
Proactive Secret Sharing over Asynchronous Channels under Honest Majority (with
Ephemeral Roles): Refreshing Without a Consistent View on Shares

Matthieu Rambaud and Antoine Urban
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Abstract—We consider the task of proactive secret sharing
(PSS). Expressed in the setting known as dynamic membership,
the core functionality of a PSS protocol is to enable a committee
of n holders of secret-shares, dubbed as “parties” to safely
hand-over new shares of the same secret to a new committee.
We dub such a sub-protocol as a Refresh. We present a PSS
protocol, named as “Yoso-Verifiable secret sharing” (Y-VSS),
which is the first PSS under honest majority over asynchronous
channels. Moreover, Y-VSS matches an even higher security
level than dynamic membership, known as ephemeral roles or
“Yoso”. Namely, each party speaks only once then erases its
memory.

In more details: a Refresh in Y-VSS takes only 2 message
delays at the actual speed of the network, which is a feature
known as responsiveness, despite the corruption of a tight
minority of t-out-of n :=2t+1 parties in each committee
of share-holders. In each Refresh, each party multicasts one
message of O(n2) bits, which simply means that it sends
it to the next committee over public asynchronous channels,
e.g., by gossiping. By comparison, all existing protocols for
Refresh under honest majority used a terminating broadcast.
But this functionality requires consensus protocols under syn-
chrony, incurring substantial latency and communication, and
insecurity when synchrony fails. Alternatively, previous works
in the “Yoso” model instantiated it from a public ledger,
which incurred even more trust assumptions, latency and cost.
Our technical contribution is to bypass the paradigm of all
previous works, which required parties to reach consensus on
a common set of shares, since consensus under honest majority
is impossible under asynchrony. Even without providing a
common view on a unique set of shares, Y-VSS can be tweaked
into allowing the opening of linear combinations (or multi-
exponentiations) of several secrets.

We demonstrate efficiency of Y-VSS with an implementa-
tion which requires only Elgamal encryption, standard DDH-
based proofs of knowledge, and a bare bulletin board of
public keys. Of independent interest, we provide the first
formalization (and proof) of dynamic asynchronous verifiable
secret sharing in the universal composability framework.

Changelog wrt. version 1 of 2022-05-23: Implementation and rewriting.
The sketched optimization in O(n3) bit complexity was removed (a simpler
one will appear in a follow-up).

1. Introduction

The goal of threshold cryptography is to process in-
formation that should remain secret, and timely deliver a
correct result, despite an adversary corrupting any minor-
ity of participants. Flagship use-cases are the distributed
generation and storage of secret keys [43], either for the
purpose of distributed signing of transactions, or for secure
storage [10]. The baseline technique is known as secret
sharing. It enables any entity, denoted as a dealer, D, to
distribute shares of a secret, to n parties, while ensuring (i)
that an adversary controlling some threshold number of t-
out-of-n parties, will learn no information on the secret, and
(ii) robust reconstruction of the secret from any t+1 valid
shares. To withstand a mobile adversary, i.e. that can corrupt
possibly all parties within the lifetime of the system, [57]
introduced the notion of proactive security. The lifetime of
the system is divided into time periods denoted epochs, and
the adversary is able to corrupt at most t parties per epoch.
We consider the most general setting, which is known as
dynamic. This model considers one separate set of parties
per epoch, denoted as a committee. Since the model is agnos-
tic of the physical computers on which parties of different
committees are hosted, it captures all settings. It covers the
particular case where some party, which would have been
corrupt then reinitialized, would re-enter the protocol with
an empty state, thus being treated as a new participant.
A protocol denoted as a dynamic proactive secret sharing
scheme (PSS) is one such that:
- it enables the dealer to share its secret to the committee
of the first epoch, denoted as C(1);
- it maintains the correctness and liveness invariants that in
each epoch e, the current committee C(e) holds shares of
this same secret;
- to this end, there is a sub-protocol, denoted Refresh, which
enables the committee C(e) of some epoch e, denoted as
exiting, to provide new shares of the same secret to the next
committee C(e+1), denoted as entering. “New shares” are
also denoted as proactivized or refreshed shares. Refresh
maintains the privacy invariant that the adversary does not
gain any incremental information on the secret, despite
having corrupted t parties in every committee so far.

Benefits and challenges of asynchronous protocols. In
all existing PSS protocols, a Refresh requires some form of



Byzantine consensus among the entering committee C ′, very
roughly, to reach consensus on a set of new secret shares
obtained from the exiting committee C . More particularly,
all existing Refreshes under honest majority [10, 55, 42, 17,
43, 38] require a protocol for consistent broadcast with, at
least, eventual termination even if the sender is corrupt, such
as in [35]. We dub this primitive as terminating broadcast, or
BC for short. Implementing BC beyond t < n/3 corruptions
is impossible ([31]) without the extra assumption, known as
synchrony, that communication channels deliver messages
within a fixed public delay ∆. If one message arrives
after ∆, then consistency or termination of the BC is not
guaranteed, which in turn ruins the security or liveness of the
PSS: see Section 7.5. This is why practical implementations
of BC require many rounds and communications of fixed
delay ∆ equal to a conservative estimate of the worst-case
delivery delay (including the gaps between the local clocks
of parties). For instance, these issues have very concrete
impacts on the security of implementations of the protocol
[18], which is the most popular PSS in the context of key-
refresh, known under the name “CMP” [34]. First, it is
suggested by the authors, following [41], to downgrade BC
into a primitive lighter to implement, denoted as “echo”.
In turn, the whole protocol can non-unanimously abort as
soon as one party is corrupt. This suggestion was followed
in a recent industrial implementation [25, 2]. Second, in the
final version of their PSS [17, Figure 6], they replaced the
BC of the first step of [18, Figure 6] with the following
cheaper alternative: BC only the hash, then send the actual
content by point to point. This replacement has the effect
that, when generalizing their PSS to lower thresholds t ([18,
p. 1.2.7]), then we do not have anymore the nice guarantee
of termination as soon as t+1 parties behave honestly.
Moving to systems of larger scale, where the communication
complexity of BC is untractable (see below Table 6), then
state of the art PSS [10, 55, 43, 42] suggest to instantiate
BC from a public ledger, which incurs substantial cost and
trust assumptions.

Asynchronous protocols, by contrast, are secure without
any assumption on the network, and do not require BC.
Better, they run at the actual speed of the network, which
is a property known as responsiveness [58]. The challenge
in constructing them is that it is impossible for a party Pi

expecting a message from another party Pj , to tell apart if
the message from Pj did not yet arrived, or if Pj is corrupt
and did not send anything.

Additional challenge: imposing each party to speak only
once. We furthermore aim at matching a security require-
ment even higher than dynamic committees. It was popular-
ized by [23, 10, 39, 46] under the name “stateless ephemeral
roles”, or “Yoso”. It imposes that every party sends only
one batch of messages in the protocol, then immediately
erases all its memory and quits. Hence, when combined with
mechanisms which somehow hide the link between a party
and its public key, until the moment when it speaks [55,
39, 37, 20, 14], then this prevents adaptive corruptions. To
compensate this requirement, [39] assume the availability of

intermediary committees for each elementary step of their
protocol.

1.1 Main results. We show feasibility of proactive secret
sharing tolerating both honest majority and asynchrony.

Theorem 1. Consider committees of n = 2t+1 parties, in
each of which t are maliciously corrupt. Consider a fully
asynchronous communication network, with a bare bulletin
board of public keys. There exists a proactive secret shar-
ing scheme, denoted as Y-VSS, that securely implements
verifiable secret sharing (VSS) in the UC sense, and such
that each Refresh completes within 2δ, where δ is the actual
network delivery delay of a message, plus the delay of the
publication of their keys by the entering committee.

Y-VSS moreover enjoys the following:
Ephemeral roles A Refresh between an exiting committee
C and an entering committee C ′ (both of n parties), requires
no more than the following communications: each party of
C multicasts one message of O(n2) bits to an intermediary
committee of t+1 parties, denoted C ′collec and dubbed as the
“collectors”. “Multicasts” simply means to send the same
message to all parties of C ′collec over public asynchronous
channels, e.g., by gossiping. Finally, each collector K ′k in
C ′collec responsively multicasts one message of O(n2) bits to
C ′. Responsively means that a collector multicasts no later
than upon receiving messages from all honest parties in C .
Verifiability Provided the additional specification that D
uses a BC to send its (unique) message, thenY-VSS has
verifiability [24, 6], in the strongest sense of [64], namely:
the content of the broadcast of D commits D to exactly one
value s, such that s is the only value that the learner L can
possibly output.
Asynchronous UC security. More generally, we specify in
Section 2 then prove, for the first time, asynchronous proac-
tive verifiable secret (re)sharing in the universal composabil-
ity (UC) framework of [15]. “Asynchronous” means that we
do not resort on any functionality which would guarantee
some form of synchrony, be it explicit ([53, p. 3.2]) or
implicit ([27, §4],[42]).
Minimal trust on intermediaries. Y-VSS remains UC se-
cure even if all collectors are corrupt. Furthermore if every
Refresh is launched 2δ after the previous Refresh was
launched, and as soon as there is one honest party in
each committee of collectors, then the protocol terminates.
Namely, parties are able to open a secret to any entitled
learner (denoted as L): we dub this property as liveness.
Linear combinations. Since, in Y-VSS, parties are not in-
structed to reach consensus on one consistent set of shares,
it is not clear yet how they can open the linear combination
of several secrets. We sketch in Section 7.4 how this can
be achieved, in a slightly non-black-box way. This ex-
tends to secrets from multiple dealers, and various algebraic
structures. Examples are given in Sections 7 and 7.4, such
as linear combinations with polynomial coefficients, and
also multi-exponentiations, which enables threshold BLS
signing.
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Simulatability of PVSS, without straight-line extraction.
A by-product of our UC proof is that it positively answers
in Section 5.1, supported by Appendix B.4, the question
raised by Shrestha-Bhat-Kate-Nayak in [63, p5], asking if
publicly verifiable secret sharing (PVSS) is simulatable. Of
independent interest, we show that, in a strengthening of the
model where all keys of honest parties are always published
in time (as in [10, 39]), then UC security furthermore holds
without requiring straight-line extractability of witnesses
from NIZKs.

1.2 Baseline: re-sharing of encrypted shares. Let us
describe the baseline technique of a Refresh between an
exiting committee C :=C(e) and an entering committee
C ′ :=C(e+1). Let us assume that all t+1 honest parties in C
have in common a vector of n ciphertexts of Shamir shares
of the secret, denoted as c[n] :=(ci)i∈ [n]. Informally, this
means that the decryption of each ci under the secret key
of the i-th party Pi∈ C , is equal to some si, such that there
exists a polynomial f of degree t, such that si=f(i) and
s=f(0). In particular, for any t+1-sized subset U ⊂ [n],
there exists public coefficients (λUi )i∈ U , denoted as La-
grange coefficients, such that s can be reconstructed as
s =

∑
i∈ U λ

U
i si. This will be precised in Definition 3. This

starting point is depicted at the bottom of Figure 1. The goal
of Refresh is that parties in C ′ obtain a vector of ciphertexts
c′[n] of new shares of the same secret. It consists of two
steps.

Resharing First, each player Pi∈ C decrypts its ciphertext
share ci into si, then generates a Shamir secret-sharing of
si. Concretely, it samples a random polynomial fi(X) of
degree t such that fi(0) = si, then for each j∈ [n] =
[1, ..., n]: sets si→j :=fi(j). Those shares (si→j)j∈ [n] of
si are dubbed as sub-shares, or also as re-sharing shares.
Then Pi encrypts them under the public keys of the entering
committee C ′: ci→j :=Encpk′j (si→j), where pk′j is the public
key of the j-th member of C ′. Finally, it appends to the
vector ci→[n] :=(cj)j∈ [n] a non-interactive ZK argument of
knowledge (NIZK AoK), denoted πpvR, proving that ci→[n]

is indeed an encrypted resharing of a decryption of ci.
We dub such a pair (ci→[n], πpvR) as a publicly verifiable
resharing of ci, shortened as pvR.

Combination Consider any t+1 pvRs: (ci→[n], πpvR)i∈ U ,
which are generated out of the same c[n], where U ⊂ [n]
is some t+1-sized subset. We have that the Lagrange lin-
ear combination of their plaintext coordinates: (s′i)j∈ U =
(
∑

i∈ U λ
U
i (ci→j))j∈ U is a vector of (new) Shamir shares of

the same secret s. This is because, as depicted in Figure 1,
the (s′i)j∈ U are, by construction, evaluations of the new
polynomialf′ :=

∑
i∈ U λ

U
i fi(X), whose evaluation at zero

is
∑

i∈ U λ
U
i si = s. We now add a new ingredient: we make

the extra assumption that the public key encryption scheme
supports a certain number of homomorphic linear combi-
nations. Hence, any entity, possibly external, can compute
homomorphically all-at-once the Lagrange linear combina-
tion of the t+1 pvRs and obtain a vector of ciphertexts of

the new shares (s′i)j∈ U :

(1) c′[n] :=L-combineUPKE
(
(ci→[n])i∈ U

)
:=�

i∈U
λUi � ci→[n]

The problem is that it is impossible to implement Byzan-
tine broadcast and consensus beyond t ≥ n/3 corruptions
under asynchrony. Hence, it is hopeless that parties reach
Byzantine consensus on a common subset of t+1 pvRs. In
Section 1.3 we sketch our new computation model, which
overcomes this. In Appendix E we put the baseline technique
in the context of previous works.

