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Abstract. We introduce a new MPC protocol to securely compute any functionality over an arbitrary
black-box finite ring (which may not be commutative), tolerating t < n/3 active corruptions while
guaranteeing output delivery (G.O.D.). Our protocol is based on replicated secret-sharing, whose
share size is known to grow exponentially with the number of parties n. However, even though the
internal storage and computation in our protocol remains exponential, the communication complexity
of our protocol is constant, except for a light constant-round check that is performed at the end
before revealing the output.
Furthermore, the amortized communication complexity of our protocol is not only constant, but
very small: only 1 + t−1

n
< 1 1

3
ring elements per party, per multiplication gate over two rounds

of interaction. This improves over the state-of-the art protocol in the same setting by Furukawa
and Lindell (CCS 2019), which has a communication complexity of 2 2

3
field elements per party, per

multiplication gate and while achieving fairness only. As an alternative, we also describe a variant
of our protocol which has only one round of interaction per multiplication gate on average, and
amortized communication cost of ≤ 1 1

2
ring elements per party on average for any natural circuit.

Motivated by the fact that efficiency of distributed protocols are much more penalized by high
communication complexity than local computation/storage, we perform a detailed analysis together
with experiments in order to explore how large the number of parties can be, before the storage and
computation overhead becomes prohibitive. Our results show that our techniques are viable even for
a moderate number of parties (e.g., n > 10).

1 Introduction

Secure Multiparty computation (MPC) is a set of techniques that enables a group of mutually distrustful
parties to securely compute a given function on private data, while revealing only the output of the
function. MPC protocols provide a general-purpose tool for computing on sensitive data while eliminating
single points of failure.

Due to the strong guarantees that MPC protocols provide, together with the wide range of applications
that they enable, several real-world problems where computation on sensitive data is required have been
solved using MPC techniques. Practical applications have been found so far in key management, financial
oversight [1], MPC secured database [11], market design [12], biomedical computations [22,19] and even
satellite collision detection [41].

Since feasibility results for MPC were established in the 80s [49,36,9,18], the problem of constructing
efficient protocols for secure computation has gained significant interest. Applications we see today are
enabled thanks to a long line of works that have aimed at improving the efficiency of MPC protocols, as
well as extending the theory of the field.

It is well known that the efficiency, or even the feasibility of certain MPC protocols, depends heavily
on the type of security that is desired. This can be described in different and orthogonal categories:

Who can be corrupted? We assume that the adversary corrupts at most t out of the n participants.4
Ideally, no requirement besides t < n would be imposed. However, it turns out that, if we require the
stronger condition of t < n/2, or even t < n/3, more efficient protocols with better security guarantees
can be devised.

How do the corrupt parties behave? If the corrupt parties follow the protocol specification then the
corruption is said to be passive (or semi-honest). In contrast, under an active (or malicious) corruption,
the parties are not required to adhere to the protocol, and they may deviate arbitrarily.

4 The so-called generalized adversarial structures allow for a more fine-grained description of the subsets of parties,
but in this work we restrict to threshold adversarial structures, which are defined by a threshold t.



What is the adversary’s computational power? Perfect security, which ensures that even a com-
putationally unbounded adversary cannot learn anything about the honest parties’ inputs, is only
achievable if t < n/3. Statistical security allows a negligible probability of leakage, and is only achiev-
able if t < n/2. Finally, if t < n then the adversary has to be computationally bounded, as it must
not be able to break certain hard computational problems.

Is the adversary allowed to cause an abort? Finally, we can choose if the computation must be
guaranteed to terminate, which is called full security, or if the adversary can cause an abort, perhaps
learning the result of the computation before the honest parties do or causing a denial-of-service. The
former is only possible if t < n/2 given secure point-to-point channels and a broadcast primitive [48]
(where the latter can be realized from a public-key infrastructure using digital signatures [32], or
alternatively using only secure channels assuming t < n/3 [9,18]).

Different combinations of the categories are either impossible, or lead to protocols with different level
of efficiencies. For example, it is well known that working in the dishonest majority setting, where t < n,
adds a considerable overhead, and requires use of relatively expensive public-key cryptography primitives
such as oblivious transfer. Furthermore, full security, or even fairness, is generally not achievable in this
setting. In contrast, protocols for honest majority (t < n/2) or two-thirds honest majority (t < n/3) do
not need to make use of computationally expensive cryptography, and they can achieve the strongest
notion of full security; this, of course, at the expense of tolerating a weaker adversary corrupting less
parties.

A good set of experimental results for different combinations of the categories above can be found
in [28]. The main take-away lesson is that the efficiency of MPC protocols, plus the type of guarantees
they can provide, depends heavily on different factors. For a practical deployment of MPC, it is necessary
to look at the most realistic combination of the “parameters” above, in such a way that the resulting
protocol is reasonably efficient and still secure for the application at hand. For example, although it may
be reasonable to assume a passive adversary in a restricted set of settings, it is natural to desire security
against active adversaries, given that there is no way to audit that a given participant of an MPC protocol
is sending messages correctly, so this constitutes an easy way to cheat if there is enough motivation and
profit from doing so.

On the other hand, the bound t on the number of corrupted parties is a less clear parameter to set. As
mentioned before, the setting t < n is ideal since it guarantees security for every single individual as long
as it behaves honestly, but this might be too strong in some scenarios, especially when there is enough
diversity among the participants and there is no strong reason to expect a large adversarial coalition to be
formed. This, coupled with the inefficiency that protocols in this setting typically suffer from, leads us
to naturally consider more lenient adversarial thresholds such as t < n/2 or t < n/3 that enable much
more efficient protocols. Furthermore, many applications benefit from—or outright require—full security,
which is only achievable in these threshold regimes. For example applications related to Machine Learning,
where the computation is very large and thus very costly to run; or applications related to voting where
rerunning the computation is simply not possible. The observations above set the motivation for our work.

1.1 Our Contribution

In this work, we consider the setting of t < n/3 with active and full security. Although this adversarial
threshold is lower than the weak honest-majority and dishonest-majority settings, extremely efficient
protocols can be designed in this regime, having very simple design and a thin layer that adds full security.
In this direction, we present a simple new MPC protocol to compute any arithmetic circuit with the
following characteristics:

– Full security against an active adversary corrupting at most t < n/3;5
– Computation over any finite ring (even non-commutative ones);
– Communication complexity of n + t − 1 ring elements in total per multiplication gate, plus a term

which is independent of the number of multiplication gates. This is, the amortized communication cost
is ≤ 1 1

3 ring elements per multiplication gate per party.
– Statistical security, except for the use of a PRG to boost efficiency.

Our protocol works by computing the circuit using a passive protocol which guarantees only privacy,
and then verifying the correctness of the computation using a novel sub-protocol which incurs only constant
communication cost (independent of the size of the computed circuit) and constant number of rounds.
5 Our protocol can be easily generalized to arbitrary Q3 adversarial structures.
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The only drawback of our protocol is that, due to the use of replicated secret sharing as the underlying
secret sharing scheme, local storage and computation grows exponentially with the number of parties.
However, since this does not affect communication of the underlying passive protocol, it is only for larger
values of n that this weakness starts to kick in. In Section 7 we assess experimentally the feasibility of our
protocol for a reasonably large number of parties. We show that replicated secret sharing-based protocols
are not restricted in practice to only a very small number of parties (such as 3 or 4), as traditionally
believed. We remark that if one is willing to settle for security with abort only, then this restriction can be
removed, as we use the properties of replicated secret sharing only to identify cheaters. When considering
security-with-abort only our protocol can therefore work with Shamir’s secret sharing and achieve the
same efficiency as the state-of-the-art protocol in this setting of Furukawa and Lindell [34]. However,
unlike their work, we are able to augment our protocol to full security which is much stronger.

Our basic protocol requires 2 rounds of interaction per multiplication gate. As an alternative, we
present a variant of our protocol with only a single round per multiplication, at the expense of increasing
the communication cost slightly. In particular, for “natural” circuits, where the gate can be divided
into groups, where output wires from gates in one group only enters gates from the second group, the
communication cost is ≤ 1.5 sent ring elements per multiplication gate for each party. This variant is
described in Section C in the Appendix.

Moreover, for n = 4 and t = 1, which is the base case of this setting, our protocol incurs communication
of 1 ring element per party, distributed across two rounds. When using the variant with only one round of
interaction, the cost increases to just 9

8 elements (for natural circuits as defined above). This improves
upon the recent protocols that were designed only for this setting [37,29,44], which requires communication
of 1.5 ring elements and a single online round of interaction, or the more recent work of [45], which uses
1 1
4 elements per party, also in one online round. Furthermore, our protocol enjoys a very simple design

that generalizes to any number of parties beyond n = 4.
Finally, our protocol works over any ring (even non-commutative ones) in a black-box way. This is

in stark contrast with essentially all prior work (we elaborate on this point in Section 1.2), which rely
on rings that are commutative, or have “high invertibility”, like finite fields. As a result, our protocol
can operate natively over relevant non-commutative rings such as matrix rings, which are widely used in
settings like machine learning (e.g. neural networks, support vector machines, linear regression, etc.).6
In addition, commutative rings such as integers modulo 2k, which have received quite some attention
recently [25,2,3,20,30,47], are also encompassed by our protocol.

1.2 Related Work

The goal of achieving linear communication complexity (in the number of parties) and with prefect security
when t < n/3 was obtained in [6,39]. The protocol of [6] was used in a more practical setting in [5] by
settling for security with abort only. Later, this was improved by [34], leading to a computationally-secure
protocol with fairness in which each party sends, on average, 2 2

3 field elements. As explained above, we
improve over [34] by achieving full security.

Several works have focused on achieving full security in the setting of n = 4 and t = 1 [37,44,29]. The
state-of-the-art protocol by Koti et al. [45] requires sending 1.25 ring elements per multiplication per party
in one online round, which we improve for any natural circuit. It should be noted that [45] also provide a
protocol for 3-input multiplication gates with 3 ring element sent per party in one online round, which we
did not consider in this work.

In the setting of t < n/2 recent breakthrough results have shown how to achieve full security with low
communication. The protocol of [40] requires each party to send 5.5 field elements per multiplication with
information-theoretic security, while the protocol of [16] reduces communication to 1.5 ring elements by
allowing use of any PRG. For n = 3 and t = 1, communication can be further reduced to 1 ring elements
as shown in [15]. While the later protocols achieve similar amortized communication as ours with a more
powerful adversary, our protocol has several advantages over theirs. First, the additive overhead to achieve
active security in these protocols is logarithmic in the size of the circuit while ours is constant. The same
applies to the number of calls to an expensive broadcast channel which is logarithmic in the circuit’s size
in these protocols and constant in ours. Furthermore,for the case of the ring Z2k , their protocol requires
arithmetic over Galois ring extensions of very large degree (> 50), whose concrete efficiency is unclear (see

6 Furthermore, for the particular case of matrix rings, our secret-sharing scheme enables local conversions between
shared matrices and “entry-wise” sharings, which is essential for many applications like the ones described above,
as they typically manipulate individual entries along with the matrix arithmetic. This is not possible for example
with the work of [33].
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for example [29]). The above is due to the fact that they rely on distributed zero-knowledge proofs [13],
which we are able to avoid in our setting. Finally, achieving robustness in the setting of t < n/2 requires
using authentication tags which makes these protocols much more complicated and computationally
expensive compared to our protocol which avoids this completely. Without full security, for example with
security with abort, efficient protocols exist in the honest majority setting (e.g. [21] and [3]).

We also point out that replicated secret-sharing for an arbitrary number of parties has been already
used in works like [4]. However, in their protocol, communication per gate grows exponentially with the
number of parties, whereas in our protocol the communication cost per gate is constant.

