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Abstract. Ciphertext-policy attribute-based encryption is a versatile
primitive that has been considered extensively to securely manage data
in practice. Especially completely unbounded schemes are attractive, be-
cause they do not restrict the sets of attributes and policies. So far, any
such schemes that support negations in the access policy or that have
online/offline extensions have an inefficient decryption algorithm.
In this work, we propose GLUE (Generalized, Large-universe, Unbounded
and Expressive), which is a novel scheme that allows for the efficient im-
plementation of the decryption while allowing the support of both nega-
tions and online/offline extensions. We achieve these properties simul-
taneously by uncovering an underlying dependency between encryption
and decryption, which allows for a flexible trade-off in their efficiency.
For the security proof, we devise a new technique that enables us to
generalize multiple existing schemes. As a result, we obtain a completely
unbounded scheme supporting negations that, to the best of our knowl-
edge, outperforms all existing such schemes in the decryption algorithm.

Keywords: attribute-based encryption · unbounded attribute-based en-
cryption · online/offline attribute-based encryption · non-monotone attribute-
based encryption

1 Introduction

Attribute-based encryption (ABE) is an advanced type of public-key encryption
in which the key pairs are associated with attributes [48]. In ciphertext-policy
(CP) ABE, messages are encrypted under an access policy [17]. The resulting
ciphertexts can then be decrypted by a secret key associated with a set of at-
tributes4 that satisfies the policy. Conversely, in key-policy (KP) ABE, the keys
are associated with access policies and the ciphertexts with sets of attributes

4 In this paper, we will use the terms “sets of attributes” and “(attribute) sets” to
refer to the attributes associated with the secret keys. We use the term “universe of
attributes” to refer to the total set of attributes that can be used in the system.
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[27]. To securely and efficiently implement access control on data, especially
pairing-based CP-ABE proves to be an attractive primitive [17,35,49,54,37]. In
2018, the European Telecommunications Standards Institute (ETSI) published
two technical reports on ABE [25,26], which include detailed descriptions of use
cases, varying from cloud settings to mobile networks. In such settings, the com-
putational resources of the encryption and decryption devices may vary. Thus,
different use cases may require schemes with different efficiency trade-offs.

According to ETSI, ABE schemes should be efficient and secure. Interest-
ingly, while ETSI proposes ABE to be used to enforce attribute-based access
control [33] on data, it explicitly notes that ABE cannot satisfactorily support
it, because ABE cannot support negations efficiently [26]. Indeed, the decryption
algorithm of most ABE schemes supporting negations is incredibly expensive
[44,38,57,11]. Recently, some interesting progress was made, yielding significant
speed-ups in decryption time [50,14]. However, those schemes still have a costly
decryption [14] or restrict the attribute sets [50].

In this work, we introduce GLUE, which is a new scheme that enables the
realization of the following properties:

(1) Large-universe: any string can be used as an attribute;
(2) Unbounded: no restrictions on e.g., the sizes of the policies or attributes sets,

or the number of times that an attribute may occur in the policy;
(3) Expressive: support of monotone span programs, ensuring that policies rep-

resented as Boolean formulas consisting of conjunctions and disjunctions can
be supported;

(4) Non-monotone: support of non-monotone span programs, ensuring that the
policies can use negations;

(5) Compact: the number of key and ciphertext components depends at most
linearly on the set size or the policy length, and in particular does not depend
on other parameters (implicit or explicit)5.

GLUE is designed to offer a flexible choice in the encryption/decryption efficiency
trade-off during the setup of the parameters. More specifically, it is parametrized
in variables nk and nc, where the encryption costs increase in nk + nc and the
decryption costs decrease in nk and nc, e.g., in the factor nk if nk = nc holds. In
this way, the scheme can be fine-tuned to take into account the computational
resources of the encryption and decryption devices. In particular, this feature
allows for significant speed-ups in the decryption algorithm compared to other
schemes that also satisfy the listed properties.

Large-universe and unbounded ABE. The universe of attributes, i.e., the
attributes that can be used in the scheme, can be small or large [48]. In small-
universe constructions, the number of attributes is bounded after the setup, e.g.,
because a public key needs to be generated for each attribute. In large-universe

5 For example, parameters such as those in schemes with a flexible efficiency trade-off
(e.g., [12,53]) or the number of re-uses of the same attribute in the policy (e.g., [36]).
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constructions, the universe of attributes is effectively unbounded. Moreover, the
public keys do not depend on the attributes in the system, and a user can directly
encrypt messages using the master public key and the attribute string. Large-
universe ABE is thus more scalable than small-universe ABE, as the encrypting
users do not need to first locate the necessary public keys before encrypting.
Some large-universe schemes [48,56,13] are however undesirably restrictive [40],
as they are bounded in the sizes of the policies or attribute sets, or the number
of times that an attribute may occur in the policy. Oftentimes, the scheme’s
efficiency depends on such bounds, e.g., the encryption costs grow linearly in
the bounds on the policies or sets [55]. Hence, choosing high bounds is not a
suitable solution either. Preferably, a scheme is unbounded in all parameters.

Expressivity and non-monotonicity. Most state-of-the-art ABE schemes
are expressive in that their policies support monotone span programs (MSPs)
[2,50,11,41]. An important subclass of MSPs are Boolean formulas consisting of
conjunctions and disjunctions. As mentioned, popular access control models such
as attribute-based access control [33] allow the policies to be any Boolean for-
mula, including negations. ABE schemes that support negations are called non-
monotone [44,57,11,50,14]. In addition to being more expressive, such schemes
readily support revocation systems [38], which is crucial in practice as well.

Different types of non-monotonicity. For large-universe constructions, three
types of non-monotonicity exist: OSW-type [44], OT-type [43], and OSWOT-
type [14]. In OSW-type negations, e.g., “NOT user: Alice”, the entire attribute
set, e.g., “{user: Bob, course: linear algebra, course: calculus}”, is compared with
the negated attribute to establish that the set does not contain it. In ABE im-
plementations, this translates in a decryption cost that grows in not only the size
of the policy, but also in size of the attribute sets. Such negations may thus not
be efficient if the sets are large. In OT-type negations, e.g., “user: NOT Alice”,
the attribute labels, e.g., “user”, play a role. In particular, the set must contain
an attribute with label “user” and its value, e.g., “Bob”, must differ from the
negated attribute. While this is more efficient than OSW-type negations, the
set of attributes is allowed to contain only one attribute for each label, e.g.,
such negations are not supported for the label “course” in our first example.
Thus, schemes supporting this type of negations are bounded in the number
of label re-uses, which is not always desirable. For instance, like in our exam-
ple, users may have multiple attributes for labels such as “departments at a
hospital”, “courses followed at a university” or “mail addresses”. As a solution,
Attrapadung and Tomida [14] introduced OSWOT-type negations, e.g., “course:
NOT cryptography”, to extend OT-type negations, such that the negated at-
tribute is compared with all attributes in the set that share the same label, e.g.,
“{course: linear algebra, course: calculus}”. In this way, the flexibility of OSW-
type negations and the efficiency of OT-type negations can be combined.
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Table 1: Comparison of large-universe schemes supporting (non-)monotone span
programs. For each scheme, we list whether it is unbounded (in the sets S and
policies A, and the number of attribute and label re-uses), whether it supports
negations or has a provably secure extension that supports negations, whether it
is compact and supports a flexible efficiency trade-off (FET). Note that we have
only listed schemes that are structurally different “in the exponent”, i.e., their
associated pair encodings [9] are different. For instance, the unbounded schemes
in [36,40] have a similar structure and therefore only [40] is listed.

Scheme KP/CP
Unbounded Negations

Compact FET|S| |A| ARU LRU OSW OT OSWOT

GPSW06-LU [27] KP ✗ ✓ ✓ ✓ ✓ [44] ✗ ✗ ✓ ✗

BSW07 [17] CP ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✓ ✗

ALP11 [13] KP ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗

W11-LU I [56] CP ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✓ ✗

W11b-LU [55] CP ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗

LW11b [40,46] KP ✓ ✓ ✓ ✓ ✓ [38] ✓ [11] ✓ [14] ✓ ✗

OT12 [43] CP ✓ ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗

RW13 [46] CP ✓ ✓ ✓ ✓ ✓ [57] ✓ [11] ✓ [14] ✓ ✗

AHM+16 [12] KP ✓ ✓ ✓ ✓ ✓ [13] ✗ ✗ ✗ ✓
AC16 [1] CP ✗ ✗ ✓ ✓ ✓ [11,6] ✓ [14,6] ✓ [14,6] ✗ ✗

AC17b [2] CP(/KP) ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗

ABGW17 [7] KP/CP ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✓ ✗

Att19-I-CP [11] CP(/KP) ✓ ✓ ✓ ✓ ✓ ✓ [14] ✓ [14] ✓ ✗

Att19-II-CP [11] CP(/KP) ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗

Att19-III-CP [11] CP(/KP) ✓ ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✗

TKN20 [50] KP/CP ✓ ✓ ✓ ✗ ✗ ✓ ✗ ✓ ✗

VA22 [53] CP ✓ ✓ ✓ ✓ ✓ [6] ✗ ✗ ✗ ✓
GLUE CP(/KP) ✓ ✓ ✓ ✓ ✓ ✓ ✓ [14] ✓ ✓

Note: S = attribute set; A = access policy;
ARU = attribute re-use in the policies; LRU = label re-use in the sets and policies

Achieving properties (1)-(5) simultaneously. Only a limited number of
existing schemes support properties (1)-(5) simultaneously [54]. In fact, all
pairing-based schemes that provide non-monotonicity and large-universeness use
a polynomial-based hash—also known as a “Boneh-Boyen (BB) hash” [18]—that
maps arbitrary attribute strings into the scheme [48,44]. Of those schemes, the
only ones that are completely unbounded [38,57,11,14] are based on the schemes
by Lewko and Waters (the KP-ABE version) [40] and Rouselakis and Waters
(the CP-ABE version) [46] (Table 1). However, all those schemes have an in-
efficient decryption algorithm compared to other ABE schemes [45], which use
a full-domain hash (FDH) to achieve large-universeness. For this reason, such
schemes are often favored in practice, despite their inability to support negations
[25,26]. Nevertheless, since supporting negations fosters the expressivity of ABE,
we aim at improving the decryption efficiency of schemes using a BB hash.
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Fig. 1: Overview of large-universe schemes using a BB hash.
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Improving decryption efficiency of schemes using a BB hash. To de-
termine whether we can improve on the decryption efficiency of the existing
schemes satisfying properties (1)-(5), we investigate all schemes using a BB
hash to achieve large-universeness. In particular, if we consider all such schemes,
then we see that a scheme that is unbounded, compact and costs less than one
pairing operation per attribute during decryption does not exist yet (Figure 1).
Because pairing operations are the most expensive operations in pairing-based
ABE, it is therefore important to minimize the use of those. In this work, we
aim to achieve this: we provide a scheme that satisfies properties (1)-(5), while
requiring less than one pairing operation per attribute during decryption.

1.1 Our contributions

We first give a high-level overview of our contributions. Then, we provide more
(technical) details about these contributions.

– New construction: We present a new unbounded large-universe scheme
using a BB hash (thus avoiding random oracles). Its encryption/decryption
efficiency trade-off can be fine-tuned by taking into account the computa-
tional resources of the devices.

– Generalizations: Concretely, the scheme can be considered a generalization
of two large-universe schemes: the Rouselakis-Waters (RW13) scheme [46]
and the bounded large-universe scheme without random oracles by Waters
(W11b) [55]. This generalization also illustrates a deeper connection among
various designs.

– Security proof: We develop new proof techniques to ensure that the ran-
domness provided by a BB hash can be simultaneously used for the keys and
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ciphertexts. To the best of our knowledge, we are the first to achieve this in
the unbounded setting, and in the full-security setting.

– Extensions: We provide three extensions to the basic scheme: one on-
line/offline [32] and two non-monotone extensions supporting OT-type and
OSW-type negations, respectively. Notably, we obtain an online/offline ABE
scheme and a scheme supporting OSW-type negations with the most efficient
decryption algorithms. This enables us to support OSWOT-type negations
more efficiently, which is the most desirable in practice.

1.2 New construction: GLUE

We focus on three schemes that satisfy at least two out of the three depicted
properties (see Figure 1): W11b [55], RW13 [46] and AHM+16 [12]. Those three
schemes provide a good starting point for GLUE, our new scheme which satis-
fies all required properties. Intuitively, we apply the partitioning techniques of
AHM+16 to combine the unbounded RW13 and the bounded W11b that allows
for efficient decryption. However, as we show later, for the secure combination
of these techniques, GLUE requires a more intricate approach.

We give a high-level description of the partitioning approach as introduced
by AHM+16. First, we partition the attribute sets into smaller subsets. Then,
we apply a (bounded) scheme with efficient decryption (in their case, ALP11
[13]) to each subset. Lastly, we use the unbounded techniques of e.g., RW13 or
LW11b [40] to securely connect the subsets. In this way, the decryption costs
of the scheme can be decreased. Unfortunately, this comes at a cost. Because
bounded schemes typically have a more expensive encryption, the encryption
costs are increased. From a broader perspective, this approach creates a scheme
with a (flexibly) efficiency trade-off feature. As we will show later, this trade-off
is determined by some parameter n. The encryption costs are higher by a factor
n than those of unbounded schemes such as RW13, whereas the decryption costs
are lower by this factor. Because this parameter n can be chosen during setup,
it can be fine-tuned for the given practical context. If decryption needs to be
efficient (which is often the case), one can choose larger n than in cases in which
encryption needs to be efficient.

The main reason why we achieve the compactness property, in contrast to
AHM+16, is due to the bounded scheme that is used. Because AHM+16 uses
ALP11 [13], a scheme with constant-size ciphertexts and large keys whose sizes
depend on the parameter n, its keys are large and its key generation is very
expensive. Moreover, although the number of pairing operations required during
decryption decreases, the number of exponentiations grows by a factor n for each
matching attribute. As we will show, this means that AHM+16 decryption is
not much more efficient than unbounded schemes such as RW13. As a solution,
we use the W11b scheme, whose decryption costs consist of a constant number
of pairing operations and no additional exponentiations. In this way, we achieve
a much better speed-up in decryption, and since W11b is compact, the key sizes
and key generation costs are not affected.
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1.3 Generalizing RW13 by generalizing the hash

The main difference between the partitioning approach as applied by AHM+16
and us is that we have to partition both the key sets and the ciphertext policies.
The reason for this is that AHM+16 uses ALP11, which is bounded in only
the ciphertexts, whereas we use W11b, which is bounded in both the keys and
ciphertexts. By extension, we need to apply some technique to connect the re-
sulting key and ciphertext “parts”. However, we will show that the security proof
of W11b does not generalize to the unbounded setting, meaning that we have
to devise a new proof technique for W11b that does generalize. Furthermore, it
is not possible to apply the exact same approach as that of AHM+16. In par-
ticular, to prove security, they embed the scheme in the fully secure key-policy
doubly-spatial encryption [31] scheme in [9], and then, they apply the embedding
lemma [12]. We cannot use this approach, because, to the best of our knowledge,
the W11b scheme cannot be similarly embedded in an existing scheme.

Hence, we take a slightly different approach: we generalize RW13 by gener-
alizing its specific instantiation of the BB hash. A BB hash first takes as input
a unique representation xatt of an attribute att in the integer set Zp, where p
is the prime order of group G with generator g ∈ G. Then, it computes the

hash as Fn(xatt) =
∏n

i=0 B
xi
att

i , where the generators Bi = gbi implicitly embed
the coefficients of the polynomial fn(xatt) =

∑n
i=0 bix

i
att. Where RW13 (and its

unbounded derivatives [32,11]) uses an implicit 1-degree polynomial, we use an
implicit n-degree polynomial, like W11b [55]. However, as we will show, simply
replacing the 1-degree polynomial by some n-degree polynomial does not im-
mediately yield a secure scheme. To solve this, we replace another public-key
variable used in the scheme by a polynomial.

1.4 Security proof

The AC17 framework. To benefit from the strong security guarantees as well
as the generic transformations [11,6] within the Agrawal-Chase (AC17) [3] frame-
work, we prove security within it. In general, the AC17 framework considers the
pair encoding schemes (PESs) associated with an ABE scheme [9]. Intuitively,
PESs are an abstraction of ABE schemes to what happens in the exponent
space. If a PES is secure, the AC17 framework transforms it into a fully (also
known as adaptively) secure scheme. The security notion for PES is called sym-
bolic security, which consists of two parts: the selective and co-selective symbolic
property. These properties hold for any scheme that is not trivially broken, so
the AC17 framework simplifies the effort of proving full security considerably by
giving such transformations. A small drawback is that the resulting schemes are
provably secure under q-type assumptions [19], which are less well-understood
than static security assumptions. Regardless, the assumptions used in the AC17
framework are implied by commonly-used q-type assumptions [9]. These have
not been shown to yield less secure schemes in practice yet. Another advantage
of the AC17 framework is that any symbolically secure PES can be transformed
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in a PES that supports negations [6]. It is notoriously difficult to achieve this in
the full-security model in combination with the large-universe property [11].

