborhood selection distribution must depend on
pj’s weight.

A simple inefficient solution. From the above observations, we see that the neighborhood
distribution must depend on both the weights W; from p; and W; from p;.

A simple idea is to let each party to internally emulate as many nodes as his weight, and then
run a traditional flooding protocol among W = ). W; nodes, where two nodes are connected
with some probability p. By properties of Erd6s—Rényi graphs [MNT22], this leads to a secure
flooding protocol. Note that implicitly, the probability that a node from p; is connected to a
node from p; depends on both weights W; and W;.

However, the resulting protocol is highly inefficient, since it has a communication complexity
that depends on the total sum of the weights W, rather than the number of parties. Note that
in current proof-of-stake systems, the total stake is in the order of billions, so any dependency
on the total weight is highly undesirable.

Additionally, from traditional graph-theoretic results, it is not trivial to see whether one can
remove edges from the resulting Erd6s—Rényi graph, while at the same time maintaining the
security of the protocol.

A first theoretical protocol. Our first technical theoretical contribution is a new simple way
to choose the neighbours in the flooding protocol. More precisely, we generalize the approach
above and show that it is actually enough to emulate a number of nodes that is proportional to
the total number of parties (rather than the total weight).

For that, we introduce the notion of an emulation-function E : P — N\ {0}. According to
the emulation function, we let each party p to internally emulate E(p) > 1 different nodes, in
a graph consisting of ng = 3, E(p) nodes. As explained above, the basic idea is to create an
Erdés—Rényi graph on the emulated graph with ng nodes and edge-probability p. Then, we say
that a party p; forwards the message to p; if any of the emulated nodes from p; is connected
to any of the emulated nodes from p;. This means that the probability that p; forwards the
message to p;j is p; ) =1 — (1 — p)E@)E®D;),

Assuming that the honest fraction of total weight is 7, and that each party p emulates E(p) =
[ap-n] nodes, where a,, is p’s fraction of the total weight he owns, we obtain a flooding protocol
with communication complexity O((log(n)+#)-n-y~!) and time complexity O(log(n) - dchannel)-



A practical protocol. Although the method described above is intuitive and gives us asymp-
totically good complexities, it is very far from being practical. In particular, the protocol
requires locally flipping n coins for each message sent and/or forwarded.

Similar to current protocols deployed in practice, we would like to have a protocol that
instead chooses a fized set of neighbors (possibly dependent on the weight distribution, but
nothing else), and provide provable security for it.

We propose a protocol where each party p chooses to send to K = k-E(p) = k- [oy, - 0]
distinct parties (for a parameter k), according to a weighted sampling without replacement
[BHPS16]. More precisely, p chooses the parties in an ordered manner, and the probability
to choose a certain ordered tuple of parties (g1, ...,qx) (among the set of parties P\ {p}) is
defined as follows:

E(qi) 1
—E(p) —E(q1) — - —E(gi-1)

Note that even though this protocol is so simple that it can be described in just a single
line, it is by no means trivial. In fact, it is crucial for the correctness of the protocol that the
emulation function is used to determine both the number of neighbours and the distribution of
these neighbours.

To see that it is crucial to use the emulation function to decide how many neighbours each
party should choose, consider a small change to the protocol, namely send to K = k- oy - n
parties (instead of K = k- E(p)). Now, consider sender p with a small fraction of the total
weight o, and let us estimate the parameter £ to ensure that this p sends to at least one honest
party. As any party potentially could be corrupt it must be that p sends to more than just one
neighbour. Hence, it must be that & > Wlﬂ’ just to ensure this very minimal requirement. A

K
Pr((q1,...,qK)) = Hn
i=1""E

rough bound on the communication complexity of such protocol would be 3, k- ayy - n > c%p,
which is impractical if o, is small.

To see that it is crucial to weigh the selection of neighbours with the emulation function we
consider another small change to the protocol, namely to select parties weighted according to
their weight instead of the emulation function. Now, consider a weight distribution where there
is just one party p with a very small fraction of the total weight and all others having roughly
the same weight. Note, that for any party choosing less than n neighbours the probability that
p is chosen as a neighbour becomes arbitrarily small for a decreasing «y. Hence, to ensure
that someone sends to p this would induce a quadratic communication complexity which is
impractical.

Proving security of such a protocol in the weighted setting directly is non-trivial for two
reasons: First, the choices of whether to send to a neighbour or not are not independent.
Second, the fact that the choices are according to an arbitrary weight distribution makes the
analysis considerably harder than traditional graph-theoretic results that consider the non-
weighted setting. Instead of providing a direct graph-theoretic analysis, we give a security
proof via a sequence of intermediate protocols, essentially relating the success probability of
the first protocol above based on Erd6s—Rényi graphs, to the practical protocol. This leads to
Theorem 1.

Evaluation. We evaluate the practicality of our proposed protocol by running various sim-
ulations to measure its security?, its scalability, and to estimate what protocol parameters

!The probability to choose neighborhood set N = {qu, ..., qx} is the sum over the probabilities of all permuted
tuples.

2Here, security means not only whether all parties get the message, but also how long it takes for all parties
to have received the message.
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Figure 1: Plot extracted from Figure 2. In the plot, WFF denotes our proposed protocol,
whereas WOF denotes a weight oblivious flooding protocol where each party forwards each
message to a fixed number of parties sampled uniformly. For the plot, we consider 1024 parties,
an exponential weight distribution (where the heaviest party’s weight is 1.000.000 times the
lightest party’s weight), a corruption threshold of 50%, and a greedy corruption strategy where
lighter parties are corrupted first. For each configuration, we make 200 runs.

achieve security in practice. Our simulations show that our protocol can achieve security for
realistic weight distributions whereas the weight-oblivious flooding protocols currently used by
blockchains do not (as illustrated by the results plotted in Figure 1), and that it is also extremely
scalable. Our evaluations consider various parameters such as the number of parties, the weight
distributions, who the sender is, corruption strategies, corruption thresholds, and more.

1.3 Current State of the Art and Related Work

Flooding networks in a Byzantine setting. [KMGO03] was the first to relate probabilistic
gossiping to the connectivity of the induced graph. They considered (1 — ) - n out of n parties
failing and showed that each party needs to forward a message with probability p > log(v%
any other party in order to ensure that messages are delivered to all non-failing parties with a
probability overwhelming in .

[MNT?22] observed that against an adversary capable of adaptively corrupting up to ¢ parties,
any flooding network where each party sends to less than ¢ neighbours is inherently insecure (an
adversary can simply corrupt all neighbours of a sender). To mitigate this problem and achieve
a protocol secure against a Byzantine adaptive adversary, [MNT22] introduced the notion of a
delayed adversary for which there is a delay from the time the adversary decides to corrupt a
party until the party is effectively controlled by the adversary. In this setting, they showed that
against an adversary delayed for the time it takes to send a message plus the time it takes to
resend a message, it is sufficient to on average send to ((log(n)+x)-v~!) neighbours to achieve
a gossip protocol that with an overwhelming probability in x has O(log(n)) round complexity
for n parties with at most (1 — =) - n of the parties being corrupted. In this work, we match
the theoretical performance of their flooding protocol with a practical protocol that relies on
the assumption that only a « fraction of the weight remains honest, which is more relevant in
the blockchain setting. Furthermore, we believe the techniques from [MNT22] can be applied
to also show that our protocol is secure against such delayed adaptive adversaries.

Kadcast [RT19] is a recent flooding protocol specifically designed for blockchains. Inter-
estingly, they claim that structured networks are inherently more efficient than unstructured

to



networks and propose a structured protocol with O(logn) neighbours and O(logn) steps to
propagate a message, which is similar to what we achieve using an unstructured network. It is
unclear how their protocol performs under Byzantine failures. Further, we note that structured
networks are inherently vulnerable to attacks by adaptive adversaries.

A different line of work [MMR99, MPS01, MS03] considers how to propagate updates in
a database using gossip where at most ¢ of the processors may be corrupted. The setting is
however different from ours as they assume that at least ¢ honest parties get the update as
input initially, and only updates input to some honest processor can be accepted by the other
processors.

Probabilistic communication have also been used to improve the communication complex-
ity for both multi-party-computation (MPC) [CCGT15] and Byzantine broadcast [TLP20].
In [CCGT15], communication between honest parties is assumed to be hidden from the ad-
versary. This is exploited by constructing a random communication network with an average
polylogarithmic degree based on Erd6s—Rényi graphs. They thereby achieve a MPC protocol
with low communication locality that is secure against a fully adaptive adversary. [TLP20]
combines the classic broadcast protocol by Dolev and Strong [DS83] with gossiping based upon
FErdés—Rényi-graphs to obtain the first broadcast algorithm with a sub-cubic communication
complexity for a dishonest majority. Using similar techniques and assuming a trusted setup
they also achieve an asymptotically optimal communication complexity for parallel broadcast.

Attacks on the network layers of blockchains. Attacks on network layers of blockchains
are not only a theoretical concern. In fact, several works [HKZG15, AZV17, MHG18, TCM 20|
have shown that it has been possible to launch eclipsing attacks against nodes in the Bitcoin
network and the Ethereum network.

Bitcoin’s peer-to-peer network works by letting each node in the network maintain 8 outgoing
connections and up to 117 incoming connections. This is clearly insecure when considering a
resource-constrained adversary instead of a traditional adversary (as the probability of only
connecting to adversarial nodes can be arbitrarily high). Additional to this inherent insecurity,
[HKZG15] showed how to eclipse a node that is already a part of an existing honest network
by exploiting a bias in the way a peer selects its outgoing connections. They launched such an
attack with only 4600 bots and achieved 85% success probability to actually eclipse a targeted
node.