Finally, the feasibility of computation over general rings was shown in [27]. The protocol from [6] was
generalized to the ring of integers modulo 2k in [2]. Furthermore, the 4-party protocols of [37,29,44] also
work over this ring. In contrast, the work of [34] focus on multiparty computation over finite fields. We are
thus not aware of a concretely-efficient work7 in this setting for more than n = 4 that applies to general
rings. More recently, [33] considers MPC for arbitrary circuits over black-box finite rings, which could be
potentially non-commutative. However, their results are mostly of theoretical interest since, due to the
lack of commutativity, the offline phase in their protocols results in a large overhead. Nevertheless, we
remark that their local computation, unlike ours, is polynomial in the number of parties.

1.3 Organization

We begin by presenting a detailed and self-contained overview of our construction in Section 2. Then, in
Section 3 we present basic preliminaries like notation and some elementary results in ring theory. In Section 4
we introduce replicated secret-sharing, the basic building block on top of which our protocol is built.
Section 5 presents the main protocols needed in our construction, which are related to multiplying shared
values and verifying their correctness. Then, in Section 6 we put together these protocols together with
the basic properties of replicated secret-sharing to obtain our final, full-fledged protocol for G.O.D. secure
computation with t < n/3. Finally, experimental results are discussed in Section 7.

2 Detailed Overview of Our Construction

In our construction, we use the well-known player elimination framework which was introduced by [42] to
achieve full security. In this framework, the parties divide the circuit into segments, each of which are
computed as a separate unit. Each segment is computed first using a protocol with weak security, which in
our case means that the protocol only guarantees privacy and not correctness. At the end of the segment
the parties verify the correctness of the computation, and if verification succeeds, then the parties proceed
to the next segment. If verification fails, parties finds someone who cheats, and remove them from the
protocol, after which the segment is repeated with fewer parties. In our case, the parties will locate a
pair of parties with the guarantee that one of them is corrupt. Such a pair is called “semi-corrupt” in
our protocol. The semi-corrupt pair is removed by converting the secret sharing of each value on the
input layer of the current segment from a t-out-of-n secret sharing into a t− 1-out-of-n− 2 secret sharing.
Observe that when an honest majority exists, such a conversion maintains the security threshold (i.e., if
n ≥ 3t+ 1, then n− 2 ≥ 3(t− 1) + 1). Note also that the number of repetitions is bounded by the number
of corrupted parties t. Thus, by carefully choosing the size of the segment, we can expect that each gate is
computed approximately once.

2.1 Private Computation of a segment

We denote by JxKd a replicated secret sharing of a secret x with threshold d. Notice that, initially, d = t,
but after several segment repetitions it might be the case that d < t. Recall that in replicated secret
sharing, there are

(
n
d

)
shares which sum-up to x, and each subset of parties of size n − d is given one

share. Since this scheme is linear, all linear gates can be computed without any interaction. To compute
multiplications, we use an optimized version of the semi-honest DN protocol [31]. While this protocol
is usually used in the literature with Shamir’s secret sharing, it can also be used with replicated secret
sharing. This was observed for the first time, to the best of our knowledge, in [14], for the setting of t < n

2 .
In the “textbook” version of this protocol, the parties multiply JxKd and JyKd in the following way: First,
the parties locally multiply JxKd · JyKd to obtain Jx · yK2d, mask the result with a random sharing JrK2d and
send it to P1. Then, P1 reconstructs x · y − r and send it back to the parties. Finally, the parties locally
7 By “concretely-efficient”, we mean protocols with low communication that use only cheap symmetric crypto.
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add x · y − r to JrKd and obtain Jx · yKd. Privacy for semi-honest adversaries follows from the fact that the
parties see only masked values from which nothing can be learned. A somewhat surprising observation
from [39] is that when t < n

3 (and in fact for any strong honest majority) a malicious P1 can carry-out an
attack which allows him to learn private information (instead of just changing the output). This attack
is caused by the fact that there exists redundancy in the masking. That is, since 2d < n − 1, once P1

received 2d shares of x · y − r, it can compute the remaining shares. This is used to carry-out an attack
over two gates, which results in learning private shares. A simple way to prevent this attack is to use a full
masking, i.e., to mask the message using JrKn−1. In the context of replicated secret sharing, this means
that, given JxKd, JyKd, the parties need to compute an additive sharing of x · y − r (since replicated secret
sharing with threshold n− 1 is exactly an additive secret sharing). We optimize this by letting only 2d+ 1
parties compute an additive sharing of x · y − r. This means that a set U of 2d+ 1 parties are required to
convert their d-out-of-n shares of x and y to an additive sharing of x · y across the parties in U , and then
mask it with a preprocessed additive sharing of a random r. We denote an additive sharing of x across
parties in a set U by ⟨x⟩U . The above implies that given a set of parties U , the parties need to prepare
in advance a pair (JrKd, ⟨r⟩U ) for our multiplication protocol. We show how the parties can prepare this
correlated randomness without any interaction (but a short setup step) building upon the PRSS method
of [26] and then show how, in our setting of d < n

3 , a set U of 2d+ 1 parties can locally convert JxKd, JyKd
and ⟨r⟩U to ⟨x · y − r⟩U . These additive shares are then sent to P1 who reconstructs x · y − r by summing
the shares and sending the result to the parties as before.

Another optimization for reducing communication in the protocol is obtained by observing that it
suffices for P1 to send x · y − r to a subset of n− d− 1 parties. This holds since adding a constant to a
sharing is done by adding it to one share. Thus, we can let only one subset of n− d parties, which includes
P1, add x · y− r to their joint share of r. Overall, we obtain that 2d elements are sent in the first round of
the protocol (by letting P1 be in U) and n− d− 1 are sent in the second round. Thus, the communication
cost per party is 2d+n−d−1

n = 1 + d−1
n < 1 1

3 elements.
We remark that, up to this point, everything that has been described only requires the additive group

to be abelian, with the potential exception of the local multiplication method to obtain Jx · yK2d from
JxKd · JyKd. However, as we will see in Section 4, this does not require commutativity of the multiplication
operation. In a nutshell, so far the protocol can be instantiated with any finite ring.

2.2 Verifying the computation with cheating identification

Observe that in the above protocol there are no private messages; the only reason for the communication
pattern through P1 is to reduce bandwidth, but in fact the parties could send their messages in the first
round directly to all the other parties. Leveraging this, the first step in the verification protocol is to
agree on a “compressed” transcript of all the executions of the multiplication protocol. This is achieved
by having each party broadcast a random linear combination of the messages they sent and received. If
there is an inconsistency between a compressed message published by P1 and any party Pi, then (P1, Pi)
is a new pair of parties to eliminate from the protocol (note that since, in the protocol, each party only
sends at most one message to P1 and receives at most one message from P1, such inconsistency can occur
only between P1 and other parties). Since inconsistency of sent and received compressed messages cannot
happen between two honest parties, we are guaranteed that either P1 or Pi is corrupted. If all published
messages are consistent, then the parties hold a compressed transcript of all executions and proceed to
the next part of the protocol.

In the second step, the parties verify the correctness of all messages sent in the executions of the
multiplication protocol by verifying the correctness of the compressed message sent by each party. This
includes the message sent by each party to P1, and the message sent by P1 in the second round. Recall
that P1 receives additive shares of x · y − r and adds them together with its own share to compute its
message in the second round. We thus need to verify that each party sent its correct additive share, and
then, that P1 used its correct own share to compute x · y − r. Note that since the parties hold now the
compressed message of each party to P1 and the compressed message P1 sent, they can compute P1’s
implicit first round compressed message. Hence, the parties first verify the first round message of each
party Pi with i ̸= 1, and then, if the check was successful, the parties verify P1’s first round message.

The verification is carried-out in the following way. Recall that in the first round a set of parties U
locally compute their additive share of x ·y−r by converting JxKd and JyKd to ⟨x ·y⟩U and then subtracting
their additive share of r. The idea of our verification procedure is to let the parties compute a 2d-out-of-n
sharing of each party’s message. Towards achieving this, we observe:
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1. To convert its shares of x and y into an additive share of x · y, each party takes a linear combination of
its shares.

2. Each share of x and y is also shared across the parties via a d-out-of-n replicated secret sharing. This
follows since each share xj (or yj) is held by n− 2d parties. Thus, we can define a secret sharing of xj

by letting the shares of all other subsets of size n− 2d be zero.

Leveraging this, we show that given d-out-of-n sharings of each share, the parties can locally compute a
2d-out-of-n secret sharing of the linear combination of these shares. It remains to generate a 2d-out-of-n
sharing of each party’s share of r. To achieve this, we go back to the preprocessing protocol which produces
the correlated randomness. We present a simple way to produce the preprocessing (JrKd, ⟨r⟩U ) for each
execution of the multiplication protocol, such that each party’s additive share of r is also shared in a
robust way, i.e., via a d-out-of-n secret sharing. This implies that the parties can take their sharing of
each party’s additive share and convert it locally to a 2d-out-of-n secret sharing, and so the parties can
locally compute a 2d-out-of-n secret sharing of each party’s additive share of x · y − r. It remains to take
a random linear combination of all these sharings, which is a local operation, to compute a 2d-out-of-n
sharing of each party’s compressed message. Now, observe that each share of each party’ message is held
by n− 2d parties, and so, since in our setting 3d+ 1 ≤ n, it follows that n− 2d ≥ d+ 1, which means
that each share is held by at least one honest party. Thus, when opening the 2d-out-of-n sharing, the
adversary cannot open it to any value but the correct value. We can thus ask the parties to open each
party’s compressed message and verify its correctness. If the corrupted parties send incorrect shares,
then this will result with pair-wise inconsistency, which is translated to a semi-corrupt pair to eliminate.
Otherwise, the parties know that they hold the correct compressed message, and can compare it to the
message published in the first step.

To sum-up the discussion, assume that a corrupted party sent an incorrect message to an honest party
in any of the multiplication protocol’s executions. If it tries to publish the “correct” message in the first
step of the verification, then this will result in an inconsistency with the received message published by the
honest party. If it publishes the actual message that it sent, then this will result in an inconsistency with
the correct message the parties compute and reconstruct in the second round of the verification. In both
cases, a pair of parties which includes a corrupted party will be located. The only way that cheating can
succeed is, if a random linear combination of incorrect messages yields the same value as a random linear
combination of the correct messages. This yields a statistical error which can be made sufficiently small.

As before, all we have described so far also holds even if the ring is non-commutative. The only
non-standard result is the fact that the probability that the dot product between a non-zero and a random
vector can be bounded. This is indeed the case, as discussed in Section 3.1.

One last subtle issue that we need to take care of is to prevent any leakage from the shares of each
party’s message. This is solved by randomizing the shares, which is done by adding a random zero sharing
with threshold 2d. We show how such a random sharing can be produced non-interactively.

Observe that the above protocol to compute a 2d-out-of-n sharing of each party’s compressed message
is completely local. We thus obtain a verification protocol, where the parties need only to broadcast at
most one sent message and at most one received message, and to open n sharings. The communication
cost is therefore independent of the size of the circuit. Moreover, the number of rounds is constant too.

2.3 Elimination and recovery

Once a semi-corrupt pair was found, the parties need to remove it. To achieve this, it suffices to only
update the sharings of the inputs to each layer, which are also the outputs of the previous layer. Observe
that each said value was computed by taking JrKd + (x · y − r). In order to update the sharings, we thus
need to (i) convert JrKd into JrKd−1 and (ii) that a subset of only n− 2− (d− 1) = n− 1− d parties add
x · y − r to JrKd−1. Now, since the correlated randomness in our protocol is produced without interaction,
we can achieve task (i) by only moving PRF keys between subsets of parties, which can be done with
constant cost. For task (ii), we need to take an action only if the current subset of parties which holds
x · y− r, contains both eliminated parties, since in this case the only n− d− 2 active parties know x · y− r.
In this case, we need x · y − r to be handed to a new party. This can be done by having all current n− d
parties who know x · y − r send this value to some other party. Since, given that n− d ≥ 2d+ 1, every
subset of n− d parties has an honest majority, that party could identify the correct x · y − r, by taking
the majority value.
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2.4 Reducing the number of rounds

Our protocol requires 2 rounds of interaction per multiplication gate. Using the ideas from [38], we can
reduce the number of rounds to only a single round of interaction, at the expense of a small increase
in bandwidth. Reducing round complexity may be preferred over minimizing communication when the
network is slow. The observation of [38] is that after computing the DN protocol, the parties hold masked
value on the output wire (this requires P1 to send x · y − r to all parties and this is why communication
increases). Thus, if the parties preprocess random Beaver triples, they can compute the gates in the next
layer without interaction. This technique thus trades online with offline communication, where in the
latter it is possible to carry-out all interaction in parallel. In Appendix C we provide a formal description
and analysis, and in particular show that we can apply our new verification method over this variant of
the protocol.