Proving the symbolic property. Proving the (co-)selective symbolic prop-
erty is similar to proving selective security. In the selective-security model, the
attacker commits to the challenge access policy (resp. set of attributes) be-
fore seeing the public keys. Many schemes proven security in this model use
the “program-and-cancel” strategy [56,46], in which the challenger embeds the
policy (resp. set) in the public keys. In the simulation of the secret keys and
challenge ciphertext, the components are programmed in a specific way, using
that the set does not satisfy the policy (resp. policy is not satisfied by the set).
Typically, the components that cannot be programmed are canceled by other
non-programmable components. In the AC17 framework, this “programming” is
replaced by “substitution”, and the “canceling” is replaced by “evaluating to 0”.

Security proof. One of the main difficulties of our scheme is proving the sym-
bolic property. In the first place, proving security is difficult due to the lack of
provably secure schemes that use the randomness provided by the BB hash for
both the keys and ciphertexts. To the best of our knowledge, previously, only
W11b [55] used the hash for both the keys and ciphertexts, but only in the
bounded setting and in the selective-security model. However, the proof does not
seem to readily generalize to the unbounded setting (see Appendix A). Hence,
we develop a novel technique to prove security. We do this, in part, by combining
several techniques.

– Proof techniques using the hash for the keys: We generalize the proof
techniques used by Agrawal and Chase in [3] to prove full security of their
scheme in [1]: the AC16 [1] scheme. AC16 is a CP-ABE scheme with constant-
size ciphertexts, in which the randomness provided by the Boneh-Boyen hash
is used for the keys. In the selective proof, the polynomial embedded in the
public keys needs to be used by the secret keys after the public keys are
generated. The proof does this by embedding a “reprogrammable” polyno-
mial in the public keys. We call these polynomials to be reprogrammable in
the sense that the randomizers of the secret keys can later program it to a
suitable target polynomial. We use this general strategy for the keys.

– Proof techniques using the hash for the ciphertext: Even though
the W11b [55] proof does not generalize to the unbounded setting, we are
able to use a part of the proof strategy. In the selective proof, the implicit
polynomial embedded in the public key is “programmed” to take into account
the attributes that will be used in the challenge ciphertext. We use this
general strategy for the ciphertexts.

– Unbounded proof techniques: One of the bottlenecks of the two afore-
mentioned strategies is that they are bounded approaches: they use only
one randomizer for the keys and one for the ciphertexts. To make them un-
bounded, we use the general approach of the RW13 [46] proof. This proof
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gives us a rough idea of how the implicit polynomial and the randomizers
should be programmed. Furthermore, it shows us how to use the polynomial
an unbounded number of times: using layering and individual randomness
techniques allows us to select the required instance of the polynomial.

Another bottleneck is that the “programmed” and “reprogrammable” approaches
are orthogonal, and can therefore not be used simultaneously in the same polyno-
mial without applying a trick. Presumably, this is also the reason why the W11b
proof uses the programmed approach for both the keys and the ciphertexts, and
applies an algebraic argument to ensure that everything can be simulated as
required. We eliminate this bottleneck and combine all these proof techniques,
by splitting the polynomial in the product of two smaller polynomials: one “pro-
grammed” polynomial and one “reprogrammable” polynomial. For the selective
proof, we use the programmed polynomial for the ciphertexts and the repro-
grammable polynomial for the keys. For the co-selective proof, the roles of the
polynomials are reversed.

1.5 Practical extensions

We provide several extensions to our scheme. Because we prove security in the
AC17 [3] framework, some of these extensions are automatically provably secure.

– The key-policy and dual-policy versions, by applying [11]. The key-
policy version can be found in Appendix D;

– Online/offline extensions, by generalizing HW14 [32], which we do in
Appendix E. Owing to its generality, these extensions also apply to the
following extensions;

– Non-monotone versions, by applying [6,11,50]:
• OT-type: the PES can be found in Appendix F.1;
• OSW-type: the PES can be found in Appendix F.2.

Online/offline extension. The algebraic structure of large-universe schemes
using a BB hash can also be exploited to increase the efficiency. Hohenberger
and Waters [32] show how the key generation and encryption of RW13 [46] can
be split in an online and offline phase. In this way, most of the computations
required by these algorithms can be performed in an offline phase. During the
online phase, little computational power is required. This is especially useful in
practice when secret keys need to be generated frequently, e.g., in revocation
systems [47]. The key generation authority then does not need to have computa-
tionally powerful resources to do this in an acceptable time frame. Similarly, the
online/offline encryption variant can be used to minimize the encryption costs.
This comes however at a cost: the decryption costs increase. Thus, reducing the
decryption costs of the basic scheme also helps reducing the decryption costs of
the online/offline version. With the online/offline version of GLUE, we can not
only improve on the decryption efficiency of existing such schemes, but we can
also mitigate the impact of the increase of n on the encryption efficiency.
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Table 2: Theoretical efficiency comparison of all compact unbounded large-
universe CP-ABE schemes supporting MSPs (that (can) support OSW(OT)-
type negations), by analyzing the key generation, encryption and decryption
costs with respect to the number of exponentiations cexp and pairings cpair.

Scheme
Key generation Encryption Decryption

cexp cexp cexp cpair

RW13 [46] 4 + 4|S| 4 + 10|A| 4|Υ | 4 + 4|Υ |
Att19-I-CP [11] 12 + 12|S| 4 + 16|A| 4|Υ | 8 + 4|Υ |

GLUE 4 + 2|S|+ 2
⌈

|S|
nk

⌉
4 + 2|A|(nk + 2nc + 1) + 2

⌈
|A|
nc

⌉
2|Υ | 4 + 2

⌈
|Υ |
nk

⌉
+ 2

⌈
|Υ |
nc

⌉
GLUE-N 12 + 8|S|+ 4

⌈
|S|
nk

⌉
4 + 2|A|(nk + 2nc + 4) + 2

⌈
|A|
nc

⌉
4|Υ | 8 + 2

⌈
|Υ |
nk

⌉
+ 2

⌈
|Υ |
nc

⌉
(a) Costs for non-negated policies

Scheme cexp cpair

Att19-I-CP [11] 4|Υ | · |S| 8 + 2|Υ |+ 2min(|Υ |, |S|)
GLUE-N (worst case) 4|Υ | · |S|+ 2

⌈
|S|
nk

⌉
· |Υ | 8 + 2|Υ |+ 2

⌈
|S|
nk

⌉
GLUE-N (best case) 4

⌈
|Υ |
nc

⌉
· |S|+ 2

⌈
|S|
nk

⌉
· |Υ | 8 + 2

⌈
|Υ |
nc

⌉
+ 2

⌈
|S|
nk

⌉
(b) Decryption costs for negated policies

Note: S = attribute set; A = access policy; Υ = matching attributes;
nk, nc = parameters chosen during setup

1.6 Efficiency comparison with existing schemes supporting (1)-(5)

We generalize RW13 to achieve a scheme that supports or can support properties
(1)-(5) whilst being able to achieve a more efficient decryption algorithm. In Ta-
ble 2, we compare the efficiency of RW13 and its OSW-type non-monotone vari-
ant Att19-I-CP with GLUE (which supports MSPs only) and GLUE-N (which
additionally supports OSW-type negations). The table shows that, if nk = nc,
the number of pairing operations required during decryption is reduced by
roughly a factor of nk = nc. In Section 6, we give more concrete estimates
for the timings in practice and how they compare to existing schemes.

2 Preliminaries

Notation. A negligible function parametrized by λ is denoted as negl(λ). We
use x ∈R S to indicate that an element x is chosen uniformly at random from a
finite set S. For integers a < b, we denote [a, b] = {a, a+1, ..., b−1, b}, [b] = [1, b]
and [b] = [0, b]. We denote a : A to substitute variable a by a matrix or vector
A. We define 1d1×d2

i,j ∈ Zd1×d2
p as the matrix with 1 in the i-th row and j-th

column, and 0 everywhere else, and 1d1
i and 1

d2

i as the row and column vectors
with 1 in the i-th entry and 0 everywhere else.
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2.1 Access structures

Definition 1 (Access structures represented by LSSS matrices [28]).
We represent an access structure as a pair A = (A, ρ) such that A ∈ Zn1×n2

p

is an LSSS matrix, where n1, n2 ∈ N, and ρ is a function that maps its rows
to attributes in the universe. Then, for some vector v = (s, v2, ..., vn2

) ∈R Zn2
p ,

the i-th share of secret s generated by this matrix is λi = Aiv
⊺, where Ai

denotes the i-th row of A. In particular, if S satisfies A, there exist a set of
rows Υ = {i ∈ [n1] | ρ(i) ∈ S} and coefficients εi ∈ Zp for all i ∈ Υ such that∑

i∈Υ εiAi = (1, 0, ..., 0), and by extension
∑

i∈Υ εiλi = s, holds. Otherwise,
there exists w = (1, w2, ..., wn2

) ∈ Zn2
p such that Aiw

⊺ = 0 for all i ∈ Υ [16].

2.2 Attribute-based encryption

Predicate family. A predicate family [9] is a set P = {Pκ}κ∈Nc for some
constant c, where Pκ : Xκ×Yκ → {0, 1}. For κ, it holds that κ = (p,par), where
p is a natural number and par denote the rest of the entries.

Definition 2 (Attribute-based encryption (ABE) [3]). An attribute-based
encryption scheme for a predicate family P = {Pκ}κ∈Nc over a message space
M = {Mλ}λ∈N consists of four algorithms:

– Setup(λ, par) → (MPK,MSK): On input the security parameter λ and pa-
rameters par, this probabilistic algorithm generates the domain parameters,
the master public key MPK and the master secret key MSK. In addition, κ
is set to κ = (p,par), where p denotes a natural number.

– KeyGen(MSK, y)→ SKy: On input the master secret key MSK and y ∈ Yκ,
this probabilistic algorithm generates a secret key SKy.

– Encrypt(MPK, x,M)→ CTx: On input the master public key MPK, x ∈ Xκ

and message M , this probabilistic algorithm generates a ciphertext CTx.
– Decrypt(MPK,SKy,CTx)→ M : On input the master public key MPK, the

secret key SKy, and the ciphertext CTx, if Pκ(x, y) = 1, then it returns M .
Otherwise, it returns an error message ⊥.

Correctness. For all par, M ∈Mλ, x ∈ Xκ, and y ∈ Yκ such that Pκ(x, y) = 1,

Pr[(MPK,MSK)← Setup(1λ);

Decrypt(MPK,KeyGen(MSK, y)),Encrypt(MPK, x,M)) ̸= M ] ≤ negl(λ).

Unbounded large-universe ciphertext-policy ABE. A specific instance
of ABE is ciphertext-policy ABE. In this type of ABE, the key predicate y is
a set of attributes S over some universe of attributes U , and the ciphertext
predicate x is an access policy A = (A, ρ), in this work represented as LSSS
matrices (Definition 1). We consider a scheme to be large-universe if it does not
impose bounds on the size of the universe. We call it unbounded, if it does not
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impose bounds on the sizes of the universe, sets of attributes and access policies,
or on the number of times that an attribute occurs in an access policy. The
term “unbounded ABE” is more prominently used for schemes that achieve this
without requiring random oracles in the proof.

2.3 Full security against chosen-plaintext attacks

Definition 3 (Full security against chosen-plaintext attacks (CPA) [3]).
We define the security game IND-CPA between challenger and attacker as:

– Setup phase: The challenger runs Setup(λ) to obtain MPK and MSK, and
sends the master public key MPK to the attacker.

– First query phase: The attacker queries secret keys for y ∈ Yκ, and obtains
SKy ← KeyGen(MSK, y) in response.

– Challenge phase: The attacker specifies some x∗ ∈ Xκ such that for all y
in the first key query phase, we have Pκ(x

∗, y) = 0, and generates two mes-
sages M0 and M1 of equal length inMλ, and sends these to the challenger.
The challenger flips a coin, i.e., β ∈R {0, 1}, encrypts Mβ under x∗, i.e.,
CTx∗ ← Encrypt(MPK, x∗,Mβ), and sends the resulting ciphertext CTx∗ to
the attacker.

– Second query phase: This phase is identical to the first query phase, with
the additional restriction that the attacker can only query y ∈ Yκ such that
Pκ(x

∗, y) = 0.
– Decision phase: The attacker outputs a guess β′ for β.

The attacker’s advantage is defined as AdvPE,IND-CPA = |Pr[β′ = β]− 1
2 |. A

scheme is fully secure if all polynomial-time attackers have at most a negligible
advantage in this security game, i.e., AdvPE,IND-CPA ≤ negl(λ). In the selective
security model, the attacker commits to the predicate x∗ ∈ Xκ before the Setup.

2.4 Pairings (or bilinear maps)

We define a pairing to be an efficiently computable map e on three groups G,H
and GT of prime order p, such that e : G×H→ GT , with generators g ∈ G, h ∈ H
such that for all a, b ∈ Zp, it holds that e(ga, hb) = e(g, h)ab (bilinearity), and
for ga ̸= 1G, h

b ̸= 1H, it holds that e(g
a, hb) ̸= 1GT

, where 1G′ denotes the unique
identity element of the associated group G′ (non-degeneracy). We refer to G and
H as the two source groups, and GT as the target group.

2.5 Pair encoding schemes

Definition 4 (Pair encoding schemes (PES) [3]). A pair encoding scheme
for a predicate family Pκ : Xκ × Yκ → {0, 1}, indexed by κ = (p,par), where
par specifies some parameters, is given by four deterministic polynomial-time
algorithms as described below.
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– Param(par) → n: On input par, the algorithm outputs n ∈ N that specifies
the number of common variables, which are denoted as b = (b1, ..., bn).

– EncKey(y, p) → (m1,m2,k(r, r̂,b)): On input p ∈ N and y ∈ Yκ, this algo-
rithm outputs a vector of polynomials k = (k1, ..., km3

) defined over non-lone
variables r = (r1, ..., rm1

) and lone variables r̂ = (r̂1, ..., r̂m2
). Specifically,

the polynomial ki is expressed as

ki = δiα+
∑

j∈[m2]

δi,j r̂j +
∑

j∈[m1],k∈[n]

δi,j,krjbk,

for all i ∈ [m3], where δi, δi,j , δi,j,k ∈ Zp.
– EncCt(x, p) → (w1, w2, c(s, ŝ,b)): On input p ∈ N and x ∈ Xκ, this algo-

rithm outputs a vector of polynomials c = (c1, ..., cw3
) defined over non-lone

variables s = (s, s2, ..., sw1) and lone variables ŝ = (ŝ1, ..., ŝw2). Specifically,
the polynomial ci is expressed as

ci =
∑

j∈[w2]

ηi,j ŝj +
∑

j∈[w1],k∈[n]

ηi,j,ksjbk,

for all i ∈ [w3], where ηi,j , ηi,j,k ∈ Zp.
– Pair(x, y, p) → (E,E): On input p, x, and y, this algorithm outputs two

matrices E and E of sizes (w1 + 1)×m3 and w3 ×m1, respectively.

A PES is correct for every κ = (p,par), x ∈ Xκ and y ∈ Yκ such that
Pκ(x, y) = 1, it holds that sEk⊺ + cEr⊺ = αs.

Definition 5 (Symbolic property [3]). A pair encoding scheme Γ = (Param,
EncKey, EncCt, Pair) for a predicate family Pκ : Xκ ×Yκ → {0, 1} satisfies the
(d1, d2)-selective symbolic property for positive integers d1 and d2 if there exist
deterministic polynomial-time algorithms EncB, EncS, and EncR such that for
all κ = (p,par), x ∈ Xκ and y ∈ Yκ with Pκ(x, y) = 0, we have that

– EncB(x)→ B1, ...,Bn ∈ Zd1×d2
p ;

– EncR(x, y)→ r1, ..., rm1 ∈ Zd1
p ,a, r̂1, ..., r̂m2 ∈ Zd2

p ;

– EncS(x)→ s0, ..., sw1
∈ Zd2

p , ŝ1, ..., ŝw2
∈ Zd1

p ;

such that ⟨s0,a⟩ ≠ 0, and if we substitute

ŝi′ : ŝ
⊺
i′ sibj : Bjs

⊺
i α : a r̂k′ : r̂k′ rkbj : rkBj ,

for i ∈ [w1], i
′ ∈ [w2], j ∈ [n], k ∈ [m1], k

′ ∈ [m2] in all the polynomials of k and
c (output by EncKey and EncCt, respectively), they evaluate to 0.

Similarly, a pair encoding scheme satisfies the (d1, d2)-co-selective symbolic
security property if there exist EncB,EncR,EncS that satisfy the above properties
but where EncB and EncR only take y as input, and EncS takes x and y as input.

A scheme satisfies the (d1, d2)-symbolic property if it satisfies the (d′1, d
′
2)-

selective and (d′′1 , d
′′
2)-co-selective properties for d′1, d

′′
1 ≤ d1 and d′2, d

′′
2 ≤ d2.