By default, a node in the Ethereum peer-to-peer network selects 13 outgoing connections
contrary to the 8 that is the default in Bitcoin. Hence, one might be led to believe that it is more
difficult to eclipse an Ethereum node than a Bitcoin node. However, in a Ethereum neighbours
are selected using a distance measure that is based on nodes’ public keys. Exploiting that
in a prior version of the Ethereum client a single computer was allowed to run several nodes,
[MHG18] showed that just a single computer can be used to mount an attack by creating
multiple carefully selected public keys.

[AZV17] showed that BGP-Hijacking can also be used to eclipse Bitcoin nodes. However, we
note that such attack is immediately observable as an adversary will need to announce a false
BGP prefix publicly. In [TCM™'20], it was shown that a stealthier version of such an attack
in can also be launched against a Bitcoin node by additionally influencing how a bitcoin node
selects its outgoing connections. We note that such attacks are attacks on the infrastructure of
the internet, and therefore fall outside the scope of our model.

We note that the attacks presented in [HKZG15, MHG18, TCM™'20] all rely on exploiting
the heuristics used to select outgoing connections for nodes in the peer-to-peer network. Hence,
such attacks would not have been possible if, instead of heuristics a provably secure protocol
(such as the one presented in this work) had been deployed.



Detecting eclipse attacks. Asa way of mitigating attacks on the network layer a line of work
considers the possibility of detecting eclipse attacks [XGST20, ZTA21, ARV*21]. [XGST20]
provide a method for using supervised learning to detect eclipsing attacks based on the metadata
in packages. We note that this method is only as good as its data set for training, and hence
cannot be used to detect attacks in general. A different approach is to try to detect eclipse
attacks based on the absence of new blocks [ZTA21, ARV'21]. However, this method has the
drawback that it becomes arbitrarily slow as the fraction of resources controlled by an adversary
approaches 50%, and even for small values, it takes upwards of 3 hours to detect. Finally, it has
been considered to detect eclipse attacks using an additional overlay gossip protocol [ARVT21].
However, contrary to this work this is not proven to work but rather demonstrated to work
empirically.

Consequences of eclipse attacks. If a party is eclipsed it is immediate that security proofs
that rely on guaranteed message delivery no longer apply. Several works have shown that
eclipse attacks do not only invalidate the security proofs but actually invalidate the actual
security of blockchain protocols [HKZG15, NKMS16, ZL19]. Eclipsing can be used to invalidate
the total order that blockchain provides and thereby allow double-spend attacks [HKZG15],
amplify the rewards from selfish mining [NKMS16], and dramatically speed up "stake-bleeding”-
attacks [ZL19].

1.4 Outline of the Paper

In Section 2 we introduce the model for which our results hold as well as introduce notation
and basic graph definitions that are used in the remainder of the paper. In Section 3 we present
our practical flooding protocol and prove it secure based on the honest-weight assumption.
In Section 4, we present theoretical lower bounds showing that our protocol is asymptotically
optimal, as well as discuss practical implications of these bounds. In Section 5, we present two
solutions for obtaining delivery to parties with zero weight. Finally, in Section 6 we show our
practical simulations.

2 Notation and Model

2.1 Notation

We will use k to denote the security parameter of our protocols. We will write A & Do sample
the value A from the distribution D and use the infix notation ~ to denote that two random
variables are distributed identically. We will let B(n, p) denote the binomial distribution with
parameters n and p, and U(A) denote the uniform distribution on a set A. We denote by log x
the natural logarithm of .

In our proofs we will write RHS and LHS to refer to respectively the right hand side and
left hand side of (in)equalities.

2.2 Parties, Weight, Adversary and Communication Network

We let P denote the static set of parties for which our protocols will work. For convenience we
let n := |P| and let H C P be the set of parties that are honest.
We assume that a public weight is assigned to each party. We let W, denote the weight

assigned to party p, and let o) = ZWipw i.e., the fraction of the total weight assigned to
peP P

party p.



We allow an adversary to corrupt any subset of the parties such that the remaining set of
honest parties together constitutes more than a v € (0, 1] fraction of the total weight. Formally,
we assume that

> =1, (1)

pEH

and that all parties have a non-zero positive weight i.e. Vp € P,W, > 0.3 We will refer to
this assumption as the honest weight assumption. For simplicity, we consider a static adversary,
although our results also hold against a so-called delayed-adaptive adversary [MNT22], where
the corruptions can be adaptively chosen but only happen after a certain amount of time.

Parties P have access to a complete network of point-to-point authenticated channels that
ensures delivery within a bounded delay. Concretely, we assume that all channels ensures
delivery within dcpannel time.

Realising public weights from resource assumptions.  Proof-of-stake blockchains [DGKR18,
DPS19, CM19] rely on a constant fraction of the stake being honest (more than 1/2 for DGKRI18,
DPS19] and more than 2/3 for [CM19]). Furthermore, a blockchain itself provides a ledger ac-
cessible by all parties describing how much stake each party owns. Hence, it is immediate how
to assign weights to parties by simply accessing the ledger in order to instantiate the weights
for our protocols. For simplicity, we do not consider the dynamic stake setting where stake can
change throughout the execution. This is however not a real limitation of our protocol. Take
for example [DGKR18]. In order to prove their protocol secure for a dynamic stake, they divide
time into epochs where the stake used for producing blocks remains unchanged and additionally
make assumptions on the speed that stake can between epochs. In their proofs, they note that
all parties agree on the stake distribution in a previous epoch. We note that the time it takes for
our protocols to propagate a message is very small compared to such epochs, and furthermore
our proofs only rely on the weight being static for the propagation of a single message.

To achieve a weight distribution for blockchain protocols that rely on a constant fraction of
the computational resources being honest [GKL15, PS17a, PS17b, PS18] one can make use of
the techniques for committee selection for such setting [PS17b, PS18]|. The idea behind this is
that for long fragments of a chain with high chain-quality, the distribution of block creators is
similar to the distribution of computational resources among parties. Hence, this distribution
translates directly to a weight distribution publicly available to all parties. For techniques to
achieve a high chain-quality see [PS17a].

2.3 Graphs

We use standard notation for a undirected and directed (di)graphs.

Definition 1 ((di)Graph). A (di)graph consists of a set of vertices V and a set of edges E C
V x V. For an undirected graph we interpret the edge {v, z} as being an undirected edge between

v and z. For a digraph we interpret the edge (v, z) as being a directed edge from v to z. For a
graph G with nodes V and edges E we write G = (V, E).

Definition 2 (Directed graph). A directed graph (digraph) consists of a set of vertices V and
a set of edges E C V x V. For two vertices v,z € V we interpret the edge (v, z) as being a
directed edge from v to z. For a digraph G with nodes V and edges E we write G = (V, E).

3For a discussion of the necessity of the zero-weight requirement see Section 4 and for methods to anyway
achieve delivery to such zero-weight parties see Section 5.
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Additionally, we define notation for distance and diameter properties which we overload to
work for both directed and undirected graphs.

Definition 3 (Distance). For a (di)graph G = (V, E) we let the distance function be denoted by
dist : VxV — N. The distance between two nodes v, z € V, written dist(v, z), is defined as the
length of shortest path between any v and z. If no such path exists we define dist(v,z) = oo.

Definition 4 (Low Distance). For A € N and a (di)graph G = (V, E) we let ¢pist(G, v, A) be
the property that the distance from v € V is less than A. I.e. we define

Ppist (G, v, ) = /\ dist(v,z) < A.
zeV

Definition 5 (Low Diameter). For A € N and a (di)graph G = (V, E) we let ¢piam(G, A) be
the property that the diameter of G is less than A. L.e. we define

Opiam(G,A) £ N épist (G, v, A).

veY

We finally define the distributions of both undirected and directed Erdés—Rényi graphs.

Definition 6 (Erd6és—Rényi (di)graphs). An Erd6és-Rényi (di)graph is an (di)graph G = (V, E)

where all possible edges are present with an independent probability p. That is for any v,z € V,

we have Pr[{v,z} € E| = p for Erd6s-Rényi graphs and Pr[(v,z) € E] = p for digraphs.

To sample such a graph G with |V| = n, we write G & Grr(n, p) and for the directed case
3

GG (n,p).

3 Weighted Flooding

In this section we present a practical and provably secure flooding protocol that only relies
on the honest weight assumption. Before doing so we first present our definition of a flooding
protocol in Section 3.1. Then, in Section 3.2 we present a generic skeleton for flooding protocols
that is parameterized by the way parties selects their neighbours and prove that it is sufficient to
consider the way neighbours are selected in order to get a secure protocol. We use this skeleton
to define our theoretical flooding protocol that is secure based upon each party emulating a
number of nodes proportional to their weight in an Erd6és-Rényi graph (Section 3.3). Finally,
in Section 3.4 we present our practical protocol and prove that it is secure.

3.1 Properties of Flooding Protocols

Below we give our property based definition of a flooding protocol.*

Definition 7. Let II be a protocol executed by parties P, where each party p € P can input
a message at any time, and as a consequence all parties get a message as output. We say that
IT is a A-flooding protocol if the two properties hold with a probability overwhelming in the
security parameter x for each message m:

1) If m is input by an honest party for the first time at time 7, then by time 7 + A it is
ensured that all other honest parties output m.

“Note that for protocols with no secrecy (each event is leaked to the adversary), and for functionalities that
give the adversary full control while respecting these properties a simulation-based security notion is directly
implied by the property-based definition. For flooding networks, this technique is used in the proofs in [MNT22].
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2) If m is output by an honest party at time 7, then by time 7 + A it is ensured that all
honest parties output m.

