
Synthesizing Quantum Circuits of AES with
Lower T -depth and Less Qubits

Zhenyu Huang1,2 and Siwei Sun3,4,⋆

1 SKLOIS, Institute of Information Engineering, Chinese Academy of Sciences,
Beijing, China

2 School of Cyber Security, University of Chinese Academy of Sciences,
Beijing, China

huangzhenyu@iie.ac.cn
3 School of Cryptology, University of Chinese Academy of Sciences,

Beijing, China
4 State Key Laboratory of Cryptology, P.O. Box 5159, Beijing 100878, China

sunsiwei@ucas.ac.cn

Abstract. The significant progress in the development of quantum com-
puters has made the study of cryptanalysis based on quantum comput-
ing an active topic. To accurately estimate the resources required to
carry out quantum attacks, the involved quantum algorithms have to
be synthesized into quantum circuits with basic quantum gates. In this
work, we present several generic synthesis and optimization techniques
for circuits implementing the quantum oracles of iterative symmetric-
key ciphers that are commonly employed in quantum attacks based on
Grover and Simon’s algorithms. Firstly, a general structure for imple-
menting the round functions of block ciphers in-place is proposed. Then,
we present some novel techniques for synthesizing efficient quantum cir-
cuits of linear and non-linear cryptographic building blocks. We apply
these techniques to AES and systematically investigate the strategies
for depth-width trade-offs. Along the way, we derive a quantum circuit
for the AES S-box with provably minimal T -depth based on some new
observations on its classical circuit. As a result, the T -depth and width
(number of qubits) required for implementing the quantum circuits of
AES are significantly reduced. Compared with the circuit proposed in
EUROCRYPT 2020, the T -depth is reduced from 60 to 40 without in-
creasing the width or 30 with a slight increase in width. These circuits
are fully implemented in Microsoft Q# and the source code is publicly
available. Compared with the circuit proposed in ASIACRYPT 2020, the
width of one of our circuits is reduced from 512 to 371, and the Toffoli-
depth is reduced from 2016 to 1558 at the same time. Actually, we can
reduce the width to 270 at the cost of increased depth. Moreover, a full
spectrum of depth-width trade-offs is provided, setting new records for
the synthesis and optimization of quantum circuits of AES.

Keywords: Quantum Circuit, T -depth, Grover’s Algorithm, AES

⋆ Corresponding author

1 Introduction

The rapid and fruitful development of the theory and practice on building com-
puting machines that exploit quantum mechanical phenomena has made the
research on algorithms running on quantum computers a topic with potential
practical consequences. This especially attracts substantial attention from the
cryptographic community, where the security of many primitives relies on the
computational hardness of solving certain number theoretical or combinatorial
problems. Shor’s algorithm [Sho99] is probably the most influential research in
this aspect. It will compromise the security of many widely deployed public-key
cryptosystems (including RSA, DSA, and ECC) if large-scale quantum comput-
ers are ever built.

For symmetric-key ciphers, a trivial application of Grover’s algorithm [Gro96]
results in a quadratic speedup of the exhaustive search attack. If the attackers
have access to the keyed quantum oracle, it is shown that many symmetric-
key schemes can be broken with Simon’s period-finding algorithm [KLLN16a,
BLNS21]. Since the practical relevance of querying online keyed quantum or-
acles is questionable, some subsequent work investigates techniques limited to
classical queries and offline quantum computations [HS18a, BHN+19, CNS17].
Also, quantum attacks derived from dedicated cryptanalytic techniques are ex-
tensively studied [BNS19b, BNS19a, HS18b, KLLN16b, NS, HS]. To concretely
estimate the complexities in the standard quantum circuit model [NC16], the
quantum circuits for these attacks have to be constructed based on some basic
quantum gates. Our community is especially interested in constructing efficient
quantum circuits for cryptographic primitives fulfilling specific input-output be-
haviors since such circuits typically work as sub-circuits of the quantum attacks.
The National Institute of Standards and Technology (NIST) used the complex-
ity of the quantum circuit for AES with a bound of depth called MAXDEPTH as
a baseline to categorize the post-quantum public-key schemes into different se-
curity levels in the call for proposals to the standardization of post-quantum
cryptography [NIS16]. Note that when the quantum circuits are applied in ex-
haustive key search, we can use parallelization by dividing the search space,
which naturally decreases the depth but increases the number of quantum gates
and qubits, and in fact, to perform exhaustive key search attacks on AES on a
quantum computer with Grover’s algorithm under NIST’s MAXDEPTH bound, par-
allelization is required for the majority of values of MAXDEPTH. For parallelization,
we have the following observation.

Observation 1 Let C be the quantum circuit implementing the Grover oracle
and V be the search space. If we divide V into k2 equal parts and execute k2

parallel Grover searches, the number of iterations of C required in each search
will decrease by a factor of k. The number of qubits required in each search will
not change, while the number of gates used in each search will decrease by a
factor of k. Therefore, the number of qubits required in all searches will increase
by a factor of k2, and the number of gates used in all searches will increase by a
factor of k.

2

Let C′ be a new quantum circuit whose depth is reduced to depth(C)/k, and the
numbers of qubits and gates are respectively increased by a factor less than k2

and a factor less than k. Then, Observation 1 implies that using C′ in a paral-
lel approach is better than applying C. This is the very reason that [JNRV20]
claims: Grover’s algorithm does not parallelize well, meaning that minimizing
depth rather than width is crucial to make the most out of the available depth.
Finally, NIST states that the MAXDEPTH restriction is motivated by the difficulty
of running extremely long serial computations. Plausible values for MAXDEPTH

range from 240 logical gates (the approximate number of gates that presently
envisioned quantum computing architectures are expected to serially perform in
a year) through 264 logical gates (the approximate number of gates that current
classical computing architectures can perform serially in a decade), to no more
than 296 logical gates (the approximate number of gates that atomic scale qubits
with speed of light propagation times could perform in a millennium).

Related Work. To perform quantum attacks based on Grover’s and Simon’s
algorithm, one has to implement the actual device that executes the attack,
whose cost is evaluated in the quantum circuit model. From an attacker’s per-
spective, it is important to reduce the cost. From a designer’s perspective, it is
important to have an accurate understanding of the cost to evaluate the secu-
rity margin and to guide future designs. In particular, the classical and quantum
implementations of AES receive most attention from our community.

The first quantum circuit of AES [GLRS16] was proposed by Grassl et al.,
where the so-called zig-zag structure was introduced to reduce the width (the
number of qubits required) of the resulting quantum circuits. The width was
further reduced in a follow-up work [ASAM18]. In [LPS19], Langenberg et al.
presented improved quantum circuits for the S-box and key expansion of AES,
leading to significantly improved AES circuits. At ASIACRYPT 2020, by tweak-
ing the zig-zag structure, together with new quantum circuits for the AES S-box
and its inverse constructed based on improved classical circuits Zou et al. signif-
icantly improved the width of the quantum circuit of AES [ZWS+20].

While the primary goal of the above works is to reduce the width, the cryp-
tographic community is more concerned with the depth, since in NIST’s on-
going post-quantum standardization effort, different security categories are de-
fined according to the quantum resources needed to attack AES with a depth
bound. At EUROCRYPT 2020, Jaques et al. proposed several techniques to im-
prove the depth, and presented the currently known sallowest quantum circuit
for AES [JNRV20]. Besides, we also see works considering the implementation
of quantum circuits for other primitives (e.g., SHA-2 and SHA3 [AMG+16],
LowMC [JNRV20], and ECC [BBvHL21]).

Note that this line of research is not only interested by the cryptographic
community, but also contributes to a much broader subject known as synthesis
and optimization of quantum circuits. As realistic quantum computers will likely
require some fault tolerance schemes where the amount of error correction is
proportional to the resources used, the effect of quantum circuit optimizations

3

becomes even more profound than its classical counterpart. In fact, the industrial
community has already invested huge resources to develop the tool chain for
synthesis and optimization of quantum circuits [Mic, IBM].

Our Contributions. We propose an in-place quantum circuit for the (invert-
ible) round-function of a block cipher or other iterative designs. With this type
of in-place structure, the circuits implementing the round functions can be con-
nected together to form the whole design without using additional ancilla qubits.
In addition, we present a generic method for constructing such in-place circuits
with out-of-place sub-circuits. Then, a systematic comparison of this structure
with previous designs (the pipeline structure and the zig-zag structure) is made
with respect to the depth and width (the number of qubits) requirements.

We then consider how to implement the building blocks of a symmetric-key
cipher efficiently. Specifically, a SAT-based technique for synthesizing small lin-
ear components is presented, which can output the CNOT network with the
minimal gate count. For nonlinear components, a systematic method for con-
structing a circuit mapping |x⟩|a⟩ to |x⟩|a⊕ f(x)⟩ based on a circuit mapping
|x⟩|0⟩ to |x⟩|f(x)⟩ meeting certain clearly defined conditions with only additional
CNOT gates is given. Based on this method, we present circuits for AES S-box
and it inverse with both T -depth and width improved compared to the one given
in [ZWS+20].

To further reduce the T -depth, we formulate a technique for converting an
AND-depth-t classical circuit into a T -depth-t quantum circuit. We note that
this is not a trivial conversion due to the peculiarities of a quantum circuit, and
the natural order of the classical circuit has to be rearranged to achieve this goal.
Based on this method with a new observation on the classical circuit for the AES
S-box, we obtain two circuits for the AES S-box with T -depth-4 and T -depth-
3, respectively, both of which have lower T -depth than the one presented at
EUROCRYPT 2020 [JNRV20]. Since the degree of the algebraic normal form of
the AES S-box is 7, with less than 3 stages of multiplications, one cannot generate
polynomials with degree 7, which implies that our implementation reaches the
theoretical lower bound.

By applying the method presented in this paper, we significantly improve the
efficiency of the quantum circuits for AES. Compared with the circuit proposed
in EUROCRYPT 2020, the T -depth is reduced from 60 to 40 without increasing
the width and the T -gate count, or 30 with a slight increase in width and T -gate
count. These circuits are fully implemented in Microsoft Q# and the source code
is publicly available. Compared with the circuit proposed in ASIACRYPT 2020,
the width of one of our circuits is reduced from 512 to 371, the number of Toffoli
gates is reduced from 19788 to 17888, and the Toffoli-depth is reduced from 2016
to 1558 at the same time. Actually, we can reduce the width to 270 at the cost of
increased depth. Moreover, by varying the local and global circuit structures, a
full spectrum of depth-width trade-offs are provided and illustrated in Figure 19
(Section 8), setting new records for the synthesis and optimization of quantum
circuits of AES.

4

2 Preliminaries on Synthesizing Quantum Circuits

The states of an n-qubit quantum system can be described by the unit vectors
in C2n . A quantum state is typically written as |u⟩, and in this paper we denote
it by |u⟩n to emphasize that this state has n qubits. When n is clear from the
context, we abbreviate |0 · · · 0⟩n as |0⟩.

A quantum algorithm manipulates the state of an n-qubit system through
a series of unitary transformations and measurements, where a unitary trans-
formation is a linear map U over C2n with UU† = U†U = I. Any unitary
transformation can be constructed with a finite set of single-qubit and two-
qubit unitary transformations through composition and tensor product. In the
standard quantum circuit model [NC16], we call these simple single-qubit and
two-qubit unitary transformations quantum gates. In particular, we consider how
to synthesize a quantum circuit with the commonly used universal fault-tolerant
gate set Clifford + T , which contains the Clifford gates:

H =
1√
2

(
1 1
1 −1

)
, S =

(
1 0
0 i

)
, CNOT =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 ,

and the non-Clifford gate T =

(
1 0
0 eiπ/4

)
.

We also frequently employ the Pauli-X gate X = HS2H =

(
0 1
1 0

)
and the

Toffoli gate

ToF =

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

.

In this work, we are mainly concerned with the quantum circuits that can
compute a classical vectorial Boolean function when the input is in the compu-
tational basis. Since the Toffoli gate can be used to simulate a universal gate
set for classical computation, all these circuits can be constructed by using only
Toffoli gates with additional qubits (potentially set to appropriate values). For
example, the multiplication operation a · b can be directly implemented by the
Toffoli gate |a⟩|b⟩|c⟩ → |a⟩|b⟩|c⊕ a · b⟩. There is another quantum circuit for im-
plementing the functionality of a classical AND gate, and we call it a quantum
AND gate. This gate together with its adjoint is illustrated in Figure 1.

Optimization Goals. The complexity of a quantum circuit can be measured in
terms of its width (number of qubits), gate count, and depth. The cryptographic

5

|a⟩ T † |a⟩

|b⟩ T † |b⟩

|0⟩ H T H S |ab⟩

|0⟩ T |0⟩

Conditioned on the measurement result being |1⟩

|0⟩ or |1⟩

|a⟩ S |a⟩

|b⟩ S S† |b⟩

|ab⟩ H X |0⟩

(a) Quantum AND gate (b) Quantum AND† gate

Fig. 1. The quantum AND gate together with its adjoint

community is mainly concerned with the depth metric, and in particular the
T -depth is the most interested parameter of a quantum circuit. The reason can
be summarized as follows.