2.5 The case of 4 parties and one corruption

In the base case of our two-thirds honest majority setting, there are 4 parties and one corrupted party.
Note that in this case, there is no need to split the circuit into segments. The parties can verify the circuit
at once, and if the verification ends with a pair of parties to eliminate, then it means that the remaining
two parties are honest, and so one of them can be used as a trusted party and compute the function for
the parties.

3 Preliminaries

Notation. Let κ be the security parameter and let n be the number of parties. We denote the set of
involved parties by P = {P1, . . . , Pn}. Let t be an upper bound in the number of corrupted parties, and
assume that t < n/3. Many of our subprotocols will be presented with a threshold d ≤ t, since, due to the
player elimination framework, they may be executed with a smaller threshold than t. We use the notation
[n] for the set {1, . . . , n}.

3.1 Background in Ring Theory

Let R be any finite ring. We only assume procedures for adding and multiplying ring elements, as well as
sampling uniformly random elements. A set A ⊆ R is called exceptional if, for all x, y ∈ A with x ̸= y,
x− y is invertible.8

For the rest of the paper, let A be the any of the largest exceptional subsets of R, and let ωR = |A|.
We will need the following lemma in our protocol.

Lemma 1. Let a, b ∈ R, with a ̸= 0. Then Pr
x

$←A
[x · a+ b = 0] ≤ 1/ωR.

Proof: Let x, y ∈ A such that x · a+ b = 0 and y · a+ b = 0, then (x − y) · a = 0, but since x − y is
invertible, this implies that a = 0, which is a contradiction. This shows that there can be at most one
x ∈ A that satisfies x · a + b = 0, and therefore the probability of this event happening for a random
sample in A is at most 1/|A| = 1/ωR.

Observe that if R is a field then we may take A = R, and therefore ωR = |R|. On the other hand, if R
is the ring of integers modulo 2k, it can be shown that there are no exceptional sets of size 3 or more, so
we may take A = {0, 1}, and hence ωR = 2.

3.2 MPC Security Definition

In this work, we consider adversaries who can follow an arbitrary strategy to carry-out their attack. We use
the standard ideal/real paradigm [35] in order to define security, where an execution in the ideal world with
a trusted party who computes the functionality for the parties is compared a real execution. Although our
protocols can be computed with information-theoretic security, we use minimal computational assumptions
to achieve better concrete efficiency. Thus, when we say that a protocol “computationally computes” an
ideal functionality, this means that the output of the ideal execution with an ideal world simulator is
computationally indistinguishable from the output of the real world execution. In some of our protocols,
there is also a statistical error, which is independent of the computational security parameter. As in [34],
8 In a finite non-commutative ring, a is invertible if there exists b such that a · b = b · a = 1.
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we formalize security in this case by saying that the outputs of the two executions can be distinguished
with probability of at most some negligible function in the security parameter, plus the statistical error.

We prove the security of our protocols in a hybrid model, where parties run a protocol with real
messages and also have access to a trusted party computing a subfunctionality for them. The modular
sequential composition theorem of [17] states that one can replace the trusted party computing the
subfunctionality with a real secure protocol computing the subfunctionality. When the subfunctionality is
g, we say that the protocol works in the g-hybrid model.

Universal Composability. Protocols that are proven secure in the universal composability framework
have the property that they maintain their security when run in parallel and concurrently with other
secure and insecure protocols. In [46], it was shown that any protocol that is proven secure with a
black-box non-rewinding simulator and also has the property that the inputs of all parties are fixed
before the execution begins (called input availability or start synchronization in [46]), is also secure
under universal composability. Since the input availability property holds for all of our protocols and
subprotocols, it is sufficient to prove security in the classic stand-alone setting and automatically derive
universal composability from [46]. This also enables us to call the protocol and subprotocols that we use
in parallel and concurrently (and not just sequentially), allowing us to achieve more efficient computation
(i.e. by running many executions in parallel or running each layer of a circuit in parallel).

Broadcast and Agreement A protocol for Byzantine agreement takes a bit from all parties as an input,
and let all honest parties reach a consensus in the presence of t corrupted parties. If all honest parties
holds the same bit b, then the protocol guarantees that all honest parties will output b. In our protcol, we
will use Byzantine agreement to let a party broadcast one bit to the other parties. This can be done by
letting the party send the bit to all parties and then run Byzantine agreement. In our setting of t < n/3,
perfect Byzantine agreement can be achieved with quadratic communication complexity [10,24]. We stress
that the number of calls to broadcast in our protocol is constant and so any way to implement it suffices.

4 Replicated Secret Sharing and Its Operations

Replicated secret sharing. The replicated secret sharing scheme [43], with threshold d ≤ t, is defined by the
following procedures. Below, we let λ =

(
n
d

)
and let T1, . . . , Tλ ⊂ P be all subsets of parties of size n− d.

– share(x, d): To share a secret x with threshold d, the dealer generates λ random xT1
, . . . , xTλ

∈ R under
the constraint that x = xT1

+ · · ·+ xTλ
. Then, the dealer hands xTj

to the parties in Tj . The share x⃗i

held by party Pi is a tuple consisting of all xTj
such that Pi ∈ Tj . We say that JxKd is the collection of

all x⃗is.
– reconstruct(JxKd, i): In this interactive procedure, the parties in each subset T where |T | = n− d and

Pi /∈ T , send all their shares to Pi. For each subset of parties T holding a share xT , if Pi received
different values for xT , then Pi takes the majority value to be xT . Finally, Pi sets x =

∑
T⊆P: |T |=n−d

xT .

Secrecy of this scheme follows from the fact any set of d corrupted parties miss one additive share
(namely, the one indexed by their complement), and so the secret could be any value in the ring.

Note that the sharing procedure described above implies that a corrupted dealer may cheat by sending
different values to different parties in the same subset T of parties. In this case, we say that the sharing is
inconsistent. We formally define the notion of consistency in the following definition.

Definition 1 (Consistency). We say that JxKd is consistent if for each two honest parties Pi and Pk,
for each T ⊂ P, such that |T | = n− d and Pi, Pk ∈ T , it holds that the same xT is held by both Pi and Pk.

Relying on the definition of consistency, we next prove that the reconstruct procedure defined above is
robust, i.e., the receiving party will always obtain the correct secret.

Claim. If JxKd is consistent and d < n
3 , then reconstruct(JxKd, i) ends with Pi holding x, even in the

presence of malicious adversaries controlling up to d parties.

Proof: In the procedure, Pi receives from all parties in each subset T of n− d parties with Pi /∈ T , the
share xT held by this subset. Since 3d < n, we have that n− d ≥ 2d+ 1. This implies that in each subset,
there is a majority of honest parties. Since JxKd is consistent, it means that all honest parties in each T
will send the same value, and so by taking the majority value, Pi will obtain the correct share.
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Complexity. For n parties and threshold d, there are
(
n
d

)
distributed shares. Each party holds

(
n−1
d

)
shares.

When reconstructing a secret towards Pi, party Pi receives
(
n−1
d−1

)
missing shares, and each share is sent

by n− d parties. Thus, the overall communication is
(
n−1
d−1

)
· (n− d) =

(
n−1
d

)
· d ring elements.

Pairwise consistency check. The above definition gives us an easy way to check that a sharing is consistent,
by having each pair of parties comparing their joint shares. Note that each pair of parties can check
pairwise consistency of an arbitrarily large number of sharings by comparing a hash of the string consisting
of all their joint shares.

4.1 Local Operations

Linear operations. Let JxKd and JyKd be two consistent sharings and let α ∈ R be some public constant.
We define the following operations:

– JxKd + JyKd: let x⃗i and y⃗i be the two vectors of shares held by Pi. Then, Pi performs point-wise addition
between the two vectors and stores the result as its output.

– α · JxKd: let x⃗i be the vector of shares held by Pi. Then, Pi multiplies each component in x⃗i with α and
store the result as its output.

– α+ JxKd: One pre-determined subset of parties T with |T | = n− d which holds xT define xT ← xT +α.
The other λ− 1 shares (where λ =

(
n
d

)
) remains the same.

The next claim is straight-forward given the definitions of the operations:

Claim. For every JxKd and JyKd and a constant α ∈ R it holds: (i) Jx+yKd = JxKd+JyKd; (ii) Jα·xKd = α·JxKd;
(iii) Jα+ xKd = α+ JxKd.

Multiplication. We next show two local operations for multiplying two shared inputs x and y, in order to
generate a sharing of x · y, but with a higher threshold. The first operation, which we denote by JxKd · JyKd,
aims to generate Jx · yK2d. The second operation, which we denote by JxKd ⊙U JyKd, aims to compute an
additive sharing of x · y across a pre-determined subset of parties U ⊆ P of size n− d. We denote such a
sharing by ⟨x · y⟩U .

Recall that x = x1+ · · ·+xλ and y = y1+ · · ·+yλ. It follows that x ·y =
∑
j∈[λ]

xj ·
∑
k∈[λ]

yk =
∑

j,k∈[λ]

xj ·yk.

This implies that in order to locally generate a sharing of x · y, we need each product xj · yk to be known
by a set of parties of a sufficient size, where the set’s size is determined by the desired threshold. In our
setting of d < n

3 , this indeed holds and utilized in the following two procedures:

– JxKd · JyKd:
• For each T ⊂ P such that |T | = n− 2d: The parties in T initialize zT := 0.
• For each pair xj , yk that are known to a set of parties S ∈ P : let T ⊂ S be the subset containing the

first n− 2d parties in S and let q =
( |S|
n−2d

)
.

Then, the parties in T set: zT ← zT + q · (xj · yk).
For each T ′ ⊂ S with |T ′| = n− 2d and T ′ ̸= T set: zT ′ ← zT ′ − (xj · yk).
• Each party Pi sets z⃗i to be the tuple of all zT for which Pi ∈ T with |T | = n− 2d, and stores it as its

output.
– JxKd ⊙U JyKd:
• Each party Pi ∈ U initializes zi := 0.
• For each pair of xj and yk, let T ⊂ U be the set of parties that holds both xj and yk and let Pℓ be

the party with the smallest index in T . Then, Pℓ sets: zℓ ← zℓ + |T | · (xj · yk), whereas each Pu ∈ T
with u ̸= ℓ sets: zu ← zu − (xj · yk).
• Each party Pi ∈ U stores zi as its output.

Claim. Let d ∈ N be such that n > 3d and let U ⊆ P. If |U | ≥ 2d+ 1, then for every two sharings JxKd
and JyKd it holds: (i) Jx · yK2d = JxKd · JyKd; (ii) ⟨x · y⟩U = JxKd ⊙U JyKd.

Proof: We first show that each pair xj and yk is known by a set of size ≥ n − 2d. Recall that each
input share is held by a set of n − d parties. Let T be the subset of parties who hold xj and let S be
the subset of parties who hold yk. The set of parties which hold both xj and yk is thus S ∩ T . Recall
that |S ∩ T | = |S| + |T | − |S ∪ T | and so |S ∩ T | = 2(n − d) − |S ∪ T |. Since |S ∪ T | ≤ n, we have
|S ∩ T | ≥ 2(n− d)− n = n− 2d as required.
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To prove (i), we first show that
∑

T⊂P: |T |=n−2d

zT = x · y =
∑

j,k∈[λ]

xj · yk. This follows since in the

procedure, for each set S ⊂ P of parties who know both xj and yk, one subset of n−2d adds
( |S|
n−2d

)
·(xj ·yk),

whereas the remaining
( |S|
n−2d

)
− 1 subsets of size n− 2d subtract xj · yk. Thus, overall, xj · yk is added

exactly once to the summation
∑

T⊂P: |T |=n−2d

zT . Next, we argue that any adversary controlling d parties

does not “gain” information in the procedure, meaning that it learns no additional information on shares
held by honest parties only. To see this, observe that by definition, the adversary is missing one share xĵ

of x and one share yk̂ of y. It thus suffices to show that each share zT held by a subset T of only honest
parties, contains the product xĵ · yk̂. These easily follows from the fact that in the procedure, all subsets
of size n− 2d of honest parties (there are

(
n−d
n−2d

)
such subsets) add it to their joint share.