Note that this definition subsumes the assumptions that most blockchain protocols rely on
[GKL15, PS17a, DGKR18, PS18, CM19, DMM*20]. To the best of our knowledge only [DMM*20)]
relies on both Properties 1) and 2), whereas the other works only rely solely on Property 1).
However, as Property 2) essentially comes for free for the type of protocols we consider (each
party will forward everything they receive and thereby act as if they themselves send the mes-
sage) we have chosen to include it in our definition. Furthermore, because of this structure of
our protocols, it is sufficient to bound the probability of Property 1) in order to show that our
protocols are in fact flooding protocols according to the definition. For our proofs and lemma
statements, it is, therefore, useful to define notation for the predicate that a message input to an
honest party for the first time is delivered respecting the delivery bound for a flooding protocol,
which is what we encapsulate in the predicate below.

Definition 8 (Timely delivery). For a message m that is input for the first time at an honest
party at time 7 we say that m is A-timely-delivered if all honest parties have output m no later
than time 7 + A. We let Timely,,(A) denote the induced predicate.

3.2 A Skeleton For Flooding Protocols

We now present a skeleton for our flooding algorithm. The structure of the protocol is very
similar to the protocols proposed in [MNT22], but contrary to their protocols our protocol takes
an additional parameter A/, which is an algorithm that allows each party to sample a set of
neighbours. We refer to this parameter as the neighbourhood selection algorithm.

The protocol accepts two commands: One for sending and one for checking which messages
have been received. Once a send command is issued to a party, the party will forward the
message to a set of neighbours that are determined using the neighbourhood selection algorithm.
Furthermore, once a message is received on a point-to-point channel the receiver checks if the
message has already been relayed and if not it forwards the message to a set of neighbours that
is again selected using the neighbourhood selection algorithm.

—1 Protocol Trio0q(N)

We use N, to denote the neighbourhood distribution of party p. Each party p; € P keeps
track of a set of relayed messages Relayed,; which will also be used to keep track of which
messages party p; has received.

Initialize: Initially, each party p; sets Relayed, = &.

Send: When p; receives (Send, m), they sample a set of neighbours N & N, and forwards
the message to all parties in N. Finally, they set Relayed, == Relayed, U {m}.

Get Messages: When p; receives (GetMessages) they return Relayed,.

When party p; receives message m on a point-to-point channel where m ¢ Relayed,, p;
continues as if they had received (Send,m). Otherwise it ignores m.

Our protocols will take the structure of 7504, but the neighbourhood selection algorithms
will vary. Hence, we would like to be able to relate the security of the overall flooding protocol to
just the neighbourhood selection algorithm used. To do so we first define a random process for
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creating a graph where each honest party is a node, given a family of neighbourhood selection
algorithms NV, a starting party p, and a distance A\. The intuition is that this process mimics the
worst-case behavior of the adversary during a sending process starting from party p. However,
separating this into a process without adversarial influence allows us to relate probabilistic
experiments without taking into account the choices of an adversary which could have a strategy
that depends on parts of the outcome of the experiments.

Definition 9. Let N be a family of neighbourhood selection algorithms, let p € H, and let
A € N be a distance. We let the honest sending process, HSP(p, N', \), be a random process that
returns a directed graph G = (V, F) defined by the following random procedure:

1. Initially, E = @&. Furthermore, we keep track of set Flipped := & that consists of
nodes that have already had their outgoing edges decided, and a first-in-first-out queue
ToBeFlipped = {(p,0)} of nodes and their distance from p that are to have their edges
decided.

2. The process proceeds with the following until ToBeFlipped == &.

(a) Take out the first element of ToBeFlipped and let it be denoted by (p',i).

(b) Let N & Ny and set N := N NH.

(c) Now, update the set of edges E := E U {(p/,p")|p" € N} and let Flipped =
Flipped U {p'}.
(d) Furthermore, if i+1 < A then for all p” € N\Flipped add (p”,i+1) to ToBeFlipped.

3. Finally, return G = (H, E).

Next, we are interested in bounding the probability that a message is delivered within the
time guaranteed by the flooding algorithm in terms of the probability that there is a low distance
to all parties from the sender. We show that the probability that mr,0q ensures timely delivery
for a message is lower-bounded by the probability that the honest sending process results in a
graph where the sender can reach all other honest nodes within a certain number of steps.

Lemma 1. Let N be a family of neighbourhood selection algorithms, let p € H, and let X € N be
a distance. Further, let m be a message that is input to p for the first time during the execution

of Triea(N) and let G & HSP(p, N/, \). Then,

Pl‘[gﬁpist(G,p, )\)] < Pr[Timelym()\ . 5Channel)]' (2)

Proof. To see this we consider a another graph G’ = (V' E’) where each honest party is a node
(i.e., V' = H) and there is an edge (p;,p;)E’ from party p; to p; if and only if p; received
the message m from p; before time 7 + A - dchannel- In this graph, it is clear that the delivery
guarantee is satisfied for any node with an incoming edge. In particular if ¢pist(G’, p, A) then
Timely,, (A OChannel)- It is hence sufficient to argue that ¢pist(G’, p, A) stochastically dominates
¢pist (G, p, \). We show this via a straightforward coupling between the two graphs via a graph
G = (H, E‘), namely by first constructing G’ and then construct G by duplicating the edges
from E’ for all parties within distance A —1 of p to also appear in E. Tt is clear that the E C F'
and hence that ngist(C:’,p, A) = ¢pist(G’, p, A). Therefore, what is left is only to argue that
G ~ G. Observe that any node that receives the message at the latest at 7+ (A —1) - dchannel 1S
ensured to have edges added corresponding to A in G’ and hence also to G. Furthermore, for
any d € N at time 7 4+ d - dchannel any node at distance d from the sender will get the message
delivered and thereby select their neighbours. Therefore all nodes at distance A — 1 will have
all their edges added to the graph G and hence G ~ G. O
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Lemma 1 ensures that it is sufficient to consider neighbourhood selection algorithms and
prove that graphs constructed via. the honest sending process has a low distance from the
sender to all other parties.

3.3 Emulating Nodes in Erd6s—Rényi Graphs

Our central idea for achieving a flooding network that relies on the honest weight assumption
is to let each party emulate a number of nodes proportional to their weight in a hypothetical
Erdés—Rényi graph. We will refer to this hypothetical graph as the emulated graph. Now,
our idea is that if there is an edge between an emulated node v and another emulated node
z corresponds to that the party emulating node v should forward the message to the party
emulating z. Our goal is now to ensure each honest party emulates at least one node and that
the emulated graph has a low diameter, as this will result in that all parties will receive the
message quickly.

Concretely, we introduce a function E : P — N\ {0} which for each party determines
how many nodes this party should act as in the emulated graph. We refer to this function as
the emulation function. ® For such emulation function we define notation for the number of
emulated nodes ng and the number of honest nodes that are emulated hg:

ng = Z E(p) and hg= Z E(p).

pEP pEH

Before looking at how to choose an emulation function, let us present how the idea leads to
a very simple algorithm for selecting neighbors by letting the emulated graph take the form of
an Erdoés—Rényi graph. We let p denote the probability that there should be an edge between
any two nodes in the emulated graph. Now, the probability that party p; should forward a
message to party p; is:

Pr[p; should forward a message to p;]

:= Pr[there is an edge from any of p;’s emulated nodes to any of p;’s emulated nodes]

= 1 — Pr[there are no edges between any of p; and p;’s emulated nodes] (3)
= 1 — (1 — Pr[there is an edge between any two emulated nodes)&?:)E(®;)

=1— (1 — p)E@)E®),

This give rise to the following family of neighbour selection algorithms indexed by a party
p € P and parameterized by both an emulation function E and an edge probability p.

— Algorithm ER-Emulation,(E, p)

1: Let N == @.

2: Let P:==P\ p.

3: while P # @ do

4: Pick r € P.

Sample ¢ <& 1([0, 1)).

if ¢ <1—(1—p)E@E")) then
Update N := N U {r}.

end if

Update P :== P\ {r}.

S5For a function to be an emulation function, we require that all parties should emulate at least 1 node, which
is why the codomain of the function is defined to be N\ {0}.
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10: end while
11: return N.

Relating Erdés—Rényi graphs and the honest sending process. We now formalize the
intuition that given that an emulated graph is “well connected” then the honest sending process
results in a graph that is also “well connected”. In particular, we show a relation between the
probability that the distance in a directed Erdés—Rényi graph of size similar to the size of the
honest emulated graph is large to the probability that the distance from the sender is large in
the honest sending process.

Lemma 2. Let p € [0,1], let A € N, let p € H, and letE : P — N\ {0} be an emulation function.
Further, let Gy & HSP(p, ER-Emulation(E, p), A) and let G & gﬁ{(hE’p)' Then for any node

v €V we have,
PI‘[QZ)Dist(GQ, v, A)] S Pr[(bDist(Gl » P )\)} . (4)

Proof. Let v € V. We define a simple coupling between the two graphs, i and G2 = (V, E»),
via a new graph G = (H, E1).

Before defining the coupling itself we define some additional notation. We define a mapping
m : H — 2Y that maps each honest party to a set of nodes via. the emulation function. That is for

each party p’ € H we define m(p’) to be a set of parties {Zp'l yees ,zp/< )} s.t. for any two parties

E p’
pi,pj € H we have that their sets of emulated nodes are non-overlapping i.e., m(p;) Nm(p;) = @.
Further, we define it such that v € m(p). Note that U, cym(p') = V. Similarly, we will use
m~! :V — H to find the party that “emulates” a particular node. We now define our coupling

via. the following random process that mimics the honest sending process closely.