Firstly, as indicated in [JNRV20] and our introduction, favoring lower depth
at the cost of a slightly larger width in the circuit leads to costs that are smaller
in several metrics than for the circuits presented in [GLRS16,ASAM18,LPS19].
Secondly, the time for fault tolerant quantum computation is proportional to
one round of measurement per layer of T -gates, and so the runtime is domi-
nated by T -depth, rather than gate count, circuit depth, or even measurement
depth [Fow12]. This is why in the adjoint of the quantum AND gate (see Fig-
ure 1) we avoid using T -gates at the cost of quantum measurement.

The T -depth is defined as the minimum number of stages of parallel appli-
cations of T -gates in a circuit, where parallel T -gates are allowed when they are
acting on different qubits. Note that we can implement the Toffoli gate with
several different circuits based on the Clifford +T gates with different T -depth,
and these circuits with T -depth 1, 2, and 3 can be found in [Sel12,AMMR13].

3 The Round-In-Place Structure for Iterative Primitives

We start by reviewing the two main structures used in previous work on the
quantum circuits for AES, including the pipeline structure [JNRV20] and the
zig-zag structure [GLRS16] illustrated in Figure 2 and Figure 3, respectively. In
the Figures we can see that each pair of neighbouring sub-circuits (represented as
small rectangles) are not perfectly aligned horizontally, but forming a stepladder
pattern. This interconnection pattern is due to the out-of-place nature of the
circuit Ri, which implements the i-th round function of AES, mapping |ki⟩|x⟩|0⟩
to |ki⟩|x⟩|O(Rs)⟩, where |ki⟩ is the round key, |x⟩ is the input state, and |O(Ri)⟩
is the output state of the round function. Here by out-of-place we mean that the
output |O(Ri)⟩ of the round function is not carried in the qubits that encode
the input |x⟩.

It is easy to see that, since the round transformation is implemented by the
out-of-place circuit Rs, the pipeline structure needs lots of qubits to preserve
the input states of all rounds, and the zig-zag structure is designed to reduce

6

|k0⟩ |k0⟩
|m⟩ R1

|m⟩
|0⟩ R2

|O(R1)⟩
|0⟩ R3

|O(R2)⟩
|0⟩ R4

|O(R3)⟩
|0⟩ R5

|O(R4)⟩
|0⟩ R6

|O(R5)⟩
|0⟩ R7

|O(R6)⟩
|0⟩ R8

|O(R7)⟩
|0⟩ R9

|O(R8)⟩
|0⟩ R10

|O(R9)⟩
|0⟩ |c⟩

Fig. 2. The pipeline structure, where k0 is the initial key, m is the plaintext, c is the
ciphertext. For the sake of simplicity, the ancilla qubits and the key expansion process
are omitted, and |k0⟩ is used as the round key in each round.

|k0⟩ |k0⟩

|m⟩ R1,i R†
1,i |m⟩

|0⟩ R1,o R2,i R†
2,i R†

1,o
R5,o R6,i R†

6,i R†
5,o

R8,o R9,i R†
8,o

R10,o |c⟩

|0⟩ R2,o R3,i R†
3,i R†

2,o
R6,o R7,i R†

6,o
R9,o R10,i |O(R9)⟩

|0⟩ R3,o R4,i R†
3,o

R7,o R8,i R†
8,i |O(R7)⟩

|0⟩ R4,o R5,i R†
5,i |O(R4)⟩

Fig. 3. The zig-zag structure, where R†
s is used to erase the redundant input states of

Rs+1.

the cost of qubits by using the reverse circuit for the last round to erase these
inputs. In [JNRV20], the pipeline structure was used for designing low-depth
circuits of AES, and in [GLRS16, ASAM18, LPS19], the zig-zag structure was
used for designing low-width circuits of AES.

3.1 The Round-In-Place Structure

For iterative designs with invertible round functions, an in-place implementation
(with some ancillae) of the round function maps |ks⟩|x⟩|0⟩ to |ks⟩|O(Rs)⟩|0⟩.
Such in-place implementations of the round functions can be connected naturally
to form the compositions of the round functions without the need of additional
qubits. However, directly designing an in-place circuit with low T -depth for
the round transformation involved in typical ciphers is difficult. In contrast, a
compact out-of-place circuit for a round transformation can be efficiently derived
from a compact classical circuit by implementing additions by CNOT gates and
multiplications by Toffoli gates.

A natural idea is to construct an in-place circuit based on out-of-place sub-
circuits, and this construction is depicted in Figure 4. This structure is a general
form of the circuits used in [AMG+16], and later we will show that previous
work neglect important things in implementing UR−1 .

7

We write the classical round transformation of a symmetric cipher into the
following form Round : (x, k) → (T (x, k), k). Let Round−1 : (z, k) → (T ′(z, k), k)
be the inverse of the round transformation, where T ′(T (x, k), k) = x. Suppose
we have an out-of-place circuit UR for Round and an out-of-place circuit UR−1

for Round−1. Actually, by implementing the classical Boolean operations with
Toffoli gates we can always construct such out-of-place circuits. Then the circuit
in Figure 4 in-place implements Round with some ancilla qubits.

|k⟩a |k⟩a
|x⟩n |T (x, k)⟩n

|T (x, k)⟩n |x⟩n
|0⟩b |0⟩b

|k⟩a

UR UR−1

|k⟩a
|x⟩n |T (x, k)⟩n
|0⟩n |x⊕ T ′(T (x, k), k)⟩n = |0⟩n
|0⟩b |0⟩b

Fig. 4. In-place implementation of an invertible round transformation based on out-
of-place sub-circuits

Figure 4 provides an efficient way to implement an invertible round transfor-
mation in-place. We call this kind of circuit an out-of-place based (abbreviated as
OP-based) in-place circuit. Based on this circuit, we can implement an iterative
cipher with the structure shown in Figure 5. We call this structure the OP-based
round-in-place structure, abbreviated as the round-in-place structure.

ROUND 1 ROUND 2 ROUND K

· · ·
· · ·
· · ·

|0⟩b |0⟩b |0⟩b |0⟩b
· · ·

|0⟩b |0⟩b

|k0⟩a

UR1
UR−1

1
UR2

UR−1
2

URk
UR−1

k

|k0⟩a
|m⟩n |c⟩n
|0⟩n |0⟩n
|0⟩b |0⟩b

Fig. 5. The OP-based round-in-place structure

Remark 1. In Figure 4, the functionality of UR−1 is to compute T ′, and then
XOR T ′ into the third register. Moreover, this functionality should work when
the state on the third register is |x⟩, which is related with the state in the second
register. Therefore,

• If we use a UR−1 which only works for |0⟩, the output will be wrong.
• If we use a UR−1 which works for any |y⟩, the output will be correct. However,

since the relationship between |x⟩ and |T (x, k)⟩ is not sufficiently used, such
UR−1 will cost more quantum resources.

In [AMG+16], an in-place circuit of the χ function of SHA3 was presented with
a structure which is similar with our OP-based in-place circuit. However, their

8

implementation of χ−1 is a straightforward implementation of the classical circuit
fromKeccak tools, which is equivalent to a UR−1 that only works for |0⟩, leading
to incorrect output. In [ZWS+20], the implementation is equivalent to a UR−1

that works for any |y⟩, which needs more quantum resources.

Remark 2. Note that UR−1 and U†
R are different. U†

R is the circuit for the adjoint
of the unitary transformation UR. It can be obtained by placing the adjoints
of the gates in UR in the reverse order, and thus U†

R and UR cost the same
quantum resources in most times. In comparison, UR−1 is the circuit for the
reverse transformation R−1. Hence, the costs of UR and UR−1 are different in
general. However, in our context, R is for encryption, while R−1 is for decryption.
For most symmetric ciphers, the complexities of the encryption and decryption
are similar. Hence the quantum resources for implementing UR and UR−1 are
almost the same.

3.2 A Depth-Width Comparison of Different Structures

Given an iterative block cipher whose block size is n-bit, a rough estimation of
the width of the circuits with the pipeline, zig-zag, and round-in-place structures,
when they use the same out-of-place circuit UR as their main component, can be
easily obtained from Figure 2 to Figure 5. We suppose UR requires n qubits for
the input data block, n qubits for the output data block, and αn for the round
key and ancillae. Note that in Figure 2 and Figure 3, we omit the possible ancilla
qubits used in Rs. Then, the widths of the three structures for implementing all
r-round operations are presented in Table 1.

Table 1. The widths of different structures, where t is the minimal number such that∑t
i=1 i > r.

Pipeline Zig-zag Round-in-place

(r + α+ 1)n (t+ 1 + α)n ≈ (
√
2r + α)n (2 + α)n

To estimate the depths of these structures, we need to consider two different
scenarios. In the first scenario, we build circuits for the Grover oracles used in
exhaustive key search attacks. In the second scenario, we construct circuits for
the encryption oracles used in [KLLN16a].

Circuits for Grover Oracles. First, we consider the Grover oracle: |y⟩|q⟩ →
|y⟩|q ⊕ f(y)⟩, where f(y) is a Boolean function that outputs one bit 1 or 0.
When given some pairs of plaintext and ciphertext, by constructing a Grover
oracle with the key |k⟩ as the input, one can use Grover’s algorithm to search
the correct key. For simplicity, we consider the case of using one pair of plaintext
and ciphertext (m, c0). In this case, the circuits of the Grover oracle based on

9

different structures are shown in Figure 6. In this figure, the out-of-place sub-
circuit EOP denotes the encryption circuit generated by the pipeline or zig-zag
structure, while the in-place sub-circuit EIP denotes the encryption circuit gen-
erated by the round-in-place structure. Besides the ciphertext |c⟩, EOP outputs
the redundant state |r⟩ corresponding to those O(Rs) in Figure 2. Since the
plaintext m is fixed, |m⟩ is a computational basis state, which can be viewed as
ancilla qubits in this circuit. The sub-circuit “COM” compares |c⟩ with the pro-
vided ciphertext c0, if they are equal, then flips the target qubit |q⟩. Apparently,
in these two circuits, the depth of the oracle is roughly two times of the depth
of the encryption circuit (EOP or EIP).

|k⟩ |k⟩
|m⟩ |c⟩
|r⟩ |0⟩
|c⟩

|k⟩

EOP E†
OP

|k⟩ |k⟩
EIP E†

IP

|k⟩
|m⟩ |m⟩ |m⟩ |m⟩
|0⟩ |0⟩ |0⟩ |0⟩
|0⟩ |0⟩ |q⟩ COM |q ⊕ f(k)⟩
|q⟩ COM |q ⊕ f(k)⟩

1) pipeline and zig-zag 2) round-in-place

Fig. 6. The Grover oracle based on different structure

Circuits for Encryption Oracles. Now we consider the encryption oracle de-
fined in [KLLN16a]: |m⟩|0⟩ → |m⟩|E(m)⟩, where m is the plaintext, and E(m)
is the corresponding ciphertext. For this oracle, if its input is a superposition∑
m |m⟩|0⟩, then its output will be a superposition

∑
m |m⟩|E(m)⟩. Figure 7

shows how to construct quantum cryptographic oracles based on different struc-
tures. Here |c⟩ = |E(m)⟩ is the ciphertext. Note that, in this oracle, we do not
need to store |k⟩ by qubits, since we can pre-compute all the round keys via
classical computation, and add them on the input of each round by Pauli-X
gates. For the pipeline and the zig-zag structures, since we need uncomputation
to erase the redundant state |r⟩, the depth of the oracle is twice of that of the
encryption process. However, for the round-in-place structure, since we do not
generate |r⟩, we do not need the uncomputation process.

By summarizing the above discussion, we have the following results. Given
a symmetric cipher with r rounds, suppose the depths (or T -depths) of UR and
UR−1 in Figure 4 are both d. This is reasonable according to Remark 2. If we
ignore the cost of the compare process in the Grover oracle and the copy process
in the quantum cryptographic oracle, then the depths (or T -depths) and the
DW-costs (the product of depth and width) of the oracles based on these three
structures are as shown in Table 2.

From the results in Table 1 and Table 2, we have the following observations.

10

|m⟩ |c⟩
|r⟩ |0⟩
|c⟩ |m⟩

|m⟩
EOP E†

OP

|m⟩ |m⟩
EIP

|m⟩
|0⟩ |0⟩ |0⟩ |0⟩
|0⟩ |0⟩ |0⟩ |c⟩
|0⟩ |c⟩

1) pipeline and zig-zag 2) round-in-place

Fig. 7. The encryption oracle based on different structure

Table 2. The depths and DW-costs of the oracles based on different structures

Metric Type Pipeline Zig-zag Round-in-place

Depth
Grover 2r · d 2 ·

∑t
i=1(2(t− i) + 1) ≈ 4r · d 4r · d

Encrypt 2r · d ≈ 4r · d 2r · d

DW-cost
Grover 2r(r + 1 + α)nd 2r(

√
2r + α)nd 4r(2 + α)nd

Encrypt 2r(r + 1 + α)nd 2r(
√
2r + α)nd 2r(2 + α)nd

Observation 2 The round-in-place structure has the smallest width in any cases.
For the Grover oracle, the pipeline structure has the lowest depth. When r ≤
3 + α, the DW-cost of the pipeline structure is lowest, and when r > 3 + α,
the DW-cost of the round-in-place structure is lowest. For the quantum crypto-
graphic oracle, the pipeline structure and the round-in-place structure have the
same depth, and the DW-cost of the round-in-place structure is always the lowest.

