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Abstract

We design and implement a new efficient and accurate Fully homo-
morphic argmin/min or argmax/max comparison operator, which finds
its application in numerous real-world use cases as a classifier. In partic-
ular we propose two versions of our algorithms using different tools from
TFHE’s functional bootstrapping toolkit. Our algorithm scales to any
number of input data points with linear time complexity and logarith-
mic noise-propagation. Our algorithm is the fastest on the market for
non-parallel comparisons with a high degree of accuracy and precision.
For MNIST and SVHN datasets, which work under the PATE framework,
using our algorithm, we achieve an accuracy of around 99.95% for both.

Keywords: Homomorphic Encryption, Argmin, TFHE Encryption Scheme,
Bootstrapping, PATE framework, Nearest-Neighbour.

1 Introduction

Comparing two or more values is a very simple task in the clear domain and
is a part of an incalculable amount of algorithms from “traditional” statistical
analysis tools to the most up-to-date machine learning algorithms. For this
reason, achieving an efficient and precise private comparison has been at the
forefront of privacy-preserving computation research for decades.

Indeed, that was precisely the matter addressed in Yao’s original millionaires’
problem [19] which discussed how two millionaires could determine who is richer
while keeping their actual wealth private. From that work spawned the rich and
ever-evolving research around Multi-Party Computation (MPC). MPC requires
at least a few rounds of interactions between parties that want to compute a
result privately. This is in contrast with Homomorphic Encryption (HE) which
requires no interaction.

HE has had its limitations since its theoretical inception in 1978 [16]. The idea
is for an untrusted party to be able to compute over encrypted data with no
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need for either the secret-key or interactions with the secret-key holder. HE
schemes up to the end of the 2000s were either limited in terms of multiplica-
tive depth or could only add and subtract ciphertexts [13]. Gentry’s 2009 article
and his Ph.D. thesis [9, 10] laid the groundwork for HE to increase its scope to
more complex applications such as the one that interest us here. Since then,
a host of different HE cryptosystems and applications have been developed by
the cryptographic community. Among them, one of the most important appli-
cations is the computation of the minimum or the maximum from a collection
of encrypted data. This application can be easily seen in numerous use cases :
identify the closest model to an external model from the database; identify the
model which receives the highest number of votes,.. etc.

1.1 Scope

We place ourselves in the simple context of an entity (“the client”) holding a
number of indexed values x1, . . . , xn. Using a homomorphic encryption scheme,
it encrypts these values ([x1] , . . . , [xn]) and sends them to “the server”, an un-
trusted entity. The server computes an argmin and min operation (alternatively
argmax/max), returning an encryption of both the minimum (alternatively max-
imum) value among the xi and its index. The server should do this without
interacting with the client at any point, save for receiving possible evaluation
keys.

While this scope may not seem very applicable in itself, solving this problem
opens the door to a number of real-world use-cases. Some of those are: the case
of a 1-Nearest Neighbour computation as in [21]; the case of an embedding-based
neural network evaluation as in [20]; the case of a distributed learning algorithm
as in the case of the PATE framework [14], to name a few. The particular case
of PATE framework consists of a “student” sending unlabelled data to several
“teachers”, all with their own machine learning model that can classify that
data. The teachers then vote for the label that should apply through the use
of a third party called the “aggregator”. This aggregator then sends the results
of the vote to the student who learned labels for an unlabelled dataset without
ever accessing the teacher’s models. This framework can be improved as in [17]
by adding both Differential Privacy and HE. The teachers can encrypt their
votes using the student’s HE public key and the aggregator can compute an
argmax over the encrypted teacher votes. The result is sent to the student for
decryption.

1.2 Prior work

Some of the work that has been done on the subject only addresses the original
millionaires’ problem by comparing two integer and returning the index of the
biggest one. [18] is such an article. It claims to have the best times for a 1 to
1 bit-wise comparison of two integer on the cloud. Since they don’t allow the
for selection of the maximum value, their method can’t trivially be expanded to
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any number of values to compare. This reduces the range of applications and
does not fit the scope that we defined for ourselves.

Modern work that fits in our scope can be best represented by two recent arti-
cles. [21] uses the TFHE cryptosystem and its potent bootstrapping operation.
They build a fully homomorphic k-Nearest Neighbor operator (a generalization
of the argmin problem with the addition of a distance computation) that has a
quadratic complexity and therefore scales poorly in terms of time performance.
This is because they use a “league” method where every input is compared to
every other one first and then results are compiled. [12] was published simulta-
neously and combines a “tournament” method (where every input is compared
to another input and the winner goes on to the next round) with the league
method to solve the same problem. A third method to which we compare our
results is the use of the original TFHE MUX bootstrapping gates from [6]. They
can be used very easily to build any bit-wise computation, and the min/argmin
problem is not an exception.

Among the distinctions one can make between these three methods, several
are worth highlighting: the option for a batched computation, which reduces
performance overhead significantly in some use-cases; whether the computation
is fully homomorphic (the parameters do not depend on the number of inputs)
or levelled is important when considering the scalability of a method; whether
only the min, the argmin, or both can be obtained. Table 1 presents these
characteristics for every method cited and our own proposed alternative.

our work [21] [12] [6]
L/F L F L F

batching ✗ ✗ ✓ ✗

min/argmin m/a a m/a m

Table 1: A table comparing previous work to our own. The different lines show
whether the algorithms are using levelled (L) or full HE (F), whether they can
accommodate for batching and whether the algorithm outputs just the argmin
(a) and/or the min (m).