1.3 Simpler variant of Y-VSS. We illustrate our tech-
niques on a simpler variant of Y-VSS, which takes 3δ
instead of 2δ, and where parties speak multiple times, hence
which is not “yoso”.
Sharing. The dealer of the secret, denoted D, broadcasts

an encrypted sharing c[n] of its secret.
In a model where D is always honest, then this can simply
be implemented by sending (publicly) c[n] to all. Otherwise,
an actual BC is necessary here, since VSS is strictly stronger
than BC. We now describe a Refresh between an exiting
committee C and an entering committee C ′, as depicted on
Figure 2.
Inputs and Outputs. Each party in C has a local list con-
taining at most t+1 vector of ciphertext shares. A notable
friendly case is the first committee, in which all lists consist
of one unique vector, which is the one broadcast by D. To
be valid and included in a local list, any such vector c[n]
must furthermore come appended with t+1 signatures is-
sued by C . We call these signatures as a quorum verification
certificate, denoted as qvc. Existence of a qvc guarantees
that at least one honest signer, in C , validated that c[n] had
been correctly formed, as we are going to detail. We call
such a pair (c[n], qvc) as a verified proactivized sharing (of
s), denoted as a VPS.
- The correctness invariant maintained is that all VPS ever
formed are vectors of ciphertext shares of the same secret
as in the broadcast of D.

- The liveness invariant maintained is that, if Refreshs are
launched at least 3δ one after the other, then all the lists of
honest parties in C contain at least one VPS in common.

Hence, we depart from all previous works [10, 43], which
required parties in C to start a Refresh with one common
unique system of shares. Assuming that both correctness
and liveness invariants hold for parties in C , the goal of
a Refresh is to achieve, at the end, the same invariant for
parties in C ′.

Publicly encrypted re-sharing. We assume existence of
an intermediary committee denoted as C ′collec and called
as the collectors. The mission of each collector is to
deliver to all parties in C ′ the same output as in the
baseline, namely: a batch of t+1 publicly verifiable re-
sharings, originating from the same vector of shares. For
every VPS: vps = (c[n], qvc) in its local list, each party
of C multicasts to C ′collec: a publicly verifiable resharing
pvri = (ci→[n], πpvR,i) of its encrypted share ci, as in the
baseline, appended with vps.
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new
sharing
c′[n] :=



old
sharing

(ci)i∈ [n]



Vertically: resharings ci→[n] from (Pi)i∈ [n] (up to those missing or badly formed)︷ ︸︸ ︷
Encpk′n( s′n︸︷︷︸

:=f′(n)

) = �
i∈ U

λUi � Encpk′n(si→n) Encpk′n(s1→n︸ ︷︷ ︸
f1(n)

) . . . Encpk′n(si→n︸ ︷︷ ︸
fi(n)

) . . . Encpk′n(sn→n︸ ︷︷ ︸
fn(n)

)

...
...

...
...

...
...

Encpk′1( s′1︸︷︷︸
:=f′(1)

) = �
i∈ U

λUi � Encpk′1(si→1) Encpk′1(s1→1︸ ︷︷ ︸
f1(1)

) . . . Encpk′1(si→1︸︷︷︸
fi(1)

) . . . Encpkn(sn→1︸ ︷︷ ︸
fn(1)

)

↑ . . . ↑ . . . ↑

f
′
(X) :=

∑
i∈ U

λUi fi(X)⇒ f
′
(0) = s f1(X)|f1(0) = s1 . . . fi(X)|fi(0) = si . . . fn(X)|fn(0) = sn

↑ . . . ↑ . . . ↑
s =

∑
i∈ U

λUi si ⇐ s =f(0) s1︸︷︷︸
=f(1)

= Decsk1(c1) . . . si︸︷︷︸
=f(i)

= Decski(ci) . . . sn︸︷︷︸
=f(n)

= Decskn(cn)

Figure 1: Resharing from C to C ′ of one vector of encrypted shares c[n] :=
(
Encpki(si :=f(i))

)
i∈ [n]

of some secret s, under the
keys (pki)i∈ [n] of C . Each Pi∈ U holding c[n] must generate a (publicly verifiable) resharing of si in the form of a vector of shares(
Encpk′

j
(si→j :=fi(j))

)
j∈ [n]

(displayed vertically) encrypted under the keys (pk′j)j∈ [n] of C ′. From correct resharings issued by a t+1-
sized sub-set U ⊂ C of parties, anyone can compute homomorphically their Lagrange linear combination, coordinate-wise, to obtain the
vector of encrypted new shares c′[n] displayed vertically on the left. The n vertical equalities = on the left-upper-hand state imply that
the plaintext coordinates of c′[n] are evaluations of the Lagrange linear combination of the resharing polynomials (fi)i∈ U . Hence, as
concluded in the lower-hand left corner (which illustrates Appendix B.1), these plaintexts also form a sharing of s.

Batching of encrypted re-sharings. Each collector K ′k:
waits until it receives t+1 (valid) messages of the previ-
ous form

(
vps, (pvri)i∈ U

)
from some (t+1)-sized subset

U⊂ [n], all containing the same vps. Then it multicasts
to C ′ the batch: pps :=

(
vps, (pvri)i∈ U ) to C ′. Any entity

receiving such a batch, even from a corrupt collector
K ′k, can be convinced from the NIZKs appended to the
(pvri = (ci→[n], πpvR,i))i∈ U , that they indeed form a
consistent set of correct resharings of this same vps.

Combination and validation. Upon receiving a PPS, any
party P ′j in C ′ homomorphically applies the Lagrange
linear combination, as in Equation (1), to deterministically
obtain a single vector of ciphertext new shares c′[n]. Hence,
by the same reason as in the baseline, c′[n] is a vector of
ciphertexts of shares of the same secret as the one of vps.
Since c′[n] is fully determined from the batch sent by the
leader, we will denote such a batch pps :=

(
vps, (pvri)i∈ U )

as a proven proactivized sharing, denoted as a PPS. Finally,
P ′j multicasts to C ′ : c′[n], with its (validation) signature σj
on it.

Output Upon collecting t+1 such signatures vouching for
the same vector of ciphertexts c′[n], which we denoted as a
quorum verification certificate: qvc′, any party in C ′ obtains
a VPS: vps=(c′[n], qvc′), as desired.

Since there is at least one honest party in the signers of
the qvc, this proves that c′[n] was indeed correctly formed
out of t+1 correct pvRs generated from some same VPS:
vps. Hence, by correctness of the baseline method, c′[n] must
be a vector of ciphertext shares of the same secret as vps.
So by induction on the number of consecutive Refreshes, we
have that for every VPS ever formed in the protocol, it is
necessarily a vector of ciphertext shares of the same secret
as the one initially broadcast by the dealer. This concludes
the proof of correctness. Assuming that liveness holds up to

C , then it holds for C ′ as soon as one collector is honest.
Indeed, this collector K ′k will ultimately receive a re-sharing,
from each honest party in C , generated from the VPS that all
honest parties in C have in common in their list. So it will
be able to multicast a PPS to all C ′, they will all receive
it and all honest parties among them will multicast their
validation signature on the vector of ciphertext shares c′[n]
formed out of C ′. Hence, every member of C ′ will obtain, at
least, this same c′[n] with t+1 signatures, which constitutes
a VPS, within 3δ (along with possibly other VPSs).
Opening of the secret s to any learner L. Parties in a

committee send to L their verifiably decrypted share of
all vps which they have.

By the liveness invariant, there exists at least one VPS: vps,
of which the L will receive at least t+1 verifiably decrypted
shares.

Let us wrap-up the novelties of the new construction.
The main one is that it does not require nor imply a
consensus on one VPS in common. Actually, the same
malicious collector could send one different PPS to each
of the t+1 honest parties in C ′. Nothing prevents each of
these PPS to, subsequently, receive t+1 signatures (one
from the honest receiver, t from corrupt members of C ′).
So nothing prevents that every party of C ′ ends up with
t+1 VPS at the end of the Refresh, of which t of them
are not in common with any other party of C ′. Overall,
Y-VSS is the first proactive secret sharing scheme in which
parties do not know which consistent system of shares
they have in common. The second novelty is the validation
mechanism, involving the quorums of signatures. Without
this mechanism, the parties would have to incorporate a
whole PPS in their resharing messages, instead of the small
vps. Worse, this extra-size would add up at every new
Refresh: a PPS formed out of resharing messages, contains
in particular the PPS out of which these resharing messages
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C C ′

c[n], σi

c[n], σ1

c[n], σn

(
vps, ci→[n], πpvR,i

)
pps

c′[n], σi

Party P1

. . .

Party Pi

vps = (c[n], qvc)
(ci→[n], πpvR,i)←pvReshare

(
ski, ci

)
. . .

Party Pn

...
...

...

Collector K ′k∈ C
′
collec

pps :=
(
vps, (ci→[n], πpvR,i︸ ︷︷ ︸

pvri

)i∈ U
)Party P1

. . .

Party Pi

. . .

Party Pn

Party P ′1

. . .

Party P ′i

. . .

Party P ′n

Party P ′1

. . .

Party P ′i

c′[n] := �
i∈ U

λUi � ci→[n]

validation signature σi on c′[n]

. . .

Party P ′n

...
...

...

Epoch e Epoch e+ 1

Figure 2: Refresh(C, C′) in the simpler variant of Y-VSS in 3δ. Each party Pi of C has a list of verified proactivized sharings, consisting in tuples vps =
(c[n], qvc) where c[n] = (ci)i∈ [n] is a vector of ciphertexts, and qvc a set of t+1 signatures from C on c[n] received at the end of the previous Refresh.
For each such vps in its list (only one is depicted), Pi computes a publicly verifiable resharing of its coordinate ci: (ci→[n], πpvR,i)←pvReshare

(
ski, ci

)
which it sends to the collectors (only one is depicted) appended with vps. Each collector waits until it collects a batch of such encrypted resharings, out
of a subset U⊂ [n] of t+1 parties, all verifiably generated out of the same vps, then multicasts the batch to C′ in the form pps :=

(
vps, (pvri)i∈ U

)
Every party P ′

j ∈ C
′, for every (valid) pps which it receives (only one is depicted), forms c′

[n]
by Lagrange linear combination, and multicasts c′

[n]
with

its validation signature σj , to C′. Upon receiving such a c′
[n]

with t+1 signatures, a party in C′ assembles them into a VPS, which it adds to its list.

were generated, etc. This means that at every new Refresh,
the size of the messages would be augmented by t+1
vectors of ciphertexts, compared to the previous Refresh.
Instead, our mechanism enables that a VPS can be safely
re-used in future refreshes, it needs not containing any other
justification data than the qvc.

1.4 Efficiency. In Section 6 we report on our implemen-
tation, using Elgamal encryption. In Section 7 we discuss
various other instantiations of the encryption scheme and
corresponding NIZKs of resharing, all from existing and im-
plemented ingredients. In particular, the schemes of Paillier-
mod p and Elgamal in-the-exponent are enabled thanks to
a relaxed specification, which we make in Section 3.2,
denoted as perfect correctness after one homomorphic linear
combination.

2. Model and preliminaries

In Section 2.2 we give the security requirement which
we aim at. Then in Sections 2.3 to 2.11 we specify the
resources at hand: dynamic committees of parties, ideal
functionalities for asynchronous communication, publication
of keys etc. and the constraints in presence: corruptions,
and a scheduler instructing to immediately speak-then-erase
one’s memory. In Appendix A.2 we give the full details of
the formalization of dynamic proactive asynchronous secret
sharing in the universal composability (UC) framework of
[15]. In Appendix A.3 we make various comments on the
model and on related ones.

2.1 General notations. The set of integers is denoted as
Z, the set of non-negative ones as N, of which the positive
ones as N∗ = {1, 2, . . . }. We consider integers t ∈ N and

n :=2t+1. Let p denote any prime number larger than n+1,
then Fp denotes the finite field Z/pZ. We will often we abuse
notations by identifying Fp with the set of representatives
[0, . . . , p − 1] in Z. Recall that no secret sharing scheme
is both private and robust beyond the threshold n = 2t+1.
For F a finite set, we denote |F | its cardinality, and f $←− F
the sampling of an element in F uniformly at random. The
empty string is denoted as ⊥. For m an integer, we denote
[m] :={1, . . . ,m}. Vectors of size n are denoted with a
subscript [n], e.g., c[n], and their coordinates as ci, or c[n][i],
for i ∈ [n]. The random inputs of algorithms are written last,
at the right of the |. When algorithms are called without
the random inputs, then this means that the random inputs
are sampled uniformly in specified sets. Uniform sampling
does not actually restrict the generality. We leave implicit
the security parameter. Fp[X]≤t denotes the (t+1)-vector
space of polynomials of degree at most t.

2.2 Dealer, learner, adversary, and security requirement.
For simplicity we consider one PPT machine called as
dealer and denoted as D, which has an input s∈ Fp denoted
as its secret; and one PPT machine denoted learner L, which
may output some value in Fp at some point. We consider a
PPT machine called as the adversary and denoted A. We
are aiming at a protocol which securely implements, in the
UC sense of [15], the ideal functionality of verifiable secret
sharing, denoted as FVSS and formalized in Algorithm 3.
Very informally, a protocol which UC-implements FVSS,
guarantees that, after D completed its task, there is one
unique value s̃ which can possibly be released to L, and
such that furthermore s̃ = s if D is “honest” (see below).
It also guarantees that A is leaked no information on s if
L is “honest”. See below Theorem 6 for more details, then
Appendix A.2 for the rigorous general definition.
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FVSS

Upon receiving (“share”, s) from D for the first time:
stores s, sends “stored” to D and L.
Upon receiving “open” from A: if some s is stored,
send s to the L.

Algorithm 3

2.3 Committees, epochs, malicious scheduler and static
corruptions. We consider an arbitrarily long sequence of
integers e ∈ N∗ denoted “epoch numbers”. For each e, we
consider a set of distinct polynomial time (PPT) machines
C(e) = (P

(e)
1 , . . . , P

(e)
n ), denoted as a committee of share-

holders, or simply committee, for simplicity of fixed size
n = 2t+1. For each e, we also consider a set of t+1
PPT machines C(e)collec, denoted as a committee of collectors.
Members of committees as denoted as parties. All the
committees

(
C(e), C(e)collec

)
e∈N∗

are disjunct, nonwithstanding
any two parties could possibly be hosted on the same
physical computer. Parties have initially no internal state.