To prove (ii), we first claim that
∑

i|Pi∈U

zi = x · y =
∑

j,k∈[λ]

xj · yk. Note that each xj · yk, which is known

by a subset T of parties, is added |T | times by one party in T and subtracted by the |T | − 1 other parties

in T . Overall, it is added once to the summation
n∑

i=1

zi as required. It remains to show that each pair xj

and yk is known to at least one party in U . Assume in contradiction that this is not true. This implies that
there exists a pair known to a subset of parties T , which is not included in U , i.e., U ∩ T = ∅. However,
|U | ≥ 2d+1 and, as shown above, |T | ≥ n− 2d, and so we have |U ∪ T | > n. Next, note that every honest
party adds/subtracts xĵ · yk̂, where xĵ and yk̂ are the shares of x and y held by honest parties only, to its
share zi. Thus, any adversary controlling d parties learn no information on the honest parties’ shares.

4.2 Non-Interactive Random Secret Generation

We next show how to generate correlated randomness required by our protocol, without any interaction,
but a short set-up step. Let F = {Fk | k ∈ {0, 1}κ, Fk : {0, 1}κ → R} be a family of pseudo-random
functions. The parties work as follows:

From JkKd to any number of JrKd. As shown in [26], given JkKd, the parties generate the ℓth random
sharing JrℓKd, by having each subset T holding kT , set its share to be rTℓ = FkT

(ℓ).

The ideal functionality Fcoin. Let Fcoin be an ideal functionality that hands the parties fresh random
coins. It can be securely realized by having the parties compute a new random sharing JrKd and then
open it by running reconstruct(JrKd, i) for each i ∈ [n]. To generate any numbers of random coins with a
constant cost, the parties can use the above procedure to generate a new key k from which all the required
randomness is derived using a pseudo-random function Fk.

FzeroShare - Generating any number of J0K2d. In our protocol, we will need random sharings of 0
with threshold 2d, which will be used to randomize given sharings. We show how the parties can generate
any number of J0K2d from a single sharing JkKd without any interaction. To generate the ℓth J0K2d sharing,
the parties work in the following way:

1. Each subset S ∈ P of size n− 2d initializes rS = 0.
2. For every subset T ∈ P of size n− d, holding kT :

Let θ =
(
n−d
n−2d

)
and let S1, S2, . . . , Sθ be all subsets of size n− 2d in T . Then:

For each j ∈ {2, . . . , θ}, the parties in Sj set: rSj ← rSj − FkT
(ℓ∥j).

The parties in subset S1 set: rS1 ← rS1 +

θ∑
j=2

FkT
(ℓ∥j).

3. Each party Pi outputs a vector all rS for which Pi ∈ S.

Note that each FkT
(ℓ∥j) is added once and subtracted once, and so overall

∑
S∈P:|S|=n−2d

rS = 0 as

required.
To prove security, let FzeroShare be an ideal functionality that receives from the adversary a share for

each subset of parties of size n− 2d that contains corrupted parties, and then chooses random shares for
the remaining subsets (which contain honest parties only), under the constraint that all shares will sum
to 0. Then, FzeroShare sends the honest parties their shares. We thus have the following
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Lemma 2. If Fk is a pseudo-random function, then our protocol as described in the text, computationally
computes FzeroShare in the presence of any malicious adversary controlling up to d parties, where d < n

3 .

Proof: Let S be the ideal world adversary and A be the real world adversary. Since A controls at most
d parties and 3d+ 1 ≤ n, it follows that d < n− d, and so in each subset of size n− d there is at least one
honest party. This implies that S knows all the distributed keys held by corrupted parties (after the initial
setup step, where S interacts with A, while playing the role of the honest parties) and so can compute the
corrupted parties’ shares and send them to FzeroShare. To prove the lemma, we thus need to show that the
output shares held by subsets containing honest parties only are indistinguishable in the ideal and real
world execution. Observe that in the ideal execution, they are chosen randomly under the constraint that
all shares sum up to 0. Note that there are n− d honest parties and so

(
n−d
n−2d

)
shares known to honest

parties only. For an adversary controlling d parties, this implies that there are
(
n−d
n−2d

)
− 1 output shares

that look completely random to A. In contrast, in the real world execution, the share held by each subset
S of size n− 2d containing only honest parties, is a linear combination of PRF invocations with keys of
its supersets of size n− d. Note that there is one set of size n− d containing only honest parties, and thus
one key which is unknown to A. In the second step of our protocol, this key is used to compute

(
n−d
n−2d

)
− 1

new shares (because the index j of each subset is taken as an input to F ). Thus, if F is a pseudorandom
function, a computationally bounded adversary will not be able to distinguish between the shares held by
the honest parties only in the ideal execution and their shares in the real execution. This completes the
proof.

FcorRand - Generating any number of (JrKd, ⟨r⟩U) for a pseudo-random r ∈ R and U ⊂ P
such that |U | = 2d + 1 Recall that ⟨r⟩U is an additive sharing of r across the parties in U . To obtain
pairs of sharings of the same r, the traditional approach is to generate two sharings with the two thresholds
separately, and then check that the obtained sharings are of the same secret. We use a different approach,
where each party in U first chooses its additive share, shares it to all the other parties, and then the
parties use these to compute the sharing with threshold d. Besides the fact that it allows us to avoid the
need to run a check, we obtain here a property that will be used later: the additive share of each party in
U is robustly shared to the other parties. Formally, the parties work as follow:

– Setup step:

1. Each party Pi ∈ U chooses a random ki ∈ R and shares JkiKd to the parties.
2. The parties run pair-wise consistency check. If party Pj finds that the shares held by him and Pk

are not the same, then it broadcasts (inconsistent, j, k). Then, Pi broadcasts all shares that are held
by subsets that contain both Pj and Pk.
(Note that since in this case either Pi, Pk or Pj is corrupted, these shares are anyway known to the
adversary, and so publishing them gives the adversary no additional information.)

– Generating the ℓth pair (JrℓKd, ⟨rℓ⟩U ):

1. For each i with Pi ∈ U : the parties compute Jrℓ,iKd from JkiKd as shown above. Knowing all shares,
party Pi computes rℓ,i and sets it as its additive share of rℓ.

2. The parties locally compute JrℓKd =
∑

Pi∈U Jrℓ,iKd.

Observe that rℓ =
∑

Pi∈U ri and so the parties hold an additive sharing and a d-out-of-n sharing of rℓ
as required. In addition, as promised above, the additive share ri of each party Pi ∈ U is shared to the
other parties via a d-out-of-n secret sharing. This property will be used later in our protocol.

The FcorRand ideal functionality. In our protocol, each time the parties will need correlated randomness
from the type defined above, they will call the FcorRand ideal functionality defined in Functionality 1. The
functionality FcorRand lets the adversary choose the shares of the corrupted parties, and then chooses
random share for honest parties, under the constraint that the same secret r is stored in ⟨r⟩U and JrKd.
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FUNCTIONALITY 1 (The FcorRand ideal functionality)
The FcorRand ideal functionality works with an ideal world adversary S and honest parties. Let I ⊂ [n]
with |I| ≤ d, be the set of the corrupted parties’ indices, and H = [n] \ I be the set of the honest
parties’ indices. Finally, let U ∈ P be a predetermined set of parties.

1. FcorRand receives {ri}i∈I:Pi∈U and {rT }T⊂P: (|T |=n−d)∧(∃i∈I:Pi∈T ) from S.

2. FcorRand chooses a random rj ∈ R for each j ∈ H such that Pj ∈ U , and sets r =

n∑
k=1

rk. Then, it

chooses a random rT ∈ R for each T ⊂ P with |T | = n− d that contains only honest parties, under
the constraint that r =

∑
T⊂P: |T |=n−d

rT .

3. For each honest party Pj , FcorRand hands {rT }Pj∈T to Pj and, if Pj ∈ U , hands also rj to Pj .

Lemma 3. If Fk is a pseudo-random function, then our protocol as described in the text, computationally
computes FcorRand in the presence of any malicious adversary controlling up to d parties, where d < n

3 .

Proof: Let S be the ideal world simulator and let A be the real world adversary. In the simulation,
S interacts with A by playing the role of the honest parties. S invokes A to run the setup step, where
for each honest party Pj ∈ U and each subset of parties T that contains corrupted parties, it hands A
random keys kj,T , and receives from A all the keys ki,T for each corrupted Pi ∈ U (since by definition
each T contains at least one honest party). If pairwise inconsistency exists, then the corresponding key is
published.

Note that after the setup step, S can compute all the corrupted parties’ shares. Specifically, it can
compute rℓ,i for each corrupted Pi ∈ U (since it knows all shares in JkiKd), and can compute the corrupted
parties’ shares in JrℓKd (since it can compute the corrupted parties’ shares of each rℓ,j for Pj ∈ U).

Thus, to generate the ℓth pair of sharings, S computes the corrupted parties’ shares, sends them to
FcorRand and outputs whatever A outputs.

It is immediate that A’s view is identical in the ideal and real executions. It remains to show that
the honest parties’ output is computationally indistinguishable in both executions. Observe that in the
ideal execution, their shares are random elements in R, whereas in the real execution, their shares are
computed using a pseudo-random function. Specifically, let q =

( |H|
n−d

)
be the number of sets of size n− d

that contain honest parties only. Then, in the real execution, for each j ∈ H such that Pj ∈ U , there are q
shares that are computed using a pseudo-random function with a key that is unknown to the adversary.
This implies that the number of pseudo-random shares is q · |{j ∈ H : Pj ∈ U}|. In contrast, in the ideal
execution, additive shares are randomly chosen for each rj with j ∈ H and Pj ∈ U , and then additional
q−1 random shares are chosen (once r is defined, the functionality chooses q−1 shares, and the remaining
share is determined by the constraint r =

∑
T⊂P: |T |=n−d rT ).

To prove that the output of the honest parties in both executions is computationally indistinguishable,
we define the following hybrids:

Hybrid 0. The ideal execution as defined above.
Hybrid 1. Let Ŝ be a simulator that plays the role of FcorRand and interacts with A as in Hybrid 0,

but with the following differences: for each j ∈ H such that Pj ∈ U , it chooses random shares for each
rj,T with T being a subset of only honest parties. Then, it sets: rj =

∑
T∈P:|T |=n−d = rj,T for each j ∈ H

such that Pj ∈ U , and rT =
∑

k∈[n]:Pk∈U rk,T for each subset T of parties of size n − d. Finally, it sets
r =

∑
k∈[n]:Pk∈U rk. Then, it defines the output of each honest party Pj to be {rT }T∈P: |T |=n−d∧Pj∈T

and, if Pj ∈ U , also rj .
It is easy to see that Hybrid 0 ≡ Hybrid 1, since in both executions the additive shares rj held by the

honest parties and the d-out-of-n shares rT of r held by subsets of honest parties only are completely
random. Note that in Hybrid 1, there are q · |{j ∈ H : Pj ∈ U}| shares that are chosen randomly.

Hybrid 2. Next, consider an execution, where all the q · |{j ∈ H : Pj ∈ U}| shares that Ŝ have chosen
randomly in Hybrid 1, are now computed using a pseudo-random function, with a different key kj,T for
each j ∈ H such that Pj ∈ U , and for each subset T of honest parties only and |T | = n− d.