1.3 Our Contributions

Table 2 compares our performance results for an min and argmin computation
over N 8-bit integers. We compare ourselves both to the best existing work [12]
and to the TFHE bitwise implementation. In the table, it is clear that our
algorithm is much faster than TFHE’s simple bitwise approach. At first glance,
our algorithm is also much faster than that of [12]. This is not true for all cases.
Indeed, by using BGV’s batching, they can compute a min over a number of
different integer arrays simultaneously. For this computation in particular they
have 5220 ciphertext slots whether they use them or not. One therefore com-
putes 5220 one-to-one comparisons as quickly as a single one-to-one comparison.
While [12] and TFHE’s bitwise approach allow for an exact comparison, our
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work only provides an exact comparison over 4 bit integers (though still with 8
bits of precision for the final min value). This difference between accuracy and
precision is explained in fine detail in Section 3.4 and the impact that our lower
precision incurs is expanded upon in Section 4, showing that it can be used very
effectively in real-world and state-of-the-art settings. Whether our algorithm is
better therefore depends on the number of simultaneous comparisons one needs
to make and the accuracy needed.

N our work (s) [12] (s) [12] (amortized in ms) [6] (s)

2 0.17 12.3 2.37 1.5
4 0.52 50.6 9.68 4.3
8 1.2 151 29.1 10.2
16 2.6 387 74.1 21.8
32 5.3 884 169 45.1
64 10.8 2112 405 91.7

Table 2: A table comparing previous work to our own on an exact min and/or
argmin computation over N 8-bit integers. The amortized time by [12] is ob-
tained because they run the comparison in parallel over arrays of size 5220 (see
their Table 4). The bit-wise time is extrapolated assuming a 26ms MUX gate
time from [6].

We argue that, although [12] proposes an algorithm that can be very efficient
in some cases, it lacks malleability. A comparison between 64 integers takes
35 minutes whether we do 5220 of them or a single one. Our algorithm is less
efficient for very large numbers of simultaneous computations but much more
efficient for a single min/argmin computation whatever the number of values
N . Furthermore, our method allows for a much bigger pool of inputs, while [12]
restrict themselves to a maximum of 64 values to compare.

1.4 Paper outline

The organization of the article is as follows : Section 2 lays the underlying
notations, definitions and details of the TFHE encryption scheme. We describe
the various types of ciphertexts which are used along with the details of the
various procedures like bootstrapping and key-switching. This is followed by
the description of our algorithms in Section 3. We also provide a thorough noise
analysis of algorithms and give a detailed analysis of the algorithm from its
accuracy and precision point of view. Section 4 details the performance of our
algorithms which includes its application to the PATE use-case.

4



2 Technical Background

2.1 Notations

In the upcoming sections, we denote vectors by bold letters and so, each vector
x of n elements is described as: x = (x1, . . . , xn). ⟨x,y⟩ is the dot product
between two vectors x and y. We denote matrices by capital letters, and the set
of matrices with m rows and n columns with entries sampled in K byMm,n(K).

x
$←− K denotes sampling x uniformly from K, while x

N (µ,σ2)←−−−−− K refers to
sampling x from K following a Gaussian (normal) distribution of mean µ and
variance σ2. The Gaussian distribution is the probability distribution with
density:

fµ,σ2(x) =
1

σ
√
2π

e−
1
2 (

x−µ
σ )

2

We will refer to the real torus by T = R/Z. T is the additive group of real
numbers modulo 1 (R mod [1]) and it is a Z-module. That is, multiplica-
tion by scalars from Z is well-defined over T. TN [X] denotes the Z-module
R[X]/(XN + 1) mod [1] of torus polynomials, where N is a power of 2. R is
the ring Z[X]/(XN +1) and its sub-ring of polynomials with binary coefficients
is BN [X] = B[X]/(XN + 1) (B = {0, 1}).

Given a function f : T → T, we define LUTN (f) to be Look-Up Table defined
by the set of N pairs

(
i, f

(
i
N

))
. We may write LUT(f) when the value N is

implied.

Negacyclic functions are anti-periodic functions with period p: verifying f(x) =
−f(x + p). For example sine is anti-periodic with period π and periodic with
period 2π.

2.2 TFHE encryption scheme

The TFHE encryption scheme was proposed in 2016 [3]. It improves the FHEW
cryptosystem [8] and introduces the TLWE problem as an adaptation of the
LWE problem to T. It was updated later in [4] and both works were then
unified in [6]. The TFHE scheme is implemented as the TFHE library [5]. We
refer to the original articles for details on the TFHE cryptosystem. Here, we
only give a high-level overview, one that is as high as possible for comprehension
by the reader, but in-depth enough so that our results and their nuances can be
understood. TFHE relies on three structures to encrypt plaintexts defined over
T, TN [X] or R:

• TLWE Sample: (a, b) is a valid TLWE encryption of m ∈ M ⊂ T if

a
$←− Tn and b ∈ T verifies b = ⟨a, s⟩+m+ e, where s

$←− Bn is the secret

key, and e
N (0,σ2)←−−−−− T is the noise introduced in the ciphertext.
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• TRLWE Sample: a pair (a, b) ∈ TN [X]k × TN [X] is a valid TRLWE

encryption of m ∈ M ⊂ TN [X] if a
$←− TN [X]k, and b = ⟨a, s⟩ +m + e,

where s
$←− BN [X]k is a TRLWE secret key and e

N (0,σ2)←−−−−− TN [X] is a noise
polynomial. In practice, in this paper we only use a TRLWE encryption
where k = 1

• TRGSW Sample: is a vector of ℓ TRLWE samples encrypting 0. To
encrypt a messagem ∈ R, we addm.H to a TRGSW sample of 0, whereH
is a gadget matrix1. The TRGSW encryption uses a base decomposition
with we write Bg, with an exponent ℓ.

