
Optimal Single-Server Private Information Retrieval
Mingxun Zhou Wei-Kai Lin Yiannis Tselekounis Elaine Shi∗

Carnegie Mellon University

Abstract

We construct a single-server pre-processing Private Information Retrieval (PIR) scheme with
optimal bandwidth and server computation (up to poly-logarithmic factors), assuming hardness
of the Learning With Errors (LWE) problem. Our scheme achieves amortized Õλ(

√
n) server

and client computation and Õλ(1) bandwidth per query, completes in a single roundtrip, and
requires Õλ(

√
n) client storage. In particular, we achieve a significant reduction in bandwidth

over the state-of-the-art scheme by Corrigan-Gibbs, Henzinger, and Kogan (Eurocrypt’22): their
scheme requires as much as Õλ(

√
n) bandwidth per query, with comparable computational and

storage overhead as ours.

1 Introduction
Imagine that a server holds a large public database DB indexed by 0, 1, . . . , n − 1, e.g., the
repository of DNS entries or a collection of webpages. A client wants to fetch the i-th en-
try of the database. Although the database is public, the client wants to hide which entry it
is interested in. Chor, Goldreich, Kushilevitz, and Sudan [CGKS95, CKGS98] first formulated
this problem as Private Information Retrieval (PIR), and since then, a long line of works have
focused on constructing efficient PIR schemes [CG97, Cha04, GR05, CMS99, KO97, Lip09, OS07,
Gas04,DG16,PR93,DCIO98,BLW17,BGI16,PPY18,IKOS04,Hen16,HH17,ACLS18,IKOS06,LG15,
DHS14,CK20,CHK22,KCG21,dCP22].

The good news is that PIR schemes with poly-logarithmic bandwidth are well-known [CG97,
Cha04, GR05, CMS99, KO97, Lip09, OS07, PR93, BLW17, BGI16, PPY18, DG16, IKOS04, Hen16],
either in the single-server or multi-server settings. The bad news is that in the classical PIR setting
without pre-processing, all known schemes suffer from prohibitive server computation overhead: the
server(s) must (in aggregate) perform computation that is linear in the database size n to answer
each query. Intuitively, if there is an entry that the server does not look at, it leaks information
that the client is not interested in that entry. Beimel, Ishai, and Malkin [BIM00] formalized this
intuition into an elegant lower bound, showing that any PIR scheme without pre-processing must
incur Ω(n) server computation per query.

Recognizing this inherent limitation, Beimel et al. [BIM00] introduce a new model for PIR that
allows pre-processing, and they were the first to show that the linear-computation lower bound can
be circumvented with the help of pre-processing. Subsequently, a line of works further explored
PIR in the preprocessing model [CK20, CHK22, PY22, SACM21], culminating in the recent works
by Corrigan-Gibbs, Henzinger, and Kogan [CHK22] and by Shi et al. [SACM21]. Corrigan-Gibbs,
Henzinger, and Kogan [CHK22] proved that in the single-server and pre-processing setting, we

∗Author ordering is randomized.

1

Table 1: Comparison of single-server PIR schemes. Q is the batch size for batch PIR, m
is the number of clients, n is the database size, and ϵ ∈ (0, 1) is some suitable constant. “BW”
means bandwidth per query. “CRA” means the composite residuosity assumption, ϕ-hiding is a
number-theoretic assumption described in [CMS99], “OLDC” means oblivious locally decodable
codes, and “VBB” means virtual-blackbox obfuscation.

Scheme Assumpt. Adaptive BW Per-query time Extra space
Client Server Client Server

Standard CRA or
✓ Õ(1) Õ(1) 0 0[Cha04,CMS99,GR05] ϕ-hiding

or LWE
O(n)

Batch PIR same
Õ(1) Õ(1) O(n

Q) 0 0[ACLS18, IKOS04] as above 5

[CHR17,BIPW17] OLDC ✓ nϵ nϵ nϵ O(1) mn

[BIPW17] OLDC, VBB ✓ nϵ nϵ nϵ 0 n

[CK20] LWE ✓ Õλ(
√
n) Õλ(

√
n) Õλ(n) Õλ(

√
n) 0

[CHK22] LWE ✓ Õλ(
√
n) Õλ(

√
n) Õλ(

√
n) Õλ(

√
n) 0

Ours LWE ✓ Õλ(1) Õλ(
√
n) Õλ(

√
n) Õλ(

√
n) 0

can construct a PIR scheme with amortized Õλ(
√
n) server and client computation per query,

while requiring Õλ(
√
n) client storage. Here, we use Õλ(·) to hide poly(λ, log n) factors, where λ

is the security parameter. Corrigan-Gibbs et al. [CHK22] also showed that their scheme achieves
optimality up to poly log factors in terms of server computation, assuming Õ(

√
n) client storage.

Unfortunately, their scheme suffers from Õλ(
√
n) bandwidth overhead which is significantly worse

than classical PIR schemes without pre-processing. On the other hand, Shi et al. [SACM21] showed
that in a setting with two non-colluding servers, we can construct a PIR scheme that incurs only
Õλ(1) online bandwidth and Õλ(

√
n) server and client computation per query, while requiring

Õλ(
√
n) client storage. Both of these schemes support unbounded number of queries after a one-

time pre-processing, and in the above, the cost of the pre-processing is amortized to each query.
While the two schemes [SACM21, CHK22] achieve similar server and client computation over-

head, Shi et al. [SACM21] has the advantage that it achieves Õλ(1) online bandwidth — although
unfortunately, this is achieved at the price of requiring two non-colluding servers. Notably, Shi et
al.’s scheme is known to be optimal up to poly log factors even in the two-server setting, in terms
of bandwidth and server computation, assuming that the client can only download roughly

√
n

amount of data during the offline pre-processing phase [CK20].
Given the state of the art, we ask whether we can achieve the best of both worlds. Specifically,

we ask the following natural question — the same open question was also raised by Corrigan-Gibbs
et al. in their recent work [CHK22]:

Can we construct a single-server pre-processing PIR scheme that achieves (near) optimality in
both server computation and bandwidth?

1.1 Our Contributions
We provide an affirmative answer to the aforementioned question by proving the following theorem:

2

Theorem 1.1. Assume that the Learning With Errors (LWE) assumption holds. Then, there exists
a single-server pre-processing PIR scheme that achieves amortized Õλ(1) bandwidth, Õλ(

√
n) server

and client computation per query, and requires Õλ(
√
n) client storage.

More specifically, in our scheme, there is a one-time pre-processing phase with the same over-
heads in all dimensions as Corrigan-Gibbs [CHK22] (up to poly log factors). During the offline
pre-processing, the client and the server engage in Õλ(

√
n) communication, the server performs

Õλ(n) computation, and the client performs Õλ(
√
n) computation. In Theorem 1.1 above, the cost

of the pre-processing is amortized to the subsequent queries. After the one-time pre-processing,
we can support an unbounded number of queries, and for each query, we incur the same costs as
stated in Theorem 1.1, in the worst case. Our actual construction makes use of two cryptographic
primitives: fully homomorphic encryption (FHE) [Gen09, GSW13] and privately programmable
pseudorandom functions [BLW17,PS18,KW21], both of which have known instantiations assuming
LWE.

Near optimality. Our scheme is optimal up to poly log factors in terms of server computation
and bandwidth, in light of the lower bounds proven in recent works [CK20, CHK22]. Specifically,
Corrigan-Gibbs and Kogan [CK20] showed that for any pre-processing PIR scheme where the server
stores only the original database, it must be that C · T ≥ Ω(n) where C is the bandwidth incurred
during the offline pre-processing and T is the online server time per query. The recent work of
Corrigan-Gibbs, Henzinger, and Kogan [CHK22] proved that for any pre-processing PIR scheme
that supports unbounded number of dynamic queries and assuming the server stores only the
original database, it must be that S ·T ≥ Ω(n) where S is client’s storage and T is the online server
time per query.

Although in the main body we focus on the most interesting special case where the parameters
S and T are balanced, in Appendix A, we discuss how to achieve a smooth tradeoff between S and
T . In particular, for any function f(n) ∈ [logc n, n/ logc n] for some suitable positive constant c, we
give a scheme that requires only Õλ(f(n)) client space, and achieves Õλ(n/f(n)) online server and
client time per query, and Õλ(1) bandwidth per query. Therefore, we achieve near optimality for
every choice of client space.

Comparison with prior schemes. Table 1 compares our scheme against various prior works.
In this table, we focus on schemes in the single-server setting, and for pre-processing PIR schemes,
we amortize the pre-processing overhead over an unbounded number of subsequent queries. Among
these schemes, batch PIR schemes [ACLS18, IKOS04,Hen16] must have a large batch size of Q to
achieve the stated amortized performance, and fail in the scenario when the queries are generated
adaptively and arrive one by one. We discuss additional related work in Section 1.2.

1.2 Additional Related Work
We now review some additional related work. Besides being first to define PIR with pre-processing,
Beimel et al. [BIM00] additionally showed how to construct a preprocessing PIR with polylogarith-
mic online bandwidth assuming polylogarithmically many non-colluding servers, and poly(n) server
storage. Unlike our work as well as the recent works by Corrigan-Gibbs et al. [CHK22,CK20], the
scheme by Beimel et al. [BIM00] employs a public pre-processing, where the pre-processing results
in no client-side secret state. In fact, in their scheme [BIM00], the server pre-processes the database,
resulting in a poly(n)-sized encoding of the database which is then stored by the server. The very
recent work of Persiano and Yeo [PY22] proved that for any PIR scheme with public pre-processing,

3

it must be that T · R ≥ Ω(n log n) where T is the server computation per query and R is size of
the additional state computed by the public pre-processing. In comparison, our work considers a
private pre-processing model, i.e., at the end of the pre-processing, the client stores some secret
state not seen by the server. This model matches well with a “subscription model” in practice. For
example, every client that needs private DNS service can subscribe with the provider, and during
subscription, they perform the one-time pre-processing.

Besides the single-server PIR scheme from FHE mentioned in Table 1, the work of Corrigan-
Gibbs and Kogan [CK20] also propose another scheme assuming only linearly homomorphic encryp-
tion, which requires O(n2/3) bandwidth and client computation and O(n) server computation per
query, as well as O(n2/3) client storage. Further, the work of Corrigan-Gibbs, Henzinger, and Ko-
gan [CHK22] additionally suggests a single-server PIR scheme assuming only linearly homomorphic
encryption, incurring O(

√
n) bandwidth and client computation, and O(n3/4) server computation

per query, requiring O(n3/4) client storage.
Hamlin et al. [HOWW19] suggested a related notion called private anonymous data access

(PANDA). PANDA is a form of preprocessing PIR which requires an additional third-party trusted
setup besides the client and the servers; and moreover, the server storage and time grow w.r.t. the
number of corrupt clients. In applications (e.g., private DNS) that involve a potentially unbounded
number of mutually distrustful clients, PANDA schemes would be unsuitable.

A line of works have explored the concrete efficiency of PIR schemes [ACLS18,MCR21,KCG21,
PPY18, GI14, MW22]. In particular, the work of Angel et al. [ACLS18] relies on batching to
amortize the linear server computation over a batch of queries. Kogan and Corrigan-Gibbs [KCG21]
gives a practical instantiation of the two-server pre-processing PIR scheme described in their earlier
work [CK20], with a new trick that removes the k-fold parallel repetition. For their private blocklist
application, it turns out that the database is somewhat small, and therefore, they are willing to incur
Θ(n) client-side computation per online query, in exchange for logarithmic bandwidth. The work of
Patel et al. [PPY18] explores how to rely on a stateful client to improve the concrete performance
of PIR schemes. Our work focuses on the asymptotical overhead, and we leave it to future work to
consider concretely efficient instantiations that preserve our asymptotical performance.

Some works have considered achieving sublinear server time by relaxing the security defini-
tion. Toledo et al. [TDG16] suggested to relax the security definition to differential privacy, to
improve the server time to sublinear, assuming that a large number of servers are available. Al-
bab et al. [AIVG22] also considered the differential privacy notion, and they can achieve sublinear
amortized server computation in a batched setting.

Independent work. Subsequent to our work, Lazaretti and Papamanthou [LP22] proposed a
similar construction. The main difference in their construction is that they claim to rely only on
privately puncturable PRFs and we rely on privately programmable PRFs. However, upon closer
examination, inside their scheme, they are effectively using rejection sampling to construct a pro-
grammable PRF from a puncturable PRF — earlier work has pointed out that this approach
will only work if the privately puncturable PRF satisfies rerandomizability [CC17]. Therefore, for
Lazaretti and Papamanthou’s scheme [LP22] to work, they need to rely on a rerandomizable pri-
vately puncturable PRF like what Canetti and Chen [CC17] suggested. The schemes by Boneh et
al. [BKM17] and Brakerski et al. [BTVW17] which Lazaretti and Papamanthou [LP22] claim to
rely on are not rerandomizable — even the correctness of their PIR scheme would not hold, had
they used these non-rerandomizable privately puncturable PRFs. Besides this issue, their privacy
proof appears a little incomplete. In particular, in the inductive argument in their privacy proof
in their Section B.1, they argue that the sk part of the client’s table is indistinguishable from ran-

4

domly sampled secret keys (for the hard puncturing key). To prove the PIR scheme secure, they
actually need to show that the client’s table is indistinguishable form randomly sampled keys, not
just for the sk part, but actually for the pair (msk, sk). This is because the server’s view actually
depends on the msks in the client’s table. While it is outside the scope of our paper to complete
their proof, we think changing the security definition of their pseudorandom sets to include the
msk, and reproving their pseudorandom sets secure under this new definition should lend to fixing
this issue.

2 Technical Roadmap
2.1 Starting Point: Optimal 2-Server Scheme By Shi et al.
2.1.1 An Inefficient Toy Scheme

Our starting point is the nearly optimal 2-server scheme by Shi et al. [SACM21], and we will
explore how to coalesce the two servers into one. To understand their scheme, it helps to start
out with the following toy scheme which is a slight variant of the strawman schemes described in
recent works [CK20,SACM21]. Henceforth, we use the notations Right and Left to denote two non-
colluding servers. Let Dn be some distribution from which we can sample random sets of expected
size
√
n — at this moment, the reader need not care what exactly the distribution Dn is.

Inefficient Toy 2-Server Scheme: Single-Copy Version

Offline preprocessing. (DB[k] denotes the k-th bit of the database)

• Client samples
√
n sets S1, S2, . . . , S√n ⊆ {0, 1, . . . , n− 1} from the distribution Dn.

• Client sends the resulting sets S1, . . . , S√n to Left. For each set j ∈ [
√
n], Left responds with

the parity bit pj := ⊕k∈Sj
DB[k] of indices in the set.

• Client stores the hint table T := {Tj := (Sj , pj)}j∈[√n].

Online query for index x ∈ {0, 1, . . . , n− 1}.

• Query: (Client⇔ Right)

1. Find an entry Tj := (Sj , pj) in its hint table T such that x ∈ Sj . Let S∗ := Sj if found,
else let S∗ be a fresh random set containing x.

2. Send the set S := ReSamp(S∗, x) to Right, where ReSamp(S∗, x) outputs a set almost
identical to S∗, except that the coins used to determine x’s membership are re-tossed.

3. Upon obtaining a response p := ⊕k∈SDB[k] from Right, output the candidate answer
β′ := pj ⊕ p or β′ := 0 if no such Tj was found earlier.