We consider an ideal functionality, denoted as the (mali-
cious) scheduler FSch and which is actually fully controlled
by A. FSch can send a signal startsig to any party P (e)

i (for
any i∈ [n] and e∈ N∗) at any moment. From this point,
P

(e)
i can take actions, we say that it is alive. On their side,
D and L start the protocol alive. FSch can also send a
signal, denoted as sharesig, to D. Informally, it instructs D
to share its secret to C(1). Before D receives sharesig, A has
the possibly to (maliciously) corrupt it, in the sense below.
Likewise, A can maliciously corrupt any player P (e)

i before
it receives startsig, up to t parties per committee. A may
also corrupt L at any point. Concretely, a corrupt participant
(D or L or a party) is forever fully controlled by A and
forwards to A all its incoming messages or signals. We
denoted the subset of corrupt parties in each committee C(e)
by I(e)⊂ [n]. The non-corrupt participants as denoted as
honest. The honest parties are indexed as H(e) = C(e)\I(e).

2.4 Asynchrony formalized by ideal functionalities with
delayed output. Following [15] we say that an ideal func-
tionality F sends a delayed output v to R if it engages in
the following interaction: instead of simply outputting v to
R, F first sends to the adversary a request for permission
to deliver an output to R. When we make the precision
public delayed output, then this means that the content of
the value v is furthermore leaked to A in the request. When
the adversary replies, F outputs v to R.

2.5 Public authenticated asynchronous channels FAT
and multicast. All parties in some committee C(e) are
connected with all parties in C(e+1)

collec , themselves connected
with the next committee C(e+1), by public authenticated
message transmitting with delayed output. It is formalized
as the functionality FAT (denoted by FAUTH in [15]). It is
parametrized by a sender S and a receiver R. On input

(input, ssid, v) from S: then FS,R
AT provides R with public

delayed output (ssid, v). To multicast a message to a com-
mittee simply means to send it over FAT to all its members,
e.g., by gossipping [26].

2.6 Private channels to the learner FST. All parties are
furthermore connected to L by secure message transmitting,
formalized by the ideal functionality FST (as in [27]). It is
like FAT, except that the content of the messages sent are
not leaked anymore to A. Compared to the “FSMT” in [15],
we do not allow to adaptively corrupt the receiver L of FST
and subsequently learn the content of the message. Indeed,
corruptions in our model are static.

2.7 Asynchronous proactivity formalized as forced
Refreshes. We now introduce a formalization of what is an
asynchronous proactive secret sharing protocol, compared
to any protocol which would UC-implement VSS. It is
the first one to our knowledge, so may be of independent
interest. We capture it by giving the power to the malicious
scheduler FSch, to send at any point a signal refreshsig to
any shareholder P . In the model of ephemeral roles (“yoso”
[39]) which we consider, this signal imposes P to send at
most one batch of messages, to the next collector committee,
then shut-off itself. This means that P erases all its memory
and quits the protocol. Likewise, when some P receives
open sig, it must send at most one message, to L over FST,
then shut-off itself.

2.8 Bulletin board PKI: FCA. We consider the classical
model of an entity, denoted as certification authority FCA

in [16]. Each party Pi in any committee C(e) can give one
public key of its choice to FCA. Then after A allows it,
FCA publishes the key. Hence, since FCA does not perform
any check of knowledge of a secret key, it as also known
as “bulletin board” PKI or “bare” PKI [canetti14]. In our
simple model, FCA also publishes the identity of the issuer
of the key. But Y-VSS seamlessly carries over the model
[10] where FCA would simply publish that the key belongs
to the “i-th role of C(e) ”.

2.9 Terminating reliable broadcast from D to C(1).
We allow a single call to the following ideal broadcast
functionality FD, C

(1)

BC , dubbed as FBC. If D is honest, FBC
waits to receive some value x from D, then delay-outputs
x to every party in C(1). If D is corrupt, FBC requests from
A a value, then, upon receiving some y from A, delay-
outputs y to each party in C(1). In a model where D would
always be honest, then FD, C

(1)

BC can be implemented as a
mere multicast.

2.10 NIZKs. We will use non-interactive zero knowledge
arguments of knowledge, which we dub as NIZK AoKs,
or simply NIZKs. For simplicity, we capture them by the
ideal functionality FNIZK, defined in [44] and recalled in
Appendix A.1.
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2.11 Signature scheme. Parties have access to any standard
digital signature scheme. We will sometimes loosely refer
to the ability to “combine” t+1 signatures on the same
message. The reader may simply parse this as the concatena-
tion of the t+1 signatures. More efficiently, this could also,
e.g., be understood in the sense of so-called multisignatures
[60].

3. Publicly Verifiable Secret (Re-)Sharing

3.1 Overview and roadmap. In Section 3.3 we recall the
textbook Shamir secret sharing. In Section 3.2 we provide
toy specifications on the public key encryption scheme,
under which parties will encrypt the shares. These toy
specifications, which may be of independent interest, will
be enough for the exposition of Y-VSS. In Section 3.4 we
introduce the notion of a vector of ciphertext shares, which
enables to formalize correctness and simulatability of the
baseline of Section 1.2.

3.2 Toy specifications of the public key encryption.
We consider a public key encryption scheme, denoted
PKE, where, for simplicity, we consider the plaintext
space to be Z. The key generation function is denoted
as KeyGen( | ρkey∈Rkey) → sK × pK, where Rkey is
the space of key randomness. The ciphertext space is de-
noted as C, and the randomized encryption function as
Enc :

(
pk∈pK, x ∈ Z | ρenc∈Renc

)
→ C, where Renc is

the space of encryption randomness. By convention, any
pk /∈ pK is denoted as ⊥, and encryption under ⊥ returns
⊥. We require indistinguishability between encryptions of
two chosen plaintexts (IND-CPA). We introduce the follow-
ing new specification (further formalized in Definition 2).

Definition 2 (Perfect correctness mod p after one ho-
momorphic linear combination of size t+1). We con-
sider functions denoted as the decryption mod p Dec :(
sk∈ sK, c∈ C) → (Fp,⊥); the homomorphic addition
� : C × C → C and scalar multiplication � :
Fp × C → C. Then for any key randomness ρkey,
(sk, pk)←KeyGen( | ρkey); for any up to t+1 plaintexts
(xi)i∈ [t+1]∈ Ft+1

p , randomnesses (ρenc,i)i∈ [t+1]∈Rt+1
enc

and coefficients (λi)i∈ [t+1]∈ Ft+1
p , we require:

(2) Dec
(
sk, �
i∈[t+1]

(λi � Enc(xi | ρenc,i)
)
=

t+1∑
i=1

λixi mod p .

Without loss of generality we consider � and � to be
deterministic (when not, as, e.g., in [21], then a default
randomness parameter can be specified in the protocol). Def-
inition 2 may be of independent interest, since it relaxes the
requirement of correctness mod p after unlimited linearly
homomorphic operations, e.g., as in the resharing scheme
[20]. This enables to instantiate PKE from strictly more
schemes, as the Paillier mod p, and also the el-Gamal-in-
the-exponent, described in Section 7. The perfect correctness
guarantee implies that the decryptor P , is binded to one
unique value for the decryption, as long as the encryptors

proved knowledge of plaintexts no larger than p, with en-
cryption noises ρenc,i within specified bounds, and that P
proves knowledge of some key generation randomness ρkey,
within specified bounds, explaining its public key. This holds
even if the encryptors and/or P did not use the prescribed
distributions to sample their randomnesses. Noticeably, this
“decryptor-binding” guarantee is also necessary in [39, 10,
38]. Although the last two do not require homomorphic ad-
ditivity, their robustness hold only if ciphertexts of publicly
verifiable re-sharings commit their receiver to its new share.
By contrast, some related specifications of PKE do not imply
this decryptor-binding guarantee: [9] (Semi-HE), and [65]
(committing encryption). We illustrate in Appendix F.3 how
the specified ranges can be enlarged, in order to allow slack
in the NIZKs of range.

3.3 Shamir secret sharing over Fp. Let us recall the
algorithm of Shamir secret sharing, without verifiability:
Share(s∈ Fp): sample a random polynomial f of degree
at most t in the subspace of those evaluating to s at 0,
output the vector of Shamir shares of s: s[n] :=(si)i∈ [n],
where si :=f(i) ∀i∈ [n].

We then denote f as the (unique) sharing polynomial defin-
ing s[n]. We have the t-privacy property that, for a fixed
s, any t-sized subset I ⊂ [n] of coordinates (si)i∈ I output
by Share(s), vary uniformly at random in Ft

p. We have the
t+1-reconstruction property that, for any subset U ⊂ [n] of
size t+1, denoting the Lagrange coefficients associated to
U as λUi :=

∏
j∈U\{i}

−j
i−j , ∀i∈ U , then the following linear

map, denoted as Lagrange combination:

(3) L-combineU : (si)i∈ U −→
∑
i∈ U

λUi si

is such that s = L-combineU ((si)i∈ U ).

3.4 Baseline method of encrypted re-sharing: correct-
ness (and simulatability). In what follows we consider as
a public parameter a list of public keys (pki)i∈ [n]∈ (pKt
⊥)n. In order to make compact statements, we introduce
some useful terminology. For pk ∈ pK, we say that s̃k ∈ sK
is an explainable secret key of pk if there exists ρkey ∈ Rkey

such that (s̃k, pk) = KeyGen(|ρkey). We say that x̃∈ Fp

is an explainable decryption of c under some pk ∈ pK,
if there exists an explainable secret key s̃k of pk such
that Dec(s̃k, c) = x̃. A proof of correct decryption of c
into x∈ Fp under pk, shortened as πpvD (which stands for
publicly verifiable decryption), is a NIZK AoK of such
a s̃k. In particular, πpvD implies that x is an explainable
decryption of c under pk.

Definition 3 (Ciphertext shares, opening shares and thresh-
old opening). We say that c[n] = (cj)j∈ [n]∈ Cn is a vector
of ciphertext shares iff:
unicity for every j∈ [n], cj has at most one explainable

decryption sj under pkj . When such sj exists, we denote
it as an opening share;

polynomial There exists a polynomial f∈ Fp[X]≤t such
that, for every opening share sj , sj =f(j).
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We now introduce terminology:
- if there exists at least t+1 coordinates j∈ [n] such that
cj has an explainable decryption, then f is uniquely deter-
mined. We denote it as the sharing polynomial. We then
say that c[n] is a vector of ciphertext shares of s :=f(0), s
being denoted as the (threshold) opening of c[n], and, by
extension, sj :=f(j), ∀j∈ [n] as the opening shares.

Considering the latter extended definition, we may dub
as “virtual” the opening shares sj for which no explainable
decryption of cj under pkj exists. In our use-case of Y-VSS,
virtual shares of corrupt parties will be those for which
the key pkj is badly formed. Nevertheless, virtual shares
will be a convenient computational intermediary, since the
simulator in the UC proof of Section 5.1 will take as input
all opening shares of corrupt parties, irrespective of those
virtual or not. More precisely, one task of the simulator will
be to simulate fake opening shares of honest parties into any
arbitrary secret s∈ Fp. To this end, it will apply what we
now define as the deterministic algorithm called simulation
of shares and denoted as ShSim. On input any s∈ Fp and
(si)i∈ V ∈ Ft

p for some t-sized subset V ⊂ [n], ShSim inter-
polates the unique polynomial f∈ Fp[X]≤t through them,
and outputs (f(i))i∈ [n]\V . We also formalize an algorithm,
denoted as ShInfer, which does the task of infering the
opening shares of corrupt parties (including virtual ones)
from t+1 opening shares of honest parties. Namely, on
input any (si)i∈ U ∈ Ft+1

p for a t+1-subset U ⊂ [n], ShInfer
interpolates the unique polynomial f∈ Fp[X]≤t through
them, and outputs (f(i))i∈ [n]\U . By definition of a vector
of ciphertext shares, we deduce:

Property 4 (Perfect simulatability and inference of opening
shares). Let c[n] = (ci)i∈ [n] ∈ Cn be a vector of ciphertext
shares for which a threshold opening s∈ Fp exists, in the
sense of Definition 3, and thus for which all n opening
shares (si)i∈ [n] are defined, then
- ∀I⊂ [n] of size t, (si)i∈ [n]\I=ShSim(s, (sj)j∈ I);
- ∀U⊂ [n] of size t+1, (sj)j∈ [n]\U=ShInfer((si)i∈ U ).

We can now succinctly capture correctness and simulata-
bility of the baseline method of Section 1.2 as follows. For
readability with Figure 1, we re-name the keys as (pk′j)j∈ [n].

Property 5. Consider any vector of Shamir shares
(si)i∈ [n] of some secret s∈ Fp, any t+1-sized
subset of indices U⊂ [n], any polynomials of degree
t+1: (fi)i∈ U , si→j :=fi(j) ∀i∈ U , j∈ [n] and any
encryption randomnesses (ρenc,i,j)i∈ U ,j∈ [n]. Then,
consider the vectors of encryptions of these re-sharings:
ci→[n] :=

(
ci→j :=Enc(si→j | ρenc,i,j)

)
j∈ [n]

, ∀i∈ U , we
have that their Lagrange homomorphic linear combination
c′[n], as made explicit in Equation (1), is a vector of
ciphertext shares in the sense of Definition 3.
If at least t+1 keys pkj are explainable, then c′[n]
has sharing polynomial equal to f

′
:=
∑

i∈ U λ
U
i fi and

threshold opening equal to s. Else, c′[n] has no threshold
opening in the sense of Definition 3.

Proof. Definition 2 guarantees that c′[n] is a vector of cipher-
text shares. In the case “If ”: the claim on the sharing poly-
nomial follows from Definition 2 then unique interpolation
of f′ from t+1 values. We have f′(0) = s by Equation (3)
(see Appendix B.1 for more details), hence c′[n] has threshold
opening s.