In the following, we refer to an encryption of m with the secret key s as a
T(R)LWE ciphertext noted c ∈ T(R)LWEs(m). To decrypt a sample c ∈
T(R)LWEs(m), we compute its phase ϕ(c) = b − ⟨a, s⟩ = m + e. Then, we
round to it to the nearest element ofM. Therefore, if the error e was chosen to
be small enough (and yet high enough to ensure security), the decryption will
be accurate.

The ciphertext of a scalar value µ, encrypted using the noise parameter α and
the key s⃗ is written [µ]s⃗,σ. Both s⃗ and α can be omitted from the notation when
their addition is not integral to the understanding of the reader and when their
removal helps with clarity.

2.3 Encoding and Representation

Since we use TFHE as our homomorphic encryption scheme, every message from
plaintext input or output space needs to be encoded in T. Therefore, in order to
build any homomorphic function f , we need to create a torus-to-torus function
fT and appropriate encoding and decoding functions ι and ω.

I f=ω◦fT◦ι−−−−−−→ O
ι ↓ ↑ ω
T −→

fT

T

Usually, these encoding and decoding functions are just re-scaling, though one
must sometimes keep track of the number of operations done to ensure the
output re-scaling gives the correct result.

2.4 The original bootstrapping operation

The original bootstrapping algorithm from [3] had already all the tools to im-
plement a LUT of any negacyclic function. In particular, TFHE is well-suited
for 1

2 -antiperiodic function, as the plaintext space for TFHE is T, where [0, 1
2 [

corresponds to positive values and [ 12 , 1[ to negative ones.

1Refer to Definition 3.6 and Lemma 3.7 in TFHE paper [6] for more information about the
gadget matrix H.
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Figure 1: The representation we use for the torus and its values.

The idea behind the operation is the following. Given a 1
2 -antiperiodic function

fT, we want to implement

LUT (fT) =

(
i

2N
, fT

(
i

2N

))
i∈[[−N,N−1]]

Take an input ciphertext [µ]. Take an initial polynomial containing all of the
LUT outputs from positive values: the test vector

testv =

N−1∑
i=0

fT

(
i

2N

)
Xi ∈ TN [X]

This polynomial is then privately multiplied by a re-scaling of Xµ through
the BlindRotate operation. As its name suggests, this operation operates a
blind rotation of the polynomial, landing us on the coefficient of the initial test
vector whose index is closest to µ. We then extract the first (or another one)
coefficient of the resulting rotated polynomial (the accumulator: ACC). This
operation is written SampleExtracti for the extraction of coefficient i and we
write SampleExtract when the coefficient extracted is 0. At this point in the
original algorithm, this TLWE ciphertext is key-switched back to its original
key. Here, we omit this step to gain time and reduce the output noise that the
key-switching operation incurs.

Algorithm 1 shows the bootstrapping algorithm with the test vector given as
input and with an extraction at coefficient 0 of the output TRLWE ciphertext
ACC.

If the test vector is set to be testv =
∑N−1

i=0
1
bX

i, given a base b ∈ R, then
the bootstrapping operation returns a LUT based on the sign function, with an
output of 1

b for positive input values and − 1
b for negative input values. Figure 2
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Algorithm 1 The bootstrapping algorithm.

Input: a TLWE sample [µ] = (a, b) ∈ TLWEs(µ) with µ ∈ T, a bootstrap-
ping key BKs→s′ = (BKi ∈ TRGSWS′(si))i∈[[1,n]] where S′ is the TRLWE
interpretation of a secret key s′, a polynomial testv.

Output: a TLWE sample c′ = (a′, b′) ∈ TLWEs′(f(ϕ(ā,b̄)2N ))
1: Let b̄ = ⌊2Nb⌉ and āi = ⌊2Nai⌉ ∈ Z,∀i ∈ [[1, n]]
2: ACC← BlindRotate(testv, (ā1, . . . , ān, b̄), (BK1, . . . ,BKn))
3: c′ = SampleExtract(ACC)

Figure 2: The representation we use for the sign bootstrapping operation. Every
value in the upper (resp. lower) part of the torus is given a sign of 1

b (resp. − 1
b ).

shows the representation that we use for this sign bootstrapping operation. This
can work because the sign function is negacyclic. This operation is well known
and was first used in [2] for use in a private neural network evaluation.

2.5 Partial domain functional bootstrapping

The term functional bootstrapping (or programmable bootstrapping) is used to
define versions of the bootstrapping algorithm that can implement LUTs based
on functions that are not negacyclic. [7] presents most current forms that func-
tional bootstrapping can take and present their own. Among those, we present
here the partial domain functional bootstrapping.

Essentially, given a function f : I → O, instead of encoding it as fT : T→ T, we
choose ι and ω such that we encode it as fT+ : [0, 1

2 [→ T. We therefore encode
the plaintext space in a space half as big as it was before. However this allows
us to call Algorithm 1 with a test vector

testv =

N−1∑
i=0

fT+

(
i

2N

)
Xi ∈ TN [X]
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Since the input µ can only be positive the output will be an encryption of the
closest LUT value to fT+ (µ).

2.6 Private functional bootstrapping

The bootstrapping algorithm can be adapted to compute an encrypted nega-

cyclic function. Given a function fT : T → T, we create [Pf ]
(r)

, a TRLWE
ciphertext whose ith coefficient is a TLWE ciphertext encrypting fT

(
i

2N

)
. Such

a ciphertext can either be encrypted by the secret key owner or be created
by anyone with the appropriate key-switching key using the TFHE public func-
tional key-switching operation (see Algorithm 2 of [6]) from N TLWE ciphertexts

fT

(
i

2N

)
. We call Algorithm 1 and replace the test vector with [Pf ]

(r)
.