Observe that the output of the honest parties in Hybrid 2 is identical to their outputs in a real execution.
It thus remains to show that Hybrid 1

c≡ Hybrid 2. This can be easily proven via a straight-forward reduction
to a computationally-bounded distinguisher D which is given an access to q · |H| oracles that are either
random or pseudo-random functions. The distinguisher D follows the instructions of simulator Ŝ, while for
each share chosen in the simulation, D uses one of its oracles to choose the share. It is easy to see that when
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the oracles are random functions, then D generates outputs that are distributed as in Hybrid 1, whereas
if the oracle are pseudo-random functions, then it generates outputs that are distributed as in Hybrid 2.
Thus, if it is possible to distinguish between the two hybrids with more than a negligible probability (in
the security parameter κ), then it is possible to distinguish between random and pseudo-random functions
with the same probability. This completes the proof.

5 Building Blocks

In this section, we outline three sub-protocols that are used in our main protocol: a protocol for multiplying
shared inputs which achieves only privacy, a protocol to verify the correctness of many multiplication
triples and a protocol for eliminating corrupted parties from the computation.

5.1 Multiplying Two Shared Values - The DN Protocol [31]

The Damgård-Nielsen protocol [31] is the fastest multiplication protocol in the honest majority setting,
known to this date. The “text-book” version of this protocol, requires the parties to prepare in advance a
pair of random sharings JrKd, JrK2d. Then, in order to multiply JxKd and JxKd, the parties locally compute
JxKd · JyKd − JrK2d and send their shares to P1 (or any other designated party). Party P1 reconstructs
xy − r and sends it back to the parties. Then, the parties locally compute Jx · yKd = JrKd + (x · y − r).

While the protocol was constructed and used throughout the years for Shamir’s secret sharing scheme,
a simple observation made by [14] is that all operations required by this protocol can be carried-out also
when using replicated secret sharing.

Achieving privacy in the presence of malicious adversaries. The text-book version of the DN protocol
described above is semi-honest secure. A somewhat surprising finding by [39] is that it actually does not
achieve even privacy in the presence of malicious adversaries when d < n/3. In particular, a malicious P1

can learn intermediate values. The attack is carried-out over two gates in two preceding layers. Assume
that the parties need to multiply JxKd and JyKd. Then, upon receiving the messages from the parties and
computing x · y− r, party P1 sends the correct value to all parties, except for one honest party, say Pn, to
whom it sends x · y − r + 1. This implies that Pn now holds an incorrect share of the output x · y. Next,
assume that in the next layer x · y is being multiplied with w. The crux of the attack is that any n− 2d
shares of xy · w − r′ (where r′ is the random secret mask used in this gate) determine deterministically
the remaining shares. Thus, upon holding n− 2d shares of xy · w − r′, which do not include shares held
by Pn, party P1 can compute the correct shares of Pn. However, Pn will send shares of (xy + ϵ) · w − r′.
Thus, by taking the difference between the actual share received from Pn and the share that should have
been sent, P1 can learn private information about Pn’s shares of w.

As can be seen from the above description, the main reason behind the attack is the fact that the
random masking sharing JrK2d has redundancy, allowing P1 to use n− 2d shares to compute the remaining
2d shares. Thus, a simple way to prevent this attack is to use a mask that is additively shared between the
parties. To reduce communication, it suffices to use an additive sharing across 2d+ 1 parties (including
P1) only. This means that the parties need to prepare a pair of sharings JrKd, ⟨r⟩U for each multiplication,
where U is a set of 2d + 1 parties which includes P1, and locally compute a sharing ⟨x · y⟩U which is
opened towards P1. Fortunately, as shown in Section 4.2, we are able to generate this type of correlated
randomness. In addition, replicated secret sharing allows computing ⟨x · y− r⟩U given JxKd, JyKd and ⟨r⟩U ,
by taking JxKd ⊙U JyKd (see the definition of this operation in Section 4.1) which yields ⟨x · y⟩U , and then
subtracting ⟨r⟩U .

Reducing communication. A simple optimization to the DN protocol that we can apply when using
replicated secret sharing, is letting P1 send x · y− r to only one subset of parties of size n− d. This suffices
since adding x · y − r to JrKd, is by definition (see Section 4.1) carried-out by having one subset adding
xy − r to their share of r. If this subset includes P1, then it follows that P1 needs to send n− d− 1 ring
elements in the second round of the protocol. Overall, the number of elements sent in the protocol is
2d+ n− d− 1 = n+ d− 1, and so per party the cost is 1+ d−1

n sent ring elements. For d = 1, this yields 1
ring element per party, and in general, for d < n/3 this is bounded by 1 1

3 elements per party.
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PROTOCOL 2 (The Optimized DN Multiplication Protocol)
Let U be the set {P1, . . . , P2d+1}.

– Inputs: The parties hold JxKd, JyKd
– Set up: The parties call FcorRand to obtain (JrKd, ⟨r⟩U ).
– The protocol:

1. The parties in U locally compute ⟨x · y − r⟩U = JxKd ⊙U JyKd − ⟨r⟩U and send the result to P1.
2. P1 reconstructs xy − r. Let T ∈ P be a predetermined subset of size n − d such that P1 ∈ T .

Then, P1 sends xy − r to the parties in T .
3. The parties compute JzKd = JrKd + xy − r and store JzKd as the output.

Formal description. We present a formal description of the protocol in Protocol 2.
The fact that this protocol is private in the presence of malicious adversaries controlling up to d parties,

follows easily from the fact that each message sent by an honest party is masked by a new independent
random additive mask. Formally, this means that the view of the adversary during the execution have the
same distribution, regardless of the honest parties’ inputs. Let Πpriv be a protocol to compute a circuit
C, where each party shares its input to the other parties, and then the parties traverse over the circuit
with topological order, computing multiplication gates using Protocol 2. Let viewf

A,Πpriv,I
(v⃗) be the view

of an adversary A (i.e., its randomness, inputs, incoming and outgoing messages during the execution)
controlling a subset I, when computing a functionality f using Πpriv, over a vector of inputs I, without
the output revealing step. We thus have the following:

Proposition 1. Let f be a n-aty functionality represented by an arithmetic circuit C over a ring R.
Then, for every adversary A controlling a subset of parties I ∈ P with |I| ≤ d < n

3 , and for every two
vector of inputs v⃗1, v⃗2 it holds that viewf

A,Πpriv,I
(v⃗1) = viewf

A,Πpriv,I
(v⃗2)

Remark 1. If the parties hold two vectors of shares Jx1Kd, . . . , JxmKd and Jy1Kd, . . . , JymKd and wish to
compute J

∑m
j=1 xj · yjKd, they can do so without calling the multiplication protocol m times. Instead,

this can be done at the cost of one single multiplication, as follows. The parties can locally compute
⟨
∑m

j=1 xj · yj − r⟩U by taking
∑m

j=1 (JxjK⊙U JyjK)− ⟨r⟩U , and send the result to P1, who reconstructs∑m
j=1 xj · yj − r, send it to the parties, which locally compute JrKd +

∑m
j=1 xj · yj − r. The verification

protocol below can be easily adapted to incorporate this operation.

5.2 Verifying Correctness of Multiplications with Cheating Identification

In this section, we show how the parties can verify that all multiplications were carried out correctly. Our
protocol has the property that if someone has cheated, then the parties will detect it with high probability
and, in this case, output semi-corrupt pair to eliminate. A pair of parties is called “semi-corrupt” if it
contains at least one corrupted party.

The idea behind our protocol is that the parties “compress” the transcript of all multiplication protocols
into one single transcript and then verify its correctness. Observe that in our multiplication protocol, all
messages are public; the only reason for communication through P1 is to save communication, and in fact
each of the messages could have been sent to all parties. Thus, the first step of our protocol is to agree on
the transcript. In this step, the parties sample random coefficients and broadcast a linear combination of
the messages they sent and received in all multiplications. If there is conflict between the view of two
parties, then a semi-corrupt pair has been found. If all views are consistent, then the parties proceed to
the next step, where they verify the correctness of each compressed message. In more details:

Step 1: Agree on the transcript. Let m be the number of multiplications in the circuit. The parties first
call Fcoin to receive m random elements δ1, . . . , δm ∈ A (this can be done with small constant cost by
calling Fcoin to receive a random seed from which all randomness is derived). Then, each party broadcasts
a random linear combination of the messages it sent and a random linear combination of the messages it
received. Note that each Pi with i ̸= 1, needs to broadcast one sent message (a linear combination of the
messages sent to P1 in the first round) if it is included in U , and, if it is included in the subset T of parties
that receive the message in the second round, broadcast one received message (a linear combination of the
messages received from P1). At the same time, P1 broadcasts a random linear combination of all messages
received from each of the other parties and a random linear combination of the messages it sent in the
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second round. If there is an inconsistency between a “compressed” message P1 claims to send/receive
to/from Pi and the “compressed” message Pi claims to receive/send from/to P1, then (P1, Pi) is the new
semi-corrupt pair. The fact that either P1 or Pi is corrupted holds, since a contradiction cannot occur
between two honest parties. If all messages are consistent, then the parties proceed to the next step with
an agreed-upon compressed transcript.

Step 2: Verify each party’s message. Next, the parties verify the correctness of each party’s message.
Observe that P1’s message is computed by summing all messages received from the other parties and
his own first round’s message (since P1 sees an additive sharing of the masked output). Thus, given the
message sent from P1 in the second round, the parties can compute implicitly the message P1 would send
in the first round. This implies that the verification in this step is reduced to checking that the local
computation of JxKd ⊙U JyKd − ⟨r⟩U , performed by each of the parties in U , is correct. Recall that in this
computation, each party performs a local computation over its shares of x and y, and then subtracts its
additive share of r. Looking at the definition of the operation JxKd ⊙U JyKd from Section 4.1, we observe
that in this computation, the parties compute a linear combination of their shares. Let γ =

(
n−1

n−d−1
)

be
the number of shares held by each party. Denote the shares held by Pi by xi

1, . . . , x
i
γ and yi1, . . . , y

i
γ and ri.

Then, party Pi carries-out the computation
∑γ

k=1

∑γ
j=1(αk,j · xi

k · yij)− ri, where αk,j is a public known
coefficient (see Section 4.1).

Next, recalling that in our secret sharing scheme, each share is held by n− d parties, we define Jxi
kKd

(and likewise JyijKd) to be a consistent d-out-of-n secret sharing of xi
k in the following way: The subset T

of parties which know xi
k set xi

k,T = xi
k, whereas the other subsets define their share to be 0. In addition,

recall that in Section 4.2, we generated the correlated randomness in a special way, such that each party’s
additive share ri is also secret shared across the parties in a robust way. We thus have the following:

Fact 3 In our multiplication protocol (Protocol 2), the message each party sends in the first round, is a
result of a degree-2 computation over inputs that are shared across the parties via a consistent d-out-of-n
secret sharing.

Relying on Fact 3, we can thus ask the parties to jointly compute a 2d-out-of-n secret sharing of Pi’s
additive share of x · y − r, and then compute a 2d-out-of-n secret sharing of the “compressed message”
obtained in the previous step. That is, for each i ∈ U , the parties will compute

JmsgiK2d =

m∑
ℓ=1

δℓ · J(xℓ · yℓ − rℓ)
iK2d (1)

=

m∑
ℓ=1

δℓ ·

 γ∑
k=1

γ∑
j=1

(αk,j · Jxi
ℓ,kKd · Jyiℓ,jKd)− JriℓKd

+ J0K2d

where J0K2d is a secret sharing of 0 which is added to randomize the parties’ shares (and is handed to the
parties by FzeroShare). Note that this computation is completely non-interactive: the parties can locally
compute Jxi

k · yijK2d = Jxi
kKd · JyijKd and JriK2d = JriKd · J1Kd (where J1Kd is some known sharing of 1) as

defined in Section 4.1, and then locally perform addition and multiplication with the public constants.
It remains to open the shared secret and check whether it equals to the additive share Pi sent. Since
3d + 1 ≤ n, then n − 2d ≥ d + 1, which implies that in each subset of n − 2d there is at least one
honest party. This means that by sending incorrect shares, the corrupted parties can only cause pair-wise
inconsistency, which will result with a semi-corrupt pair. Thus, if all shares are consistent, the parties will
hold the correct msgi. Then, the parties can compare it to the value obtained in the first step and see
whether Pi have cheated or not. We thus obtain the following protocol for Step 2:

1. For each i ∈ U :
(a) The parties locally compute JmsgiK2d via Eq. (1).
(b) For each j ∈ [n], the parties in each subset T where |T | = n− 2 · d and Pj /∈ T send their shares

of msgi to Pj .9

2. If party Pj received contradicting shares in any of the n executions in the previous step, then it sets
consj = 1. Otherwise, it sets consj = 0. Then, it broadcasts consj to the other parties.