1. Initially, sample Go = (V, E») & gﬁ{(hE’ p) and let E, := @. Furthermore, we keep track

of set Flipped = @ that consists of nodes that have already had their outgoing edges
decided, and a first-in-first-out queue ToBeFlipped := {(p,0)} of nodes and their distance
from p that are to have their edges decided.

2. The process proceeds with the following until ToBeFlipped == &.

(a) Take out the first element of ToBeFlipped and let it be denoted by (p',1).

(b) We now update find the neighbourhood of p’ by looking at the edges from the em-
ulated nodes of party p’ i.e., we set N == {(p/,m™(2)) | w € m(p)) A (w, 2) € Bz} \
{ )}

(c) Now, update the set of edges E = E U {(p/,p")|p” € N} and let Flipped :=
Flipped U {p}.

urthermore, if i+1 < A then for all p” € Flipped add (p”,i+1) to ToBeFlipped.
d) Furth f A then for all p” € N pped add (p” pp

3. Finally, return G = (H, E)

That G1 ~ G; follows from Equation (3). It is thus left to show that ¢pist(G2,v,\) =
¢pist (G1,p, A). We prove this by proving the contrapositive statement, —¢pist(G1,p, A) =
—¢pist (G2, v, A). Assuming the LHS of the implication we get that there exists some party
p’ € H that is not within distance X of p. Now let z € m(p’) be a node that is emulated by p’ (we
know that such exists by the definition of the emulation function) and let us show that z is not
within distance of v. For the sake of contradiction assume that z in fact is within distance A\ of
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v. However, any path in G2 of length at most A from v induces a path in the le by applying
m~! to the path. When pruned for duplicate nodes this path in Gy is at most as long as the
path in G2, and hence we have a contradiction. ]

Next, we show that the probability that a particular node can reach all other nodes within
a certain distance in a directed Erd6s—Rényi graph is lower-bounded by the probability that an
undirected Erdés—Rényi graph has a high diameter.

Lemma 3. Let p € [0,1], let A € N and let n € N. Further, let G1 = (V1, E1) & QER(T],/)) and

let G2 = (VQ, Eg) (E QER(%P).
Then for any node v € V1 we have,

Pr[¢piam(G2, N)] < Pr[opisi(G1,v, N)]. (5)

Proof. We observe that V| = Vs and will from now on just use V. Let v € V. It is now sufficient
to show that ¢pis;(G1,v,)) stochastically dominates ¢pjam (G2, A). We show this by defining
a coupling of the two graphs G; = (V, E1) and Go2 = (V, E2) and show that if ¢piam(Ga, \)
holds then also ngiSt(CTl, v, A) holds. The idea behind the coupling is to start an edge-selection
process by selecting the edges of v, and now select nodes the next node to pick edges by taking
the one that is “closest” to v. In more detail, we define the coupling via. the following random
process.

1. Initially, Ey = Fy = @. Furthermore, we keep track of set Flipped = & that consists of
nodes that have already had their outgoing edges decided, and a first-in-first-out queue
ToBeFlipped := {v} of nodes that are to have their edges decided.

2. The process proceeds with the following loop until Flipped ==

(a) Take out the first of ToBeFlipped and call it z. If no such node exists let z be an
arbitrary element in V \ Flipped.

(b) Now for all nodes w € V \ {2} flip a coin that comes out head with probability
p, and if heads let E1 = E1 U{(z,w)}. Further, if the coin comes out heads and
w ¢ Flipped then let Ey := Ey U {{z, w}}.

(c) Finally, let Flipped := Flipped U {z}.

The above process ensures that F; ~ E; as for any potential edge (z,w) an independent coin
is flipped for whether or not to add an edge exactly once. Similarly, it also holds that Fy ~ E
as there is exactly one independent coin flip for each potential edge {z,w}.

What is left is thus to show that cZ)Dlam(C?g, A) = d)Dlst((A}/l, v, A). To see this let z € V, and
let dlst~ and dlst~ denote the distance functions for the respective graphs. We now assume
the LHS of the 1mphcatlon and prove the RHS. The LHS ensures that

disthvQ(v, z) <\ (6)

This implies that there is a path of nodes with edges between them wy, ..., wy_1,w) for some
N < X that connects v to z in Gy and where z = wy. We now observe that any node in this
path w; is also at distance ¢ from v in graph (72 To see this, observe that edges are added to Evl
in an ordered fashion such that they do not change the distance to any nodes that had already
their edges selected. This implies that any such node in this path, w;, selected it edges before
node w;4+1. Now, as edges being added to Es are only added to nodes that have not yet had
their edges selected, this implies that this path also exists in (f?vl which concludes the proof. [
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Choosing a good emulation function. Let us now turn our attention to how to select a
good emulation function. Before looking at a concrete function, let us consider what properties
constitute a good emulation function. The only property of the emulation function that we have
used so far is that all parties should emulate at least 1 node. © However, there are additional
things that we want from a useful emulation function:

1. It should ensure a low distance from any sender in the graph resulting from the honest
sending process.

2. The communication complexity of the protocol should be as small as possible.

Lemmas 2 and 3 bounds the probability that the honest sending process has a long distance
in terms of the probability that an Erdés—Rényi graph with of size identical to the number of
honest emulated nodes. Furthermore, looking ahead we will want to instantiate p ~ log(z% to
obtain Erdés—-Rényi graph that has a diameter logarithmic in hg unless with a probability that
is negligible in x. Unfortunately, hg will not be known at the time of instantiation, so therefore
one will have to instantiate p with a lower bound on hg in the denominator and similarly an
upper bound in the denominator. For this discussion, let h; be such a lower bound and let us
use ng as an upper bound.

Now, note that the expected number of neighbours for a party is linear in p. To see this

let N & ER-Emulation,(E, p). Now estimating the expected size using Bernoulli’s inequality
(Lemma 12) we get:

E[|N|] = Z 1— p)EP)E()
reP\{p}
> p-E(p)-E(r) (7)
reP\{p}
< p-E(p) - ne.

Hence, for p chosen according to the above, a rough bound on the expected communication
2

complexity will be O <(log(ng) +kK)- ) A good emulation function is thus one which makes

this value as small as possible. As our emulatlon function we choose

E(p) = [ap - n]. (8)

For this emulation function above we can derive the following bounds using only the honest
weight assumption:

hE:ZE(p)ZZ%%Z’Y'n- (9)

pEH pEH

and

ng= Y E(p) <) (ap-n+1)=2-n (10)

peEP peEP

This results in an expected communication complexity that is upper bounded by O ((log(n) + k) -

while obtaining a logarithmic diameter.

5This property was used in the proof of Lemma 2.
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Proving security of our theoretical flooding protocol. We are now ready to prove
that the probability that mpio0q(ER-Emulation(E, p)) protocol does not ensure timely delivery is
negligible for certain choices of E and p. To prove this we make use of probabilistic bounds
on the diameter of undirected Erdés—Rényi graphs from [MNT22] as well as Lemmas 1 to 3.
We restate the graph result from [MNT22] and provide an instantiation with concrete values
simplification in Appendix B.

As a first step, we bound the probability that the distance of the honest sending process
using the neighbourhood selection algorithm ER-Emulation(E, p) has a large distance from the
sender.

Lemma 4. Let E(p) = [ap - n|, let d € [7,00], and let p = ﬂ/fin. Further, let p € ‘H and
Rl HSP(p, ER-Emulation(E, p), ((7 - log (%) +2)). Then

t o0 (Gp. (7108 (5) +2))]
>1- (2-n- <e_1dS—|—<6 log(d)—l—l) e 1708)4—6_7"(_2)).

Proof. As hg < ng, Equations (9) and (10) ensures that hg € [y-n,2-n]. Corollary 5 ensures
that for G’ & OER (hE, h%) we have

I' | ®Diam (G 7 - log (2h d) 2” 12
>1 - <hE' <ef‘é + (6 log <2h d) + 1) e fos) tem E‘(3—2)> .

The probability that ¢piam (G’ ,7-log (Qh—‘zl) + 2) holds monotonously increases when the edge

(11)

probability increases and hence this probability also holds for G’ & OER (hE, ﬁ) Further for
any graph G and natural numbers a,b € N s.t. a < b we have that ¢pjam (G, a) = dpiam (G, ).
Hence, we have that G’ & OrR (hE, %) satisfies

h
P iam 1 2
o v (G710 (57) +2)

>1- he[rﬁgé-n] <h- (e_llé + <6 log <2hd> + 1> e 1os> +e” ‘(d_2)> .

Now, applying Lemmas 2 and 3 as well as inserting bounds for the maximum value for the
expressions we obtain Equation (11). O

(13)

As a direct corollary of Lemmas 1 and 4, we get that the probability that mpie0q (ER-Emulation(E, p))
ensures timely delivery is overwhelming when choosing E and p as discussed above.

Corollary 1. Let E(p) = [ay - 1], let d € [7,00], and let p =
input to some honest party in either T p0q( ER-Emulation(E, p))

Pr [Timelym ((7 log (d) + 2) ~5C;mmel)] o
21 (2one (4 (60105 (5) +1) e B ) 4 (G)). .

18

—. If m is a message that is

o+
=32
R



3.4 A Practical Protocol

ER-Emulation is unfortunately not a practical neighbourhood selection algorithm, as it requires
each party to do n coin-flips per message that is sent and forwarded. To rectify this we first
introduce two intermediate algorithms (Fast-ER-Emulation and Practical-ER-Emulation) by doing
gradual changes to ER-Emulation, until we finally arrive at the algorithm WFS which is both
practical, simple, and similar to algorithms deployed in practice (except that this algorithm
maintains its complexity even for weighted corruptions).