This works because the original first step of the blind rotation is a multiplica-
tion of the clear test vector with a TRGSW sample BK1. We can replace this

operation with an external multiplication between a TRLWE sample ([Pf ]
(r)

)
and a TRGSW sample BK1. For more detail on this operation and how it works,
see Definition 3.12 of [6].

The method presented in Section 2.5 can be applied in the case of a private
functional bootstrapping operation since it only requires a different encoding
of f into fT+ . This allows us to compute this private bootstrapping over half
the torus and evaluate an LUT based on any private function (negacyclic or
not).

2.7 Public functional key-switching

Algorithm 2 of [6] presents their public functional key-switching operation which
is a generalization of their original key-switching algorithm (Algorithm 2 from
[3]). This operation takes p TLWE ciphertexts as inputs and builds a single
TRLWE ciphertext as an output with a different key and applying a public Lip-
schitz morphism f : Tp → TN [X] of Z-modules. Essentially, given p ciphertexts

[x1]s , . . . , [xp]s, the operation outputs [f(x1, . . . , xp)]
(r)
s′ with s a TLWE key and

s′ a TRLWE key not built from s. The key-switching key is a TRLWE encryption
of a decomposition of s in base base and exponent t of the key s′.

Although the algorithm can be run with a host of different functions f , we
present here the only version that we use in the paper for simplicity sake. The
function is defined by:

fp : (x1, . . . , xp) 7→
p−1∑
i=0

XiN
p ·

N
p −1∑
j=0

xiX
j

Essentially, this function takes the p inputs and fills a size N polynomial with
N
p of each of them in order.

9



Optimization. The method described in [6] is not efficiently optimized when
the number of inputs is lower than N . Because in this paper we only have
a maximum of 4 inputs we can create a specific, pre-computed, key-switching
key that drastically increases the efficiency of the key switching. This method
is the same as the one presented by [11] in their Algorithm 7, and which they
call “Base-aware TLWE-to-TRLWE Public Functional Key Switching”. In their
case, they use it for digit decomposition (hence the name) but it works exactly
the same for any number of inputs that are not digits. The key-switching
process is much faster this way but at the cost of a key-switching key which is
as many times bigger as there are inputs (for us 4 times bigger). We refer to
their algorithm for more information.

2.8 Noise propagation through homomorphic computa-
tions

As mentioned before, any TFHE encryption (whatever the encryption type)
introduces an error in the ciphertext. This is done to maintain the security
of the scheme but renders any computation inherently probabilistic. Given an
input ciphertext with an error following a Gaussian distribution with standard
deviation σ and a variance ϑ = σ2 2. In this section, we present the formulas
for the variance of the noise in the output ciphertext for all the operations that
interest us in the paper.

As previous articles do, we introduce β = Bg/2 and ϵ = 1
2Bℓ

g
for the expression

of the noise formula.

Operation Noise

Bootpublic 2Nnℓβ2 × ϑBK + n(N + 1)ϵ2

Bootprivate ϑv + 2Nnℓβ2 × ϑBK + n(N + 1)ϵ2

KeySwitchf4 ϑc + ntNϑKS +
1
12nbase

−2(t+1)

Table 3: Operations in TFHE and their noise overhead Here ϑBK (resp. ϑKS) is
the variance of the noise introduced at encryption time for the bootstrapping
key (resp. the key-switching key). v is the encrypted test vector in the case
of the Bootprivate operation. ϑc is the variance of the input TLWE ciphertexts
for the KeySwitchf4 operation: we assume they all have the same and that
assertion holds in our application.

Most noise formulas presented in Table 3 are taken from [6]. Bootpublic repre-
sents any public bootstrapping operation (which all have the same variance

2In some cases the error is described by the width parameter, usually written α which is
defined as

√
2πσ
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overhead). See their Algorithm 9 for reference. Bootprivate means calling
BlindRotate with an encrypted test vector and therefore adding the variance of
the test vector at the output: see their Algorithm 4. The formula for the output
noise of both the TLWE-TLWE key-switch and the TLWE-TRLWE public func-
tional key-switch is detailed in Section 3.3 of [11] where they make the bound
tighter than in [6]. See their work for more precision.

2.9 FHE distance

There are situations where one needs to build a privacy-preserving 1 Nearest
Neighbour (1-NN) operator. Our min/argmin algorithms are a good solution
for this provided we can compute a distance homomorphically. This can be
done either between two encrypted vectors or an encrypted vector and a clear
domain vector. Examples of this use can be found in previous articles, see for
instance [20, 21].

3 Our FHE min/argmin algorithms

In this section, we present the algorithms that we have developed to obtain
a fast and accurate min/argmin operation. Sections 3.3 and 3.2 present two
variants on what we call a tournament method, one quicker than the other at
the expense of some accuracy. In Section 3.4, we provide an in-depth analysis
of the accuracy and precision of our algorithms.

3.1 Tournament Method

As the name suggest, this method computes the overall minimum among a col-
lection of arguments by constructing a tree. It computes the minimum between
two arguments at every level with the minimum values populating the next
level of nodes in the tree. If one wishes to only compute the minimum overall
value, one could omit populating the next level of the tree with the indices of
the minimum values from the previous level. The algorithms that we present in
this section allow for both a min computation and an argmin computation at
no additional performance cost. These algorithms can be adapted to compute
a max/argmax operation trivially.

In the following, given two encrypted values [xi] and [xj ] and their encrypted in-
dices [i], [j], we build fast and accurate homomorphic computations of [min(xi, xj)]
and [argmin(xi, xj)]. From those, the next level of the tree can be iterated. We
assume that xi, xj ∈ T and do not bother here with considerations about en-
coding.

