
Caulk: Lookup Arguments in Sublinear Time

Arantxa Zapico∗1, Vitalik Buterin2, Dmitry Khovratovich2, Mary Maller2,
Anca Nitulescu3, and Mark Simkin2

1 Universitat Pompeu Fabra†
2 Ethereum Foundation‡

3 Protocol Labs§

Abstract

We present position-hiding linkability for vector commitment schemes: one can prove in zero
knowledge that one or m values that comprise commitment cm all belong to the vector of size N
committed to in C. Our construction Caulk can be used for membership proofs and lookup arguments
and outperforms all existing alternatives in prover time by orders of magnitude.

For both single- and multi-membership proofs Caulk beats SNARKed Merkle proofs by the
factor of 100 even if the latter instantiated with Poseidon hash. Asymptotically our prover needs
O(m2 +m logN) time to prove a batch of m openings, whereas proof size is O(1) and verifier time is
O(log(logN)).

As a lookup argument, Caulk is the first scheme with prover time sublinear in the table size,
assuming O(N logN) preprocessing time and O(N) storage. It can be used as a subprimitive in
verifiable computation schemes in order to drastically decrease the lookup overhead.

Our scheme comes with a reference implementation and benchmarks.

1 Introduction

A vector commitment is a basic cryptographic scheme, which lies at the foundation of numerous
constructions and protocols. In a nutshell, a vector commitment is a compact data structure that
“contains” a (potentially very big) number of elements and allows proving that a specific element has been
committed to it. A natural requirement is that a proof is succinct and unforgeable. A Merkle tree is a
well known example of vector commitment.

The rise of privacy-preserving applications makes it vital to make proofs zero-knowledge i.e. hiding
the element that is asserted to be in the commitment while still establishing a certain relationship, or
link, to that element. Thus a vector commitment to v = (v1, . . . , vN) is linkable if it permits proving that
you know a secret si mathematically linked to vi. The simplest example is the proof of authorization
where a party proves the knowledge of a secret key beyond one of public key in the set. A more elaborate
example is a proof of coin ownership in private cryptocurrencies: with coins stored as hashes of secret k
and value v in a list or a tree, prove that you can spend v by showing its k in zero knowledge. A third
example is a lookup argument in verifiable computation: prove that intermediate values a1, a2, . . . , ak are
all contained in a certain table (e.g., a table of all 16-bit numbers for the purpose of overflow checks in
financial or mathematical computations). Applications also include membership proofs, ring signatures,
anonymous credentials and other schemes.

So far all these examples have been handled by working but not so efficient mechanisms, which limit
scalability and adoption. The first version of the Zcash cryptocurrency [30] used a SHA-2-based Merkle
tree to store the coins and the Groth16 [20] SNARK to prove the coin ownership. Relatively heavy
machinery of Groth16 and the unfit of SHA-2 to prime-field circuits made the resulting prover time of 40

∗This work was done while Arantxa Zapico was an intern at the Ethereum Foundation.
†arantxa.zapico@upf.edu
‡{v buterin, mary.maller, mark.simkin}@ethereum.org, khovratovich@gmail.com
§anca@protocol.ai

1

seconds barely usable. Even the most recent developments of algebraic hashes [1, 19] reduce prover time
by the order of magnitude only. Another application of concern, lookup tables, so far has required the
generic construction of Plookup [17], and, the last but not least, makes the prover be at least as big as
the table itself no matter how many values they look up.

1.1 Our Contributions

In this paper we present a novel construction to add position-hiding linkability for vector commitments,
named Caulk, which solves both problems with unprecedented efficiency. We construct a proof of
membership with concrete efficiency of the factor of 100x over Poseidon Merkle trees, with the same
asymptotic of O(logN) for N -sized commitments. Our construction naturally extends to proof of subset
memberships, thus leading the way to more efficient lookup arguments. We have removed the bottleneck
of big tables by achieving the yet impossible O(m logN +m2) cost for m-subvector lookups. The Verifier
is succinct as it requires only O(log(logN)) scalar operations as well as constant number of pairings to
verify a constant-size proof. We envision the widespread deployment of our construction both in generic
lookup-equipped proof systems [17, 27] and specific applications with membership proofs.

The prover benefits are even more extreme when compared with Merkle-SNARKs that use SHA-2.
Caulk also has constant proof sizes and O(log(logN)) verifier time. It achieves statistical zero-knowledge
and soundness in the algebraic group model, and requires a universal setup and O(N) storage.

1.2 Paper Structure

We start with a technical overview of Caulk in Section 2. We present two instances: one for single-element
proof of commitment (the m = 1 case), and the other for proving an m-subset: all values committed to
cm are elements of the vector committed in C.

Related work is discussed in Section 3. Section 4 provides a self-complete description of the tools
we use, particularly the KZG commitment and precomputation techniques, and can be skipped by a
knowledgeable reader.

In Section 5 we identify our constructions as special cases of a more general family of protocols that
add what we define as position-hiding linkability to vector commitment schemes. This primitive asserts
that all (hidden) entries committed to cm are also (publicly) committed in C. Position-hiding refers to
the fact that no information about which elements were taken to construct cm should be leaked. We
formalize its definition as well as the security notions to be held.

In Section 6 we formally describe Caulk for the case m = 1 and prove it is statistically zero-knowledge
and sound in the algebraic group model. As an important building block we also introduce a construction
that demonstrates that a pedersen commitment contains a root of unity.

In Section 7 we extend Caulk even further to m-subset proofs, with some values possibly repeating. In
this scenario Caulk can be seen as a lookup table, and is thus a prover efficient alternative to schemes
such as Plookup [17]. We discuss various optimizations in Section 8.

Caulk comes with an open source reference implementation in Rust using arkworks library 1. In
Section 9 we compare its efficiency with some rival schemes.

2 Caulk in a nutshell

We present two constructions, one for the case m = 1, and another for m > 1. The starting point for
both of them is a public vector ~c encoded as a polynomial C(X) =

∑N
i=1 ciλi(X), where {λi(X)}Ni=1 are

the Lagrange interpolation polynomials corresponding to some set of roots of unity H = {1, ω, . . . , ωN−1},
with ωN = 1. Both prover and verifier have access to a KZG commitment to C(X), i.e., to a G1-element

C =
∑N
i=1 ci[λi(x)]1 where x is secret.

1https://github.com/caulk-crypto/caulk

2

2.1 Construction for m = 1

Our idea is for the prover to demonstrate, in zero-knowledge, that a pedersen commitment cm opens to
ci and that they know a verifying KZG proof [Qi]1 such that

e(C− [ci]1, [1]2) = e([Qi]1, [a(x− ωi)]2), for some blinding factor a.

Our prover time is unaffected by the computation of the non-hiding KZG proof [Qi]1 because we can
compute all [Qi]1s in advance using N logN group operations as in [28, 14]. As a result our prover does
require linear storage.

First the prover demonstrates knowledge of ci and r such that cm = [ci + hr]1 for unknown h given
to them as [h]1 in the setup. We use standard arguments of knowledge for pedersen commitments in
order to prove well formation of cm. The challenge is then to prove well formation of a commitment to
[a(x− ωi)]2 and prove that ωi is a root of unity i.e. that ωNi = 1.

In order to avoid working with unnecessarily big polynomials, we introduce a new subgroup of
roots of unity Vn = {1, . . . , σn−1} with n = log(N) + 6 and σn = 1. We create a polynomial f(X) of
degree n such that, using its first 4 coefficients, the prover can convince the verifier that for z(X) of
degree 1, z(X) = aX + b = a(X + b

a), f(σ4) = a
b . The other coefficients of f(X) are constructed so

f(σ4+i) =
(
a
b

)2i
, and the last one used to show that

(
a
b

)N
=
(
b
a

)N
= 1. By iteratively demonstrating

that f(σ4+i+1) = f(σ4+i)× f(σ4+i) we can compute the powers of a
b up to 2logN = N while performing

only O(log(N)) computations.

2.2 Construction for m > 1

We extend our results to m > 1 so that we prove that cm is a commitment to ~a = (ci1 , ci2 , . . . , cim),
where cij is an element in ~c for all j = 1, . . . ,m. We commit to ~a as a polynomial φ(X) =

∑
j cijµj(X)

where {µj(X)}mj=1 are Lagrange interpolation polynomials over Vm = {ν, . . . , νm−1, νm = 1}. Let
I = {i1, . . . , im} ⊂ [N], where each i ∈ I is included only once; that is, the set of all index i such that ci
is an element of ~a, without repetitions.

Tomescu et al. observed that multiple KZG evaluation proofs can be naturally aggregated into a
single proof [28]. Denoting τi(X) as the lagrange polynomials that evaluates to 1 at ωi and 0 at all others
ωk they show that

C(X)−
∑
i∈I

ciτi(X) =
∏
i∈I

(X − ωi)H(X) if and only if C(ωi) = ci. (1)

and that [H(x)]1 can be efficiently computed assuming that the non-hiding KZG proof [Qi]1 have been
precomputed (as in the case m = 1). Given access to individual proofs Qi(X), the prover can perform
linear combinations with them and compute H(X) in O(|I|) = O(m) time. We discuss this aggregation
in more detail in Section 4.6.1.

Now the prover generates a hiding commitments to ~cI = (ci)i∈I and zI(X) =
∏
i∈I(X − ωi), and

outputs them together with a commitment to the polynomial H(X) such that (1) holds. Concretely we
have polynomial equation

C(X)− CI(X) = zI(X)H(X) (2)

asserted against commitments C, [CI], [zI], [H]. It remains to prove that (i) zI(X) has the right form, (ii)
[CI] is a commitment to the same values as cm =

∑m
j cijµj(X) but in a different basis: τi vs µj . For

the first statement we introduce an auxiliary polynomial u(X) =
∑m
j=1 ω

ijµj(X). We prove that u(X)’s

coefficients are Nth roots of unity by providing a proof that uj(X) = uj−1(X)uj−1(X) for j = 1, . . . ,m,
when evaluated at elements in Vm, and showing that u0(X) = u(X) and un(X) = 1. Then it remains to
show that zI(X) vanishes at coefficients of u(X) i.e. zI(u(X)) vanishes at Vm. This is done by providing
H2(X) such that zI(u(X)) = zVm

(X)H2(X). Note that the argument holds also when u(X) has repeated
coefficients.

The second statement is proven by asserting the polynomial equation

CI(u(X))− φ(X) =

m∏
j=1

(X − νj)H(X),

3

Scheme Trusted Params |srs| Proof size Prover work Verifier work

Merkle trees + zkSNARKs Updatable m log(N) 13G1, 8F Õ(m log(N)) 2P
RSA accumulators Yes O(1) 2 G O(log(m)) m exp

Caulk single opening (Sec. 6) Updatable O(N) 6G1, 2G2, 4F Õ(log(N)) 4P

Caulk lookup (Sec. 7) Updatable O(N) 14G1, 1G2, 4F Õ(m2 +m log(N)) 4P

Table 1: Cost comparison of our scheme with alternative proofs for membership and lookups. N is the
size of the table and m the size of the set to be opened. We consider that Merkle trees + zk-SNARKs
are implemented using Marlin [13] and note that these numbers are different with other SNARKs. Note
that the asymptotic prover work for the Merkle trees + zkSNARKs hides the large constants involved in
arithmetising hash functions. The RSA accumulator asymptotics hides large constants: for example G
denotes a hidden order group that has larger size than G1, G2.

thus linking an input φ(X) in the known basis {µj(X)}mj=1 to CI(X) in the unknown basis {τi(X)}i∈I .
In our protocol, the procedure above is performed by also including blinders to hide the positions and the
values taken to construct zI(X),~cI and ~a.

3 Related Work

Merkle-SNARK Zcash protocol [30] proposed a SNARK over a circuit described a Merkle tree opening for
the anonymous proof of coin ownership. It remains a very popular approach for various set membership
proof protocols [29, 31]. The prover costs are logarithmic in the number of tree leafs, but the concrete
efficiency varies depending on the hash function that comprises the tree [1, 19]. Regular hash functions
such as SHA-2 are known to be very slow, whereas algebraic alternatives are rather novel and some
applications are reluctant to use them.

Pairing Based Camenisch et al.[10] describe a vector commitment that only requires constant prover
and verifier costs. However the commitments themselves are computed by a trusted third party and have

linear size because the prover requires access to g
1

x−ci for all ci in the vector and x secret.
Discrete-Log Based In the discrete-logarithm setting a series of works have looked into achieving

logarithmic sized zero-knowledge membership proof [3, 21, 8, 9]. These have the advantage that there
is no trusted setup or pairings. The prover and verifier costs are asymptotically dominated by a linear
number of field operations. For modest sized vectors this can be practical because the number of more
computationally intensive group operations is logarithmic.

RSA Accumulators Camenisch and Lysyanskaya [11] design a proof of knowledge protocol for linking
a commitment over a prime ordered from to an RSA accumulator. There are no a-priori bounds on the
size of the vector. This approach is used by Zerocoin [25] which is a privacy preserving payments system
(the predecessor to Zerocash [5]). Benarroch et al. [6] improve on this result by allowing the use of prime
ordered groups of of “standard” size, e.g., 256 bits, whereas [11] needs a much larger group. RSA based
schemes have constant sized public parameters. Benarroch et al. [6] and later Campanelli et al. [12]
enjoy a prover time that is over twice as fast as zk-SNARKs over Merkle trees with Pedersen hashes and
their implementation has not yet been heavily optimised. The verifier time is also asymptotically and
concretely efficient. However they require either a trusted RSA modulus or class groups and the proof
size is relatively large (about 2 to 5 KBytes).

4 Preliminaries

A bilinear group gk is a tuple gk = (q,G1,G2,GT , e,P1,P2) where G1,G2 and GT are groups of prime
order q, the elements P1,P2 are generators of G1,G2 respectively. We also consider P̂1 another generator
of G1 and will denote it as [h]1, where h is unknown and hP1 = P̂1. e : G1 ×G2 → GT is an efficiently
computable, non-degenerate bilinear map, and there is an efficiently computable isomorphism between G1

and G2. Elements in Gγ , are denoted implicitly as [a]γ = aPγ , where γ ∈ {1, 2, T} and PT = e(P1,P2).
With this notation, e([a]1, [b]2) = [ab]T . When informally introducing techniques, we may use [a] to refer
to element a given in either G1 or G2.

4

4.1 Lagrange Polynomials and Roots of Unity

We use ω to denote a root of unity such that ωN = 1, and define H = {1, ω, . . . , ωN−1}. Also, we let λi(X)

denote the ith lagrange polynomial, i.e., λi(X) =
∏
s6=i−1

X−ωs

ωi−1−ωs and zH(X) =
∏N−1
i=0 (X−ωi) = XN −1

the vanishing polynomial of H. We will additionally consider smaller groups of roots of unity in Sections 6, 7
and 7.1, that will be introduced accordingly.