3.4.1 Intermediary Neighbourhood Selection Algorithms

We first introduce the algorithm Fast-ER-Emulation. This is distributed identically to ER-Emulation
but slightly more practical. The algorithm exploits that another way of creating an Erdés—Rényi
is to first decide how many edges each node should have using the binomial distribution and
afterward select this number of edges at random among the emulated nodes.

Below we will abuse notation slightly and write E(P) to denote the set of emulated nodes
for a set of parties P C P and an emulation function E,

E(P)2{p;|pe Prie{l,2,...,E(p)}}.7

— Algorithm Fast-ER-Emulation,(E, p)

1: Let N = @.

2: for i :=0; i <E(p); i ++ do

3. Sample k < B(E(P\ {p})], p).

4: Let A be k nodes sampled from E(P \ {p}) without replacement.
5 SetN::NU{p’|p;€A/\j€D\I}.

6: end for

7: return N.

We now show that Fast-ER-Emulation is distributed identically to ER-Emulation.

Lemma 5. Let p € [0,1], let A € N, let p € H, and let E : P — N\ {0} be an emulation

function. If Gy & HSP(p, ER-Emulation(E, p), \) and G & HSP(p, Fast-ER-Emulation(E, p), \)
then G1 ~ Go.

Proof. 1t is sufficient to prove that for any p’ we have that for N; & ER-Emulation,, (E, p)

and No & Fast-ER-Emulation,/ (E, p) then Ni ~ Na. Both neighbourhood selection algorithms
works by letting a party be included in the neighbourhood with the same probability as if
there would have been an edge between between any of the emulated nodes of the two parties.
By Equation (3) edges appear with p for Nj. It is hence sufficient to show that sufficient to
look at the probability that the probability that any of the emulated nodes of p’ select a node
not belonging to p’ with mutually independent probability p.

Let us look at a node v € E({p'}) and calculate the probability that there are edges to a
specific set of other nodes U C E(P \ {p'}) from v. Let A be the set of nodes v chooses. We
now want to show that:

Pr(U C A] = plYl. (15)

"This set may be different from the acutal set of nodes that will be emulated in an execution of the protocol
as dishonest parties might choose to deviate from the protocol. However, it is still useful to define the set in
order to define honest behavior.

19



We let n == |E(P \ {p'})| and now apply the law of total probabilities for conditional events to
obtain

> PrlU C A||A|=1i]-Pr[|A| =]
=0

Pr[U C 4]

, (16)
— S P UCA||A]=i]-Pr[|A| =]
i=|U]|

For any i > |U| we have that A is chosen uniformly among sets of size i. Of those sets exactly

(?:Hg") includes U. Hence,
(n—IUI)
Pr[U C A||A| =i] = Z(,‘f)f‘ . (17)
Inserting this we obtain
()
—=|U i —i
wrea £ E0) 0mo
z:T|7U\ 7 (18)
()00
i=|U|

We now change the variable letting r := i + |U]|, factor out plVl, and use the binomial formula
(Lemma 11) to obtain

n—|U]| . ‘U|
PrU C A=Y (77 ) ) UL (1 = gy
r=0

"= (0= U]
= plUl. Z < ) UL (1 = pyn= Ul (19)

r
r=0
=l (p+ (1= p) Yl
= plVl.
Therefore we can conclude that all edges between emulated nodes appear with a mutually
independent probability p and hence G ~ Ga. O

A problem of Fast-ER-Emulation is that each party p needs to make E(p) number of draws
from the binomial distribution. One way to avoid this is to make a single random draw for the
number of nodes all emulated nodes should send to and then afterward choose this number of
nodes uniformly without replacement. Below we present the algorithm Practical-ER-Emulation,
which does exactly that.

— Algorithm Practical-ER-Emulation, (E, p)

1: Let N == @.
$
2: Sample k < B (E(p) - [E(P\ {p})], p)-
3: Let A be k nodes sampled from E(P \ {p}) without replacement.
4: Set N ={p|pi€ ANieN}L
5: return V.
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Practical-ER-Emulation is not distributed identically to Fast-ER-Emulation, as there is a
smaller expected overlap between the selected emulated nodes. However, it still holds that
the graph resulting from the honest sending process based upon Practical-ER-Emulation has a
higher chance of having a low distance from the sender than the graph resulting from the honest
sending process based upon Fast-ER-Emulation. We make this intuition formal in the lemma
below.

Lemma 6. Let p € [0,1], let A € N, let p € H, and letE : P — N\ {0} be an emulation function.
If G4 & HSP(p, Fast-ER-Emulation(E, p), \) and G2 & HSP(p, Practical-ER-Emulation(E, p), \)
then

Pr[¢pist(G1,p, A)] < Pr[¢pisi(G2, p, A)]. (20)

Proof. Let G1 = (H, Ey) and Go = (H, Es). To show the lemma we define a couplinAg/GNl =
(H El) and G2 = (7—[ Ez) s.t. G1 ~ G1 and Gy ~ GQ and gf)DlSt(Gl,p, )\) — quist(Gg,p, )\)
To show the implication it is sufficient to show that Ey C E,. We define the coupling by
sampling 671 and 672 in parallel with a defined a coupling between the neighbourhood selec—
tion algorithms for any party p’ € H. We let Ny & Fast-ER- Emulatlonp /(E,p) and Ny <
Practical-ER- Emulatlonp /(E,p). Again we define a couphng N1 ~ Ni and N2 ~ Ny and show
that N1 - Ng This is sufficient to ensure that E1 - E2 because this ensures that all parties
that selects their neighbours when constructing G also gets to select their neighbours in the
construction of é;
We define N; and Ns via the following process.

1. Initially, let Ny =N, = @.

2. We now initialize variables corresponding to the variables used in Line 3 of Fast-ER-Emulation,, (E, p)

—~

by sampling kl & B([E(P\{p}).p),- k:]f( & B([E(P\ {p})|, p), and a variable cor-
responding ko = ZE(’D ) ki ki to the k in Line 2 of Practical-ER-Emulation,, (E, p)
3. Additionally, we initialize ,Z{ = ,.. .,Af(p ) — & that corresponds to the variable A

in Line 4 of Fast-ER-Emulation, (E, p) and Ay
in Line 3 of Practical-ER-Emulation, (E, p).

@ that corresponds to the variable A

4. Now for i € {1,...,E(p )}andforje{ k:l}d'

(a) Set Accepted; := L and Accepted, = L.
(b) While ~Accepted; V —Accepted, do:
i. Sample v uniformly in E(P\ {p ).
ii. Ifvé¢g A2 N —Accepted, set AQ = AQ U{v} and Accepted, == T.
iii. If v AZ N —Accepted,; set A1 = AZ U{v} and Accepted; = T.

5. Finally,set;fl::UELP/)Ai,set]Vl =1p piEZfl/\iGD\l and set Ny := P pZ-G/?g/\iGN .
=1 1

Note at first that ]Vl ~ Njp as the procedure simply uses rejection sampling to sample ki
elements from E(P \ {p'}) without repetition and adds these to A;, and hence have the same
distribution as Fast-ER-Emulation,/ (E, p). Furthermore, note that the procedure simply samples
ko = Zfipll ) 12171 elements from E(P\{p'}) without repetition via. rejection sampling and add these
to As. Because ky is the sum of E(p’) independent random variables that are each distributed
as B([E(P\ {p'})], p) we get that ks ~ B(E(Y) - |[E(P\ {p'})], p) and hence that Ny ~ Ny.
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Furthermore, the algorithm ensures that ]Vl - ]Vg because at any point in the algorithm we
have that Aj is a superset of any A%. O

As a simple corollary of Lemmas 1 and 4 to 6 we get that the probability that mpjo0q (Fast-ER-Emulation(E, p))
and 7pie0d (Practical-ER-Emulation(E, p)) do not ensure timely delivery is negligible for a certain
choice of E and p.

Corollary 2. Let E(p) = [y - 1], let d € [7,00], and let p = %.

input to some honest party in either

If m is a message that is

o T riood( Fast-ER-Emulation(E, p)),

o 0T Tpieod( Practical-ER-Emulation(E, p))

Pr [Timelym ((7 -log (Z) + 2) . 5Chcmnel)]
>1-— (2 - <6_fd8 + (6 -log (Z) + 1) -6_17£> + 67'"'(32)> :

3.4.2 A Practical Neighbourhood Selection Algorithm

then

(21)

Neither Fast-ER-Emulation nor Practical-ER-Emulation is close to algorithms already deployed in
practice where each party forwards a message to a fized number of parties. We incorporate this
design paradigm in the algorithm WFS(E, k) (abbreviation for “Weighted Fan-out Selection”)
which aside from an emulation function E also takes a security parameter k.

The idea of the very simple algorithm is that each party p chooses K = k - E(p), for E(p) =
[ap - ], number of neighbours (excluding himself). The neighbours are chosen according to
weighted sampling without replacement [BHPS16]. More precisely, p chooses K neighbours,
and the probability to choose the tuple of neighbours (q1, ..., qx) is defined as follows:

K

Pr((q1,---.ax)) =[] E(gi)

i1 ne —E(p) —E(q1) = —E(gi-1)

The probability to choose a certain neighborhood set {qi,...,qx} is then the sum over the
probabilities over all the permuted tuples. We denote by Dy the resulting distribution.

— Algorithm WFS,(E, k)

1: Let N == @.

2: Set K ==k -E(p).

3: Sample A & D parties from P \ {p}, and add these to N.
4: return N.

We now relate the probability that graph constructed by the honest sending process of
Practical-ER-Emulation has a low distance from the sender to the probability that the honest
sending process of WFS has a low distance from the sender.