In this paper, we present two novel ways to do this. The first one with a
sign computation to create a selector value before a MUX (multiplexor) gate
is applied. A second one where the difference of the two values [xi] and [xj ] is
directly used as a selector value for the MUX gate.
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3.2 Tournament with sign selection

Difference. The first step is to obtain the difference of the two inputs with
an homomorphic subtraction: [xi]− [xj ] = [xi − xj ]. This is a trivial operation
that “only” doubles the noise in the output ciphertext with respect to the initial
noise. However, for this to make any sense, we need to have xi, xj ∈ [− 1

4 ,
1
4 ].

Therefore xi − xj ∈ T.

Sign. We mention in Section 2.4 that it is easy to obtain a sign function
output from the original bootstrapping operation. Indeed, the sign function is
negacyclic and this has been known for some time in the community. If the test
vector in Algorithm 1 is set to testv =

∑N−1
i=0

1
16X

i we obtain a bootstrapping
operation we call Bootsign. Its output is:

[si,j ] = Bootsign

(
[xi − xj ]−

1

4N

)
=

{[
1
16

]
if xi > xj[

− 1
16

]
if xi < xj

with the notation si,j used to simplify later expressions.

Bootstrapping a 0 value. Here, we need to address the behavior of the
bootstrapping operation around 0. Because it is a LUT and not a continuous
function, if xi−xj = 0, then the output of Bootsign will be

[
1
16

]
100% of the time.

We want it to have a 50% chance to output either
[

1
16

]
or

[
− 1

16

]
for an input

value of [0]. For this, the input needs to be “rotated” by 1
4N : [xi]− [xj ]− 1

4N ;
where N is the size of the bootstrapping key as seen in Section 2. Indeed,
after the rotation applied here and the re-scaling by 2N in the bootstrapping
algorithm (Algorithm 1), an input value of xi−xj = 0 would therefore be equal
to ⌊− 1

2⌉. This is −1 or 0 with equal probability, and hence an output of − 1
16

or 1
16 with equal probability.

Min and argmin selection. Using the partial domain functional bootstrap-
ping method presented in Section 2.5, we could imagine a way to select the min
and argmin values of [xi] and [xj ]. We set the test vector from the original
bootstrapping algorithm (Algorithm 1) to:

testv =

N
4 −1∑
l=0

xiX
l +

N
2 −1∑
l=N

4

xjX
l +

3N
4 −1∑
l=N

2

i

b
X l +

N−1∑
l= 3N

4

j

b
X l (1)

given a base b with which to encode the indices i and j (making sure that i
b ,

j
b ∈

T). We apply Algorithm 1 without the last SampleExtract step. Therefore
we output a TRLWE encryption of a degree N − 1 polynomial. We call this
operation as Bootselect. For a random input of ω ∈ [0, 1

4 [ , the output of the
operation is
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Figure 3: The inner torus represents the sign bootstrapping operation as in
Figure 2 though with the output rotated by 1

8 . The outer torus represents the
private functional bootstrapping operation given the test vector in Equation 1.
Because our functional bootstrapping method is the partial domain one, the
lower part of the torus cannot be used as input. Dotted spaces in the torus
represent all possible values at a given time.

N
8 −1∑
l=0

xiX
l +

3N
8 −1∑
l=N

8

xjX
l +

5N
8 −1∑
l= 3N

8

i

b
X l +

7N
8 −1∑
l= 5N

8

j

b
X l −

N−1∑
l= 7N

8

xiX
l (2)

when ω ∈ [0, 1
8 [ and

N
8 −1∑
l=0

xjX
l +

3N
8 −1∑
l=N

8

i

b
X l +

5N
8 −1∑
l= 3N

8

j

b
X l −

7N
8 −1∑
l= 5N

8

xiX
l −

N−1∑
l= 7N

8

xjX
l (3)

when ω ∈ [ 18 ,
1
4 [.

Therefore:

SampleExtract0

(
Bootselect

(
[si,j ] +

1

8
− 1

4N

))
=

{
[xj ] if xi > xj

[xi] if xi < xj

and

SampleExtractN
2

(
Bootselect

(
[si,j ] +

1

8
− 1

4N

))
=

{[
j
b

]
if xi > xj[

i
b

]
if xi < xj

13



The addition of 1
8 after the sign computation is to rescale the possible output

values
{
− 1

16 ,
1
16

}
up to

{
1
16 ,

3
16

}
. The addition of −1

4N is for the same reason as
for the sign bootstrapping operation.

This solves our problem perfectly except for the fact that we need clear values
xi and xj in order to build the test vector in Equation 1, thus defeating the
purpose of FHE altogether. Thankfully, as presented in Section 2.6, we can
obtain the same result if we use an encrypted test vector instead, using the
private functional bootstrapping method.

Encrypted test vector creation. In order to create a TRLWE encryption
of the test vector in Equation 1, we use the public functional key-switching
method presented in Section 2.7. In keeping with the notation of that section,
we use the function f4 as the public function of our key-switching and call
the public functional key-switching operation with inputs [xi], [xj ],

[
i
b

]
and[

j
b

]
. By definition, we obtain the exact test vector in Equation 1 in encrypted

form.

3.3 Tournament without sign selection

The use of a sign bootstrapping operation is not necessary in some cases. Indeed,
the output of the Bootselect operation as presented in Equations 2 and 3 is the
same for all inputs respectively in [0, 1

8 ] and [ 18 ,
1
4 ] and not just for 1

16 and 3
16 .