3. Upon receiving consj from all the parties:
9 This can be optimized by asking only one party in each set T to send the share to Pj and the rest send hashes

of their shares for all i ∈ [n].
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– If ∀j : consj = 0:
The parties reconstruct msgi for each i ∈ [n]. Let msg′i be the compressed message of Pi agreed
upon in the first step.
• If ∀i : msg′i = msgi: the parties output accept.
• If ∃i : msg′i ̸= msgi: Let i be the largest such that msg′i ̸= msgi, and let j the smallest index of

party such that i ̸= j. Then, the parties output reject, (i, j)10

– If ∃j : consj = 1:
Let j be the smallest index for which consj = 1. Let Pu and Pw be the first pair of parties who
sent contradicting shares vuT and vwT to Pj , with T being the first subset for which Pu, Pw ∈ T and
vuT ̸= vwT , and let i ∈ [n] be the index of the execution in Step 1 where the inconsistency occurred.
Then:
(a) Party Pj broadcasts (T, i, u, w, vuT , v

w
T ).

(b) Party Pu broadcasts ṽuT and party Pw broadcasts ṽwT .
(c) If ṽuT ̸= ṽwT , then the parties output reject, (u,w).

Otherwise, if vuT ̸= ṽuT , then the parties output reject, (j, u).
Otherwise, the parties output reject, (j, w).

Cheating probability. The only way that the protocol can end with the parties outputting accept even
though a corrupted party has cheated in the multiplication protocol, is if a random linear combination of
incorrect messages yields the same value as a random linear combination of the correct messages. Using
Lemma 1, we see that this probability is bounded by 1

ωR
. Thus, to obtain a statistical security of s bits,

the parties will repeat the above protocol ⌈ s
logωR

⌉ times.

Security. The only security concern in the above protocol, is that something can be learned from the
additive shares of (x · y − r)i. This is prevented by randomizing the sharing when adding J0K2d. Formally,
we define the ideal functionality FcheckTrans in Functionality 4, which receives the sent/received messages
from all parties, and the inputs and randomness of the honest parties. The latter suffices, in our setting of
two-thirds honest majority, to compute all the messages that corrupted parties should have sent in the
protocol. Thus, FcheckTrans can find whether any party have cheated and sent incorrect messages. In case
of cheating, it asks the real-world adversary to provide a pair of parties, such that at least one of them is
corrupted, which is then output to the honest parties. Note that also in the case that no one cheated in
the multiplication protocol, S is allowed to change the output to reject, but then it must provide also a
semi-corrupt pair to eliminate. This captures the case when the corrupted parties send incorrect shares in
the second step of our protocol, causing the verification to fail.

FUNCTIONALITY 4 (FcheckTrans- Verification of messages with Cheating Identification)

Let S be the ideal-world adversary controlling a subset < n/3 of corrupted parties.

1. FcheckTrans receives from the honest parties their inputs, randomness and sent/received messages.
These are used to compute the inputs and randomness of the corrupted parties.

2. FcheckTrans sends S the corrupted parties’ inputs and randomness and all messages the honest parties
claimed to send/receive.

3. Upon receiving from S all messages the corrupted parties claim to send/receive to/from honest
parties:
(a) If there is a contradiction between the message a corrupted party Pi claim to send/receive

to/from an honest Pj , then FcheckTrans sends reject, (i, j) to the honest parties.
(b) Otherwise, FcheckTrans checks that all messages sent from corrupted parties are correct given

their inputs and randomness. If it holds, then FcheckTrans sends accept to S. Otherwise, FcheckTrans

sends reject to S.
– In the former case, S send back either accept or reject, (i, j) to the FcheckTrans, such that either

Pi or Pj (or both) are corrupt. This is then handed to the honest parties.
– In the latter case, S must send back a pair (i, j) such that either Pi or Pj (or both) are

corrupt. Then, FcheckTrans sends reject, (i, j) to the honest parties.

To simulate the protocol, note that by the definition of FcheckTrans, the simulator S receives from the
trusted party computing FcheckTrans all the corrupted parties’ inputs and randomness, as well as all the
10 Note that here we know that Pi is corrupted and we could essentially remove only him. Nevertheless, since

removing a pair of parties (with one of them being corrupt) maintains the threshold while reducing the overall
communication, this is preferable.
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messages sent/received in the protocol by the honest parties. Thus, S can perfectly simulate the first step.
In the second step, it can perfectly simulate the messages sent when verifying msgi for all i such that Pi

is corrupted. This holds since all messages are a function of Pi’s inputs and randomness which are known
to S, and shares distributed by FzeroShare, which is played by S. Finally, when simulating the opening of
msgi for an honest Pi, the simulator S chooses random shares for the subsets containing honest parties
only, under the constraint that all shares will open to msgi and given the corrupted parties’ shares which
are known to S. Since for honest parties it holds that msg′i = msgi, and since all shares are randomized
before opening, it holds that the honest parties’ shares in the simulation are indistinguishable from their
shares in the real execution. The only difference between the simulation and real execution is the case
when FcheckTrans decides to reject, and the honest parties in the simulation accept. This happens when
there is an incorrect message which is not detected since the random linear combination yields the same
result as if correct messages were sent. As we have seen above, this can happen with probability 2−s when
repeating the process sufficient number of times.

We thus obtain the following:

Lemma 4. Our protocol, as described in the text above, computationally computes FcheckTrans in the
(Fcoin,FzeroShare)-hybrid model, in the presence of malicious adversaries controlling d parties, where
n > 3d, with statistical error 2−s.

Communication cost. Assume that the elements in R are represented using ℓ bits. In the first step,
each party broadcasts, on average, 2 messages, and so 2ℓ bits. In the second step, each party sends
(2d+ 1) ·

(
n−1
2d

)
· 2d elements to the other parties and broadcasts one bit, but if only one party in each set

sends the shares and the other parties send a single hash, the factor 2d+1 can be removed, asymptotically.
With this in mind, overall, each party sends approximately

(
n−1
2d

)
· 2d · ℓ+ 2ℓ · |BC| bits, where |BC| is

the cost of broadcasting one bit per party. When repeating the protocol s times, the above is multiplied
by s. Note that the cost is completely independent from the number of verified multiplications.

5.3 Parties’ Elimination and Recovery

In the previous section, we showed how to find a semi-corrupt pair. Once such a pair is found, the parties
need to remove this pair from the computation in a secure way. After removing two parties where at least
one is corrupt the new set of parties contains n′ = n− 2 participants, with d′ = d− 1 being corrupt. This
new set of parameters preserves the required bound d′ < n′/3, since d < n/3. Removing a semi-corrupt
pair is fairly standard technique in Shamir secret-sharing-based protocols (e.g. [7]), and it can be extended
to replicated secret-sharing in a reasonably straightforward manner, which we discuss in detail below.

Removing two parties, from which one is guaranteed to be corrupt, requires the parties to move from
a d-out-of-n secret sharing to a (d− 1)-out-of-(n− 2) secret sharing of each value on the output layer of
the previous segment (which is the last state that was verified and approved by the parties).

For simplicity let us assume that all the values on the output layer of the previous segment are outputs
of multiplication gates (otherwise, they are a linear function of multiplication’s outputs). Recall that in
our DN-style multiplication protocol, the output is computed by taking JrKd + (xy − r). Recall also that
this step is carried-out by having one subset of n− d parties receive xy − r from P1 and add it to their
share of r. To successfully eliminate a semi-corrupt pair, the parties thus need to prepare JrKd−1 and then
let one subset of n− 2− (d− 1) = n− d− 1 parties, that do not contain the two eliminated parties, add
xy − r to their share of r. To achieve this, we leverage the fact that xy − r, as well as each share of r, is
held by a subset of n − d ≥ 2d + 1 parties, which means that among the n − d parties there exists an
honest majority.

Assume that Pi and Pj are the parties to eliminate. The parties work as follows:

1. Random keys update: For each i ∈ [n]: for each subset T ∈ P such that |T | = n− d and Pi, Pj ∈ T ,
the parties in T send the key ki,T to some party Pu /∈ T . If Pu received different value for each key,
then it chooses the majority value.
Then, Party Pu uses these keys to compute rT and adds it to its shares of r.

2. Let P ′ = P \ {Pi, Pj}, n′ = n− 2 and d′ = d− 1. Note that after the previous step, each share of r is
known to a set of active parties of size at least n′ − d′ = n− 2− (d− 1) = n− d− 1.

3. From JrKd to JrKd−1:
– For each subset S ∈ P ′ such that |S| = n′ − d′, the parties in S initialize rS := 0.
– For each subset T ∈ P of size n− d:
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• Case 1 : Pi, Pj /∈ T .
Note that there are n − d subsets of size n′ − d′ in each T (since n′ − d′ = n − d − 1 and(

n−d
n−d−1

)
= n− d). Then:

The subset S containing the first n′− d′ parties in T sets rS ← rS +(n− d) · rT . The other subsets
S of size n′ − d′ parties set their share to be rS ← rS − rT .
• Case 2 : Pi ∈ T ∧ Pj /∈ T or Pj ∈ T ∧ Pi /∈ T .

The subset S = T \ {Pi, Pj} of size n′ − d′ sets it share to be rS ← rS + rT .
• Case 3 : Pi, Pj ∈ T .

Let S = T \ {Pi, Pj}∪{Pu}, where Pu is the party who learned rT in the first step. Then, the
parties in S set: rS ← rS + rT .

4. Updating a multiplication’s output: from JzKd to JzKd−1.
Let T ∈ P be the set of parties holding x · y − r. Then:
– Case 1 : Pi, Pj /∈ T .

Let S be the set of the first n′ − d′ parties in T . Then, the parties in S set: zS = rS + xy − r. For
each subset S′ ∈ P ′ of size n′ − d′ with S′ ̸= S, the parties in S set zS = rS .

– Case 2 : Pi ∈ T ∧ Pj /∈ T or Pj ∈ T ∧ Pi /∈ T .
Note that S = T \ {Pi, Pj} is a set of size n′ − d′. Thus, the parties in S set zS = rS + xy − r,
whereas for each subset S′ ∈ P ′ of size n′ − d′ with S′ ̸= S, the parties in S′ set zS = rS .

– Case 3 : Pi, Pj ∈ T .
The parties in T send xy − r to some party Pu /∈ T . If Pu receives different values, then it chooses
the majority value. Then, the parties in S = T \ {Pi, Pj}∪{Pu} set zS = rS + xy − r, whereas for
each subset S′ ∈ P ′ of size n′ − d′ with S′ ̸= S, the parties in S′ set zS = rS .

Communication cost. The above protocol requires interaction in two steps. First, the parties need to
send all keys that are known by both Pi and Pj . Note that this cost is constant and does not depend on
the size of the circuit. A second source of interaction is the case where both Pi and Pj are in the set of
the parties who hold xy − r for an output wire on the output layer of the last segment. Here we have
n− d elements that are sent for each output wire. Per party, the communication cost is thus bounded by
n−d
n ·W < W , where W denotes the “width" of the circuit, i.e., the maximal number of multiplication

gates that are on the same layer of the circuit. Note that W is always smaller than the size of the circuit,
and for any “natural” circuit is of sublinear size.