4.2 Security parameters and algorithms

Let λ ∈ N denote the security parameter and 1λ its unary representation. A function negl : N → R is
called negligible if for all c > 0, there exists k0 such that negl(k) < 1

kc for all k > k0. For a non-empty set

S, let x
$←− S denote sampling an element of S uniformly at random and assigning it to x.

Let PPT denote probabilistic polynomial-time. Algorithms are randomized unless explicitly noted
otherwise. Let y ← A(x; r) denote running algorithm A on input x and randomness r and assigning its

output to y. Let y
$←− A(x) denote y ← A(x; r) for a uniformly random r.

4.3 Games

Code-based games are used in security definitions [4]. A game GamesecA (λ), played with respect to a
security notion sec and adversary A, has a main procedure whose output is the output of the game.

4.4 Cryptographic Assumptions

The security of our protocols holds in the Algebraic Group Model (AGM) of Fuchsbauer et al.([15]), using
the dlog, qDHE and qSDH assumptions [18, 7]. In the AGM adversaries are restricted to be algebraic,
namely, when an adversary A gets some group elements as input and outputs another group element, it
can provide some algebraic representation of the latter in terms of the former.

Definition 4.1 (Algebraic Adversary). Let G be a cyclic group of order p. We say that a PPT adversary
A is algebraic if there exists an efficient extractor EA that, given the inputs ([x1], . . . , [xm]) of A, outputs
a representation z = (z1, . . . , zm)> ∈ Fm, where F is the finite field of p elements, for every group element
[y] in the output of A such that:

AdvalgG,A(λ) =

[
[y]← A([x1], . . . , [xm]), z← EA([y], [x1], . . . , [xm]),

and [y] 6=
∑m
j=1 zj [xj]

]
= negl(λ).

4.5 The KZG Polynomial Commitment Scheme

Our constructions heavily rely on the KZG polynomial commitment scheme (Def. A.3) that we describe
below, as well as its adaptation for vector commitment that we explain in the next section. For efficiency,
we slightly modify the polynomial commitment in order to add degree checks to the original protocol,
without incurring in extra proof elements or pairings. The polynomial commitment introduced by
Kate, Zaverucha and Goldberg in [22] is a tuple of algorithms

(
KZG.Setup, KZG.Commit, KZG.Open,

KZG.Verify
)

such that:

• srsKZG ← KZG.Setup
(
parKZG, d

)
: On input the system parameters and a degree bound d, it outputs

a structured reference string srsKZG =
(
{[xi]1,2}di=1

)
.

• C← KZG.Commit
(
srsKZG, p(X)

)
: It outputs C = [p(x)]1.

• (s, πKZG)← KZG.Open
(
srsKZG, p(X), α

)
: Prover computes

q(X) =
p(X)− p(α)

X − α
,

sets s = p(α), [Q]1 = [q(x)xd−deg+2]1, and outputs (s, πKZG = [Q]1).

• 1/0← KZG.Verify
(
srsKZG,C,deg, α, s, πKZG

)
: Verifier accepts if and only if

e(C− s, [xd−deg+2]2) = e([Q]1, [x− α]2).

5

Security. It has been proven in [22, 13, 16] that the original KZG protocol, i.e., where [Q]1 = [q(x)]1
and the pairing equation is e(C− s, [1]2) = e([Q]1, [x− α]2), is a polynomial commitment scheme that
satisfies completeness, evaluation blinding and extractability as in Def. A.3 in the AGM, under the dlog
assumption. What is more, Marlin presents an alternative version of KZG with degree checks that does
not require additional powers in G2. For our construction, we claim that adding xd−deg+2 to the pairing
and element [Q]1 does not affect completeness or extractability. We also argue that under the AGM,
no PPT adversary A can break soundness by providing a commitment to a polynomial p(X) such that
deg(p) > deg. Indeed, if that is the case, deg(Q) = d+ 1 for Q(X) the algebraic representation of [Q]1,
which will imply an attack to the d-DHE assumption, as the srs only contains powers [xi]1 up to d.

4.6 KZG as Vector Commitment Scheme

There is a natural isomorphism between vectors of size m and polynomials of degree m− 1; where we
can represent ~v = (v1, . . . , vm) ∈ Fm as V (X) =

∑m
j=1 vjBj(X), where B = {Bj(X)}mj=1 is a basis of the

space of polynomials of degree up to m− 1, and vice versa. This fact implies as well a natural relation
between polynomial and vector commitments (Def. A.2), where in particular, the former implies the
latter. What is more, when the basis B chosen to encode the vector consists of Lagrange polynomials
we have vector commitments with easy individual position openings: evaluating V (X) in the i − 1th
interpolation point returns vi.

In this work we will use the protocol by Kate et al. for both cases, polynomial and vector commitments.
For the latter, we will not only consider individual openings but also subset openings. In particular, let
H = {1, ω, . . . , ωN−1} be a set of roots of unity and {λi(X)}Ni=1 its corresponding Lagrange interpolation
set, with vanishing polynomial zH(X). That is, λi(ω

i−1) = 1 and λi(ω
j) = 0 for all j 6= i− 1. We have

that for some polynomial H(X),

V (X)− s = (X − ωi)H(X) if and only if V (ωi) = vi+1 = s.

For a polynomial VI(X) =
∑
i∈I siτi(X) where si+1 are claimed values for vi+1 and {τi(X)}i∈I the

Lagrange interpolation polynomials of the set {ωi}i∈I ,

V (X)− VI(X) =
∏
i∈I

(X − ωi)H(X) iff V (ωi) = vi+1 = si+1 for all i ∈ I.

4.6.1 Multiple Openings

A KZG proof of opening can naturally be extended to open one polynomial in many points. Indeed, let
p(X) be a polynomial, ~α ∈ Fm a vector of opening points and ~s such that si = p(αi) for all i = 1, . . . ,m.
Define C~α(X) as the unique polynomial of degree m− 1 such that C~α(αi) = si for all i ∈ [m]. We have
that p(αi) = si for all i = 1, . . . ,m if and only if there exists q(X) such that

p(X)− C~α(X) =

m∏
i=1

(X − αi)q(X)

We can thus redefine the KZG prover and verifier the following way:

• (s, πKZG) ← KZG.Open
(
srsKZG, p(X),deg, ~α

)
: Prover computes {τi(X)}mi=1 the interpolation La-

grange polynomials for the set {αi}mi=1, zα(X) =
∏m
i=1(X−αi) and define C~α(X) =

∑m
i=1 p(αi)τi(X).

Then, it computes

q(X) =
p(X)− C~α(X)

zα(X)
,

sets si = p(αi), [Q]1 = [q(x)]1, and outputs (~s, πKZG = [Q]1).

• 1/0 ← KZG.Verify
(
srsKZG,C,deg, ~α,~s, πKZG

)
: The verifier computes {τi(X)}mi=1, C~α = [C~α(x)]1,

[zα(x)]2 and verifies
p(X)− C~α(X) = q(X)zα(X)

by making the pairing check

e(C− C~α, [1]2) = e([Q]1, [zα(x)]2),

and outputs 1 if and only if the equation is satisfied and deg(p) ≤ d.

6

4.6.2 KZG for Bivariate Polynomials

For the protocol in Section 7.1 we will use bivariate polynomials, or polynomials of higher degree. What
this mean is that, if we have a bivariate polynomial P (X,Y) with degree up to d1 − 1 in X and d2 − 1
in Y then we require a universal setup with d1d2 powers. We work with a version of KZG that uses a
univariate setup because these are already available for multiple different curves (i.e. we do not need a
specialist setup just for our protocol and can work with prior KZG setups).

We observe that, by using the KZG open algorithm, we can commit to P (X,Y) as [P (xd2 , x)]1. We
must open P (X,Y) in two steps. First we partially open P (X,Y) at some point X = α to a commitment
[P (α, x)]1. The partial proof is given by a commitment [wα(xd2 , x)] to a partial witness

wα(X,Y) =
P (X,Y)− P (α, Y)

X − α

We then fully evaluate P (α,X) at Y = β via a standard KZG proof with a degree bound of d2 − 1 on
[P (α, x)]1.

4.6.3 Subset openings

By applying the ideas above to vector commitments, we have that the KZG scheme can be applied to
prove openings to subsets rather than positions. Consider the subset of H {ωi}i∈I = {ωij}mj=1 with

I ⊂ [N] such that |I| = m and its vanishing polynomial zI(X) =
∏
i∈I(X − ωi). We can prove that a

commitment C = [C(x)]1 to vector ~v is such that C(ωij) = sj , i.e., vij+1 = sj for j = 1, . . . ,m. The
proof is given by Q = [q(x)]1 for

q(X) =
C(X)−

∑m
j=1 sjτj(X)

zI(X)
.

where

τj(X) =

m∏
k=1,k 6=j

X − ωik
ωij − ωik

is the langrange polynomial evaluating to 0 at ωik for k 6= j and 1 at ωij . The verifier checks the equation

C(X)−
m∑
j=1

sjτj(X) = q(X)zI(X)

By making the pairing check

e(C− [

m∑
j=1

sjτj(x)]1, [1]2) = e(Q, [zI(x)]2)

We will additionally use a result by Tomescu et al. [28] that allows the prover to compute Q in time
O(m log2(m)) given it already has stored proofs Q1, . . . , Qm that c(ωij) = sj . Indeed the prover sets

q(X) =

m∑
j=1

qj(X)∏m
k=1,k 6=j(ω

ij − ωik)
and Q =

m∑
j=1

Qj∏m
k=1,k 6=j(ω

ij − ωik)

This is a correct computation of Q because

C(X)−
m∑
j=1

sjτj(X) = C(X)(1−
m∑
j=1

τj(X)) +

m∑
j=1

(c(X)− sj)τj(X)

=

m∑
j=1

(c(X)− sj)τj(X)

7

where we are using that (1−
∑m
j=1 τj(X)) = 0 for any set of lagrange polynomials. Further

m∑
j=1

(C(X)− sj)τj(X) =

m∑
j=1

(C(X)− sj)
m∏

k=1,k 6=j

(X − ωik)

(ωij − ωik)

=

 m∑
j=1

(C(X)− sj)
(X − ωij)

∏m
k=1,k 6=j(ω

ij − ωik)

 m∏
k=1

(X − ωik)

=

 m∑
j=1

qj(X)∏m
k=1,k 6=j(ω

ij − ωik)

 m∏
k=1

(X − ωik)

The provers asymptotic time is thus dominated by the computation of
∏m
k=1,k 6=j

1
(ωij−ωik)

.

Remark 1. We remark that precomputing all the proofs Q1, . . . , Qn that c(ωij) = sj can be achieved
in time O(n log n) using techniques by Feist and Khovratovich [14]. The overview of this technique by
Tomescu et al. ([28], Section 3.4.4, “Computing All ui’s Fast”) is explained well.

4.7 Proof of Opening of a Pedersen Commitment

Pedersen commitment schemes are a particular case of vector commitments. We will consider them for
committing to single values in a zero knowledge way. Thus, the srs will additionally output [h]1 for some
secret h and the commitment to some element s is computed as v[1]1 + r[h]1 = [v+hr], for some randomly
sampled h ∈ F . We suggest a standard Fiat-Shamired Sigma protocol [24] to demonstrate knowledge of
v, r such that cm = [v + hr]1 for some v, r:

Rped = {(cm; (v, r)) : cm = [v + hr]1}

The proof consists of R = [s1 + hs2]1, t1 = s1 + vc and t2 = s2 + rc, where c = H(cm, R) and s1, s2 are
elements chosen by the verifier. At the end, the verifier checks that R+ c · cm = [t1 + ht2]1.

5 Position-Hiding Linkable Vector Commitments

We introduce the concept of position-hiding linkable vector commitment schemes. Informally, two vector
commitment schemes VC1 and VC2 are position-hiding linkable if a prover is able to convince a verifier
that for a given commitments C corresponding to VC1 and cm corresponding to VC2, it is true that all
the elements in the vector committed in cm are also elements of the vector committed in C.

Basicallly, position-hiding linkability allows the prover to extract or isolate in zero-knowledge elements
from some public set or table, and later prove further attributes on them. This new primitive should
satisfy three security notions: completeness, as usual; linkability, that captures the fact that if the proof
verifies then there is no element committed in cm that is not also committed in C; and position-hiding,
which holds only if no information about the set of elements in C that have been used to construct cm is
leaked.

Definition 5.1 (Position-Hiding Linkability for Vector Commitments). Two vector commitment schemes
VC1 and VC2 are position-hiding linkable if there exist algorithms

(
Setuplink,Provelink,Verifylink,Simulatelink

)
that behave as follows,

• Setuplink(1
λ, d1, d2) : takes as input the security parameter, bounds on the length of vectors in VC1

and VC2, and outputs common parameters srs that include srs1 = VC1.srs and srs2 = VC2.srs as well
as trapdoor x, including the corresponding trapdoors x1 and x2.

• Provelink(srs, r, r′, ~v,~vI) : on input the srs, commitment randomness r to vector ~v ∈ FN and commit-
ment randomness r′ to ~a ∈ Fm, outputs a proof π that there exists some I ⊂ [N] such that for all
j = 1, . . . ,m, aj = vi for some i ∈ I.

• Verifylink(srs,C,C′, π) : On input the srs, commitments C and C′, and proof π, accepts or rejects.

8

• Simulatelink(x1, x2,C,C
′) : On input the trapdoors x1, x2 and commitments C and C′, outputs a

simulated proof πsim,

and satisfy the following properties:

Completeness: For all N, t with t ≤ N , all ~v ∈ FN , and all ~a ∈ Fm it holds that:

Pr

Verifylink(srs,C,C′, π) = 1

(srs, x)← Setuplink(1
λ, N, t);

C← Commit(srs1, ~v, r);
C′ ← Commit(srs2,~a, r

′);
π ← Provelink(srs, r, r′, ~v,~a)

 = 1.

Linkability For all N,m with m ≤ N , and all PPT adversaries, there exists an extractor XA such
that:

Pr

Verifylink(srs,C,C′, π) = 1 ∧

|~v| = N ∧(
∃ j ∈ [m] s.t. aj 6= ci ∀i ∈ [N] ∨

VC2.Commit(srs2,~a, r
′) 6= C′

)
(srs, x)← Setuplink(1

λ, N,m);
~v ← A(srs);

C← VC1.Commit(srs1, ~v);
(π,C′)← A(srs1, srs2,C);

(~a, r′)← XA(C′, π)

 = negl(λ).