4. Client obtains the true answer β := DB[x] — the full scheme will repeat this single-copy
scheme k = ω(log λ) times, and β is computed as a majority vote among the k candidate
answers, which is guaranteed to be correct except with negligible probability.

• Refresh (Client⇔ Left)

1. Client samples a random set S′ and sends S′ to Left.

5

2. Left responds with p′ := ⊕k∈S′DB[k]. Let p̃ = p′ ⊕ β if x /∈ S′, else let p̃ = p′. If
a table entry Tj containing x was found and consumed earlier, Client replaces Tj with
(S′ ∪ {x}, p̃).

In this 2-server toy scheme, during the offline phase, the client samples
√
n sets each of expected

size
√
n from some distribution Dn. It downloads the parities of all these sets from the Left server.

It stores all these sets as well as the parity of each set in a local hint table. During the online phase,
to query an index x ∈ {0, 1, . . . , n − 1}, the client looks up its hint table and finds a set S∗ that
contains x, whose parity is pj . It then resamples the coins that determine whether x is in the set
or not. It sends the resampled set to the Right server, which returns the client the parity p′. The
client computes β′ = p′ ⊕ pj as the candidate answer. If we choose the distribution Dn carefully,
then, with significant probability, the ReSamp(x) will remove the element x from the set, without
adding or removing any other element. In this case, the candidate answer β′ would be correct.
If we can ensure that each single copy has 2/3 correctness probability, then we can amplify the
correctness probability to 1−negl(λ) through parallel repetition using ω(log λ) copies and majority
voting. Finally, once we consume a hint from the table, we need to replenish it. To achieve this, the
client samples a random set S′, and obtains its parity p′ from the Left server. The client replaces
the consumed entry with the set S′ ∪ {x} and its parity which can be computed knowing p′ and
β = DB[x].

Privacy. Privacy w.r.t. the Left server is easy to see. Basically, the Left server sees
√
n random

sets sampled from Dn during the offline phase, and during each online query, it sees an additional
random set also sampled from Dn. Privacy w.r.t. the Right server can be proven using an inductive
argument. Initially, the client’s hint table consists of

√
n random sets sampled independently

from Dn. Suppose that at the end of the i-th query the client’s hint table satisfies the above
distribution. Then, during the i-th query that requests some index x ∈ {0, 1, . . . , n − 1}, if some
hint (Sj , pj) is matched, i.e., Sj ∋ x, then, the distribution of Sj is the same as sampling from
Dn subject to containing x. Therefore, the set sent to the Right server, i.e., ReSamp(Sj) has the
same distribution as sampling at random from Dn. Further, notice that the client replaces the
consumed entry with another set sampled at random subject to containing x. Thus, at the end of
the i-th query, the client’s hint table still has

√
n independent and identically distributed (i.i.d.)

sets sampled from Dn.

Inefficiency of the toy scheme. In the toy scheme, both the server and the client perform
roughly

√
n computation per query. However, the online bandwidth to each of the two servers is

roughly
√
n, and the client storage is O(n).

2.1.2 Compressing the Bandwidth and Client Storage

Pseudorandom sets with private ReSamp. Shi et al. [SACM21] suggested an idea to im-
prove the efficiency of the toy scheme in the two-server setting. To achieve this, they introduce
a cryptographic object called a pseudorandom set (PRSet), allowing us to succinctly represent a
pseudorandom set of size roughly

√
n with a short key of poly(λ) bits. In this way, the client can

store a key in place of each set, and send a key to the server in place of the full description of a
set. Their PRSet scheme must support the following operations:

• sk← Gen(1λ, n): samples a key sk that generates a pseudorandom set emulating the distribution
Dn;

6

• S ← Set(sk): given a key sk, enumerate the set S;
• sk←Member(sk, x): test if an element x ∈ {0, 1, . . . , n− 1} is contained in Set(sk);
• sk′ ← ReSamp(sk, x): given a key sk, generates a related key sk′ that effectively resamples the

coins that are used to determine whether x is in the set or not, while preserving all other coins1;

Designing such a PRSet scheme turns out to be non-trivial, since we need to satisfy the following
properties simultaneously.

• Privacy of ReSamp. The resampled key output by ReSamp(sk, x) must hide the point x that
is being resampled.

• Efficient membership test and set enumeration. The membership test algorithm Member(sk, x)
must complete in Õλ(1) running time and the set enumeration algorithm Set(sk) must complete
in Õλ(

√
n) time.

Shi et al. [SACM21] show how to rely on a privately puncturable pseudorandom function [BKM17,
CC17, BTVW17] to construct a PRSet scheme that supports a private ReSamp operation. Fur-
ther, to satisfy efficient membership test and efficient set enumeration simultaneously, they carefully
crafted a distribution Dn that the PRSet scheme emulates. Notably, whether two elements are in
the set may not be independent in the distribution Dn. Such weak dependence between elements
brings additional possibilities of errors. In particular, ReSamp(sk, x) may accidentally remove
other elements besides x. If ReSamp(sk, x) either fails to remove x or ends up removing additional
elements besides x, the resulting PIR scheme would be incorrect. Shi et al. [SACM21] made sure
that the probability of such error is small, such that each single copy of the PIR scheme still has
2/3 correctness.

Optimal 2-server PIR scheme. With such a PRSet scheme, we can easily modify the aforemen-
tioned toy scheme to compress the client storage and bandwidth [SACM21]. Specifically, during
the offline phase, the client sends

√
n PRSet keys to the Left server. The Left server uses the set

enumeration algorithm Set to enumerate the sets and sends the client their parity bits. The client
now stores a hint table where each entry is of the form (ski, pi), where ski is a PRSet key that can be
used to generate a set of size roughly

√
n, and pi is the parity bit as before. During an online query

for x ∈ {0, 1, . . . , n−1}, the client finds an sk∗ in its hint table such that Member(sk∗, x) = 1, and
sends the outcome of ReSamp(sk∗, x) to the Right server. If such a key is not found, the client
simply samples a random sk′ ← Gen(1λ, n) and sends it to the server. The client computes the
candidate answer the same way as before. What is most interesting is how to perform the refresh
operation to replenish the consumed key. This is achieved in the following manner:

• Sample sk′ ← Gen(1λ, n) subject to Member(sk′, x) = 1, and send the outcome of ReSamp(sk′, x)
to the Left server.

• The Left server enumerates the set using the Set algorithm and sends the client the parity bit
p′. The client replaces the consumed entry with (sk′, p′⊕ β) where β = DB[x] is the true answer
to the current query.

1Shi et al. [SACM21] referred to ReSamp as Punct since the operation is implemented by calling the puncturing
operation of the underlying privately puncturable PRF.

7

2.2 Highlights of Our Construction and Proof Techniques
Corrigan-Gibbs and Kogan [CK20] proposed an FHE-based technique to compile a two-server
pre-processing PIR scheme into a single-server scheme, and the technique was further extended by
Corrigan-Gibbs, Henzinger, and Kogan [CHK22] — this technique is remotely related to techniques
for converting multi-prover proof systems into single-prover proof systems [ABOR00, BMW98,
DHRW16, DNR16, TKRR13]. The idea is to get rid of the Left server and redirect the queries
originally destined for the Left server instead to the Right server, but now encrypted under a
fully homomorphic encryption (FHE) scheme. The server now evaluates the answers to the query
through homomorphic evaluation. Unfortunately, this compilation technique is incompatible with
Shi et al. [SACM21]. The technicality arises from the fact that FHE evaluation relies on circuit
as the computation model, whereas the sublinear server computation time of Shi et al. [SACM21]
relies on the RAM model (since dynamic memory accesses are needed). Recall that every time the
server receives a pseudorandom set key, it needs to expand the key to a set of size Õ(

√
n), and

retrieve the parity of the database bits at precisely these indices. On a RAM, this computation
costs Õ(

√
n), but now that the key is encrypted under FHE, using a circuit to homomorphically

evaluate this computation would require an Ω(n)-sized circuit — this defeats our goal of having
sublinear server time.

Fortunately, the following critical observation, first made by Corrigan-Gibbs et al. [CHK22],
saves the day.
Observation. Although homomorphically evaluating the parity of a single set takes a linear-sized
circuit, we can batch-evaluate the parity bits of Θ(

√
n) sets in a circuit of size Õ(n), leveraging

oblivious sort. With batch evaluation, the amortized cost per set is only Õ(
√
n).

Idea 1: Batched refresh operations. The above batching idea allows us to compile the offline
phase of Shi et al. [SACM21] without suffering from the RAM-to-circuit conversion blowup (ignoring
poly-logarithmic factors). However, the online phase is problematic, since Shi et al. requires that
the client talks to the Left server to perform a refresh operation every time it makes a query.

Our first idea is inspired by the work of Corrigan-Gibbs et al. [CHK22]. Instead of performing
refreshes individually, we can group them into Q =

√
n-sized batches. Specifically, we first consider

a Q-bounded scheme that supports only Q =
√
n queries — in this way, we can hope to front-load

all Q refresh operations upfront during the pre-processing phase. Given a Q-bounded scheme, it is
easy to obtain a scheme supporting unbounded number of queries. We can simply rerun the offline
setup every Q queries, and amortize the cost of the periodic setup over each query — in fact, it is
also not hard to deamortize the periodic setup and spread the work across time.

In summary, through batching the refresh operations, we can hope to achieve Õλ(
√
n) amortized

server computation per refresh operation.

Idea 2: a pseudorandom set scheme supporting Add and ReSamp. If we front-load all
Q refresh operations upfront during the offline pre-processing, a new technicality arises. Recall
that during a query for x ∈ {0, 1, . . . , n − 1}, we must replenish the consumed entry with a set
sampled subject to containing the queried element x. During the offline pre-processing, however,
we do not have foreknowledge of x. Therefore, we can only hope to sample (pseudo-)random sets
(represented by keys) during the offline pre-processing, and add the element x to the set during
the online phase.

This means that we need a new PRSet that supports not only ReSamp, but also an Add
operation. Specifically, given a PRSet key sk, the client should be able to call sk′ ← Add(sk, x) and

8

then call rsk← ReSamp(sk′, y), and send the resulting rsk to the server. Further, for privacy, the
resulting rsk must hide both x and y. To construct such a PRSet scheme, we need a cryptographic
primitive called privately programmable pseudorandom functions [BLW17, PS18, KW21], which is
stronger than the privately puncturable pseudorandom functions employed by Shi et al.

New proof techniques. For the optimal two-server scheme of Shi et al. [SACM21], they have
a relatively simple privacy proof. In comparison, our privacy proof is much more involved, and
we need new techniques to make the privacy proof work. At a high level, the challenges in the
privacy proof arise due to the way the probability analysis is interwined with the cryptography.
Our main new idea in the privacy proof is to introduce a lazy sampling technique that provides
an alternative way to view how the client generates the key to send to the server — called the
“frontend” in our proof. In particular, during the scheme, the client scans through its primary
table and checks if each key contains the current query x. Whenever such a check is made and the
answer is no, it creates a constraint on the entry, i.e., the entry should not contain x. Whenever
an entry is matched during a query x, a constraint is created that the entry should contain x. If
the entry was previously promoted from the backup table, these constraints can also be modified
accordingly. Thus, we can imagine that the client maintains a set of constraints in this way, and
defer the actual sampling of the key to send to the server to the very last moment, subject to the
set of constraints that have been maintained on the matching entry. With this lazy sampling view,
we can decouple the frontend (i.e., how the client interacts with the server) from the backend (i.e.,
how the client maintains its local primary table), and switch their distributions one by one in the
subsequent hybrids. In our actual proof later, the frontend and the backend diverge at some point
when we switch to the lazy sampling view, and eventually, after switching both the backend and
the frontend, they would converge again, i.e., the distribution of the key sent to the server matches
the distribution of the matched entry (after some post-processing) again. At this moment, we can
undo the lazy sampling view, and continue to complete the proof.

Another technicality in our proof arises from the fact that the form of the standard security
definition of privately puncturable PRF is not in a convenient form we can easily use in our proof.
For this reason, we introduce a key technical lemma (Section 6.2) that is closer to the form we want.
We then repeatedly apply this key technical lemma when making the switches between our hybrid
experiments.

To help the reader understand the technicalities of our privacy proof and our new ideas, we give
an informal proof roadmap in Section 6.1.

3 Preliminaries
3.1 Privately Programmable Pseudorandom Functions
Intuitively, a privately programmable pseudorandom function [BLW17, PS18, KW21] is a pseudo-
random function (PRF) with one extra capability: it allows one to create a programmed key that
forces the PRF’s outcomes in at most L distinct input points {xi} to be a set of pre-determined
values {vi}. For security, we want to guarantee the privacy of the programmed inputs. Specifically,
if the set of output values {vi} are randomly chosen, then the programmed key should not leak more
information about the set of input points programmed. Further, the programmed key should not
leak the original PRF’s evaluation outcomes at the programmed inputs prior to the programming.

9

3.1.1 Syntax

Let X denote the input domain and let V denote the output range, whose sizes may depend on
the security parameter λ. A programmable pseudorandom function is a tuple (Gen, Eval, Prog,
PEval) of efficient, possibly randomized algorithms with the following syntax:

• Gen(1λ, L): given the security parameter λ and an upper bound, L, on the number of pro-
grammable inputs, output a master secret key msk.

• Eval(msk, x): given the master secret key msk and an input x ∈ X , output the evaluation result
v ∈ V on the input x.

• Prog(msk, P = {(xi, vi)}): given the master secret key msk and a set P containing up to L pairs
(xi, vi) ∈ X × V , where all xi’s must be distinct, output a programmed key skP .

• PEval(skP , x): given a programmed key skP and an input x ∈ X , output the evaluation outcome,
v ∈ V , over the input x.

Correctness of programming. A programmable function satisfies correctness if for all λ, L =
poly(λ) ∈ N, all sets of up to L pairs P := {(xi, vi)} ⊆ X × V (with distinct xis), we have the
following:

1. For every i ∈ [|P |],

Pr

[
PEval(skP , xi) ̸= vi

msk← Gen(1λ, L)
skP ← Prog(msk, P)

]
≤ negl(λ), and

2. For any x′ not in P , we have

Pr

[
PEval(skP , x

′) ̸= Eval(msk, x′)
msk← Gen(1λ, L)
skP ← Prog(msk, P)

]
≤ negl(λ).

We note that Peikert and Shiehian [PS18] did not define the second correctness condition above,
but their proof shows that the second condition also holds.

3.1.2 Security Definitions

Definition 3.1 (Simulation security). A programmable function is simulation secure, if there is a
probabilistic polynomial-time (PPT) simulator Sim such that for any PPT adversary A and any
polynomial L(λ), {

RealPPRFA(1
λ, L)

}
λ∈N

c
≈

{
IdealPPRFA,Sim(1

λ, L)
}
λ∈N

,

where RealPPRF and IdealPPRF are the respective views of A in the executions of Figure 1 and
“ c
≈” denotes computational indistinguishability.

Definition 3.2 (Private programmability). A programmable function is privately programmable,
if there is a PPT simulator Sim such that for any PPT adversary A and any polynomial L(λ),{

RealPPRFPrivA(1
λ, L)

}
λ∈N

c
≈

{
IdealPPRFPrivA,Sim(1

λ, L)
}
λ∈N

,

where RealPPRFPriv and IdealPPRFPriv are the respective views of A in the executions of Figure 2.