4 Synthesizing Optimal CNOT Circuits with SAT

It is well known that an invertible linear transformation over Fn2 can be imple-
mented in-place with n qubits by the CNOT gates [PMH08]. Given an invertible
transformation represented as a binary matrix, the PLU decomposition tech-
nique [GLRS16,JNRV20,ZWS+20] and the heuristic algorithm proposed at FSE
2020 [XZL+20] are typically employed to produce a compact CNOT circuit im-
plementing the linear transformation. However, these methods are far from being
optimal. In the following, we present a SAT-based method to generate the most
compact CNOT circuit for invertible linear transformations over Fn2 . Due to the
difficulty of solving large scale SAT models in practice, the SAT-based technique
only works when n is small.

The idea of our algorithm is to convert the problem of finding a circuit with k
CNOT gates into the problem of solving a system of Boolean equations. Similar
ideas were used in [FS10,Sto16,MSM18], where different classical and quantum
circuit synthesis problems were considered. A brief introduction of our method
is given in the following, and a detailed description can be found in Appendix A.

Given a positive integer k and a linear transformation which can be ex-
pressed as n linear forms Li(x1, x2, . . . , xn) in xi, we generate a model with

11

the following sets of variables: B = (bij)k×n, C = (cij)k×n, F = (fij)n×n, and
Ψ = {ψi,j,s}k×n×n. These variables are of different semantics. For B and C,
bij1 = ci,j2 = 1 means the i-th gate is a CNOT gate with control wire j1 and
target wire j2. For F , fij = 1 implies that the final output of the j-th wire is Li.
For Ψ , ψi,j,k = 1 indicates that after the i-th gate, the coefficient of xk in the
Boolean expression for the j-th wire is 1. We generate the equations of these vari-
ables to encode the gates and their outputs. It can be shown that the obtained
system of equations has a solution (which can be tested with SAT solvers) if and
only if there is a CNOT-circuit with k CNOT gates. By incrementally increasing
k, we can identify the minimal k such that the corresponding equations can be
satisfied simultaneously. According to our experiments, linear transformations
with less than 9 variables can be solved in a reasonable time. Hence, we employ
this method to identify the optimal CNOT sub-circuits in our implementations
of the AES S-box presented in Section 5.

5 In-Place Circuits for Nonlinear Components

It is well known that for any Fn2 → Fn2 permutation, there is an in-place quantum
circuit implementing it using only Pauli-X, CNOT, and Toffoli gates with at
most one ancilla qubit [SPMH03]. To obtain this in-place implementation with
minimal width, one needs to solve a corresponding permutation factorization
problem, which is computationally difficult for large permutations like the AES
S-box. Moreover, the complexity in terms of the gate count and depth of the
circuits produced by this method is typically far from being satisfactory. For
example, in [GLRS16], the authors estimated that the in-place circuit of the
AES S-box with 9 qubits would cost about 9695 T gates. In contrast, with
the method provided in this section, we can construct an in-place circuit that
requires only 22 qubits and 728 T gates.

In what follows, we consider special quantum circuits (named as C0- and
C∗-circuits) implementing a vectorial Boolean function, based on which in-place
quantum circuits for nonlinear transformations with different shapes can be con-
structed.

5.1 C0- and C∗-Circuits for a Vectorial Boolean Function

Given a vectorial Boolean function f : Fa2 → Fb2, a C0-circuit for f is a quantum
circuit mapping |x⟩a|0⟩b|0⟩c to |x⟩a|f(x)⟩b|0⟩c for any x ∈ Fa2 , and a C∗-circuit
for f is a quantum circuit mapping |x⟩a|y⟩b|0⟩c to |x⟩a|y ⊕ f(x)⟩b|0⟩c for any

(x, y) ∈ Fa+b2 . Obviously, a C∗-circuit for f is always a C0-circuit for f . Moreover,
building a C0-circuit is much easier than building a C∗-circuit since a C∗-circuit
has more restrictions on its input-output behavior. For example, the circuits for
the AES S-box proposed in [GLRS16,ASAM18,LPS19] are C0-circuits, but not
C∗-circuits.

Next, we present a generic method that can convert a C0-circuit for f with
some clearly defined properties (called simplex C0-circuits) into a C∗-circuit for

12

f efficiently. In particular, the obtained C∗-circuit do not increase the T -depth
of the corresponding C0-circuit.

Simplex C0-Circuits. A C0-circuit for f is simplex if it maps |x⟩a|y⟩b|0⟩c to

|x⟩a|A(y)⊕ f(x)⟩b|0⟩c,

where A : Fb2 → Fb2 is an invertible linear function. We now consider the gate-level
structures of (simplex) C0-circuits, which gives some intuitive ideas on how to
construct efficient simplex C0-circuits and the sufficient condition for a C0-circuit
to be simplex.

Suppose we have a quantum circuit built with Pauli-X, CNOT and Toffoli
gates. Let |x1, x2, · · · , xa⟩|y1, y2, · · · , yb⟩|0⟩c and |t1, · · · , ta⟩|z1, · · · , zb⟩|0⟩c be
the input and output of the circuit with xi, yi and zi in F2. For j ∈ {1, 2, · · · , b},
we have

zj(x, y) =
∑

u,v

aju,vx
uyv +

∑

u

bjux
u +

∑

u

djuy
u + T j(x) + Lj(y) + cj ,

where aju,v, b
j
u, d

j
u, and c

j ∈ F2, u ∈ Fa2 , v ∈ Fb2, T j and Lj are linear functions,
and xu is the monomial

∏
ui=1 xi. If this circuit is a C0-circuit of the vectorial

function f(x) = (f1(x), · · · , fb(x)), then

zj(x, 0) =
∑

u

bjux
u + T j(x) + cj = fj(x),

which implies that

zj(x, y) = fj(x) +
∑

u,v

aju,vx
uyv +

∑

s

djuy
u + Lj(y).

Consequently, if the quantum gates applied to the input qubits

|x1, x2, · · · , xa⟩|y1, y2, · · · , yb⟩|0⟩c
do not produce any nontrivial xuyv and yu terms whose degree are greater or
equal to 2, the C0-circuit must be simplex.

Now we analyze which operations may generate these xuyv and yu terms.
We denote the set of the b output wires in this circuit as W, and the set of
other a + c wires as V. Then, the algebraic expressions of the initial states on
the wires in W are y. All operations that operate on at least one wire in W can
be classified into the following 7 types of operations illustrated in Figure 8.

Denote
∑
i a
j
u,vx

uyv+
∑
s d

j
uy
u+Lj(y) by hj(x, y), then zj(x, y) = hj(x, y)+

fj(x). From the above analysis, to design a C0-circuit, since there is no constraint
on hj(x, y), we do not need to care about the generation of xuyv and yu. This
means the above 7 types of operations are all permitted. The designer only needs
to focus on efficiently constructing f(x). From the view of algebraic expression,
the qubits on the wires in W can be seen as newly defined variables. Additions
and multiplications about these variables can be used to generate f(x).

13

(a) W : (b) W : (c) W :

W : V : V :

W or V : W or V : V :

(d) W : (e) W : (f) W : (g) W :

V : V : W :

X

Fig. 8. Operations that operate on at least one wire in W

To design a simplex C0-circuit, we should guarantee that hj(x, y) = Lj(y),
which means that xuyv and yu should not appear. We have the following obser-
vation:

Observation 3 If some xuyv was generated, it is hard to eliminate this xuyv

in the following steps, unless we repeat the same Toffoli gate which generates it.

This means generating xuyv will likely increase the cost of the circuits. Hence a
natural criterion for designing a compact C∗-circuit is to avoid generating xuyv.

Under this criterion, operations (a) and (b) should obviously be avoided. For
operation (d), it can only be applied when we use the qubit on the target wire as
a dirty qubit for some CNOT gates. Note that operation (e), (f), and (d) under
this constrain can be described together as the following operation.

(h): Apply s CNOT gates, s ≥ 1, which map |u⟩a|w⟩b|v⟩c to |u⟩a|L(u, v, w)⟩b|v⟩c
for any u, v, w, where L is a linear function w.r.t. u, v, w.

Thus, our criterion for designing a compact C∗-circuit is: only operations (c), (h),
(g) can be applied on the output wires. Note that without applying operation (a),
yγs will not be generated either. Therefore, under this criterion, if we construct
Uf , which is a C0-circuit of f , then the output of Uf is

|x⟩|h1(x, y) + f1(x), . . . , hb(x, y) + fb(x)⟩|0⟩,

where hk(x, y) = Lk(y) is a linear function with respect to y. Let A(y) =
(L1(y), L2(y), . . . , Lb(y)), then the output can be denoted by |x⟩|A(y)⊕ f(x)⟩|0⟩,
which implies this is a simplex C0-circuit.

Converting Simplex C0-circuits into C∗-circuits. Let Uf be a C0-circuit of
f(x). We can construct a C∗-circuit of f(x) as shown in Figure 9. Here UA−1

is an in-place sub-circuit, which implements A−1(y). |y⟩ will be converted to∣∣A−1(y)
〉
after passing UA−1 , and the output of this modified circuit will be

|x⟩
∣∣A(A−1(y))⊕ f(x)

〉
|0⟩ = |x⟩|y ⊕ f(x)⟩|0⟩, which means this is a C∗-circuit of

f(x).
It is easy to see that the C∗-circuit constructed by the above method has the

same width as the C0-circuit Uf . Moreover, the numbers and the depths of Toffoli
gates (or T gates) are the same for these two circuits. From this construction, we
can see that the C∗-circuit and the simplex C0-circuit are almost the same. Hence,

14

C0-circuit

CNOTS |x⟩
∣∣A−1(y)

〉

|0⟩

|x⟩

Uf

|x⟩

|y⟩ UA−1 |y ⊕ f(x)⟩

|0⟩ |0⟩

Fig. 9. A C∗-circuit based on a simplex C0-circuit

to efficiently construct a C∗-circuit, we should also follow the above criterion of
designing a simplex C0-circuit, and by this way we will always obtain a simplex
C0-circuit. Then, the process of designing a C∗-circuit of f(x) can be summarized
as following steps:

1) We design Uf , a C0-circuit of f(x), in which only operations (c), (g), and (h)
can be applied on the wires in W. Then Uf will be a simplex C0-circuit.

2) We determine A. Note that, in a simplex C0-circuit, operations (c), (g) will
not generate any term containing y, which means A is determined by (h)
operations. Hence, we can obtain A by computing the composition of the
linear transformations corresponding to all (h) operations.

3) If A is identity, this is already a C∗-circuit . Otherwise, we implement A−1

by an in-place CNOT circuit UA−1 , then construct a C∗-circuit as Figure 9.

For most S-box implementation problems, the number of the output wires is not
bigger than 8, which means, by our SAT-based algorithm, we can make sure
UA−1 uses the minimal number of CNOT gates.

5.2 In-Place Implementations of Nonlinear Transformations of
Different Shapes with C0- and C∗-Circuits

We show how to implement nonlinear transformations with typical shapes en-
countered in practice with C0- and C∗-Circuits. In most symmetric ciphers, a
nonlinear component can correspond to one of the classical invertible nonlinear
transformations presented in Figure 10.

n

m

x
T

x

y y ⊕ F (x)

1) Feistel-like

n

m

x
T

S(x, y)

y y

2) Substitution-like

Fig. 10. Two kinds of classical invertible nonlinear transformations

15

Feistel-like Transformations. First, we consider Feistel-like classical invert-
ible nonlinear transformations of the form

Ψ : (x, y) 7→ (x, y ⊕ F (x)).

The quantum circuit of this type of nonlinear transformation can be realized by
a C∗-circuit of F , which in turn can be derived from a simplex C0-circuit of F .
We note that a C∗-circuit of F , mapping |x⟩|y⟩|0⟩ to

|x⟩|y ⊕ F (x)⟩|0⟩ = |Ψ(x, y)⟩|0⟩,

is an out-of-place implementation of F but an in-place implementation of Ψ .
Feistel-like structures are frequently seen in Feistel ciphers, NFSR-based designs,
and key-schedule algorithms of block ciphers.

For example, SubByte and the following XOR operation in the AES key
schedule can be seen as a Feistel-like transformation. Therefore to in-place
implement this transformation, we can construct a simplex C0-circuit of the
AES S-box, then extend it to a C∗-circuit. In the previous works about AES,
a lot of proposed quantum circuits of the AES S-box are simplex C0-circuits
[ASAM18, LPS19, ZWS+20], since in these circuits only operations (c),(h),(g)
are applied. Hence, by the method proposed in Section 5.1, we can easily ex-
tend them to the C∗-circuits. For example, based on the simplex C0-circuit of
the AES S-box proposed in [ZWS+20], we construct a compact C∗-circuit5. In
this C∗-circuit, the in-place circuit implementing A−1 with minimum number
of CNOT gates is achieved by our SAT-based algorithm. This circuit costs 10
CNOT gates, and in Appendix E, we present the matrix corresponding to A−1

and the specific form of this circuit.

In Table 3, we compare the quantum resources used in our C∗-circuit and
those used in the C∗-circuit proposed in [ZWS+20].