Agrawal and Chase [3] prove that any PES satisfying the (d1, d2)-symbolic
property can be transformed in a fully secure ABE scheme.
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3 Generalizing Rouselakis-Waters

We first show how RW13 [46] can be generalized. On a high level, we do this by
substituting the implicit 1-degree polynomial in the RW13 keys and ciphertexts
with an n-degree polynomial. Like W11b [55], the randomness provided by this
n-degree polynomial will be shared between the keys and ciphertexts. That is,
suppose that nk and nc are positive integers such that n = nk + nc − 1, then
the n-degree polynomial provides enough randomness for nk − 1 attributes in
the keys, and nc attributes in the ciphertext. To optimally use this randomness,
we therefore split the keys and ciphertexts in partitions of at most nk and nc

attributes, respectively. For instance, if S denotes the set of attributes for which
a key is requested, then S is split in partitions of maximum size nk, i.e., S =
S1∪ ...∪Sm such that |Sl| ≤ nk for each l ∈ [m]. Then, to avoid boundedness, we
apply the RW13 trick by introducing one “randomizer” for each partition (both
in the keys and ciphertexts).

3.1 The Rouselakis-Waters scheme

First, we briefly review the RW13 scheme [46]. Specifically, the secret keys and
ciphertexts are of the form

SK = (K = hα−rb,K ′ = hr, {K1,att = hrb′+ratt(xattb1+b0),K2,att = hratt}att∈S),
CT = (C = M · e(g, h)αs, C ′ = gs, {C1,j = Bλj · (B′)sj ,

C2,j = (B
xattj

1 B0)
sj , C3,j = gsj}j∈[n1]),

where B = gb, B1 = gb1 , B0 = gb0 and B′ = gb
′
denote public keys, r, ratt ∈R

Zp are randomly chosen integers during the key generation for set S, s, sj are
randomly chosen integers during encryption under access policy A = (A, ρ) with
A ∈ Zn1×n2

p , and xatt is the representation of attribute att in Zp. We have also
denoted xattj = ρ(j) to clearly indicate the attributes in the ciphertext.

3.2 First attempt: a naive approach

Our first attempt is to directly replace the 1-degree polynomial, xattb1 + b0, by
an n-degree polynomial, i.e., fn(xatt) =

∑n
i=0 bix

i
att (where n = nk + nc − 1):

SK = (K = hα−rb,K ′ = hr, {K1,att = h
rb′+ rattfn(xatt)

,K2,att = hratt}att∈S),
CT = (C = M · e(g, g)αs, C ′ = gs, {C1,j = Bλj · (B′)sj ,

C2,j = Fn(xattj )
sj =

(∏n
i=0 B

xi
attj

i

)sj

, C3,j = gsj}j∈[n1]),

where Bi = gbi for all i ∈ [0, n]. We split S in partitions of maximum size nk,
and the rows of A in partitions of size nc. We ensure that the same randomizer
is used for all attributes in the same partition, i.e., set ratt = ratt′ and sj = sj′ ,
if att and att′, and attj and attj′ are in the same partitions, respectively.
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Unfortunately, the resulting scheme is insecure (see Appendix B for a con-
crete attack). Roughly, the reason is that C1,j = gλjb+sjb

′
does not sufficiently

hide λjb, because the same sj is used for all attributes in the same partition.
Therefore, we need to introduce more randomness.

3.3 Second (successful) attempt

We show how to use another polynomial to introduce enough randomness. Be-
cause we only need enough randomness for the ciphertext partitions, we require
an (nc−1)-degree polynomial. This polynomial, f ′

nc−1(xatt) =
∑nc−1

i=0 b′ix
i
att, will

replace the “0-degree polynomial” b′. Because sj provides randomness for one
attribute, and f ′

nc−1 provides randomness for nc − 1 attributes in the partition,
this sufficiently hides λj . The resulting scheme is then

SK = (K = hα−rb,K ′ = hr, {K1,att = h
rf ′

nc−1(xatt) + rattfn(xatt)
,

K2,att = hratt}att∈S),

CT = (C = M · e(g, h)αs, C ′ = gs, {C1,j = Bλj · F ′
nc−1(xattj )

sj ,

C2,j = Fn(xattj )
sj , C3,j = gsj}j∈[n1]),

where F ′
nc−1(xatt) =

∏nc−1
i=0 (B′

i)
xi
att = gf

′
nc−1(xatt), and B′

i = gb
′
i for all i ∈

[0, nc − 1]. Note that this scheme is a generalization of RW13, because setting
n = nc = nk = 1 yields RW13.

3.4 More efficient decryption

Generalizing the polynomial allows for an improved decryption efficiency. To
understand why this yields a significant improvement, we briefly review the
W11b scheme. We consider the keys and ciphertexts, which are of the form:

SK = (K = hα−rb,K ′ = hr, {Katt = hrfn(xatt)}att∈S),

CT = (C = M · e(g, h)αs, C ′ = gs, {Cj = BλjFn(ρ(j))
s}j∈[n1]),

where r, s ∈ Zp are randomly chosen integers, B = gb is a public key, α is the
master key, and ρ(j) is the j-th attribute of the policy of length n1, and λj is a
sharing of s with respect to the policy. To decrypt, one computes

C/e(C ′,K) ·
∏
j∈Υ

e(Cj ,K
′)εj/

∏
j∈Υ

e(C ′,Kρ(j))
εj ,

where εj for j ∈ Υ ⊆ [n1] are integers that allow us to reconstruct the secret
s. Each such product of pairings can be computed more efficiently by using
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the bilinearity property on the shared arguments, e.g.,
∏

j e(K
′, Cj)

εj can be
computed more efficiently by first multiplying Cj and then taking a pairing:

C/e

C ′,K ·
∏
j∈Υ

K
εj
ρ(j)

 · e
∏

j∈Υ

C
εj
j ,K ′

 .

This requires only two pairing operations instead of 2|Υ |+1. While decryption is
very efficient, the drawback of W11b is that it is bounded in both the keys and
ciphertexts. Because Fn embeds an n-degree polynomial, its randomized variant
only provides sufficient randomness for n+1 attributes shared between the keys
and ciphertexts. In contrast, RW13 uses an implicit 1-degree polynomial for the
hash. To provide unboundedness, each instance of the hash—which in itself only
provides sufficient randomness for one attribute—is randomized. As a result,
both the keys and ciphertexts consist of components of the form (gti , F1(xatt)

ti),
such that each randomizer part gti needs to be paired with the part involving the
hash during decryption. Hence, a linear number of pairing operations is required
during decryption instead of a constant. By generalizing the 1-degree polynomial,
we can use the same randomizer for multiple attributes. Thus, we can achieve
a similar speed-up in decryption efficiency as W11b, whilst benefiting from the
unboundedness of RW13.

Note that this also illustrates why it is important that the BB hash is used for
both the keys and the ciphertexts. For example, in the GPSW06 large-universe
scheme [27, §5], the randomness provided by the hash is used only for the ci-
phertexts. As a result, the keys require a fresh randomizer for each attribute,
and therefore, decryption costs at least one pairing operation per attribute.

4 Our construction

We now present the complete description of our scheme in the selective security
setting [51] (see Appendix G for a fully secure version). In this scheme, we
also introduce the mappings ι and τ , which map the attributes of the keys and
ciphertexts, respectively, into arbitrary partitions of maximum sizes nk and nc.

Definition 6 (GLUE). GLUE is defined as follows.

– Setup(λ): On input the security parameter λ, the setup generates three groups
G,H,GT of prime order p with generators g ∈ G, h ∈ H, and chooses a pair-
ing e : G × H → GT . It also defines the universe of attributes U = Zp,
chooses nk ∈ N and nc ∈ N as the maximum partition sizes of the keys
and ciphertexts, respectively, and sets n = nk + nc − 1. It then gener-
ates random α, b, bi, b

′
i′ ∈R Zp for all i ∈ [0, n], i′ ∈ [0, nc − 1]. It outputs

MSK = (α, b, {bi, b′i′}i∈[0,n],i′∈[0,nc−1]) as its master secret key and publishes
the master public key as

MPK = (g, h,A = e(g, h)α, B = gb, {Bi = gbi , B′
i′ = gb

′
i′}

i∈[n],i′∈[nc−1]
).
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– KeyGen(MSK,S): On input set of attributes S, the key generation computes

m =
⌈
|S|
nk

⌉
, defines ι : S → [m] such that |ι−1(l)| ≤ nk for each l ∈ [m],

generates random integers r, r1, ..., rm ∈R Zp, and outputs the secret key as

SKS = (K = hα−rb,K ′ = hr, ι,

{K1,att = hrι(att)(
∑n

i=0 bix
i
att)+r(

∑nc−1
i=0 b′ix

i
att)}att∈S , {K2,l = hrl}l∈[m]).

– Encrypt(MPK,A,M): A message M ∈ GT is encrypted under policy
A = (A, ρ) with A ∈ Zn1×n2

p and ρ : [n1] → U by computing m′ =

max
(⌈

n1

nc

⌉
,maxj∈[n1] |ρ−1(ρ(j))|

)
and defining τ : [n1] → [m′] such that

|τ−1(l′)| ≤ nc for each l′ ∈ [m′] and if j, j′ ∈ [n1] with j ̸= j′ such that
ρ(j) = ρ(j′), then τ(j) ̸= τ(j′), i.e., multiple occurrences of the same at-
tribute are mapped to different partitions. (Note that this works because m′ is
defined to be at least as large as the maximum number of occurrences of each
attribute.) It then generates random integers s, s1, ..., sm′ , v2, ..., vn2

∈R Zp

and outputs the ciphertext as

CTA = (C = M ·As, C ′ = gs, τ, {C1,j = Bλj ·
nc−1∏
i=0

(B′
i)

sτ(j)ρ(j)
i

,

C2,j =

n∏
i=0

B
sτ(j)ρ(j)

i

i }j∈[n1], {C3,l′ = gsl′}l′∈[m′]),

such that λj denotes the j-th entry of A · (s, v2, ..., vn2)
⊺.

– Decrypt(SKS ,CTA): Suppose that S satisfies A, and let Υ = {j ∈ [n1] |
ρ(j) ∈ S}, such that {εj ∈ Zp}j∈Υ exist with

∑
i∈Υ εjAj = (1, 0, ..., 0)

(Definition 1). Then, the plaintext M is retrieved by computing

C/
(
e(C ′,K) ·

∏
j∈Υ

(
e(C1,j ,K

′)/e(C3,τ(j),K1,ρ(j)) · e(C2,j ,K2,ι(ρ(j)))
)εj )

.

This can be computed more efficiently as

C/
(
e(C ′,K) · e(

∏
j∈Υ C

εj
1,j ,K

′) ·
(∏

l′∈[m′] e(C3,l′ ,
∏

j∈Υ∩τ−1(l′) K
−εj
1,ρ(j))

·
∏

l∈[m] e(
∏

j∈Υ∩ρ−1(ι−1(l)) C
−εj
2,j ,K2,l)

))
,

which costs, on average, 2 +
⌈
|Υ |
nk

⌉
+
⌈
|Υ |
nc

⌉
pairing operations.

The scheme is correct, i.e., we have C/e(C ′,K) = M ·e(g, h)αs·e(g, h)−αs+rsb =
M · e(g, h)rsb and∏

j∈Υ

(
e(C1,j ,K

′)/e(C3,τ(j),K1,ρ(j)) · e(C2,j ,K2,ι(j))
)εj

=
∏
j∈Υ

(e(g, h)rλjb+rsτ(j)

∑nc−1
i=0 b′iρ(j)

i
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·e(g, h)−rι(ρ(j))sτ(j)(
∑n

i=0 biρ(j)
i)−rsτ(j)

∑nc−1
i=0 b′iρ(j)

i

·e(g, h)rι(ρ(j))sτ(j)

∑n
i=0 biρ(j)

i

)εj

=
∏
j∈Υ

e(g, h)rεjλjb = e(g, h)rb
∑

j∈Υ εjλj = e(g, h)rsb,

which yields the plaintext, i.e., M · e(g, h)rsb/e(g, h)rsb = M .

Unique representation of attributes. In the scheme, we assume that any
attribute string att ∈ {0, 1}∗ can be uniquely represented in Zp. In practice, this
can be done by using a collision-resistant hash function H : {0, 1}∗ → Zp [48].

4.1 The associated pair encoding scheme

To prove security, we define the pair encoding scheme associated with our scheme
in Definition 6, for which we use the variables nc, nk, n,S,ι,ρ,τ , n1, n2, λi,m,m′

from Definition 6, as follows.

Definition 7 (PES for GLUE).

– Param(par) → 2nc + nk + 3. Let b = (b, b0, ..., bn, b
′
0, ..., b

′
nc−1), where n =

nk + nc − 1.
– EncKey(S) → (r, k′, {k1,att}att∈S). Let r = (r, {rl}l∈[m]), k

′ = α − rb and

k1,att = rι(att)(
∑n

i=0 bix
i
att) + r(

∑nc−1
i=0 b′ix

i
att).

– EncCt((A, ρ)) → (s, ŝ, {c1,j , c2,j}j∈[n1]). Let s = (s, {sl′}l′∈[m′]) and

ŝ = (v̂2, ..., v̂n2), and c1,j = Aj(sb, ŝ)
⊺ + sτ(j)

∑nc−1
i=0 b′iρ(j)

i and c2,j =
sτ(j)

∑n
i=0 biρ(j)

i.

In Section 5, we prove security of the PES.

Theorem 1. The PES for GLUE in Definition 7 satisfies the symbolic property
(Definition 5).

Therefore, instantiating the PES in the AC17 framework yields a fully secure
scheme, and instantiating the PES with [51] yields a selectively secure scheme.

5 The security proof

While the construction of the scheme already provides some idea on why it may
be secure, the proof requires some additional insights. First, we briefly review
some important aspects in the Rouselakis-Waters proof, to gain some deeper
understanding of the structure of the selective property proof. Then, we show
how existing techniques can be combined to generalize the selective proof.

On a high level, the selective proof consists of the splitting of the n-degree
polynomial, which provides randomness for the keys and ciphertexts, into a
product of three polynomials f1, f

′
nc−1 and gnk−1. We use gnk−1 for the keys,
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Fig. 2: A high-level overview of the polynomials used in the combined proofs and
our generalized selective proof.

Rouselakis-Waters:
f1(xatt) = b1xatt + b0

f ′
0(xatt) = b′

Our generalization:
fn(xatt) = f1(xatt)f

′
nc−1(xatt)gnk−1(xatt)

f
1
7→

f
n

f
′0
7→

f
′n
c −

1

W11b-LU:
f ′
nc−1(xatt)

“programmed” polynomial

AC17-CPSC:
gnk−1(xatt)

“reprogrammable” polynomial

and f1f
′
nc−1 for the challenge ciphertext. For the key polynomial gnk−1, we use

Agrawal and Chase’s [4] techniques. In their selective proof of the CP-ABE
scheme with short ciphertexts, they embed a polynomial in the public keys such
that this polynomial can be reprogrammed to some polynomial associated with
the set of attributes of the key. We call such polynomials “reprogrammable”. For
the ciphertext polynomials f1, f

′
nc−1, we use a combination of the proofs of RW13

[46] and W11b [55]. Roughly, in these proofs, they embed polynomials in the
public keys, such that these polynomials are associated with the attributes that
occur in the challenge access policy. We call such polynomials “programmed”.
These techniques ensure that the polynomials evaluate to the right values when
the set and policy attributes are evaluated. Figure 2 depicts the relationship
between the existing proofs and ours. A similar approach can be taken in the
co-selective proof, by swapping the roles of the two polynomials.

5.1 The Rouselakis-Waters proof

We briefly review the Rouselakis-Waters selective security proof. They use the
commonly used “program-and-cancel” technique [27,56], in which the challenge
access policy A = (A, ρ) is split in two disjoint subsets with respect to the set of
attributes S associated with the queried key. One subset Υ = {j ∈ [n1] | ρ(j) ∈
S} contains all the rows of matrix A for which the corresponding attribute is
in the set, while the other set Υ = S \ Υ contains the rest of the rows. In the
simulation of the key, it then uses the property that if S does not satisfy A, there
exists a vector w = (1, w2, ..., wn2) ∈ Zn2

p such that Ajw
⊺ = 0 for all j ∈ Υ .

Furthermore, they introduce the layering and individual randomness technique
to ensure that the challenge ciphertext can be simulated. Roughly, they embed
the attributes that occur in the policy in the public keys as well as their corre-
sponding row in the matrix in a layered fashion, using an individual randomness
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for each layer. During the key query and challenge phases, the randomizer em-
beds a single individual randomness to select the correct attribute layer, such
that the key and ciphertext components can be simulated.

The selective symbolic security proof can be analogously structured, such
that the substitutions ensure that all polynomials k1,att, c1,j and c2,j evaluate
to 0. In general, an attribute layer in the public keys is represented as a ma-
trix 1d1×d2

i,j ∈ Zd1×d2
p . Then, the appropriate attribute layer can be selected by

the vector that represents the associated individual randomness, i.e., 1d1
i ∈ Zd1

p .