10

RealPPRFA(1
λ, L):

P := {(xi, vi)}i∈[L′] ← A(1λ, L)
// require: L′ ≤ L

msk← Gen(1λ, L)

skP ← Prog(msk, P)

skP → A
repeat
x← A
Eval(msk, x)→ A

until A halts

IdealPPRFA,Sim(1
λ, L):

P := {(xi, vi)}i∈[L′] ← A(1λ, L)
// require: L′ ≤ L

skP ← Sim(1λ, P, L)

skP → A
repeat
x← A
If x /∈ {xi}i∈[L′] then PEval(skP , x)→ A

Else v
$←V, v → A

until A halts

Figure 1: The real and ideal experiments for simulation security.

RealPPRFPrivA(1
λ, L):

{xi}i∈[L′] ← A(1λ, L)
// require: L′ ≤ L

{vi}i∈[L′]
$←V

P := {(xi, vi)}i∈[L′]

msk← Gen(1λ, L), sk← Prog(msk, P)

sk→ A

IdealPPRFPrivA,Sim(1
λ, L):

{xi}i∈[L′] ← A(1λ, L)
// require: L′ ≤ L

sk← Sim(1λ, L)

sk→ A

Figure 2: The real and ideal experiments for private programmability.

Last but not the least, we define an additional security property, i.e., the ordinary pseudoran-
domness notion for the PRF. We prove that pseudorandomness is implied by private programma-
bility — however, defining this notion explicitly will facilitate our proofs later.

Definition 3.3 (Pseudorandomness). We say that a programmable pseudorandom function sat-
isfies pseudorandomness iff for every probabilistic polynomial-time adversary A, there exists a
negligible function negl(·) such that the following holds:∣∣∣Pr[msk← Gen(1λ, L) : AEval(msk,·) = 1]− Pr[rf

$←RF : Arf(·) = 1]
∣∣∣ ≤ negl(λ),

where RF denotes the family of random functions that map the input domain X to the output
range V.

Fact 3.4. Suppose that a programmable PRF scheme satisfies private programmability, then it also
satisfies pseudorandomness.

Proof. Let q be the maximum number of queries made by the pseudorandomness adversary A. We
consider a sequence of hybrids H0,H1, . . . ,Hq. In Hj where j ∈ {0, 1, . . . , q}, for the first j distinct
queries made by A, return to A truly random answers, and for the remaining queries, return the
outcomes of the PRF evaluation. Note that if A makes any repeat query, it always gets the same
answer as before.

11

It suffices to show that no probabilistic polynomial-time A can distinguish Hi and Hi+1 for
any i ∈ {0, 1, . . . , q − 1}. To show this, consider an intermediate hybrid H′i. In H′i, the first i
distinct queries are answered with true randomness, and the remaining queries are answered using
a simulated key generated by sk← Sim(1λ, L).

We first show that Hi+1 is computationally indistinguishable from H′i. Suppose that there is an
efficient adversary A that can distinguish Hi and Hi+1. We can construct an efficient reduction B
that breaks the private programmability of the underlying PRF. B answers the first i− 1 distinct
queries from A using true randomness. When A submits the i-th distinct query xi, and submits
{xi} to its own challenger. It gets back from its challenger sk. For all remaining queries including
the i-th query, it uses PEval(sk, ·) to answer to A. If B is playing RealPPRFPriv, then A’s view
is identically distributed as Hi+1, else if B is playing IdealPPRFPriv, then A’s view is identically
distributed as H′i.

Next, we show that H′i is computationally indistinguishable from Hi. Consider H′′i in which
all but the first i queries are answered using a key sk generated as follows: msk ← Gen(1λ, L),
sk ← Prog(msk, ∅). Hi is statistically indistinguishable from H′′i due to the correctness of the
programmable PRF. H′′i is computationally indistinguishable from H′i through a straightforward
reduction to the private programmability of the PRF.

Summarizing the above, Hi is computationally indistinguishable from Hi+1 and this suffices for
proving the claim.

3.1.3 Construction

In our syntax and security definitions above, we want the programmable PRF to support program-
ming at most L inputs. By contrast, Peikert and Shiehian [PS18] gave a construction of privately
programmable PRFs where the Prog function must program exactly L inputs. Similarly, in their
security definitions, the admissible adversary A is required to satisfy L′ = L (as opposed to L′ ≤ L
in our case).

Given a privately programmable PRF construction that programs exactly L inputs, we now show
how to construct a new scheme that allows programming up to L inputs. In our PIR construction
later, we want the PRF’s input domain to contain all strings of length up to some parameter ℓ ∈ N.
We use the notation {0, 1}≤ℓ to denote all strings of length up to ℓ.

Let PRF′ := (Gen′,Eval′,Prog′,PEval′) denote a privately programmable PRF whose input
domain is X ′ = {0, 1}≤ℓ+1, i.e., all strings of length up to ℓ + 1, and whose output range is V,
supporting programming exactly L inputs. We now construct a privately programmable PRF
scheme denoted PRF whose input domain is X = {0, 1}≤ℓ, i.e., all strings of length up to ℓ, and
whose output range is V, i.e., the same as that of PRF′.

• Gen(1λ, L): let msk← Gen′(1λ, L), and output msk;
• Eval(msk, x): output Eval′(msk, x||0);
• Prog(msk, P = {(xi, vi)}i∈[L′]):

– choose L−L′ distinct strings of length at most ℓ+1 that end with 1, denoted x′1, . . . , x
′
L−L′ ;

– for j ∈ [L− L′], choose vj
$←V at random;

– call sk← Prog′(msk, {(xi||0, vi)}i∈[L′] ∪ {(x′j , vj)}j∈[L−L′]), and output sk.

• PEval(sk, x): let v ← PEval(sk, x||0) and output v.

12

Claim 3.5. Suppose that the underlying programmable PRF′ that maps {0, 1}ℓ+1 to V satisfies
correctness, simulation security, and private programmability. Then, the above PRF which maps
{0, 1}ℓ to V also satisfies correctness, simulation security, and private programmability.

We defer the proof of the above claim to Appendix D.1.

3.2 Single-Server Private Information Retrieval
We define a single-server private information retrieval (PIR) scheme in the pre-processing setting.
In a single-server PIR scheme, we have two stateful machines called the client and the server. The
scheme consists of two phases:

• Offline setup. The offline setup phase is run only once upfront. The client receives nothing
as input, and the server receives a database DB ∈ {0, 1}n as input. The client sends a single
message to the server, and the server responds with a single message.

• Online queries. This phase can be repeated multiple times. Upon receiving an index x ∈
{0, 1, . . . , n− 1}, the client sends a single message to the server, and the server responds with a
single message. The client performs some computation and outputs an answer β ∈ {0, 1}.

Correctness. Given a database DB ∈ {0, 1}n, where the bits are indexed 0, 1, . . . , n − 1, the
correct answer for a query x ∈ {0, 1, . . . , n− 1} is the x-th bit of DB.

For correctness, we require that for any q, n, that are polynomially bounded in λ, there is a
negligible function negl(·), such that for any database DB ∈ {0, 1}n, for any sequence of queries
x1, x2, . . . , xq ∈ {0, 1, ..., n − 1}, an honest execution of the PIR scheme with DB and queries
x1, x2, . . . , xq, returns all correct answers with probability 1− negl(λ).

Privacy. We say that a single-server PIR scheme satisfies privacy, iff there exists a probabilistic
polynomial-time simulator Sim, such that for any probabilistic polynomial-time adversary A acting
as the server, A’s views in the following two experiments are computationally indistinguishable:

• Real: an honest client interacts with A who acts as the server and may arbitrarily deviate
from the prescribed protocol. In every online step t, A may adaptively choose the next query
xt ∈ {0, 1, . . . , n− 1} for the client, and the client is invoked with xt;

• Ideal: the simulated client Sim interacts with A who acts as the server. In every online A may
adaptively choose the next query xt ∈ {0, 1, . . . , n− 1}, and Sim is invoked without receiving xt.

3.3 The Distribution Dn

For convenience, we often write x ∈ {0, 1, . . . , n− 1} as a binary string, i.e., x ∈ {0, 1}logn.
Our pseudorandom set emulates the same distribution Dn that was defined earlier in Shi et

al. [SACM21]. Specifically, to define the distribution Dn, imagine that we have a random oracle
RO(·) that is sampled at random upfront — our actual PRSet scheme later will replace the RO with
a PRF so our construction does not need an RO. Henceforth, let B := ⌈2 log log n⌉. An element
x ∈ {0, 1}logn is in the set iff for every i ∈ [logn2 +B], RO

(
(0B||x)[i :]

)
returns 1 — in other words,

if hashing every sufficiently long suffix of the string 0B||x using the random oracle RO gives back
1. Throughout the paper, we write log = log2, and assume that log n is an even integer — this
is without loss of generality since we can always round it up to an even number incurring only
constant blowup.

13

Efficient membership test and set enumeration. One important observation about the
distribution Dn is that the decisions regarding whether two elements x and y are in the set or not
can be weakly dependent — as Shi et al. [SACM21] pointed out, this property is important for
simultaneously ensuring efficient membership test and efficient set enumeration. Clearly, to test if
an element x ∈ {0, 1}logn is in the set or not, we only need to make logn

2 +B calls to the RO.
Enumerating all elements in the set can be accomplished by making roughly

√
n ·poly log n calls

to RO with at least 1− o(1) probability. Let ℓ ≥ 1
2 log n+1, and let Zℓ be the set of all strings z of

length exactly ℓ, such that using RO to “hash” all suffixes of z of length at least 1
2 log n+1, outputs

1. To enumerate the set generated by RO, we can start with Z 1
2
logn+1 which takes at most 2 1

2
logn+1

calls to generate. Then, for each ℓ := 1
2 log n+ 2 to log n, we will generate Zℓ from Zℓ−1. This can

be accomplished by enumerating all elements z′ ∈ Zℓ−1, and checking whether RO(0||z′) = 1 and
RO(1||z′) = 1. Finally, for every element z ∈ Zlogn, we check if it is the case that for every j ∈ [B],
0j ||z hashes to 1. If so, the element z is in the set.

Useful properties of Dn. We will need to use the following useful facts about the distribution
Dn all of which were proven by Shi et al. [SACM21].

Fact 3.6. For any fixed x ∈ {0, 1, . . . , n − 1}, Pr
S

$←Dn
[x ∈ S] = 1√

n·2B . Moreover, E
S

$←Dn
[|S|] ≤

√
n

log2 n
.

Henceforth, let D+x
n be the following distribution: sample S

$←Dn subject to x ∈ S. Given
x, y ∈ {0, 1}logn, we say that x and y are related, if they share a common suffix of length at least
1
2 log n+1. Given a set S ⊆ {0, 1, . . . , n− 1}, let Nrelated(S, x) be the number of elements in S that
are related to x.

Fact 3.7 (Number of related elements in sampled set). Fix an arbitrary element x ∈ {0, 1, . . . , n−
1}. Then,

E
S

$←D+x
n

[Nrelated(S, x)] ≤
1

log n

Fact 3.8 (Coverage probability). Let m ≥ 6
√
n · log3 n. For any fixed x ∈ {0, 1, . . . , n − 1},

Pr
S1,...,Sm

$←Dm
n

[x /∈ ∪i∈[m]Si] ≤ 1/n.

Henceforth, let EnumTime(RO) denote the number of RO calls made by the aforementioned set
enumeration algorithm to enumerate the set generated by RO.

Fact 3.9 (Efficient set enumeration). Suppose that n ≥ 4. For any fixed x ∈ {0, 1, . . . , n− 1},

Pr
RO

$←D+x
n

[
EnumTime(RO) > 6

√
n log5 n

]
≤ 1/ log n

4 Privately Programmable Pseudorandom Set
4.1 Definition
In our Privately Programmable Pseudorandom Set (PRSet) scheme, we can sample a key sk that
defines a pseudorandom set. We can support two operations on the key: we can call Add(sk, x) to

14

force x to be added to the set, we can also call ReSamp(sk, x) to cause the decision whether x is
in the set or not to be resampled. The key output by a ReSamp operation is said to be final, i.e.,
we cannot perform any more operations on it. By contrast, keys output by either Gen or Add are
said to be intermediate, i.e., we can still perform more operations on them. Henceforth, we use the
notation rsk to denote a final key and sk to denote an intermediate key. Jumping ahead, later in
our PIR scheme, the client always sends to the server a final key during an online query; however,
the client locally stores a set of intermediate keys.

• sk← Gen(1λ, n): given the security parameter 1λ and the universe size n, samples a secret key
sk;

• S ← Set(rsk): a deterministic algorithm that outputs a set S given a final secret key rsk;
• b ←Member(sk, x): given an intermediate secret key sk and an element x ∈ {0, 1, . . . , n − 1},

output a bit indicating whether x ∈ Set(sk);
• sk+x ← Add(sk, x): given an intermediate secret key sk and an element x ∈ {0, 1, . . . , n − 1},

output a secret key sk+x such that x ∈ Set(sk+x);
• rsk−x ← ReSamp(sk, x): given an intermediate secret key sk and an element x ∈ {0, 1, . . . , n−

1}, output a final key rsk−x that “resamples” the decision whether x is in the set or not.

We note that a PRSet scheme is parametrized by a family of distributions Dn. The pseudorandom
set generated by the PRSet scheme should emulate the distribution Dn — we will define this more
formally shortly.

Jumping ahead, later in our application, for each PRSet key sampled using Gen, we perform
at most one Add operation on the key before we perform ReSamp and obtain a final key.

Efficiency requirements. Our PRSet scheme samples pseudorandom sets of size roughly
√
n.

We want an efficient set enumeration algorithm Set(rsk) that takes time roughly
√
n (rather than

linear in n). Additionally, we want that the membership test Member(sk, x) to complete in
polylogarithmic time.
Remark 4.1. We do not give security definitions to our PRSet. Jumping ahead, the privacy
proof of our PIR scheme actually opens up the PRSet scheme and relies on the properties of the
underlying PRF directly. Nonetheless, abstracting out the PRSet helps to make the description of
our PIR scheme conceptually cleaner.

4.2 Construction
We now present our PRSet construction. As mentioned, we assume that for each key sampled
through Gen, at most one Add operation can be performed on the key before we call ReSamp
which produces a final key.

Intuition for our PRSet. In our pseudorandom set, we simply replace the RO with a PRF
function, such that its description can be compressed using a short key.

Our pseudorandom set supports two additional operations:
• The Add(sk, x) operation modifies the secret key sk such that the element x ∈ {0, 1}logn is

forced to be in the set. In our construction, this is done in the most naïve way: simply attach
the element x to the secret key. This will be fine in our PIR construction since the intermediate
key generated by Add is stored only on the client side and never sent to the server. Therefore,
we do not need the resulting key to hide the point x that is added.

15

• The ReSamp(sk, x) operation takes in an intermediate key that is either the output of Gen
or the output of a previous Add operation, and it resamples the decision whether the element
x ∈ {0, 1}logn is in the set or not. In our PIR scheme later, this resampled key will be sent to the
server during online queries. Therefore, we want the resulting key to hide not only the element
x that is being resampled, but also the element x′ that was added earlier should the input key
sk be the result of a previous Add(_, x′) operation.
In our construction, this is accomplished in the following way. First, we sample at random the
answers {vi}i∈[logn

2
+B]

— we want to force the PRF’s evaluation at points {(0B||x)[i :]}
i∈[logn

2
+B]

to be the values {vi}i∈[logn
2

+B]
. Next, if the input key sk is the result of a previous Add(_, x′)

operation, for any point (0B||x′)[i :] where i ∈ [logn2 + B], if (0B||x′)[i :] ̸= (0B||x)[i :], then we
want to force the PRF’s evaluation on (0B||x′)[i :] to be 1. Finally, we call the underlying PRF’s
Prog function, to force the aforementioned outcomes on all the relevant points. Clearly, the
total number of constraints to be forced is at most L = 2(logn2 +B).