Lemma 7. Let p € [0,1], let e € [0,1] let A € N, let p € H, let k > [(1+€) - ng - p]|, and let
E: P — N\ {0} be an emulation function. If Gy & HSP(p, Practical-ER-Emulation(E, p), \) and
G & HSP(p, WFS(E, k), \) then

_ 62'("71)'/)

Pr[¢piss(G1,p, N)] — |H] - e 5 < Prigpisi(Ga, p, N)]. (22)
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Proof. Let G = (H, E1) and G = (H, Ez). To show the lemma we define again a coupling
Gl = (H, El) and Gy = (H, Eg) s.t. G1 ~ Gy and Gy ~ Go. For each party p’ € H we introduce
a random variable X, which denotes the number of outgoing edges this party has in Gi. We
further define C' to be the event (¢ (X < (1+¢€)-E(p') - [E(P\ {p'})] - p) (this event can be
thought of as that no party picks “outrageously many neighbours”). We now wish to show two
things:

¢Dist((/;\17p7 >‘) A C — ¢Dist(6;v27p7 A)? (23>

and

Pr(¢pist(G1,p, A) A C] > Pr[¢pist(G1,p, \)] — [H] - e EE (24)

To show Equation (23) it is sufficient to show that C' = E’vl - E’vg As in the proof of Lemma 6
we define the coupling by sampling G; and G2 in parallel with a defined a coupling between the

neighbourhood selection algorithms for any party p’ € H. We let Ny & Practical-ER- Emulation,y (E, p)

and Ny & WFS,,/ (E, k). Again we define a coupling N1 ~ N1 and Ng ~ N3 and show that

C = Ni C Ng which again will imply that ¢ = E, C Es. Again we define a coupling
N1 ~ N7 and N2 ~ Ny and show that Ny C N2 This is sufficient to ensure that /Evl - Ev’g
because this ensures that all parties that selects their neighbours when constructing G, also
gets to select their neighbours in the construction of Go.

We define N; and N» via the following process.

1. Initially, let ]Vl = ]Vg = .

2. We further initialize variables corresponding to the variables & and A used in Lines 2
and 3 of Practical-ER-Emulation,/ (E, p) by sampling k& B(E(Q) - |[E(P\{p'})|,p) and
set A; = @. We also initialize a variable Ky = E(p) - k identical to the variable K
in Line 2 of WFS,/(E, k).

3. Now for i € {1, .. .,max(/kvl,l?g)} do:

(a) Set Accepted, ‘=i > k; and Accepted, =i > Ko.
(b) While ~Accepted; V —Accepted, do:
i. Sample p; uniformly in E(P \ {p'}).
ii. If peg Ny A —Accepted, set Ny == No U {p} and Accepted, == T. &
iii. If v & A; A —Accepted, set A; := A; U {v} and Accepted, = T.

4. Finally, set Ny = {p Ipie A Ni€ N}.

Note at first that ]Vl ~ Njp as the procedure simply uses rejection sampling to sample EI
clements from E(P \ {p'}) without repetition and adds these to A;, and hence have the same
distribution as Practical-ER-Emulation, (E, p). Similarly, it is clear that ]72 Ny as once again
rejection sampling is used to pick E( ')+ k from P\ {p'} weighted according to E. It is also
immediate to see that C' — N1 C N» as if C happens then surely the max of k1 and KQ is KQ,
as ng > |[E(P \ {p'})|. Hence all parties that will be added to N; will also be added to Na.

8Note that p in this step does not refer to the sender in the honest sending process but rather the party that
is supposed to emulate node p;.
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It is thus left to show Equation (24). We have that
Pr(¢pise(G1,p, A) A C] = Pr[¢pise(G1,p, \)] — Pr[=C]. (25)
As we have already argued that G ~ G, it is sufficient to show that
Pr[-C] < [H] - e~ =522, (26)
Further, using a union bound we have that.

Pr[=C] =Pr | [ (Xp > (1+¢)-EQ) - [E(P\ {p'})] - p)
P'EH (27)

< > Pr[Xy > (1+¢)-EQ) - [EP\{p'})-0].

Furthermore for each party it is clear that the number of neighbours selected is less than the
selected emulated neighbours. We let Y}, denote this number of emulated neighbours. Hence,
it is sufficient to show that for any p’ € H we have,

Pr[Yy > (1+6) - E@) - [BP\ {ph)] -] < e =2 (28)

Now, as for any p” € P we have that E(p”) > 1 it follows that [E(P\ {p'})| > n — 1. This makes
desired equation follows from the Chernoff bound (Lemma 14)

_ EEP\P DIEE)p
3

Pr[Yy > (1+¢€)-E@p) - [E(P\{p'})]-p] <e

<e

(29)

_2(n=1)p
3

O]

Our final protocol is the protocol obtained by instantiating the flooding skeleton 7gio0q With
the neighbourhood selection algorithm WFS that again is to be instantiated with the imitation
function discussed above. We name this protocol the weighted fan-out flooding protocol and use
the abbreviation WFF(k) = 7pi00a(WFS(E, k)) for E(p) := [ay - n].

We now provide a corollary that bounds the concrete probability that a message that is
input via. WFF delivered timely.

Corollary 3. Let k € N s.t. k > %. If m is a message that is input to some honest party in
WFF(k) then

Pr [Timelym ((7 -log (ZS/) + 2) ) 5Chcmnel)il

>1- (2 - <e_]1v0g + (6 -log (26) + 1> '6_m> +e_7'"'(%_2) +n- e_(nv:;lk> )
e

Proof. Let E(p) := [}, -n]. Lemma 1 ensures that is enough to reason about the honest sending
process with the neighbourhood selection algorithm WFS(E, k). We observe that

nE:Z(ap-n]§Zap~n—l—1:2-n. (31)

(30)

peEP peEP
We let d = k%, and note that the precondition for Lemma 7 is satisfied for p = % S0
we instantiate this letting € = %, and using the bound above on ng. Furthermore, note that

|| < n and hence it is sufficient to bound the probability that the honest sending process of
Practical-ER-Emulation(E, p) has a large distance from the sender. Equation (30) now follows by
Lemmas 4 to 6. 0
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As observed earlier, it is sufficient to bound the probability that a message is timely delivered
in order to bound the probability that any of the two properties of a flooding protocol is achieved.
We conclude with the following theorem that states that WFF is a flooding protocol.

Theorem 2. Let k := %. WFF(k) is a A-flooding protocol for A = (7 -log (Z—S) + 2) :
O Channel and has communication complexity less than k -2 - n.

4 Asymptotic Optimality and Practical Considerations

Our results from Section 3.4.2 show that the protocol WFF(k) provides provably secure flooding.
With respect to efficiency, the results show that there are two possible drawbacks: First, the
emulation function E(p) = [a,, - n| forces parties with very high weight to send to many parties,
which lead to bandwidth issues. Secondly, Theorem 2 shows that in our protocol, the number
of parties each node has to send to increases logarithmically in the total number of nodes. In
this section, we show that both properties are inherent for “flooding protocols”.

4.1 Workload of Heavy Parties

It is easy to see that in at least in extreme cases, very heavy parties have to send to a lot of
other parties: If there is a single party that has the majority of the total weight, it could be
that only this party and an additional one are honest. Since the heavy party is the only one
that can be relied upon for message delivery, it needs to send to all other parties. The following
lemma generalizes this idea to less extreme settings.

Lemma 8. For any protocol 11 that guarantees delivery to all honest parties, and for any subset
S C P such that 3 ,cq ap > vy, we have with overwhelming probability that

> degreep(p) > [P\ S. (32)

peS

Proof. Let S be any such set. By the honesty assumption it could be that there is exactly one
honest party in P\ S. To guarantee delivery to this party, some party in S must send to it.
Since it cannot be distinguished which party in P \ S is honest, the parties in S must send to
all parties in P\ S. O

Another consequence of Lemma 8 is that having a huge number of nodes with very little
weight also increases the workload for all other nodes, as we show below.

Corollary 4 (Implications of Lemma 8 for weight distributions with tiny weights). Assume
there is a large set T C P of parties with combined relative weight <1 —~ and |T| > n — € for
some constant € > 0, and define S := P\ T. Then, the average degree of the parties in S must

be at least "= € Q(n) with overwhelming probability.

Proof. Since 3 cgap =1 — 3 cpap > v, Lemma 8 implies that the average degree of the
parties in S is at least % with overwhelming probability. By assumption, we have |7T;]9‘ =

i 2 225 € Q(n). 0
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Limiting the workload. As we have seen above, having very heavy or many very light parties
necessarily yields a large number of outgoing connections for some of the nodes. This is not only
undesirable but may also become prohibitive in practice due to limited network bandwidth. If
the flooding is deployed, say for a proof-of-stake blockchain, this can be mitigated by putting a
lower and an upper limit on the amount of stake for actively participating nodes. This implies
that people holding a lot of stake need to split their stake over several nodes (which is anyway
beneficial for decentralization if they are run in different locations), and people with too little
stake need to, e.g., delegate their stake to another node if supported by the blockchain. The
latter can still passively participate by fetching data from other nodes as discussed for zero-
weight parties in Section 5.2.

4.2 Message Complexity Grows Logarithmically in Number of Parties

It is well known that Erdés—Rényi graphs are connected with high probability if and only if
edges are included with probability larger than 10% [Bol01, Theorem 7.3]. This means the
expected degree of a node must be larger than logn to obtain a connected graph, even without
considering corruptions. Since our proofs in Section 3 depart from Erd6s—Rényi graphs, one
cannot hope to prove a better communication complexity with our proof techniques.