Position-Hiding For all N,m with m ≤ N , for all ~v and ~a, all PPT adversaries A, there exists a
PPT algorithm Simulatelink such that:A(srs,C,C′, π) = 1

(srs, x)← Setuplink(1
λ, N,m)

C← Commit(srs1, ~v, r)
C′ ← Commit(srs2,~a, r

′)
π ← Provelink(srs, r, r′, ~v,~a)

 ≈c
A(srs,C,C′, πsim) = 1

(srs, x)← Setuplink(1
λ, N,m)

C← Commit(srs1, ~v, r)
C′ ← Commit(srs2,~a, r

′)
πsim ← Simulatelink(x,C,C

′)

In the next sections, we introduce position-hiding linkability for KZG commitments of arbitrary

size and pedersen commitments for single elements (Section 6), as well as for two KZG commitments
(Section 7).

6 Linking Vectors with Elements

In this section we present a method to link a commitment C to a vector ~c ∈ FN computed as C = [C(x)]1
with C(X) =

∑N
i=1 ciλi(X), to a pedersen commitment cm. By this we mean a method for a prover

to convince a verifier that there exists an i such that C opens to v at some Nth rooth of unity ωi and
cm = [v + hr]1.

We will consider two groups of roots of unity:

• H = {1, ω, . . . , ωN−1} of size N with ωN = 1, Lagrange interpolation polynomials {λi(X)}Ni=1 where
λi(ω

i−1) = 1 and λi(ω
j) = 0 if j 6= i− 1, and vanishing polynomial zH(X).

• Vn = {1, ν, . . . , νn−1} of size n = log(N) + 6 with νn = 1, Lagrange interpolation polynomials
{ρs(X)}ns=1 and vanishing polynomial zVn

(X).

Our construction can be divided into three main components. The first one is a proof of knowledge for
the element v committed in cm, that is a proof for relation Rped as defined in Section 4.7. The second
is a modified protocol for computing blinded versions of KZG openings for statements C(ωi) = v that
does not reveal the coordinate i+ 1 or the evaluation v, which we describe below. The high-level idea
here is to re-randomize a regular KZG opening with an additional blinding factor. Our third component
then proves that the re-randomized vanishing polynomial used for the KZG opening is well-formed, i.e., a
NIZK argument (as in Def. A.1) for the relation

Runity =
{

(srs, [z]2; (a, i)) : [z]2 = [a(x− ωi)]2 ∧ (ωi)N = 1
}
.

9

6.1 Our Blinded Evaluation Construction

Our prover takes (r′ = ⊥,~c) and (r, v) as input, where the first tuple represents the vector inside the
(deterministic) KZG commitment and the second tuple represents the randomness and value for the

pedersen commitment. Let C(X) =
∑N
i=1 ciλi(X) be the polynomial encoding vector ~c. In a regular KZG

opening for position i+ 1, the prover would compute q(X) = C(X)−v
x−ωi and reveal Q = [q(x)]1. Instead, our

prover computes a special kind of obfuscated commitment to ωi by selecting a random a and committing
to z(X) = aX − b = a(X −ωi) where ωi = b

a , i.e. the commitment contains [z]2 = [z(x)]2. Note that this
is simply the KZG cofactor X − ωi multiplied by a blinding factor a. The blinding factor is necessary,
because the set {ωi}m−1i=0 is polynomial sized, so revealing [x− ωi]1 would allow the verifier to do a brute
force search to find the index. The prover then computes [T]1 = [T (x)]1 and [S]2 = [S(x)]2, where

T (X) =
q(X)

a
+ hs and S(X) = −r − sz(X)

and s is a uniformly random value chosen by the prover. T (X) is the KZG quotient polynomial q(X)
divided by a (the blinding factor above) to compensate for z(X) having that blinding factor. The

additional term [hs]1 mixed in to fully blind the evaluation [q(X)
a]1 and preserve zero-knowledge. [S]2 is a

term that compensates for the h terms in both [T]1 and cm. In the pairing equation that checks these
points, [S]2 will be paired with h to ensure that it can only cancel out terms containing h and cannot
make incorrect quotient polynomials appear correct.

We also provide two proofs of knowledge πped and πunity as described in Section 4.7 and Section 6.2
respectively. The proof πped is for v, r such that cm = [v + hr]1. The proof πunity is for a, b such that
[z]2 = [ax− b]2 and aN = bN . The verifier checks the pairing equation

e(C · cm−1, [1]2) = e([T]1, [z]2) + e([h]1, [S]2).

This equation checks that, for the polynomials C(X), T (X), z(X), S(X) encoded in C, [T]1, [z]2, and [S]2
respectively, it holds that

C(X)− v − hr = T (X)z(X) + hS(X).

Now with T (X) = q(X)
a + sh, z(X) = a(X − ωi), and S(X) = −r − sz(X), this is

C(X)− v − hr =

(
q(X)

a
+ sh

)
z(X)− hr − hsz(X) ⇐⇒ C(X)− v =

(
q(X)

a

)
z(X).

The full description of our protocol is given in Figure 1.

Theorem 1. Let Rped and Runity be relations for which zero-knowledge argument of knowledge systems
are given. The construction in Figure 1 implies position-hiding linkability for the commitment schemes
corresponding to C and cm in the algebraic group model under the q-SDH and dlog assumptions.

The proof is in Appendix B.

6.2 Correct computation of z(X)

The purpose of this section is provide a zero-knowledge proof of knowledge for relation Runity, i.e. that
the prover knows a, b such that [z]2 = [ax − b]2 and aN = bN . This proof is used as a subprotocol in
Fig. 1’s construction of a linkable vector commitment in Section 6.

In order to prove that a
b is inside the evaluation domain (i.e. is a root of unity) in zero-knowledge

we add another polynomial f(X) of degree n = log(N) + 6. The polynomial f(X) essentially recovers
a
b from [z]2 and then includes its powers 2i until i = log(N). It will be enough then to prove that (i)
f(X) is correctly formed with respect to [z]2, (ii) it does indeed contain all 2-powers of a

b , and (iii) the

coefficient corresponding to (ab)2
log(N)

= (ab)N equals 1.
The core of our construction is the following lemma, that we prove in Appendix C:

Lemma 1. Let z(X) be a polynomial of degree 1, n = log(N) + 6 and σ such that σn = 1. If there exists
a polynomial f(X) ∈ F[X] such that

10

Prover: Sample blinders a, s
$←− F

Compute C(X) =
∑N
i=1 ciλi(X), encoding of ~c and cm = v[1]1 + r[h]1

Define

z(X) = a(X − ωi), T (X) =
C(X)− v
z(X)

+ sh, S(X) = −r − sz(X)

πped ← Prove(Rped, cm, (v, r))

πunity ← Prove(Runity, (srs, [z]2), (a, aωi))

Set [z]2 = [z(x)]2, [T]1 = [T (x)]1, [S]2 = [S(x)]2 and return ([z]2, [T]1, [S]2, πped, πunity)

Verifier: Accept if and only if the following conditions hold

e(C− cm, [1]2) = e([T]1, [z]2) + e([h]1, [S]2)

1← Verifyped(srs, cm, πped)

1← Verifyunity(srs, [z]2, πunity)

Figure 1: Zero-knowledge proof of membership. Shows that (v, r) is an opening of cm and that C opens
to v at ωi.

1. f(X) = z(X) for 1, σ.

2. f(σ2)(1− σ) = f(1)− f(σ)

3. f(σ3) = σf(σ2)− f(σ)

4. f(σ4)f(σ3) = f(σ2)

5. f(σ4+log(N)) = f(σ5+log(N)σ−1) = 1

6. f(σ4+i+1) = f(σ4+i)2, for all i = 0, . . . , log(N)− 1

Then, z(X) = aX − b, where b
a is an N -th root of unity.

In our protocol the prover will construct the polynomial f(X) as

f(X) = (a− b)ρ1(X) + (aσ − b)ρ2(X) + aρ3(X) + bρ4(X) +
∑log(N)
i=0

(
a
b

)2i
ρ5+i(X). (3)

and commit to it in zero-knowledge. Then, it will show it is correct by comparing f(σi) with the
corresponding values from the constraints in Lemma 1. Namely, for some α chosen by the verifier, it
sets α1 = σ−1α, α2 = σ−2α and sends v1 = f(α1) and v2 = f(α2) along with the corresponding proofs
of opening. Given v1, v2 it then shows that the following polynomial, which proves the constraints in
Lemma 1, evaluates to 0 in α:

pα(X) =− h(X)zVn
(α) +

(
f(X)− z(X)

)
(ρ1(α) + ρ2(α)) +

(
(1− σ)f(X)− f(α2) + f(α1)

)
ρ3(α)

+
(
f(X) + f(α2)− σf(α1)

)
ρ4(α) +

(
f(X)f(α1)− f(α2)

)
ρ5(α)

+
(
f(X)− f(α1)f(α1)

) ∏
i6∈[5,...,4+log(N)]

(α− σi) +
(
f(α1)− 1

)
ρn(α).

Note that the polynomials that are already evaluated in α in pα(X) are thus that either the verifier can
compute its own, or are opened by the prover.

Using v1, v2, the commitments to h(X), f(X) and after computing ρi(α) for i = 1, 2, 3, 4, n− 1, n and∏
i 6∈[5,...,4+log(N)](α− σi), the verifier computes a commitment [P]1 to pα(X) and checks that (i) v1, v2

11

are correct openings of f(X) at α1 = σ−1α and α2 = σ−2α, (ii) 0 is a correct opening of pα(X) at α,
and (iii) [z]2 has degree 1.

For this last check, we ask the prover to include a term Xd−1z(X) in h(X) and then the verifier
computes [P]1 without the terms including z(X), i.e, without −Xdz(X)zVn

(α)− z(X)(ρ1(α) + ρ2(α)).
It will instead add them in the group via the pairing later, to assure that it cannot be the case that
deg(z) > 1, unless deg(pα) > d, which is not possible under the AGM.

We describe the protocol in Fig. 2.

Theorem 2. The protocol in Fig. 2 is a zero-knowledge and knowledge-sound argument (as defined in
Def.A.1) for relation Runity if KZG is a sound polynomial commitment scheme, under the the Algebraic
Group and Random Oracle models.

The proof is in Appendix D.

7 Lookup tables for hiding values

In this section we present position-hiding linkability for KZG vector commitment schemes. The aim is
to prove that a commitment cm contains a subset of some larger vector committed in C. We refer to a
subset as opposite to subvector since our scheme proves that all the elements committed in cm are also
committed in C, but with no specific order and possible repetitions. This is essentially a lookup table if
we consider that C contains the honestly generated table.

Concrete efficiency. Our lookup proof has preprocessing time for C of N logN G2, for N the size of
the table. Prover time is m log(N) for m the size of the subset, proof size is constant and verifier time
log logN scalar multiplications and constant number of pairing checks; additionally, update of proofs can
be done in O(N) G2 operations;

Preliminaries We will consider three evaluation domains

1. H = {1, ω, . . . , ωN − 1} is a group of roots of unity with Lagrange and vanishing polynomials
{λi(X)}Ni=1, zH(X).

2. For subset HI = {ωi}i∈I of H defined by I ⊂ [N], we define {τi(X)}i∈I as its interpolation Lagrange
polynomials with degree |I| − 1. Note that typically HI is not a subgroup.

3. For some constant m that bounds the size of the vector committed in cm, we consider another
group of roots of unity Vm = {1, ν, . . . , νm−1}, where νm = 1, as well as its Lagrange and vanishing
polynomials, {µj(X)}mj=1 and zVm

(X).

Our scheme uses a subprotocol a NIZK argument of knowledge for relation Runity,

Runity =

{
(srs, [zI]2, N ; (I, r)) : I ⊂ [N] ∧ [zI]2 = r

∏
i∈I

(X − ωi), with (ωi)N = 1, ∀ i ∈ I

}

In our protocol, the prover takes as input a commitment C(X) =
∑N
i=1 ciλi(X) to the lookup table ~c,

a structured reference string srs, and a commitment

cm = [φ(x)]1 =

 m∑
j=1

ajµj(x) + am+1zVm
(x)

1

to some vector ~a and the opening witness ~a = (a1, . . . , am+1). Here am is a random field element that
blinds cm. The prover must show that it knows an opening φ(X) =

∑m
j=1 ajµj(X) + am+1zVm(X) to cm

such that aj ∈ {ci}Ni=1 for all 1 ≤ j ≤ m. The full argument is given in Fig. 3 and can be divided into
three steps.

First, the prover considers the subset I ⊂ [N] such that for all j = 1, . . . ,m, aj = ci+1 for some i ∈ I,
and constructs the subvector ~cI = (ci+1)i∈I of ~c. It commits to it in the Lagrange basis corresponding

12

Common input: [z]2

Prover: Sample r0, r1, r2, r3
$←− F and let r(X)← r1 + r2X + r3X

2

f(X) = (a− b)ρ1(X) + (aσ − b)ρ2(X) + aρ3(X) + bρ4(X) +

log(N)∑
i=0

(a
b

)2i
ρ5+i(X)

+ r0ρ5+log(N)(X) + r(X)zVn
(X),

p(X) =
(
f(X)− (aX − b)

)(
ρ1(X) + ρ2(X)

)
+
(
(1− σ)f(X)− f(σ−2X) + f(σ−1X)

)
ρ3(X)

+
(
f(X) + f(σ−2X)− σf(σ−1X)

)
ρ4(X) +

(
f(X)f(σ−1X)− f(σ−2X)

)
ρ5(X)

+
(
f(X)− f(σ−1X)f(σ−1X)

) ∏
i 6∈[5; 4+log(N)]

(X − σi) +
(
f(σ−1X)− 1

)
ρn(X),

Set ĥ(X) = p(X)
zVn (X) , h(X) = ĥ(X) +Xd−1z(X) and output ([F]1 = [f(x)]1, [H]1 = [h(x)]1).

Verifier : Send challenge α ∈ F

Prover : α1 = σ−1α, α2 = σ−2α;

pα(X) = −zVn
(α)h(X) +

(
f(X)− z(X)

)(
ρ1(α) + ρ2(α)

)
+
(
(1− σ)f(X)− f(α2) + f(α1)

)
ρ3(α)

+
(
f(X) + f(α2)− σf(α1)

)
ρ4(α) +

(
f(X)f(α1)− f(α2)

)
ρ5(α)

+
(
f(X)− f(α1)f(α1)

) ∏
i 6∈[5; 4+log(N)]

(α− σi) +
(
f(α1)− 1

)
ρn(α),

Compute

((v1, v2), π1)← KZG.Open(srsKZG, f(X),deg = ⊥, (α1, α2))

(0, π2)← KZG.Open(srsKZG, pα(X),deg = ⊥, α),

and output
(
v1, v2, π1, π2

)
.