Detailed construction. We describe our PRSet construction below.

PRSet Scheme
Parameters: B := ⌈2 log log n⌉, L = 2(logn2 +B).

• sk← Gen(1λ, n): call msk← PRF.Gen(1λ, L), and output sk := (msk,⊥).
• S ← Set(rsk): Same as the set enumeration algorithm in Section 3.3, except that the calls

to RO(·) are now replaced with calls to PRF.PEval(rsk, ·).
• b←Member(sk, x):

1. Parse sk := (msk′, x′). Write x ∈ {0, 1}logn as a binary string and let z := 0B||x. If
x′ ̸= ⊥, write x′ ∈ {0, 1}logn as a binary string and let z′ := 0B||x′.

2. Output 1 if for every i ∈ [logn2 +B], the following holds: either PRF.Eval(msk′, z[i :]) = 1
or (x′ ̸= ⊥ and z[i :] = z′[i :]). Else, output 0.

• sk+x ← Add(sk, x): parse sk := (msk′,⊥), and output sk+x := (msk′, x).
• rsk−x ← ReSamp(sk, x):

1. Parse sk := (msk′, x′), and write x ∈ {0, 1}logn as a binary string and let z := 0B||x.

2. Sample uniformly random v
$←{0, 1}

logn
2

+B, and let P := {(z[i :], v[i])}
i∈[logn

2
+B]

.

3. If x′ ̸= ⊥, do the following. Write x′ ∈ {0, 1}logn as a binary string, and let z′ := 0B||x′.
For i ∈ [logn2 +B], if z′[i :] ̸= z[i :], add the constraint (z′[i :], 1) to the set P .

4. Compute rsk−x ← PRF.Prog(msk′, P), and output rsk−x.

Additional helpful notations. In our PIR scheme later, we will only need to call set enumer-
ation for final keys rsk. Therefore, our algorithm description above defines Set(rsk) only for final
keys. However, in our proofs and narratives, it helps to define the set associated with an interme-
diate key sk as well — however, in this case we need not worry about the running time of Set(sk).
This is defined in the most natural manner:

• If sk = (msk,⊥) is the direct output of Gen(1λ, n), then Set(sk) is defined just like in Section 3.3
except that calls to RO(·) are replaced with PRF.Eval(msk, ·);

16

• If sk = (msk, x) is the output of an earlier Add operation, then Set(sk) is defined just like in
Section 3.3 except that calls to RO(·) are replaced with the following outcomes: 1) we force the
outcomes to be 1 at the input points {(0B||x)[i :]}

i∈[logn
2

+B]
; and 2) for all other inputs, we call

PRF.Eval(msk, ·) to obtain the outcome.

Performance bounds. Gen(1λ, n) takes poly(λ, log n) time. Due to Fact 3.9, Set(rsk) takes√
n · poly log(λ, n) time with 1 − 1/ log n probability. Member(sk, x) takes poly(λ, log n) time.

Add(sk, x) takes constant time. ReSamp(sk, x) takes poly(λ, log n) time.

Circuit for set enumeration. Later in our PIR scheme, during the offline phase, the server
needs to perform set enumeration under fully homomorphic encryption. Therefore, we need to
describe how to perform set enumeration in circuit. We will describe a circuit construction of size
at most

√
n · poly(λ, log n) which obtains as input a final key rsk, and outputs a set S = {(x, b)} of

size at most 2
√
n log2 n with distinct x’s, and a bit bSucc indicating success. We want to ensure

that if bSucc = True, then the set generated is correct in the following sense:

• for every (x, 1) ∈ S, x is in the correct set defined by PRF.PEval(rsk, ·); and
• for every element x in the set defined by PRF.PEval(rsk, ·), the pair (x, 1) appears in S.

Our circuit construction emulates the set enumeration algorithm of Section 3.3. Our circuit
construction works as follows — henceforth we use the term “hash” to mean the computing outcome
of PRF.PEval(rsk, ·):

Circuit for set enumeration CSetEnum

1. Let bSucc = True.
2. For every x ∈ {0, 1}

1
2
logn+1, let bx = PRF.PEval(rsk, x). Output an array containing

{(x, bx)}
x∈{0,1}

1
2 logn+1 .

3. Obliviously sort above array such that entries with bx = 1 are moved to the front. Truncate
the array at length 2

√
n log2 n elements, and if the truncation removes any string that hash

to 1, set bSucc = False. Let Z 1
2
logn+1 be the resulting truncated array, where each entry is

of the form (x, bx).
4. For ℓ = 1

2 log n+ 2 to log n, do the following:

• For each (x, bx) ∈ Zℓ−1, if bx = 1, write down (0||x,PRF.PEval(rsk, 0||x)) and (1||x,
PRF.PEval(rsk, 1||x)); else write down (0||x, 0) and (1||x, 0).

• Oblivious sort the resulting array such that all entries marked with 1 move to the front.
Truncate the resulting array at length exactly 2

√
n log2 n. If the truncation removes any

string that hash to 1, set bSucc = False. Let Zℓ denote the resulting array where each
entry is of the form (x, bx).

5. For every (x, bx) ∈ Zlogn, check if it is the case that for every j ∈ [B], PRF.PEval(rsk, 0j ||x) =
1. If so, write down (x, bx), else, write down (x, 0). Output the resulting array as well as
bSucc.

Fact 4.2. Using the AKS sorting network [AKS83] or the bitonic sorting network [Bat68] to realize
the oblivious sort, the above algorithm can be implemented with a circuit of size

√
n · poly(λ, log n).

17

Proof. The proof is straightforward given the fact that the AKS sorting circuit has size O(n′ log n′)
for sorting n′ elements, and the bitonic sorting network has size O(n′ log2 n′). Also, note that each
PEval(rsk, ·) consumes poly(λ, log n) gates to implement.

For correctness, we will imagine that the above algorithm is run where PRF.PEval(rsk, ·) is
replaced with calls to a random oracle RO — we denote the resulting algorithm as CSetEnumRO.
Note that we do not care about the computational model when stating the correctness probability.

Fact 4.3. Suppose that n ≥ 4. For any x ∈ {0, 1, . . . , n− 1},

Pr
RO

$←D+x
n

[
CSetEnumRO outputs bSucc = True

]
≥ 1− 1/ log n,

Moreover,
Pr

RO
$←Dn

[
CSetEnumRO outputs bSucc = True

]
≥ 1− 1/ log n

Proof. CSetEnumRO is a direct implementation of the set enumeration algorithm in Section 3.3
except that we truncate each Zℓ to size exactly 2

√
n log2 n. Shi et al. [SACM21] proved that no

matter whether RO is sampled from D+x
n or Dn, with 1 − 1/ log n probability, the following good

event holds: for all ℓ ∈ [logn2 + 1, log n], |Zℓ| ≤ 2
√
n log2 n — see the proof of Lemma 6.4 in their

paper. The algorithm outputs bSucc = 1 as long as the above good event holds.

5 PIR Scheme
We now describe a PIR scheme that supports a bounded number of queries denoted Q. Given this
scheme, we can compile it to a scheme that supports unbounded number of queries by performing
the offline setup phase every Q queries, and amortizing this cost over the Q queries.

Intuition. In the offline setup phase, the client chooses Õ(Q) keys each of which defines a pseu-
dorandom set of size roughly

√
n. It encrypts these keys under a fully homomorphic encryption

(FHE) scheme, and sends the encrypted keys to the server. Through homomorphic evaluation, the
server computes the encrypted parity of each of these sets, and returns the encrypted parities to
the client. The client decrypts the parities, and stores each set’s key as well as its parity. These
sets are divided into two parts: the last Q entries are called the backup sets or entries, and the
remaining are called the primary sets or entries. The primary entries are used for answering queries,
whereas the backup entries are later promoted to become primary entries as they get consumed.
Henceforth, we also use the terms primary table and backup table to refer to the tables that store
all primary entries and backup entries, respectively.

In the online phase, whenever the client wants to make a query for the database’s value at index
x ∈ {0, 1, . . . , n− 1}, it finds the first primary set (ski, pi) such that Set(ski) contains the query x.
It then resamples the decision whether x is in the set or not, and obtains a programmed key. It
sends this programmed key to the server, which calls the set enumeration algorithm to enumerate
the set S generated by the key. The server then returns the parity p of the set S to the client.
The client computes pi ⊕ p as the candidate answer to the query. Since the resampling operation
removes the element x from the set with high probability, the candidate answer is correct with high
probability. The correctness probability can be further boosted by repeating the same scheme k
times and taking the majority vote among the k copies.

18

Detailed construction. We describe the detailed construction below.

PIR Scheme for Q =
√
n queries

Run k = ω(log λ) parallel copies of the single-copy scheme described below.

Offline phase:

• Client: // let lenT := 6
√
n · log3 n

– fsk← FHE.Gen(1λ);
– For i ∈ [k·(lenT+Q)] where k = ω(log λ), ski ← PRSet.Gen(1λ, n), ski ← FHE.Enc(fsk, ski);
– Send (sk1, . . . , skk·(lenT+Q)) to the server.

• Server:

– For i ∈ [k · (lenT+Q)], (Si, bSucci)← FHE.Eval(CSetEnum, ski);
– {pi}i∈[k·(lenT+Q)] ← FHE.Eval(CBatchParity, S1, . . . , Sk·(lenT+Q)), where the CBatchParity

circuit is described below. Send {pi, bSucci}i∈[k·(lenT+Q)] to the client.

• Client:

– for i ∈ [k · (lenT+Q)], pi ← FHE.Dec(fsk, pi); bSucci ← FHE.Dec(fsk, bSucci);
– choose a subset I ⊆ [k · (lenT + Q)] of size exactly lenT + Q such that for any i ∈ I,

bSucci = True — if not enough such entries are found, simply abort. Copy {(ski, pi)}i∈I
to a table.

We call the last Q entries of the above table the backup table, henceforth renamed to
T ∗ := {(sk∗i , p∗i)}i∈[Q]. We call the remaining lenT entries the primary table, henceforth
renamed to T := {(ski, pi)}i∈[lenT].

Online query for index x ∈ {0, . . . , n− 1}:

• Client:

– Sample sk ← PRSet.Gen(1λ, n) subject to PRSet.Member(sk, x) = 1 and append the
entry (sk, 0) to the table T of primary sets;

– Find the first entry (ski, pi) in T such that PRSet.Member(ski, x) = 1;
– Compute rsk← PRSet.ReSamp(ski, x) and send rsk to the server.

• Server: Compute S ← PRSet.Set(rsk), and return the parity bit p of the set S to the client.
If the set enumeration algorithm has not completed even after making 6

√
n log5 n calls to

the underlying PRF’s PEval(rsk, ·) function, then return p = 0 to the client.
• Client: let β′ := p ⊕ pi be the candidate answer of the current copy, and remove the last

entry of T .
Recall that there are k parallel instances, and let β be the majority vote among the candidate
answers of all k copies. Now, let (sk∗j , p

∗
j) denote the next available backup set and perform

the following:

19

– let sk′ ← PRSet.Add(sk∗j , x); let p′ := p∗j ⊕ β if Member(sk∗j , x) = 0, else let p′ := p∗j ;
– let Tj := (sk′, p′), and mark the backup entry (sk∗j , p

∗
j) as unavailable.

The circuit CBatchParity. The circuit CBatchParity takes S1, S2, . . . , Sk·(lenT+Q) as input, where
for j ∈ [k · (lenT + Q)], Sj contains exactly 2

√
n log2 n entries of the form (x, bx) — specifically,

bx = True implies that x is the j-th set and bx = False implies x is not in the j-th set. The circuit
outputs k · (lenT+Q) parity bits p1, . . . , pk·(lenT+Q) of each of the k · (lenT+Q) sets.

The circuit can be constructed as follows using oblivious sort:
1. Let DB ∈ {0, 1}n be the server’s database, let D := ((0,DB[0]), (1,DB[1]), …, (n−1,DB[n−1])),

concatenated with all the sets S1, . . . , Sk·(lenT+Q).
2. For j ∈ [k · (lenT+Q)], let Xj = {(x, bx, j)}x∈Sj

3. Obliviously sort the array Y := D||X1|| . . . ||Xk·(lenT+Q), such that each entry of the form
(x,DB[x]) is followed by all tuples of the form (x, bx, j). Henceforth, we call a tuple of the
form (x, bx, j) a consumer.

4. In a linear scan, all consumers receive the DB[x] they are requesting. At this moment, each
consumer entry is updated to (x, bx, j,DB[x]).

5. Use a circuit that mirrors the oblivious sort circuit in Step 3, and reverse-routes the DB[x]
values back to the position where it came from. As a result, each consumer entry of the form
(x, bx, j) ∈ Y receives DB[x].

6. At this moment, we have an array of the form X′1|| . . . ||X′k·(lenT+Q), where each X′j contains
exactly 2

√
n log2 n entries of the form (x, bx, j,DB[x]). In a linear scan, we can compute for each

j ∈ [k · (lenT+Q)], the parity bit
pj = ⊕(x,bx,j,DB[x])∈X′

j
(bx · DB[x])

It is not hard to see that if we instantiate the oblivious sort using either AKS [AKS83] or bitonic
sort [Bat68], and given lenT = 6

√
n log3 n and Q =

√
n, the above circuit has size O(n · poly log n).

Performance bounds. We now analyze the performance bounds of our Q-bounded PIR con-
struction. We may plug in k = log1.1 n since any super-logarithmic function will work. In the
analysis below, the k parameter is absorbed in the poly log n term, so it does not show up explic-
itly.
• Offline phase. During the offline phase, the client’s computation and bandwidth are upper

bounded by
√
n · poly(λ, log n). The server’s computation is upper bounded by n · poly(λ, log n).

• Online phase. The bandwidth is poly(λ, log n). The client’s computation is
√
n · poly(λ, log n).

The server’s computation is also
√
n · poly(λ, log n).

Supporting unbounded number of queries and deamortization. To extend the scheme
from Q-bounded to supporting an unbounded number of queries, we just need to rerun the offline
phase every Q =

√
n queries. For the scheme with unbounded queries, the amortized bandwidth per

query is poly(λ, log n), the amortized client and server computation per query is
√
n · poly(λ, log n).

This periodic offline setup can be deamortized very easily. Specially, upfront, we perform the
offline setup for 2Q queries. During the i-th window of Q queries, we perform the offline setup for
the (i+ 2)-th window of Q queries, and so on. This way, when the (i+ 2)-th window of Q queries
starts, the corresponding offline setup will be ready.

20

6 Privacy Proof
Recall that privacy for a single-server PIR scheme was defined earlier in Section 3.2. We now prove
that our PIR scheme in Section 5, when instantiated with the PRSet scheme in Section 4.2, satisfies
privacy, as stated in the following theorem.