Table 3. Quantum resources for implementing the S-box of AES

#ancilla Toffoli-depth #Toffoli #CNOT #Pauli-X source

C0-S-box 6 41 52 326 4 [ZWS+20]

C∗-S-box
7 60 68 352 4 [ZWS+20]
6 41 52 336 4 This paper

Substitution-like Transformations. Next, we consider classical invertible
substitution-like transformations of the form

Φ : (x, y) → (S(x, y), y).

5 The C code for checking the correctness of this C∗-circuit is available at https:

//github.com/AES-quantum-circuit/AES-quantum-circuit

16

https://github.com/AES-quantum-circuit/AES-quantum-circuit
https://github.com/AES-quantum-circuit/AES-quantum-circuit

It is easy to see that the description of such nonlinear transformation is the
same as that of the round transformation discussed in Section 3, and thus we
can implement such nonlinear transformation by the OP-based in-place circuit
in Figure 11.

|x⟩ |S(x, y)⟩
|y⟩ |y⟩

|S(x, y)⟩ |x⟩
|0⟩ |0⟩

Input wires: |x⟩

UT UT−1

|S(x, y)⟩
Input wires: |y⟩ |y⟩

Output wires: |0⟩ |x⊕ S′(S(x, y), y)⟩ = |0⟩
Ancilla wires: |0⟩ |0⟩

Fig. 11. An OP-based in-place circuit for a substitution-like nonlinear transformation,
where S′ is a function satisfying S′(S(x, y), y) = x for any y.

We now consider how to implement the building blocks of the circuit depicted
in Figure 11. For UT , it can be implemented as a C0-circuit of S. For UT−1 , a
circuit which mapping |S(x)⟩|y⟩|x⟩|0⟩ to |S(x)⟩|y⟩|x⊕ S′(S(x), y)⟩|0⟩, one may
attempt to implement this part as a C∗-circuit of S′. We now show that this is
an overshoot.

For UT−1 , if we set z = S(x), then S′(z, y) = x, and UT−1 maps |z⟩|y⟩|S′(z, y)⟩|0⟩
to |z⟩|y⟩|0⟩|0⟩. Suppose UT0

is a circuit that maps |z⟩|y⟩|0⟩|0⟩ to |z⟩|y⟩|S′(z, y)⟩|0⟩,
then obviously, U†

T0
, the reverse circuit of UT0 , is equivalent to UT−1 . Therefore,

to implement a substitution-like transformation, we only need to design a C0-
circuit of S, and a C0-circuit of S′, whose reverse circuit is used.

6 A Method for Constructing Low T -Depth Circuits

As discussed in Section 2, the T -depth is the most concerned parameter. In our
context, T gates only appear in the Toffoli gates, the quantum AND gates and
their adjoints, which are employed to implement the quantum correspondences
of the multiplications in the classical computation. In the following, we first show
that there always exists a quantum circuit with T -depth equal to the AND-depth
of the corresponding classical circuit. Therefore, we can first construct a classical
circuit with low AND-depth, and then convert it into a low T -depth quantum
circuit.

6.1 Classical AND-depths v.s. Quantum T -depths

The AND-depth of a classical circuit (a.k.a. the multiplicative depth) constructed
with AND, XOR, and NOT gates is the largest number of AND gates on any
path from a primary input to a primary output. For example, the AND-depth
of the classical circuit shown in Figure 12 is 1.

The readers may think that it is trivial to build a quantum version of a given
classical circuit such that the T -depth of the quantum circuit is equal to the

17

AND-depth of the classical circuit by just properly replacing the classical AND
gates with Toffoli gates or quantum AND gates, all of which have T -depth 1
implementations. However, for quantum circuits, a direct copy as the “b” signal
in Figure 12 is not allowed and a qubit cannot be used in different quantum
gates simultaneously. Therefore, a quantum circuit obtained from a classical one
by the simple replacement strategy mentioned above maintaining the natural
order of operations may result in increased T -depth. For example, the quantum
circuits with different Toffoli-depth depicted in (2) and (3) of Figure 12 both
implement the functionality of the classical circuit given in (1) of Figure 12.
Next, we show that the AND-depth of a classical circuit set a lower bound for
the T -depth of its quantum counterpart, and this lower bound is achievable.

d

c

b

a

ab

bd⊕ cd

∧

+
∧

a ∧ b b⊕ c b⊕ c a ∧ b
|a⟩ |a⟩ |a⟩ |a⟩
|b⟩ |b⟩ |b⟩ |b⟩
|c⟩ |c⟩ |c⟩ |c⟩
|d⟩ |d⟩ |d⟩ |d⟩
|0⟩ |ab⟩ |0⟩ |ab⟩
|0⟩ |b⊕ c⟩ |0⟩ |b⊕ c⟩
|0⟩ |bd⊕ cd⟩ |0⟩ |bd⊕ cd⟩

(1) classical circuit (2) T -depth-2 (3) T -depth-1

Fig. 12. Quantum implementations of a classical circuit with multiplicative depth 1

Theorem 1. Given a classical circuit with AND-depth s, the T -depth of the
quantum circuit implementing all the nodes of the classical circuit is not smaller
than s. Moreover, with sufficiently many ancillae, we can construct a quantum
circuit implementing all the nodes of the classical circuit with T -depth s.

A constructive proof of Theorem 1 can be found in Appendix B, which also
provides a generic method to convert an AND-depth t classical circuit into a
T -depth t quantum circuit. We illustrate this method with the classical circuit
given by Example 1.

Example 1. M4 = M1 ·M2, M5 = M2 ·M3, M6 = M4 ⊕M3, M7 = M5 ⊕M1,
M8 = M7 ·M2, M9 = M7 ·M3, M10 = M8 ⊕M6, M11 = M10 ⊕M9, M12 = M7 ·M6,
M13 = M11 ·M3

The AND-depth of the circuit given by Example 1 is 3. Before we present
the method for building the corresponding T -depth-3 quantum circuit, we define
the AND-depth for each intermediate node (or signal) appearing in the circuit.
We call a variable an AND-variable if it represents the output of an AND gate.
In Example 1, M4, M5, M8, M9, M12, and M13 are AND-variables.

Let Mi and Mj be two AND-variables. Mj is said to be an AND-successor
of Mi if Mj = Mi ·Mk for some k, or Mj = Mu ·Mv for some u and v such

18

that Mu is generated from Mi by some XOR operations, which is denoted by
Mi →Mj . Also, we call Mi is an AND-predecessor of Mj . In our Example 1, we
have M5 →M8 and M8 →M13, forming a directed path M5 →M8 →M13. By
generating all such paths, a directed acyclic graph is obtained with the nodes
representing the AND-variables. Then, the AND-depth of an AND-variable M ,
denoted as d∧(M) is defined as k, if M is the k-th node in the longest path
containing M . Apparently, the AND-depth of a classical circuit is equal to the
maximum AND-depth of its AND-variables. It is easy to see that, for an AND-
variableM , ifM has no AND-predecessor, then d∧(M) = 1, otherwise d∧(M) =
1 + maxv∈Pre(M) d∧(v), where Pre(M) denotes the set of all predecessors of M .
In Example 1, d∧(M4) = d∧(M5) = 1, d∧(M8) = d∧(M9) = d∧(M12) = 2, and
d∧(M13) = 3.

Now, we are ready to describe our method for building the quantum circuit.
Note that since we aim at reducing the T -depth, in our constructions, we al-
ways use the quantum AND gate with T -depth 1 and its adjoint with T -depth
0 depicted in Figure 1 whenever possible, while in the figures illustrating the
quantum circuits, we use Toffoli gates due to the compactness of its visualiza-
tion. The circuit generated by our method has the following features, Firstly,
for AND-variables with the same AND-depth, a layer of quantum AND gates
which generate these AND-variables are applied in parallel. Secondly, before the
quantum AND layer, all necessary input are generated with a CNOT network.
In particular, when a variable is used as inputs of different AND gates of the
subsequent AND layer, we can copy it into an ancilla qubit with the application
of a CNOT gate, and clean the effect of the CNOT gate after the quantum AND
layer.

LAYER 1 LAYER 2 LAYER 3

|M1⟩ |M1⟩
|M2⟩ |M2⟩
|M3⟩ |M3⟩
|0⟩ |M4⟩
|0⟩ |M5⟩
|0⟩ |M6⟩
|0⟩ |M7⟩
|0⟩ |M8⟩
|0⟩ |M9⟩
|0⟩ |M10⟩
|0⟩ |M11⟩
|0⟩ |M12⟩
|0⟩ |M13⟩

Fig. 13. An AND-depth-3 implementation for the classical circuit in Example 1

Figure 13 present a quantum circuit corresponding to Example 1. In this
circuit, we have three layers of quantum AND gates, within each layer the gates
are applied in parallel. In Layer 1, we generate M4 and M5. In Layer 2, we
generate M8, M9, and M12. In Layer 3, we generate M13. The variables required
by Layer 1 are M1, M2, and M3. Since M4 =M1 ·M2, and M5 =M2 ·M3, M2 is

19

needed in two different AND gates. Therefore, before Layer 1, we copy |M2⟩ to
another qubit by a CNOT gate. This is an idle qubit, which will be used to store
|M6⟩. We clean this qubit after Layer 1. The variables required by Layer 2 are
M2, M3, M6, and M7. Hence, we have to generate M6 and M7. We do this by
applying 4 CNOT gates before Layer 2. Similarly, M7 is required for computing
M8,M9, andM12. We copy it into two idle qubits by 2 CNOT gates before Layer
2, which are cleaned after Layer 2. The variables required by Layer 3 are M2,
and M11. Thus, before Layer 3, we apply 4 CNOT gates to generate M11. This
leads to a quantum circuit computing all the nodes in Example 1 with T -depth
3.

6.2 A Trick for Reducing the AND-depth of Classical Circuits

According to the discussion of the previous section, low AND-depth classical
circuits imply low T -depth quantum circuits. In this section, we show how to
reduce the AND-depth of a classical circuit without changing the functionalities
of its primary outputs based on a simple observation. Let M4 = M1 ·M2 and
M =M4·M3 with d∧(M1) = 2, d∧(M2) = 1, and d∧(M3) = 1. Then d∧(M4) = 3,
and d∧(M) = 4. In addition, We can deduce thatM = (M1 ·M2)·M3. Obviously,
we also have M =M1 · (M2 ·M3). Therefore, if we first compute M4 =M2 ·M3,
and then M =M1 ·M4. The AND-depth of M is reduced from 4 to 3.

We now show how this idea works for a more complicated case based on
Example 1, where M1, M2, M3 are primary inputs and M12, M13 are primary
outputs. For M13, we have

M13 = (M10 ⊕M9)M3 = (M8 ⊕M6 ⊕M9)M3 =M7(M2M3)⊕M6M3 ⊕M7M3.

We modify the circuit by using the following steps to generate M13: N1 = M2 ·
M3, N2 =M6 ·M3, N3 =M7 ·M3, N4 =M7 ·N1, N5 = N4⊕N2, M13 = N5⊕N3.
M13 is not an AND-variable anymore. It is easy to check that d∧(N1) = 1,
d∧(N2) = 2, d∧(N3) = 2, and d∧(N4) = 2. Therefore, the AND-depth of this
new circuit is 2. The modified circuit is given by Example 2, where M12 and
M13 are the primary outputs.

Example 2. M4 = M1 ·M2, M5 = M2 ·M3, M6 = M4 ⊕M3, M7 = M5 ⊕M1,
M ′

8 = M6 ·M3, M
′
9 = M7 ·M3, M ′

10 = M7 ·M5, M ′
11 = M ′

10 ⊕M ′
8, M12 = M7 ·M6,

M13 = M ′
11 ⊕M ′

9.

More generally, given a classical circuit, we can try to reduce its AND-depth
as follows. Firstly, for a M ′ which is not an AND-variable, we extend the def-
inition of d∧(M ′), by setting d∧(M ′) to be maxi{d∧(Mi)} , where Mi is an
AND-variables and there is a path from Mi to M

′ in the classical circuit.
For an AND-variable M with d∧(M) = d ≥ 3, we have M = M1M2 for

some M1 with d∧(M1) = d− 1. If d∧(M2) ≤ d− 3, we further decompose M1 to
variables with lower AND-depth. That is we write M1 as

∑
i,jM

′
iM

′
j +

∑
kM

′
k,

where d∧(M ′
i) ≤ d− 2, d∧(M ′

j) ≤ d− 2, d∧(M ′
k) ≤ d− 2, for any i, j, k. Then, we

have

20

M =
∑

i,j

M ′
i(M

′
jM2) +

∑

k

M ′
kM2.

For any M ′
i with d∧(M1

i) = d − 2, if the corresponding M ′
j always satisfies

d∧(M1
j) ≤ d − 3, then by constructing some new operations which generate

those M ′
jM2 first, we can reduce the AND-depth of M from d to d− 1.

6.3 T -depth-4 and T -depth-3 Quantum Circuits for the AES S-box

Firstly, based on the classical circuit proposed in [BP12] with AND-depth 4 (see
Appendix C), we can build a quantum circuit for the AES S-box with T -depth
4 by employing the method given in Section 6.1. In comparison, the T -depth
of the quantum circuit presented by Jaques et al. [JNRV20] based on the same
classical circuit is 6, and its width is the same as ours.