Verifier : Set α1 = σ−1α; α2 = σ−2α,

[P]1 = −zVn(α)[H]1 +
(
ρ1(α) + ρ2(α)

)
[F]1 + ρ3(α)

(
(1− σ)[F]1 + v1 − v2

)
+ ρ4(α)

(
[F]1 + v2 − σv1

)
+ ρ5(α)

(
v1[F]1 − v2

)
+ ρn(α)

(
v1 − 1

)
+

∏
i 6∈[5,...,4+log(N)]

(α− σi)
(
[F]1 − v21

)
,

Parse π2 = [q]1 and accept if and only if

1← KZG.Verify
(
srsKZG, [F]1,deg = ⊥, (α1, α2), (v1, v2), π1

)
,

e
(
[P]1, [1]2

)
+ e
(
− (ρ1(α) + ρ2(α))− zVn

(α)[xd−1]1, [z]2
)

= e
(
[q]1, [x− α]2

)

Figure 2: NIZK argument of knowledge for Runity and deg(z) ≤ 1.

13

to {ωi}i∈I ; namely, CI(X) =
∑
i∈I ci+1τi(X). Basically, the prover isolates the elements of ~c that will

compare with ~a so they can work with polynomials of smaller degree.
To convince the verifier that all the elements in CI(X) are elements of C(X), it provides commitments

to zI(X), H1(X) such that
C(X)− CI(X) = zI(X)H1(X). (4)

Here is the place where the precomputation is used: C(X) has degree N and so does H1(X). In order to
compute a commitment to H1(X), we use the O(N logN) method described in Section 4.6.3. This is
at the same time the most expensive step in updating a proof whenever C(X) is changed. However, if
ci values are updated in known order, and we precompute an opening for τi, then whenever new ci is
available all openings can be updated in O(N) time, hence the claimed update cost.

Our challenge now is hiding CI(X) and zI(X) from the verifier without breaking soundness. In
our solution the prover first demonstrates that zI(X) is of the right form, meaning it is the vanishing
polynomial of some subset I of H; specifically, we need not only a hiding commitment but also a
zero-knowledge proof of well formation of zI(X).

We divide the proof of well formation of zI(X) in two steps. First, the prover creates the polynomial
u(X) =

∑m
j=1 ω

ijµj(X) of degree m − 1 whose coefficients are the roots of unity {ωi}i∈I and prove,

in zero knowledge, its well formation. For that, it demonstrates that for all νj ∈ V it is the case that
(u(νj))N = 1, via a call to a subprotocol Πunity that we describe in Section 7.1. This guarantees that u(X)
is a commitment to elements in H.

On input a commitment to u(X) as above and given that u(X) passes the verification of Πunity, we
prove well formation of zI(X). To achieve this we use the fact that all the coefficients of u(X) in the
basis {µj(X)}mj=1 are roots of zI(X). For that, prover convinces verifier that

zI(u(X)) = zVm
(X)H2(X), for some polynomial H2(X). (5)

Finally, note that CI(X) has been committed to in an unknown-to-the-verifier Lagrange basis, which
is {τi(X)}. So the last step of our argument consists on linking the commitment to CI(X) with [φ(x)]1,
which is an input to the argument and a commitment to the same element in a known basis. The prover
does so by providing H3(X) such that

CI(u(X))− φ(X) = zVm(X)H3(X). (6)

In order to achieve zero-knowledge, upon receiving an aggregation challenge χ from the verifier, prover
actually provides one commitment [H2]1 + χ[H3]1 to prove equations 5 and 6 together.

Note that for equation 4 to be satisfied, CI(X) cannot take more than once each of the coefficients of
C(X). On the other hand, when linking CI(X) and φ(X) through equation 6, we can only prove that all
the coefficients of φ(X) in the basis {µj(X)}mj=1 are also coefficients of CI(X) in the basis {τi(X)}i∈I ,
but we cannot say in which order or how many times each of them appears. At the end, what we get, is a
lookup table argument that assures that some element [φ(x)]1 is a commitment in the Lagrange basis
{µj(X)}mj=1 to some vector ~a = (a1, . . . , am) such that for all j = 1, . . . ,m there exists some ij ∈ I such
that aj = cij+1, i.e., a lookup table for potentially repeated indexes.

Theorem 3. Suppose that the argument of Fig. 3 is instantiated with a knowledge-sound scheme for
relation Runity. Then in the AGM with non-programmable ROs, either the argument of Fig. 3 implies
linkability for the vector commitment schemes of C and cm, or there exists an adversary that breaks the
q-SDH assumption.

The proof is in Appendix. E

Subtables There is another nice feature that can be derived by the protocol in Fig. 3 and is the creation
of sub-lookup tables. Namely, for some I ⊂ [N], prover generates t(X) =

∏
i∈I(X − ci). To prove well

formation of it, after having some CI(X) that has been proven correct, it shows that there exists some
H3(X) such that

t(C̃I(X)) = zVm
(X)H3(X).

Then, for any polynomial a(X) of degree up to m− 1, if there exists H4(X) such that

t(a(X)) = zVm(X)H4(X),

then the coefficients of a(X) in the basis {µj(X)}mj=1 are coefficients of CI(X) in basis {τi(X)}i∈I , with
no specific order and potential repetitions.

14

Common input: C = [C(x)]1, for C(X) =
N∑
i=1

ciλi(X) and cm = [φ(x)]1.

Prover: Take as input srs and φ(X) and proof [Q(x)]2 attesting that {ci+1}i∈I are openings of C.

I.e., a commitment to Q(X) =
C(X)−

∑
i∈I ci+1τi(X)∏

i∈I(X−ωi) .

• Choose blinders r1, r2, r3, r4, r5, r6, r7
$←− F uniformly at random.

• For HI = {wi}i∈I , compute the interpolation polynomials {τi(X)}i∈I .
• Define zI(X) = r1

∏
i∈I(X − ωi) and CI(X) =

∑
i∈I

ci+1τi(X) + (r2 + r3X + r4X
2)zI(X).

• Find [H1(x)]2 = [r−11 Q(x)− (r2 + r3x+ r4x
2)]2 such that C(X)−CI(X) = zI(X)H1(X).

• Define ωij as the jth element in {ωi}i∈I and compute

u(X) =

m∑
j=1

ωijµj(X) + (r5 + r6X + r7X
2)zVm

(X).

• Compute a proof πunity that [u]1 has been correctly computed as in Fig. 4

• Output [CI]1 = [CI(x)]1, [zI]1 = [zI(x)]1, [u]1 = [u(x)]1, [H1]2 = [H1(x)]2, πunity.

Verifier: Send challenge χ ∈ F

Prover: • Find H2(X) such that zI(u(X)) + χ(CI(u(X))− φ(X)) = zVm(X)H2(X)

• Output [H2]1 = [H2(x)]1,.

Verifier : Send challenge α ∈ F

Prover : Compute

p1(X)← zI(X) + χCI(X)

p2(X)← zI(u(α)) + χ(CI(u(α))− φ(X))− zVm
(α)H2(X)

(v1, π1)← KZG.Open(srsKZG, u(X),deg = ⊥, α)

(v2, π2)← KZG.Open(srsKZG, p1(X),deg = ⊥, v1)

(0, π3)← KZG.Open(srsKZG, p2(X),deg = ⊥, α)

Output
(
v1, v2, π1, π2, π3

)
.

Verifier : Compute [P1]1 ← [zI]1 + χ[CI]1 and [P2]1 ← v2 − χcm− zVm
(α)[H2]1.

Accept if and only if (i) Vπunity accepts, (ii)

1←KZG.Verify
(
srsKZG, [u]1,deg = ⊥, α, v1, π1

)
1←KZG.Verify

(
srsKZG, [P1]1,deg = ⊥, v1, v2, π2

)
1←KZG.Verify

(
srsKZG, [P2]1,deg = ⊥, α, 0, π3

)
, and (iii)

e
(
[C]1 − [CI]1, [1]2

)
= e
(
[zI]1, [H1]2

)
(7)

Figure 3: Lookup table for non-repeated indexes that uses a proof for Runity as blackbox.

15

7.1 Multi-Unity Proof or Proving well formation of u(X)

Let u(X) =
∑m
j=1 ω

ijµj(X) + r(X)zVm
(X), where ωij is the j-th element in I. The aim of this section is

to prove in zero-knowledge that u(X) is well formed. Namely, that u(X) =
∑m
j=1 ujµj(X) + r(X)zVm

(X)
is such that all its coefficients are elements in H and thus, they are all Nth roots of unity, or what is the
same, that uNj = 1 for all j = 1, . . . ,m.

For this argument, we will consider another group of roots of unity Vn = {σ, . . . , σn−1, σn = 1} of
size n = log(N), Lagrange interpolation polynomials {ρs(X)}ns=1 and vanishing polynomial zVn(X).

Techniques. The prover first defines ~u0 = (u1, . . . , um) ∈ Fm to be the vector whose elements are the
coefficients of u(X). They then iteratively define ~uj = ~uj−1 ◦ ~uj−1. In other words they set

• ~u1 = ~u0 ◦ ~u0 = (u21, . . . , u
2
m);

• ~u2 = ~u1 ◦ ~u1 = (u2
2

1 , . . . , u
22

m);

• ~uj = ~uj−1 ◦ ~uj−1 = (u2
j

1 , . . . , u
2j

m)

They then must prove three conditions to the verifier: (i) ~u0 consists on the coefficients of u(X), (ii)
equation ~uj = ~uj−1 ◦ ~uj−1 holds for all j = 1, . . . , n− 1 and (iii) ~un−1 ◦ ~un−1 = ~1. Together this gives
that all the coefficients uj are Nth roots of unity.

As we are working with encodings as polynomials rather than vectors, the prover sets u0(X) = u(X),
un(X) = id(X) (for id(X) the polynomial that evaluates to 1 over Vm), and shows to the verifier that
each of the following equations hold:

u(X)u(X)− u1(X) ≡ zVm
(X)H1(X),

...

un−1(X)un−1(X)− id(X) ≡ zVm
(X)Hn(X),

To aggregate all of these checks into one verification equation we consider {ρs(Y)} the linear independent
Lagrange interpolation polynomials over Vn and demonstrate that(

u2(X)ρ1(Y) +

n∑
s=2

u2s−1(X)ρs(Y)

)
−

(
n−1∑
s=1

us(X)ρs(Y) + id(X)ρn(Y)

)
= zVm(X)h2(X,Y), (8)

for some polynomial h2(X,Y).
In the remainder of this section the prover aims to demonstrate that (8) holds at a challenge point

(α, β).

Proving (8): Strategy We prove (8) by showing that for some polynomial h1(Y), the polynomial

p(Y) =
(
u2(α)ρ1(β) +

n∑
s=2

u2s−1(α)ρs(β) + zVn
(β)(−h1(β)︸ ︷︷ ︸

Denote ξ1

+h1(Y))
)

−
(n−1∑
s=1

us(α)ρs(β)︸ ︷︷ ︸
Denote ξ2

+id(α)ρn(β)
)
− zVm(α)h2(α, Y)︸ ︷︷ ︸

Denote ξ4

evaluates to 0 at Y = β. For this the prover sends several values needed to reconstruct the commitment
[P]1 to p(Y), and then provides a proof that [P]1 opens to 0 at β.

Proving (8): Extra Notation First note that since the polynomials ρs(Y) take 1 and 0 values only,
we obtain that for all Y ∈ Vn

u2(X)ρ1(Y) +

n∑
s=2

u2s−1(X)ρs(Y) =
(
u(X)ρ1(Y) +

n∑
s=2

us−1(X)ρs(Y)
)2

16

We denote Ū(X,Y) =
∑n
s=2 us−1(X)ρs(Y) and U(X,Y) = u(X)ρ1(Y) + Ū(X,Y) The prover begins by

sending one commitment [Ū]1 to Ū(X,Y) and a second commitment [h2] to h2(X,Y). These are bivariate
commitments. While there exist bivariate polynomial commitment schemes [26], these are incompatible
with universal power-of-tau setups that are publicly available [23]. We thus instead view Ū(X,Y) and
h2(X,Y) as the univariate polynomials U(Xn, X) and h2(Xn, X). See Section 4.6.2 for more details.

The verifier responds with a random challenge X = α.

Proving (8): Definition of and commitment to h1 The prover now wishes to find h1 such that
p(Y) can be fully defined and its commitment can be computed by the verifier. They first provide a
partial opening [Ūα]1 to Ū(α, Y) and proves this is consistent with [Ū]1. They also open [u(x)]1 at α
to get v1 = u(α). This allows the verifier to compute a commitment to the polynomial U(α, Y) as
U = [u(α)]1ρ1(x) + [Ūα]1.

The prover sends a commitment [h1]1 = [h1(x)]1 to h1(Y) such that

n∑
s=1

u2s−1(α)ρs(Y) = (U(α, Y))
2

+ h1(Y)zVn
(Y). (9)

The verifier responds with a second random challenge Y = β and then (9) appears as

n∑
s=1

u2s−1(α)ρs(β) = (U(α, β))
2

+ h1(β)zVn
(β) (10)

Proving (8): Degree bound The prover must show that Ū1(X, 1) = 0 i.e. that there is no ρ1(Y)
term. This convinces the verifier that the first term of U(α, Y) is indeed u(α)ρ1(Y). When opening [Ūα]1
we enforce a degree bound of n− 1. This is necessary because we are capturing bivariate polynomials
with a univariate polynomial commitment scheme and we need to enforce that there are no Xn terms
lingering in Ū(α,X).

Proving (8): Sending ξ1 The prover communicates ξ1 by opening [Ūα]1 to v2 at Y = β and verifier
gets

ξ1 = {(10)} = U(α, β)2 = (u(α)ρ1(β) + Ū(α, β))2 = (v1ρ1(β) + v2)2

Proving (8): Sending ξ2 The prover communicates

ξ2 =
∑n−1
s=1 us(α)ρs(β). To do this we open [Ū(α, Y)] = [Ūα]1 to v3 at Y = σβ for σ the generator of Vn.

Indeed

Ū(α, σβ) =

n∑
s=2

us−1(α)ρs(σβ) =

n−1∑
s=1

us(α)ρs(β) (11)

Proving (8): Finale Finally the verifier can compute a commitment to p(Y) as [p(Y)]1 = [(v2 +
v1ρ1(β))2]1 + zVn(β)[h1]1 − [v3 + id(α)ρn(β)]1 − zVm(α)[h2]1. Thus the prover finishes by demonstrating
that p(β) = 0.