4. Self-contained description of Y-VSS

We now present the actual version, in 2 messages delay
(2δ). Before we start, let us outline the difference with the
simplified version in 3 messages, presented in Section 1.3.
Now, the entering committee C ′ does not need to speak at
the end of a Refresh. To enable this, we somehow “pipeline”
the validation messages of C ′, into the messages which C ′
will later send in the next Refresh, as exiting committee. To
accommodate this, exiting and entering parties in a Refresh
do not anymore have their inputs and outputs which are
local lists of VPS, but instead, local lists of PPS.

The protocol Y-VSS consists of three subprotocols: for
sharing, refreshing and opening a secret. They are described
in Sections 4.1 to 4.3 and are further formalized in Ap-
pendices C.1 to C.3. For simplicity, all the description and
the proof of Y-VSS impose that, upon receiving refreshsig
(or sharesig), every member of an exiting committee C (or
the dealer D) aborts if it cannot retrieve from the PKI
a complete list of n public keys in pK for the entering
committee C ′. We explain in Appendix C.4 how to remove
this simplification. When a party does not abort, then it must
be the case that the list of keys retrieved includes all those
of the t+1 honest parties. This enables the simplification
that a vector of ciphertext shares always has n opening
shares, in the extended terminology of Definition 3, and a
threshold opening. We thus assume from now on the public
parameter of a list of n public keys for every committee,
e.g., denoted as (pki)i∈ [n] and (pk′i)i∈ [n] for some exiting
C and entering C ′. The assumption implies that all t+1
honest parties published their keys.

4.1 Y-VSS Share

The dealer D generates a vector of n shares of its
secret s: (si = f(i))i∈ [n], under the Shamir secret-sharing
scheme. Then it generates the n-sized vector of encryptions
c[n] :=

(
Encpki(si)

)
i∈ [n]

of the shares under the public keys

of the parties of the first committee C(1). It also generates
a NIZK AoK, denoted πpvS, of: s, the sharing polynomial
f, and the encryption randomnesses explaining c[n]. Fol-
lowing the tradition, we call such a pair (c[n], πpvS) as a
publicly verifiable sharing, denoted as a pvS and further
formalized in Appendix B.3. Finally, D broadcasts to C(1)
(c[n], πpvS) appended with its signature σD on it. For con-
sistency with the rest of the protocol, we denote this triple
as ppsD :=(σD, πpvS L−→ c[n]) and call it as a proven proac-
tivized sharing relatively to C(1). If parties of C(1) are deliv-
ered something else from the broadcast, which can happen
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if D is corrupt, then they replace it by a pre-defined default
PPS of 0, denoted as pps0 =

(
⊥,⊥ L−→ (Encpki(0))i∈ [n]

)
.

4.2 Y-VSS Refresh(C, C′)

We now describe a Refresh between a committee
C :=C(e) which is about to exit, and the entering one
C ′ :=C(e+1). In Sections 4.2.1 and 4.2.2 we describe the
outputs of C ′ and inputs of C . In Section 4.2.3 we describe
the first step, which is the multicasts by each parties of
C to the committee C ′collec of the t+1 “collectors”. In
Section 4.2.4 we describe the second step, in which each
collector responsively multicasts a PPS, to C ′. Then in
Section 4.2.5 we formalize the reception by C ′ of these PPS
and their appending to their lists of outputs.

4.2.1 Outputs of C ′. Each party P ′j of the entering com-
mittee C ′ starts with an empty state, initializes an empty
list denoted ListOfPps′j , and progressively adds up to t+1
objects in this list, denoted as proven proactivized sharings,
shortened as PPS. Broadly speaking, a PPS relatively to
committee C ′, consists of a vector of ciphertext c′[n]∈ Cn,
appended with enough data proving that c′[n] is formed
by applying the baseline method described in Section 1.2
and Equation (1). In more details, a PPS relatively to C ′
is a tuple of the form pps′=

(
(c[n], qvc), {pvri}i∈ U

)
, and

denoted as
pps′ =

(
vps :=(c[n], qvc), {pvri}i∈ U L−→ c′[n]

)
, where:

- c[n] = (ci)i∈ [n]∈ Cn is a vector of ciphertexts and qvc
is the concatenation of signatures on c[n] issued by t+1 out
of n parties of C . We denote qvc as a quorum verification
certificate because, roughly, each signer attests that c[n]
was itself formed by applying the baseline method in the
previous refresh, when C was entering. Hence, we de-
note such a pair vps=(c[n], qvc) as a verified proactivized
sharing, dubbed as a VPS. We say that two VPSs are the
same as soon as their c[n] are the same, nonwithstanding
their qvc can have different sets of signers;

- U⊂ [n] is a subset of size t+1;
- pvri = (ci→[n], πpvR,i), for i∈ U , is what we denote

as a publicly verifiable re-sharing of the coordinate ci of
the i-th party Pi∈ C . It consists of a vector of ciphertexts
ci→[n]∈ Cn, and of a NIZK AoK, denoted as πpvR,i, of:
Pi’s decryption key, of a decryption si of ci, of a (Shamir
sharing) polynomial fi∈ Fp[X]≤t and of encryption ran-
domnesses, proving that ci→[n] is an encrypted sharing of
si under the keys of C ′. pvRs are further formalized in
Appendix B.3.

- c′[n]=�
i∈U

λUi �ci→[n], exactly as in Equation (1). Although

c′[n] is not actually included in the pps′, we display it
because it is publicly efficiently computable from pps′.

4.2.2 Inputs of C . Each party Pi∈ C starts with a list of
PPS: ListOfPpsi. In particular if C = C(1), then this list
consists of the unique PPS obtained from the sharing step.

4.2.3 Encrypted re-sharing. Upon receiving the sig-
nal refreshsig, each party Pi∈ C , for every PPS:
pps=

(
. . . , . . . L−→ c[n]=(ci)i∈ [n]

)
in its list ListOfPpsi,

forms a triple
(
c[n], pvri, σi

)
as follows:

- it generates a publicly verifiable resharing of its encrypted
share ci, denoted as pvri = (ci→[n], πpvR,i). Concretely: Pi

decrypts ci into si, generates a Shamir sharing (si→j)j∈ [n]

of si, then encrypts each coordinate si→j under the public
key of P ′j ∈ C

′ into ci→j . It obtains the vector of encrypted
shares ci→[n] :=(ci→j)j∈ [n]. It appends to it a NIZK AoK
of correct resharing: πpvR,i. This is depicted in Figure 1.

- it generates a signature on c[n], denoted σi, by which Pi

attests that c[n] is obtained from a (valid) PPS.
Pi multicasts to C ′collec, all at once, all the triples obtained,
then shuts-off. We denote such a triple as a resharing
message.

4.2.4 Selection & combination of re-sharings into a PPS.
Each collector K ′k∈ C

′
collec waits until it receives, for some

(t+1)-sized subset U⊂ [n], resharing messages from parties
in U formed out of the same vector of ciphertext shares c[n]:
(4)

(
c[n], pvri, σi

)
, ∀i∈ U .

Then it combines the t+1 signatures into a qvc for
c[n], thereby obtaining a verified proactivized sharing:
vps :=(c[n], qvc). It multicasts to C ′ the PPS obtained:(
vps, {pvri}i∈ U L−→ ...

)
, then shuts-off.

4.2.5 Ever-growing outputs of C′. Upon receiving a PPS,
any party P ′j ∈ C

′ adds it to its ListOfPps′j .

4.3 Y-VSS Opening of a secret

We consider any arbitrary committee C(eo)
which is instructed to open the secret to a
designated learner L. Each party Pi∈ C(eo), for every
pps(eo) :=

(
. . . , . . . L−→ c

(eo)
[n] =(c

(eo)
i )i∈ [n]

)
in its list

ListOfPpsi (containing up to t+1 elements):
- generates a decryption si of its encrypted share ci, which
we dub as an opening share, generates a NIZK of correct
decryption under its public key, denoted as a πpvD,i, to
obtain the triple (c

(eo)
[n] , si, πpvD,i).

It privately sends to L all the (up to t+1) triples obtained.
Upon receiving any t+1 such triples for some same c(eo)[n] ,
L outputs the Lagrange linear combination of the (si)i.

5. Analysis of Y-VSS

In Theorem 6 we state security and liveness of Y-VSS.
Since the proof of liveness is even simpler than the one
sketched, in Section 1.3, for the simpler variant in 3δ, we
defer it to Appendix D.2. In Proposition 7 we state and
prove a useful intermediary property of Y-VSS denoted as
correctness, which is happens to be synonymous of “public
verifiability” [64]. We defer to Appendix D.3 the proof of
UC security when the dealer D is corrupt, since it essentially
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rephrases correctness. Then in Section 5.1 we prove UC
security in the harder case where L is honest.

Theorem 6. Protocol Y-VSS in the (FBC, FCA, FNIZK, FAT,
FST, FSch)-hybrid model is such that:

(Security) it UC-implements FVSS, in the precise sense of
Appendix A.2, which follows [15].

(Liveness) If L is honest, then it outputs in any execution
which is complete in the following sense. Borrowing the
terminology of [51], for some 1 ≤ eo, we say that an
execution is complete up to eo, or complete for short, if:

- [LF] A responds, at some point, to every request from the
functionalities (FBC, FCA, FNIZK, FAT, FST).

- [LS] If D is honest: FSch sends sharesig to D, only after A
has allowed the publication on FCA of all keys of honest
parties in C(1);

- [LK] for all e∈ [1, . . . , eo−1] (possibly empty), then all
honest parties of C(e+1) receive startsig and A allows the
publication of their keys on FCA. FCA does not publish any
further key after the first party in C(e) received refreshsig.
This implies that, upon receiving refreshsig, all parties in
C(e) are able to recover from FCA the same list of public
keys, including all those of honest parties.

- [LR] for all e∈ [1, . . . , eo−1] (possibly empty), after all
honest keys of C(e+1) were published on FCA, but at least
2δ after the last party of C(e - 1) received refreshsig, then
FSch sends refreshsig to each party P (e)

i ∈ C
(e);

- [LO] FSch sends Open to all honest parties in C(eo).
Proposition 7 (Correctness of Y-VSS). Consider the output
of the broadcast of D, if it exists. There exists a value,
denoted as s̃, which is fully determined from such that s̃ is
the only value that L can possibly output. More precisely: if
this output is a (valid) pvS, then s̃ is equal to its threshold
opening (in particular, is D’s secret if it is honest), else, s̃
equals 0.

Proof. Let us define s̃ as: either the threshold opening of
the broadcast of the D, if it is a (valid) pvS, or, s̃ :=pvs0
the pre-defined pvS of 0. Let us first show that correctness
follows from the following:
- Claim: for any e ≥ 1, then every PPS relatively to C(e)
ever formed in the execution, has its last component c′[n]
which is a vector of ciphertext shares in the sense of
Definition 3, and which has threshold opening equal to
s̃.

Indeed, when L receives t+1 triples for the same c
(eo)
[n] ,

then since one of the senders is honest, it must be that c(eo)[n]
was formed (“ L−→ ”) out of a PPS relatively to committee
C(eo). It remains to show the Claim, by recursion on e.
It trivially holds for e=1. Let us assume that it holds
up to e. Let us prove that the claim holds for all PPSs
relatively to committee C ′ :=C(e+1), which will conclude
the recursion. Let us consider one such PPS pps′. Its first
component is a VPS: (c[n], qvc), so since there is at least
one honest signer, this proves that c[n] was formed (“ L−→ ”)

out of a PPS relatively to committee C :=C(e). Hence
c[n] is a vector of ciphertext shares of s̃ by the recursion
assumption. Let us denote as (si)i∈ [n] its opening shares.
Finally, consider the t+1 publicly verifiable resharings:
pvri = (ci→[n], πpvR,i) ∀i∈ U enclosed in pps′. For each
i∈ U , the NIZK AoKs πpvR,i guarantees that ci→[n] is of the
form (Encpk′j (si→j |ρenc,i,j))j∈ [n], where the (si→j)j∈ [n]

form a vector of shares of si. Hence, by Property 5 we
conclude that c′[n] is a vector of ciphertext shares, with
threshold opening equal to the same s̃.

5.1 Proof of UC security in case of a honest dealer D.
We start by considering a real execution REALA of Y-VSS,
with adversary A fully controlled by the environment E . E
assigns its input to D and listens to the output (if any) of
L. Then we go through a series of hybrid games, which
we show indistinguishable from one with the next, from the
point of view of E . In the final game, denoted as Hyb0Share,
the view of A is generated without any direct interaction
with the honest parties. In particular, the D broadcasts a pvS
of 0, instead of its actual secret. The only indirect interaction
with honest parties happens in the opening, via FVSS, which
delivers the actual value of s, which helps us to simulate the
opening shares of s. So what we are describing in Hyb0Share

is a simulator which interacts only with FVSS and E , which
concludes the UC proof.

The purpose of the games HybShSim and HybsOpen,
which are not needed if L is honest, is to make so that
the view of E is generated without using the private keys
of honest parties of C(eo), nor using the plaintext shares of
honest parties of C(eo). This allows to apply IND-CPA of
PKE in subsequent games. In particular in Hyb0Refresh[1, n]
we achieve that all re-sharings are actually mere pvS(0).

Game REALA. This is the actual execution of the
protocol Y-VSS with environment E , adversary A and ideal
functionalities FBC, FCA, FNIZK, FAT, FST, FSch. We make
the change (not formalized by a game) that FNIZK does not
check validity of witnesses (if any) received from honest
parties nor from D. This does not change its outputs, since
honest participants always provide correct witnesses when
querying FNIZK in the actual protocol.