Furthermore, based on the trick given in Section 6.2, we transform the classi-
cal circuit proposed in [BP12] into the circuit shown in Appendix D with AND-
depth 3, based on which a T -depth-3 quantum circuit for the AES S-box can be
constructed. Note that, the algebraic degree of the AES S-box is 7. With two lay-
ers of multiplications, we can only obtain polynomials with degree 4. This means
that we need at least three layers of multiplications to generate the output of
the AES S-box. Therefore, if we implement the AES S-box by firstly designing a
classical reversible circuit, and then decomposing each gate into the Clifford+T
gates, the minimum T -depth is 3, which is achieved by our circuit. A compari-
son of our circuits and the one presented in [JNRV20] is presented in Table 4.
The Q# code for our T -depth-4 and T -depth-3 quantum circuits are available
at https://github.com/AES-quantum-circuit/AES-quantum-circuit.

Table 4. Quantum resources for different AES S-box circuits

#CNOT #1qClifford #T # Measure T -depth Full depth Width Source

664 205 136 34 6 117 136 [JNRV20]
718 208 136 34 4 109 136 T -depth-4
1395 467 312 78 3 113 218 T -depth-3

Remark 3. The widths presented in Table 4 are not obtained by the Q# resource
estimator. As mentioned in the latest ePrint version of [JNRV20] and https:

//github.com/microsoft/qsharp-runtime/issues/192. There was a bug in
Q# that produces conflict width and depth estimations, and this issue was
solved in the latest version of Q#. However, when Q# tries to optimize the
T -depth, the width obtained is not optimal (https://github.com/microsoft/
qsharp-runtime/pull/446). Therefore, we manually estimate the widths to
obtain more accurate figures. The specific estimation process can be found in
Appendix F.

21

https://github.com/AES-quantum-circuit/AES-quantum-circuit
https://github.com/microsoft/qsharp-runtime/issues/192
https://github.com/microsoft/qsharp-runtime/issues/192
https://github.com/microsoft/qsharp-runtime/pull/446
https://github.com/microsoft/qsharp-runtime/pull/446

7 Efficient Quantum Circuits for AES

To implement an iterative block cipher, we proceed as follows. Firstly, we choose
the pipeline structure or the round-in-place structure according to our opti-
mization objective (low depth or low width). Then, implement the linear layers
with Xiang et al.’s method, the PLU decomposition method, or the SAT-based
technique presented in this paper. For the nonlinear components, construct C0-
circuits and then convert them to C∗ circuits. Finally, plug these sub-circuits
into the round-level structure. We will show case this procedure with AES-128,
and all the techniques can be easily extended to AES-192, AES-256, and other
iterative block ciphers.

7.1 Low-width Quantum circuits for AES

First of all, we choose the round-in-place structure according to observation 2
of Section 3. Then, we show how to implement the building blocks of AES
in-place. The ShiftRow and RotByte operations can be easily implemented by
rewiring. For the MixColumns operation, regarded as a 32×32 binary matrix, we
employ the in-place circuit from [XZL+20], which requires 92 CNOT gates. In
the following, we consider the implementations of the S-boxes, for which different
circuits are used in different situations.

S-boxes in the Key Schedule Data Path. Since the S-box is immediately
followed by an XOR operation in the key schedule (a Feistel-like transformation),
we only need a a C∗-circuit of the S-box. In our implementation, we used the
C∗-circuit introduced in Section 5.2.

For the sake of simplicity, we call a C∗-circuit (or C0-circuit) of the AES S-
box a C∗ (or C0) S-box. Figure 14 illustrates the structure of the in-place circuit
for the AES key schedule. In this figure, SubByte represents the sub-circuit for
the parallel application of four C∗ S-boxes. Note that while the implementations
of the S-boxes are improved in this paper, the high-level structure is attributed
to [JNRV20].

|W5⟩

|W6⟩

|W3⟩ |W7⟩

|W4⟩

|W1⟩32 |W5⟩32
|W2⟩32 |W6⟩32
|W3⟩32

SubByte
|W7⟩32

|W0⟩32 Rcon |W4⟩32

Fig. 14. An in-place circuit for generating the first round key

S-boxes in the Encryption Data Path. In the encryption process of AES,
ByteSub can be regarded as a substitution-like transformation defined in Sec-

22

tion 4, and thus we can implement it with the OP-based in-place circuit. This
means we need to construct a C0 S-box and a C0 S-box−1. Here, we use the C0

S-box proposed in [ZWS+20], based on which a C0 S-box−1 can be constructed
as follows.

Suppose x ∈ F8
2 is the input of the S-Box, then y, the output of the S-box, is

equal to LS0(x)+ c, where L is a linear function and S0(x) is the inverse of x in
F8
2. Hence, we have x = S−1

0 L−1(y + c) = S0L
−1(y + c) = L−1(LS0)L

−1(y + c).
Suppose U0 is the circuit that implements |x⟩|0⟩|0⟩ → |x⟩|LS0(x)⟩|0⟩. Obvi-

ously, it can be generated from a C0 S-box by deleting the last 4 Pauli-X gates.
Then, it is easy to check that the circuit in Figure 15 is a C0-circuit of S-box−1.

∣∣L−1(y + c)
〉 ∣∣L−1(y + c)

〉

|0⟩
∣∣LS0L

−1(y + c)
〉

|0⟩ |0⟩

|y⟩ UC UL−1

U0

UL UC |y⟩

|0⟩ UL−1

∣∣S−1(y)
〉

|0⟩ |0⟩

Fig. 15. The circuit for implementing the S-box−1 of AES

In Figure 15, UC is the circuit consisting of 4 Pauli-X gates, and it imple-
ments constant addition of c. UL and UL−1 are the circuits consisting of CNOT
gates, and they implement the linear transformation L and L−1 respectively. Ac-
cording to our SAT-based method, L can be implemented by 14 CNOT gates.
Consequently, we can implement a C0-circuit of S-Box−1 with 6 ancilla qubits,
52 Toffoli gates, 41 Toffoli depth, 368 CNOT gates, and 8 NOT gates6. In Ap-
pendix E, we present the specific form of the matrix corresponding to L, and
the quantum circuit that implements L with minimal number of CNOT gates.

Based on the above circuits, we can in-place implement ByteSub in each
round by 16 OP-based in-place circuits of the S-box. We suppose these 16 in-
place circuits are implemented in parallel, then our implementation of ByteSub
has the following two phases:

Phase 1: Implement 16 C0 S-box, denoted by ByteSub1;
Phase 2: Implement 16 reverse circuits of C0 S-box−1, denoted by ByteSub−1.

Note that in the key schedule process of each round, we need to apply 4 C∗

S-boxes. Obviously, by applying 2 of them in Phase 1, and another 2 of them in
Phase 2, we can reduce the DW-cost of the whole circuit. Under this strategy,
our implementation of the i-th round of AES can be illustrated by Figure 16.

In this figure, ki−1 denotes the round key in the (i − 1)-th round, and ci−1

denotes the output state of the (i − 1)-th round. The last step of each round
is AddRoundKey, which can be implemented by applying 128 CNOT gates in

6 The C code for checking the correctness of this C0-circuits of S-box −1 is available
at https://github.com/AES-quantum-circuit/AES-quantum-circuit

23

https://github.com/AES-quantum-circuit/AES-quantum-circuit

parallel, and denoted by a CNOT gate in Figure 16. For the final round, we do
not need the sub-circuit Mixcol. Round 0, which performs a bitwise XOR of k0
to the plaintext, can be implemented by applying 128 CNOT gates in parallel.

Phase 1 Phase 2

|ki−1⟩n KeyExpan1 KeyExpan2 |ki⟩n

|ci−1⟩n
ByteSub1 ByteSub−1

ShiftRow MixCol |ci⟩n

|0⟩n |0⟩n

Fig. 16. The in-place implementation of the i-th round of AES-128

Note that the ancilla qubits used in these S-box circuits are ignored in this
figure. From Table 3, we know that the number of ancilla qubits used in our
out-of-place (C0 or C∗) S-box circuit is 6, and the Toffoli-depth of this circuit
is 41. We implement 18 out-of-place S-box circuits simultaneously in a phase,
and the third register uses 8 × 16 = 128 qubits to store the outputs of the 16
out-of-place S-box circuits in ByteSub1, hence the width of this one round circuit
is 18× 6 + 3× 128 = 492, and the Toffoli-depth is 41× 2 = 82.

Apparently, for this one round circuit, we can make a tradeoff between
width and depth by reducing the number of S-box circuits applied in paral-
lel. In Figure 16, the Toffoli-depth for sequentially implementing one C∗ S-box
in KeyExpan1 and one C∗ S-box in KeyExpan2 is the same as the Toffoli-depth
of an OP-based in-place S-box circuit. Hence, we see two sequential C∗ S-box as
a whole circuit, and in the following call such circuit and the OP-based in-place
S-box circuit, double-depth S-box circuits. In this case, the process of Phase 1
and Phase 2 in Figure 16 implements 18 double-depth S-box circuits in paral-
lel. Now suppose we implement p double-depth S-box circuits in parallel, where
p|18.

• If p = 9, the Toffoli-depth is 82 × 2 = 164. In the 9 double-depth S-box
circuits applied in the same layer, one of them is in KeyExpan and eight of
them are in ByteSub, hence the width is 128× 2 + 6 + (8 + 6)× 8 = 374.

• If 18/p ≥ 3, the Toffoli-depth is 82× 18/p = 1476/p. the widest part of such
one round circuit is a phase in which all p double-depth S-box circuits are
in ByteSub, and the width is 2× 128 + (8 + 6)p = 256 + 14p.

Table 5 present the numbers of different quantum gates used in each compo-
nent and one round. Obviously, these numbers are irrelevant to p.
Implement the Grover Oracle. If we want to construct a Grover oracle to
search k0, since the plaintext m is fixed and Round 0 is adding k0 on m, we
can apply Pauli-X gates on some specific ones of the wires carrying |k0⟩ to
obtain |k0 ⊕m⟩, then when |k0⟩ is needed later, apply Pauli-X gates on these

24

Table 5. Quantum resources for implementing different components of AES

KeyExpan MixCol AddRoundKey ByteSub1 ByteSub−1 One Round

#Toffoli 208 0 0 832 832 1872
#CNOT 1440 368 128 5216 6096 13248
Pauli-X 48 0 0 64 128 240

wires again to convert |k0 ⊕m⟩ back to |k0⟩. Therefore, we can use the circuit
in Figure 17 to implement Round 0 and Round 1 together.

Compare to Figure 16, in this circuit, we do not need to implement ByteSub−1,
hence we can save 16 × 52 = 832 Toffoli gates. Note that, the a qubits in
the third register, which will be used in the following rounds, is idle in these
two rounds. Hence if p ≥ 9, we have a > 96, then the 16 S-box circuits in
ByteSub1 can be implemented in parallel (need 96 ancilla qubits), Similarly,
KeyExpan, which contains 4 S-box circuits, can be implemented in parallel. How-
ever, ByteSub1 and KeyExpan can not be implemented simultaneously. There-
fore, if p ≥ 9, the width and Toffoli-depth of these two rounds are 384 and 82
respectively. Moreover, these two rounds use 256+64+48 = 368 Pauli-X gates,
5126+1440+368+128 = 7152 CNOT gates and 208+832 = 1040 Toffoli gates.

Round 0 Round 1
|c0⟩n |c0⟩n |k0⟩n|k0⟩n X

ByteSub1

X KeyExpan |k1⟩n

|0⟩n ShiftRow MixCol |c1⟩n

|0⟩a |0⟩a

Fig. 17. The implementation of the round 0 and round 1 of AES

Then, by combining the circuits in Figure 17 and Figure 16, we can implement
encryption circuit of the AES Grover oracle. In Table 6, we present the quantum
resources needed for this circuit with p = 18 and p = 9, and compare our results
with the results presented in [ZWS+20].

Table 6. Quantum resources for implementing AES-128

Width Toffoli-Depth #Toffoli #CNOT #Pauli-X source

512 2016 19788 128517 4528 [ZWS+20]
492 820 17888 126016 2528 p = 18
374 1558 17888 126016 2528 p = 9

25

7.2 Low-depth Quantum Circuits for AES

To reduce the depth, we should use the pipeline structure. First, we consider the
nonlinear components. Since the round transformation is implemented out-of-
place in the pipeline structure, for implementing ByteSub, we only need a low
T -depth C0 S-box. For the AES key schedule, since it is the Feistel-like non-linear
transformation, as shown in Section 7.1, it can be implemented in-place with the
circuit in Fig. 14. It is easy to see that compared to other out-of-place imple-
mentations of the AES key schedule, the depth of such in-place implementation
is also lower, since no extra operations are needed. As a consequence, we also
in-place implement the AES key schedule in our shallower circuit of AES based
on a C∗ S-box.

In Section 6.3, we presented two circuits of the AES S-box, which have T -
depth 4 and T -depth 3 respectively. In these two circuits, the output wires are
only be used as target wires. Therefore, these circuits are both C∗-circuits, and
can be used in ByteSub and the key schedule.