Multiplying this vector with the matrix yields 1
d2

j ∈ Zd2
p . Effectively, only one

remaining entry needs to evaluate to 0. This is done by embedding the policy in
the public keys in a certain way. Specifically, in c1,j = Aj(sb, ŝ)

⊺ + sjb
′, where

Aj(sb, ŝ)
⊺ =

∑
k∈[n2]

Aj,kvk (where v1 = sb) and sjb
′ are supposed to cancel out

one another. This can be ensured by embedding all rows Aj of the policy in b′,
and using individual randomness (represented as a vector) to select the appropri-
ate row. More concretely, b′ could be substituted by −

∑
j∈[n1],k∈[n2]

Aj,k1
d1×d2

j,k

and sj by 1d1
j such that sjb

′ = −
∑

k∈[n2]
Aj,k1

d2

k . Then, if vk is substituted by

1
d2

(0,k), s by 1d1
0 and b by 1d1×d2

0,(0,1), then Aj(sb, ŝ)
⊺ =

∑
k∈[n2]

Aj,k1
d2

(0,k). Similarly,

c2,j evaluates to 0 by defining b0 and b1 such that for each attribute layer as-
sociated with row j, the 1-degree polynomial F1,j(x) = x − ρ(j) is embedded.
The individual randomness ensures that this polynomial is selected with sj . To
ensure that the key k1,att = rattf1(xatt) + rb′ evaluates to 0, we embed the vec-
tor w in r and ratt, which ensures that all attribute layers that are also in the
set S go to 0. For those attribute layers that are not in the set S, i.e., Υ , we
ensure that layers F1,j(xatt)Ajw

⊺ in rattf1(xatt) cancel out layers Ajw
⊺ in rb′.

Roughly, this is done by embedding 1
F1,j(xatt)

in ratt for all j ∈ Υ , such that the

Ajw
⊺ in the two summands cancel out one another.

5.2 Generalizing the Rouselakis-Waters proof

We generalize the Rouselakis-Waters proof by layering the policy embedded
in the public keys in a partition-wise fashion instead of attribute-wise. In this
way, the ciphertext-specific variable sl′ , which is used for all attributes in the
same partition, can select all attributes associated within the l′-th partition.
As such, in the computation of c1,j and c2,j , sτ(j)f

′
nc−1(ρ(j)) needs to cancel

out Aj(sb, ŝ)
⊺ and sτ(j)fn(ρ(j)) needs to go to 0. To this end, we need to sub-

stitute f ′
nc−1 in such a way that it outputs exactly −

∑
k∈[n2]

Aj,k1
d2

(0,k) when

sτ(j)f
′
nc−1(ρ(j)) is computed. Similarly, the key-specific variable rl needs to be

constructed such that k1,att goes to 0, which happens when rι(att)fn(xatt) cancels
out rf ′

nc−1(xatt).

To accomplish this, we define fn and f ′
nc−1 as mentioned before, i.e., fn(xatt) =

f1(xatt)f
′
nc−1(xatt)gnk−1(xatt). Roughly, we substitute f1 in the same way as in

the Rouselakis-Waters proof, while we use the polynomials f ′
nc−1 and gnk−1 to

ensure that c1,j and c2,j , and k1,att evaluate to 0, respectively. Because we are
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given the challenge access structure a priori, i.e., as input to EncB, we can pro-
gram these as required in the substitutions of the polynomials f1 and f ′

nc−1 in
the public keys. Concretely, we substitute b0, ..., bn such that

fn(xatt) :
∑

j∈[n1],k∈[n2]

Aj,kFn,j,k(xatt)

=
∑

j∈[n1],k∈[n2]

Aj,k F1,j(xatt)F
′
nc−1,j(xatt)Ĝnk−1,j,k(xatt)︸ ︷︷ ︸

Fn,j,k(xatt)

,

where F1,j(xatt) = (xatt − ρ(j)) and

F ′
nc−1,j(xatt) =

nc−1∑
i=0

d′i,jx
i
att =

∏
j′∈χj\{j}

xatt − ρ(j′)

ρ(j)− ρ(j′)
,

with χj = {j′ ∈ [n1] | τ(j′) = τ(j)}. We refer to these polynomials as the
“programmed” polynomials. These ensure that Fn,j(ρ(j

′)) = 0 for all j′ ∈ χj ,
F ′
nc−1,j(ρ(j)) = 1 and F ′

nc−1,j′(ρ(j)) = 0 for all j′ ∈ χj \ {j}. Then, c1,j and c2,j
evaluate to 0, if we substitute

f ′
nc−1(xatt) :

∑
j∈[n1],k∈[n2]

Aj,kF
′
nc−1,j(xatt)1

d1×d2

(1,τ(j)),(0,k).

In contrast, the set of attributes associated with a key is given after the
public keys have been established, i.e., as input to EncR, so we need to somehow
achieve that we can program the polynomial Ĝnk−1,j after the public keys are
generated. We do this by setting

Ĝnk−1,j,k(xatt) =

nk−1∑
i=0

1d1×d2

(1,τ(j)),(1,i,j,k)x
i
att,

such that Ĝnk−1,j,k constitutes a “reprogrammable” polynomial. It can be re-
programmed by ensuring that rl consists of the coefficients ui,j,l of some target
polynomial(s), i.e., by multiplying(

nk−1∑
i=0

1d1×d2

(1,τ(j)),(1,i,j,k)x
i
att

)(
nk−1∑
i=0

ui,j,l1
d2

(1,i,j,k)

)
=

nk−1∑
i=0

ui,j,l1
d1

(1,τ(j))x
i
att.

We use this to “reprogram” polynomial Ĝnk−1,j,k(xatt) for all j ∈ Υ , which
is well-defined, because ρ(j) /∈ S. This then yields F ′

nc−1,j(xatt) and cancels

out the F ′
nc−1,j(xatt) in rf ′

nc−1(xatt) part in k1,att for all j ∈ Υ . Note that,
like in Rouselakis-Waters, we have Ajw

⊺ = 0 for all j ∈ Υ , so those layers
automatically go to 0 in the computation of k1,att. Hence, for each partition
Ψl = {att ∈ S | ι(att) = l} with l ∈ [m], we define the polynomial

Gnk−1,j,l(xatt) =

nk−1∑
i=0

ui,j,lx
i
att =

∑
att′∈Ψl

1

F1,j(xatt′)

∏
att′′∈Ψl\{att′}

xatt − xatt′′

xatt′ − xatt′′
,
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for each j ∈ Υ , such that Gnk−1,j,l(xatt) =
1

F1,j(xatt)
for all att ∈ Ψl.

Putting it all together, we substitute b0,...,bn with coefficients such that the
polynomial fn is substituted by

∑
j∈[n1],k∈[n2]

Aj,kFn,j,k(xatt) =
∑

j∈[n1],k∈[n2]

Aj,k

n∑
i=0

di,j,kx
i
att,

where

di,j,k =
∑

i′∈[nk−1],i′′∈[nc−1]:i′+i′′=i

d′i′,j1
d1×d2

(1,τ(j)),(1,i′′,j,k).

5.3 The selective symbolic property

We prove the selective symbolic property, using m,m′, τ, ι as in Section 4 and
Fn,j,k, di,j,k, F

′
nc−1,j , d

′
i,j , Gnk−1,j,l, ui,j,l and χj as in Section 5.2. For simplicity

of notation, we write the second index of 1d1×d2 and the index of 1
d2 as a tuple

(1, i, j, k) (with i ∈ [nk], j ∈ [n1], k ∈ [n2]) such that it represents a unique
integer in [n2 + 1, (((nk + 1)n1 + 1)n2)]. Note that we use (0, k) to indicate
the first n2 columns, which are associated with only k and not (i, j). For the
first index of 1d1×d2 and the index of 1d1 , we start counting at 0. Note that,
therefore, d1 = n2 + 1 and d2 = ((nk + 1)n1 + 1)n2. The substitutions are, for
all i ∈ [n], i′ ∈ [nk], l ∈ [m], l′ ∈ [m′], k ∈ [2, n2]:

b : 1d1×d2

0,(0,1), bi :
∑

j∈[n1],k∈[n2]

Aj,kdi,j,k

b′i′ :
∑

j∈[n1],k∈[n2]

Aj,kd
′
i′,j1

d1×d2

(1,τ(j)),(0,k), s : 1d1
0

sl′ : − 1d1

(1,l′), α : 1d1
0 , v̂k : 1

d2

(0,k), r :
∑

k′∈[n2]

wk′1
d2

(0,k′)

rl : −
∑

i′∈[nk−1],j′∈Υ ,k′∈[n2]

wk′ui′,j′,l1
d2

(1,i′,j′,k′).

Then, c1,j , c2,j , k
′ and k1,att indeed go to 0 (see Appendix C.1).

5.4 Co-selective symbolic property

We prove that the co-selective symbolic property also holds. For this proof,
the roles of the reprogrammable and the programmed polynomial are reversed,
because we are allowed to use an attribute set S in the programming of the
public keys and secret keys, and the policy A only for the ciphertext. Similarly
as in the selective case, we use the Rouselakis-Waters proof as inspiration for
the structure of the proof. In particular, we use the selective security proof of
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the KP-ABE variant of the Rouselakis-Waters scheme (which is analogous to
the co-selective proof of the CP-ABE variant).

In this proof, we substitute the polynomials with:

fn(xatt) :
∑
l∈[m]

F̂nc−1,1,l(xatt)Gnk,l(xatt)︸ ︷︷ ︸
Gn,l(xatt)

−F̂nc−1,2,l(xatt)

 ,

f ′
nc−1(xatt) : F̂nc−1,2,0(xatt),

where we define Gn,l(xatt) =
∑n

i=0 ũi,lx
i
att, and

Gnk,l(xatt) =

nk∑
i=0

ui,lx
i
att =

∏
att′∈Ψl

(xatt − xatt′)

is a programmed polynomial with Gnk,l(xatt) = 0 for att ∈ Ψl, and

F̂nc−1,1,l(xatt) =

nc−1∑
i=0

1d1×d2

(1,i,l),l and F̂nc−1,2,l(xatt) =

nc−1∑
i=0

1d1×d2

(2,i),l

are the reprogrammable polynomials, to be reprogrammed to

Fnc−1,1,j,l(xatt) =

nc−1∑
i=0

d̃i,j,lx
i
att =

1

Gnk,l(ρ(j))
F ′
nc−1,j(xatt),

F ′
nc−1,j(xatt) =

nc−1∑
i=0

d′i,jx
i
att,

respectively, for j ∈ Υ . Note that Fnc−1,1,j,l(ρ(j)) = 1
Gnk,l(ρ(j))

if j ∈ Υ and

Fnc−1,1,j′,l(ρ(j)) = 0 for j′ ∈ χj . Concretely, we have

ũi,l =
∑

i′∈[nc−1],i′′∈[nk]:i′+i′′=i

ui′′,l1
d1×d2

(1,i′,l),l.

Then, for i ∈ [nc − 1], i′ ∈ [nc, n], l ∈ [m], l′ ∈ [m′], k ∈ [n2] we make the
following substitutions:

b : 1d1×d2
0,0 , bi :

∑
l∈[m]

(
ũi,l − 1d1×d2

(2,i),l

)
, bi′ :

∑
l∈[m]

ũi,l

b′i : 1d1×d2

(2,i),0 , α : 1d1
0 , v̂k : wk1

d2

0 , r : 1
d2

0 , rl : 1
d2

l

s : 1d1
0 , sl′ : −

∑
i∈[nc−1],j∈χ̂l′∩Υ ,k∈[n2]

Aj,kwk

(
d′i,j1

d1

(2,i) + d̃i,j

)
,

where d̃i,j =
∑

l∈[m] d̃i,j,l1
d1

(1,i,l), d1 = nc(m + 1) + 1 and d2 = m + 1. For

simplicity, we use tuple notations (1, i, l) and (2, i) for the first index of 1d1×d2

and the index of 1d1 for all i ∈ [nc − 1], l ∈ [m], which map injectively into the
intervals [2, ncm + 1] and [ncm + 2, d1], respectively, and index 0 maps to the
first row. Then, c1,j , c2,j , k

′ and k1,att indeed go to 0 (see Appendix C.2).
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6 Performance analysis

We analyze the efficiency of our schemes. An important aspect in this analysis
are the parameters nk and nc, which are chosen during the setup (e.g., by a
practitioner). On a high level, the key generation, encryption and decryption of
the selectively secure version of GLUE (via [51]) incur the following costs:

– KeyGen: 2 + |S|+
⌈
|S|
nk

⌉
exponentiations in H;

– Encrypt: 1 exponentiation inGT , 1+
⌈
n1

nc

⌉
exponentiations, n1 multi-exponen-

tiations with nc + 1 bases and n1 multi-exponentiations with nk + nc bases
in G;

– Decrypt: roughly 2 +
⌈
|Υ |
nk

⌉
+
⌈
|Υ |
nc

⌉
pairing operations.

The efficiency of these algorithms depends on the one hand on the efficiency of
these operations, and on the other hand on the choices of nk and nc. By analyzing
these rough costs from a mathematical point of view, the trade-off between the
encryption and decryption efficiency is optimal when nk = nc (which follows
from the arithmetic mean-harmonic mean inequality). However, when the set of
attributes S is large, and nk is small, it may occur that all matching attributes
are in different partitions. As such, choosing nk to be larger, e.g., nk = 10,
ensures that the matching attributes are in the same key partitions with a large
probability, and therefore the actual number of pairing operations is higher. In
general, it holds that, the larger the partition sizes, the fewer pairing operations
are needed during decryption. Unfortunately, the drawback is that encryption
becomes more expensive, meaning that we may want to use the online/offline
version of the scheme in practice. In Appendix K, we give more details on how
a suitable partition size may be chosen. For our analysis, we consider three
parameter settings: (nk, nc) ∈ {(3, 3), (5, 5), (10, 5)}. Furthermore, for the variant
that supports OSW-type negations, we consider |S| ∈ {1, 5}.

On the comparability of the schemes. For a fair comparision, we optimize
all the schemes in the same way when instantiating the schemes in the asymmet-
ric setting [45]. Specifically, we optimize the decryption and encryption efficiency.
For the analysis of the RW13 [46], HW14 [32], Att19-I-CP and Att19-I-CP-OO
[11] schemes, we have used the performance analysis of our associated schemes
for nk = nc = 1 (which have the same encodings). We also compare our mono-
tone schemes with AHM+16 [12] and ABGW17 [7] (see Appendix H for the
compared instantiations). To place the costs based on our theoretical analyses
of the selectively secure instantiations (via [51]) in the full-security setting, we
multiply the costs for each element and operation in G and H by a factor 2. This
overhead corresponds to the most efficient instantiation of the schemes in the
AC17 framework [3]. For all schemes, we also assume that the access policies are
Boolean formulas, so that for decryption, it is ensured that εj ∈ {0, 1} [39].
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Estimates based on benchmarks in RELIC. We estimate the computa-
tional costs of the schemes by obtaining benchmarks of various algorithms and
extrapolating the results by analyzing the descriptions of the schemes. We ana-
lyze the efficiency in this way for two reasons. First, it allows us to analyze the
efficiency of many scheme configurations without having to implement each one,
which is a cumbersome and error-prone effort. Second, it allows us to compare the
schemes more accurately and more fairly. Currently, the simplest and most pop-
ular way [46,2,54] to benchmark schemes is by using Charm [5]. However, Charm
only supports curves that do not provide sufficient security anymore, and de la
Piedra et al. [45] show that benchmarking the schemes on these curves yields in-
accurate and unfair comparisons. To compare the schemes more accurately and
fairly, we estimate6 the costs of the schemes by applying their approaches [45].
In particular, we have run benchmarks in RELIC [8], a cryptographic library
for efficient implementations of pairing-based cryptography on state-of-the-art
elliptic curves. This library has implementations for exponentiations, including
fixed-base and multi-base variants. In fixed-base exponentiation, the base g in
gx is fixed after setup, and as such, a precomputation table can be made to
speed up the computation [20]. In a multi-base exponentiation, the product of
multiple exponentiations, e.g., gx1

1 gx2
2 , is computed more efficiently [42]. We have

run these benchmarks on a 1.6 GHz Intel i5-8250U processor for the BLS12-446
curve [15], which provides approximately 132-134 bits of security [30,29]. These
benchmarks can be found in Appendix I and are used in our analysis.