Theorem 6.1 (Privacy of our PIR scheme). Suppose that the FHE scheme employed satisfies
semantic security, and that the underlying programmable PRF scheme satisfies correctness, private
programmability, and simulation security. Then, the PIR scheme in Section 5, when instantiated
with the PRSet scheme in Section 4.2, satisfies privacy.

In the remainder of this section, we will prove the above theorem.

6.1 Proof Roadmap
A key insight in our privacy proof is to rely on a lazy sampling technique to decompose the backend
and the frontend of a complicated randomized experiment, where the backend refers to the primary
table stored by the client, and the frontend refers to the message the clients sends to the server
during each query. Below, we explain the proof intuition, and the formal proofs can be found in
Section 6.2 and Appendix B.3.

We start from the real-world experiment, where the client interacts with the server like in the
real-world scheme. First, in Hyb1, we replace the FHE ciphertexts the client sends to the server in
the offline phase with encryptions of 0. Therefore, henceforth we will not be worried about these
FHE ciphertexts, and we will focus on what happens in the online phase. In our full proof in
Appendix B.3, the key is how to get from Hyb2 to Hyb6, which are described below.

Table 2: Hyb2 and Hyb6.

Hybrid Backend Frontend
promoted key during query y during query x

Hyb2 msk← Gen, sk := (msk, y)

• find sk := (msk, y) in T s.t. msk
contains x after adding y if y ̸= ⊥

• program msk s.t. suffixes(x)
are resampled and if y ̸= ⊥,
suffixes(y)\suffixes(x) forced to 1

Hyb6 msk← Gen s.t. y ∈ Set(msk)

• find msk in T s.t. x ∈ Set(msk),
• program msk s.t. suffixes(x) are

resampled

If we can get to Hyb6, the rest of the proof can be completed in a similar manner as Shi et
al. [SACM21]’s proof. Therefore, the key is how to get from Hyb2 to Hyb6. To accomplish this, we
introduce a lazy sampling idea to “decouple” the backend and the frontend in our proof.

Hyb3: introduce lazy sampling. More specifically, we define a hybrid experiment Hyb3 that is
an equivalent rewrite of Hyb2 by lazy sampling in the following sense.

21

1. Backend: maintain constraints on each entry in T that defines the a-posteriori distribution. Let
I = {i1, i2, . . . , iq} be the indices of the entries that are matched during each of the q ≤ Q queries
so far. The client maintains the a-posteriori distribution of each entry of the primary table T
conditioned on the local observation I.
To maintain the a-posteriori distribution, the client maintains a set of constraints of the form
⟨−x⟩, ⟨+x⟩, ⟨+y : −x⟩, or ⟨+y : +x⟩ on each entry. A negative constraint of the form ⟨−x⟩
means that this entry was not promoted from the backup table, and we have checked that x is
not in the set generated by the key, during some query for x. A negative constraint of the form
⟨+y : −x⟩ means that this entry was promoted from the backup table during a query for y, and
we have checked that after forcing y to be in the set, x is not in the set generated by the key.
The positive constraints ⟨+x⟩ and ⟨+y : +x⟩ are similarly defined but requiring x to be in the
set.
During an online query for some x, the client sequentially scans through the current entries of
T . For each entry j, it samples from the a-posteriori distribution to decide if j should be the
match. Depending on the decision, it adds either a negative or positive constraint to the current
entry.

2. Frontend: lazy sampling from the a-posteriori distribution. Whenever the client is about to send
a key to the server, it performs lazy sampling of the key based on the a-posteriori distribution
on the entry that the client has maintained. More specifically, there are two cases depending
on whether the matched entry comes from the backup table or not : 1) it samples a key from
the correct a-posteriori distribution, calls ReSamp and sends the resulting key to the server; 2)
it samples a key from the correct a-posteriori distribution, calls both Add and ReSamp, and
then sends the resulting key to the server.

In our proof, we show that except with negligible probability, the constraints maintained on any
entry can be satisfied with inverse polynomial probability for a randomly sampled key.

Hyb4: switch the backend. Next, in Hyb4, we change the backend to be like in Hyb6, and
the client uses the resulting table T to decide which entries are matched during each query, and
just like in Hyb3, the client maintains a set of constraints on each entry of the table, such that
the frontend can perform lazy sampling according to the a-posteriori distribution when interacting
with the server. Note that this change technically affects the distribution of the matched entries
during each query, and thus affects the distribution of the server’s view. Fortunately, using the
security of the privately programmable PRF, we can prove that even when we make this change
on the backend, the server’s view remains computationally indistinguishable2.

Hyb4 to Hyb6: switch the frontend. Next, from Hyb4 to Hyb6, we change the way the frontend
performs the lazy sampling from the method of Hyb3 to the method of Hyb6. To complete this proof,
we do it in two steps using Hyb5 as a stepping stone. In Hyb4, after lazy sampling a key according to
the maintained constraints, we program suffixes(x) to be random values and if y ̸= ⊥, we program
suffixes(y)\suffixes(x) to be 1. In Hyb5, we remove all the programming and replace it with rejection
sampling of simulated keys. In Hyb6, we introduce back the part of the programming, and we
program only suffixes(x) to be random values, while the part suffixes(y)\suffixes(x) being forced to
be 1 is achieved through rejection sampling. To show that Hyb4 and Hyb5 are computationally

2Note that we need NOT prove that the joint distribution of the backend and the frontend are computationally
indistinguishable, we only need to prove that the frontend, i.e., server’s view is computationally indistinguishable.

22

indistinguishable and that Hyb5 and Hyb6 are computationally indistinguishable, we need to make
use of the security property of the privately programmable PRF. Some technicalities arise in this
proof, since the security definitions of the privately programmable PRF are not in a form that we
can use conveniently here. Therefore, as a key stepping stone, we introduce a key technical lemma
(see Section 6.2), that will help us prove the transitions between Hyb4 and Hyb5, and between
Hyb5 and Hyb6 more easily. Further, this key technical lemma can be proven using the security
definitions of the privately programmable PRF.

Hyb6: convergence of backend and frontend. One important observation is that in Hybb, the
frontend and the entry found in the table during each query have the same distribution (modular
some post-processing). Therefore, in this step, the backend and the frontend converge again, and
this is why we can undo the lazy sampling at this point, and Hyb6 can be equivalently viewed as
in Table 2.

6.2 Technical Lemma for Privately Programmable PRF
We shall consider a programmable PRF whose output range is binary, i.e., {0, 1}. Henceforth, we
use the notation predX(msk) to denote an event that looks at the outputs of PRF.Eval(msk, ·) at
all inputs in X, and outputs either 0 or 1. We say that predX(·) is an admissible event, iff 1) for
a randomly sampled msk ← Gen(1λ, L), it returns 1 with probability at least 1/p(λ) for some
polynomial function p(·); and 2) pred is polynomial-time checkable.
Lemma 6.2 (Strong privacy of programmable PRF). Let PRF be a programmable PRF with a binary
output range, and suppose that L = O(log λ). Suppose that PRF satisfies private programmability
and simulation security. Then, there exists a probabilistic polynomial-time simulator Sim such that
the following two experiments are computationally indistinguishable to any probabilistic polynomial-
time adversary.
• RealPPRFStrong(1λ):

– X,X ′, {vx}x∈X′ , predX∪X
′ ← A(1λ, L) s.t. |X| + |X ′| ≤ L, X ∩X ′ = ∅, and predX∪X

′
(·) is

admissible;
– for x ∈ X, let vx

$←V; let P := {(x, vx)}x∈X∪X′;
– sample msk← Gen(1λ, L) subject to predX∪X

′
(msk) = 1, and let sk← Prog(msk, P);

– sk→ A;
• IdealPPRFStrong(1λ):

– X,X ′, {vx}x∈X′ , predX∪X
′ ← A(1λ, L) s.t. |X| + |X ′| ≤ L, X ∩X ′ = ∅, and predX∪X

′
(·) is

admissible;
– sample sk← Sim(1λ, L) subject to the constraint that for any x ∈ X ′, PEval(sk, x) = vx;
– sk→ A.

More intuitively, in the real experiment RealPPRFStrong, we sample a random key subject to
some admissible predicate on X and X ′, and then program X to be random and program X ′ to
be values of the adversary A’s choice (e.g., all 1s). The lemma states that the real experiment
RealPPRFStrong is computationally indistinguishable from an ideal experiment IdealPPRFStrong
where we simply sample a random simulated key subject to the set of points X ′ evaluating to the
choices specified by A. Note that in IdealPPRFStrong, we do not perform any programming at all,
and replace it with rejection sampling that checks if the set of points in X ′ evaluate to the choices
specified by A.

23

Deferred Materials
We defer the full privacy proof, the correctness proof of our PIR scheme, how to tune the trade-
off between client storage and the online computation, as well as additional preliminaries to the
appendices.

Acknowledgment
This work is in part supported by a grant from ONR, a gift from Cisco, NSF awards under grant
numbers CIF-1705007, 2128519 and 2044679, and a Packard Fellowship.

References
[ABOR00] William Aiello, Sandeep Bhatt, Rafail Ostrovsky, and S Raj Rajagopalan. Fast verifi-

cation of any remote procedure call: Short witness-indistinguishable one-round proofs
for np. In ICALP, 2000.

[ACLS18] Sebastian Angel, Hao Chen, Kim Laine, and Srinath T. V. Setty. PIR with compressed
queries and amortized query processing. In S&P, 2018.

[AIVG22] Kinan Dak Albab, Rawane Issa, Mayank Varia, and Kalman Graffi. Batched differen-
tially private information retrieval. In 31st USENIX Security Symposium (USENIX
Security 22), pages 3327–3344, Boston, MA, August 2022. USENIX Association.

[AKS83] M. Ajtai, J. Komlós, and E. Szemerédi. An O(n log n) sorting network. In STOC,
1983.

[Bat68] Kenneth E. Batcher. Sorting networks and their applications. In AFIPS, 1968.

[BGI16] Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret sharing: Improvements
and extensions. In CCS, 2016.

[BIM00] Amos Beimel, Yuval Ishai, and Tal Malkin. Reducing the servers computation in
private information retrieval: Pir with preprocessing. In CRYPTO, pages 55–73, 2000.

[BIPW17] Elette Boyle, Yuval Ishai, Rafael Pass, and Mary Wootters. Can we access a database
both locally and privately? In TCC, 2017.

[BKM17] Dan Boneh, Sam Kim, and Hart William Montgomery. Private puncturable PRFs
from standard lattice assumptions. In EUROCRYPT, pages 415–445, 2017.

[BLW17] Dan Boneh, Kevin Lewi, and David J. Wu. Constraining pseudorandom functions
privately. In PKC, 2017.

[BMW98] Ingrid Biehl, Bernd Meyer, and Susanne Wetzel. Ensuring the integrity of agent-
based computations by short proofs. In International Workshop on Mobile Agents,
pages 183–194. Springer, 1998.

[BTVW17] Zvika Brakerski, Rotem Tsabary, Vinod Vaikuntanathan, and Hoeteck Wee. Private
constrained prfs (and more) from LWE. In TCC, 2017.

24

[CC17] Ran Canetti and Yilei Chen. Constraint-hiding constrained PRFs for NC1 from LWE.
In EUROCRYPT, pages 446–476, 2017.

[CG97] Benny Chor and Niv Gilboa. Computationally private information retrieval. In STOC,
1997.

[CGKS95] Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Sudan. Private informa-
tion retrieval. In FOCS, 1995.

[Cha04] Yan-Cheng Chang. Single database private information retrieval with logarithmic
communication. In ACISP, 2004.

[CHK22] Henry Corrigan-Gibbs, Alexandra Henzinger, and Dmitry Kogan. Single-server private
information retrieval with sublinear amortized time. In Eurocrypt, 2022.

[CHR17] Ran Canetti, Justin Holmgren, and Silas Richelson. Towards doubly efficient private
information retrieval. In TCC, 2017.

[CK20] Henry Corrigan-Gibbs and Dmitry Kogan. Private information retrieval with sublinear
online time. In EUROCRYPT, 2020.

[CKGS98] Benny Chor, Eyal Kushilevitz, Oded Goldreich, and Madhu Sudan. Private informa-
tion retrieval. J. ACM, 45(6):965–981, November 1998.

[CMS99] Christian Cachin, Silvio Micali, and Markus Stadler. Computationally private informa-
tion retrieval with polylogarithmic communication. In EUROCRYPT, pages 402–414,
1999.

[DCIO98] Giovanni Di-Crescenzo, Yuval Ishai, and Rafail Ostrovsky. Universal service-providers
for database private information retrieval. In PODC, 1998.

[dCP22] Leo de Castro and Antigoni Polychroniadou. Lightweight, maliciously secure verifiable
function secret sharing. In Eurocrypt, 2022.

[DG16] Zeev Dvir and Sivakanth Gopi. 2-server pir with subpolynomial communication. J.
ACM, 63(4), 2016.

[DHRW16] Yevgeniy Dodis, Shai Halevi, Ron D Rothblum, and Daniel Wichs. Spooky encryption
and its applications. In CRYPTO, 2016.

[DHS14] Daniel Demmler, Amir Herzberg, and Thomas Schneider. Raid-pir: Practical multi-
server pir. In CCSW, 2014.

[DNR16] Cynthia Dwork, Moni Naor, and Guy N Rothblum. Spooky interaction and its dis-
contents: Compilers for succinct two-message argument systems. In CRYPTO, 2016.

[Gas04] William I. Gasarch. A survey on private information retrieval. Bulletin of the EATCS,
82:72–107, 2004.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In ACM symposium
on Theory of computing (STOC), 2009.

[GI14] Niv Gilboa and Yuval Ishai. Distributed point functions and their applications. In
Advances in Cryptology – EUROCRYPT 2014, 2014.

25

[GR05] Craig Gentry and Zulfikar Ramzan. Single-database private information retrieval with
constant communication rate. In ICALP, 2005.

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from learn-
ing with errors: Conceptually-simpler, asymptotically-faster, attribute-based. In
CRYPTO, 2013.

[Hen16] Ryan Henry. Polynomial batch codes for efficient IT-PIR. Proc. Priv. Enhancing
Technol., 2016(4):202–218, 2016.

[HH17] Syed Mahbub Hafiz and Ryan Henry. Querying for queries: Indexes of queries for
efficient and expressive IT-PIR. In CCS, 2017.

[HOWW19] Ariel Hamlin, Rafail Ostrovsky, Mor Weiss, and Daniel Wichs. Private anonymous
data access. In EUROCRYPT, 2019.

[IKOS04] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Batch codes and
their applications. In STOC, 2004.

[IKOS06] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Cryptography from
anonymity. In FOCS, pages 239–248, 2006.

[KCG21] Dmitry Kogan and Henry Corrigan-Gibbs. Private blocklist lookups with checklist. In
Usenix Security, 2021.

[KO97] E. Kushilevitz and R. Ostrovsky. Replication is not needed: single database,
computationally-private information retrieval. In FOCS, 1997.

[KW21] Sam Kim and David J. Wu. Watermarking cryptographic functionalities from standard
lattice assumptions. J. Cryptol., 34(3), jul 2021.

[LG15] Wouter Lueks and Ian Goldberg. Sublinear scaling for multi-client private information
retrieval. In FC, 2015.

[Lip09] Helger Lipmaa. First CPIR protocol with data-dependent computation. In ICISC,
2009.