On the other hand, our final protocol WFF(k) does not choose neighbors in the way Erd6s—
Rényi graphs are constructed, but more closely correspond to so-called directed k-out graphs,
which have also been considered in the literature. Those are directed graphs where for each
node v independently, k& uniformly random other nodes are sampled and directed edges from v
to the k£ sampled nodes are added. It is known that such graphs are connected with probability
approaching 1 for n — oo already for constant k = 2 [FF82]. Hence, at least without corruptions,
O(n) overall communication complexity should be enough for our protocol. When considering
corruptions, however, a result by Yagan and Makowski [YM13] implies that logn connections
for each node are necessary, as we show below. This shows that WFF(k) and Theorem 2 are
asymptotically optimal, at least for the special case in which all parties have the same weight.

Lemma 9. For any flooding protocol in which all honest parties send to k uniformly chosen
nodes and delivery to all honest nodes is guaranteed with probability > 1/2 where up to a (1 —7)
fraction of nodes can be corrupted, we have for sufficiently large n that

logn
k> .
v+ 1/n—log(l —~v—1/n)
Proof. Yagan and Makowski [YM13] have considered the setting in which for each of the n
nodes p;, k distinct random other nodes are sampled and undirected edges between p; and all
k sampled nodes are added to a graph. They then consider the subgraph H consisting of the
first |7'n| nodes for some constant 7' € (0,1) and show in [YM13, Theorem 3.2] that

1
k< ogn

- — lim Pr[H contains isolated node] = 1.
v —log(l—7) = noeo

To translate this to our setting, first note that corrupting at most | (1 —~)n| nodes from the
end to leave the first |yn + 1| parties honest is a valid adversarial strategy. To be compatible
with the result above, we can set 7' := « + 1/n. Further note that a node p being isolated in
H has the same probability as an honest node not sending to any other honest node and no
honest node sending to that one in a flooding protocol. In that case, if p is the sender in the
flooding protocol, no honest node will receive the message, and if some other node is the sender,
p will not receive the message. Hence, the flooding protocol will fail to deliver the message to
all honest nodes in both cases. This implies that, for sufficiently large n, flooding protocols

with & < 5 /nfli)ogg(?ivil 7y fail to deliver messages with high probability. O
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5 Delivery to Parties With Zero Weight

So far, we have excluded parties with zero weight from participating in our protocol. While they
are not relevant for the security of consensus protocols running on top of the network, it is still
important in practice to allow such passive nodes to obtain the data from the blockchain, e.g.,
for connecting wallets. We discuss here some options that allow zero-weight parties to obtain
data with advantages and disadvantages of the different approaches.

5.1 Adjusting the Emulation Function

Recall from Section 3.3 that we use the emulation function

E(p) = [ay, - 1].

This implies that parties with weight 0, i.e., @, = 0 emulate 0 parties and consequently do not
send anything and also do not receive anything. If we want to guarantee delivery to parties
with zero weight, we can instead use the emulation function

E(p) = Loy -n) + 1.

This ensures that all parties emulate at least one party. Furthermore, inequalities (9) and (10)
from Section 3.3 also hold for E' and our results from that section follow similarly as for E.
Hence, using the emulation function E guarantees delivery to all parties, includes those with
weight 0.

A downside of this approach is that considering parties with weight 0 opens up the system
for Sybil attacks: An attacker can easily add additional zero-weight nodes to the system and
thereby increase n arbitrarily without changing any c,. According to E’, the work required
from honest parties with nonzero-weight thus increases linearly in n, allowing the attacker to
increase the workload of honest parties arbitrarily. Such approach therefore is only practical if
there is some mechanism for preventing Sybil attacks in place.

5.2 Fetching Data

Since guaranteeing that all zero-weight parties receive all data in the flooding process can
substantially increase the workload for honest parties, we here provide an alternative. The idea
is to exclude zero-weight parties from the regular protocol as we do in our main results, and
to allow those parties to obtain the state by querying other nodes. To prevent Sybil attacks,
parties with non-zero weight can then refuse to answer if they receive too many requests. This
ensures that the flooding among parties with non-zero weight, which is critical for consensus
of the blockchain, cannot be negatively affected by zero-weight parties; the worst outcome of
Sybil attacks is that honest zero-weight parties cannot obtain data from the blockchain.
We formalize this idea in the algorithm Fetch below.

Algorithm Fetch(k)

1: Let N == @.
2: Sample k parties p1,...,pr € P weighted w.r.t. o, and add these to N.
3: Request data from all N parties and return the union.

The probability that a party does not fetch some data that is already sufficiently spread
drops exponentially fast in k. We formalize and prove this in the lemma below.
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Lemma 10 (Fetching from Constant Number of Parties). Let k € N and let 3 be the fraction
of weight assigned to parties that are honest and hold some piece of data. The probability that
the state returned by Fetch(k) does not include that data is at most

(1-B)". (33)

Proof. Let D be the set of parties that are honest and hold the data and let X; fori € {1,...,k}
be the random variable denoting the ith party that is picked by Fetch(k). Using the definition
of conditional events we have

Furthermore, we have for i € {1,...k},

Pr[XigéD X, ¢D1 :1—Pr[XZ-eD X, ¢D]
1<t 1<t
zl—ZPr[Xi:pz ﬂngéD] (35)
p-€D Jj<i
<1- %
p-€D 2poep o
=1-p.
Hence, we can conclude that
Pr[no picked party is honest and has data] < (1 — 8)*. (36)

Since Fetch(k) returns the union of all obtained data, it is sufficient to pick a single honest party
that holds the data, which concludes the proof. O

6 Evaluation

To evaluate the practicality of WFF protocol, we implemented a simulator and ran various
benchmarks. We now present and analyze the more relevant obtained results.

6.1 Setup

For the evaluation we consider three types of (deterministically determined) weight distributions:
constant weight distribution wherein all parties have the same weight; exponential weight distri-
bution wherein the weights of parties form an exponential curve (we believe this type of weight
distribution best reflects the distribution of resources in the real world); and few heavy weight
distribution wherein a few parties are very heavy, whilst the remainder have very little weight.
To be more precise: the constant weight distribution is defined by the number of parties n; the
exponential weight distribution is defined by the number of parties n and by the weight ratio r
between the heaviest party and the lightest party”; the few heavy weight distribution is defined

9This means that if one would order parties increasingly by their weights, for ¢ € {1,...,n — 1}, the weight of
pis1 is r~ 7D times the weight of p;.
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by the number of parties n, by the weight ratio » between the heaviest party and the lightest
party, and by the number of heavy parties c'’. Regarding who sends the message: for the expo-
nential weight distribution we consider three possibilities: the heaviest party sends, the lightest
party sends, or the party with median weight sends; for the few heavy weight distribution there
are only two possibilities: either a heavy party sends the message, or a light party does; for the
constant weight distribution, the sender is irrelevant since all parties have the same weight.

We consider three different corruption strategies: random corruption, wherein the adversary
picks parties uniformly at random and then corrupts them; light first corruption, wherein the ad-
versary corrupts parties by their weight, starting by the lighter ones; and heavy first corruption,
wherein the adversary behaves as for the light first corruption, but instead starts corrupting the
heavier parties first. For all corruption strategies, the adversary corrupts as many parties as
possible within its corruption budget. This means that even if the adversary cannot corrupt a
certain party—because doing so would make the adversary exceed the corruption threshold—it
still tries corrupting other parties. When running simulations, for each set of parameters, we
make multiple runs. For each run a new corruption set is chosen independently of the corruption
sets sampled for prior runs. This means that for the random corruption strategy, the set of
corrupted parties is picked fresh in each run. On the other hand, since the light first and heavy
first corruption strategies are deterministic, the set of corrupted parties is always the same for
each run. Finally, for each run the sender is picked first and cannot be corrupted.

For the constant weight distribution the corruption strategy is irrelevant. For this reason,
for this weight distribution we only consider the random corruption strategy.

6.2 Default Configurations

For the simulations, we implemented the WFF protocol. The default number of parties is
1024; the default weight ratio between the lightest party and the heaviest party for both the
exponential and few heavy weight distributions is 1.000.000; the default number of heavy parties
for the few heavy weight distribution is 10; the default corruption threshold is 50% of the total
weight.

For each parameter configuration, we make 200 runs. The average success rate corresponds
to the percentage of these runs in which the message is received by all parties. Note, that
this definition of a success is differs from the definition of our timely message predicate in two
respects:

1. We do not require that message should be delivered before a certain time. The reason is
that we have observed that the maximum latency for any configuration which succeeds
reasonably often is within a very small factor of dchannel and hence we consider this
practical (see Figures 3b, 4b and 5b).

2. We require that the message is delivered to all parties (including dishonest parties). The
reason we made this choice is that this makes a greedy corruption strategy optimal (always
corrupt as much weight as possible). Otherwise, it could be that leaving a party honest
would give a lower success rate than corrupting the party because the protocol then would
need to guarantee delivery to this party also. Furthermore, it is any time a run is a success
with respect to this definition all honest parties also receives the message. With this choice,
we therefore argue that our corruption strategies more likely generalize to an actual worst
case corruption strategy, and our success rates therefore corresponds to a lower-bound on
the actual success rates.

00ne can think of the few heavy weight distribution as the constant weight distribution with n — ¢ parties, to
which ¢ parties with r times more weight than the original ones are then added.
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The maximum latency of configuration is the largest number of hops that a message propa-
gation took in the successful runs (if none of the 200 runs was successful, then we do not plot
the latency). The unit of the latency in our plots will therefore be dchannel-

For the exponential and few heavy distributions, where there can be senders with different
weights, we make 200 runs for each case—meaning we make 200 runs for the lightest sender, 200
runs for the median weighted sender, and 200 runs for the heaviest sender, for the exponential
weight distribution, and make 200 runs for the lightest sender, and 200 runs for the heaviest
sender, for the few heavy weight distribution—and then consider the least average success rate
among the different senders. Regarding latency, we simply take the maximum latency among

all runs.