Comparison. Tables 3a and 3b show the performances of all unbounded schemes
using a BB hash that support MSPs and NMSPs. The tables illustrate that the
decryption algorithms of our regular schemes are significantly faster than the
established schemes. While the encryption costs increase compared to the other
schemes, our online/offline versions also provide a solution in this regard, incur-
ring minimal online costs. This comes with a slight trade-off in the ciphertext size
and the decryption efficiency compared to the regular version, but overall, our
online/offline schemes outperform the established schemes in all algorithms. Im-
portantly, the decryption of our schemes supporting negations with parameters
nk = nc = 5 outperforms the only other unbounded OSW-type non-monotone
scheme. Importantly, decryption is faster by a factor 4 for non-negated attributes,
and faster by a factor 4-5 for negated attributes and |S| = 5, bringing down the
costs from almost two seconds to 382 ms. As a result, our schemes could provide
a more attractive building block for OSWOT-type non-monotone schemes, as
they support more efficient decryption algorithms for negated and non-negated
attributes, and for small and large sets of attributes for each label. Furthermore,
owing to the online/offline extensions, the key generation and encryption algo-
rithms do not need to suffer from heavy online computations. Instead, encrypting
users need to store only 3.17-10.17 kilobytes per one intermediate ciphertext of
the first type and sufficient of the second type for ten attributes (depending on

6 Although approximated theoretically, we expect our estimates to be close to the
costs of actual implementations (Appendix J).
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Table 3: Rough estimates of the storage costs of the secret keys and the cipher-
texts in kilobytes (KB), where 1 KB = 1024 bytes, and the (online) compu-
tational costs incurred by the key generation, encryption and decryption algo-
rithms of GLUE(nk,nc) (and its online/offline (suffixed with “OO”) and OSW-
non-monotone (suffixed with “N”) variants) and the other unbounded CP-ABE
schemes, expressed in milliseconds (ms), for 10 and 100 attributes. Note that
the offline key generation and encryption costs of each online/offline scheme are
equal to the key generation and encryption costs of its regular version. The code
used to generate these benchmarks is available at [52].

Storage costs Computational costs
SK CT KeyGen Encrypt Decrypt

Scheme |MPK| 10 100 10 100 10 100 10 100 10 100

R
eg
u
la
r

RW13 [46] 1.42 4.86 44.58 4.05 33.58 26.0 238.7 32.9 305.9 46.2 375.2
AHM+16 [12] (nk = 2) 1.75 5.3 45.02 6.45 55.67 16.5 122.9 40.8 368.3 43.7 317.4

ABGW17 [7] 1.42 2.65 22.51 3.94 33.47 14.2 120.5 32.3 305.2 27.9 192.4
GLUE(3,3) 2.08 3.53 30.02 3.39 26.36 18.9 160.7 59.8 571.4 24.3 133.9
GLUE(5,5) 2.74 3.09 26.93 3.17 24.83 16.5 144.2 82.3 800.4 17.0 82.8
GLUE(10,5) 3.28 2.87 24.72 3.17 24.83 15.4 132.3 102.1 998.4 15.1 64.5

O
/
O

HW14 [32] 1.42 5.23 48.29 4.79 41.0 0 0 0 0 51.5 416.2
GLUE(3,3) 2.08 3.9 33.73 5.62 48.62 0 0 0 0 33.6 202.6
GLUE(5,5) 2.74 3.46 30.64 6.88 61.94 0 0 0 0 27.6 157.5
GLUE(10,5) 3.28 3.24 28.43 8.74 80.49 0 0 0 0 24.2 123.4

(a) Schemes supporting MSPs only.

Storage costs Computational costs
SK CT KeyGen Encrypt Decrypt

Scheme |MPK| 10 100 10 100 10 100 10 100 10 100 10 100 10 100

R
eg
u
la
r Att19-I-CP [11] 1.42 10.89 100.01 6.37 55.76 59.0 541.8 66.6 637.5 51.7 380.7 55.3 367.9 216.2 1779.0

GLUE-N(3,3) 2.08 7.59 63.66 5.04 41.19 44.8 385.9 90.0 865.1 29.8 139.4 62.3 374.9 109.5 745.5
GLUE-N(5,5) 2.74 6.49 55.95 4.6 38.1 40.1 352.8 111.4 1086.0 22.4 88.3 55.3 367.9 55.3 382.5
GLUE-N(10,5) 3.28 5.94 50.44 4.6 38.1 37.7 329.2 131.2 1284.0 20.6 70.0 78.5 599.4 78.5 614.1

O
/
O

Att19-I-CP-OO 1.42 12.01 111.15 7.11 63.18 0 0 0 0 61.0 461.3 64.6 448.5 225.5 1859.6
GLUE-N(3,3) 2.08 8.7 74.79 7.27 63.46 0 0 0 0 46.7 275.2 79.3 510.6 126.4 881.3
GLUE-N(5,5) 2.74 7.6 67.08 8.31 75.21 0 0 0 0 41.8 235.9 74.7 515.5 74.7 530.1
GLUE-N(10,5) 3.28 7.05 61.58 10.17 93.77 0 0 0 0 36.8 185.9 94.7 715.4 94.7 730.0

(b) Schemes supporting OSW-type negations. The decryption costs are for non-
negated, and negated policies with |S| ∈ {1, 5}, respectively.

the instantiation). This means that, with just a megabyte of space, a user can
store at least 100 intermediate ciphertexts for a total of 1000 attributes. For com-
puting devices such as computers and smartphones, which have an abundance of
storage space nowadays, this is a more than acceptable trade-off. Similarly, key
generation authorities can store intermediate keys for at least 286 users and 2860
attributes with just a megabyte of space. Thus, with gigabytes, an authority can
precompute keys for hundreds of thousands of users and millions of attributes.
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7 Applying multiple instantiations of GLUE in practice

The flexible efficiency trade-offs that GLUE provides can be exploited in prac-
tice. In particular, practitioners can choose one suitable instantiation of GLUE,
or choose multiple instantiations of GLUE to support different computational
devices. Interestingly, by using the direct sum with parameter reuse transfor-
mation of Attrapadung [11], GLUE would be able to support multiple instances
of itself simultaneously, such that the size of the master public key is upper-
bounded in the maximum size of the public keys of all instances. This may be
useful in settings in which the devices have varying computational resources.
For instance, in the WLAN use case considered by ETSI [25], the decryption de-
vices may be any mobile device in a network, including more constrained devices
such as smartwatches. For those devices, it is more beneficial to use a scheme
with fast decryption, e.g., GLUE(5,5), while for faster devices, it is sufficient to
employ a scheme with slower decryption, e.g., RW13. In WLAN systems, the
access point sends, for instance, an encrypted WPA2-PSK key to the connecting
device, which can decrypt it if is satisfies the policy. Because this exchange is
interactive, the connecting device and access point could first negotiate on the
particular instance of GLUE for which the connecting device has a secret key
before encrypting the WPA2-PSK key. In non-interactive systems, e.g., cloud
settings [25], it may be more desirable to use multiple instances in parallel. Pow-
erful devices could, for example, use multiple instances to support less powerful
devices that only use the more efficient instances. For example, powerful decryp-
tion devices could have keys for both GLUE(5,5) and RW13, while less powerful
encryption devices use RW13 or an online/offline variant of GLUE to encrypt.

8 Future work

For future work, it would be interesting to investigate the following. First, we
have proven our scheme secure in the AC17 framework, which yields full secu-
rity under a q-type assumption. Although frameworks exist that prove security
generically under static assumptions [9,21,10], these use a strong security notion
called the master-key hiding property. Like other unbounded ABE using a BB
hash, ours does not satisfy this property [9]. To achieve such strong notions of
security, more intricate proof techniques need to be devised, such as [22]. Sec-
ond, we have analyzed the efficiency of the schemes on the BLS12-446 curve.
Presumably, the encryption and decryption costs can improve if curves such
as KSS16-339 [34] are used, which provide faster arithmetic in G and provide
more efficient products of pairing operations [24]. GLUE (and RW13) may also
benefit from fixed-base multi-base exponentiations [42], which RELIC does not
support. Finally, while we have given the first steps towards realizing more ef-
ficient schemes supporting OSWOT-type negations (Appendix F), we have not
explicitly specified these schemes. Our analysis in Section 6 indicates that any
such schemes would benefit from the efficiency of our schemes, including those
supporting OSW-type negations (see Appendix L for more details).
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9 Conclusion

We have proposed GLUE, a new unbounded large-universe scheme with flexible
efficiency trade-off. This scheme is a generalization of RW13 [46] and W11b [55],
in that it supports polynomials of any degree for the Boneh-Boyen hash. To
optimally use the randomness provided by the hash, we use the partitioning
approach (previously also used by AHM+16 [12]), splitting the sets of attributes
and the policies in partitions of maximum sizes nk and nc, respectively. This
allows for a decreased number of pairing operations required during decryption
compared to RW13 (and related variants). Roughly, the pairing costs decrease by
a factor nk = nc (if chosen to be equal). Along the way, we have also introduced
new proof techniques. These ensure that the randomness provided by the BB
hash can be used for both the keys and ciphertexts in the unbounded setting.
Finally, we have shown that our schemes indeed outperform existing schemes
using a BB hash in the decryption, and notably, all schemes supporting OSW-
type negations. Because our non-monotone schemes are unbounded and faster
than 1.2 seconds in all algorithms on a laptop, even for large policies and sets,
they are more suitable for practice than existing non-monotone schemes.
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A Discussion on the W11b proof

Intuitively, the W11b [55] proof does not generalize to the unbounded setting
for the following reason. Usually, selective proofs of CP-ABE schemes [56,46]
embed only a vector—for which the length is equal to the number of columns in
the policy matrix—in the randomizer of the secret key that is used to hide the
master key α. Subsequently, the randomizers used to randomize the attribute
public keys are derived (multiplicatively) from this “general randomizer”. In
contrast, in the proof of the W11b scheme, this general randomizer is extended,
and additionally embeds information for the (bounded number of) attributes
that would normally be embedded in the “attribute randomizers”. Because this
is done in an additive fashion, it cannot be split multiplicatively for the sake of
our unbounded proof. In addition, because this general randomizer can embed
information for only a bounded number of attributes, we cannot use the same
strategy in the unbounded setting.

B Attack on first attempt at scheme

Suppose we have key (hα−rb, hr, hr′fn(xatt1
), hrb′ , hr′) and ciphertext (M ·As, gs,

gs
′
, Bλ1(B′)s

′
, Fn(xatt1)

s′ , Bλ2(B′)s
′
, Fn(xatt2)

s′) such that λ1+λ2 = s, i.e., the
policy requires that a secret key needs att1 and att2 to decrypt. Then, we can
decrypt the ciphertext, even though the set S = {att1} does not satisfy the
policy:

M ·As/
(
e(gs, hα−rb)e(Bλ1(B′)s

′
Bλ2(B′)s

′
, hr)−1

·e(gs
′
, hr′fn(xatt1

)hrb′)−2 · e(Fn(xatt1)
s′)2, hr′

)
= M · e(g, h)αs/

(
e(g, h)αs−rsb · e(g, h)rsb+2rs′b′

·e(g, h)−2r′s′fn(xatt1
)−2rs′b′ · e(g, h)2r

′s′fn(xatt1
)
)
= M.

C More details on the proof of the regular scheme

C.1 Selective security

The polynomials indeed go to 0:

c1,j = Aj(sb, ŝ)
⊺ + sτ(j)f

′
nc−1(ρ(j))

=
∑

k∈[n2]

Aj,k1
d2

(0,k) −
∑

j′∈χj ,k∈[n2]

Aj′,kF
′
nc−1,j′(ρ(j))1

d2

(0,k) = 0⊺,

c2,j = sτ(j)fn(ρ(j)) =
∑

j′∈χj ,k∈[n2]

Aj′,kFn,j′,k(ρ(j)) = 0⊺,
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k′ = 1d1
0 − w11

d1
0 = 0,

and k1,att = rι(att)fn(xatt) + rf ′
nc−1(xatt) = 0 follows from the fact that

−rι(att)fn(xatt) = rf ′
nc−1(xatt). That is, rι(att)fn(xatt) is

−

 ∑
i′∈[nk],j

′∈Υ ,
k′∈[n2]

wk′ui′,j′,l1
d2

(1,i′,j′,k′)


 ∑

j∈[n1],
k∈[n2]

Aj,kFn,j,k(xatt)


= −

∑
j∈Υ

Ajw
⊺F1,j(xatt)F

′
nc−1,j(xatt)Gnk−1,j,ι(att)(xatt)1

d1

(1,τ(j))

= −
∑
j∈Υ

Ajw
⊺F ′

nc−1,j(xatt)1
d1

(1,τ(j))

and rf ′
nc−1(xatt) is ∑

k′∈[n2]

wk′1
d2

(0,k′)

 ∑
j∈[n1],k∈[n2]

Aj,kF
′
nc−1,j(xatt)1

d1×d2

(1,τ(j)),(0,k)


=
∑

j∈[n1]

Ajw
⊺F ′

nc−1,j(xatt)1
d1

(1,τ(j)) = −rι(att)fn(xatt).

C.2 Co-selective security

The polynomials indeed go to 0:

For c1,j , we have that Aj(sb, ŝ)
⊺ = Ajw

⊺1
d2

0 , which is 0 if ρ(j) ∈ S, and
otherwise, it is canceled by

sτ(j)f
′
nc−1(ρ(j)) = −

∑
i∈[nc−1],j′∈χ̂τ(j)∩Υ ,k∈[n2]

Aj′,kwkd
′
i,j′ρ(j)

i1
d2

0

= −
∑

j′∈χj∩Υ

Aj′w
⊺Fnc−1,2,j′(ρ(j))1

d2

0 = −Ajw
⊺1

d2

0 .

For c2,j , we have that sτ(j)fn(ρ(j)) is equal to

sτ(j)
∑
l∈[m]

(
F̂nc−1,1,l(ρ(j))Gnk,l(ρ(j))− F̂nc−1,2,l(ρ(j))

)
,

where the parts of sτ(j) associated with 1d1

(2,i) and 1d1

(1,i,l) reprogram F̂nc−1,1,l(ρ(j))

and F̂nc−1,2,l(ρ(j)), respectively, yielding∑
j′∈χj∩Υ ,

l∈[m]

Aj′w
⊺1d1

l

(
Fnc−1,j′,l(ρ(j))Gnk,l(ρ(j))− F ′

nc−1,j′(ρ(j))
)
,
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which is equal to 0 if j ∈ Υ , because it then holds for all j′ ∈ χj ∩ Υ that
Fnc−1,j′,l(ρ(j)) = F ′

nc−1,j′(ρ(j)) = 0. Otherwise, it yields

∑
l∈[m]

Ajw
⊺1d1

l

(
Gnk,l(ρ(j))

Gnk,l(ρ(j))
− 1

)
= 0.

For k′, we have 1d1
0 − 1d1×d2

0,0 1
d2

0 = 0, and for k1,att, we have

rι(att)fn(xatt) =
(
Gn,ι(att)(xatt)− F̂nc−1,2,ι(att)(xatt)

)
1
d2

ι(att),

whereGn,ι(att)(xatt) = F̂nc−1,1,ι(att)(xatt)Gnk,ι(att)(xatt) = 0, becauseGnk,ι(att)(xatt) =
0, and thus yields

−F̂nc−1,2,ι(att)(xatt)1
d2

ι(att) = −
nc−1∑
i=0

1d1

(2,i)x
i
att.

This is canceled by

rfnc−1(xatt) =

nc−1∑
i=0

1d1×d2

(2,i),0x
i
att1

d2

0 =

nc−1∑
i=0

1d1

(2,i)x
i
att.

D The KP-ABE version

We present the KP-ABE version of the scheme in Section 4.

Definition 8 (The unbounded KP-ABE scheme). Our construction of the
unbounded key-policy attribute-based encryption scheme is defined as follows.

– Setup(λ): Taking as input the security parameter λ, the setup generates three
groups G,H,GT of prime order p with generators g ∈ G and h ∈ H, and
chooses a pairing e : G × H → GT . The setup also defines the universe of
attributes U = Zp and n ∈ N is related to the maximum partition size. In
particular, it chooses nk ∈ N as the maximum partition size of the keys,
and nc = n + 1 − nk as the maximum partition size of the ciphertexts. It
then generates random α,b = (b, b0, b1, ..., bn, b

′
0, ..., b

′
nk−1) ∈R Zp. It outputs

MSK = (α,b) as its master secret key and publishes the master public key
as

MPK = (g, h,A = e(g, h)α, B = gb, B0 = gb0 , ..., Bn = gbn ,

B′
0 = gb

′
0 , ..., B′

nc−1 = gbnk−1).

– KeyGen(MSK,A): On input an access policy A = (A, ρ) with A ∈ Zn1×n2
p

and ρ : [n1] → U , the algorithm computes m =
⌈
n1

nk

⌉
, defines ι : [n1] → [m]

such that |ι−1(l)| ≤ nk for each l ∈ [m] and for all j, j′ ∈ [n1] with j ̸= j′



34 M. Venema, and G. Alpár

and ρ(j) = ρ(j′), we have ι(j) ̸= ι(j′). It then generates random integers
r, r1, ..., rm, v2, ..., vn2

∈R Zp and computes the secret key as

SKA = ({K1,j = hλj+rι(j)
∑nk−1

i=0 b′iρ(j)
i

,K2,j = hrι(j)
∑n

i=0 biρ(j)
i)}j∈[n1],

{K3,l = hrl}l∈[m]),

where λj = Aj(α, v2, ..., vn2
)⊺.