For MixColoumns, we use the in-place circuit in Section 7.1, which has the
optimal width, and the lowest CNOT-count until now. The Q# resource estima-
tor shows that the depth of this in-place circuit is 30. In our resource estimation
model, the CNOT-depth metric is less important than other metrics. For these
reasons, we use this in-place circuit to implement MixColoumns.

|ki−1⟩n KeyExpan |ki⟩n

|ci−1⟩n
ByteSub1

|ci−1⟩n

|0⟩n ShiftRow MixCol |ci⟩n

Fig. 18. The out-of-place implementation of the i-th round of AES-128

Fig. 18 presents our implementation of the i-th round. In KeyExpan and
ByteSub1, 20 S-box circuits are applied in parallel. The round 0 is implemented
by applying 128 CNOT gates in parallel, which maps |k0⟩|m⟩ to |k0⟩|c0⟩. Note
that, we don’t use the circuit in Fig. 17 to implement the round 0 and round 1
together. The reason is in Fig. 17, KeyExpan and ByteSub1 cannot be applied in
parallel, hence the T -depth and full depth will be higher.

We implemented our AES circuits by Q# based on the code proposed in
[JNRV20], and our code of Mixcolumn and the S-box (https://github.com/
AES-quantum-circuit/AES-quantum-circuit). Table 7 shows the quantum
resources of our circuits based on different S-box implementations. Same as
in [JNRV20], the results presented here are the quantum resources required for
implementing the forward circuit, which outputs the ciphertext, and the reverse
circuit, which is used for uncomputation. As in Table 4, except the width7, other

7 In Appendix F, we show how to obtain these values of widths.

26

https://github.com/AES-quantum-circuit/AES-quantum-circuit
https://github.com/AES-quantum-circuit/AES-quantum-circuit

values are obtain from Q# resource estimator. We can see that, similarly as the
results of the S-box circuits, the T -depths and the full depths of our circuits are
all lower than those in [JNRV20].

Table 7. Quantum resources for implementing AES and AES†

#CNOT #1qClifford #T #M T -depth Full depth width source

291150 83116 54400 13600 120 2827 3936 [JNRV20]
298720 83295 54400 13600 80 2198 3936 with T -depth-4 S-box
570785 189026 124800 31200 60 2312 5576 with T -depth-3 S-box

8 General Width and T -depth Trade-offs

By combing different S-box circuits with different structures, and adjusting the
number of S-box circuits applied in parallel, we can have a spectrum of trade-offs
between width and T -depth.

Since we consider the T -depth, the Toffoli gates in the out-of-place S-box
circuits used in Section 7.1 should be decomposed into Clifford+T gates. Note
that, we cannot replace these Toffoli gates with quantum AND gates, since the
output wires of the multiplication operations are not initialized to |0⟩. Here, we
use the T -depth-1 Toffoli gate proposed in [Sel12], where 4 ancilla qubits are
required. In these S-box circuits, we apply at most two Toffoli gates in parallel,
hence we need 8 extra ancilla qubits. In all, we have a Clifford+T implementation
of the S-box (or the S-box−1) with 8+6 = 14 ancilla qubits and T -depth 41. We
name these S-box circuits as Circuit 0. Moreover, to use the T -depth-4 (or the
T -depth-3) S-box circuit in the round-in-place structure, we need to construct
a C0-circuit of the S-box−1. Obviously, we can construct such circuit with T -
depth-4 (or T -depth-3), since the nonlinear parts in the classical circuits of the
S-box and S-box−1 are the same. We name these T -depth-4 circuits as Circuit
1, and these T -depth-3 circuits as Circuit 2.

We obtain the trade-off curve shown in Figure 19 by applying Circuit 0,
Circuit 1, and Circuit 2 in different structures. In this figure, Strategy 1 , 2,
3, respectively correspond to the use of Circuit 0, Circuit 1, Circuit 3 in the
round-in-place structure. Strategy 4, 5, 6 respectively correspond to the use of
Circuit 0, Circuit 1, Circuit 3 in the pipeline structure. Different points on a
curve are obtained by applying different number of S-box circuits in parallel. We
also list the results of previous works [ZWS+20,JNRV20,GLRS16,LPS19] in this
figure. For [ZWS+20], since the T -depth is not presented, here we decompose
the Toffoli gate by the same Clifford+T gates as in Circuit 0, hence slightly
increase the width. For the point corresponding to [JNRV20], the width is fixed
as we mentioned. The detailed process for estimating these T -depths and widths
is presented in Appendix G.

27

500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000 5,500 6,000

102

103

104

Width

T
-d
ep

th

Strategy 1

Strategy 2

Strategy 3

Strategy 4

Strategy 5

Strategy 6

[JNRV20]

[ZWS+20]

[GLRS16]

[LPS19]

Fig. 19. The width and T-depth for implementing the Grover oracle of AES-128

9 Conclusion and Discussion

We propose the round-in-place structure for the quantum circuits of iterative
ciphers, and manage to find a generic way to efficiently realize this structure
in practice. We give guidelines in how to synthesize quantum circuits with spe-
cific optimization objectives based on a detailed analysis of the pipeline, zig-zag,
and round-in-place structures. Moreover, new techniques for implementing the
quantum circuits for linear and non-linear building blocks are presented. In par-
ticular, based on a new observation on the classical circuit of the AES S-box,
we obtain a quantum circuit for the AES S-box with T -depth 3, reaching its
theoretical minimum. Based on these techniques and results, we produce sig-
nificantly improved quantum circuits for AES with respect to both depth and
width. Finally, we conjecture that without optimizing across the natural hier-
archical boundaries formed by the round functions of AES, the T -depth of the
quantum circuit cannot be further improved.

Acknowledgments. This work is supported by the National Key Research
and Development Program of China (2022YFB2700014), the National Natural
Science Foundation of China (Grants No. 61977060, 62032014), the Fundamental
Research Funds for the Central Universities.

28

References

AMG+16. Matthew Amy, Olivia Di Matteo, Vlad Gheorghiu, Michele Mosca, Alex
Parent, and John M. Schanck. Estimating the cost of generic quantum pre-
image attacks on SHA-2 and SHA-3. In Roberto Avanzi and Howard M.
Heys, editors, Selected Areas in Cryptography - SAC 2016, volume 10532
of Lecture Notes in Computer Science, pages 317–337. Springer, 2016.

AMMR13. Matthew Amy, Dmitri Maslov, Michele Mosca, and Martin Roetteler. A
meet-in-the-middle algorithm for fast synthesis of depth-optimal quantum
circuits. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., 32(6):818–
830, 2013.

ASAM18. Mishal Almazrooie, Azman Samsudin, Rosni Abdullah, and Kussay N.
Mutter. Quantum reversible circuit of AES-128. Quantum Inf. Process.,
17(5):112, 2018.

BBvHL21. Gustavo Banegas, Daniel J. Bernstein, Iggy van Hoof, and Tanja Lange.
Concrete quantum cryptanalysis of binary elliptic curves. IACR Trans.
Cryptogr. Hardw. Embed. Syst., 2021(1):451–472, 2021.

BHN+19. Xavier Bonnetain, Akinori Hosoyamada, Maŕıa Naya-Plasencia, Yu Sasaki,
and André Schrottenloher. Quantum attacks without superposition queries:
The offline Simon’s algorithm. In ASIACRYPT 2019, Kobe, Japan, De-
cember 8-12, 2019, Proceedings, Part I, pages 552–583, 2019.

BLNS21. Xavier Bonnetain, Gaëtan Leurent, Maŕıa Naya-Plasencia, and André
Schrottenloher. Quantum linearization attacks. In Advances in Cryptology
- ASIACRYPT 2021, Singapore, December 6-10, 2021, Proceedings, Part
I, pages 422–452, 2021.

BNS19a. Xavier Bonnetain, Maŕıa Naya-Plasencia, and André Schrottenloher. On
quantum slide attacks. In SAC 2019, pages 492–519, 2019.

BNS19b. Xavier Bonnetain, Maŕıa Naya-Plasencia, and André Schrottenloher.
Quantum security analysis of AES. IACR Trans. Symmetric Cryptol.,
2019(2):55–93, 2019.

BP12. Joan Boyar and René Peralta. A small depth-16 circuit for the AES s-box.
In Dimitris Gritzalis, Steven Furnell, and Marianthi Theoharidou, editors,
Information Security and Privacy Research - 27th IFIP TC 11 Informa-
tion Security and Privacy Conference, SEC 2012, Heraklion, Crete, Greece,
June 4-6, 2012. Proceedings, volume 376 of IFIP Advances in Information
and Communication Technology, pages 287–298. Springer, 2012.

CNS17. André Chailloux, Maŕıa Naya-Plasencia, and André Schrottenloher. An
efficient quantum collision search algorithm and implications on symmetric
cryptography. In ASIACRYPT 2017, Hong Kong, China, December 3-7,
2017, Proceedings, Part II, pages 211–240, 2017.

Fow12. Austin G Fowler. Time-optimal quantum computation. arXiv preprint
arXiv:1210.4626, 2012.

FS10. Carsten Fuhs and Peter Schneider-Kamp. Synthesizing shortest linear
straight-line programs over GF(2) using SAT. In Ofer Strichman and
Stefan Szeider, editors, Theory and Applications of Satisfiability Testing
- SAT 2010. Proceedings, volume 6175 of Lecture Notes in Computer Sci-
ence, pages 71–84. Springer, 2010.

GLRS16. Markus Grassl, Brandon Langenberg, Martin Roetteler, and Rainer Stein-
wandt. Applying grover’s algorithm to AES: quantum resource estimates.
In Tsuyoshi Takagi, editor, Post-Quantum Cryptography - PQCrypto 2016,

29

volume 9606 of Lecture Notes in Computer Science, pages 29–43. Springer,
2016.

Gro96. Lov K. Grover. A fast quantum mechanical algorithm for database search.
In Gary L. Miller, editor, Proceedings of the Twenty-Eighth Annual ACM
Symposium on the Theory of Computing, 1996, pages 212–219. ACM, 1996.

HS. Akinori Hosoyamada and Yu Sasaki. Finding hash collisions with quantum
computers by using differential trails with smaller probability than birthday
bound. In Anne Canteaut and Yuval Ishai, editors, EUROCRYPT 2020,
Part II, volume 12106, pages 249–279. Springer.

HS18a. Akinori Hosoyamada and Yu Sasaki. Cryptanalysis against symmetric-key
schemes with online classical queries and offline quantum computations. In
CT-RSA 2018, San Francisco, CA, USA, April 16-20, 2018, Proceedings,
pages 198–218, 2018.

HS18b. Akinori Hosoyamada and Yu Sasaki. Quantum Demiric-Selçuk Meet-in-
the-Middle Attacks: Applications to 6-Round Generic Feistel Construc-
tions. In SCN 2018, pages 386–403, 2018.

IBM. IBM Qiskit. Open-source quantum development. https://https://

qiskit.org/.
JNRV20. Samuel Jaques, Michael Naehrig, Martin Roetteler, and Fernando Virdia.

Implementing Grover oracles for quantum key search on AES and lowmc.
In Anne Canteaut and Yuval Ishai, editors, Advances in Cryptology - EU-
ROCRYPT 2020, volume 12106 of Lecture Notes in Computer Science,
pages 280–310. Springer, 2020.

KLLN16a. Marc Kaplan, Gaëtan Leurent, Anthony Leverrier, and Maŕıa Naya-
Plasencia. Breaking symmetric cryptosystems using quantum period find-
ing. In Matthew Robshaw and Jonathan Katz, editors, Advances in Cryp-
tology - CRYPTO 2016 Proceedings, pages 207–237. Springer, 2016.

KLLN16b. Marc Kaplan, Gaëtan Leurent, Anthony Leverrier, and Maŕıa Naya-
Plasencia. Quantum differential and linear cryptanalysis. IACR Trans.
Symmetric Cryptol., 2016(1):71–94, 2016.

LPS19. Brandon Langenberg, Hai Pham, and Rainer Steinwandt. Reducing the
cost of implementing AES as a quantum circuit. IACR Cryptol. ePrint
Arch., page 854, 2019.

Mic. Microsoftt Q#. Quantum development. https://devblogs.microsoft.

com/qsharp/.
MSM18. Giulia Meuli, Mathias Soeken, and Giovanni De Micheli. Sat-based

{CNOT, T} quantum circuit synthesis. In Jarkko Kari and Irek Ulidowski,
editors, Reversible Computation - 10th International Conference, RC 2018,
Leicester, UK, September 12-14, 2018, Proceedings, pages 175–188, 2018.

NC16. Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quan-
tum Information. Cambridge University Press, 2016.

NIS16. NIST. Submission requirements and evaluation criteria for the post-
quantum cryptography standardization process, 2016. Available at https:
//csrc.nist.gov/projects/post-quantum-cryptography.

NS. Maŕıa Naya-Plasencia and André Schrottenloher. Optimal merging in
quantum k-xor and k-xor-sum algorithms. In Anne Canteaut and Yuval
Ishai, editors, EUROCRYPT 2020, Part II, volume 12106, pages 311–340.
Springer.

PMH08. Ketan N. Patel, Igor L. Markov, and John P. Hayes. Optimal synthesis of
linear reversible circuits. Quantum Inf. Comput., 8(3):282–294, 2008.

30

https://https://qiskit.org/
https://https://qiskit.org/
https://devblogs.microsoft.com/qsharp/
https://devblogs.microsoft.com/qsharp/
https://csrc.nist.gov/projects/post-quantum-cryptography
https://csrc.nist.gov/projects/post-quantum-cryptography

Sel12. Peter Selinger. Quantum circuits of t-depth one. CoRR, abs/1210.0974,
2012.