[LP22] Arthur Lazzaretti and Charalampos Papamanthou. Single server pir with sublinear
amortized time and polylogarithmic bandwidth. Cryptology ePrint Archive, Paper
2022/830, 2022. https://eprint.iacr.org/2022/830.

[MCR21] Muhammad Haris Mughees, Hao Chen, and Ling Ren. Onionpir: Response efficient
single-server pir. In CCS. Association for Computing Machinery, 2021.

[MW22] Samir Jordan Menon and David J. Wu. Spiral: Fast, high-rate single-server PIR via
FHE composition. In IEEE S&P, 2022.

[OS07] Rafail Ostrovsky and William E. Skeith, III. A survey of single-database private
information retrieval: techniques and applications. In PKC, pages 393–411, 2007.

[PPY18] Sarvar Patel, Giuseppe Persiano, and Kevin Yeo. Private stateful information retrieval.
In CCS, 2018.

26

https://eprint.iacr.org/2022/830

[PR93] P. Pudlák and V. Rödl. Modified ranks of tensors and the size of circuits. In STOC,
1993.

[PS18] Chris Peikert and Sina Shiehian. Privately constraining and programming PRFs, the
LWE way. In Public Key Cryptography (2), volume 10770 of Lecture Notes in Computer
Science, pages 675–701. Springer, 2018.

[PY22] Giuseppe Persiano and Kevin Yeo. Limits of preprocessing for single-server PIR. In
SODA, pages 2522–2548. SIAM, 2022.

[SACM21] Elaine Shi, Waqar Aqeel, Balakrishnan Chandrasekaran, and Bruce Maggs. Punc-
turable pseudorandom sets and private information retrieval with near-optimal online
bandwidth and time. In CRYPTO, 2021.

[TDG16] Raphael R. Toledo, George Danezis, and Ian Goldberg. Lower-cost ϵ-private informa-
tion retrieval. PETS, 2016.

[TKRR13] Yael Tauman Kalai, Ran Raz, and Ron D Rothblum. Delegation for bounded space.
In STOC, 2013.

A Smooth Tradeoff Between Space and Time
Throughout the paper, we focused on the special case when the client storage is Õλ(

√
n), and the

server and client computation is also Õλ(
√
n) per query. Observe that the lower bound S ·T ≥ Ω(n)

by Corrigan-Gibbs et al. [CHK22] suggests a possible tradeoff between the client space S and the
server/client computation per query T . Indeed, we can tune the parameters of our scheme to trade
off the two parameters. The parameter choices are similar to Appendix A of Shi et al. [SACM21].

Suppose that we want the client’s storage to be Õλ(f(n)) for some function f(n), and we want
to guarantee Õλ(n/f(n)) server/client computation per query. Moreover, suppose that f(n) ∈
[logc n, n

logc n] for some suitable positive constant c. We can set the probability that any element
x ∈ {0, 1, . . . , n − 1} is included in the set to be 1

f(n) log2 n
. This can be accomplished by applying

the PRF to any suffix of 0B||x of length at least log n− log f(n)+1, and checking that the outcomes
are all 1. We can set the lenT = f(n) log3 n to make sure that Fact 3.8 still holds [SACM21]. As
argued by Shi et al. [SACM21], the expected set enumeration time is now O(n

f(n) log n), and in the
set enumeration algorithm, we can cap the number of calls to the PRF at O(n

f(n) · log
5 n). Finally,

we will set the batching parameter Q = f(n).
With these parameters, the offline server time is Õλ(n) and the offline client time and bandwidth

are Õλ(f(n)). The online server and client time per query is Õλ(n/f(n)), and the per-query
bandwidth is Õλ(1). Since we need to perform the offline pre-processing every Q queries, we can
amortize the cost of the offline phase over the Q queries. As a result, the amortized server and
client time per query is Õλ(n/f(n)), and the per-query bandwidth is Õλ(1).

B Full Privacy Proof
B.1 Proof of Lemma 6.2
Proof of Lemma 6.2. We consider the following intermediate hybrid experiment called Hyb. Hyb is
almost the same as RealPPRFStrong except that when we sample the msk, it is sampled at random
rather than subject to the constraint that predX∪X

′
(msk) = 1.

27

Claim B.1. Suppose that the programmable PRF satisfies simulation security. Then, RealPPRFStrong
is computationally indistinguishable from Hyb.

Proof. Let Sim′ be the simulator as in the definition of simulation security. Through a straightfor-
ward reduction to simulation security, Hyb is computationally indistinguishable from the following
hybrid experiment denoted H:

• X,X ′, {vx}x∈X′ , predX∪X
′ ← A(1λ, L) s.t. |X| + |X ′| ≤ L, X ∩ X ′ = ∅, and predX∪X

′
(·) is

admissible;

• for x ∈ X, let vx
$←V; let P := {(x, vx)}x∈X∪X′ ;

• sk← Sim′(1λ, P, L);
• sk→ A;

It suffices to show that H is computationally indistinguishable from RealPPRFStrong. We show
that if there is an efficient adversary A that can distinguish H and RealPPRFStrong with non-
negligible probability, we can construct an efficient reduction B that breaks the simulation se-
curity of the PRF scheme with non-negligible probability. Specifically, B waits till A submits
X,X ′, {vx}x∈X′ , predX∪X

′ , it then chooses vx at random for x ∈ X, and lets P := {(x, vx)}x∈X∪X′ .
It gives P to its own challenger. It obtains a key sk from its own challenger. It then queries its
challenger on the inputs X ∪X ′, and checks if pred holds over the outcomes. If so, it gives sk to A
and outputs the same guess as A. Otherwise, it outputs a random guess.

If B is playing in the experiment RealPPRF with its own challenger, then, conditioned on
predX∪X

′ being true, A’s view is identically distributed as RealPPRFStrong. Else, if B is playing in
the experiment IdealPPRF with its own challenger, then, conditioned on predX∪X

′ being true, A’s
view is identically distributed as H.

Let p be the probability that the predicate predX∪X
′ holds if B is playing in the experiment

RealPPRF, and let p′ be the probability that the predicate predX∪X
′ holds if B is playing in the

experiment IdealPPRF with its challenger. Since predX∪X
′ is admissible, p must be a non-negligible

function. It must be that |p − p′| ≤ negl(λ) since otherwise we can easily construct an efficient
adversary that distinguishes RealPPRF and IdealPPRF with non-negligible probability.

Therefore, if A has a non-negligible advantage in distinguishing RealPPRFStrong and H, B has
a non-negligible advantage in distinguishing RealPPRF and IdealPPRF.

Claim B.2. Suppose that the programmable PRF satisfies private programmability. Then Hyb is
computationally indistinguishable from IdealPPRFStrong, where the simulator Sim is the same as
in the private programmability definition.

Proof. We show that if there is an efficient adversaryA that can distinguish Hyb and IdealPPRFStrong
with non-negligible probability, then we can construct an efficient reduction B that can break pri-
vate programmability with non-negligible probability. B obtains X,X ′, {vx}x∈X′ , predX∪X

′ from
A. It then forwards X ∪X ′ to its own challenger, and obtains sk from its own challenger. It then
checks if it is the case that for every x ∈ X ′, PEval(sk, x) = vx. If so, it forwards sk to A, and
outputs whatever A outputs. Otherwise, B outputs a random guess. If B is playing the game
RealPPRF with its own challenger, then conditioned on A receiving sk from B, A’s view is identi-
cally distributed as in Hyb. Else, if B is playing IdealPPRF with its challenger, then conditioned on
A receiving sk from B, A’s view is identically distributed as IdealPPRFStrong.

Let p be the probability that B forwards sk to A when B is playing RealPPRF, and let p′ be the
corresponding probability when B is playing IdealPPRF. Since L ≤ O(log λ) and the PRF has a

28

binary output domain, we know that p ≥ 1/poly(λ). Moreover, |p′ − p| ≤ negl(λ) since otherwise,
we can easily construct an efficient adversary that distinguishes between RealPPRF and IdealPPRF
with non-negligible probability. Therefore, if A has non-negligible advantage in distinguishing
Hyb and IdealPPRFStrong, then B has non-negligible advantage in distinguishing RealPPRF and
IdealPPRF.

B.2 Useful Facts about the Distribution Dn

We define the following helpful notation where x ∈ {0, 1}logn:

suffixes(x) := {(0B||x)[i :]}
i∈[logn

2
+B]

We first describe a couple useful facts which will later be used in our hybrid sequence.

Fact B.3. Consider two arbitrary elements x, y ∈ {0, 1, . . . , n − 1} which may be different or
the same. There is a polynomial function poly(·) such that Pr

S
$←Dn

[x, y ∈ S] ≥ 1/poly(n). Or
equivalently, let RO(·) denote a random oracle. Then, there is some polynomial function poly(·),
such that the following event happens with at least 1/poly(n) probability: RO(·) outputs 1 on every
input from suffixes(x) ∪ suffixes(y).

Proof. The proof is straightforward. Since there are at most 2(logn2 + B) points that we want to
force to be 1, the probability that this happens is at least

1

22(
logn
2

+B)
≥ 1

n log5 n

for sufficiently large n.

Intuitively, the following fact states that given the distribution Dn, conditioned on one element
x or two elements x, y ∈ {0, 1, . . . , n − 1} being in the set, the probability that up to

√
n other

elements are not in the set must be at least inverse polynomial.

Fact B.4. Consider two arbitrary elements x, y ∈ {0, 1, . . . , n − 1} which may be different or the
same, and Q′ ≤

√
n other elements x1, . . . , xQ′ such that xj ̸= x and xj ̸= y for any j ∈ [Q′]. Then,

there is some polynomial function poly(·), such that

Pr
S

$←Dn

[∀j ∈ [Q′] : xj /∈ S|x, y ∈ S] ≥ 1/poly(n)

Or equivalently, let RO(·) denote a random oracle. Then, there is some polynomial function poly(·),
such that the following event happens with at least 1/poly(n) probability over the choice of RO: for
every j ∈ [Q′], RO(·) does not always output 1 over the input set suffixes(xj)\(suffixes(x)∪suffixes(y)).

Proof. It suffices to prove the lemma for the worst case Q′ = Q =
√
n. For convenience, define the

following event Ev−j for j ∈ [Q]:

Ev−j : RO(·) does not always output 1 over the input set suffixes(xj)\(suffixes(x) ∪ suffixes(y))

29

Let size(xj) = |suffixes(xj)\(suffixes(x) ∪ suffixes(y))|, then Pr[Ev−j] ≥ 1 − 1/2size(xj). Note also
that for any Ev−j , any set I ⊆ [n] such that j /∈ I, it holds that

Pr[Ev−j |{Ev
−
j′}j′∈I] ≥ Pr[Ev−j]

Therefore, we have that
Pr[Ev−1 , . . . ,Ev

−
Q] ≥

∏
j∈[Q]

Pr[Ev−j]

Observe that as long as xj ̸= x and xj ̸= y, size(xj) > B. Further, there are at most 4 choices of
xj such that size(xj) = B+1, at most 8 choices of xj such that size(xj) = B+2, at most 16 choices
of xj such that size(xj) = B + 3, and so on. Therefore, we have the following where ℓ = logn

2 :

Pr[Ev−1 , . . . ,Ev
−
Q] ≥

∏
j∈[Q]

Pr[Ev−j]

≥
(
1− 1

2B+1

)4

·
(
1− 1

2B+2

)8

·
(
1− 1

2B+3

)16

· . . . ·
(
1− 1

2B+ℓ−1

)2ℓ

≥
(
1− 2

log2 n

)ℓ

≥ 1− 1

log n

B.3 Sequence of Hybrid Experiments
To prove Theorem 6.1, we define a sequence of hybrid experiments and show that the adversary
A’s views in every pair of adjacent hybrids are either identically distributed or computationally
indistinguishable.

Experiment Real. Same as the real-world execution where an honest client interacts with A
acting as the server. Henceforth, we may assume that during the online queries, the client skips the
steps of FHE decryption and computing the answer to the query. However, it still deletes the last
entry of the table T (which was added earlier during the online query); further, it still promotes
the next available backup entry to a primary entry. Note that locally skipping the FHE decryption
and computation of the answer does not affect the distribution of the messages the client sends to
the server A.

Experiment Hyb1. Experiment Hyb1 is almost the same as Real except that during the offline
setup phase, the client replaces all FHE ciphertexts sent to the server with encryptions of 0.

Claim B.5. Suppose that the FHE scheme satisfies semantic security. Then, Hyb1 is computa-
tionally indistinguishable from Real.

Proof. Hyb1 is computationally indistinguishable from the real experiment following in a straight-
forward manner from the semantic security of FHE.

30

Experiment Hyb2. Experiment Hyb2 is the same as Hyb1 except that we modify the client to
record some extra information as it interacts with the server. Specifically, for each entry in the
primary table, the client maintains a set of constraints. Initially, the constraint sets are all empty.
During each online query for the index x ∈ {0, 1, . . . , n − 1}, the client performs the following —
below the text in blue denotes the additional actions taken by the client:

• Sample sk ← PRSet.Gen(1λ, n) subject to PRSet.Member(sk, x) = 1 and append the entry
(sk, 0) to the table T of primary sets; record the additional constraint ⟨+x⟩ for this entry;

• Find the first entry (ski, pi) such that PRSet.Member(ski, x) = 1;

– for every entry j < i in T , if the entry (skj , pj) was earlier promoted from a backup set during
a query for y, record the additional constraint ⟨+y : −x⟩; else record the additional constraint
⟨−x⟩ for this entry.

– For the i-th entry (ski, pi), if the entry (ski, pi) was earlier promoted from a backup set during
a query for y, record the additional constraint ⟨+y : +x⟩; else record the additional constraint
⟨+x⟩ for this entry.

• The rest of the client’s algorithm is the same as in Hyb1, except that when the client promotes
a backup entry to the primary table T , it records the fact that the entry was promoted during
a query for the index x, and empties the constraint set associated with the relevant entry.

Intuitively, the constraint ⟨+x⟩ (or ⟨−x⟩, resp.) mean that x should (or should not, resp.) be
contained in the set; the constraint ⟨+x⟩ means that x should be contained in the set. The
constraint ⟨+y : +x⟩ (or ⟨+y : −x⟩) means that after calling Add to force-add the element y, the
element x should (or should not, resp.) be in the set.

Hyb2 is clearly identically distributed as Hyb1 since recording the extra information does not
affect the distribution.

Experiment Hyb3. Experiment Hyb3 is the same as Hyb2 except that during the online phase,
whenever the client is about to send the key of a pseudorandom set to the server, instead of sending
the key computed by the honest algorithm, the client resamples a fresh key corresponding to the
desired constraints, performs a corresponding Add operation on it if the key was promoted from
a backup key, and then performs a ReSamp operation. More concretely, whenever the client is
about to send a key for a pseudorandom set to the server during an online query, it instead sends
the following “lazy-sampled” key:

• If the entry found in the table T was earlier promoted from a backup entry during a query for
y, then, repeat: let sk← Gen(1λ, n) and let sk+y ← Add(sk, y), until the following constraints
are satisfied:

– for every constraint of the form ⟨+y : −x⟩ recorded for this entry, it must be that x /∈
Set(sk+y);

– for every constraint of the form ⟨+y : +x⟩ recorded for this entry, it must be that x ∈
Set(sk+y);

Now, call rsk← ReSamp(sk+y, x) where x is the current query, and send rsk to the server.
• Else, sample sk← Gen(1λ, n) subject to the following constraints:

– for every constraint of the form ⟨−x⟩ recorded for this entry, it must be that x /∈ Set(sk);

31

– for every constraint of the form ⟨+x⟩ recorded for this entry, it must be that x ∈ Set(sk);

Now, call rsk← ReSamp(sk, x) where x is the current query, and send rsk to the server.