– Encrypt(MPK,S,M): A message M ∈ GT is encrypted under set of at-

tributes S by computing m′ =
⌈
n1

nc

⌉
, and defining τ : S → [m′] such that

|τ−1(i)| ≤ nc for each i ∈ [m′]. The algorithm then generates random inte-
gers s, s1, ..., sm′ ∈R Zp and computes the ciphertext as

CTA = (C = M ·As, C ′ = gs,

{C1,att =
∏n

i=0 B
sτ(j)x

i
att

i ·
∏nk−1

i=0 (B′
i)

sxi
att}att∈S , {C2,l′ = gsl′}l′∈[m′]).

– Decrypt(SKS ,CTA): Suppose that S satisfies A, and suppose Υ = {j ∈
{1, ..., n1} | ρ(j) ∈ S}, such that {εj ∈ Zp}j∈Υ exist with

∑
j∈Υ εjAj =

(1, 0, ..., 0). Then the plaintext M is retrieved by computing

C/

∏
j∈Υ

(
e(C ′,K1,j)/e(C1,ρ(j),K3,ι(j)) · e(C2,τ(ρ(j)),K2,j)

)εj .

Note that the scheme is correct, i.e., we have∏
j∈Υ

(
e(C ′,K1,j)/e(C1,ρ(j),K3,ι(j)) · e(C2,τ(ρ(j)),K2,j)

)εj
=
∏
j∈Υ

(e(g, h)λjs+rι(j)s
∑nk−1

i=0 b′iρ(j)
i

·e(g, h)−rι(j)sτ(j)

∑n
i=0 biρ(j)

i−rι(j)s
∑nk−1

i=0 b′iρ(j)
i

·e(g, h)rι(j)sτ(ρ(j))(
∑n

i=0 biρ(j)
i))εj = e(g, h)

∑
j∈Υ λjs = e(g, h)αs,

such that C/e(g, h)αs = M .

E Online/offline extension

We give the online/offline variant [32] of GLUE. For the key generation, we
show how a user can generate the secret key (as in Definition 6) from the online
and offline parts in a final step, which can be performed at any time between
receiving the keys and decrypting. In contrast, in [32], this step is taken in each
run of the decryption algorithm, rather than only once.
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E.1 Definition and security model

In [32], Hohenberger and Waters define the notion of online/offline ABE, which
can be used to speed up the online execution time of the key generation and
encryption algorithms. We adapt the definitions of Hohenberger and Waters,
i.e., we include a final step to be executed after the keys have been received by
the user. In this step, the online/offline secret keys are combined such that secret
keys can be generated that are indistinguishable from secret keys in a regular
run of the key generation algorithm.

Definition 9 (Online/offline ABE). An ABE scheme with optional online/offline
key generation and encryption consists of nine algorithms:

– Setup(λ)→ (MPK,MSK): This algorithm is the same as in Definition 2.
– Regular.KeyGen(MSK,S)→ SKS : On input the master secret key MSK and

some attribute set S, this probabilistic algorithm generates a secret key SKS .
– Offline.KeyGen(MSK) → ISK: On input the master secret key MSK, this

optional probabilistic algorithm generates an intermediate secret key ISK.
– Online.KeyGen(MSK, ISK,S) → OO.SKS : On input the master secret key

MSK, intermediate secret key ISK and some attribute set S, this optional
probabilistic algorithm generates an online/offline secret key OO.SKS .

– FinalStep.KeyGen(OO.SKS) → SKS : On input an online/offline secret key
OO.SKS for some attribute set S, this optional probabilistic algorithm gen-
erates a (regular) secret key SKS .

– Regular.Encrypt(MPK,A,M)→ CTA: On input the master public key MPK,
some policy A and message M , this probabilistic algorithm generates a ci-
phertext CTA.

– Offline.Encrypt(MPK) → ICT: On input the master public key MPK, this
optional probabilistic algorithm generates an intermediate ciphertext ICT.

– Online.Encrypt(MPK, ICT,A,M) → OO.CTA: On input the master pub-
lic key MPK, intermediate ciphertext ICT, some policy A and message M ,
this optional probabilistic algorithm generates an online/offline ciphertext
OO.CTA.

– Decrypt(MPK, (OO.)SKS , (OO.)CTA)→M : On input the master public key
MPK, the (online/offline) secret key (OO.)SKS , and the (online/offline) ci-
phertext (OO.)CTA, if S satisfies A, then it returns M . Otherwise, it returns
an error message.

We also adjust the security model in [32] to match our definition of on-
line/offline ABE. Note that, as in the definition in [32], the attacker is not allowed
to access intermediate keys and ciphertexts.

Definition 10 (Full CPA-security for online/offline ABE). We define the
security game between challenger and attacker as follows:

– Setup phase: The challenger runs Setup(λ) to obtain MPK and MSK,
and sends the master public key MPK to the attacker. The challenger also
initializes an empty list L and a counter cL = 0.
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– First query phase: The attacker can make the following queries:
• Regular key query: The attacker queries secret keys for S, and obtains
SKS ← KeyGen(MSK,S) in response.

• Intermediate secret key query: The attacker queries an intermedi-
ate secret key. The challenger generates ISK ← Offline.KeyGen(MSK),
stores (cL, ISK) in list L and updates the counter cL ← cL + 1.

• Online/offline secret key query: The attacker queries an online/offline
secret key for S and set of indices I ⊆ [0, cL] such that none of the in-
dices in I have been queried before. (Otherwise, there is no entry in the
table for one or more indices, and then, the challenger returns an error
message.) The challenger selects intermediate secret keys (i, ISKi) for
all i ∈ I from the list, deletes these entries from the list and generates
OO.SKS ← Online.KeyGen(MSK, {ISKi}i∈I ,S).

– Challenge phase: The attacker specifies some policy A∗ such that for all S
in the first phase, we have S does not satisfy A∗, and generates two messages
M0 and M1 of equal length. The attacker sends these to the challenger and
chooses whether it wants to be queried on a regular or an online/offline
ciphertext:
• Regular challenge: The challenger flips a coin, i.e., β ∈R {0, 1}, en-
crypts Mβ under A∗, i.e., CTx∗ ← Encrypt(MPK,A∗,Mβ), and sends
the resulting ciphertext CTA∗ to the attacker.

• Online/offline challenge: The challenger first generates intermediate
ciphertexts ICT ← Offline.Encrypt(MPK). Then, the challenger flips a
coin, i.e., β ∈R {0, 1}, online encrypts Mβ under A∗ with ICT, i.e.,
OO.CTA∗ ← Online.Encrypt(MPK, ICT,A∗,Mβ), and sends the result-
ing ciphertext OO.CTA∗ to the attacker.

– Second query phase: This phase is identical to the first query phase, with
the additional restriction that the attacker can only query S such that it does
not satisfy A∗.

– Decision phase: The attacker outputs a guess β′ for β.

The advantage of the attacker is defined as ∥Pr[β′ = β]− 1
2 |. An online/offline

scheme is fully secure if all polynomial-time attackers have at most a negligible
advantage in this security game.

E.2 Online/offline version of GLUE

Definition 11 (GLUE-OO).

– Setup(λ)→ (MPK,MSK): This algorithm is the same as in Definition 6.
– Regular.KeyGen(MSK,S)→ SKS : This algorithm is the same as in Defini-

tion 6.
– Offline.KeyGen(MSK)→ ISK: The algorithm generates two types of “inter-

mediate secret keys”.
• First type: The algorithm generates random integer r and stores (K =
hα−rb,K ′ = hr, r).
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• Second type: The algorithm generates random integers r′, zj ∈R Zp for

all j ∈ [nk], and then stores ({K̂1,j = hzj , zj}j∈[nk],K2 = hr′ , r′).

– Online.KeyGen(MSK, ISK,S) → SKS : On input set of attributes S, the al-

gorithm computes m =
⌈
|S|
n

⌉
, defines ι : S → [m] such that |ι−1(l)| ≤ n for

each l ∈ [m], and further defines ι̂ : S → [nk] such that it is injective on each
subdomain ι−l(l) for all l ∈ [m]. It takes one intermediate secret key of the
first type, and m of the second type:

(K = hα−rb,K ′ = hr, r), ({K̂1,j,l = gzj,l , zj,l}j∈[nk],K2,l = hrl , rl)l∈[m],

sets K̂1,att = K̂1,ι̂(att),ι(att), then computes

K̂3,att =

(
rι(att)

n∑
i=0

bix
i
att + r

nc−1∑
i=0

b′ix
i
att

)
− zι̂(att),ι(att).

and outputs the secret key as

SKS = (K,K ′, ι, {K̂1,att, K̂3,att}att∈S , {K2,l}l∈[m]).

– FinalStep.KeyGen(OO.SKS)→ SKS : The user can generate the secret keys
as in Definition 6 from (K,K ′, ι, {K̂1,att,K2,l, K̂3,att}att∈S,l∈[m]), by com-
puting for each att ∈ S the secret key component K1,att as in Definition 6:

K1,att = K̂1,att · hK̂3,att .
– Regular.Encrypt(MPK,A,M) → CTA: This algorithm is the same as in

Definition 6.
– Offline.Encrypt(MPK) → CTA: The algorithm generates two types of “in-

termediate ciphertexts”.

• First type: It selects s ∈R Zp and stores (Ĉ = As, C ′ = gs, s).

• Second type: It selects s′, λ̂1, ..., λ̂nc
∈R Zp, (x̂j,1, ..., x̂j,n) ∈R Zn

p , sets
x̂j,0 = 1 for all j ∈ [nc], and stores

({Ĉ1,j = Bλ̂j ·
nc−1∏
i=0

(B′
i)

s′x̂j,i , Ĉ2,j =
n∏

i=0

B
s′x̂j,i

i ,

λ̂j , {x̂j,i}i∈[n]
}j∈[nc], C3 = gs

′
, s′).

– Online.Encrypt(MPK, ICT,A,M) → CTA: On input policy A = (A, ρ), the
algorithm selects one “intermediate ciphertext” (Ĉ, C ′, s) of the first type,

and then m′ =
⌈
n1

nc

⌉
“intermediate ciphertexts” of the second type

({Ĉ1,j,l′ , Ĉ2,j,l′ , λ̂j,l′ , {x̂j,i,l′}i∈[0,n]}j∈[nc], C3,l′ , sl′)

(for all l′ ∈ [m′]). It defines τ and λj as in Definition 6, and further defines
τ̂ : [n1] → [nc] such that τ̂ is injective on each subdomain τ−1(l′) with l′ ∈
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[m′], i.e., each attribute gets mapped to a unique tuple (Ĉ1,j,l′ , ..., sl′). It

encrypts message M by setting C = M · Ĉ and sets for all j ∈ [n1], i ∈ [n]:

Ĉ1,j = Ĉ1,τ̂(j),τ(j), Ĉ2,j = Ĉ2,τ̂(j),τ(j)

Ĉ4,j = λj − λ̂τ̂(j),τ(j), Ĉ5,j,i = sτ̂(j)(ρ(j)
i − x̂τ̂(j),i,τ(j))

The user publishes the ciphertext as

CTA = (C,C ′, τ, {Ĉ1,j , Ĉ2,j , Ĉ4,j , Ĉ5,j,i}i∈[n],j∈[n̂1], {C3,l′}l′∈[m̂′]),

Note that the ciphertext increases by n1(n + 1) elements in Zp compared to
regular ciphertexts.

– Decrypt(MPK, (OO.)SKS , (OO.)CTA) → M :If S satisfies A, determine εj
and Υ as in Definition 6, set Υl = {j ∈ Υ | ι(ρ(j)) = l} for all l ∈ [m] and
compute C/ (e(C ′,K) · C1 · C2 · C3), where

C1 = e

∏
j∈Υ

Ĉ
εj
1,j · (g

b)
∑

j∈Υ εjĈ4,j ·
nc−1∏
i=1

(gbi)
∑

j∈Υ εjĈ5,j,i ,K ′


C2 =

∏
j∈Υ

e(C
−εj
3,τ(j),K1,ρ(j))

C3 =
∏
l∈[m]

e

∏
j∈Υl

Ĉ
εj
2,j ·

n∏
i=1

(gbi)
∑

j∈Υl
εjĈ5,j,i ,K2,l

 .

Correctness. Correctness of the decryption algorithm follows from simply

showing that Ĉ1,j · (gb)Ĉ4,j ·
∏nc−1

i=1 (gbi)Ĉ5,j,i = C1,j , and Ĉ2,j ·
∏n

i=1(g
bi)Ĉ5,j,i =

C2,j , where C1,j and C2,j are as in Definition 6. Then, the correctness proof is
identical to that in this definition. Clearly, this is the case, because

Ĉ1,j · (gb)Ĉ4,j ·
nc−1∏
i=1

(gbi)Ĉ5,j,i

= gλ̂τ̂(j),τ(j)b+sτ̂(j)

∑nc−1
i=0 b′ix̂τ̂(j),i,τ(j) · gb(λj−λ̂τ̂(j),τ(j))

·
nc−1∏
i=1

gsτ(j)bi(ρ(j)
i−x̂τ̂(j),i,τ(j)) = gλjb+sτ(j)

∑nc−1
i=0 b′iρ(j)

i

= C1,j ,

and

Ĉ2,j ·
n∏

i=1

(gbi)Ĉ5,j,i = gsτ̂(j)

∑n
i=0 bix̂τ̂(j),i,τ(j) ·

n∏
i=1

(gbi)sτ̂(j)(ρ(j)
i−x̂τ̂(j),i,τ(j))

= gsτ(j)

∑n
i=0 biρ(j)

i

= C2,j .
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E.3 Security proof

We prove security of the online/offline variant of the unbounded CP-ABE scheme
in Section E. For this, we provide a security reduction to the selective/full secu-
rity of the basic scheme, mirroring the proof in [32]. For simplicity, we assume
that, in all algorithms, the online/offline algorithms are queried. For the regular
algorithms, we relay the responses of the challenger of the regular scheme.

Theorem 2. The online/offline scheme is secure if the scheme in Definition 6
is secure.

Proof. Suppose AOO-CP-ABE is a polynomial-time attacker that can break the
online/offline variant of the scheme with non-negligible advantage ε. We show
how we can break the “regular” variant by interacting with this attacker.

– Initialization phase: Let A = (A, ρ), where A ∈ Zn1×n2
p with n1, n2 < q,

denote the access structure generated by attacker ACP-ABE for which
AOO-CP-ABE can selectively break the normal scheme. The attacker
ACP-ABE sends it to the challenger.

– Setup phase: The public parameters generated by the challenger (in the
CP-ABE security game), i.e., MPK = (g, e(g, h)α, gb) and sent to attacker
ACP-ABE are passed along to attacker AOO-CP-ABE.

– First query phase: Attacker AOO-CP-ABE queries secret keys for sets S,
which ACP-ABE relays to the challenger. The challenger generates

SKS = (K = hα−rb,K ′ = hr, ι,

{K1,att = hrι(att)(
∑n

i=0 bix
i
att)+r

∑nc−1
i=0 b′ix

i
att}att∈S , {K2,l = hrl}l∈[m]).

Attacker ACP-ABE then selects random r2,att ∈R Zp for all att ∈ S and

computes K̂1,att = K1,att · g−r2,att . Then ACP-ABE sends

SK′
S = (K,K ′, ι, {K̂1,att, K̂3,att = r2,att}att∈S , {K2,l}l∈[m])

to AOO-CP-ABE. Note that this key has the same distribution as the keys
generated by the scheme, because zj,l in the scheme is a randomly generated
integer, and the final step in the key generation yields a normal secret key.

– Challenge phase: Attacker ACP-ABE generates two random messages
M0,M1 and sends them to the challenger, who flips a coin β ∈R {0, 1}
and encrypts Mβ . The challenger sends

CTA = (C,C ′, {C1,j , C2,j}j∈{1,...,n1}, {C3,l′ = gsl′}l′∈{1,...,m′}),

to attacker ACP-ABE, who picks random Ĉ4,j , Ĉ5,j,i ∈R Zp for each j ∈
[n1], i ∈ [n] and computes

CT′
A = (C,C ′, {Ĉ1,j = C1,j · (gb)−Ĉ4,j ·

∏nc−1
i=1 (gb

′
i)−Ĉ5,j,i ,

Ĉ2,j = C2,j ·
∏n

i=0(g
bi)−Ĉ5,j,i , Ĉ4,j , Ĉ5,j,i}j∈[n1], {C3,l′}l′∈[m′]),

which is well-formed as can be observed from the proof of correctness. At-
tacker ACP-ABE then sends CT′

A to attacker AOO-CP-ABE.
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– Second key query phase: The second query phase is the same as the first
key query phase.

– Decision phase: Attacker AOO-CP-ABE outputs a guess β′ on β, which
attacker ACP-ABE relays to the challenger.