The protocol is shown in Figure 4.

Efficiency. In the protocol of Fig. 3, the work of the prover is dominated by the computation of H(X)
and p2(X) which have degree m2, because [H1] is formed in time m by using the pre-computed individual
proofs, and all the other proof elements are commitments to polynomials of degree m. In the protocol
of Fig. 4, prover work is dominated by the computation of [Ū]1 and [h2]1 that are commitments to
polynomials of degree m log(N).

Theorem 4. The protocol in Figure 4 is a knowledge-sound argument for relation Runity under the
algebraic group model and random oracle model if the qSDH, qDHE, and qSFrac assumptions hold.

Proof. We proceed through a series of games to show that the protocol defined in Fig. 3 satisfies knowledge
soundness. We set Game0 to be the knowledge soundness game as defined in Definition A.1 and consider

17

Common input: [u]1 where [u]1 = [u0(X)]1

Prover: Take as input srs and u(X)

Samples blinders t1, . . . tn ← F.

For s = 1, . . . , n, define us(X) =
m∑
j=1

(
ωij
)2s
µj(X) + tszVm(X),

Define U(X,Y) =
n∑
s=1

us−1(X)ρs(Y).

Define Ū(X,Y) = U(X,Y)− u(X)ρ1(Y)

Define h2(X) =
∑n
s=1 ρs(Y)Hs(X) for Hs(X) = (u2s−1(X)− us(X))/zVm(X)

Output
(
[Ū]1 = [Ū(xn, x)]1, [h2]1 = [h2(xn, x)]1

)
Verifier: Send challenge α ∈ F

Prover: Define h1(Y)←
(
U2(α, Y)−

∑n
s=1 u

2
s−1(α)ρs(Y)

)
/zVn(Y)

Output [h1]1 = [h1(x)]1

Verifier: Send challenge β ∈ F

Prover:

p(Y)← (U2(α, β)− h1(Y)zVn
(β))− Ū(α, βσ) + id(α)ρn(β))− zVm

(α)h2(α, Y)

(v1, π1)← KZG.Open
(
srs, u(X),deg = ⊥, X = α

)
([Ū(α, x)]1, π2)← KZG.Open

(
srs, Ū(X,Y),deg = ⊥, X = α

)
([h2(α, x)]1, π3)← KZG.Open

(
srs, h2(X,Y),deg = ⊥, X = α

)
((0, v2, v3), π4)← KZG.Open

(
srs, Ū(α, Y),deg = n− 1, Y = (1, β, βσ)

)
(0, π5)← KZG.Open

(
srs, p(Y),deg = n− 1, Y = β

)
Set

(
[Ūα]1 = [Ū(α, x)]1, [h2,α]1 = [h2(α, x)]1 and output

(
[Ūα]1, [h2,α]1, v1, v2, v3, π1, π2, π3, π4, π5

)
Verifier: Compute U ← v1ρ1(β) + v2, [P]1 ← U2− [h1]1zVn

(β)− (v3 + id(α)ρn(β))− zVm
(α)[h2,α]1

Accept if and only if

1 = KZG.Verify
(
srsKZG, [u]1,deg = ⊥, X = α, v1, π1

)
1 = KZG.Verify

(
srsKZG, [Ū]1,deg = ⊥, X = α, [Ūα]1, π2

)
1 = KZG.Verify

(
srsKZG, [h2]1,deg = ⊥, X = α, [h2,α]2, π3

)
1 = KZG.Verify

(
srsKZG, [Ūα]1,deg = n− 1, Y = (1, β, βσ), (0, v2, v3), π4

)
1 = KZG.Verify

(
srsKZG, [P]1,deg = n− 1, Y = β, 0, π5

)

Figure 4: Argument for proving that some polynomial u(X) has Nth roots of unity as coefficients in the
basis {µj(X)}mj=1.

18

an algebraic adversary A against it which has advantage Advknowledge-soundA (λ) . We define Game1 and
Game2 and specify reductions B1 and B2 such that

Advk-soundA (λ) = AdvGame0
A (λ) ≤ AdvGame1

A (λ) + AdvqSDH
B1

(λ)

≤ AdvGame2
A (λ) + AdvqSDH

B1
(λ) + AdvqDHE

B1
(λ)

≤ AdvGame3
A (λ) + AdvqSDH

B1
(λ) + AdvqDHE

B1
(λ) + AdvqSDH

B3
(λ)

≤ AdvqSDH
B1

(λ) + AdvqDHE
B1

(λ) + AdvqSFracB3
(λ) + negl(λ)

In Game0 the adversary will return [u]1 = [u(x)] along with a proof. We define Game1 identically
to Game0, but after the adversary returns [u]1 and a proof, Game1 additionally checks whether for
u(X), Ūα(X), p(X) the algebraic representations of [u]1, [Ūα]1, [P]1, it is true that u(α) = v1, Ūα(1) = 0,
Ūα(β) = v2, Ūα(βσ) = v3, and p(β) = 0; and it aborts if one of the conditions does not hold.

The redution B1 takes as input the challenge [y1]1, . . . , [yq]1. It runs the following reduction BKZG
as a subroutine. The BKZG runs the adversary A against Game0 over an srs in which [x]1 = [y1]1.
Whenever A returns an output which wins the Game0 game, if (f(X),v, z) for some (f(X),v, z) ∈
{(u(X), v1, α), (Ūα(X), (1, β, σβ),(0, v2, v3)), (p(X), β, 0)} is such that f(vi) 6= zi, then BKZG computes
f(z) = v′ and a valid proof π′. It outputs ([f(x)]1, z,v, π) and ([f(x)]1, z,v

′, π′) and wins evaluation
binding as they are both proofs that verify and open to different elements. Then BqSDH can extract a
qSDH solution from these openings following the proof in Theorem 3 of [22]. Thus

Advk-soundA (λ)=AdvGame0
A (λ) ≤ AdvGame1

A (λ) + AdvqSDH
B1

(λ)

Now Game2 behaves identically as Game1 but it additionally checks that deg(Ūα) ≤ n − 1 and
deg(h2) ≤ n − 1. If it is not the case, it aborts. Suppose A returns either deg(Ūα) = n − 1 + d or
deg(h2) = n − 1 + d for some d > 0. We argue the advantage of A in Game1 and Game2 is the same
unless we can build an adversary B2 that succeeds against qDHE. The B2 takes as input the challenge
[y1]1, . . . , [yq+d−1]1 and runs the adversary A against Game1 over an srs in which [x]1 = [y1]1. Whenever
A returns an output which wins the Game1 game, if (f(X),v, z) for

(f(X),v, z) ∈ {(Ūα(X), (1, β, σβ), (0, v2, v3)), (p(X), β, 0)}

is such that f(X) has degree greater than n − 1, then the corresponding proof π = [q(x)]1 has a

representation q(X) has degree q + 1. Thus B2 succeeds in returning [π −
∑q−1
i=0 x

i]1 and

AdvGame1
A (λ) ≤ AdvGame2

A (λ) + AdvqDHE
B1

(λ)

We define Game3 identically to Game2, but after the adversary returns [u]1 and a proof, Game3 addition-
ally checks whether for Ū(X), h2(X), Ūα(X), h2,α(X) the algebraic representations of [Ū]1, [Ūα]1, [h2]1, [h2,α]1,
it is true that

Ūα(X) =
∑
i,j

αiŪniX
j and h2,α(X) =

∑
i,j

αih2,niX
j

and it aborts if one of the conditions does not hold.
The redution B3 against qSFrac [18] takes as input the challenge [y1]1, . . . , [yq]1 and runs the adversary

A against Game2 over an srs in which [x]1 = [y1]1. Whenever A returns an output which wins the Game2
game, if (f(X), V, z) for

(f(X), φ(X), z) ∈ {(Ū(X), Ūα(X), α), (h2(X), h2,α(X), α)}

is such that φ(X) 6= φ′(X) =
∑
i,j α

ifniX
j , then set π be the proof for (f(X), φ(X), z). Then B3 returns

φ(X)− φ′(X), (Xn − z), π −
[
f(x)− φ′(x)

xn − z

]
1

We have that deg(φ(X)− φ′(X)) < deg(Xn − z) because φ(X) has degree bounded by n− 1. Hence this
is as a valid solution and

AdvGame2
A (λ) ≤ AdvGame3

A (λ) + AdvqSFracB3
(λ)

19

Lets see that the advantage of A in Game3 is negligible.
Consider h1(X), h2(X,Y) the algebraic representations of [h1]1, [h2]1. We can use the equations

verified by Game1 and replace the corresponding values in p(X), obtaining

p(X) = (v1ρ1(β) + v2)2 − h1(X)zVn
(β)− (v3 + id(α)ρn(β))− zVm

(α)h2,α(X)

=
(
u(α)ρ1(β) + Ūα(β)

)2 − h1(X)zVn(β)− (Ūα(βσ) + id(α)ρn(β))− zVm(α)h2,α(X)

=
(
u(α)ρ1(β) + Ū(α, β)

)2 − h1(X)zVn
(β)− (Ū(α, βσ) + id(α)ρn(β))− zVm

(α)h2(α,X)

From the fact that p(β) = 0 we get that

0 =
(
u(α)ρ1(β) + Ū(α, β)

)2 − (Ū(α, βσ) + id(α)ρn(β))− zVm
(α)h2(α, β)− h1(β)zVn

(β)

Since [u]1, [Ū]1, [h1]1, [h2]1 have been sent by the prover before it sees challenges β, we have that except
in the case where (Y = β) is a root of the polynomial below, which happens with negligible probability,
for all Y ,

0 =
(
u(α)ρ1(Y) + Ū(α, Y)

)2 − (Ū(α, Y σ) + id(α)ρn(Y))− zVm(α)h2(α, Y)− h1(Y)zVn(Y) (12)

Thus we have that

i = 0⇒ 0 = u2(α)− Ū(α, σ1)− zVm
(α)h2(α, σ1)

1 ≤ i ≤ n− 1⇒ 0 = Ū2(α, σi)− Ū(α, σi+1)− zVm
(α)h2(α, σi)

i = n⇒ 0 = Ū2(α, σn−1)− id(α)− zVm(α)h2(α, σ1)

Since [u]1, [Ū]1, [h2]1 have been sent by the prover before it sees challenges α, we have that except in the
case where (X = α) is a root of the polynomial below, which happens with negligible probability, for all
X,

i = 0⇒ 0 = u2(X)− Ū(X,σ1)− zVm
(X)h2(X,σ1)

1 ≤ i ≤ n− 1⇒ 0 = Ū2(X,σi)− Ū(X,σi+1)− zVm
(X)h2(X,σi)

i = n⇒ 0 = Ū2(X,σn−1)− id(X)− zVm(X)h2(X,σ1)

Over ν ∈ Vm we thus have that

i = 0⇒ 0 = u2(ν)− Ū(ν, σ1)

1 ≤ i ≤ n− 1⇒ 0 = Ū2(ν, σi)− Ū(ν, σi+1)

i = n⇒ 0 = Ū2(ν, σn−1)− 1

Together these gives us the desired requirement that uN (ν) = 1 for all ν ∈ Vm except with negligible
probability.

Theorem 5. The protocol in Fig. 3 and 4 implies position-hiding linkability between the vector commitment
schemes of C and cm, provided that the zk proof for Runity is instantiated with a the protocol in Fig. 4 and
provided that log(N) > 6.

The proof is in Appendix F

8 Optimizations

In this section we describe some optimizations we apply to the protocols in Fig. 3 and 4 in order to
achieve the efficiency claimed in Table 1.

Opening t polynomials in one point. As noted in [16],[13], whenever we have t openings of different
polynomials at the same point i.e. for t = 2 this would be of the form

π1 ← KZG.Open(srsKZG, f1(X),deg = d, α)

π2 ← KZG.Open(srsKZG, f2(X),deg = d, α)

then we can send a single opening proof π as opposed to t opening proofs π1, . . . , πt.

20

Batching Pairings. We also apply standard techniques to batch pairings that share the same elements
in one of the two groups. Namely, we can aggregate the equations

e([a]1, [b1]2) = e([c1]1, [d]2) and e([a]1, [b2]2) = e([c2]1, [d]2),

as e([a]1, [b1 + γb2]2) = e([c1 + γc2]1, [d]2)

for γ some random field element sampled by the verifier.
Note that we can adapt KZG openings equations so they can be batched further, namely if we parse

the verification pairing as e
(
[F1]1 − s1 + [Q1]1α, [1]2

)
= e

(
[Q1]1, [x]2

)
, then two openings of different

polynomials at different points can be verified by two pairings.

Fig. 1 and 2: In Fig. 1 proofs have the form ([z]2, [T]1, [S]2, πped, πunity). See that πped consists of 1 G1

and 2F. In Fig. 2 proofs have the form ([F]1, [H]1, v1, v2, π1, π2) which amounts to 4G1 and 2F. Thus we
have a total of 6G1, 2G2 and 4F.

For the verifier, their first pairing check in Fig. 1 uses pairings of the form e(∗, [1]2), e(∗, [z]2), and
e([h]1, ∗) amounting to 3 pairings. The Pedersen verifier uses no pairings. In Fig. 2 we have a KZG
verifier which uses pairings of the form e(∗, [1]2), e(∗, [x]2), and a pairing check that uses pairings of the
form e(∗, [1]2), e(∗, [z]2), and e(∗, [x]2). Thus we can batch the pairing checks to get a total of 4 unique
pairings over the two constructions.

Fig. 3 and 4: In Fig. 3 proofs have the form ([CI]1, [zI]1, [u]1, [H1]2, [H2]1, v1, v2, π1, π2, π3, πunity).
Here the π1, π3 are both openings at the same α and can be batched into one proof. Thus there are
7G1, 1G2 and 2F in addition to the πunity. In 2 proofs have that form

(
[Ū]1, [h2]1, [h1]1, [Ūα]1, [h2,α]1,

v′1, v
′
2, v
′
3, π
′
1, π
′
2, π
′
3, π
′
4, π
′
5

)
. Here we can send the same verifier challenge α in both Fig. 3 and Fig. 4

(assuming we run the protocols in parallel) which allows us to avoid sending v′1, π
′
1 in Fig. 4. Further, this

allows us to batch the proofs (π′2, π
′
3) with the proof for (π1, π3) because these all use the same α. Thus

πunity contributes 7G1, and 2F Thus we have a total of 14G1, 1G2 and 4F.
For the verifier, their pairing check in Fig. 3 uses pairings of the form e(∗, [1]2) and e([zI]1). We also

have 3 KZG verifiers which use pairings of the form e(∗, [1]2), e(∗, [x]2). This amounts to 2 batched
pairings. In Fig. 2 we have a 5 KZG verifiers. Two use a degree check and thus use pairings of the
form e(∗, [1]2), e(∗, [x]2), and e(∗, [xd−n+1]2). The others have the usual pairings as these do not have
degree checks. Thus we can batch the pairing checks to get a total of 4 unique pairings over the two
constructions.