Claim B.6. Hyb3 is identically distributed as Hyb2.

Proof. In Hyb3, we first sample an initial batch of pseudorandom set keys, and we use these keys
to decide which primary entry is matched during each query. Let I := (i1, i2, . . . , iQ) be the
random variables that denote the index of the entry matched during each of the Q queries, and
let x := x1, x2, . . . , xQ be the Q queries. The experiment Hyb3 is essentially maintaining the a-
posteriori distribution of each primary entry conditioned on having observed the choices of I and
x. Only when the client needs to send the key to the server (possibly after performing an Add
operation on it and always after performing a ReSamp operation), we perform the actual sampling
of the key from the a-posteriori distribution. Further, if the key was promoted from a backup key,
we perform a corresponding Add operation; and we always perform a ReSamp operation on the
lazily sampled key before sending it to the server. Therefore, the server A’s views in Hyb3 and
Hyb2 are identically distributed — in fact, this holds even if we allow A to observe the choice of I
(which A does not observe in the actual experiment).

Claim B.7. Suppose Q =
√
n. Except with negligible probability, Hyb3 completes in polynomial-

time. In other words, the lazy sampling of keys can be accomplished in polynomial time except with
negligible probability.

Proof. Observe that if the entry found in T was earlier promoted from a backup entry during a
query for y, then there is exactly one positive constraint of the form ⟨+y : +x⟩, and at most Q
negative constraints of the form ⟨+y : −x′⟩. Similarly, if the entry found in T was not promoted
from a backup entry, then there is exactly one positive constraint of the form ⟨+x⟩, and at most Q
negative constraints of the form ⟨−x′⟩.

The remainder of the proof follows in a straightforward fashion from the pseudorandomness of
the underlying programmable PRF and due to Fact B.3 and Fact B.4.

Experiment Hyb4. Hyb4 is otherwise the same as Hyb3 except with the following modification.
Recall that in Hyb3, upon receiving a new query x, we scan the primary table T , and for each key
sk ∈ T , we check if Member(sk, x) = 1. If a key sk was promoted from the backup table during
an earlier query y, the check is performed by calling PRF.Eval(sk, ·) but forcing the outcomes on
suffixes(y) to be 1. In Hyb4, however, we make the following change:

• Whenever a backup key is promoted to become a primary key during a query for y, we replace
the key with a resampled one, i.e., sample msk ← PRF.Gen(1λ, L) subject to y ∈ Set(msk).
In other words, we are sampling a programmable PRF key subject to the constraint that its
outcomes on any input from the set suffixes(y) must be 1.

Claim B.8. Suppose that the programmable PRF satisfies private programmability, simulation
security, and correctness. Then, Hyb3 is computationally indistinguishable from Hyb4.

Proof. We consider the following hybrid sequence. Experiment H is otherwise the same as Hyb3,
except that when we promote a backup key to the primary table, we replace the consumed key
with a key sk sampled from the following distribution: sample msk ← PRF.Gen(1λ, L), sk ←
PRF.Prog(msk, {(z, 1)}z∈suffixes(x)), where x is the current query. Due to the correctness of the
PRF, Hyb3 is statistically indistinguishable from H.

32

Experiment H′ is otherwise the same as H, except that when we promote a backup key to the
primary table, we replace the consumed key with a key sk sampled from the following distribution:
sample sk ← PRF.Sim(1λ, L), subject to x ∈ Set(sk), where Sim is the simulator in the private
programmability definition. H′ is computationally indistinguishable from H due to Lemma 6.2.

Experiment H′′ is otherwise the same as H′, except that when we promote a backup key to the
primary table, we replace the consumed key with a key sk sampled from the following distribution:
sample msk ← PRF.Gen(1λ, L), sk ← PRF.Prog(msk, ∅) subject to x ∈ Set(sk), where x is the
current query. H′′ is computationally indistinguishable from H′ due to the private programmability
of the PRF.

Finally, H′′ is statistically indistinguishable from Hyb4, due to the correctness of the pro-
grammable PRF.

Experiment Hyb5. Hyb5 is otherwise the same as Hyb4 except with the following modification
when performing lazy-sampling of the pseudorandom set key. Let x be the current query, and let
Sim be the simulator in the private programmability definition.

• If the entry found in T was earlier promoted from the backup table during a query for y, then
repeat: sk← Sim(1λ, L) until sk satisfies the following constraints, and send sk to the server:

– PRF.PEval(sk, ·) outputs 1 on any input from the set suffixes(y)\suffixes(x);
– for every negative constraint of the form ⟨+y : −x′⟩ that is recorded for this entry, PRF.PEval(sk, ·)

does not output all 1s on the input set suffixes(x′)\(suffixes(x) ∪ suffixes(y)).

• Else, repeat: sk ← Sim(1λ, L) until sk satisfies the following constraints, and send sk to the
server:

– for every negative constraint of the form ⟨−x′⟩ that is recorded for this entry, PRF.PEval(sk, ·)
does not output all 1s on the input set suffixes(x′)\suffixes(x).

Notably, in Hyb5, we no longer perform Add or ReSamp operations on the key sent to the server
A.

Claim B.9. Suppose that the underlying programmable PRF satisfies private programmability and
simulation security. Then, Hyb5 is computationally indistinguishable from Hyb4.

Proof. Hyb4 can be equivalently viewed as the following: during a query for index x, when we
compute the lazy-sampled key, do the following depending on which case:

• Case 1: the lazy-sampled key was promoted from the backup table during an earlier query for
index y. In this case, there is exactly one positive constraint of the form ⟨+y : +x⟩, and there
can be at most Q negative constraints of the form ⟨+y : −x′⟩.
Therefore, the lazy-sampled key has the following distribution: sample a random msk← PRF.Gen(1λ, L)
subject to the following constraints:

– PRF.Eval(msk, ·) evaluates to 1 on suffixes(x)\suffixes(y); and
– For each negative constraint of the form ⟨+y : −x′⟩, PRF.Eval(msk, ·) does not evaluate to

all 1s on the input set suffixes(x′)\(suffixes(x) ∪ suffixes(y)).

Finally, we call Prog to program the resulting msk to force the outcomes at suffixes(x) to be
random, and the outcomes at suffixes(y)\suffixes(x) to be 1, and send the programmed key to
the server A.

33

• Case 2: the lazy-sampled key was not promoted from the backup table. In this case, there is exactly
one positive constraint of the form ⟨+x⟩, and there can be at most Q negative constraints of
the form ⟨−x′⟩. Therefore, the lazy-sampled key is sampled at random msk← PRF.Gen(1λ, L),
subject to the following constraints:

– PRF.Eval(msk, ·) evaluates to 1 on suffixes(x); and
– For each negative constraint of the form ⟨+y : −x′⟩, PRF.Eval(msk, ·) does not evaluate to

all 1s on the input set suffixes(x′)\suffixes(x).

Finally, we call Prog to program the resulting msk to force the outcomes at suffixes(x) to be
random, and send the programmed key to the server A.

To show that Hyb4 is computationally indistinguishable from Hyb5, we can consider a sequence
of hybrid experiments denoted H0, . . . ,HQ. In Hi where i ∈ {0, 1, . . . , Q}, for the first i queries, we
use the method of Hyb5 to sample the key sent to the server, and for the remaining queries, we
use the method of Hyb4 to sample the key sent to the server. It suffices to show that every pair of
adjacent hybrids are computationally indistinguishable.

We show that if there is an efficient adversary A that can distinguish Hi and Hi+1 where
i ∈ {0, 1, . . . , Q− 1}, we can construct an efficient reduction B which can break the strong privacy
of the underlying PRF (see Lemma 6.2) which is implied by private programmability and simulation
security. Basically, B acts as the client and interacts with A like in Hi, except that for the i-th
query, when it is about to send the key to A, it performs the following instead:

• Case 1: the i-th query wants to lazy-sample a key that was promoted from the backup ta-
ble during an earlier query for the index y. B sends its challenger X = suffixes(x), X ′ =
suffixes(y)\suffixes(x), {vx = 1}x∈X′ , and a predicate predX∪X

′ that wants the original unpro-
grammed PRF to output 1 at suffixes(x)\suffixes(y). B obtains from its challenger some PRF
key sk. If for every negative constraint of the form ⟨+y : −x′⟩, PRF.PEval(sk, ·) does not eval-
uate to all 1s on suffixes(x′)\(suffixes(x) ∪ suffixes(y)), then B forwards sk to A, and outputs
the same guess as A. Otherwise, B aborts outputting a random guess. If B is in the game
RealPPRFStrong, and B does not abort outputting a random guess, then A’s view is identically
distributed as in Hi. If B is in the game IdealPPRFStrong, and B does not abort outputting a
random guess, then A’s view is identically distributed as in Hi+1.
Let p be the probability that B does not outputting a random guess when it is playing RealPPRFStrong,
and let p′ be the corresponding probability when it is playing IdealPPRFStrong. Due to Fact B.4
and the pseudorandomness of the PRF, p ≥ 1/poly(λ, n). Further, it must be that |p′ − p| ≤
negl(λ) since otherwise we can easily construct an adversary that can distinguish RealPPRFStrong
and IdealPPRFStrong with non-negligible probability. Therefore, if A has non-negligible ad-
vantage in distinguishing Hi and Hi+1, then B has non-negligible advantage in distinguishing
RealPPRFStrong and IdealPPRFStrong.

• Case 2: The proof of Case 2 is similar to Case 1 except that now, we replace suffixes(y) with ∅.

Experiment Hyb6. Hyb6 is otherwise the same as Hyb5, except the following modification when
performing lazy-sampling of the pseudorandom set key. Let x be the current query, and let Sim be
the simulator in the private programmability definition.

• If the entry found in T was earlier promoted from the backup table during a query for y, then
repeat: msk← Gen(1λ, L) until msk satisfies the following constraints:

34

– PRF.Eval(msk, ·) outputs 1 on any input from the set suffixes(y) ∪ suffixes(x);
– for every negative constraint of the form ⟨+y : −x′⟩ that is recorded for this entry, PRF.Eval(msk, ·)

does not output all 1s on the input set suffixes(x′)\(suffixes(x) ∪ suffixes(y)).

• Else, repeat: msk ← Gen(1λ, L) until sk satisfies the following constraints, and send sk to the
server:

– for every negative constraint of the form ⟨−x′⟩ that is recorded for this entry, PRF.Eval(msk, ·)
does not output all 1s on the input set suffixes(x′)\suffixes(x), and moreover it outputs 1 on
suffixes(x).

Now, call sk← Prog(msk, {(z, rz)}z∈suffixes(x)) where all rz’s are sampled independently at random,
and send sk to the server.

Claim B.10. Suppose that the PRF satisfies private programmability and simulation security.
Then, Hyb6 is computationally indistinguishable from Hyb5.

Proof. The proof is very similar to that of Claim B.9. To show that Hyb5 is computationally
indistinguishable from Hyb6, we can consider a sequence of hybrid experiments denoted H0, . . . ,HQ.
In Hi where i ∈ {0, 1, . . . , Q}, for the first i queries, we use the method of Hyb5 to sample the key
sent to the server, and for maining queries, we use the method of Hyb6 to sample the key sent to the
server. It suffices to show that every pair of adjacent hybrids are computationally indistinguishable.

We show that if there is an efficient adversary A that can distinguish Hi and Hi+1 where
i ∈ {0, 1, . . . , Q− 1}, we can construct an efficient reduction B which can break the strong privacy
of the underlying PRF (see Lemma 6.2) which is implied by private programmability and simulation
security. Basically, B acts as the client and interacts with A like in Hi, except that for the i-th
query, when it is about to send the key to A, it performs the following instead:

• Case 1: the i-th query wants to lazy-sample a key that was promoted from the backup table
during an earlier query for the index y. B sends its challenger X = suffixes(x), X ′ = ∅, and
a predicate predX∪X

′ that wants the original unprogrammed PRF to output 1 at suffixes(x).
B obtains from its challenger some PRF key sk. If for every negative constraint of the form
⟨+y : −x′⟩, PRF.PEval(sk, ·) does not evaluate to all 1s on suffixes(x′)\(suffixes(x)∪ suffixes(y)),
and moreover, it evaluates to all 1s on the input set suffixes(y)\suffixes(x), then B forwards sk
to A, and outputs the same guess as A. Otherwise, B aborts outputting a random guess. If B is
in the game RealPPRFStrong, and B does not abort outputting a random guess, then A’s view
is identically distributed as in Hi. If B is in the game IdealPPRFStrong, and B does not abort
outputting a random guess, then A’s view is identically distributed as in Hi+1.
Let p be the probability that B does not outputting a random guess when it is playing RealPPRFStrong,
and let p′ be the corresponding probability when it is playing IdealPPRFStrong. Due to Fact B.4
and the pseudorandomness of the PRF, p ≥ 1/poly(λ, n). Further, it must be that |p′ − p| ≤
negl(λ) since otherwise we can easily construct an adversary that can distinguish RealPPRFStrong
and IdealPPRFStrong with non-negligible probability. Therefore, if A has non-negligible ad-
vantage in distinguishing Hi and Hi+1, then B has non-negligible advantage in distinguishing
RealPPRFStrong and IdealPPRFStrong.

• Case 2: The proof of Case 2 is similar to Case 1 except that now, we replace suffixes(y) with ∅.

35

Fact B.11. Hyb6 is identically distributed as the following process. During the offline phase, send
FHE encryptions of 0 to the server. During each query, the client appends a key sampled at random
from PRF.Gen(1λ, L) subject to containing x at the end of the table T . The client finds in T the
first entry msk whose set contains x. The client sends PRF.Prog(msk, {(z, rz)}z∈suffixes(x)) to the
server where rz’s are independent random bits. The client then replaces the consumed entry with
a fresh key sampled from PRF.Gen(1λ, L) subject to containing x, and deletes the last entry of the
table.

Proof. By definition, the above process has the same local table distribution as in Hyb6. Recall that
in Hyb6, the client samples another key subject to the corresponding constraints, programs the key
and sends it to the server. In the above process, the client directly programs the key stored in the
local table and sends it to the server. In Hyb6, conditioned on the matched indices I, the matched
entry in the table has the same a-posteriori distribution as the key we lazily sample which we then
program and send to the server. Therefore, Hyb6 can be equivalently rewritten as the randomized
process in Fact B.11.

Experiment Ideal. In the Ideal experiment, during the offline phase, the client sends FHE en-
cryptions of 0 to the server. During each online query, whenever the client needs to send the server
A some key, it simply samples a key sk ← Sim(1λ, L) at random where Sim is the same simulator
as in the private programmability definition, and sends sk to the server.

Claim B.12. Suppose that the PRF satisfies private programmability. Then Hyb6 is computation-
ally indistinguishable from Ideal.

Proof. We can consider a sequence of hybrids denoted H0,H1, . . . ,HQ. In Hi, for the first i queries
we do the following:

• The client sends the server a random simulated key sampled from sk← Sim(1λ, L).