Game HybShSim. Unchanged if L honest. For
each PPS: pps′=

(
(c[n], qvc), {pvri}i∈ U L−→ c′[n]

)
opened

by C(eo) to L, the opening shares of honest parties in C(eo)
are now computed as ShSim(sc′

[n]
, (s′j)j∈ I′), where:

- sc′
[n]

is the threshold opening of c′[n];

- I ′⊂ [n] are the t indices of corrupt parties in C(eo);
- (s′j)j∈ I′ are the opening shares of c′[n] of corrupt parties,
computed as follows. Each pvri = (ci→[n], πpvR,i), ∀i∈ U ,
must be of the form ci→[n] =

(
Encpk′j (si→j |ρenc,i,j)

)
j∈ [n]

,
where (si→j)j∈ [n] is a vector of shares of si. For a honest
party this is automatic since it follows Y-VSS. For a corrupt
party this is guaranteed by the NIZK πpvR,i. We finally set
s′j :=

∑
i∈ U λ

U
i si→j , ∀j∈ I ′

Claim 7.1. REALA ≡ HybShSim.
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By the If case of Property 5, the method to compute
the (s′j) indeed returns the opening shares of c′[n]. Then, by
Property 4, ShSim does return the opening shares of c′[n]
with indices in [n] \ I .

Game HybsOpen. Unchanged is L honest. Else (if
L corrupt), this game differs from HybShSim in that the input
sc[n]

to ShSim is replaced by the actual secret s of the dealer
D.

Claim 7.2. HybShSim ≡ HybsOpen.

Proof. By Proposition 7, for each PPS: pps′ =
(. . . , . . . , c′[n]) relatively to committee C(eo), we have that
c′[n] is a vector of ciphertext shares with threshold opening
equal to s.

From this point, neither the secret keys of honest parties
in C(eo), nor their plaintext shares, are used anymore to
generate the view of E .

Games Hyb0Refresh[e, i] for each e∈ [eo - 1, ..., 1]
(in this backwards order) then each i∈ [0, ..., n].
We set Hyb0Refresh[eo - 1, 0] :=HybShSim. Then for each
e∈ [eo - 1, ..., 1] and i∈ [0, ..., n]: if P

(e)
i+1 is corrupt

then we leave Hyb0Refresh[e, i+ 1] :=Hyb0Refresh[e, i] un-
changed, otherwise if it is honest, then we modify
Hyb0Refresh[e, i] into Hyb0Refresh[e, i+ 1] as follows. For
each pps = (. . . , . . . L−→ c

(e)
[n] =(c

(e)
i )i∈ [n]

)
in the local

list of P (e)
i+1, in place of the resharing c

(e)
i→[n] of c(e)i that

P
(e)
i+1 generates, we substitute the vector of ciphertexts
c
(e)
i→[n] :=Encpk′j (sj)j∈ [n], where the t shares of the corrupt

indices (sj)i∈ I(e+1) are sampled uniformly at random in
Ft
p, while the t+1 others are set to 0. In particular, the

secret decryption key of P (e)
i+1 is not used anymore. Notice

that FNIZK still issues proofs of correct resharing, since
it does not check any witness from honest parties. When
reaching i = n, if e ≥ 2, then we set Hyb0Refresh[e −
1, 0] :=Hyb0Refresh[e, n].

Claim 7.3. HybsOpen ≡ Hyb0Refresh[1, n]

Proof. It is enough to show that for each e∈ [eo - 1, . . . , 1],
for i ≤ n−1 such that P (e)

i+1 is honest, then Hyb0Refresh[e, i] is
indistinguishable from Hyb0Refresh[e, i+ 1]. Let us consider
one of the PPSs: pps = (. . . , . . . L−→ c

(e)
[n] = (c

(e)
i )i∈ [n]

in the list of P (e)
i+1. The high level idea simply consists

in showing indistinguishability between the two re-sharings
ci→[n] of ci: the actual one, in Hyb0Refresh[e, i], and the bogus
one, in Hyb0Refresh[e, i+ 1]. Let us make the simplifying
Assumption that PKE perfectly hides the plaintext of the
coordinates of ci→[n] encrypted under the keys of honest
parties. Then, the view of E is fully determined by the t
plaintext coordinates (si)i∈ I , where I⊂ [n] is the t-sized
subset of corrupt parties. But by t-privacy of Shamir sharing,
they also vary uniformly at random also in the actual ci→[n].
So the two distributions of views are equal. It remains
to substantiate this Assumption, which will conclude this

sktech proof. The reason is that we have that the view of E
is generated without using (i) the secret decryption keys of
parties in Ce+1, (ii) nor the plaintext shares of ci→[n] with
indices of the honests parties in C(e+1). Indeed, if e = eo−1
then (i) and (ii) are thanks to HybsOpen, while if e < eo−1
then (i) and (ii) are thanks to Hyb0Refresh[e+ 1, n]. So by (i)
and (ii) we are in the conditions of applicability of IND-CPA
of PKE.

In Corollary 11 of Appendix B.4 we give a formal
statement and proof of the indistinguishability between the
two ci→[n], denoted as “IND-CPA of re-sharing”. In Ap-
pendix D.1 we formalize the reduction from distinguishing
between Hyb0Refresh[e, i] and Hyb0Refresh[e, i+1]. A subtlety
in both the reduction and statement is that the input of the
re-sharing is a ciphertext ci, not a plaintext secret. So in
order to escape issues with IND-CCA, we have to consider
an adversary concatenating enough entities so that it can be
extracted, from the whole, a plaintext of ci. Another subtlety
is that in the case e=eo - 1, then the view of E is generated
from the plaintext sub-shares of corrupt parties, via ShSim.
However, it could be the case that the keys of corrupt parties
are badly generated, so that E is unable to decrypt their
plaintext sub-shares. So in order to make the reduction work,
we somehow leak to E these plaintext shares then capture
this leakage in Corollary 11.

Game Hyb0Share. We modify Hyb0Refresh[1, n] in that
the dealer D plays the protocol as if it had input 0, even
though it still sends s to FVSS.

Claim 7.4. Hyb0Refresh ≡ Hyb0Share

Proof. Since Hyb0Refresh[1, n], to generate the view of E , we
neither use the private decryption keys of honest parties of
C(1), nor the plaintext shares of the pvS of the dealer. Thus
we can apply IND-CPA of encrypted sharing (Proposition 9)
to the pvS of D, which is encrypted under the public keys
of C(1).

Game HybShInferOpen . If L is honest, this game is iden-
tical to Hyb0Share. Else (is L is corrupt): for each PPS:
pps′ = (. . . , {pvri}i∈ U , c′[n]) held by at least one honest

party in C(eo), we now change the method to infer the
opening shares of c′[n] of corrupt parties fed into ShSim.
Precisely, in the method in HybShSim, for each pvri, i∈ U (if
any) generated by a corrupt party i in C(eo−1), the plaintext
coordinates (si→j)j∈ I of corrupt parties were extracted
from the NIZK AoK of resharing. Instead, we now infer
the opening shares of pvri of corrupt parties as follows.
We use the secret keys of the t+1 honest parties in C(eo)
to correctly decrypt their opening shares (si→j)j∈ [n]\I of
c′[n]. Then we use them as inputs of ShInfer, i.e., we do
a polynomial interpolation from t+1 points, to obtain the
desired t opening shares (si→j)j∈ I of corrupt parties, of
c′[n]. We claim that the (si→j)j∈ I obtained are unchanged.
Indeed, the (si→j)j∈ [n]\I used are by definition opening
shares of c′[n]. So since c′[n] is a vector of ciphertext shares,
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then the Lagrange interpolation which we did (formalized
by ShInfer in Property 5) does return (si→j)j∈ I .

6. Our Implementation, using Elgamal

The plaintext space is not Z but instead an abelian group,
denoted G in additive notation, of known prime order q and
in which DDH is hard (as in the second item Section 7.4)
The observation which we make is that all elementary
tasks needed for re-sharing, i.e.: key generation, decryption,
polynomial evaluation and encryption, are linear maps over
source and target spaces of the form (Z/qZ)n0 ×Gn1 . Thus
the relation to be proven in NIZK for resharing is itself a
linear map. It could be proven using the elementary protocol
of [4, p. 4.1], which is compressible using Bulletproofs-
like techniques [4, p. 4.3]. After the first version of this
work, [20, Fig. 10] independently formalized NIZKs of
resharing for Elgamal, denoted as “HEPVSS”. They use an
even simpler proof of preimage of linear maps (their Fig. 2,
with proof equal to one element of the source and one of the
target) which does not even require a public uniform random
string. We thus implemented Y-VSS using HEPVSS. We
used about 1000 lines of Go code, with operations in the
254-bit “pairing-friendly” BN254 Barreto-Naehrig curve [7]
over a 254-bit base field. Our code uses the gnark-crypto
[12] library, and we use EdDSA for signing and SHA256
for hashing. We run this program on a laptop that we
had access to, featuring Apple M1 CPU, i5-2500 running
at 3.2GHz with 8 cores and 8GB RAM. The software
configurations included gnark-crypto 0.7 and Golang 1.18.2.
We also implemented Y-VSS using the alternative PKE
and NIZK of resharing denoted “DHPVSS” in [20, p. 5.2]
(provided deg(m∗)≤n−t−1). DHPVSS has a proof of size
of only 3 group elements and turned out to be 2.5 times
faster. But we do not further report on it, since “DHPVSS”
requires a one-time-pad-sized PKI.

We first present in Fig. 4 the performance of
Refresh(C, C ′) between committees C and C ′, with number
of parties from 11 to 101. Namely, we measure the time,
in terms of local computations, required to reshare a secret
from a committee C to a new committee C ′. We consider the
scenario taking the worst-case computation time, in which
all collectors of both the previous and the current Refresh
are honest and all the t+1 PPSs from them are received
in time. Hence, each player in C does t+1 resharings,
then each player in C ′ receives t+1 PPSs. In-between, we
consider that each collector K ′k verifies only one batch of
t+1 resharing messages. Indeed, assume that K ′k receives
t+1 re-sharing messages out of the same VPS: (c[n], qvc)
but which do not pass its verification. Then this means for
K ′k that this batch contains a proof of openly mis-behaving
of some party in C , so we consider that this deterrence is
enough to exclude such open mis-behavior. As can be seen,
about 90% of the time was spent performing the final local
computation by members of C ′, namely, to verify what they
receive before adding it to their lists of outputs. All these
operations are by definition parallelizable by at least a factor
t+1, thus the time should be divided by the number of

CPUs. This is illustrated in Appendix F.1, e.g., in Figure 4
we approximately used 2 cores (out of 8), technically: 2
Go-routines.
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Figure 4: Total worst-case time of a Refresh(C, C ′) between two
committees C and C ′, measured in seconds, using approximately
2 cores (out of 8). The x-axis is the size n of both committees,
ranging from 11 to 101. We specify for each setting the time spent
in each of the high-level subroutine: Encrypted re-sharing: for
one party in C to generate t+1 pvRs and signatures (Section 4.2.3),
Selection & combination for a single collector to verify t+1
pvRs and signatures (Section 4.2.4) , Local output for a party
in C ′, for each of the t+1 PPS which it receives (we consider
the worst-case): of verification of the t+1 NIZKs of resharing
((πpvR,i)i∈ U ), of the t+1 signatures qvc on c[n], and of applying
the homomorphic Lagrange linear combination to obtain c′[n].

Microbenchmarks. To better understand the sources of
overhead in our protocol, we measure the costs of the under-
lying primitives. Here, pvReshare designates the operation
for resharing a ciphertext and for producing a NIZK proof,
NIZK.Verify the verification of a NIZK proof of resharing
and Lagrange Comb the combination of t+1 resharings
following Fig. 1. Finally, Sign designates the operation to
sign a ciphertext and Sign.Verify the verification of such
a signature. In Table 5, we report the cost in terms of
computing time on a CPU.

# of players
11 21 51 101

pvReshare 6.1 ms 11.1 ms 27.6 ms 52.3 ms
NIZK.Verify 3.9 ms 6.34 ms 15.3 ms 30.1 ms
Lagrange Comb (Fig. 1) 4.8 ms 17.1 ms 100.8 ms 433.0 ms
Sign 0.74 ms 0.79 ms 0.95 ms 1.21 ms
Sign.Verify 1.4 ms 1.5 ms 1.6 ms 1.9 ms

Table 5: Cost of Operations (Average over 100 trials)

7. Efficient generalizations and comparison

7.1 Elgamal in the exponent. A desirable use-case is when
the secret s is in Fp :=Z/pZ, and thus when the plaintext
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space of PKE is Z/pZ, which is not the case for Elgamal.
The observation which we make is that this can be achieved
by encoding the secret in the exponent of Elgamal, as in
[61, p11]. Namely, consider as in Section 6: G an abelian
group of prime order q, in additive notations, with hard
DDH, and g some a public generator. Then, encryption of
s ∈ Z/pZ consists in Elgamal encryption of s.g. Decryption
proceeds by Elgamal decryption, followed by computing the
discrete logarithm, i.e., extracting s from s.g, then taking
mod p. This scheme satisfies Definition 2, i.e., has perfect
correctness mod p after one homomorphic addition of size
t+1, as soon as discrete logarithms of size up to p2(t+1)
are efficiently computable. An upgrade of Elgamal in the
exponent is introduced in [43]. First, it is IND-CCA, and
last, it enables the public sharing of large secrets in the form
of several efficiently decryptable small “chunks” (along
with efficient NIZK proofs of smallness), such that non-
interactive additions on secrets are still enabled.

7.2 Paillier mod p. Paillier encryption does not support
unlimited homomorphic additions modulo a fixed p, since
the plaintext space is instead a Z/NiZ for a composite Ni,
which is furthermore unavoidably different for each party
Pi calling KeyGen. The observation which we make is that,
if the parameters of KeyGen are chosen such that every Ni

returned is at least of size: (t+1)p2 ≤ Ni/2, then Paillier
satisfies Definition 2, i.e., perfect correctness mod p after
one homomorphic addition of size t+1. See Appendix F.3
for efficient NIZKs.