AttackerACP-ABE guesses correctly wheneverAOO-CP-ABE guesses correctly,
so the attacker does this with exactly the same advantage ε as well.

F Two non-monotone versions of GLUE

We give two pair encoding schemes based on our generalized unbounded scheme.
The first scheme is the generalized unbounded analog to TKN20 [50]. In this
scheme, we replace the full-domain hash of TKN20 by a Boneh-Boyen hash.
By extension, this scheme can be extended with an online/offline version. The
second scheme is a generalized unbounded version of the unbounded CP-ABE
scheme supporting OSW-type negations (Att19-I-CP) [11], which is the non-
monotone extension of RW13 [46]. In this scheme, like in RW13, we replace
their instantiation of the Boneh-Boyen hash, i.e., a 1-degree polynomial, with a
generalized Boneh-Boyen hash, i.e., an n-degree polynomial. For future work, it
would be interesting to consider whether the two new schemes can be combined,
thus achieving the support of OSWOT-type negations [14]. In such a scheme, a
generalized Boneh-Boyen hash could be used for both the label universe and the
attribute universe. In this way, the same randomizer can be used for multiple
labels, as well multiple attributes with the same label. Due to the sole use of
Boneh-Boyen hashes, the scheme can be extended to an online/offline version,
such that the key generation and encryption costs can be minimized.

F.1 Generalized unbounded analog to TKN20

By applying the ciphertext-policy augmentation (confined to OR) to the di-
rect sum of an AND-composition of our generalized unbounded scheme and the
IBE predicate, and an AND-composition of our generalized unbounded scheme
and the NIBE predicate (all from [11]), we obtain a provably secure scheme
supporting OT-type negations (analog to TKN20 [50]). Here, we use our gen-
eralized unbounded scheme for the label universe. In this way, we can avoid
the use of a hash function modeled as a random oracle in TKN20 [50], and
thus benefit from our online/offline extensions. The variables nc, nk, n,S,ρ,ι,τ ,
n1, n2, λi,m,m′ are as in Definition 6. We also include a function ρ2 that maps
the row to 1 if the attribute is not negated in the policy, and to 2 if it is negated,
and ρ1 : [n1]→ {0, 1}∗ and κ : S → {0, 1}∗ map the attributes in the policy and
set, respectively, to labels (represented as string).

Definition 12 (Generalized unbounded ABE with OT-NMSPs).

– Param(par)→ 2n+ 2nc + 3. Let

b = (b, b0,0, ..., b0,n, b1,0, ..., b1,n, b
′
0,0, ..., b

′
0,nc−1, b

′
1,0, ..., b

′
1,nc−1),
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where n = nc + nk − 1. We define

fn,β(ylab) =

n∑
i=0

bβ,iy
i
lab, f ′

nc−1,β(ylab) =

nc−1∑
i=0

b′β,iy
i
lab

for β ∈ {0, 1}, and

g(xatt, ylab) = fn,1(ylab)xatt + fn,0(ylab)

g′(xatt, ylab) = f ′
nc−1,1(ylab)xatt + f ′

nc−1,0(ylab).

– EncKey(S, κ) → (r, k′, {k1,att}att∈S). Let r = (r, {rl}l∈[m]), k′ = α − rb,
put additional restriction on ι so that, for all att ̸= att′ ∈ S with κ(att) =
κ(att′), we ensure ι(att) ̸= ι(att′), and

k1,att = rι(att)g(xatt, yκ(att)) + rg′(xatt, yκ(att))

where for any label lab, we denote ylab as its representation in Zp.
– EncCt((A, ρ))→ (s, ŝ, {c1,j , c2,j , c̄1,j′ , c̄2,j′ , c̄3,j′}j∈Φ,j′∈Φ), where ρ = (ρ, ρ1, ρ2).

Let Φ = {j ∈ [n1] | ρ2(j) = 1} and Φ = [n1] \ Φ. Let s = (s, {sl′}l′∈[m′]) and
ŝ = (v̂2, ..., v̂n2

). Then, we distinguish between whether j ∈ Φ or not.
• For j ∈ Φ: c1,j = Aj(sb, ŝ)

⊺+sτ(j)g
′(ρ(j), yρ1(j)) and c2,j = sτ(j)g(ρ(j), yρ1(j)).

• For j ∈ Φ: c̄1,j = Aj(sb, ŝ)
⊺+sτ(j)f

′
nc−1,0(yρ1(j)), c̄2,j = sτ(j)g(ρ(j), yρ1(j))

and c̄3,j = ρ(j)Aj(sb, ŝ)
⊺ + sτ(j)f

′
nc−1,0(yρ1(j)).

– Pair(S, (A, ρ, ρ1, ρ2)): For S that satisfies A, we have some Υ ⊆ [n1] such
that {εj ∈ Zp}j∈Υ exists with

∑
j∈Υ εjAj = (1, 0, ..., 0) (Definition 1). We

also split Υ in two subsets Υ ′ = Υ ∩ Φ and Υ
′
= Υ \ Υ ′. We retrieve αs by

computing
• For all j ∈ Υ ′:

εj(rc1,j − sτ(j)k1,ρ(j) + rι(ρ(j))c2,j) = εjrAj(sb, ŝ)
⊺

• For all j ∈ Υ
′
, we set xatt = κ−1(yρ1(j)), and compute

εj
xatt − ρ(j)

(
r(xattc̄1,j − c̄3,j)− sτ(j)k1,ρ(j) + rι(ρ(j))c2,j

)
= εjrAj(sb, ŝ)

⊺

Then, we retrieve αs = sk′ −
∑

j∈Υ εjrAj(sb, ŝ)
⊺.

Performance analysis of the selectively secure instantiation. For the
most efficient decryption algorithm, we push s and r in H, and the polynomials
in G. Then, the costs are:

– KeyGen: m+ 2 exponentiations in H, and |S| exponentiations in G;
– Encrypt: m′ + 1 exponentiations in H, |Φ|(2n+ 2nc + 3)+ |Φ|(2n+ 2nc + 4)

exponentiations in G and 1 exponentiation in GT ;

– Decrypt: 2 +
⌈
|Υ |
nc

⌉
+
⌈
|Υ |
nk

⌉
pairing operations and 4|Υ ′| exponentiations in

G.
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F.2 Generalized unbounded ABE supporting OSW-type negations

By applying the generic negation in [6] and the direct sum transformation and
ciphertext-policy augmentation (confined to OR) in [11] to the PES in Section
4.1, we obtain a provably secure generalized unbounded scheme supporting MSPs
with OSW-type negations. Note that this yields a generalized variant of Att19-
CP-I [11]. The variables nc, nk, n,S,ρ,ι,τ , n1, n2, λi,m,m′ are as in Definition 6.
In this definition, we also include a function ρ2 that maps the row to 1 if the
attribute is not negated in the policy, and to 2 if it is negated.

For this scheme, we require Lagrange interpolation. That is, given n + 1
points (x, fn(x)), with x ∈ S and |S| = n + 1, on a polynomial. Then, we can
reconstruct the the point fn(z) by computing

fn(z) =
∑
x∈S

ΛS,xfn(x) (mod p),

where

ΛS,x,z =
∏

y∈S\{x}

z − y

x− y
(mod p).

Definition 13 (GLUE-N). GLUE-N, which supports OSW-type negations, is
defined as:

– Param(par)→ 2n+ 2nc + 3. Let

b = (b, b′′, b(3), b0, ..., bn, b̄0, ..., b̄n, b
′
0, ..., b

′
nc−1, b̄

′
0, ..., b̄

′
nc−1),

where n = nc + nk − 1 with nk ≥ nc, and

fn(xatt) =

n∑
i=0

bix
i
att, f

′
nc−1(xatt) =

nc−1∑
i=0

b′ix
i
att,

f̄n(xatt) =

n∑
i=0

b̄ix
i
att, f̄

′
nc−1(xatt) =

nc−1∑
i=0

b̄′ix
i
att.

– EncKey(S) → (r, k′, k′′, k̄′′, {k1,att, k̄1,att, k̄2,att}att∈S). Let r = (r, r′, r̄, {rl,
r̄att, r̄

′
l}att∈S,l∈[m]), k

′ = α− r′b,

k′′ = r′b′′ + rb(3), k̄′′ = r′b′′ + r̄b(3),

k1,att = rι(att)fn(xatt) + rf ′
nc−1(xatt),

k̄1,att = r̄′ι(att)f̄
′
nc−1(xatt) + r̄ι(att)b̄0, k̄2,att = r̄ι(att)f̄n(xatt),

such that
∑

l∈[m] r̄
′
l = r̄. Note that we require that each partition is full, i.e.,

|ι−1(l)| = nk for all l ∈ [m]. If needed, this can be done by using dummy
attributes [44].

– EncCt((A, ρ, ρ2)) → (s, ŝ, {c1,j , c2,j , c3,j , c̄2,j′ , c̄3,j′}j∈Φ,j′∈Φ). Let Φ = {j ∈
[n1] | ρ2(j) = 1} and Φ = [n1] \ Φ. Let s = (s, {sl′}l′∈[m′], {s′j}j∈[n1]) and
ŝ = (v̂2, ..., v̂n2

). We set c1,j = Aj(sb, ŝ)
⊺ + s′jb

′′, and
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• For j ∈ Φ:

c2,j = s′jb
(3) + sτ(j)f

′
nc−1(ρ(j)), c3,j = sτ(j)fn(ρ(j)).

• For j ∈ Φ:

c̄2,j = s′jb
(3) + sτ(j)f̄

′
nc−1(ρ(j)), c̄3,j = sτ(j)f̄n(ρ(j)).

We require that each partition that has at least one negated attribute in
it is full and only contains negated attributes that occur in a conjunction,
i.e., for all j ∈ [n1] with ρ2(j) = 2, we have |χj | = nc, where χj = {j′ ∈
[n1] | τ(j′) = τ(j) ∧ ρ2(j

′) = 2}. If needed, this can be done by using
dummy attributes (not issued for keys) [44].

– Pair(S, (A, ρ, ρ2)): For S that satisfies A, we have some Υ ⊆ [n1] such that
{εj ∈ Zp}j∈Υ exists with

∑
j∈Υ εjAj = (1, 0, ..., 0) (Definition 1). We also

split Υ in two subsets Υ ′ = Υ ∩ Φ and Υ
′
= Υ \ Υ ′. We retrieve αs by first

computing for each ciphertext partition l′ ∈ [m′] with some row j ∈ Υ
′
with

τ(j) = l′ and l ∈ [m]:∑
att∈Ψl

ΛΩj,l,xatt,0sτ(j)k̄2,att +
∑
j′∈χj

ΛΩj,l,ρ(j′),0r̄lc̄3,j′ = r̄lsτ(j)f̄n(0),

where Ψl = {att ∈ S | ι(att) = l}, and Ωj,l = {xatt | att ∈ Ψl} ∪ {ρ(j′) | j′ ∈
[n1], τ(j) = τ(j′)}. Then, we use it to retrieve for all att ∈ Ψl:

sτ(j)k̄1,att − r̄lsτ(j)f̄n(0) = sτ(j)r̄
′
ι(att)f̄

′
nc−1(xatt),

which we use to recover for each j ∈ Υ
′
and l ∈ [m]:∑

att∈Ψl

ΛΨ ′
l ,xatt,ρ(j)sτ(j)r̄

′
lf̄

′
nc−1(xatt) = sτ(j)r̄

′
lf̄

′
nc−1(ρ(j)),

where Ψ ′
l = {xatt | att ∈ Ψl}. Then, we retrieve∑

l∈[m]

sτ(j)r̄
′
lf̄

′
nc−1(ρ(j)) = sτ(j)r̄f̄

′
nc−1(ρ(j))

for each j ∈ Υ
′
, so in turn we can retrieve

r′c1,j − s′j k̄
′′ + r̄c2,j − sτ(j)r̄f̄

′
nc−1(ρ(j)) = r′Aj(sb, ŝ)

⊺.

Then, for all j ∈ Υ ′, we compute

r′c1,j − s′jk
′′ + rc2,j − sτ(j)k1,ρ(j) + rι(ρ(j))c3,j = r′Aj(sb, ŝ)

⊺.

Finally, we retrieve

sk′ −
∑
j∈Υ

εjr
′Aj(sb, ŝ)

⊺ = αs.
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Performance analysis of the selectively secure instantiation. If we as-
sume that |S| can take on any positive value, then it is best to put all non-lone
variables in H and the polynomials in G. If |S| is always going to be small com-
pared to |Υ |, then it is better to put all ciphertext components in G and the key
components in H.

To analyze the decryption costs more properly, we re-order the computations

for j ∈ Υ
′
:∑

j∈Υ
′

εj

(
−

∑
l∈[m],att∈Ψl

ΛΨ ′
l ,xatt,ρ(j)

(
−

∑
att′∈Ψl

ΛΩj,l,xatt′ ,0sτ(j)k̄2,att′

+
∑
j′∈χj

ΛΩj,l,ρ(j′),0r̄lc̄3,j′ + sτ(j)k̄1,att

))
=

∑
l′∈[m′]

sl′
∑

j∈Υ
′∩τ−1(l′) ∑

att′∈S

 ∑
att∈Ψι(att′)

εjΛΨ ′
ι(att′),xatt,ρ(j)ΛΩj,ι(att′),xatt′ ,0

 k̄2,att′

−
∑
att∈S

εjΛΨ ′
ι(att)

,xatt,ρ(j)k̄1,att

)

−
∑
l∈[m]

r̄l
∑

j′∈[n1]

 ∑
j∈Υ

′∩χj′ ,att∈Ψl

εjΛΨ ′
l ,xatt,ρ(j)ΛΩj,l,ρ(j′),0)

 c̄3,j′

which costsm+
⌈
|Υ ′|
nc

⌉
pairing operations, and approximatelym

⌈
|Υ ′|
nc

⌉
(2nk + nc)

exponentiations in G. If |S| is small compared to |Υ ′|, we can also compute it as

∑
att∈S

k̄2,att′

 ∑
j∈Υ

′
,att′∈Ψι−1(att)

εjΛΨ ′
ι(att)

,xatt,ρ(j)ΛΩj,ι(att),xatt,0sτ(j)


−
∑
att∈S

k̄1,att

∑
j∈Υ

′

εjΛΨ ′
ι(att)

,xatt,ρ(j)sτ(j)


−
∑
l∈[m]

r̄l
∑

j′∈[n1]

 ∑
j∈Υ

′∩χj′ ,att∈Ψl

εjΛΨ ′
l ,xatt,ρ(j)ΛΩj,l,ρ(j′),0)

 c̄3,j′ ,

which costs m+2|S| pairing operations, and approximately m
⌈
|Υ ′|
nc

⌉
(2nk + nc)

exponentiations in G.
Then, the costs are (in the best case, assuming that the negations can be

distributed optimally over the ciphertext partitions):
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– KeyGen: 3 + 2m+ |S| exponentiations in H and 3 + 3|S| exponentiations in
G;

– Encrypt: |Υ |+m′ + 1 exponentiations in H, n1(nc + n+ 4) exponentiations
in G, and 1 exponentiation in GT ;

– Decrypt: min
(
am+

⌈
|Υ |
nc

⌉
, a(m+ 2|S|) +

⌈
|Υ ′|
nc

⌉)
+
⌈
|Υ ′|
nk

⌉
+4 pairing opera-

tions, and am
⌈
|Υ ′|
nc

⌉
(2nk + nc) exponentiations in G, where a = 1 if |Υ ′| > 0,

and a = 0 otherwise.

For encrypt and decrypt, the costs are higher when the attributes associated with
the negations cannot be distributed optimally over the ciphertext partitions. In
the worst case, each negated attribute incurs 2 exponentiations inH and nc+n+4
in G in Encrypt. For decryption, suppose that the policy consists of negated
attributes only, and none of them can be placed in the same partition. Then, the

decryption costs are 4+ |Υ |+
⌈
|Υ ′|
nk

⌉
pairing operations and 2|Υ | · |S|+

⌈
|Υ ′|
nk

⌉
· |Υ |

exponentiations.

G Fully secure instantiation of GLUE

We instantiate our pair encoding scheme in Section 4.1 in the Agrawal-Chase
[3] framework with the prime-order dual system groups of Chen and Wee [23]
with d = 1 (i.e., the underlying assumption in the security proof is the SXDH
assumption).

Definition 14 (Fully secure version of GLUE). The scheme is defined as
follows.