9 Implementation

We have implemented our scheme in Rust using the arkworks library [2], and have released the implemen-
tation in open source2. The code contains a subroutine that computes all KZG openings, which we need
for fast proof preprocessing and which can be used in other projects.

In Fig. 5 and Fig. 6 we compare Caulk with its alternatives in the same scenarios. The single opening
(m = 1) scenario works with a vector of size N and considers the following schemes:

• MT-Pos: SNARKed Merkle Poseidon tree with N elements. We used a legosnark implementation3.

• Caulk: the m = 1 version;

• MT-SHA: SNARKed Merkle SHA-2 tree with N elements.

• RSA acc: RSA-2048 accumulator of N elements. We used a legosnark implementation.

The prover time is given in Fig. 5. We see that Caulk is almost 100 times as fast as the Poseidon tree,
and 10 times as fast as the RSA accumulator.

The m-opening scenario works with a lookup of size m in a vector of size N and considers the following
schemes:

2https://github.com/caulk-crypto/caulk
3https://github.com/matteocam/libsnark-lego/

21

• MT-Pos-20: SNARKed Merkle Poseidon tree with N = 220 elements.

• MT-Pos-8: SNARKed Merkle Poseidon tree with N = 28 elements.

• Caulk-8: Caulk with N = 28.

• Caulk-20: Caulk with N = 220.

• RSA acc: RSA-2048 accumulator of N = 216 elements (the timings are the same for other N).

We see that Caulk is faster than the RSA accumulator for smaller N but approaches it for big N . Both
are significantly faster than Merkle-SNARK.

6 8 10 12 14 16 18 20 22
10−2

10−1

100

101

102

log(N)

p
ro

v
in

g
ti

m
e

(s
)

Caulk

MT-Pos

MT-SHA

RSA Acc

Figure 5: Comparison for single openings

10 16 20 32 50

10−1

100

101

102

Lookup size (m)

p
ro

v
in

g
ti

m
e

(s
)

MTPos-20

MTPos-8

RSA

Caulk-8

Caulk-20

Figure 6: Comparison for lookup tables

22

References

[1] M. R. Albrecht, L. Grassi, C. Rechberger, A. Roy, and T. Tiessen. MiMC: Efficient Encryption and
Cryptographic Hashing with Minimal Multiplicative Complexity. In ASIACRYPT 2016, volume
10031 of LNCS, pages 191–219, 2016.

[2] arkworks contributors. arkworks zksnark ecosystem, 2022.

[3] S. Bayer and J. Groth. Zero-knowledge argument for polynomial evaluation with application to
blacklists. In T. Johansson and P. Q. Nguyen, editors, Advances in Cryptology - EUROCRYPT 2013,
32nd Annual International Conference on the Theory and Applications of Cryptographic Techniques,
Athens, Greece, May 26-30, 2013. Proceedings, volume 7881 of Lecture Notes in Computer Science,
pages 646–663. Springer, 2013.

[4] M. Bellare and P. Rogaway. The security of triple encryption and a framework for code-based
game-playing proofs. In EUROCRYPT, volume 4004 of Lecture Notes in Computer Science, pages
409–426. Springer, 2006.

[5] E. Ben-Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer, and M. Virza. Zerocash:
Decentralized anonymous payments from bitcoin. In 2014 IEEE Symposium on Security and Privacy,
SP 2014, Berkeley, CA, USA, May 18-21, 2014, pages 459–474. IEEE Computer Society, 2014.

[6] D. Benarroch, M. Campanelli, D. Fiore, K. Gurkan, and D. Kolonelos. Zero-knowledge proofs
for set membership: Efficient, succinct, modular. In N. Borisov and C. Dı́az, editors, Financial
Cryptography and Data Security - 25th International Conference, FC 2021, Virtual Event, March
1-5, 2021, Revised Selected Papers, Part I, volume 12674 of Lecture Notes in Computer Science,
pages 393–414. Springer, 2021.

[7] D. Boneh and X. Boyen. Short signatures without random oracles. In EUROCRYPT, volume 3027
of Lecture Notes in Computer Science, pages 56–73. Springer, 2004.

[8] J. Bootle, A. Cerulli, P. Chaidos, E. Ghadafi, J. Groth, and C. Petit. Short accountable ring
signatures based on DDH. In G. Pernul, P. Y. A. Ryan, and E. R. Weippl, editors, Computer Security
- ESORICS 2015 - 20th European Symposium on Research in Computer Security, Vienna, Austria,
September 21-25, 2015, Proceedings, Part I, volume 9326 of Lecture Notes in Computer Science,
pages 243–265. Springer, 2015.

[9] J. Bootle and J. Groth. Efficient batch zero-knowledge arguments for low degree polynomials. In
M. Abdalla and R. Dahab, editors, Public-Key Cryptography - PKC 2018 - 21st IACR International
Conference on Practice and Theory of Public-Key Cryptography, Rio de Janeiro, Brazil, March 25-29,
2018, Proceedings, Part II, volume 10770 of Lecture Notes in Computer Science, pages 561–588.
Springer, 2018.

[10] J. Camenisch, R. Chaabouni, and A. Shelat. Efficient protocols for set membership and range proofs.
In J. Pieprzyk, editor, Advances in Cryptology - ASIACRYPT 2008, 14th International Conference on
the Theory and Application of Cryptology and Information Security, Melbourne, Australia, December
7-11, 2008. Proceedings, volume 5350 of Lecture Notes in Computer Science, pages 234–252. Springer,
2008.

[11] J. Camenisch and A. Lysyanskaya. Dynamic accumulators and application to efficient revocation
of anonymous credentials. In M. Yung, editor, Advances in Cryptology - CRYPTO 2002, 22nd
Annual International Cryptology Conference, Santa Barbara, California, USA, August 18-22, 2002,
Proceedings, volume 2442 of Lecture Notes in Computer Science, pages 61–76. Springer, 2002.

[12] M. Campanelli, D. Fiore, S. Han, J. Kim, D. Kolonelos, and H. Oh. Succinct zero-knowledge batch
proofs for set accumulators. IACR Cryptol. ePrint Arch., page 1672, 2021.

[13] A. Chiesa, Y. Hu, M. Maller, P. Mishra, P. Vesely, and N. Ward. Marlin: Preprocessing zksnarks
with universal and updatable srs. In A. Canteaut and Y. Ishai, editors, Advances in Cryptology
- EUROCRYPT 2020 - 39th Annual International Conference on the Theory and Applications of

23

Cryptographic Techniques, Virtual Conference, May 1-15, 2020, Proceedings, Part I, volume 12105 of
Lecture Notes in Computer Science, pages 738–768. Springer, 2020.

[14] D. Feist and D. Khovratovich. Fast amortized kate proofs.

[15] G. Fuchsbauer, E. Kiltz, and J. Loss. The algebraic group model and its applications. In H. Shacham
and A. Boldyreva, editors, CRYPTO 2018, Santa Barbara, CA, USA, August 19-23, 2018, Proceedings,
Part II, volume 10992 of LNCS, pages 33–62. Springer, 2018.

[16] A. Gabizon and Z. J. Williamson. Plonk: Permutations over lagrange-bases for oecumenical
noninteractive arguments of knowledge. IACR Cryptol. ePrint Arch., page 953, 2019.

[17] A. Gabizon and Z. J. Williamson. plookup: A simplified polynomial protocol for lookup tables.
IACR Cryptol. ePrint Arch., page 315, 2020.

[18] E. Ghadafi and J. Groth. Towards a classification of non-interactive computational assumptions in
cyclic groups. IACR Cryptol. ePrint Arch., page 343, 2017.

[19] L. Grassi, D. Khovratovich, A. Roy, C. Rechberger, and M. Schofnegger. Poseidon: A new hash
function for zero-knowledge proof systems. Usenix Security 2021, 2021.

[20] J. Groth. On the size of pairing-based non-interactive arguments. In EUROCRYPT (2), volume
9666 of Lecture Notes in Computer Science, pages 305–326. Springer, 2016.

[21] J. Groth and M. Kohlweiss. One-out-of-many proofs: Or how to leak a secret and spend a coin. In
E. Oswald and M. Fischlin, editors, Advances in Cryptology - EUROCRYPT 2015 - 34th Annual
International Conference on the Theory and Applications of Cryptographic Techniques, Sofia, Bulgaria,
April 26-30, 2015, Proceedings, Part II, volume 9057 of Lecture Notes in Computer Science, pages
253–280. Springer, 2015.

[22] A. Kate, G. M. Zaverucha, and I. Goldberg. Constant-size commitments to polynomials and their
applications. In ASIACRYPT, volume 6477 of Lecture Notes in Computer Science, pages 177–194.
Springer, 2010.

[23] M. Kohlweiss, M. Maller, J. Siim, and M. Volkhov. Snarky ceremonies. In ASIACRYPT (3), volume
13092 of Lecture Notes in Computer Science, pages 98–127. Springer, 2021.

[24] U. M. Maurer. Unifying zero-knowledge proofs of knowledge. In AFRICACRYPT, volume 5580 of
Lecture Notes in Computer Science, pages 272–286. Springer, 2009.

[25] I. Miers, C. Garman, M. Green, and A. D. Rubin. Zerocoin: Anonymous distributed e-cash from
bitcoin. In 2013 IEEE Symposium on Security and Privacy, SP 2013, Berkeley, CA, USA, May
19-22, 2013, pages 397–411. IEEE Computer Society, 2013.

[26] C. Papamanthou, E. Shi, and R. Tamassia. Signatures of correct computation. In TCC, volume
7785 of Lecture Notes in Computer Science, pages 222–242. Springer, 2013.

[27] L. Pearson, J. Fitzgerald, H. Masip, M. Bellés-Muñoz, and J. L. Muñoz-Tapia. Plonkup: Reconciling
plonk with plookup. IACR Cryptol. ePrint Arch., page 86, 2022.

[28] A. Tomescu, I. Abraham, V. Buterin, J. Drake, D. Feist, and D. Khovratovich. Aggregatable
subvector commitments for stateless cryptocurrencies. In C. Galdi and V. Kolesnikov, editors,
Security and Cryptography for Networks - 12th International Conference, SCN 2020, Amalfi, Italy,
September 14-16, 2020, Proceedings, volume 12238 of Lecture Notes in Computer Science, pages
45–64. Springer, 2020.

[29] Tornado cash privacy solution version 1.4, 2021. https://tornado.cash/Tornado.cash_

whitepaper_v1.4.pdf.

[30] ZCash protocol specification, 2022, 1st February. https://github.com/zcash/zips/blob/master/
protocol/protocol.pdf.

[31] Zksync rollup protocol, 2021. https://github.com/matter-labs/zksync/blob/master/docs/

protocol.md.

24

A Definitions

A.1 Non-Interactive Zero-Knowledge Argument of Knowledge

Let R be a family of universal relations. Given a relation R ∈ R and an instance x we call w a witness
for x if (x, w) ∈ R, L(R) = {x| ∃w : (x, w) ∈ R} is the language of all the x that have a witness w in the
relation R, while L(R) is the language of all the pairs (x,R) such that x ∈ L(R). We will assume R it is
implicit as prover and verifier input.

Definition A.1. A Non-Interactive Zero-Knowledge Argument of Knowledge is a tuple of PPT algorithms
(Setup,Prove,Verify,Simulate) such that:

• (srs, x)← Setup(R): On input a family of relations R, Setup outputs a structured reference string
srs and a trapdoor x;

• π ← Prove(srs, (x, w)): On input a pair (x, w) ∈ R, it outputs a proof π of the fact that x ∈ L(R);

• 1/0← Verify(srs, x, π): On input the srs, the instance x and the proof, it produces a bit expressing
acceptance (1), or rejection (0);

• πsim ← Simulate(srs, x, x): The simulator has the srs, the trapdoor x and the instance x as inputs
and it generates a simulated proof πsim,

and that satisfies completeness, knowledge soundness and zero-knowledge as defined below.

Completeness: holds if an honest prover will always convince an honest verifier. Formally, ∀ R ∈
R, (x, w) ∈ R,

Pr

[
Verify(srs, x, π) = 1 (srs, x)← Setup(R)

π ← Prove(srs, (x, w))

]
= 1.

Knowledge-Soundness: captures the fact that a cheating prover cannot, except with negligible
probability, create a proof π accepted by the verification algorithm unless it has a witness w such that
(x, w) ∈ R. Formally, for all PPT adversaries A, there exists a PPT extractor E such that the following
probability is negligible in λ

Pr

 (srs, x)← Setup(R)
(x, w) /∈ R ∧ Verify(srs, x, π) = 1 (x, π)← A(srs)

w ← E(srs, x, π)

Zero-Knowledge: (Setup,Prove,Verify,Simulate) is zero-knowledge if for all R ∈ R, instances x and
PPT adversaries A,

Pr

 (srs, x)← Setup(R)
A(srs, π) = 1 x← A(srs)

π ← Prove(srs, (x, w))

 ≈ Pr

 (srs, x)← Setup(R)
A(srs, πsim) = 1 x← A(srs)

πsim ← Simulate(srs, x, x)

 .
Definition A.2 (Vector Commitment Scheme). A Vector Commitment Scheme is a tuple of algorithms(
Setup, Commit, Open, Verify

)
such that:

• (x, srs)← Setup
(
par, d

)
: On input the system parameters and a bound d on the size of the vectors,

it outputs a structured reference string and trapdoor x.

• C← Commit
(
srs, ~v, r

)
: On input the srs, a vector ~v, and randomness r it outputs a commitment C.

• (vi, π)← Open
(
srs, ~v, r, i

)
: On input the srs, the vector, its size , the commitment randomness, and

a position i ∈ [m] it outputs vi ∈ F and proof π that vi is the ith element of vector ~v.

• 1/0← Verify
(
srs,C, i, vi, π

)
: On input the srs, the commitment, position, claimed value vi, and the

proof, it outputs a bit indicating acceptance or rejection.