7.3 Lattice-based schemes. A variant of Regev over Z/pZ
is provided in [9, §2.1]. They sketch bounds denoted M
and R which, concretely, imply correctness mod p after
one homomorphic linear combination of size t+1, as soon
as (t+1)p2 ≤ M and (t+1)p ≤ R. To enforce perfect
correctness mod p, one should furthermore restrict to a
finite interval Rkey the randomness of the key generation,
concretely, by cutting-off the queues of the Gaussian. The
same cut-off should be done in other lattice-based schemes
such as BFV/BGV [49]. See Appendix F.3 for efficient
NIZKs.

7.4 Linear combinations / multiexponentiations of se-
crets over rings / groups. The baseline method since [8]
to securely open a linear combination of shared secrets,
is that parties locally evaluate the linear combination of
the shares then send it to the learner L. To enable this
method in Y-VSS, the local lists of parties are indexed by
the collector from which they received the PPS. Then, to
open a linear combination of secrets, each party in C(eo), for
each K(eo)

k ∈ C(eo)collec, computes the homomorphic linear com-
bination of the PPSs of these secrets which it received from
Kk∈ C(eo)collec. Then it sends the decryption to L, appended
with the PPSs (all at once for all K(eo)

k ). Liveness follows
from the fact that there is at least a honest K(eo)

k ∈ C(eo)collec
which sends the same PPSs to all parties in C(eo).

We make the observation that the baseline extends to
opening the image by a group homomorphism ϕ, e.g.,

a multi-exponentiation of r public group elements by r
secrets in Fp. The idea is that parties decrypt their shares
of the PPSs, evaluate the homomorphism ϕ on the shares,
then send to L the image, along with a NIZK of correct
decryption-then-evaluation. But to make this idea work, we
need linear secret sharing schemes both in the source and
in the target spaces of ϕ, which commute with ϕ. Namely,
which are such that threshold opening-then-ϕ equals ϕ on
the shares-then-threshold opening. For instance when the
target is an abelian group G of order p, the secret sharing
is the variant of Shamir’s scheme, using polynomials over
G ([4, §6]). This is precisely what we do in our implemen-
tation in Section 6. See also [3] for more formalism. In
Appendix F.2 we give other examples along with suitable
secret sharing schemes.

7.5 Comparison and details on related works. In Ta-
ble 6 we compare to existing PSS schemes which have
both security and liveness, i.e., termination, up to a corrupt
minority t ≤ n/2, as Y-VSS. We do not further compare
with schemes which are not both under this threshold [70,
13, 62, 29, 17, 3, 68, 66, 69], including “Opt-CHURP” [55].
Notice that UC security encompasses both correctness and
what related works name as “privacy”. Notice that related
works call “robustness” the combination of correctness and
liveness. All the PSS of Table 6 assume a synchronous
broadcast channel which would deliver to all parties the mes-
sages posted, within a worst-case latency which we denote
as ∆BC. When this assumption fails, then the security of
these PSS is not guaranteed anymore. For example, when
the broadcast from an honest Pi is not received within ∆BC,
then Exp-CHURP-A [55, p. C.1.3] forces honest parties to
publicly expose what they sent to Pi, which provides enough
information to the adversary to reconstruct the stored secret.
Likewise in [42, p8], when a sending or broadcast from
some honest Pi is not received in time by an honest Pj , then
Pj accuses Pi, which must then publicly expose the content
of this message, which provides substantial information to
the adversary on the stored secret. See also [5] for a related
issue, when not receiving an accusation in time. Hence, the
performances of Y-VSS cannot totally be compared with the
ones of any existing scheme, in that it is the first not to base
neither its security nor liveness on such ∆BC assumption.
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Appendix

A Complements on the model

A.1 Ideal functionalities FCA and FNIZK. We present in
Algorithm 7 the ideal functionality of a bulletin board of
public keys, defined in §Section 2.8 as FCA.

FCA

1. Upon receiving the first message (Register, v) from
party P, send (Registered, P, v) to A; upon receiving ok
from A, and if this is the first request from P , then
record the pair (P, v).
2. Upon receiving a message (Retrieve, P) from party Q
, send (Retrieve, P, Q ) to A, and wait for an ok from it.
Then, if there is a recorded pair (P, v) output (Retrieve,
P, v) to Q. Else output (Retrieve, P, ⊥) to Q.

Algorithm 7: The certification authority functionality, FCA.

We present in Algorithm 8 the ideal functionality of non-
interactive zero-knowledge arguments of knowledge. FNIZK
is parametrized by a NP relation R. Upon request of a
prover P exhibiting some public input x and knowledge of
some secret witness w, it verifies if (x,w) ∈ R then deletes
w from its memory. If the verification passes, then FNIZK
delay-outputs to P a string π. Upon subsequent input the
same string π and x from any verifier, FNIZK then confirms
to the verifier that P knows some witness for x. We denote
Π the space of such strings π.

A.2 Full modelisation of Y-VSS in the UC framework.
We consider a PPT machine denoted as the environment E .
A is fully controlled by E . In particular, A forwards to
E all its incoming signals. Such A is known as “dummy”
[15]. Let us recall from [15] that this restriction on A is
enough to prove a protocol UC-secure. E assigns its input
secret s∈ Fp to the dealer. When the learner L outputs some
value sout∈ Fp, then it immediately informs E of sout.

Following the model [15], we say that a protocol Π UC-
implements FVSS if there exists a PPT machine S denoted
simulator, also known as “ideal adversary”, such that every
PPT E has negligible advantage in distinguishing between
the following two executions:

- REALA: an actual execution of the protocol Π, with ad-
versary A fully controlled by E , and functionalities FCA,
FSch, FBC, FST, FAT, FNIZK, as depicted in Figure 9;

FNIZK

The functionality is parameterized with an NP relation
R of an NP language L and a prover P .
Proof: On input (prove, sid, ssid, x, w) from P , ig-

nore if (x,w) /∈ R. Request (proof, x) to A.
Upon receiving (π) from A, store (x, π) and send
(proof, sid, ssid, π) to P.

Verification: On input (verify, sid, ssid, x, π) from
any party V , check whether (x, π) is stored. If not,
request (verify, x, π) to A and wait for an answer
(witness, w). Upon receiving of the answer, check
whether (x,w) ∈ R and in that case, store (x, π). If
(x, π) is stored, return (verification, sid, ssid, 1) to V ,
else return (verification, sid, ssid, 0).

Algorithm 8: Non-interactive zero-knowledge functionality

- IDEALFVSS,S : an execution denoted as ideal, where S in-
teracts with E on behalf of A. In Figure 10 we denote
this as the “left interface”. On the other side, S interacts
with FVSS on behalf of the corrupt entities and also of A,
which we dub as its “right interface”. The honest entities
are connected to E as in a real execution (namely: D and/or
L if honest). But on the other side, they only interact with
FVSS. Concretely, they perform what is commonly called as
the dummy protocol, which consists in D (if honest) gives
its input to FVSS, then L (if honest) outputs what it receives
from FVSS, while parties on their side do nothing.

Figure 9: REALA execution of Π with dummy adversary
A. The Environment E has no other interface with the
system (the big rectangle in dotted blue) than: its full control
on A, its power to give the input to D if it is honest, and
its power to learn the output of L if it is honest.

A.3 Comments on the model and on other models.
Our model of proactivity We do not capture proactivity at

the level of the functionality FVSS. We instead capture it
at the level of the protocol, by giving the power of the
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Figure 10: IDEALFVSS,S execution: honest entities perform
the dummy protocol with FVSS; the simulator S interacts on
the right with FVSS with the same interface as A and corrupt
entities in the dummy protocol, and on the left, interacts with
E with the same interface as the dummy adversary in the
real protocol.

adversary to fully control the scheduler FSch which sends
the signals startsig and refreshsig, in Section 2.7. Notice
that in [13], the signal refreshsig is sent by an external
global clock. Our model is at least as strong, since security
holds whatever the choices of A of when and to whom to
send the signals.

An alternative model of proactivity By contrast, in the
later work [69, B], proactivity is captured at the level of
the funtionality. Their functionality is indeed specified to
return to parties one unique consistent set of commitments
to re-sharings. So is not implementable under asynchrony
and honest majority.

Extension to non-“yoso” refreshes Our model general-
izes to protocols in which parties are allow to speak more
than once, as follows. After it sent a refreshsig to some
party P , the scheduler can shut-it-off after all chains of
` consecutive asynchronous events completed, in a sense
which can be be made precise from [51]. There, ` captures
the number of interactions needed to complete a Refresh.

B Details on Publicly Verifiable (Re-)Sharing

In Appendix B.3 we introduce publicly verifiable secret
sharing pvShare and resharing pvReshare, we formalize the
data structures output, which are publicly verifiable sharing
(pvS) and resharing (pvR), then state their properties.

B.1 Shamir resharing. Consider any vector of shares
(si)i∈ [n] of some s. Consider any t+1-subset U ⊂ [n] and,
for each i∈ U , any vector of shares si→[n] = (si→j)j∈ [n]

of si. We dub the latter as a re-sharing of si, or also as sub-
shares of si. Then the vector, dubbed as new or refreshed
shares:
(5) s′[n] :=L-combineU

(
(si→[n])i∈ U

)
is a sharing of s,

where, concretely, s′[n] :=
(
s′j :=

∑
i∈ U λ

U
i si→j

)
j∈ [n]

. The
proof is because, consider the (re-)sharing polynomi-
als: (fi(X))i∈ U defining the (si→[n])i∈ U , then, since
polynomial evaluation commutes with linear combina-
tions, the new shares (s′j)j∈ [n] are the evaluations of
f
′
(X) :=

∑
i∈ U λ

U
i fi(X), but by construction f

′
(0)=s.

An illustration is provided in Figure 1.

B.2 Encryption scheme. We specify the public key en-
cryption scheme needed, called PKE, as the following list
of spaces, efficiently computable algorithms and properties:
sKand pK the spaces of secret and public keys, Rkey the set
of key randomness, Renc the set of encryption randomness,
the plaintext space Z, C the ciphertext space;

• KeyGen( | ρkey∈Rkey) → sK× pK the key generation
function;

• Enc
(
pk ∈ pK, x ∈ Z | ρenc∈Renc

)
→ C the encryption

function;
• Dec(sk ∈ sK, c ∈ C) → Fp the decryption mod p func-

tion;
• � : C × C → C and � : Fp × C → C the linearly

homomorphic addition and scalar multiplication.
We require IND-CPA, i.e., any PPT A, given a pub-

lic key pk correctly generated by an oracle, has negligi-
ble advantage in distinguishing whether it is interacting
with the “left” oracle OL which, when queried on a pair
(xL, xR) ∈ F2

p , returns Enc(pk, xL) or, with the “right”
oracle OR, which returns Enc(pk, xR).

For c ∈ C, we say that x ∈ Fp is an explainable plaintext
of c under some pk∈pK, if there exists ρenc∈Renc such
that c = Enc(pk, x|ρenc).

Definition 8. Perfect correctness mod p after one homo-
morphic linear combination of size t+1 is the guaran-
tee that, for any pk ∈ pK, for any up to t+1 ci-
phertexts (ci)i∈ [t+1]∈ Ct+1, for any explainable plain-
texts (x̃i)i∈ [t+1]∈ Ft+1

p of them under pk, for any
(λi)i∈ [t+1]∈ Ft+1

p , then, for any explainable decryption ỹ

under pk of �i∈[t+1](λi � ci), we have ỹ =
∑t+1

i=1 λix̃i.

Notice that ỹ can exist only if there exists an explain-
able secret key for pk. Definition 8 implies a property
which may be denoted as decryptor-binding or unicity: if
such a ỹ exists, then it is uniquely determined by the
(ci)i∈ [t+1]∈ Ct+1.

Let us enrich decryption with public verifiability.

• pvDec(pk∈pK, sk∈ sK, c∈ C) →
(
Fp,Π

)
the publicly

verifiable decryption algorithm. It outputs x :=Dec(sk, c)
along with a NIZK AoK, denoted as πpvD, of a secret key
sk of pk, such that x = Dec(sk, c). We denote such πpvD as
a proof as a ”proof of correct decryption of c into x under
key pk.
We now give the name to the data structure output by pvDec.

• a pvD
(
pk∈pK, c∈ C

)
, called publicly verifiable decryp-

tion of c under key pk, is a pair (x ∈ Fp, πpvD ∈ Π) where
πpvD is a proof of correct decryption of c into x, under key
pk.
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B.3 Publicly verifiable secret sharing (pvS) and reshar-
ing (pvR). We consider as a public parameter a list of public
keys (pk′i)i∈[n]∈ (pK t ⊥)n, which in our use-case will
be the ones of the entering committee C ′. By convention,
encryption under ⊥ equals ⊥. pvShare, on input s∈ Fp,
returns a vector of Shamir shares encrypted under the public
keys. pvReshare, on input a ciphertext c∈ C, decrypts it
with the secret key sk of the re-sharer, then proceeds as in
pvShare. Both algorithms also return proofs of correctness,
denoted πpvS and πpvR and defined below.

• pvShare
(
s∈ Fp |ρenc∈Rn

enc, Q∈ Fp[X]
(0)
t

)
→

(
Cn,Π

)
Set si :=(s+Q)(i) ∀i∈ [n], output
c[n] :=

(
Enc
(
pk′i, si|ρenc,i

))
i∈[n]

and πpvS.

• pvReshare
(

pk∈pK, sk∈ sK, c∈ C |ρenc∈Rn
enc,

Q∈ Fp[X]
(0)
t

)
→

(
Cn,Π

)
: set s :=Dec(sk, c), output

c[n] := pvShare
(
s, |ρenc, Q

)
and πpvR.

πpvS is what we call as a proof of plaintext sharing
knowledge, it is a NIZK AoK of a s̃∈ Fp, a ρ̃enc∈Rn

enc

and a Q̃∈ Fp[X]
(0)
t , such that c′[n] = pvShare

(
s̃ | ρ̃enc, Q̃

)
.