Sho99. Peter W. Shor. Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer. SIAM Rev., 41(2):303–332,
1999.

SPMH03. Vivek V. Shende, Aditya K. Prasad, Igor L. Markov, and John P. Hayes.
Synthesis of reversible logic circuits. IEEE Trans. Comput. Aided Des.
Integr. Circuits Syst., 22(6):710–722, 2003.

Sto16. Ko Stoffelen. Optimizing S-Box implementations for several criteria using
SAT solvers. In Thomas Peyrin, editor, Fast Software Encryption - 23rd In-
ternational Conference, FSE 2016, Bochum, Germany, March 20-23, 2016,
Revised Selected Papers, pages 140–160. Springer, 2016.

XZL+20. Zejun Xiang, Xiangyong Zeng, Da Lin, Zhenzhen Bao, and Shasha Zhang.
Optimizing implementations of linear layers. IACR Trans. Symmetric
Cryptol., 2020(2):120–145, 2020.

ZWS+20. Jian Zou, Zihao Wei, Siwei Sun, Ximeng Liu, and Wenling Wu. Quan-
tum circuit implementations of AES with fewer qubits. In Shiho Moriai
and Huaxiong Wang, editors, Advances in Cryptology - ASIACRYPT 2020,
pages 697–726. Springer, 2020.

31

Appendix

A A SAT-based Method for Finding Optimal CNOT
Circuits

Suppose we have m Boolean variables x1, x2, . . . , xm. We want to obtain n lin-
ear forms L1(x1, x2, . . . , xm), L2(x1, x2, . . . , xm), . . . , Ln(x1, x2, . . . , xm) by using
operations yi = yi ⊕ yj , where y1, y2, . . . , ym, ym+1, ym+2, . . . , yn are initialized
to x1, x2, . . . , xm, 0, 0, . . . , 0 respectively.

The above process is equivalent to the following quantum circuit, where
{i1, i2, . . . , in} is a permutation of {1, 2, . . . , n}. Our purpose is finding a such
circuit with minimal number of CNOT gates.

|x1⟩

CNOT gates

|Li1⟩
|x2⟩ |Li2⟩
· · · · · ·

|xm⟩ |Lim⟩
|0⟩

∣∣Lim+1

〉

|0⟩
∣∣Lim+2

〉

· · · · · ·
|0⟩ |Lin⟩

Suppose we want to find a circuit with k CNOT gates, then we can define 5
matrices:

A =

a11 a12 · · · a1m
a21 a22 · · · a2m
...

...
...

...
an1 an2 · · · anm

 , B =

b11 b12 · · · b1n
b21 b22 · · · b2n
...

...
...

...
bk1 bk2 · · · bkn

 , C =

c11 c12 · · · c1n
c21 c22 · · · c2n
...

...
...

...
ck1 ck2 · · · ckn

 ,

F =

f11 f12 · · · f1n
f21 f22 · · · f2n
...

...
...

...
fn1 fn2 · · · fnn

 , Φ =

φ11 φ12 · · · φ1n

φ21 φ22 · · · φ2n

...
...

...
...

φk1 φk2 · · · φkn

 .

A is the coefficient matrix such that A(x1, x2, . . . , xm)T = (L1, L2, . . . , Ln)
T .

B and C are matrices used to represent the XOR operations. In each row of B
or C, there is exactly one nonzero entry. Moreover, if in the i-th row, we have
bij1 = cij2 = 1, then it means at the i-th step the operation is yj2 = yj2 ⊕ yj1 .
Based on the above definitions, we can generate the following equations about

32

the entries of B and C:

EQNb =

bij1bij2 = 0,

bi1 ⊕ bi2 ⊕ · · · ⊕ bin ⊕ 1 = 0,

for 1 ≤ i ≤ k, 1 ≤ j1 ̸= j2 ≤ n

EQNc =

cij1cij2 = 0,

ci1 ⊕ ci2 ⊕ · · · ⊕ cin ⊕ 1 = 0,

for 1 ≤ i ≤ k, 1 ≤ j1 ̸= j2 ≤ n

Now we consider F , which is a matrix describing the relations between the
final expression of yi and Li. That is, if yj = Li(x1, x2, . . . , xm), then fij is set
to 1. This means there is exactly one nonzero entry in each row of F . Similarly,
we have the following equations about fij :

EQNf =

fij1fij2 = 0,

fi1 ⊕ fi2 ⊕ · · · ⊕ fin ⊕ 1 = 0,

for 1 ≤ i ≤ n, 1 ≤ j1, j2 ≤ n, j1 ̸= j2

Φ is a matrix whose entries are linear forms of x1, x2, . . . , xm. φij is the
expression of yj after the i-th operation. Then we introduce a group of Boolean
variables ψj,i,s, 1 ≤ j ≤ n, 1 ≤ i ≤ k, 1 ≤ s ≤ m. The value of ψi,j,s is the
coefficient of φij w.r.t. xs . Hence, we have the following relations:

• If cij = 0, then ψi,j,s = ψi−1,j,s,

• If cij = 1, then ψi,j,s =
n∑
t=1

bitψi−1,t,s + ψi−1,j,s.

This induces the following equations:

EQNψ =

ψi,j,s +
n∑
t=1

cijbitψi−1,t,s + ψi−1,j,s = 0,

for 1 ≤ i ≤ k, 1 ≤ j ≤ n, 1 ≤ s ≤ m

Furthermore, since {φk1, φk2, . . . , φkn} is a permutation of {L1, L2, . . . , Ln},
we have ψk,j,s = ais, if fij = 1. This can be represented by the following equa-
tions:

EQNa =

fi,j(ψk,j,s + ais) = 0

for 1 ≤ i ≤ n, 1 ≤ j ≤ n, 1 ≤ s ≤ m

33

It is obvious that, finding a circuit with k CNOT gates which outputs |Li1⟩|Li2⟩
· · · |Lin⟩, is equivalent to finding a common solution of the Boolean equations
{EQNb, EQNc, EQNf , EQNψ, EQNa}.

In our experiments, we used the SAT-solver Cryptominisat as a solver for
solving this kind of equation system8. If the solver returns Unsatisfiable, it
means that no circuit with k CNOT gates can implement these linear forms.
Then we have the following algorithm to find kmin, the minimal number of
CNOT gates, and the corresponding B, C, F . Furthermore, from B, C, F , we
can achieve a circuit with kmin CNOT gates.

Algorithm 1:

1 Set k to 1;
2 Solve the corresponding Boolean equation system
{EQNb, EQNc, EQNf , EQNψ, EQNf};

3 if Unsatisfiable then
4 k ← k + 1 and goto 2

5 else
6 return k and the matrices B, C, F

B The Proof of Theorem 1

Proof. If Mi → Mj , it is obvious that the AND gate that outputs Mi should
be applied before the AND gate that outputs Mj . Consequently, if we have a
longest path Mk1 → Mk2 → · · · → Mks , then the AND gates which generate
Mk1 ,Mk2 , . . . ,Mks should be applied one by one. This means the AND-depth
and the T -depth of the quantum circuit which implements all theseMk1 ,Mk2 , . . . ,
Mks are not smaller than s.

In the following, we show how to construct a quantum circuit with AND-
depth s. Based on different AND-depths, we can divide all these Mi into dis-
joint sets Set1 = {M1

1 ,M
1
2 , . . . ,M

1
r1}, Set2 = {M2

1 ,M
2
2 , . . . ,M

2
r2}, . . . , Sets =

{M t
1,M

t
2, . . . ,M

t
rt}, where M i

j ∈ Seti has AND-depth i. We show that all

M1
j ∈ Set1, 1 ≤ j ≤ r1, can be achieved by applying r1 AND gates in par-

allel. Obviously, M1
j is not the AND-successor of any other variable. This means

the variables required to generate these M1
j can be achieved only by additions,

which can be implemented by CNOT and Pauli-X gates. Assume there are two
m-variables which need the same variable in the corresponding multiplication
operations, for example M1

1 = M1 ·M2 and M1
2 = M1 ·M3. To generate M1

1

and M1
2 in parallel, we can copy M1 to an ancilla qubit by a CNOT gate. Note

8 https://github.com/msoos/cryptominisat/

34

that we assumed there are enough ancilla qubits, thus this operation always
works. Therefore, by applying some CNOT gates, we can guarantee the vari-
ables needed to generate all these M1

j are on different wires. Then, by applying

s1 AND gates in parallel, we can achieve all these M1
j . This means by a circuit

with AND-depth 1, we can generate all these M1
j . After this step, we can clean

these ancilla qubits by CNOT gates.
Now we prove our conclusion by induction. Suppose we can generate all

variables in Set1, Set2, . . . , Setd−1 by a circuit with d−1 AND layers. For anyMd
j

in Setd, supposeM
d
j is the AND-successor of someM1. If d∧(M1) ≥ d, then there

is a path such that Md
j is after the d-th position. In this case, we can construct

a longer path than the longest path, a contradiction. This means d∧(M1) < d,
thus M1 is in some Seti, 1 ≤ i < d. We can induce that all the variables needed
for generating Md

j can be achieved by applying the previous circuit which has
d− 1 AND layers. Similarly as the case of Set1, if a variable is needed in several
multiplication operations, we copy it to ancilla qubits by CNOT gates. Then
by applying sd AND gates in parallel, we can obtain all the variables in Setd.
Obviously, this circuit generates all variables in Set1, Set2, . . . , Setd, and has d
AND layers. Finally, we can construct a circuit which implements the classical
circuit with s AND layers, then by implementing each quantum AND gate with
a T -depth-1 circuit, we can obtain a T -depth s circuit. This proves our theorem.

35

C Boyar and Peralta’s Classical Circuit for the AES
S-box

Table 8. Boyar and Peralta’s classical circuit for the AES S-box

Top Linear Part:

T1 = U0 + U3 T2 = U0 + U5 T3 = U0 + U6 T4 = U3 + U5 T5 = U4 + U6

T6 = T1 + T5 T7 = U1 + U2 T8 = U7 + T6 T9 = U7 + T7 T10 = T6 + T7

T11 = U1 + U5 T12 = U2 + U5 T13 = T3 + T4 T14 = T6 + T11 T15 = T5 + T11

T16 = T5 + T12 T17 = T9 + T16 T18 = U3 + U7 T19 = T7 + T18 T20 = T1 + T19

T21 = U6 + U7 T22 = T7 + T21 T23 = T2 + T22 T24 = T2 + T10 T25 = T20 + T17

T26 = T3 + T16 T27 = T1 + T12

Nonlinear Part:

M1 = T13 · T6 M2 = T23 · T8 M3 = T14 +M1 M4 = T19 · U7 M5 = M4 +M1

M6 = T3 · T16 M7 = T22 · T9 M8 = T26 +M6 M9 = T20 · T17 M10 = M9 +M6

M11 = T1 · T15 M12 = T4 · T27 M13 = M12 +M11 M14 = T2 · T10 M15 = M14 +M11

M16 = M3 +M2 M17 = M5 + T24 M18 = M8 +M7 M19 = M10 +M15 M20 = M16 +M13

M21 = M17 +M15 M22 = M18 +M13 M23 = M19 + T25 M24 = M22 +M23 M25 = M22 ·M20

M26 = M21 +M25 M27 = M20 +M21 M28 = M23 +M25 M29 = M28 ·M27 M30 = M26 ·M24

M31 = M20 ·M23 M32 = M27 ·M31 M33 = M27 +M25 M34 = M21 ·M22 M35 = M24 ·M34

M36 = M24 +M25 M37 = M21 +M29 M38 = M32 +M33 M39 = M23 +M30 M40 = M35 +M36

M41 = M38 +M40 M42 = M37 +M39 M43 = M37 +M38 M44 = M39 +M40 M45 = M42 +M41

M46 = M44 · T6 M47 = M40 · T8 M48 = M39 · U7 M49 = M43 · T16 M50 = M38 · T9

M51 = M37 · T17 M52 = M42 · T15 M53 = M45 · T27 M54 = M41 · T10 M55 = M44 · T13

M56 = M40 · T23 M57 = M39 · T19 M58 = M43 · T3 M59 = M38 · T22 M60 = M37 · T20

M61 = M42 · T1 M62 = M45 · T4 M63 = M41 · T2

Bottom Linear Part:

L0 = M61 ⊕M62 L1 = M50 ⊕M56 L2 = M46 ⊕M48 L3 = M47 ⊕M55 L4 = M54 ⊕M58

L5 = M49 ⊕M61 L6 = M62 ⊕ L5 L7 = M46 ⊕ L3 L8 = M51 ⊕M59 L9 = M52 ⊕M53

L10 = M53 ⊕ L4 L11 = M60 ⊕ L2 L12 = M48 ⊕M51 L13 = M50 ⊕ L0 L14 = M52 ⊕M61

L15 = M55 ⊕ L1 L16 = M56 ⊕ L0 L17 = M57 ⊕ L1 L18 = M58 ⊕ L8 L19 = M63 ⊕ L4

L20 = L0 ⊕ L1 L21 = L1 ⊕ L7 L22 = L3 ⊕ L12 L23 = L18 ⊕ L2 L24 = L15 ⊕ L9

L25 = L6 ⊕ L10 L26 = L7 ⊕ L9 L27 = L8 ⊕ L10 L28 = L11 ⊕ L14 L29 = L11 ⊕ L17

S0 = L6 ⊕ L24 S1 = L16 ⊕ L26 ⊕ 1 S2 = L19 ⊕ L28 ⊕ 1 S3 = L6 ⊕ L21 S4 = L20 ⊕ L22

S5 = L25 ⊕ L29 S6 = L13 ⊕ L27 ⊕ 1 S7 = L6 ⊕ L23 ⊕ 1

In this circuit, U0, U1, . . . , U7 are the input and S0, S1, . . . , S7 are the output.