For the remaining queries, the client does the following just like in Hyb6 (see Fact B.11):

• Let x be the current query. The client appends a key sampled at random from PRF.Gen(1λ, L)
subject to containing x at the end of the table T . The client finds the first entry msk whose
set contains x. The client sends PRF.Prog(msk, {(z, rz)}z∈suffixes(x)) to the server where rz’s are
independent random bits. The client then replaces the consumed entry with a fresh key sampled
from PRF.Gen(1λ, L) subject to containing x, and deletes the last entry of the table.

It suffices to prove that Hi and Hi+1 are computationally indistinguishable for every i ∈
{0, 1, . . . , Q− 1}. First, we prove the following fact.

Fact B.13. In Hi, conditioned on the server’s view at the beginning of the (i + 1)-th query, the
keys contained in the client’s primary table T are identically distributed as sampling independent
keys from msk← Gen(1λ, L).

Proof. From an information theoretic perspective, the server learns no information during the first
i queries. Therefore, we can prove the claim by induction. The statement is true initially before
any query is made. Now, suppose the statement is true at the end of the (i′ − 1)-th query where
i′ ≤ i, we prove that the statement is still true at the end of the i′-th query. It is easy to see this
if we view the distribution of lenT randomly sampled simulated keys as the following distribution:

36

• First, sample the index j∗ ∈ [lenT+1] which is the first entry that contains the queried element
x. Note that since we appended to the table T a key sampled from PRF.Gen(1λ, L) subject to
containing the current query x before searching through T , a satisfying key is guaranteed to be
found.

• For any j < j∗, sample the j-th key at random from PRF.Gen(1λ, L) subject to not containing
x; sample the j∗-th key at random from PRF.Gen(1λ, L) subject to containing x; and finally,
for j > j∗, sample j-th key at random from PRF.Gen(1λ, L).

Now, during the i′-th query, we consume the j∗-th entry, and replace it with a key freshly
sampled from PRF.Gen(1λ, L) subject to containing x. Therefore, this does not change the distri-
bution.

Therefore, in Hi, during the (i+1)-th query for some index x, the matched key has the following
distribution: sample msk ← Gen(1λ, L) subject to containing x. Thus, the key returned to the
server is identically distributed as: sample msk← PRF.Gen(1λ, L) subject to x ∈ Set(msk) where x
is the current query, call sk← PRF.Prog(msk, {(z, rz)}z∈suffixes(x)) where the rz’s are independently
sampled random bits. Due to the private programmability of the PRF, we can replace the key sent
to the server during the (i+ 1)-th query with the outcome of Sim(1λ, L), which gives us Hi+1, and
the adversary A will not be able to distinguish the two except with negligible probability.

C Correctness Proof
We now prove the correctness of our PIR scheme.

Offline phase. Due to Fact 4.3 and the pseudorandomness of the PRF, for each pseudorandom
set key sk, the probability that CSetEnum returns bSucc = True is at least 1− 1/ log n. Therefore,
the probability that among k = ω(log λ) copies, no copy returns bSucc = True is negligibly small.
Therefore, the probability that the offline phase cannot find lenT+Q copies with bSucc = True is
negligibly small. Due to the correctness of the FHE, during the offline phase, the client obtains the
correct parities for all lenT+Q pseudorandom sets except with negligible probability.

Online phase. Given the above, to prove the correctness of our PIR scheme, it suffices to show
the following: assume that to start with, the client is storing the correct parity bits for all of the
pseudorandom sets. Then, each single copy of the PIR scheme is correct with probability at least
2/3. If so, due to the standard Chernoff bound, when we do majority voting among k = ω(log λ)
copies, the majority vote is correct with all but negl(λ) probability.

Experiment CReal. Same as the real-world experiment running a single copy of the PIR scheme,
except that at the end of each query, we force the client’s parity bits to be all correct (even if the
client may have computed an incorrect parity bit).

Experiment CIdeal. Consider the following experiment where the client stores each set using a
random oracle ROj rather than a pseudorandom key.

37

Ideal correctness experiment CIdeal

Offline phase. Client generates lenT+Q random oracles denoted {ROj}j∈[lenT+Q], where each
ROj defines a random set. Let Labelj = ⊥ for j ∈ [lenT]. The client obtains the correct parity
bit pj for each random set. The lenT+Q random oracles are divided into lenT primary entries
which form the primary table T , as well as Q backup entries.

Online query for x ∈ {0, 1, . . . , n− 1}.

• Client overwrites the (lenT+1)-th entry of the primary table T to be the following random
oracle: sample a fresh RO∗ and force RO∗’s outcomes at suffixes(x) to be 1.

• Client finds the first primary entry j such that the set defined by ROj contains x. If the
entry found is the last entry of T , return ErrNotFound.

• If y := Labelj ̸= ⊥ and the set generated by ROj contains other elements related to y, return
ErrParity.

• Client resamples ROj ’s outcomes at the points suffixes(x). If this resampling ends up re-
moving some element x′ ̸= x from the set, or it does not remove x itself from the set, return
ErrReSampFail. If the resampled ROj takes more than 6

√
n log5 n RO calls to enumerate

the set, then return ErrTimeOut.
• Client takes the first unconsumed backup entry denoted RO∗, forces RO∗’s outputs at

suffixes(x) to be 1, and then uses the resulting random oracle to replace the j-th entry
of T . Further, set Labelj = x. Return Success.

Intuitively, ErrNotFound characterizes the probability that the queried element is not in any of
the primary sets; ErrReSampFail represents the probability that resampling at point x either fails
to remove x from the set, or it removes some other element related to x from the set; ErrParity
represents the probability that when we promoted a backup entry to the primary table by forcefully
adding some element y, it caused some element(s) related to y to be added to the set — in this
case, the parity associated with this entry could be incorrect. Finally, ErrTimeOut represents the
probability of an error caused by the set enumeration timing out.

Let Wrongi,CReal(x1, . . . , xQ) denote the event that upon the query sequence x1, . . . , xQ, the client
computes the incorrect answer during the i-th query in experiment CReal. Let Wrongi,CIdeal(x1, . . . , xQ)
denote the event that upon the query sequence x1, . . . , xQ, the client returns either ErrNotFound or
ErrReSampFail or ErrTimeOut during the i-th query in experiment CIdeal.

Claim C.1. Assume that the programmable PRF satisfies pseudorandomness and correctness.
Then, there exists a negligible function negl(·) such that for any x1, . . . , xQ ∈ {0, 1, . . . , n− 1}, for
any i ∈ [Q],

Pr[Wrongi,CReal(x1, . . . , xQ)] ≤ Pr[Wrongi,CIdeal(x1, . . . , xQ)] + negl(λ)

Proof. Experiment CIdeal makes the following modifications to CReal: 1) replaces PRF evalua-
tions to RO calls, and 2) remove all instructions not related to correctness. Note that the event
Wrongi,CReal depends only on the evaluation outcomes of the PRF and does not depend on the PRF
key itself. Therefore, the claim follows in a straightforward fashion from the pseudorandomness
and the correctness of the underlying programmable PRF.

Claim C.2. For any x1, . . . , xQ ∈ {0, 1, . . . , n− 1}, for any i ∈ [Q], Pr[Wrongi,CIdeal(x1, . . . , xQ)] ≤
1/3.

38

Proof. To prove the claim, we will make use of the following fact:

Fact C.3. In CIdeal, the ROj found during each query has the following distribution: sample an
RO at random subject to containing x. Moreover, at the end of each query, the table T (ignoring
the (lenT+ 1)-th entry) has the same distribution as lenT+Q independently sampled ROs.

Proof. We can prove the fact using a similar argument as Fact B.13, except that now, each entry
of the table T is a random oracle instead of a key sampled from Sim(1λ, L).

We can now bound the probability of each type of error.

ErrNotFound. Due to Fact C.3 and Fact 3.8, Pr[ErrNotFound] ≤ 1/n.

ErrReSampFail. Due to Fact C.3 and Fact 3.7, the probability that there exists another element
related to x in the chosen ROj is upper bounded by 1/ log n. The probability that resampling fails
to remove x from the set is 1/(

√
npoly log n). Thus, Pr[ErrReSampFail] ≤ 2/ log n.

ErrTimeOut. Due to Fact C.3 and Fact 3.9, Pr[ErrTimeOut] ≤ 1/ log n.

ErrParity. This is the most complicated error to bound. To bound the probability of ErrParity, we
may equivalently consider the following experiment which is obtained from CIdeal, but removing
all other errors we do not care about right now.

Experiment CIdealParity
// same experiment as the one in Lemma 7.7 in Shi et al. [SACM21]

Offline setup. For j = 1 to lenT: sample a random oracle RO and let Tj := RO. Set
Labelj := ⊥.

Online query for index x ∈ {0, 1, . . . , n− 1}.

a) Sample a new RO∗ such that the associated set contains x. Append RO∗ to the table T as
the last entry, and mark its label label(TlenT+1) := ⊥.

b) Let Tj := ROj be the smallest entry in the table T such that the set generated by ROj

contains x.
c) If y := Labelj ̸= ⊥ and the set generated by ROj contains other elements related to y, then

return ErrParity.
d) Sample a new RO′ such that the generated set contains x. Overwrite Tj := RO′ and set

Labelj := x.
e) Remove the last entry from T and return Success.

We can show that in the above experiment, the probability that the i-th query returns ErrParity
is upper bounded by 2/ log n using exactly the same approach as Shi et al. [SACM21]. Specifically,
in the above experiment, for the i-th query to return ErrParity, there are two cases:

1. The i-th query for index xi finds an entry with the y = Labelj ̸= ⊥, and xi is related to y.

2. The i-th query for index xi finds an entry with the y = Labelj ̸= ⊥, and xi is not related to y.

39

In the proof of Lemma 7.7 of Shi et al. [SACM21], they argue that due to Fact C.3 and Fact 3.7,
the probability of the first case happening is upper bounded by the probability that a random RO
subject to containing xi also contains another element related to xi, which is upper bounded by
1/ log n. Through a more complicated argument, they also show that the probability of the second
case happening is also upper bounded by 1/ log n.

Therefore, we have that Pr[ErrParity] ≤ 2/ log n.

D Additional Preliminaries
D.1 Proof of Claim 3.5
Proof of Claim 3.5. We prove the properties one by one.

Correctness. If x is one of the programmed inputs, then correctness of PEval over x follows
directly from the correctness of PEval of the underlying PRF′. Now consider the case when x is not
one of the programmed inputs. Observe that Prog algorithm may program the underlying PRF′

at L′ −L strings of length at most ℓ+ 1 ending with 1. However, calling PRF.PEval(sk, x) results
in calling PRF′.PEval(sk, x||0), and x||0 cannot be a programmed input for the underlying PRF′.
Therefore, correctness of PEval over a non-programmed input x follows from the correctness of
the underlying PRF′.

Simulation security. PRF.Sim(1λ, P, L) is constructed as follows:

• Parse P = {(xi, vi}i∈[L′]. Choose L− L′ strings of length at most ℓ+ 1 ending with 1, denoted
{x′j}j∈[L−L′]. Choose v′j

$←V for j ∈ [L− L′].

• Output PRF′.Sim(1λ, {xi||0, vi}i∈[L′] ∪ {x′j , v′j}j∈[L−L′], L).

Suppose there is an efficient adversaryA that can break the simulation security of PRF with non-
negligible probability, we can construct an efficient reduction B that breaks the simulation security
of the underlying PRF′ with non-negligible probability. When A submits {xi, vi}i∈[L′] where L′ ≤ L,
B chooses L−L′ strings of length at most ℓ+1 ending with 1, denoted {x′j}j∈[L−L′]. B also chooses
v′j

$←V for j ∈ [L−L′]. B submits to its own challenger {xi||0, vi}i∈[L′]∪{x′j , v′j}j∈[L−L′], and obtains
sk from its challenger. It forwards sk to A. Now, whenever A queries the point x ∈ {0, 1}≤ℓ, B
forwards x||0 to its own challenger, obtains v, and forwards it to A. Finally, B outputs whatever
A outputs.

If B is playing the game RealPPRF for the underlying PRF′, then A’s view is identically dis-
tributed as in RealPPRF for PRF. If B is playing the game IdealPPRF for the underlying PRF′, then
A’s view is identically distributed as in IdealPPRF for PRF.

Private programmability. Let PRF.Sim(1λ, L) = PRF′.Sim(1λ, L). Suppose there is an efficient
adversary A that can break the private programmability of PRF with non-negligible probability, we
can construct an efficient reduction B that breaks the private programmability of the underlying
PRF′ with non-negligible probability. When A submits {xi}i∈[L′] where L′ ≤ L, B chooses L − L′

strings of length at most ℓ+1 ending with 1, denoted {x′j}j∈[L−L′]. B submits to its own challenger
{xi||0}i∈[L′]∪{x′j}j∈[L−L′], and obtains sk from its challenger. It then outputs whatever A outputs.

40

If B is playing RealPPRFPriv of the underlying PRF′, then A’s view is identically distributed
as RealPPRFPriv of PRF. If B is playing IdealPPRFPriv of the underlying PRF′, then A’s view is
identically distributed as IdealPPRFPriv of PRF.

D.2 Fully Homomorphic Encryption
A fully homomorphic encryption scheme (FHE) with respect to a class of circuits C is a tuple
(Gen,Enc,Eval,Dec) of efficient, possibly randomized algorithms, with the following syntax:

• Gen(1λ): receives the security parameter λ and outputs a secret key fsk.

• Enc(fsk,m): receives a secret key fsk and message m, and outputs a ciphertext c.

• Eval(Circ, c1, . . . , cd): receives a circuit Circ ∈ C with d inputs, as well as d ciphertexts and
outputs a ciphertext c.

• Dec(fsk, c): receives a secret key fsk and ciphertext c, and outputs a plaintext m.

Correctness. Let C be a class of circuits, Circ be an arbitrary element in C, and d be the input
size of Circ. A FHE scheme (Gen,Enc,Eval,Dec) is correct with respect to C, if (Gen,Enc,Dec)
is a correct encryption scheme, and there is a negligible function negl(·) such that for every security
parameter λ, for all messages m1, . . . ,md, for any Circ ∈ C, the following holds with at least
1− negl(λ) probability: fsk ← Gen(1λ), for i ∈ [d], ci ← Enc(fsk,mi), c′ ← Eval(Circ, c1, . . . , cd),
then, it must be that Dec(fsk, c′) = Circ(m1, . . . ,md).

Semantic security. We say that an FHE scheme (Gen,Enc,Eval,Dec) is semantically secure
iff (Gen,Enc,Dec) is semantically secure.

41

	Introduction
	Our Contributions
	Additional Related Work

	Technical Roadmap
	Starting Point: Optimal 2-Server Scheme By Shi et al.
	An Inefficient Toy Scheme
	Compressing the Bandwidth and Client Storage

	Highlights of Our Construction and Proof Techniques

	Preliminaries
	Privately Programmable Pseudorandom Functions
	Syntax
	Security Definitions
	Construction

	Single-Server Private Information Retrieval
	The Distribution D n

	Privately Programmable Pseudorandom Set
	Definition
	Construction

	PIR Scheme
	Privacy Proof
	Proof Roadmap
	Technical Lemma for Privately Programmable PRF

	Smooth Tradeoff Between Space and Time
	Full Privacy Proof
	Proof of lem:pprf
	Useful Facts about the Distribution D n
	Sequence of Hybrid Experiments

	Correctness Proof
	Additional Preliminaries
	Proof of clm:progL
	Fully Homomorphic Encryption