A vector commitment scheme should satisfy the following properties:

25

Correctness: It captures the fact that an honest prover will always convince an honest verifier. Namely,
for all vectors ~v ∈ FN and i ∈ [N]

Pr

[
srs← Setup

(
par, N

)
Verify

(
srs,C, i, vi, π

)
= 1 C← Commit

(
srs, ~v, r

)
(vi, π)← Open

(
srs, ~v, r, i

)
]

= 1

(Weak) Position Binding: Captures the fact that no PPT adversary A should be able to present for
one commitment two valid openings for the same position. Formally:

Pr

[
Verify

(
srs,C, i, y, π

)
= 1, srs← Setup

(
par, N

)
Verify

(
srs,C, i, y′, π′

)
= 1 (~v, r, i, y, y′, π, π′)← A

(
srs)

and y 6= y′ C← Commit
(
srs, ~v, r

)
]
≈ 0

(Strong) Position Binding: Captures the fact that no PPT adversary A should be able to present for
one commitment two valid openings for the same position. Formally:

Pr

[
Verify

(
srs,C, i, y, π

)
= 1, srs← Setup

(
par, N

)
Verify

(
srs,C, i, y′, π′

)
= 1 (C, i, y, y′, π, π′)← A

(
srs)

and y 6= y′

]
≈ 0

Knowledge Soundness: Captures the fact that whenever the prover provides a valid opening, it knows
a valid pair (p(X), p(α)) ∈ F[X] × F, where deg(p) ≤ deg. Formally, for all PPT adversaries A there
exists an efficient extractor E such that:

Pr

 srs← Setup
(
par, N

)
Verify

(
srs,C, i, y, π

)
= 1 C← A

(
srs

)
∧ vi 6= y ~v ← E

(
srs,C, N

)
(i, y, π)← A

(
srs, ~v,N, i

)
 ≈ 0

Definition A.3 (Polynomial Commitment Scheme). A Polynomial Commitment Scheme is a tuple of
algorithms

(
Setup, Commit, Open, Verify

)
such that:

• (x, srs) ← Setup
(
par, d

)
: On input the system parameters and a degree bound d, it outputs a

structured reference string and trapdoor x.

• C← Commit
(
srs, p(X), r

)
: On input the srs and a polynomial p(X), and randomness r it outputs a

commitment C to p(X).

• (s, π) ← Open
(
srs, p(X), r, α

)
: On input the srs, the polynomial, commitment randomness r, a

query point α ∈ F, it outputs s ∈ F and an evaluation proof π that s = p(α).

• 1/0 ← Verify
(
srs,C,deg, α, s, π

)
: On input the srs, the commitment, degree bound, query and

evaluation points α, s, and the proof of correct evaluation, it outputs a bit indicating acceptance or
rejection.

A polynomial commitment scheme should satisfy the following properties:

Completeness: It captures the fact that an honest prover will always convince an honest verifier.
Formally, for any polynomial p(X) such that deg(p) ≤ d and query point α ∈ F the following probability
is 1:

Pr

srs← Setup

(
par, d

)
Verify

(
srs,C,deg, α, s, π

)
= 1 C← Commit

(
srs, p(X), r

)
s = p(α),deg(p) = deg

(s, π)← Open
(
srs, p(X), r, α

)

Soundness: Captures the fact that a cheating prover should not be able to convince the verifier of a
false opening. Formally, for all stateful PPT adversaries A:

Pr

(
p(α) 6= s ∨ deg(p) > deg

)
srs← Setup

(
par, d

)
∧ (p(X),C)← A(srs)

Verify
(
srs,C,deg, α, s, π

)
= 1 α← F

(s, π)← A(α)

 ≈ 0

26

Evaluation Binding: Captures the fact that no PPT adversary A should be able to present two valid
openings for different values but same evaluation point. Formally:

Pr

 Verify
(
srs,C,deg, α, s, π

)
= 1, srs← Setup

(
par, N

)
Verify

(
srs,C,deg, α, s′, π′

)
= 1 (C, α, s, s′, π, π′)← A

(
srs)

and s 6= s′

 ≈ 0

Extractability: Captures the fact that whenever the prover provides a valid opening, it knows a valid
pair (p(X), p(α)) ∈ F[X]× F, where deg(p) ≤ deg. Formally, for all PPT adversaries A there exists an
efficient extractor E such that:

Pr

srs← Setup

(
par,deg

)
Verify

(
srs,C,deg, α, s, π

)
= 1 C← A

(
srs
)

∧ p(X)← E
(
srs,C,deg

)(
p(α) 6= s ∨ deg(p) > deg

)
α← A

(
srs,C,deg

)
(s, π)← A

(
srs, p(X),deg, α

)

 ≈ 0

B Proof of Thm 1

Proof. We will proceed through a series of games to show that the protocol defined in Fig. 1 satisfies
the linkability property. Let A be an arbitrary algebraic PPT adversary in the linkability game and let
AdvlinkabilityA (λ) be their advantage. Let Game0 be defined as in Definition 5.1, which is where we want to

bound the adversary’s success probability. We define Game1,Game2 and denote AdvGi

A as the advantage
of the adversary A in game i. We also specify reductions Bunity,Bped,Bdlog,BqSDH such that

AdvlinkabilityA = AdvGame0
A ≤ AdvGame1

A (λ) + AdvBunity(λ)

≤ AdvGame2
A (λ) + AdvBped

(λ) + AdvBunity(λ)

≤ AdvBunity(λ) + AdvBped
(λ) + AdvBdlog

(λ) + AdvBqSDH
(λ)

In Game0 the adversary will return cm along with a proof ([z]2 = [z(x)]2, [T]1 = [T (x)]1, [S]2 =
[S(x)]2, πped, πunity). We define Game1 identically to Game0, but after the adversary returns cm along with
the proof, Game1 additionally checks whether there exists a, b such that z(X) = a(X − b) with aN = bN

and abort if this is not the case. Note that Game1 can extract z(X), the algebraic representation of [z]2,
because the adversary A is algebraic .

We observe that the adversary’s advantage in Game0 and Game1 is identical, unless it manages to
break the knowledge soundness of Runity. Given such an A, we can thus directly get a reduction Bunity
against the knowledge soundness of Runity and let the advantage of this adversary be AdvBunity . The
reduction Bunity simply runs A and returns πunity that is returned by A. It thus holds that

AdvlinkabilityA (λ) = AdvGame0
A (λ) ≤ AdvGame1

A (λ) + AdvBunity(λ).

Now define Game2, which is identical to Game1, but after the (algebraic) adversary A outputs cm
the game Game2 extracts v and r such that cm = [v + hr]1. If this extraction fails, meaning that cm
is not correctly formed, then Game2 aborts. We note that the A’s advantage in Game1 is identical to
its advantage in Game2, unless it manages to break the knowledge soundness of Rped. Given A, we can
construct a reduction Bped against the knowledge soundness of Rped analogously to the reduction above
and let the advantage of this adversary be AdvBped

. We observe that

AdvGame1
A (λ) ≤ AdvGame2

A (λ) + AdvBped
(λ).

Recall that any adversary who successful wins Game2 must output a proof that satisfies the following
equation from the verification procedure

C(x)− v − hr = T (x)z(x) + hS(x)⇔
C(x)− v = T (x)a(x− ωi) + h(r + S(x)),

27

while at the same time it must hold that

C(X)− v 6= (X − ωi)aT (X)

for any polynomial aT (X), since v is not in the committed vector ~c. Intuitively, the adversary cannot
satisfy this equation, since h is unknown to the prover and thus (r + S(X)) is chosen independently of h.
More formally, we consider two cases here. If

C(x)− v 6= T (x)a(x− ωi)

then we can construct a reduction Bdlog breaking the discrete logarithm problem. Else if

C(x)− v = T (x)a(x− ωi)

then we can construct a reduction BqSDH breaking the qSDH problem.
The reduction Bdlog takes as input a challenge [y]1. It runs the adversary A against Game2 over an srs

in which [h]1 = [y]1 and Bdlog’s choice of x (where x is the trapdoor information of the KZG commitment).
Whenever the adversary returns an output ([z]2 = [z(x)]2, [T]1 = [T (x)]1, [S]2 = [S(x)]2, πped, πunity) which
wins the Game2 game, then Bdlog returns

h =
C(x)− v − T (x)z(x)

r + S(x)
,

where T (X), r and S(X) are extracted from the outputs of A. The reduction’s success probability is
exactly the success probability of the adversary conditioned on (r + S(x)) 6= 0.

The reduction BqSDH takes as input the challenge [y1]1, . . . , [yq]1. It runs the following reduction BKZG
as a subroutine. The BKZG runs the adversary A against Game2 over an srs in which [x]1 = [y1]1 and
BKZG ’s choice of h. Whenever the adversary returns an output ([z]2 = [z(x)]2, [T]1 = [T (x)]1, [S]2 =
[S(x)]2, πped, πunity) which wins the Game2 game, then BKZG returns the KZG openings

(v, [a−1T]1) and (C(ωi), [
C(x)− C(ωi)

x− ωi
]1)

for v 6= C(x). Then BqSDH can extract a qSDH solution from these openings following the proof in
Theorem 1 of [22].

We can thus conclude that

AdvlinkabilityA (λ) ≤ AdvBunity(λ) + AdvBped
(λ) + AdvBdlog

(λ) + AdvBqSDH
(λ).

Lastly, we prove the position hiding property of our construction. We define a simulator Simulate
that has access to the trapdoor x of srs that is indistinguishable from an honest prover. First, Simulate
calls the simulators of Rped and Runity on input the trapdoor x, and gets simulated proofs π′ped and

π′unity. Then, it samples a, r, s ← F and sets [z′]2 = [a]2, [S′]2 = [s]2, [T ′]1 = (C · cm−1 − [hs]1)/a, and
outputs ([z′]2, [T

′]1, [S
′]2, π

′
ped, π

′
unity). Note that honestly generated [z]2, [S]2 are randomized by a and

s, respectively, and thus indistinguishable from [z′]2, [S
′]2. Finally, [T ′]1 is the only element satisfying

the verifying equation for given [z′]2, [S
′]2 and thus indistinguishable from honest [T]1 as well, which

concludes the proof.

C Proof of Lemma1

Proof. Because z(X) has degree 1, there exist a, b ∈ F such that z(X) = aX − b.
From the first condition, we have f(1) = a(1) = a− b, and f(σ) = a(σ) = aσ− b. From items 2 and 3,

f(σ2) =
f(1)− f(σ)

1− σ
=
a− aσ
1− σ

= a,

f(σ3) = σf(σ2)− f(σ) = σa− aσ + b = b

By substituting f(σ2) = a and f(σ3) = b into condition 4 we see that f(σ4) = a
b . Therefore, from

item 5 we have that for every i = 0, . . . , log(N) − 1, f(σ4+i+1) = f(σ4+i)2 =
(
a
b

)2i+1

. In particular,

f(σ4+(log(N)−1)+1) =
(
a
b

)2log(N)

=
(
a
b

)N
, that equals 1 by the 5th condition, proves that a

b is a Nth root
of unity as required.

28

D Proof of Thm. 2

Proof. We proceed through a series of games to show that the protocol defined in Fig. 2 satisfies knowledge
soundness. We set Game0 to be the soundness game as in Def. A.1 and consider an algebraic adversary A
against it which has advantage Advk-soundA . We define Game1, Game2 and specify reductions BqSDH and
BqDHE such that

Advk-soundA (λ) = AdvGame0
A (λ) ≤ AdvGame1

A (λ) + AdvBqSDH
(λ)

≤ AdvGame2
A (λ) + AdvBqDHE

(λ) + AdvBqSDH
(λ)

≤ AdvBqSDH
(λ) + AdvBqDHE

(λ) + negl(λ).

In Game0 the adversary will return [z]2 along with a proof ([F]1 = [f(x)]1, [H]2 = [h(x)], v1, v2, π1, π2).
We also consider p̂(X), the algebraic representation of [P]1 as constructed by the verifier. Note that π2 is
KZG opening proof for p(X) = p̂(X)− z(X)(ρ1(α) + ρ2(α)− zVn

(α)Xd−1) opening to 0 at α. We define
Game1 identically to knowledge soundness, but after the adversary returns [z]2 along with the proof,
Game2 additionally checks whether f(α1) = v1, f(α2) = v2, p(α) = 0 and aborts otherwise. Note that
Game1 can extract f(X), h(x) because the adversary A is algebraic, and p(X) is constructed from them.

We show the probability that f(α1) = v1, f(α2) = v2, p(α) = 0 is bounded by qSDH. We construct a
reduction BqSDH that takes as input a challenge [y]1, . . . , [yq]1. It runs the following reduction BKZG as a
subroutine. The BKZG runs the adversary A against Game0 over an srs in which [x]1 = [y]1. Whever the
adversary returns an output ([F]1 = [f(x)]1, [H]2 = [h(x)], v1, v2, π1, π2, π3) that wins the Game0 but not
the Game1 game, then BKZG returns the KZG openings(

(v1, [F]1) and (f(α1), [
f(x)− f(α1)

x− α1
])
)
,
(

(v2, [F]1) and (f(α2), [
f(x)− f(α2)

x− α2
])
)

or(
(0, [P]1) and (p(α), [

p(x)− p(α)

x− α
])
)

for either v1 6= f(α1), v2 6= f(α2) or p(α) 6= 0. Then BqSDH can extract a q-SDH solution from these
openings following the proof of Theorem 3 in [22]. Thus

Advk-soundA (λ) = AdvGame0
A (λ) ≤ AdvGame1

A (λ) + AdvBqSDH
(λ).

We define Game2 as Game1 except that Game2 additionally checks whether deg(z) ≤ 1 for z(X)
being the algebraic representation of [z]2, and aborts otherwise. We show that A’s advantage in both
games is the same unless it breaks qDHE. Indeed, assume deg(z) = 2, we construct an adversary BqDHE

against qDHE. The BqDHE takes as input the challenge [y1]1, . . . , [yq]1 and runs A against Game1 over
an srs in which [x]1 = [y]1. When A returns an output ([F]1 = [f(x)]1, [H]2 = [h(x)], v1, v2, π1, π2) that

wins the Game1 but not the Game2 game, then BqDHE extracts p̂(X) =
∑d+1
s=0 p̂sX

s as the algebraic
representation of [P]1 computed by the verifier. Note that, since

(
− ρ1(α)− ρ2(α)− zVn

(α)Xd−1)z(X)

does not vanish at X = α, we have that p̂d+1 6= 0. Then, B2 sets P̂ (X) = P (X)− p̂d+1X
d+1 and outputs(

[P]1 − [P̂ (x)]1
)

1
p̂d+1

= [xd+1]1, wining d-DHE. Thus

AdvGame1
A (λ) = AdvGame2

A (λ) + AdvBqDHE
(λ).

Finally, let us show that
AdvGame2

A (λ) ≤ negl(λ).