36

D An AND-depth-3 Classical Circuit for the AES S-box

Table 9. The nonlinear part of an AND-depth-3 classical circuit of the AES S-box

Nonlinear Part:

M1 = T13 · T6, M2 = T23 · T8, M3 = T14 ⊕M1, M4 = T19 · U7, M5 = M4 ⊕M1,

M6 = T3 · T16, M7 = T22 · T9, M8 = T26 ⊕M6, M9 = T20 · T17, M10 = M9 ⊕M6,

M11 = T1 · T15, M12 = T4 · T27, M13 = M12 ⊕M11, M14 = T2 · T10, M15 = M14 ⊕M11,

M16 = M3 ⊕M2, M17 = M5 ⊕ T24, M18 = M8 ⊕M7, M19 = M10 ⊕M15, M20 = M16 ⊕M13,

M21 = M17 ⊕M15, M22 = M18 ⊕M13, M23 = M19 ⊕ T25, M24 = M22 ⊕M23, M25 = M22 ·M20,

M26 = M21 ⊕M25, M27 = M20 ⊕M21, M28 = M23 ⊕M25, M29 = M20 ·M23, M30 = M27 ⊕M25,

M31 = M21 ·M22, M32 = M24 ⊕M25, N1 = M24 · T6, N2 = M23 ⊕M32, N3 = M26 ⊕M31,

W1 = N3 ·N1, W2 = N2 · T6, M33 = W1 ⊕W2, N4 = M24 · T8, N5 = M32 · T8,

W3 = N4 ·M31, M34 = W3 ⊕N5, N6 = M24 · U7, N7 = M23 · U7, W4 = N6 ·M26,

M35 = W4 ⊕N7, N8 = M21 ⊕M30, N9 = M28 ⊕M29, N10 = M27 · T16, W5 = N8 · T16,

W6 = N9 ·N10, M36 = W5 ⊕W6, N11 = M27 · T9, N12 = M30 · T9, W7 = M29 ·N11,

M37 = W7 ⊕N12, N13 = M21 · T17, N14 = M27 · T17, W8 = M28 ·N14, M38 = W8 ⊕N13,

N15 = M21 ⊕M23, N16 = M27 · T15, N17 = M24 · T15, W9 = N15 · T15, W10 = N16 ·M28,

W11 = N17 ·M26, M ′
39 = W9 ⊕W10, M39 = M ′

39 ⊕W11, N18 = M30 ⊕M32, N19 = N15 ⊕N18,

N20 = M28 ⊕M29, N21 = M26 ⊕M31, N22 = M27 · T27, N23 = M24 · T27, W12 = N19 · T27,

W13 = N20 ·N22, W14 = N21 ·N23, M ′
40 = W12 ⊕W13, M40 = M ′

40 ⊕W14, N24 = M27 · T10,

N25 = M24 · T10, W15 = M29 ·N24, W16 = N18 · T10, W17 = M31 ·N25, M ′
41 = W15 ⊕W16,

M41 = M ′
41 ⊕W17, N26 = M24 · T13, W18 = N3 ·N26, W19 = N2 · T13, M42 = W18 ⊕W19,

N27 = M24 · T23, N28 = M32 · T23, W20 = N27 ·M31, M43 = W20 ⊕N28, N29 = M24 · T19,

N30 = M23 · T19, W21 = N29 ·M26, M44 = W21 ⊕N30, N31 = M27 · T3, W22 = N8 · T3,

W23 = N9 ·N31, M45 = W22 ⊕W23, N32 = M27 · T22, N33 = M30 · T22, W24 = M29 ·N32,

M46 = W24 ⊕N33, N34 = M21 · T20, N35 = M27 · T20, W25 = M28 ·N35, M47 = W25 ⊕N34,

N36 = M27 · T1, N37 = M24 · T1, W26 = N15 · T1, W27 = N36 ·M28, W28 = N37 ·M26,

M ′
48 = W26 ⊕W27, M48 = M ′

48 ⊕W28, N38 = M27 · T4, N39 = M24 · T4, W29 = N19 · T4,

W30 = N20 ·N38, W31 = N21 ·N39, M ′
49 = W29 ⊕W30, M49 = M ′

49 ⊕W31, N40 = M27 · T2,

N41 = M24 · T2, W32 = M29 ·N40, W33 = N18 · T2, W34 = M31 ·N41, M ′
50 = W32 ⊕W33,

M50 = M ′
50 ⊕W34

The nonlinear part of our AND-depth-3 circuit is present in Table 9. The top
linear part and bottom linear part are the same as those in Boyar and Peralta’s
classical circuit. In this table and Table 8,M1,M2, . . . ,M30 are generated by the
same operations. The operations labeled by the purple color are new operations.
M33,M34, . . . ,M50 in this table andM46,M47, . . . ,M63 in Table 8 have the same
algebraic expressions. In our quantum implementation, we can rewrite M ′

39 =
W9⊕W10,M39 =M ′

39⊕W11 asM39 =W9⊕W10,M39 =M39⊕W11, and by this
way, we can save one qubit and one CNOT gate. Similarly, we can rewrite the
equations containing M ′

40,M
′
41,M

′
48,M

′
49,M

′
50 to save qubits and CNOT gates.

37

E The Matrices and Circuits in Section 5.2 and
Section 7.1

MA−1 =

1 0 0 0 0 0 0 0
1 1 0 0 1 0 0 1
1 0 1 0 0 0 1 1
0 0 0 1 1 0 0 1
0 0 0 0 1 0 0 0
1 0 1 0 0 1 1 0
1 0 1 0 0 1 0 0
1 0 0 0 0 0 0 1

|x1⟩ • • |x1⟩
|x2⟩ |x1 ⊕ x2 ⊕ x5 ⊕ x8⟩
|x3⟩ • |x1 ⊕ x3 ⊕ x7 ⊕ x8⟩
|x4⟩ |x4 ⊕ x5 ⊕ x8⟩
|x5⟩ • • |x5⟩
|x6⟩ • |x1 ⊕ x3 ⊕ x6 ⊕ x7⟩
|x7⟩ • |x1 ⊕ x3 ⊕ x6⟩
|x8⟩ • • • |x1 ⊕ x8⟩

Fig. 20. The circuit for implementing A−1

ML =

1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1

|x1⟩ • |x4 ⊕ x5 ⊕ x6 ⊕ x7 ⊕ x8⟩
|x2⟩ • • |x2 ⊕ x3 ⊕ x4 ⊕ x5 ⊕ x6⟩
|x3⟩ • • |x3 ⊕ x4 ⊕ x5 ⊕ x6 ⊕ x7⟩
|x4⟩ • • |x1 ⊕ x2 ⊕ x3 ⊕ x7 ⊕ x8⟩
|x5⟩ • • |x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ x8⟩
|x6⟩ • • |x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ x5⟩
|x7⟩ • • |x1 ⊕ x5 ⊕ x6 ⊕ x7 ⊕ x8⟩
|x8⟩ • |x1 ⊕ x2 ⊕ x6 ⊕ x7 ⊕ x8⟩

Fig. 21. The circuit for implementing L

38

F Width Analysis

F.1 Widths of the S-box circuits in Section 6.3

In our T -depth-4 circuit, we need 8 qubits for the input {U0, U1, . . . , U7}, 8
qubits for the output {S0, S1, . . . , S7}, and 120 qubits for intermediate variables
{T1, T2 . . . , T27}, {M1,M2, . . . ,M63}, {L0, L1, . . . , L29}. It is easy to see that the
layer which needs the most qubits is the 4-th AND layer. Before this layer, we
should copy 9 variables to ancilla qubits, and in this layer, we should apply 18
AND gates in parallel. Note that for implementing an AND gate with the T -
depth-1 circuit in Fig. 1, we need 1 ancilla qubit. This means for these two steps
we need 27 ancilla qubits. At this moment there are 38 idle qubits, which are
the qubits used to store {L1, L2, . . . , L30, S0, S1, . . . , S7} in Table 8, hence we do
not need extra ancilla qubits. This implies that the width of the whole circuit is
8 + 8 + 120 = 136.

In our T -depth-3 circuit, we need 16 qubits for the input and output, and
182 qubits for the intermediate variables. In this circuit, the second AND layer
and the third AND layer all need a lot of ancilla qubits. In the second AND
layer, we should apply 33 AND gates in parallel. Before this layer, we should
copy some variables to 41 ancilla qubits. This means in the second AND layer,
we need 74 ancilla qubits. At this moment there are 56 idle qubits, which are
the qubits used to store {M33,M34, . . . ,M50, L1, L2, . . . , L30, S0, S1, . . . , S7} in
Table 9. This means 18 extra ancilla qubits are needed. In the third AND layer,
we should apply 36 AND gates in parallel, and we have to copy some variables
to 22 ancilla qubits. This means in the third AND layer, we need 58 ancilla
qubits. At this moment, there are 38 idle qubits, which are the qubits used
to store {L1, L2, . . . , L30, S0, S1, . . . , S7}, thus we need 20 extra ancilla qubits.
Therefore, the third AND layer needs more ancilla qubits than the second AND
layer. This implies the width of the whole circuit is 16 + 182 + 20 = 218.

For the T -depth-6 circuit proposed in [JNRV20], at most 9 AND gates are
applied in parallel, and no copy operation is used. Hence only 9 ancilla qubits
are needed. Obviously, we have enough idle qubits, thus the width of the whole
circuit is 8 + 8 + 120 = 136.

F.2 Widths of the AES circuits in Section 7.2

We need 128 qubits for storing the round key and another 128 qubits for storing
the plaintext. Since we use the pipeline structure, for each round 128 qubits are
used to store the round output, hence we need 1280 qubits for 10 rounds.

Now, consider the ancilla qubits required in the nonlinear blocks. We need to
apply the 4 S-boxes in KeyExpan and the 16 S-boxes in ByteSub1 in parallel. The
T -depth-4 S-box circuit needs 136− 16 = 120 ancilla qubits, and the T -depth-3
S-box circuit needs 218 − 16 = 202 ancilla qubits as shown in Table 4. Hence,
for implementing 20 S-boxes in parallel, we need 2400 ancilla qubits when we
use the T -depth-4 S-box circuit, while we need 4040 ancilla qubits when we use
the T -depth-3 S-box circuit. In summary, the width of our implementation with

39

the T -depth-4 S-box circuit is 256 + 1280 + 2400 = 3936, and the width of our
implementation with the T -depth-3 S-box circuit is 256 + 1280 + 4040 = 5576.
It is easy to see that the width of the circuit in [JNRV20] is also 3936.

40

G Depth-width Trade-off Analysis for Implementing
Grover Oracle

We consider the Grover oracle based on one pair of plaintext and ciphertext. The
sub-circuit which compares the ciphertext and obtains the oracle output can be
implemented by applying 128 Pauli-X gates and a multiple controlled Toffoli
(MCT) gate. Here, we should implement an MCT gate which has 128 control
qubits and 1 target qubit. Since we have plenty of ancilla qubits at this step, we
use a trivial low-depth Toffoli gate decomposition which has Toffoli-depth 7 for
the forward circuit. This implementation needs 127 ancilla qubits. For the round-
in-place structure, we can use the qubits in the third register. If in each round
we apply p double-depth S-box circuits in parallel and each out-of-place S-box
circuit needs a ancilla qubits, then there are more than 8

9p(a+8)+ 1
9pa = pa+ 64

9 p
qubits in the state |0⟩ at this moment as shown in Fig. 16. This means we need
no more than 127 − ap − 64

9 p extra ancilla qubits. Similarly, for the pipeline
structure, suppose we apply p out-of-place S-box circuits in parallel, we need
127− ap extra ancilla qubits.

Now suppose the out-of-place S-box circuit has T -depth d and uses a ancilla
qubits, then we have the following results.

• For the round-in-place structure, suppose p double-depth S-box circuits are
applied in parallel, then the T -depth of the circuit implementing the Grover
oracle is 2(18d · 18/p+ 2d+ 7). The width of this circuit is:
1) 256 + pa+ 64

9 p, if 18/p < 3 and pa+ 64
9 p ≥ 127;

2) 383, if 18/p < 3 and pa+ 64
9 p < 127;

3) 256 + p(8 + a), if 18/p ≥ 3 and p(8 + a) ≥ 127;
4) 383, if 18/p ≥ 3 and p(8 + a) < 127.

• For the pipeline structure, the T -depth of the circuit implementing the
Grover oracle is 2(10d · 20/p + 7). The width of this circuit is 1536 + pa
if pa > 127, and is 1663, if pa ≤ 127.

41

	Synthesizing Quantum Circuits of AES with Lower T-depth and Less Qubits