– Setup(λ): Taking as input the security parameter λ, the setup generates three
groups G,H,GT of prime order p with generators g ∈ G, h ∈ H, and chooses
a pairing e : G×H → GT . The setup also defines the universe of attributes
U = Zp. It also chooses nk ∈ N and nc ∈ N as the maximum partition sizes
of the keys and ciphertexts, respectively, and sets n = nk + nc − 1. It then
generates random α1, α2, a1, a2, a3, a4, d1, d2, ..., d5, bi,1, bi,2, b

′
i′,1, b

′
i′,2 ∈R Zp

for all i ∈ [0, n], i′ ∈ [0, nc − 1] such that d1d4 ̸= d2d3. It outputs

MSK = (α1, α2, a1, ..., a4, d1, ..., d5, {bi,1, bi,2}i∈[0,n], {b′i,1, b′i,2}i∈[0,nc−1])

as its master secret key and publishes the master public key as

MPK = (g,A = e(g, g)α1d1+α2d2 , g1 = gd1 , g2 = gd2 ,
B1 = ga1d1+a3d3 , B2 = ga1d2+a3d4 ,

{Bi,1 = gbi,1d1+bi,3d3 , Bi,2 = gbi,1d2+bi,3d4}i∈[0,n],

{B′
i,1 = gb

′
i,1d1+b′i,3d3 , B′

i,2 = gb
′
i,1d2+b′i,3d4}i∈[0,nc−1]).

– KeyGen(MSK,S): On input a set of attributes S, the algorithm computes

m =
⌈
|S|
nk

⌉
, defines ι : S → [m] such that |ι−1(i)| ≤ nk for each i ∈ [m], and

generates random integers r, r1, ..., rm ∈R Zp and computes the secret key as

SKS = ({Kβ = hαβ−rb̄β ,K ′
1 = hrd4d5d6 ,K ′

2 = h−rd3d5d6 , ι,
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{K1,att,β = hrι(att)(
∑n

i=0 b̄i,βx
i
att)+r

∑nc−1
i=0 b̄′i,βx

i
att}att∈S ,

{K2,l,1 = hrld4d5d6 ,K2,l,2 = hrld3d5d6}l∈[m]}β∈{1,2}),

where for all i ∈ [0, n], i′ ∈ [0, nc − 1], we set

d6 =
1

d1d4 − d2d3
,

b̄1 = d6(a1d4d5 − a2d2d5), b̄2 = d6(−a1d3d5 + a2d1d5),

b̄i,1 = d6(bi,1d4d5 − bi,2d2d5), b̄i,2 = d6(−bi,1d3d5 + bi,2d1d5),

b̄′i,1 = d6(b
′
i,1d4d5 − b′i,2d2d5), b̄

′
i,2 = d6(−b′i,1d3d5 + b′i,2d1d5).

– Encrypt(M,MPK,A): A message M ∈ GT is encrypted under A = (A, ρ)

with A ∈ Zn1×n2
p and ρ : [n1] → U by computing m′ =

⌈
n1

nc

⌉
and defining

τ : [n1]→ [m′] such that |τ−1(i)| ≤ nc for each i ∈ [m′] and if i, j ∈ [m′] with
i ̸= j such that ρ(i) = ρ(j), then τ(i) ̸= τ(j), i.e., multiple occurrences of the
same attribute are mapped to different partitions. The user then generates
random integers s, s1, ..., sm′ , v2, ..., vn2

∈R Zp and computes the ciphertext
as

CTA = (C = M ·As, C ′
1 = gsd1 , C ′

2 = gsd2 , τ,

{C1,j,β = B
Aj,1s
β g

λ̄j

β ·
nc−1∏
i=0

(B′
i,β)

sτ(j)ρ(j)
i

,

C2,j,β =

n∏
i=0

B
sτ(j)ρ(j)

i

i,β }j∈[n1],β∈{1,2}, {C3,l′,β = gsl′dβ}l′∈[m′],β∈{1,2}),

such that λ̄j =
∑

k∈[2,n2]
Aj,kvk.

– Decrypt(SKS ,CTA): Suppose that S satisfies A, and suppose Υ = {j ∈ [n1] |
ρ(j) ∈ S}, such that {εj ∈ Zp}j∈Υ exist with

∑
i∈Υ εjAj = (1, 0, ..., 0)

(Definition 1). Then the plaintext M is retrieved by computing

C/
(
e(C ′,K) ·

∏
j∈Υ,β∈{1,2}

(
e(C1,j,β ,K

′
β)/e(C3,τ(j),β ,K1,ρ(j),β)

·e(C2,j,β ,K2,ι(ρ(j)),β)
)εj)

.

H AHM+16 and ABGW17 in the asymmetric setting

We give the definitions of the AHM+16 [12] and the ABGW17 [7] schemes
in the asymmetric setting. In particular, we distribute the key and ciphertext
components such that the encryption and decryption algorithms are optimized
(possibly at the cost of the key generation efficiency). The general approach is
fairly simple: we try to put as many ciphertext components in the first source
group as possible. Alternatively, if the decryption algorithm requires exponenti-
ations, then we place the components that need to be exponentiated in the first
source group.
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H.1 The AHM+16 scheme

We define the AHM+16 [12] scheme in the ciphertext-policy and selective secu-
rity setting with optimized decryption as follows.

Definition 15 (The AHM+16 scheme). The AHM+16 scheme is defined as
follows.

– Setup(λ): Taking as input the security parameter λ, the setup generates three
groups G,H,GT of prime order p with generators g ∈ G, h ∈ H, and chooses
a pairing e : G×H → GT . The setup also defines the universe of attributes
U = Zp. It also chooses nk ∈ N as the maximum partition sizes of the
keys. It then generates random α, b, b0, b1, ..., bnk

, b′1, b
′
2, b

′
3 ∈R Zp. It outputs

MSK = (α, b, b0, b1, ..., bnk
, b′1, b

′
2, b

′
3) as its master secret key and publishes

the master public key as

MPK = (g, h,A = e(g, h)α, B = gb, B′
1 = gb

′
1 , B′

2 = gb
′
2 , B′

3 = gb
′
3 ,

B0 = gb0 , ..., Bn = gbn).

– KeyGen(MSK,S): On input a set of attributes S, compute m =
⌈
|S|
nk

⌉
, define

ι : S → [m] such that |ι−1(i)| ≤ nk for each i ∈ [m], generate random integers
r, r′, r1, ..., rm ∈R Zp and compute the secret key as

SKS = (K = hα−rb−r′b′1 ,K ′ = hr,K ′′ = hr′ ,K(3) = hr′b′3 , ι,

{K1,l = hr′b′2+rι(att)(
∑nk

i=0 bix
i
att),K2,l = hrl}l∈[m]).

– Encrypt(M,MPK,A): A message M ∈ GT is encrypted under A =
(A, ρ) with A ∈ Zn1×n2

p and ρ : [n1] → U by generating random integers
s, s′, s1, ..., sn1 ,v2, ..., vn2 ∈R Zp and computing the ciphertext as

CTA = (C = M ·As, C ′ = gs, C ′′ = gs
′
, C(3) = (B′

1)
s(B′

3)
s′ ,

{C1,j = Bλj · (B′
2)

sj , C2,j = gsj , C3,j,0 = B
sj
0 }j∈[n1],

{C3,j,i = B
sj
i+1B

−sjρ(j)
i

1 }i∈[nk],j∈[n1]),

such that λj denotes the j-th entry of A · (s, v2, ..., vn2
)⊺.

– Decrypt(SKS ,CTA): Suppose that S satisfies A, and suppose Υ = {j ∈ [n1] |
ρ(j) ∈ S}, such that {εj ∈ Zp}j∈Υ exist with

∑
i∈Υ εjAj = (1, 0, ..., 0)

(Definition 1). Let fnk,l(x) =
∏

att∈ι−1(l)
x−xatt

−xatt
=
∑nk

i=0 ci,lx
i denote, for

each l ∈ [m], the polynomial with roots in ι−1(l). Then the plaintext M is
retrieved by computing

C/
(
e(C ′,K) · e((C(3))εj ,K ′′) · e(C ′′−εj ,K(3)) ·

∏
j∈Υ

(
e(C

εj
1,j ,K

′)

·e(C−εj
2,j ,K1,ι(ρ(j))) · e(

∏
i∈[nk]

C
−εjci,ι(ρ(j))
3,j,i ,K2,ι(ρ(j)))

))
.
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Performance analysis of the selectively secure instantiation.

– KeyGen: 4 + 2|S| exponentiations in H;
– Encrypt: 2 + 2n1 exponentiations in G, 1 + n1nk two-base exponentiations

in G, and 1 exponentiation in GT ;

– Decrypt: roughly 4 + 2
⌈
|Υ |
nk

⌉
pairing operations, and |Υ | multi-base expo-

nentiations with nk bases in G.

H.2 The ABGW17 scheme

We define the ABGW17 [7] scheme in the ciphertext-policy and selective security
setting with optimized encryption as follows.

Definition 16 (The ABGW17 scheme). The ABGW17 scheme is defined
as follows.

– Setup(λ): Taking as input the security parameter λ, the setup generates two
groups G,GT of prime order p with generator g ∈ G, and chooses a pairing
e : G×G→ GT . The setup also defines the universe of attributes U = Zp. It
then generates random α, b, b0, b1, b

′ ∈R Zp. It outputs MSK = (α, b, b0, b1, b
′)

as its master secret key and publishes the master public key as

MPK = (g, h,A = e(g, h)α, B = gb, B0 = gb0 , B1 = gb1 , B′ = gb
′
).

– KeyGen(MSK,S): On input a set of attributes S, this algorithm generates a
random integer r ∈R Zp and computes the secret key as

SKS = (K = hα−rb,K ′ = hr, {Katt = h
rb′

xattb1+b0 }att∈S).

– Encrypt(M,MPK,A): A message M ∈ GT is encrypted under access policy
A = (A, ρ) with A ∈ Zn1×n2

p and ρ : [n1]→ U by generating random integers
s, s1, ..., sn1 ,v2, ..., vn2 ∈R Zp and computing the ciphertext

CTA = (C = M ·As, {C1,j = Bλj (B′)sj ,

C2,j = (B
ρ(j)
1 B0)

sτ(j) , C3,j = gλj}j∈[n1]),

such that λj denotes the j-th entry of A · (s, v2, ..., vn2
)⊺.

– Decrypt(SKS ,CTA): Suppose that S satisfies A, and suppose Υ = {j ∈
{1, ..., n1} | ρ(j) ∈ S}, such that {εj ∈ Zp}j∈Υ exist with

∑
i∈Υ εjAj =

(1, 0, ..., 0) (Definition 1). Then the plaintext M is retrieved by computing

C/
(
e(
∏

j∈Υ C
εj
3,j ,K) · e(

∏
j∈Υ C

εj
1,j ,K

′)/
∏

j∈Υ e(C
εj
2,j ,Kρ(j))

)
.

Performance analysis of the selectively secure instantiation.

– KeyGen: 2 + |S| exponentiations in H;
– Encrypt: n1 exponentiations in G, 2n1 two-base exponentiations in G, and

1 exponentiation in GT ;
– Decrypt: roughly 2 + |Υ | pairing operations.
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Table 4: The performance of various algorithms on the BLS12-446 elliptic curve,
expressed in the number of 103 cycles.

Algorithm In G In H In GT

Exponentiation 926 2076 3101
Fixed-base exponentiation 485 945 -
Multi-base exponentiation

(n+ 1 bases)
926+ 2076+

-
317n 1384n

Hash 1163 2933 -

Pairing operation

Single 6259
Product of n+ 1 6259 + 1462n

Table 5: The actual versus estimated costs of the key generation and encryption
algorithms of RW13 on the BLS12-446 elliptic curve, expressed in the number
of 103 cycles.

KeyGen Encrypt
1 10 100 1 10 100

Actual 1520 8376 76853 1697 9045 82362
Estimated 1504 8272 75952 1682 8792 79892

Difference 1% 1% 1% 1% 3% 3%

I Benchmarks in RELIC

Our benchmarks of several algorithms (e.g., for exponentiation) in RELIC are
summarized in Table 4. The costs are expressed in the number of cycles, but can
be effectively converted in milliseconds by considering the clock frequency of the
device: 1.6 GHz.

J Accuracy of our estimates

Although our estimates in Section 6 are approximated theoretically by bench-
marking various algorithms and extrapolating the costs in the schemes, we argue
that they are realistic. To show this, we approximate the costs of RW13-OE (the
variant of RW13 with an optimized encryption, which is the same as our variant
of RW13) based on the benchmarks of various algorithms in Table 1 of [45].
We then compare the estimated costs with the actual costs. Note that we only
compare the key generation and encryption costs, because our estimation of the
decryption costs assumes that εj ∈ {0, 1}, which is not the case in the implemen-
tation of the access structures in [45]. Table 5 indeed shows that our estimates
are very close to the actual costs of RW13. Note that, because the measurements
in Table 1 of [45] are rounded, a part of the difference between the costs can be
attributed to rounding errors.
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Fig. 3: Decryption costs of our regular and online/offline schemes supporting
MSPs in milliseconds.

K On choosing suitable partition sizes

We briefly discuss how suitable partition sizes can be chosen (if nothing is known
about the application for which it will be used). This can be done by analyzing
the decryption costs of the algorithm for various choices of nk = nc (where the
encryption-decryption trade-off is the most optimal). In Figure 3, the decryption
efficiency of the regular and online/offline variant of our schemes supporting
MSPs are depicted. As these graphs show, the decryption costs of the regular
variant decrease as nk and nc increase. For the online/offline variant, this is
not the case. In fact, we see that for smaller sets of attributes, decryption for
nk = nc > 10 is several milliseconds slower than the case that nk = nc = 5. Only
for larger sets of attributes, these start to (slightly) outperform nk = nc = 5.
Furthermore, the cases that nk = nc ∈ {1, 2} are only faster for one or two
attributes, and then they increase very fast in costs. As such, nk = nc = 5 seems
to provide, on average, the most efficient decryption algorithm.

L Towards analyzing the efficiency of OSWOT-type
non-monotone schemes

To obtain schemes supporting OSWOT-type negations, like proposed in [14], one
can first apply a Boneh-Boyen or full-domain hash (as proposed in Section F.1)
for the labeled universes, and then an unbounded scheme supporting NMSPs for
the attributes in that universe. In this way, during decryption, the decrypting
user only needs to compare the secret key attributes with the negated attribute
in the policy that share the same label. For many conceivable attribute labels—
e.g., name, address of residence, profession, age—we expect the user to have only
a few attributes. In this case, any subset S ′ ⊆ S with the same label is small,
i.e., |S ′| ≈ 1. To see how instantiating our schemes compare to instantiating
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Fig. 4: Decryption costs of the schemes supporting OSW-type negations, for
various |S|, for 100 matching attributes.

Att19-I-CP [11], we also consider the specific cases in which the set of attributes
|S| = 1 in Table 3. On the other hand, for some labels, such as “departments
at a hospital” or “courses provided by a university”, users may possess many
attributes. It is therefore paramount that a scheme also performs efficiently for
the cases in which S ′ is larger, say, for |S|′ ≈ 5. Thus, we also consider the specific
case where |S| = 5 in Table 3. In general, it is valuable to consider both small
and large quantities of |S|, as it illustrates the impact of OSW-type negations
on the decryption efficiency (see Figure 4 for a more detailed efficiency analysis).
Compared to OSW-type negations, using OSWOT-type negations would reduce
the decryption costs for negations, but might increase the decryption costs for
non-negated attributes and the encryption costs. To reduce the encryption costs,
the online/offline versions of our schemes can ensure that the encryption costs
(with only slide trade-off in the decryption efficiency), so the total efficiency of
the scheme is high. Note, however, that this requires the use of a Boneh-Boyen
hash for the labels, and not a full-domain hash.

M Performances in figures

We elaborate on the performance analysis of the schemes analyzed in Section 6.

Storage costs. In Figures 5 and 6, the storage costs of the keys and ciphertexts
are depicted for various input sizes, for the regular schemes and the online/offline
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schemes, respectively. For the online/offline schemes, we have listed the sizes of
the intermediate keys that are stored by the authority that generates keys. We
assume that the authority stores at least one intermediate key of the first type
for every 10 attributes. The tables show that our regular scheme’s ciphertexts
are smaller than those of RW13, AHM+16 and ABGW17. On the other hand,
the ciphertext sizes of the our online/offline scheme are larger by a factor 2-3
than those of HW14, and by a factor 4-5 compared to our regular scheme.

Computational costs. In Figure 7, the computational costs of the key genera-
tion and encryption algorithms are depicted for various input sizes. As expected,
the encryption costs of our scheme are higher than those of the other schemes.
If these are considered to be too high for some specific practical setting, one
could choose to use the online/offline variant (which would increase the cipher-
text sizes). In Figures 8, 9 and 10, the computational costs of the decryption
algorithm are depicted, for various sizes of the set of matching attributes. These
illustrate that, for larger sizes, our decryption algorithms perform even better
compared to the other schemes than for the smaller sizes.
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Fig. 5: Storage costs of the regular schemes (1 KB = 1024 bytes)
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Fig. 6: Storage costs of the online/offline schemes (1 KB = 1024 bytes)
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(a) Key generation
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Fig. 7: The computational costs of key generation and encryption of the regular
schemes.
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Fig. 8: Decryption costs of the schemes supporting MSPs
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(a) |S| = 1
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(b) |S| = 5

Fig. 9: Decryption costs of the regular schemes supporting NMSPs, all negations
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Fig. 10: Decryption costs of the online/offline schemes supporting NMSPs, all
negations
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