πpvR is what we define as a proof of plaintext re-sharing
knowledge of c into c′[n], under key pk it is a NIZK AoK
of an explainable decryption s̃ of c under pk, a ρ̃enc and
a Q̃ ∈ Fp[X]

(0)
t , denoted as an explainable re-sharing

polynomial such that c′[n] = pvReshare(pk, s̃k, c | ρ̃enc, Q̃).
The evaluations sj :=(Q̃+ s)(j) are denoted as explainable
(plaintext) resharing shares.

• a pvS, called as a public verifiable secret sharing, is a pair
(c[n]∈ Cn, πpvS ∈ Π) where πpvS is a proof of plaintext
secret knowledge for c[n].

• a pvR
(
pk∈pK, c∈ C

)
, called as a publicly verifiable re-

sharing of c from pk, is a pair (c′[n] ∈ Cn, πpvR ∈ Π) where
πpvR is proof of plaintext re-sharing of c, into c′[n], under
key pk.

Notice that a pvR proves in particular knowledge of a
plaintext secret, thus is a fortiori a pvS. Although pvRs are
not signed, we will make constant use that they publicly
determine their issuer, identified with its public key pk.
The reason is that the NIZK appended to the pvR proves
knowledge of the secret key sk associated to the public key
pk.

B.4 IND-CPA of publicly verifiable (re)-sharing. The
next Proposition 9 states that any PPT adversary A has
negligible advantage in distinguishing between a vector of
encrypted shares of any chosen secret, and a sample in some
fixed distribution. This distribution, which is formalized as
“D0” below, is the one of vectors of ciphertexts of the
form (Encpki(si))i∈ [n], where the t plaintexts (si)i∈ I with
coordinates of corrupt parties vary uniformly at random in
Ft
p, while the t+1 other (si)i∈ [n]\I are all equal to 0.

Proposition 9 (IND-CPA of encrypted sharing). For any
threshold 1 ≤ t, any PPT machine A has negligible advan-
tage in the following game with an oracle O. A gives to

O: a subset of t indices I ⊂ [n], and a list of t public keys
(pki)i∈I ∈ (pKt⊥)t. O generates (..., pki)←KeyGen() for
i ∈ [n]\I which it shows to A. O tosses b $←− {0, 1}. Then
A is allows to query O an unlimited number of times as
follows. A gives to O any s∈ Fp of its choice, then O with:
if b = 1: encrypted sharing generates
(si)i∈ [n] :=Share(s), returns (Encpki(si))i∈ [n];

if b = 0: D0 samples si $←− Fp ∀i∈ I , sets si :=0
∀i∈ [n] \ I , returns (Encpki(si))i∈ [n].

At some point A outputs b′ and wins if b=b′.

For technical reasons, in the proof of Y-VSS (Sec-
tion 5.1, games Hyb0Refresh[e, i]) we will actually need the
following slightly stronger version. We state it as Proposi-
tion 10 below, and note that it directly implies Proposition 9.
The slight difference with Proposition 9 is that the oracle
now give directly in the clear its t shares to the adversary.
This gives strictly more power to A than in Proposition 9,
in the case where A would have badly generated some of
its t public keys.

Proposition 10 (IND-CPA of pvS with plaintext adversary
shares). For any threshold 1 ≤ t, any PPT machine A has
negligible advantage in the following game with an oracle
O. A gives to O a subset of t indices I ⊂ [n]. O generates
(..., pki)←KeyGen() for i ∈ [n]\I which it shows to A.
O tosses b $←− {0, 1}. Then A is allowed to query O an
unlimited number of times as follows. A queries O with
any s∈ Fp of its choice, then O responds as:
if b = 1: enc. sharing + A’s shares generates
(si)i∈ [n] :=Share(s), returns (Encpki(si))i∈ [n]\I and
(si)i∈ I .

if b = 0: D0 with A’s shares samples (si)i∈ I
$←− Ft

p,
sets si :=0 ∀i∈ [n] \ I , returns both (Encpki(si))i∈ [n]\I
and (si)i∈ I .

At some point A outputs b′ and wins if b=b′.

Proof. We are going to bound the advantage of any ad-
versary A, by the maximum advantage of an adversary
APKE against oracle OPKE of the following t+1-keys variant
indistinguishability game for PKE. The latter is upper-
bounded by n - t times the advantage for one-message indis-
tinguishability, see e.g. [11, Thm 5.1]. OPKE samples (n - t)
PKE public keys (pkh)h∈[n - t] which it gives to APKE. OPKE
secretly tosses a bit b ∈ {0, 1}. Upon receiving, from APKE,
(n - t) chosen plaintexts (sh)h∈[n - t], then OPKE returns:
- if (b = 1): correct encryptions, i.e., (Enc(pkh, sh))h∈[n - t];
- if (b = 0): encryptions of 0, i.e., (Enc(pkh, 0))h∈[n - t].
The reduction is as follows. APKE initiates A, receives a
set of indices I from A. APKE receives a list of n - t keys
(pkh)h∈[n - t] from OPKE. Then it forwards to A the n - t keys
(pkh)h∈[n]\I received from OPKE, of which it renumbered
the indices into [n] \ I .

Upon receiving one challenge plaintext s from A, APKE

generates a Shamir sharing of it: (si)i∈ [n] :=Share(s). It
then queries OPKE with the n - t plaintexts: (sh)h∈ [n]\I .
Upon receiving the response ciphertexts (ch)h∈ [n]\I from
OPKE, it forwards them to A, along with the t plaintext
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shares of indices of corrupt players (si)i∈ I . APKE outputs
the same bit b′ as A. Analysis:

• in the case where the ciphertexts {ch}h∈ [n]\I are en-
cryptions of the actual n - t shares {sh}h∈ [n]\I , then
A receives from APKE a correctly generated encrypted
sharing of s;

• in the case where the ciphertexts {ch}h∈ [n]\I are en-
cryptions of 0, then we have that the t plaintext shares(
(si)i∈ I vary uniformly at random, independently of

the rest of the view. This follows from what was de-
noted as “t-privacy” of Shamir sharing, in Section 3.3.

Thus in both cases b ∈ {0, 1}, A is faced with the same
distribution as the one generated by the oracle O of the
game of Proposition 10 for the same b and query s. Thus
the distinguishing advantage of APKE is the same as the one
of A.

The next corollary Corollary 11 states that any PPT
adversary A, which provides a ciphertext c of its choice,
has negligible advantage in distinguishing between a vector
of encrypted resharing of c, and a sample in the same fixed
distribution as the D0 of Proposition 9. To avoid issues
with IND-CCA, we impose in addition that A sufficiently
explains how c was formed, namely: as one homomorphic
linear combination of fresh encryptions, in order to extract
from A a plaintext of c. For simplicity and compatibility
with Definition 8 with we state it only for n = 2t+1.

Corollary 11 (IND-CPA of re-sharing). Any PPT ma-
chine A has negligible advantage in the following game
with an oracle O. A gives to O a subset of t indices
I ⊂ [n]. O generates (..., pki)←KeyGen() for i ∈ [n]\I
which it shows to A. It also generates (sk, pk)←KeyGen()
and gives pk to A. O tosses b $←− {0, 1}. Then A is al-
lowed to query O an unlimited number of times as fol-
lows. A queries O with any c appended with the follow-
ing, denoted as “explanations”: (mi)i∈ [t+1]∈ Ft+1

p and
(ρenc,i)i∈ [t+1]∈Rt+1

enc and (ldi)i∈ [t+1]∈ Ft+1
p , such that

c=�i∈ [t+1]

(
λi � Enc(mi|ρenc,i)

)
. O responds as:

if b = 1: enc. re-sharing + A’s shares decrypts
s :=Dec(sk, c), generates (si)i∈ [n] :=Share(s), returns
(Encpki(si))i∈ [n]\I and (si)i∈ I ;

if b = 0: D0 with A’s shares samples si $←− Fp ∀i∈ I ,
sets si :=0 ∀i∈ [n] \ I , returns both (Encpki(si))i∈ [n]\I
and (si)i∈ I .

At some point A outputs b′ and wins if b=b′.

Proof. By perfect correctness after one homomorphic linear
combination (Definition 8), we have s=

∑
i∈ [t+1] λimi.

Hence, informally, the view of A is exactly the same as in
Proposition 10. More precisely, we have the following loss-
less reduction. Consider an adversary A′ in Proposition 10.
A′ runs internallyA, then upon receiving a request, decrypts
c into s, then gives s to O the oracle of Proposition 10, then
forwards to A the response of O, then outputs the same as
A.

C Formalization of protocol Y-VSS

In Appendices C.1 to C.3 we formalize Y-VSS.Share,
.Refresh and .Open. In Appendix C.4 we explain how
parties continue the protocol even if some keys of the next
committee are not published when they receive the signal
to refresh.

C.1 Formalization of Y-VSS Share. Every party
P

(1)
i ∈ C

(1) generates (pk
(1)
i , sk

(1)
i ) ← KeyGen() then

registers it to FCA. Upon receiving sharesig, the dealer
D retrieves the list of keys {pk

(1)
i }i∈[n] and generates

pvs ← pvShare(s) from its secret input s, using the n

encryption keys {pk
(1)
i }i∈[n]. Then, D broadcasts pvs to

C(1) with its signature on it then shuts-off.

Each party P (1)
i ∈ C(1), upon receiving an output of the

broadcast of D: if it is a pvs ∈ pvS, then it sets its local
list ListOfPpsi :={pvs}. Else, which happens only if the
dealer is corrupt, then it sets it as {pvs0} where pvs0 is a
fixed predefined pvS of 0.

C.2 Formalization of Y-VSS Refresh. We first present the
data structures in Figure 11, then the Refresh(C, C ′) protocol
between an exiting committee C and an entering committee
C ′ in Algorithm 12.

C.3 Y-VSS-Open. Each P (eo)
i ∈ C(eo), upon receiving the

signal “open”, denoting (pki, ski) its key pair, We consider
any arbitrary committee C(eo) which is instructed to open
the secret to a designated learner L. Each party Pi∈ C(eo),
for every pps(eo) :=

(
. . . , . . . , c

(eo)=(c
(eo)
i )i∈ [n]

[n]

)
in its list

ListOfPpsi:
- generates a publicly verifiable decryption of ci:
(si, πpvD,i), to obtain the triple (c

(eo)
[n] , si, πpvD,i)

It then sends to L, via FST, all such triples at once. Upon
receiving t+1 triples of the form (c

(eo)
[n] , si, πpvD,i) for i

in some (t+1)-sized subset U , all with the same c(eo)[n] , L
reconstructs the secret from the Lagrange linear combination
of the (si)i∈ U , given by Equation (3), with coefficients
(λUi )i∈ U .

C.4 Handling for unpublished keys. The modification to
be done for the general case is: upon receiving refreshsigs
(or the sharesig), a party retreives from the PKI all the
public keys available of the entering committee, say C ′,
makes a list of them, say pk′, in which it sets to ⊥ the
ones not retrieved. Encryption with key ⊥ is by convention
⊥. It appends the hash of pk′ in all its messages related to
C ′, and subsequently ignores the incoming messages related
to C ′ appended with a different hash, i.e., which use a
different list of keys than pk′. We also adapt the proof of
correctness, as follows, to handle executions in which there
exists some committee C ′ for which at most t published
keys are explainable. For any vector of ciphertext shares
c[n] under such keys, then strictly less than t coordinates
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• a VPS(e), called as a verified proactivized sharing
relatively to committee C(e), is a tuple of the form
vps(e)=(c[n], qvc(e)), where: c[n] = (ci)i∈ [n]∈ Cn,
and qvc(e)={σi}i∈ U , called as a quorum verification
certificate, is a set of t+1 signatures on c[n] issued by
some t+1 subset U⊂ [n] of parties of C(e).
For brevity we denote vps[i] := ci.

• a ReshareMsg i
(e) for i∈ [n], called as a resharing

message from Pi∈ C(e), is a triple (c
(e)
[n] , pvr

(e)
i , σ

(e)
i ),

where:

- c(e)[n] = (c
(e)
i )i∈ [n]∈ Cn

- pvr
(e)
i ∈ pvR

(
pk

(e)
i , c

(e)
i

)
, i.e., is a publicly verifiable

resharing of c(e)i under the key pk
(e)
i of Pi, encrypted

under the keys of C(e+1);
- and σ(e)

i is a signature of P (e)
i on c(e)[n] .

• a PPS(1), called as a proven proactivized sharing rel-
atively to committee C(1), is either a pvS signed by the
dealer D, denoted as pps(1) :=(σD, πpvS L−→ c[n]∈ Cn)

or, the public default PPS(1) of zero: pps
(1)
0 =(

⊥,⊥ L−→ (Encpki(0))i∈ [n]

)
.

• a PPS(e+1), called as a proven proactivized sharing
relatively to committee C(e+1), is a tuple of the form
pps(e+1)

(
(c

(e)
[n] , qvc(e)), {pvr

(e)
i }i∈ U

)
, where:

- U ∈ [n] is a (t+1)-sized subset;

- (c
(e)
[n] = (c

(e)
i )i∈ [n], qvc(e)) is a VPS (e); [Notice

that there is no constraint on the subset of issuers,
in C(e), of the signatures in the qvc(e). In practice in
Y-VSS, honest collectors use those issued by U .];

- pvr
(e)
i ∈ pvR

(
pk

(e)
i , c

(e)
i

)
∀i∈ U , i.e., each pvr

(e)
i is

a publicly verifiable resharing of c(e)i under the key
pk

(e)
i of Pi, encrypted under the keys of C(e+1);

We denote it as
pps(e+1) :=

(
(c

(e)
[n] , qvc(e)), {pvr

(e)
i }i∈ U L−→ c

(e+1)
[n]

)
where, denoting pvr

(e)
i = (c

(e)
i→[n], πpvR,i) ∀i, we have

c
(e+1)
[n] := �

i∈ U

(
λUi � c(e)i→[n]

)
∈ Cn (as in Equation (1)).