6.3 Comparison Against Weight-Oblivious Protocols

Figure 2 shows that our protocol, by making parties pick their targets according to their weight,
achieves 100% success rate at a much lower communication cost than the weight-oblivious
protocols. In fact, as one can see from the plot, while the our protocol achieves practical
security with low message complexity regardless of the weight distribution, security for the
weight-oblivious protocol is tied to the weight ratio between the heaviest and the lightest parties.

Note that when the weight ratio between the heaviest and the lightest parties is 1, the
exponential weight distribution is the same as the constant weight distribution.

100% |- o - = |" - WEFF, Exp(1)
[ ‘ e --- WFF, Exp(10%)
! ‘//,’l’/ o ----WFF, Exp(10%)
' // o A | WFF, Exp(109)
0% [ : E & WOF, Exp(1)

; ‘JH 3 4 o~ WOF, Exp(10%)
! fﬂ' A A WOF, Exp(10)
L » o ----WOF, Exp(10°)

Average Success Rate

0%

| | | |
25 50 75 100 125 150 175 200

Average Communication Per Party

Figure 2: Comparison of WFF protocol against a weight oblivious protocol, for the exponential
weight distribution with varying lightest party-heaviest party weight ratios. In the plots, WFF
denotes our protocol, and WOF denotes a weight oblivious protocol, namely 7gio0q(WFS(E, k)),
with the emulation function E being E(p) := 1); Exp denotes the exponential weight distribution,
and the parameter is the weight ratio between the lightest and heaviest party. The plot shows
how the average success rate varies depending on the average number of messages sent per party,
for the two protocols and for the different lightest party-heaviest party weight ratios. We only

consider the light first corruption strategy.

6.4 Performance For Changing Weight Distributions

In Section 3.4.2 we bounded the communication complexity of WFF by Zn-(log(n)++) (see Theo-

rem 2) and in Section 4.2 we showed that this is asymptotically optimal for the constant weight
distribution for this type of protocol (see Lemma 9). A useful property of our communication
complexity bound is that it is independent of the weight distribution. However, as this upper-
bound only asymptotically matches the necessary communication complexity for the constant
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weight distribution, one could be concerned that are certain weight distribution or corruption
strategies that would make WFF perform badly in practice. To show that this is not the case
we measured the success rate for sending a single message in WFF(k) and the maximum latency
as a function of the communication complexity (induced by adjusting k) for different stake
distributions and corruption strategies. The results can be found in Figure 3. We note that
the communication complexity for the average success probability to approach 1 is within a
small constant factor from each other for all the different weight distributions and corruption
strategies. Furthermore, note that for the constant weight distribution WFF(k) simply selects
k neighbours uniformly at random and at least v - n of the parties remains honest. Hence, this
corresponds to the performance that can be expected by additionally assuming that a certain
fraction of the parties remains honest and use flooding protocols tailored to this setting. We
emphasize that our protocol only induces marginally larger (within a small constant factor)
communication complexity for all the considered weight distributions. Consequently, we con-
clude that security for our flooding protocol in the weighted setting essentially comes at no cost
compared to this more traditional setting.
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—— Exp, Heavy
—— Exp, Light
-=--Const, Rand
----FH, Rand
----FH, Heavy
-<-FH, Light

100%
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Average Success Rate

0% Mg 5 & & o o~ - |
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Average Communication Per Party

(a) Average success rate depending on the average communication per party.
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4+ 4// PR UUUUOUIUS VI VN **”FH, Rand
! \ ‘ L 4 ----FH, Heavy
L F-0->-Q »—Tk—zk\— A— 8 7 3 A R
AN N SN N // \\ ,/ AN ’*}’FH, nght-
2k 9= -3 - - 4> 5 - - O >4

/ \

Maximum Latency
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Average Communication Per Party

(b) Maximum latency vs average communication per party.

Figure 3: Behavior of WFF protocol for different weight distributions and corruption strategies.
We denote the exponential, the few heavy, and the constant weight distributions by Exp, FH,
and Const, respectively; and we denote the random, heavy first, and light first corruption
strategies by Rand, Heavy, and Light, respectively.
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6.5 Scalability

A key feature of message flooding protocols for blockchains is their scalability. To measure the
scalability of our proposed protocol, we measured, for different numbers of parties, the average
success rate of the protocol depending on the average number of messages each party sends. As
Figure 4 shows, our protocol scales very well with the number of parties, not only in terms of
the average success rate—which seems to show that as the number of parties double, to achieve
a similar success rate parties only have to send one more message, on average—but also in terms
of latency, which is very low regardless of the number of parties: for 128 parties, it is only for
an average of 22 messages sent per party that the success rate gets to 100%, and for this value
the corresponding maximum latency is 4; for 1024 parties, the average number of messages sent
per party such that the average success rate is 100% is 27, and the corresponding latency is 4;
finally, for 8192 parties, the average number of messages sent per party such that the average
success rate is 100% is 32, and the corresponding latency is 5.

—— 64 Parties

o 100%
= —o— 128 Parties
Qi —5— 256 Parties
§ —— 512 Parties
S 50% ——1024 Parties
(g —— 2048 Parties
& —=— 4096 Parties
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Average Communication Per Party
(a) Average success rate depending on the number of messages sent per party.
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2 6l —— 1024 Parties
g ~=- 8192 Parties
k
g 40
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2
%
s 7

| | | | | | | | |
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Average Communication Per Party

(b) Maximum latency depending on the number of messages sent per party.

Figure 4: Scalability of WFF protocol. For both plots, we only consider the constant weight
distribution, a corruption threshold of 50% (meaning, in this case, that the adversary corrupts
strictly less than 50% of the parties), and the random corruption.
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6.6 Estimating Parameter for Practical Security

As already mentioned, the number of messages a party sends is given by its emulation function
E(p) = [a, - n]| multiplied by the protocol parameter k. We now analyze what values one
can set k to in order to achieve security in practice. Figure 5 shows, for the different weight
distributions and for the different corruption strategies how the average success rate and the
maximum latency vary depending on the protocol parameter k.

It is worth mentioning that although, at first sight, our protocols may seem to perform better
for the exponential and few heavy weight distributions, this is actually not the case: while it is
true that the protocol achieves a higher average success rate and a lower diameter for smaller
values of k, for both these weight distributions (but not for the constant weight distribution)
the average number of messages sent per party grows by a factor larger than 1 (see Figure 6).

o 100% | —— Exp, Rand
= —+— Exp, Heavy
Ei —o— Exp, Light
§ -=--Const, Rand
U% 50% ---FH, Rand
° --+--FH, Heavy
?53 - FH, Light
z A
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Protocol Parameter k
(a) Average success rate depending on the protocol parameter k.
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9 6l A‘/ .\XM | |——Exp, Heavy
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Protocol Parameter k

(b) Maximum latency depending on the protocol parameter k.
Figure 5: Behavior of WFF protocol for different weight distributions and corruption strategies.
We denote the exponential, the few heavy, and the constant weight distributions by, respectively,

Exp, FH, and Const; we denote the random, heavy first, and light first corruption strategies by,
respectively, Rand, Heavy, and Light.
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Figure 6: Average number of messages sent per party for WFF protocol, for different weight
distributions. In the plot, we denote the exponential, the few heavy, and the constant weight
distributions by, respectively, Exp, FH, and Const; the exponential and few heavy weight distri-
butions are parameterized by the weight ratio between the lightest and heaviest party. We only
consider 1024 parties, and no corruptions; for the few heavy weight distribution we consider
10 heavy parties. The plot shows how the average number of messages sent per party varies
depending on the protocol parameter k, for the different weight distributions.
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A Basic Equalities and Inequalities

Lemma 11 (Binomial formula). For z,y € R and n € N

n

(x+y)" = Zx"‘k Sy
k=0

Lemma 12 (Bernoulli’s inequality). Forr € R\ (0,1) and x > —1

L+r-z<(1+2).
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Lemma 13 (Exponential inequality). Fory > 1 and |z| <1

Yy
(1+x> < ev.
Yy

Lemma 14 (Chernoff bound). Let X, ..., X, be independent random variables with X; € {0,1}
for all i, and let p = E[>7_ X;|. We then have for all 6 € [0, 1],

52;L

<e 3.

Prli){i <(1—=0)u

i=1

2 n
< e~ and Pr lz Xi>1+4+00)u
1=1

B Erdos—Rényi Graph Results

For completeness we restate a bound on the diameter of Erd6s—Rényi graphs from [MNT22].

Lemma 15 (Erdés-Rényi graphs with logarithmic diameter [MNT22]). Let n € N, d € R,

W, 01,02 € [0,1], and p = %. Furthermore, let v € R, let G & Ger(n,p), and let tg =

103(<1fa‘"1>d

oa(=syp) T 1 If

e <1 and (1-6y) v > 1, (37)
then 2 2
54d 85v(1—61)d
Pr[~¢piam(G, to + 1)] < 1 <e_12 + toe—221> + e (dn®=2), (38)

Following the instantiation of variables from [MNT22] this leads to the following corollary.

Corollary 5. Letn € N, d € [7,00], let p =2, and let G & Ger(n, p). Then

/,77
Pr |=¢piam (G, 7-log (27703) + 2)] <n- (efls + (6 - log <2nd> + 1) . 6176%) + e (5-2),
(39)
Proof. We set
51 = 5o = 14 = 1 d o Z
1.—2.—[[},.—3 an V.—4.
The bound now follows from Lemma 15 as the precondition is fulfilled. O
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