6 Securely Computing Any Functionality Over Rings

We are now ready to present our main protocol to compute arithmetic circuits over the finite ring R. As
explained before, the circuit is divided into segments, and each segment is computed separately. That is,
the parties compute the segment using our private multiplication protocol, and then call FcheckTrans to
verify the correctness of the computation. If the parties receive accept from FcheckTrans, then they know
that the secrets shared on the output layer of the current segment are correct, and so they can proceed
to the next segment. Otherwise, they receive a semi-corrupt pair from FcheckTrans which is removed from
the computation. This is carried out by updating the secret sharing of the inputs to the current segment
using our elimination and recovery subprotocol. The segment is then recomputed with less parties. More
formally:

Input sharing step. At the end of this step, the parties will hold a consistent d-out-of-n secret sharing of
each input.

1. The parties set n′ = n and d = t, where n = 3t+ 1.
2. For each i ∈ [n]: party Pi distributes JkiKd to the other parties (the parties run a pairwise inconsistency

check for JkiKd. For each share that is inconsistent, Pi broadcasts the share to the parties). Note that
this step is carried-out once, and JkiKd can be used to many computations.

3. For the jth input xj held by Pi: the parties locally derive JrijKd from JkiKd as shown in Section 4.2.
Then, Pi broadcasts xj − rij to the parties. Finally, the parties locally compute JxjKd = JrijK + xj − rij .

Computing the next segment. This step begins with the parties holding a consistent secret sharing of the
values on the input wires of the segment.

4. The parties compute the segment gate after gate in some predetermined topological order. Linear
gates are computed locally and multiplication gates are computed using Protocol 2.
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5. The parties send their inputs, randomness and sent/received messages in the execution of all multi-
plication protocols in the previous step to FcheckTrans. If FcheckTrans sent accept, then they proceed to
the next segment. Otherwise, they receive from FcheckTrans a pair of parties (Pi, Pj) to eliminate. The
parties then run the elimination and recovery subprotocol, set n′ = n′ − 2, d = d− 1 and go back to
Step 4.

Output reconstruction. At the beginning of this step, the parties hold a d-out-of-n′ secret sharing of each
output. Then, for each output ok intended to party Pi, the parties run reconstruct(JokKd, i).

Theorem 5. Let R be a finite ring, let f be a n-party functionality represented by an arithmetic circuit
over R, and let t ∈ N be a security threshold parameter such that n = 3t+ 1. Then, our main protocol,
as described in the text, computationally computes f in the (FcorRand,FcheckTrans)-hybrid model, in the
presence of malicious adversaries controlling up to t parties.

Proof: Let S be the ideal world simulator. In the simulation, S plays the role of the honest parties, and
the ideal functionalities FcorRand and FcheckTrans. The simulation in each of the steps works as follows:

– Input sharing step: In this step, S sets the input of each honest party to be 0. Then, it follows the
instructions of the protocol. Observe that since an honest majority exists, S receives all the keys that
each corrupted party distributes, and thus it can compute the mask rij for the jth input of the corrupted
party Pi. This enables S to extract the inputs of each corrupted party Pi by computing xi

j = xi
j−rij +rij .

– Segment computation: In this step, S plays the role of FcorRand in the multiplication protocol, and so it
receives all the corrupted parties’ random shares for JrKd, ⟨r⟩U . Then, S follows the instructions of the
protocol playing the role of the honest parties. Since S knows the inputs’ shares and randomness to
each gate, it knows whether cheating took place. Finally, S plays the role of FcheckTrans. If no cheating
took place, then it sends accept to A, and otherwise, it sends reject. In the former case, it waits for A
to send back accept which means that the execution proceeds to the next computation, or to repeat the
computation by handing S a semi-corrupt pair to remove. In the latter case, it waits for A to send him
a semi-corrupt pair.
In the case that a semi-corrupt pair was located and the segment is recomputed, the elimination and
recovery subprotocol is executed. In the simulation, S simply follows the instructions of the protocol
while playing the role of the honest parties.
Observe that since S knows the corrupted parties’ random shares of r and x ·y−r for each multiplication
gate, then it knows the shares of the corrupted parties on each wire of the circuit.

– Output reconstruction: The simulator S sends the corrupted parties’ inputs to the trusted party computing
f , to receive back their outputs. Then, S replaces the shares held by subsets containing honest parties
only, with new random shares that, together with the corrupted parties’ shares (known to S), would
reconstruct to the output received from the trusted party. Then, S plays the role of the honest parties
sending A their shares. Finally, S outputs whatever A outputs.

Observe that the only difference between the simulated and the real execution, is the honest parties’
inputs. However, by the secrecy of the secret sharing scheme, this makes no difference in the input sharing
step. In the circuit’s computation step, by Proposition 1, the view of the corrupted parties is the same
regardless of the used input. Thus, the view of A up to the last step, is distributed the same in both
executions. Finally, in the output reconstruction step, by the secrecy of the secret sharing scheme and
since A’s view till this step is the same in both executions, it follows that the honest parties’ shares of the
outputs are identically distributed in both executions. This concludes the proof.

7 Performance Study

In this section we study the concrete performance of our protocol. Our goal is to illustrate that, by means
of our novel techniques, replicated secret-sharing can be used with reasonable efficiency for more than 3 or
4 parties, which are the traditional settings in which this scheme has been used. To this end, we provide
an assessment of the communication and storage requirements of our protocol, for different parameters, in
Section 7.1. In addition, we completely11 implemented our protocol in C++, and in Section 7.2 we discuss
in detail the experimental results we have obtained. The source code of our implementation can be found
in https://github.com/anderspkd/ccs-DEN22.git.
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Communication

n Share size Mult. gate
(opt/worst)

Checks
(opt/worst)

4 24 B 8 B/16 B 48 B/48 B
7 120 B 9.14 B/27.43 B 480 B/528 B
10 672 B 9.6 B/38.4 B 3.94 KiB/4.45 KiB
13 3.87 KiB 9.85 B/49.23 B 30.94 KiB/35.39 KiB
16 23.46 KiB 10 B/60 B 234.61 KiB/270 KiB
19 145.03 KiB 10.11 B/70.74 B 1.7 MiB/1.96 MiB
22 908.44 KiB 10.18 B/81.45 B 12.42 MiB/14.38 MiB
25 5.61 MiB 10.24 B/92.16 B 89.78 MiB/104.16 MiB
28 35.76 MiB 10.29 B/102.86 B 643.64 MiB/747.8 MiB
31 229.23 MiB 10.32 B/113.55 B 4.48 GiB/5.21 GiB

n
(
n−1
t

)
· ℓ ℓ · (1 + t−1

n
)
/

×(1 + t) Chn
/

+
∑t

ℓ=1 Chn−3ℓ

Table 1. Storage and communication complexity (per party) of our protocol for different number of parties
n = 3t+ 1. The bit-size ℓ of each ring element is assumed to be 64 bits. |BC|, the cost of broadcasting
one bit per party, is taken to be 0 as its contribution is minimal, and the number of repetitions of the
check to achieve negligible soundness is assumed to be 1. We consider the case in which the whole circuit
is one single segment, so only one check is performed at the end of the execution. We report complexities
for the optimistic case where no cheating occurs, and for the worst case where the adversary repeats
the circuit t times (each time with three parties less). This causes a multiplicative overhead of (1 + t)
in the complexity per multiplication gate, and an additive overhead of

∑t
ℓ=1 Chn−3ℓ in the complexity

regarding the checks. Here Chn =
(
n−1
2t

)
· 2t · ℓ+ 2ℓ · |BC|.

7.1 Storage and Communication Costs

Communication costs. We begin by deriving an expression for the communication complexity of our
protocol from Section 6. Let |C| be the size of circuit (measured by the number of multiplication gates).
Let |S| be the size of a segment, and let m = |C|/|S| be the number of segments. Recall that the cost of
our multiplication protocol is 1+ d−1

n ring elements per party, which we upper-bound by 4/3. Furthermore,
let Chn be the cost of the multiplication check with n parties, which equals

(
n−1
2t

)
· 2t ring elements, plus

the cost of broadcasting two ring elements (recall this overall cost is exponential in n, but independent of
the size of the segment). The communication cost of one segment in our protocol is 4

3 · |S|+ Chn ring
elements per party. In the optimistic case, where all parties act honestly, there are m = |C|/|S| segments
executed, which leads to a communication complexity of 4

3 |C|+m · Chn ring elements per party.
In the case of active cheating, several segments might be executed multiple times. The exact commu-

nication complexity in this case depends heavily on where the adversary cheats, and how many times
he does so. However, in terms of the worst case it is easy to see that the scenario that leads to the most
expensive communication complexity is when the adversary behaves honestly for all segments except for
the last one, point in which the adversary misbehaves, making this segment be executed t more times,
reducing the number of parties by three in each repetition.12 As a result, the worst case communication
complexity in the event of active cheating by adding, to the optimistic case above, the cost of the t extra
repetitions, which is given by 4

3 |S|t+
∑t

ℓ=1 Chn−3ℓ.
This way, we can write the worst case complexity per party as

4

3
|C|(1 + t

m
) +m · Chn +

t∑
ℓ=1

Chn−3ℓ.

We discuss possible choices of m below.

Concrete complexity for certain parameters. As we have mentioned, certain metrics of our protocol
increase exponentially with the number of parties. For instance, the communication complexity of the
11 Except for some minor steps that are not expected to affect runtimes drastically.
12 The protocol from Section 6 is described as removing two parties in each repetition, but it is easy to see that

the bound t < n/3 can be preserved while removing three, which helps efficiency and results in the four-party
case being the base case.
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final check, although is independent of the number of multiplications being checked, is exponential in n.
In addition, storage complexity, which is directly related to the size of each share, is exponential in n, and
this also affects computation involving shares, like locally adding secret-shared values or reconstructing
a secret from a given set of shares. However, we recall that a crucial aspect of our protocol is that its
communication complexity, apart from the final check, does not grow exponentially with the number of
parties, and in fact it is kept constant (per-party); this is in contrast to many existing work that makes
use of replicated secret-sharing.

In Table 1 we see the share size, together with the communication cost of each multiplication gate
and the final check, per party, for a 64-bit ring and increasing number of parties. We consider one single
segment corresponding to the whole circuit, meaning that m = 1, and there is only one single check at the
end of the execution. We report complexities for both the optimistic case (when there is no cheating) and
the worst-case (when the circuit is re-run t more times, each with 3 parties less).

In the optimistic case, the communication cost per multiplication gate (regardless of the number of
parties) is kept under 11 bytes, while in the worst case when the circuit is evaluate t more times it goes
up by a factor of (1 + t)×. This multiplicative overhead takes a toll when n is moderately large, like for
n = 31, where it increases the cost per gate from around 10 to 110 bytes, an overhead of 10×. Regarding
the communication arising from the different checks, in the optimistic case only one check is executed, but
in the worst case t more checks must be performed, each with three parties less. Fortunately, from Table 1
we see that this overhead, being additive, is quite small with respect to the check in the optimistic case,
increasing from around 4.5 to 5.2 gigabytes for n = 31, for example.

We see that the communication complexity of the final check grows very fast, even when compared to
the share size. However, we stress that this is only executed once at the end of the protocol. Depending
on the application at hand, this overhead could be considered acceptable with respect to the rest of the
computation. To illustrate this we study, for different number of parties, the number of multiplications
needed so that the communication complexity involved in their computation matches the communication
complexity of checking them, which means that the overhead of the final check at this point is 2x, and it
approaches 1x as the number of multiplications grow.13 For moderately large values of n such as n = 10,
the check costs the same as less than one thousand multiplications, and for larger values like n = 22,
the check costs the same as a bit over one million multiplication. This grows up to roughly one billion if
n = 31. A detailed analysis for more values of n appears in Section D.1 in the Appendix. Furthemore,
other additional aspects of the communication complexity of our protocol appear in Section D in the
Appendix.