Figure 11: Data Structures for Refresh. The public keys of
committee C(e) are denoted as (pk

(e)
i )i∈ [n], for all e∈ N∗

Refresh(C, C ′)
Inputs: Each party Pi∈ C has a key pair (pki, ski), and
a list ListOfPpsi of at most t+1 PPSs relatively to C .
Outputs: For each player P ′i ∈ C

′, a list ListOfPpsi of
PPS relatively to committee C ′.
(PKI) At signal startsig, each party P ′i ∈ C

′ generates
(sk′i , pk′i)← KeyGen() and publishes (pk′i);
(Resharing) At signal refreshsig, each Pi∈ C re-
trieves the keys of C ′: (pk′i)i∈ [n]. Then for each
pps=

(
. . . , . . . , c[n]=(ci)i∈ [n]

)
in its list, it generates:

- pvri = (ci→[n], πpvR,i) :=pvReshare(pki, ski, ci).
- a signature σi on c[n];
- forms the resharing message ReshareMsg i:(
c[n], pvri, σi

)
.

Pi multicasts to C ′collec, in one single batch, all the
resharing messages which it formed, then shuts-off.
(Selection & combination) Each collector K ′k∈ C

′
collec

waits until it receives, for some (t+1)-sized subset
U⊂ [n], resharing messages from parties in U formed
out of the same vector of ciphertext shares c[n]:
(6)

(
c[n], pvri, σi

)
, ∀i∈ U .

Then it combines the t+1 signatures into a qvc for
c[n], thereby obtaining a verified proactivized shar-
ing: vps :=(c[n], qvc). Hence, it obtains the PPS:(
vps, (pvri)i∈ U , c

′
[n] :=�

i∈U
λUi � ci→[n]

)
, which it mul-

ticasts to C ′ then shuts-off.
(Outputs) Upon receiving a PPS, any party P ′j ∈ C

′

adds it to its ListOfPps′j .

Algorithm 12: Refresh(C, C ′)

have an explainable decryption. Thus, c[n] has no threshold
opening in the sense of Definition 3. We then say that c[n]
is unusable. Indeed, no t+1 opening shares can possibly be
formed, so no PPS can possibly be formed out of c[n], nor
any Open can complete out of c[n]. We then need to relax
the Claim in the proof of correctness (Proposition 7), by
allowing that a VPS can alternatively be unusable. Then in
the proof of this Claim, we slightly precise the conclusion
by observing that the VPS: (c[n], qvc) is necessarily usable,
and thus has threshold opening equal to s̃.

We also complement the proof of liveness by proving
that, if some unusable VPS is ever created, then it must be
the case that some honest party could not publish its key
in time, and thus the conditions under which we guarantee
liveness actually do not hold.

However in the proof of privacy, if the key of some hon-
est party was not published in time, then we cannot anymore
compute t+1 honest opening shares by decryption. Thus,
we cannot anymore apply ShInfer. Thus, assuming such
executions exist, we must require straight-line extractable
NIZKs to enable the simulator to extract the opening shares
of corrupt players, as in the Game Hyb0Share in the proof in

20



Section 5.1.

D More details on the proof of Y-VSS

In Appendix D.1 we formalize the reduction from the
proof of indistinguishability between games Hyb0Refresh[e, i]
and Hyb0Refresh[e, i + 1], into Corollary 11. Then, in Ap-
pendix D.2 we adapt the proof of liveness sketched in
Section 1.3, into a formal proof of liveness of the actual
Y-VSS in 2δ. In Appendix D.3 we formalize the proof of
UC security in the case of a corrupt dealer D.

D.1 Reduction of the transition to Hyb0Refresh[e, i+ 1]
into IND-CPA of resharing. We consider an adversary
Areshare in the game of Corollary 11. It initiates a con-
catenation, which we denote as M, of all the system up
to the e-th committee as in the game Hyb0Refresh[e, i]: E
and the dummy adversary and all corrupt parties, D, the
ideal functionalities, and all honest parties in C(1), . . . , C(e).
Upon receiving keys (pki)i∈[n]\I from O, it publishes them
on behalf of honest parties in C(e+1) (and, by construction,
also publishes the keys of corrupt parties in C(e+1), when
they are instructed to by E ). Consider a point (if any), where
the simulated P

(e)
i+1 receives a PPS(eo - 1), out of which it

deduces, by Lagrange combination, an encrypted share ci.
Then this means that M also provided to A the explanation
of M. Namely, Areshare could extract from the PPS(eo - 1)

provided by M: t+1 explainable fresh encryptions, of which
ci is the Lagrange homomorphic linear combination. Then,
Areshare immediately removes P (e)

i+1 from M. Then Areshare
queries O with this material, and is returned a vector of
ciphertexts, denoted ci→[n], along with the plaintext sub-
shares (si→j)j∈ I(e+1) of ci→[n] for the corrupt indices. Then
Areshare re-integrates P (e)

i+1 into M, in which it overwrites
its actual re-sharing by ci→[n]. Then Areshare finishes to
run the execution. Noticeably, thanks to Hyb0Refresh[e+ 1, n]
Areshare does not need to know the secret keys corresponding
to those published on behalf of honest parties in C(e+1), to
continue the execution. Noticeably, if e=eo - 1, then Areshare
inputs into ShSim the plaintext sub-shares (si→j)j∈ Ieo of
ci→[n] with indices the corrupt parties in C(eo). This last
precision explains why we specified leakage of the plaintext
(sub)-shares in the game of Corollary 11. Then, Areshare
outputs b = 1 if E outputs i, or outputs b = 0 if E
outputs 0. Since the view of E is generated exactly as in
Hyb0Refresh[e, i] if b = 1 and as in Hyb0Refresh[e, i + 1] if
b = 0, we have that the distinguishing advantage of Areshare
is as least as large as the one of E , which concludes the
proof.

D.2 Proof of liveness. We consider an execution which
satisfies all conditions stated in Theorem 6 for liveness,
i.e., [LS], [LK], [LR] and [LO]. Let us make the assump-
tion that all parties in the committee C(eo) which receives
open sig, have at least one PPS: pps in common in their
lists ListOfPpsi when they receive the open sig. Since by

[LO], all their messages to the learner L are delivered, L
will obtain t+1 verifiable plaintext decrypted shares of this
same pps. Thus it will be able to output, which concludes
liveness. It thus remains to prove the assumption.

Lemma 12. For any 1 ≤ e ≤ eo, consider the local lists
ListOfPpsi of honest parties in C(e) when they receive the
refreshsig (or open sig, for C(eo)), then there is at least one
common element pps∈ PPS in all these lists.

Proof. We prove the statement of the lemma by induction
on e. Case e=1 : by [LS], all honest parties in C(1) have
received the same output from the broadcast of the dealer D
before they receive refreshsig or open sig. Either this output
is a correct pvS, in which case they all have their local lists
ListOfPpsi equal to this single

{
pvS
}

. Or if not the case,
they all have their local lists ListOfPpsi equal to the same
default

{
pps0

}
.

e ⇒ e + 1 Let us assume the statement true until the
committee C of some epoch e < eo, and let us prove it
for the next committee C ′. This will imply that statement
for all e, by induction on e. After all parties of C receive
refreshsig, if we add a δ delay, then at this point there is at
least one honest collector K ′k in C ′collec which will receive
at t+1 reshare messages out of the same common pps from
all t+1 honest players. Thus it is able to form a PPS: pps =
(vps, {pvri}i, c′[n]) out of them and multicast it. If we add
a δ delay, by [LR], no honest party in C ′ has yet received
refreshsig or open sig. So at this point, all honest parties
in C ′ are still alive and have received this same pps, so
included it its local list ListOfVps′i.

D.3 Proof of UC security in case of a corrupt dealer
D. The simulator Sc for a corrupt dealer is very simple. It
simulates honest parties, in each committee, following the
protocol and reacting to the signals, exactly as instructed by
Y-VSS. If the learner L is also corrupt, then this behavior
perfectly simulates honest participants.

If instead L is honest (dummily interacting with FVSS),
which we now describe, then the moment when it outputs
and its value output are learned by E . Thus, Sc must manage
so that those two parameters are the same as in the simulated
execution. Sc waits for the broadcast from D, via the
(simulated) broadcast functionality FBC, to deliver an output
to at least one of the simulated honest parties in C(1). If this
output is not a (valid) pvS then it sets s̃ := 0. Otherwise,
Sc internally computes t+1 opening shares of it [using the
secret decryption keys of the simulated honest parties in
C(1)] then applies L- combineU , to obtain some s̃ ∈ Fp.
Sc sends (share, s̃) to FVSS. Then, if this ever happens,
at the moment when t+1 opening shares are delivered to
the simulated L, then Sc immediately sends “open sig ” to
FVSS. Thus, we have that the real dummy L is delivered its
output s̃, by FVSS, exactly at the same moment. Moreover,
by Proposition 7 [unicity] and [output], the ouptut in the
simulated execution is equal to the one the real dummy L.
In conclusion, the simulated execution is identical to a real
one from the point of view of E .
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E More context on the baseline method

The baseline technique of Section 1.2, of re-sharing
of secret shares, is known for long in a simpler “vanilla”
version, in which the sub-shares are not publicly encrypted,
but instead sent by private channels. It is credited to Michael
Rabin circa 1988, by [27, §5.6], in the context of multi-
plication of secrets. It surfaced in a written form in [36].
Meanwhile, the vanilla version was rediscovered by [28] in
the context of proactivity, then used in [67, 13, 45, 29].
They ([28]) state it for secrets in any space equipped with
a linear secret sharing scheme, which enables the generality
claimed in Theorem 1. It turns out that the construction of
publicly verifiable vectors of encrypted secret shares was
first suggested in [40, §3.2]. In the context of proactivity,
it turns out that the same baseline as above, of encrypted
resharing, is also considered in [10, 43]. Their model makes
it trivial to apply the baseline, as follows. For simplicity of
this description we do as if they also assumed and leveraged
homomorphic additivity of ciphertexts. Their invariant is
that all members of the exiting committee C have a common
view on a single, consistent, vector of ciphertext shares c[n].
There is a global clock, which, at some point, simultane-
ously instructs to all parties of C to refresh. At this point,
each party generates a pvR of c[n] then broadcasts it. The
broadcast is assumed to terminate within a fixed delay ∆BC.
In these works, it is embodied by a public ledger. After
∆BC, each party in C ′ sets U equal to the t+1 first indices
of C for which which the broadcasts returned a (valid) pvR,
and computes the new vector of encrypted shares c′[n] out of
them. Since all players in C ′ are returned the same outputs
of the n broadcasts, they are guaranteed to see the same set
U , and thus to end up with the same c′[n]. Said otherwise,
these n terminating broadcasts implement consensus on U .

F More on efficiency and generalizations

F.1 Parallelized implementation of Refresh(C, C′). In
Fig. 13 we present the performance of the implementation
of a Refresh(C, C ′), with number of parties ranging from
11 to 101. We display the result for different number of
cores used, ranging from 1 to 4, to show that operations can
indeed be parallelized. More precisely, we approximated the
number of cores by the number of Go-routines. We observe
a total computation time which is roughly divided by the
number of cores used, although slightly higher than the exact
division, because of some hardware/software incompatibili-
ties.

F.2 Other instantiations of linear combinations of secrets
over rings / groups.
With polynomial coefficients. Consider secrets which are
in a polynomial ring, e.g., for simplicity, of the form
Fp[X]/f(X). The goal is that additions of shares, or
multiplications of shares by a public polynomial, modulo
f(X), result in the same operations on the secret. To this
end, we need a slight variant of Shamir’s secret sharing
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Figure 13: Total worst-case time of Refresh(C, C ′) between two
committees C and C ′ measured in seconds on the y-axis. The x-
axis is the size n of both committees, ranging from 11 to 101. We
specify for each setting the time spent in each of the high-level
subroutine:Encrypted re-sharing for each parties in C to generate
t+1 pvR and signatures, Collection for a single leader to verify
the t+1 pvRs and signatures (cf Fig. 1), Combination for a party
in C ′ to combine t+1 pvR (including the verification of the NIZKs
and the t+1 signatures) for the t+1 PPSs it receives. We display
the result for different number of cores used, ranging from 1 to 4.

scheme which is linear with respect to these operations.
The simplest example of such sharing scheme is provided
[50, IV. A], then a more general one in [56], in the context
of threshold RLWE-based schemes. An example of PKE
compatible with these operations on the plaintexts is BFV
[32, 49]. However in practical applications the secrets are
themselves in the (large) polynomial ring of ciphertexts of
some threshold FHE scheme, such as BFV, so this would
require to instantiate PKE with another BFV, of larger
plaintext space. So in this case it is preferable to use the
alternative method proposed in [59], with any arbitrary
PKE.
Over rings of machine integers Z/2kZ. To this end we
need Shamir sharing over Z/2kZ, as described in [30, 33,
1]. A very recent example of encryption scheme compatible
with linearly homomorphic operations in Z/2kZ is [22].

F.3 Allowing slack in the NIZKs of smallness. In all the
schemes considered above, if the parameters are such that
(t+1)p is strictly smaller than the upper bounds provided,
then perfect correctness holds even against a malicious
encryptor which would choose a plaintext and randomness
larger than the bounds specified (p, Rkey, Renc). In turn,
this allows to use NIZKs of smallness in which a malicious
prover can pass verification with input size larger, by some
“slack”, than the maximum size that a honest prover is able
to input. Turning to Paillier, one can observe that NIZKs
of re-sharing are easier done by Pedersen committing to the
Paillier plaintext share, proving equality with the opening of
the commitment, then performing NIZKs on this commit-
ment. State of the art implementations of such NIZKs are
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in [52, §6.2] and [17], applied to threshold ECDSA. This
same observation is made, in GHL [38], for lattice-based
schemes. They bring optimized NIZK relations (instantiated
with Bulletproofs) for resharing, recently improved in [54].
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