Therefore, if one takes xi and xj to be in [− 1
16 ,

1
16 ] (and not [− 1

4 ,
1
4 ]), then we

have xi − xj ∈ [− 1
8 ,

1
8 ] and

xi − xj +
1

8
∈

{
[ 18 ,

1
4 ] if xi > xj

[0, 1
8 ] if xi < xj

Therefore, we can use
[
xi − xj +

1
8 −

1
4N

]
as a direct input to the Bootselect

operation. This has the benefit of removing a bootstrapping operation entirely.
Given the weight that the bootstrapping operations have in the running time
of the algorithm, this is very significant. More details are given in Section 4.
Removing the sign bootstrapping operation has two drawbacks :

• Because the Bootselect operation is a partial domain functional bootstrap-
ping operation, we have a margin for error that is halved compared with
a full domain bootstrapping operation such as Bootsign. Indeed, if the
homomorphic LUT has N slots here compared with 2N for the sign.

• On top of this, the encoding of the data to compare (xi and xj) makes
them four times smaller. However the noise that we need to introduce at
encryption time remains the same. Therefore the initial ciphertext noise
is four times bigger relative to the actual (not rescaled for encoding) data.

14



Figure 4: The functional bootstrapping operation representation given xi−xj+
1
8

as input and no sign bootstrapping. Dotted spaces in the torus represent all
possible values at a given time.

3.4 Noise Analysis

Section 2.8 presents the formulas for the variance overhead of every operation
that we use in our FHE algorithm. In this section we use theses formulas to
analyse the precision of our algorithms. When using this term - precision - for
a given bootstrapping operation, there are two distinct phenomenons that this
could actually point to:

• the error in the input ciphertext to a given bootstrapping operation does
not influence the output error as seen in Table 3. This is the whole point
of bootstrapping. However it may affect the actual output (and not its
error). Say for instance that we have an input to a Bootsign operation:
a ciphertext of a negative value [m+ e] with m < 0 but with an error e
such that m + e > 0. Then the output might be

[
1
16 + e′

]
with error e′

decorrelated from e. In the following, we talk about the accuracy of the
operation.

• as for the output error, it is controlled both by the parameters of the
bootstrapping key (ϑBK, N , Bg and ℓ) and (if it is a private boot operation)
the error in the encrypted test vector. That error needs to be analysed
so that it does not grow to an extent that the output cannot be used for
further computations. In the following, we talk about the precision of the
operation.

The precision of a given homomorphic application can be easily evaluated by
giving an upper bound on the the variance of the output ciphertext. This is
what we do in Section 3.4.1. The accuracy of an homomorphic application is a
harder notion to define formally. For this reason we introduce Definition 1. For
simplicity sake, we set the type of plaintext space to be any spaceM of odd size
M ∈ N such that M =

{
−M−1

2 , . . . , 0, . . . , M−1
2

}
⊂ N. Our accuracy results,

presented in Section 3.4.2, are only valid for this kind of plaintext space but one
can easily see how they can be adapted depending on the use-case.
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Definition 1 (Worst Case Accuracy). The worst case accuracy of a bootstrap-
ping operation is defined with respect to the input plaintext space M of size
M ∈ N and a probability p ∈ [0, 1]. Given a plaintext space size M , we say that
a bootstrapping operation is accurate in the worst case with probability p if, for
every plaintext member taken as input, the probability of a correct result is more
than p.

Essentially, by setting a probability considered as ”overwhelming”, Definition
1 allows us to determine a plaintext space size for which all computations are
accurate when all of them are at the most risk of mistake. In our case, that
means the eventual winning value µ of the argmin/min tournament is compared,
at every step, with µ+ 1.

3.4.1 Precision of the algorithm

First of all, we define layers of our tournament tree as going from 1 to L with
each layer corresponding to a comparison step in the tournament. Therefore 2L

comparisons require L layers.

In this section we evaluate the precision of the algorithm in the two different
variations of our protocol. An evaluation of the output noise of this operation
at the last layer of the tournament tree yields an upper bound on the noise
in our [xi] ciphertexts throughout all the other layers of the tree. We call ϑ(l)

the variance (actually an upper bound) of the noise of the [xi] ciphertext at
the lth layer of the tournament tree3, before the comparison step. Therefore
ϑ(1) is the variance of the ciphertexts before the algorithm is applied. σ(l) is its
corresponding standard deviation.

with sign In the case where we use a sign bootstrapping first, we need to
introduce a simple TLWE-TLWE key-switch after Bootsign, but the output
noise is not affected by it.

The output variance overhead at layer l + 1 with regard to that at layer l can
be written:

ϑ(l+1) ≤ ϑ(l) + ntNϑKS + n
1

12
base−2(t+1) + 2Nnℓβ2ϑBK + n(N + 1)ϵ2

Therefore, by recurrence, with regard to the first layer of the tree, we can
write:

ϑ(l) ≤ ϑ(1) + l ×
(
ntNϑKS + n

1

12
base−2(t+1) + 2Nnℓβ2ϑBK + n(N + 1)ϵ2

)
3not to be confused with ℓ, the TFHE parameter
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no sign. This variance overhead is also the one for the case where we omit
the sign bootstrapping operation and simply run the Bootselect operation on the
difference of the two values (Section 3.3). However, in that case, the values are
encoded over [− 1

16 ,
1
16 ] instead of [− 1

4 ,
1
4 ] for the version with Bootsign (Section

3.2). Therefore, even though the variance of the result is the same, the relative
error is 4 times as high when not using a sign bootstrapping operation.

3.4.2 Accuracy of the algorithm

In this section we measure the worst-case accuracy of both versions of our al-
gorithm in accordance with Definition 1. Specifically, we make explicit the link
between the parameters of the scheme (Bg, ℓ, . . . ), the target probability of
success p and the plaintext size M .

We first analyse the accuracy of a single Bootsign operation and the following
Bootselect operation in order to infer the overall worst-case accuracy of the
algorithm with sign. Then we do the same for a single Bootselect operation and
infer the overall accuracy of the algorithm without sign.