Consider f(X), h(X) the algebraic representations of [F]1, [H]1. The algebraic representation of the
element [P]1 that the verifier constructs is

p(X) = −zVn
(α)h(X) +

(
ρ1(α) + ρ2(α)

)
f(X) + ρ3(α)

(
(1− σ)f(X) + v1 − v2

)
+ ρ4(α)

(
f(X) + v2 − σv1

)
+ ρ5(α)

(
v1f(X)− v2

)
+ ρn(α)

(
v1 − 1

)
+

∏
i 6∈[5,...,4+log(N)]

(α− σi)
(
f(X)− v21

)

29

Since Game2 checks that v1 = f(σ−1α), v2 = f(σ−2α), we can replace these values and see that

p(X) = −zVn(α)h(X) +
(
ρ1(α) + ρ2(α)

)
f(X) + ρ3(α)

(
(1− σ)f(X) + f(σ−1α)− f(σ−2α)

)
+ ρ4(α)

(
f(X) + f(σ−2α)− σf(σ−1α)

)
+ ρ5(α)

(
f(σ−1α)f(X)− f(σ−2α)

)
+ ρn(α)

(
f(σ−1α)− 1

)
+

∏
i 6∈[5,...,4+log(N)]

(α− σi)
(
f(X)− f(σ−1α)2

)
Now, because p(α) = 0 and α has been chosen by the verifier after the prover has sent [H]1, [F]1, except
in the negligible case that α is a root of p(X), we have that p(X) ≡ 0, i.e,

zVn(X)h(X) = −
(
ρ1(X) + ρ2(X)

)
f(X) + ρ3(X)

(
(1− σ)f(X) + f(σ−1X)− f(σ−2X)

)
+ ρ4(X)

(
f(X) + f(σ−2X)− σf(σ−1X)

)
+ ρ5(X)

(
f(σ−1X)f(X)− f(σ−2X)

)
+ ρn(X)

(
f(σ−1X)− 1

)
+

∏
i 6∈[5,...,4+log(N)]

(X − σi)
(
f(X)− f(σ−1X)2

)
zVn(X) divides the right side of the equation and thus, the latter vanishes for all the powers {σi}n−1i=0 .

This implies that

• f(1) = a(1), f(σ) = a(σ)

• f(σ2) = v2−v1
1−σ = f(σ2σ−2)−f(σ2σ−1)

1−σ = f(1)−f(σ)
1−σ

• f(σ3) = rf(σ3σ−1)− f(σ3σ−2) = rf(σ2)− f(σ)

• f(σ4)f(σ4σ−1) = f(σ4σ−2), i.e, f(σ4)f(σ3) = f(σ2)

• 1 = f(σ5+log(N)σ−1) = f(σ4+log(N))

•
(
f(σ4+i+1)− f(σ4+i+1σ−1)f(σ4+i+1σ−1)

) ∏
j /∈[5,...,4+log(N)]

(σi − σj) = 0 for all i = 0, . . . , log(N)− 1.

Note that
∏

j /∈[5,...,4+log(N)]

(σi − σj) 6= 0 implies that 0 = f(σ4+i+1)− f(σ4+i+1σ−1)f(σ4+i+1σ−1) =

f(σ4+i+1)− f(σ4+i)2.

By Lemma 1 we have that z(X) = aX − b where a
b is an N -th root of unity.

For zero-knowledge, we define a simulator Simulate that has access to the trapdoor of srs and is
indistinguishable from an honest prover. The simulator first chooses s1, s2, v1, v2 uniformly at random
and sets [F]1 = [s1]1 and [H]1 = [s2]1. It computes α1 = σ−1α, α2 = σ−2α. It then computes
[w1]1 =

(
[F]1 − v1τ1(x)− v2τ2(x)

)
1

(x−α1)(x−α2)
, for τ1(x) = x−α2

α1−α2
, τ2(x) = x−α1

α2−α1
.

It sets [P]1 the same as the verifier i.e.

[P]1 = −[H]1zVn(α) + [F]1
(
ρ1(α) + ρ2(α)

)
+
(
[F]1(1− σ)− v2 + v1

)
ρ3(α) +

(
[F]1 + v2 − σv1

)
ρ4(α)

+
(
[F]1v1 − v2

)
ρ5(α) +

(
v1 − 1

)
ρn(α) +

(
[F]1 − v21

) ∏
i 6∈[5,...,4+log(N)]

(α− σi)

and then computes [w2]1 = [P]1
1

x−α . It returns ([F]1, [H]1, v1, v2, π1 = [w1]1, π2 = [w2]2).
We must argue that the simulators output is distributed identically to the honest provers. Then the

provers components are randomised by

F : r0ρ5+log(N)(x) H : r(x)

v1 : r(σ−1α)zVn(α) v2 : r(σ−2α)zVn(α)

and the elements [w]1, [w]2, [w]3 are the unique elements satisfying the verifies equations given [F]1, [H]1, v1, v2.
The probability that r1ρ6+log(N)(x), r(x), r(σ−1α)zVn(α), r(σ−2α)zVn(α) are dependent at random α is
negligible because r(X) is a random degree 2 polynomial and the probability that σ−1α = x or σ−2α = x
is 2
|F| . Where the simulators terms [F]1, [H]1, v1, v2 are chosen uniformly at random and [w1]1, [w2]1 are

the unique terms that satisfy the verifies equations, we have that these distributions are identical except
with negligible probability.

30

E Proof of Thm. 3

Proof. We will proceed through a series of games to show that the protocol defined in Fig. 3 satisfies
linkability as defined in Def. 5.1. Let A be an arbitrary PPT adversary in the linkability game with
advantage AdvlinkabilityA (λ). We define Game1, Game2 and specify reductions B1 and B2 such that

AdvlinkabilityA (λ) ≤ AdvqSDH
B1

(λ) + Advk-soundB2
(λ) + negl(λ)

Let us transition from the linkability game for the protocol of Fig. 3 to a game Game1. Game1
behaves as linkability except that when A returns v1, v2, Game1 checks whether u(α) = v1, p1(v1) = v2,
and p2(α) = 0, for u(X), p1(X), p2(X), the algebraic representations of [u]1, [P1]1 = [zI]1 + χ[CI]1, and
[P2]1 = v2 − χcm− zVm

(α)[H2]1. If not then Game1 aborts. We design B1 such that

AdvlinkabilityA (λ) ≤ AdvGame1
A (λ) + AdvqSDH

B1
(λ)

Indeed, assume that A succeeds against linkability but not Game1. Then this corresponds to the
case where A returns verifying v1, v2, π1, π2, π3 but the equality does not hold for some p(X) ∈
{u(X), p1(X), p2(X)}. Thus B1 takes as input a challenge [y1]1, . . . , [yq]1 and runs the following reduction
BKZG as a subroutine. The BKZG runs the adversary A against Game0 over an srs in which [x]1 = [y1]1.
Whenever the adversary wins the Game0 but not the Game1 game, then BKZG returns the KZG opening

(v, π) and (f(α), [(f(x)− f(α))/(x− α)]1)

for (v, f(X)) corresponding to either (v1, u(X)), (v2, p1(X)), (v3, p2(X)) and π the corresponding proof.
Then BqSDH can extract a solution from these openings following the proof in Theorem 1 in [22].

Now let us transition to a new game. Game2 behaves identically except that when A returns [u]1,
then Game2 checks whether its algebraic representation u(X) is such that u(νj)N = 1 for all j. If not
then Game2 aborts. We design B2 such that

AdvGame1
A (λ) ≤ AdvGame2

A (λ) + Advk-soundB2
(λ)

Assume that A succeeds against Game1 but not Game2. Then B2 chooses [u]1 = [u(x)]1 in its own game
and uses it as input to run A. When A returns πunity, B2 forwards it and wins knowledge-soundness of
Πunity whenever A succeeds.

Next we transition to a game Game3 that behaves as Game2 except that when A returns its proof,
Game3 checks whether C(X) − CI(X) = zI(X)H1(X), for C(X), CI(X), zI(X), H1(X) the algebraic
representations of [C]1, [CI]1, [H1]2, [zI]1. If not then Game3 aborts. We design B3 such that

AdvGame2
A (λ) ≤ AdvGame3

A (λ) + AdvqSDH
B3

(λ)

The B3 takes as input a challenge [y1]1, . . . , [yq]1 and runs the adversary A against Game2 over an srs
in which [x]1 = [y1]1. Whenever the adversary wins the Game2 but not the Game3 game, then B3 learns

d(X) = C(X)− CI(X)− zI(X)H1(X)

such that d(x) = 0 and d(X) 6= 0. Thus B3 returns (1, [1/(x− 1)]1) as a valid q-SDH solution.
Finally we show that the probability that Game3 returns 1 but that for some j ∈ [m], and for ~c such

that C(X) =
∑N
i=1 ciλi(X),

φ(νj) 6∈ ~c
is negligible.

Recall that p2(α) = v2 −χcm− zVm
(α)H2(α) = zI(v1) + χCI(v1)−χcm− zVm

(α)H2(α) = zI(u(α)) +
χCI(u(α)) − χcm − zVm(α)H2(α) = 0. First, because α has been sent by the verifier after the prover
commits to φ(X), zI(X), u(X), H2(X) and CI(X), we have that

zI(u(X)) + χCI(u(X))− χφ(X)− zVm
(X)H2(X) = 0

for all X except with negligible probability. Further, because χ has been sent by the verifier after the
prover commits, we have that there exists H2,1(X) and H2,2(X) such that

0 = zI(u(X))− zVm(X)H2,1(X)

0 = CI(u(X))− φ(X)− zVm(X)H2,2(X)

31

except with negligible probability.
Thus,

zI(u(νj)) = zI(ω
ij) = 0 for all j = 1, . . . ,m.

and zI(X) =
∏m
j=1(X − ωij)ẑ(X) =

∏
i∈I(X − ωi)ẑ(X), for some polynomial ẑ(X). From the second

equation we also we have that

CI(u(νj)) = φ(νj) ∀ j ∈ [m], i.e., CI(ω
ij) = φ(νj).

Using
C(u(X))− CI(u(X)) = zI(u(X))H1(u(X))

we hence gets that
0 = C(u(νj))− CI(u(νj)) = C(ωk)− φ(νj)

which concludes the proof.

F Proof of Thm. 5

Proof. We first define a simulator Simulate and then argue that their transcript is indistinguishable from
an honest provers transcript. The Simulate subverts the setup algorithm such that it knows the secret x
contained in [x]1, [x

2]1, [x
3]1, It takes as input some instance (C, cm) and aims to generate a verifying

transcript.
It samples s1, s2, s3, s4, s5, s6, s7, s8 ← F at random and outputs [CI]1 = [s1]1, [zI]1 = [s2]1,

[u]1 = [s3]1, [H1]2 = [(C − s1)/s2]2 and a simulated proof πunity that we describe in the next paragraph.
After receiving χ it outputs [H2]1 = [s4]1. After receiving α it outputs v1 = s5, v2 = s6. and

π1 = [(u− v1)/(x− α)]1

π2 = [(zI + χCI)/(x− v1)]1

π3 = [(v2 − χcm− zVm
(α)H2)/(x− α)]

To simulate πunity the simulate Simulate outputs [Ū]1 = [s7]1, [h2]1 = [s8]1. After receiving α it outputs
[h1]1 = [s9]1. After receiving β it outputs [Ūα]1 = [s10]1, [h2,α] = [s11]1 and v1 = s12, v2 = s13, v3 = s14
and

π1 = [(u− v1)/(x− α)]1

π2 = [(Ū + Ūα)/(x− α)]1

π3 = [(h2 − h2,α)/(x− α)]1

π4 = [xmax deg−n(Ūα + `(x))/(x− 1)(x− β)(x− βσ)]1

π5 = [xmax deg−n((v1ρ1(β) + v2)2 − h1zVn(β)− (v3 + id(α)ρn(β))− zVm(α)h2,α)/(x− β)]1

where `(x) is the polynomial that interpolates to (0, v2, v3) at (1, ββσ).
We now argue Simulate’s output is indistinguishable from an honest prover’s output.
We consider each of the elements in Fig. 3 separately and argue they are identically distributed with

overwhelming probability.

• [CI]1 is blinded by r2 for the prover and s1 for the simulator.

• [zI]1 is blinded by r1 for the prover and s2 for the simulator.

• [u]1 is blinded by r5 for the prover and s3 for the simulator.

• [H1]2 is the unique element satisfied by the pairing check for both the prover and simulator given
[CI]1 and [zI]1.

• [H2]1 is blinded by r3 for the prover and s4 for the simulator. Note that r3
χu(x)zI(u(x))

zVm(x)
is non-zero

with overwhelming probability.

32

• v1 is blinded by r6 for the prover and s5 for the simulator. Note that r6αzVm
(α) is non-zero with

overwhelming probability.

• v2 is blinded by r4 for the prover and s6 for the simulator. Note that r4u
2αzI(u(α)) is non-zero

with overwhelming probability.

• π1, π2, π3 are the unique element satisfied by the KZG opening checks for both the prover and the
simulator.

Finally we consider each of the elements in Fig. 4 separately and argue they are identically distributed
with overwhelming probability.

• [Ū]1 is blinded by t1 for the prover and s7 for the simulator.

• [h2]1 is blinded by t2 for the prover and s8 for the simulator. Note that there exists a ρ2(x)t2 term
in the provers [h2]1 which is linearly independent from all other terms and thus not cancelled with
overwhelming probability.

• [h1]1 is blinded by t3 for the prover and s9 for the simulator. Note that there is a t23z
2
Vm

(α)
ρ24(x)−ρ4(x)
zVn (x)

term in the provers [h1]1 which is linearly independent from all other terms.

• [Ūα]1 is blinded by t4 for the prover and s10 for the simulator. Note that there is a t4zVm(α)ρ5(x)
term in the provers [Ūα]1 which is linearly independent from all other terms.

• [h2,α]1 is blinded by t5 for the prover and s11 for the simulator. Note that there is a ρ2(x)t2 term
in the provers [h2,α]1 which is linearly independent from all other terms.

• v1 is blinded by r7 for the prover and s12 for the simulator.

• v2 is blinded by t5 for the prover and s13 for the simulator. Note that there is a t5zVm(α)ρ6(β)
term in the provers v2 which is linearly independent from all other terms.

• v3 is blinded by t6 for the prover and s14 for the simulator. Note that there is a t6zVm
(α)ρ7(β)

term in the provers v3 which is linearly independent from all other terms.

• π1, π2, π3, π4, π5 are the unique elements satisfied by the KZG opening checks for both the prover
and the simulator.

33