First, for a given probability of success p ∈ [0, 1] and a given standard deviation
σ, we define the maximum possible error emax(p, ϑ) > 0 as the smallest value
such that:

1√
2πϑ

∫ emax(p,ϑ)

−emax(p,ϑ)

fN (t|0, ϑ) dt ≥ p

where fN (x|µ, ϑ) is the density function for the general Normal distribution.

Accuracy of Boot operations. As [11] explain in detail in their Section 3.3.1,
the noise added by the rounding step of the bootstrapping algorithm corresponds

to the sum of n uniformly distributed variables each with variance 1
12 ·

(
1

2N

)2
.

This results in an Irwin-Hall distributed variable of variance N
12 ·

(
1

2N

)2
which, as

they do, we assimilate to a normally distributed variable. That noise is additive
with the noise initially present in the ciphertext. Therefore at level l of the
tournament tree, the input noise of the Bootsign operation (or Bootselect in the
case there is no sign computation) has a variance of:

ϑ
(l)
b = 2ϑ(l) +

1

48N

ϑ
(l)
b is the ”real” variance at the input of a bootstrapping operation at layer l.

ϑb is the variance at the output of a bootstrapping operation at any level (by
definition it is constant).

We define r such that input values (after re-scaling) are in the interval
[
− 1

r ,
1
r

]
.

When Bootsign is used, we have r = 4, and r = 16 otherwise as seen in Section
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3.1. Because of how our plaintext space was defined, at level l of our tournament
tree, the maximum plaintext space size Mmax for which the result of a boot-
strapping operation is accurate in the worst case with probability p according
to definition 1 is:

Mmax =

 2

r × emax

(
p, ϑ

(l)
b

)
 (4)

Accuracy of the overall algorithm. Here we talk about overall worst-case
accuracy as a straight-forward extension of Definition 1 to our algorithm as a
whole. The probability therefore is that of the final result being the actual
min/argmin.

Theorem 1 (Algorithm with sign Accuracy). Given two probability values psign
and pselect, for our algorithm with sign to be worst-case accurate over all with
a plaintext size of M , a number of comparisons < 2L, and probability at least
pLsign × pLselect it is sufficient that:

M ≤ 2

4× emax

(
psign, ϑ

(L)
b

) (5)

and

4 ≤ 2

16× emax

(
pselect, ϑb +

1
48N

) (6)

where ϑb is the upper bound on the variance at the output of the sign bootstrap-
ping operation as given in Table 3.

Proof. The first condition (Equation 5) is an expression of the condition that,
at the last layer of the tournament, the Bootsign operation must be worst-
case accurate with probability p. If that holds, because ∀l < L, σ(l) < σ(L),
that means all other previous Bootsign operations were worst-case accurate with
probability at least psign. This makes the probability that all of the Bootsign

operations in the tournament are worst-case accurate at least p2
L−1

sign . However,
we don’t need every comparison to be accurate, just the ones that involve the
eventual winner. That means only L Bootsign operations must be accurate.
Therefore, the probability goes up to pLsign

The second condition (Equation 6) is an expression of the condition that, at any
level of the tournament, the Bootselect operation be worst-case accurate with
probability pselect. This is true because the output of the Bootsign operation
effectively has a plaintext size of 4. Therefore we can apply our accuracy result
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in Equation 4 with r = 16 and M = 4. Then, as before, we need only L
operations to be correct. That leads to a probability of pLselect overall.

Theorem 2 (Algorithm without sign Accuracy). For our algorithm without
sign to be worst-case accurate over all with a plaintext size of M , a number of
comparisons < 2L, and probability at least pL it is sufficient that:

M ≤ 2

16× emax

(
p, ϑ

(L)
b

) (7)

Where ϑ(L) is the upper bound on the standard deviation in the ciphertexts before
the last comparison step as defined in Section 3.4.1.

Proof. The condition in Equation 7) is an expression of the condition that, at
the last layer of the tournament, the Bootselect operation must be worst-case
accurate with probability p, as per Equation 4 when r = 16.

On the error-resilience of such an algorithm All of the evaluations above
strive to provide a strict mathematical structure in which one can evaluate our
homomorphic algorithm on its ability to provide exactly the same results as a
clear-domain algorithm would. This would obviously be great to achieve in all
cases. Sadly HE is not at that point yet. A consolation can be found in the
fact that, in a lot of cases, a small computational error can be either invisible or
not too damaging too many real-case scenarios. Indeed, our algorithm is built
in such a way that errors will occur when two values are close to each-other.
Many applications require the computation of an argmin over values that are all
very high except for one because such was the goal of the pre-processing done
beforehand (see embedding-based neural networks [20] or collaborative learning
approaches [17]).

4 Performance and Experimental results

Our two levelled homomorphic algorithms are evaluated in this section, both for
their time performance and their precision. Parameter choices are explained,
and we strive to present the main options at the disposal of a user of these
algorithms. All times were obtained on an Intel Core i7-6600U CPU @ 2.60GHz,
with no multi-threading.

4.0.1 Parameter selection

For this algorithm, we use three main homomorphic operations, all with their
own parameter set. These parameters determine both the variance upper bound
for the output noise and the computation time for the operation. All of this
comes with the usual time/precision trade-off. There are a vast number of
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log2 (Bg) ℓ time (ms) ϑboot × 109

1 26 246 3.5
2 13 129 7.0
2 12 115 7.3
3 8 82 18
4 6 65 52
5 5 60 170
6 4 53 380

Table 4: The possible parameter choices for a bootstrapping that we recom-
mend. These are chosen carefully. Any combination of parameters that have a
strictly better alternative both in terms of time and variance are not included.
The other parameters are set to α = 2 · 10−8 and N = 1024 for a security level
of λ = 120.

log2 (base) t time (ms) ϑboot × 109

3 10 92 3.4
5 6 55 14
6 5 47 40
7 4 38 300

Table 5: The possible parameter choices for a public functional key-switching
operation that we recommend. These are chosen carefully. Any combination
of parameters that have a strictly better alternative both in terms of time and
variance are not included. The other parameters are set to α = 2 · 10−8 and
N = 1024 for a security level of λ = 120.

possible combinations for parameter choices and to help the reader with their
own choice depending on their constraints we present in Table 4 (resp. Table
5) the possible choices that we recommend for the bootstrapping parameters
Bg and ℓ (resp. the key-switching parameters base and t). Times are measured
experimentally and variance upper bounds are computed using the formulas
given in Table 3.

The initial ciphertexts are encrypted using a key size n = 1024 and a noise
parameter α = 2 · 10−8 (the standard deviation σ corresponds to σ = α√

2π
).

This, according to the latest work on LWE-based encryption schemes, ensures
a security level of λ = 120. We use for this the latest commit of the LWE
estimator4 [1, 15]. The same values (key size and noise parameter) are used
for all encryptions of the evaluation keys (bootstrapping keys and key-switching
keys). While some tweaking could be used to optimize the noise output and the
computation time, we did not look into it.

4https://bitbucket.org/malb/lwe-estimator/
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On TFHE’s implementation – The parameters that we present in tables
4 and 5 are all constrained by the implementation of TFHE. In the implemen-
tation that we use, torus values are written over 32 bits. This means we are
constrained by ℓ × log2 (Bg) < 32 and t × log2 (base) < 32 for both decom-
position algorithms to provide a correct result (otherwise the values overflow).
This limits the precision we can attain using the public functional key-switching
operation (though it does not limit the precision of the bootstrapping) which
could go down to a variance of 3 · 10−10. A 64-bit implementation does exist
in the original TFHE library that we use but is not as optimized as the 32-bit
version, thus our choice.

4.1 Theoretical analysis

Here we present precision, accuracy and time performance results for our al-
gorithms in an abstract setting (no real-world application) to give a general
overview of their performance.

As in Section 3.4, we differentiate between accuracy and precision. We compute
the maximum size (in bits) of a plaintext space for which our algorithm is
accurate in the worst case with probability p > 1− 2−32 (at most one error for
every 232 runs of the argmin computation) according to Theorems 1 and 2. We
call this value acc. Given the noise formulas presented in Section 3.4.1, we can
define prec to be the maximum plaintext size (in bits) for which ciphertexts
can be decrypted correctly throughout the computation (including the overall
result) with probability p > 1− 2−32.

Table 6 presents acc and prec values for two sets of parameters and for both
our algorithm with sign and without sign. The “slow” parameter corresponds
to Bg = 21, ℓ = 26, base = 23, t = 10. The “meh” parameter corresponds to
Bg = 24, ℓ = 6, base = 25, t = 6. The “fast” one corresponds to Bg = 26, ℓ =
4, base = 27, t = 4. We limit our table to those two sets for the sake of clarity
but those results can be obtained for any set of parameters using the formulas
provided in this paper.

4.2 Argmax computation in the PATE framework

The PATE framework, presented in [14] and summarized in Section 1.1, requires
the computation of an argmax over encrypted values. In order to test the
performance of our algorithm we ran it on the initial datasets used by [14].
They had teachers vote on labels for both the MNIST dataset and the SVHN
dataset5. There are 250 teachers and therefore the votes can go from 0 (if nobody
votes for a label) to 250 (if everybody agrees on a label). In both MNIST and
SVHN, there are 10 classes and therefore we need to find the argmax among 10
votes for each aggregation.

5we took the teacher’s votes from https://github.com/npapernot/

multiple-teachers-for-privacy
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speed L 2L
sign no sign

acc prec time acc prec time

slow..
1 2 4 9 0.58 2 7 0.39
7 128 4 8 79.16 2 6 42.63
10 1024 4 8 643.82 2 6 343.5

meh.
1 2 4 8 0.18 2 6 0.11
7 128 4 6 24.15 2 4 15.7
10 1024 4 6 192.4 2 4 113.5

fast!
1 2 4 6 0.13 2 4 0.12
7 128 4 5 17.02 2 2 10.3
10 1024 4 4 134.69 2 2 81.25

Table 6: A table comparing the two versions of our algorithm: with sign and
without. L indicates the depth of the tournament tree and therefore 2L is the
number of values compared with that tree. acc (in bits) is the plaintext space size
that ensures worst-case accuracy (Definition 1) with probability p > 1 − 2−32.
prec (in bits) is the plaintext space size at the output of the algorithm with
probability p > 1 − 2−32. The timings, which are presented in “seconds”, are
the experimental times required for computing the argmin using the respective
algorithms.

The parameters are as follows: N = 1024, α = 2 · 10−8, l = 6, log2(Bg) = 4,
t = 6 and log2(base) = 5. These provide a security level of λ = 120. Over the
MNIST votes, our approach has an accuracy of 99.96% with the correct argmax
being computed for 8996 data point out of 9000. Over the SVHN votes, our
argmax yields 99.92% accuracy over 26032 data points (20 mistakes). All the
mistakes happen when there are two votes that are closer than 4. In both cases,
the argmax among the 10 labels took 1.65s.

5 Conclusion

Our work introduces a novel method to compare a number of encrypted values
efficiently. Though it is less precise than previous methods based on bitwise
decomposition for instance, real-world applications show that it can provide
results almost as good as in the clear domain, with a significant decrease in
computation time when not comparing several sets of values in parallel. Such a
private comparison operator is the base for a wide variety of very useful machine
learning and statistical analysis tools. Building any of those tools in privacy-
preserving manner becomes much easier with the use of our work.
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