Finally, the share size, which grows exponentially with n, is kept in the order of bytes for n = 4, 7, 10,
kilobytes for n = 13, 16, 19, 22, and tens of megabytes for n = 25, 28. For n = 31, this size reaches around
200 megabytes, which is large when considering that this corresponds to each shared value. However,
the following optimization can prove to be crucial for reducing the impact of this overhead in practice.
As currently described, our protocol requires the parties to store all the secret-shared values computed
in a given segment, to be able to check them at the verification step. Instead, the parties can sample
the random coefficients δi used to compress the values to be checked via a linear combination on the fly.
In a bit more detail, after performing the computation of a given multiplication layer of the circuit (in
particular, after the adversary committed to its errors) the parties sample the necessary random values
for the given layer, and aggregate these into a small amount of secret-shared values that correspond to
these computed in the final verification step. This way, the parties can discard the shares obtained in
a given layer (unless they are required for a subsequent step in the computation). A similar approach
was also used in the context of MPC with dynamic participants in [23], in order to reduce the number of
shared values needed from one round to the next.

On the choice of m. For the results in Table 1 we have chosen m = 1, so we regarded the whole circuit as
one single segment, and only one check is performed at the end. If this check fails then the entire circuit is
re-run, with three parties less. Choosing m = 1 leads to the best possible total communication complexity
in the optimistic case (which is arguably the scenario more relevant in practice), but the gap between
the optimistic and worst-case scenarios is very large. If, instead, it is the goal to minimize this gap, we
could take larger values of m. For example, m = t leads to an overhead in the amortized communication

13 We remark that this only measures the amount of messages sent. We must take into account that the computation
of the multiplication gates happens in several rounds, while the check only uses a constant number of rounds,
which in practice makes it more efficient to compute even if its communication is the same (or even more) than
evaluating several multiplications.

21



complexity per multiplication gate in the worst-case of only 2× with respect to the optimistic case, but
now the latter is more expensive as the check is performed t times, instead of just one.

Different choices of m lead to different performance results, and which one is optimal depends on the
expected “amount of cheating”. We defer to Section D.2 in the Appendix a more detailed discussion on
some concrete values of m and their effect on the communication complexity.

7.2 Experimental Results

We created a proof of concept implementation of the core parts of our contribution, namely the multiplica-
tion and check protocols. Our intention is to investigate, in concrete terms, the overhead of our techniques
with a varying number of parties and computation sizes. Our implementation can be found alongside this
submission, as can all the experimental data we generated and analyze in this section. To the best of our
knowledge, our implementation and evaluation constitute the first set of experimental results regarding
replicated secret-sharing for an increasing number of parties.

Our implementation was written in C++ and all experiments where run on a single c5.4xlarge AWS
instance, with each party being executed in a different procedure. We set our experiments in a study
a WAN by setting a delay of 100ms and a bandwidth of 100 Mpb/s. We believe that this creates an
experimental setup that is easier to replicate. We choose a prime field of approximately 64 bits (so in
particular, the final check only needs to be repeated once for a statistical security of ≈ 2−64).

Experiments Recall that, when the number of parties increases, storage, local computation and the
communication of the final check increase exponentially, but the communication complexity per multipli-
cation gate remains constant. As a result, one might expect our protocol to not be very competitive in
scenarios such as the following:

– The number of parties is large (so storage and local computation becomes very expensive), and
– The network is reasonably fast14 (so the fact that the communication per multiplication is small does

not provide a benefit with respect to the first item), and
– The circuit is relatively small (so the benefit of the complexity of the final check being independent of

the circuit size matters less).

However, our protocol can potentially become competitive if any of these conditions does not hold.
The goal of our experiments is to study precisely this hypothesis, that is, in which settings the exponential
nature of our protocol represents an insurmountable overhead, and which cases our protocol can prove
beneficial.

We run several experiments to investigate the computation and communication complexity. While the
communication complexity has already been analyzed in the previous section, the computation complexity
has not. In particular, the use of replicated secret-sharing imposes a non-trivial computationally overhead
due to all of the combinatorics involved. Thus the goal is to shed some light on how this complexity grows
with the number of inputs and parties, respectively.

For both multiplication and check protocols, we run several experiments where we vary the number of
inputs and parties, respectively. We expect to see that local computation matters more, the higher the
number of parties, and that this complexity outweighs the communication complexity.

Multiplication Our first experiment perform a number of multiplications, where we measure the time
to compute the product ⊙ between the shares; the time it takes to send around shares, and the time it
takes to receive and adjust them. Results can be seen in Figure. 1. What is clearly, visible, is that local
computation quickly becomes dominant, as the number of multiplication grows and parties grows.

Check Our second experiment, executes the check protocol on a variable number of multiplications. The
results can be found in Figure. 2. As expected, we see that the time is essentially constant, regardless of
the number of multiplcations. (The outlier for n = 4, 7 can be explained by variability in the experimental
data, and we believe it should dissapear by increasing the number of trials.)

However, we also see that local computation (represented by the blue bar) increases in significance as
both the number of parties and the number of things to check, increases.

14 This is partly our motivation for choosing a (simulation of a) WAN network for our experiments.
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Fig. 1. Multiplication protocol. Each graph represents a different choice for the number of parties
n ∈ {4, 7, 10, 13, 16} while each bar in each graph represents the number of multiplications performed
(x-axis). The y-axis represents time in microseconds. In each graph the blue section corresponds to the
local product each party performs, the red section is the time it takes to send these messages to P1, and
the beige section is the time it takes for P1 to send the reconstructions back.

n Input phase (s) Mult. phase (s) Check phase (s)

4 0.6 1.5 0.6
7 1.2 2.4 0.6
10 1.8 3.9 0.8
13 2.5 39.5 25.6

Table 2. End-to-end runtimes (in seconds) for a circuit with 100 input gates and 10000 multiplication
gates distributed across one layer, for a varying number of parties.

End-to-End Finally, for the sake of completeness we include some end-to-end results. As we have already
argued, our main goal is to explore the concrete practicality of replicated secret-sharing-based protocols
for increasing number of parties, for which the experiments presented in previous section are more useful
since they show the relative performance of the different parts of our protocol, and they allow us to see
how the exponential blow-up of our protocol manifests itself in practice. However, we believe it is fruitful
to consider end-to-end runtimes as a rough estimate of how our protocol would fare in certain tasks. We
warn, however, that these numbers are highly volatile as they strongly depend on the experimental setting,
quality of implementation, etc., and they should only be used as a coarse guideline.

We consider a circuit with 100 input gates, and 10000 multiplication gates distributed across one layer.
Our results are presented in Table. 2.

Discussion The results of the experiments we performed seem to be in accordance with our hypothesis.
Specifically, local computation quickly becomes dominant, in particular in the multiplication protocol,
and so our protocol would, in those cases, benefit more from a slower network.

This is in particular relevant, taking into consideration low communication cost of the check, as pointed
out earlier.
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A Example: Four Parties and One Corruption

Our protocol works for any number of parties n and adversarial threshold t < n/3. However, as mentioned
in Section 1.2, a big body of research has been devoted to the case of t = 1 and n = 4. In this section we
give an alternative presentation of our protocol for this concrete case.

A.1 Replicated Secret-Sharing

Let P1, P2, P3, P4 be the set of parties. First we describe the main secret-sharing scheme used, which is
replicated secret-sharing with threshold 1.

– share(x): To share a secret x with threshold 1, the dealer samples four random values x1, . . . , x4 ∈ R
under the constraint that x = x1 + x2 + x3 + x4. P1 gets (x2, x3, x4), P2 gets (x1, x3, x4), P3 gets
(x1, x2, x4) and P4 gets (x1, x2, x3). JxK denotes the collection of these shares.

– reconstruct(JxK, i): In this interactive procedure, each party Pj for j ̸= i sends xj to Pi, who takes the
majority of the values received and reconstructs x = x1 + x2 + x3 + x4.

Observe that each share xi is held by the parties {Pk}k ̸=i. However, a dishonest dealer can distribute
shares in such a way that these parties do not get the same xi. We say that the shares JxK are consistent
if, for every i ∈ [4], the honest parties among {Pk}k ̸=i receive the same value xi.

Checking that a dealer distributed shares JxK consistenly can be done by asking each pair of parties Pi

and Pj to exchange their common shares xk for k /∈ {i, j}, verifying that they coincide. For verifying the
consistency of multiple shared values, the parties can exchange hashes instead of the actual shares.

It is easy to see that if a sharing JxK is consistent, then Pi is able to learn the correct secret x after
the execution of reconstruct(JxK1, i). This is because Pi receives the missing share xi from at least two
honest parties, which are guaranteed to hold the same value due to the consistency of the sharing.

Shares of Shares Finally, we notice that if the parties have shares JxK, with x = x1+x2+x3+x4, then the
parties also have JxiK for i ∈ [4]. This is because we can define xij = xi for j = i, and xij = 0 otherwise,
so xi = xi1 + xi2 + xi3 + xi4, and it can be easily checked that each party Pk can compute xij for j ̸= k.

Threshold 2 We will also need replicated secret sharing with threshold 2, which is denoted by LxM. In
such sharing, each party Pi holds xjk with i ̸= j and i ̸= k, where x = x{1,2} + x{1,3} + x{1,4} + x{2,3} +
x{2,4} + x{3,4}. For simplicity we write x{i,j} = xij , implicitly understanding that xij = xji. For example,
P1 has (x23, x24, x34) as his share.

Observe that in the above sharing Pi is missing the shares xij for j ̸= i. For reconstruction, Pi can
receive this value from Pℓ, where ℓ /∈ {i, j}. Since there are two such possible indexes ℓ1, ℓ2, we ask
Pℓ1 to send xij to Pi, while Pℓ2 sends a hash of xij , where ℓ1 < ℓ2.15 This procedure is denoted by
reconstruct(LxM, i).

If Pi receives inconsistent values from Pℓ1 and Pℓ2 , then Pi broadcasts a complaint to the other parties,
together with the two inconsistent values. Then Pℓ1 and Pℓ2 respond by broadcasting the actual values
that they sent Pi. Based on this the parties can identify a semi-corrupt pair: if the announced messages
by Pℓ1 and Pℓ2 do not coincide, then (Pℓ1 , Pℓ2) is a semi-corrupt pair. Else, if Pi’s message disagrees with
the one from Pℓ1 , (Pi, Pℓ1) is a semi-corrupt pair, and finally, if Pi’s message disagrees with the one from
Pℓ2 , then (Pi, Pℓ2) is a semi-corrupt pair.
15 This is mostly useful when reconstructing multiple values at once, as must be done in our protocol. In this case

Pℓ2 only sends a hash of the concatenation of all the shares xij .
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Local Operations It is easy to see that the parties can locally add their shares of JxK and JyK to obtain
shares Jx · yK. Furthermore, the parties can obtain shares Jx+ eK from JxK if the value e is known by three
parties Pi, Pj , Pk, by simply letting these parties add e to their share indexed by ℓ ∈ [4] \ {i, j, k}.

Finally, the parties can locally obtain shares Lx · yM from JxK and JyK. This is denoted by Lx · yM =
JxK · JyK, and this proceeds as follows: Pi initially defines zjk = xj · yk + xk · yj , for j, k /∈ {i} with
j ̸= k. Then, Pi updates zi+1,i+2 ← zi+1,i+2 + xi+1 · yi+1 + xi+2 · yi+2.16 It can be checked that
x · y = z12 + z13 + z14 + z23 + z24 + z34, so the parties have shares Lx · yM.

A.2 Non-Interactive Correlation Generation

In our protocol the parties need to make use of certain preprocessing material that can be generated from
a simple setup. We discuss this below.

Setup We assume that the parties hold Jk(i)K for i ∈ [4], where Pi knows the random key k(i) ∈ R. This
can be done by asking Pi to sample k(i) ∈ R uniformly at random, and then followed by Pi acting as a
dealer to distribute shares, together with a consistency check.

Shared random values Given k ∈ R such that the parties hold shares JkK, the parties can locally obtain
JFk(x)K for any input x by setting Pi’s share to be {Fkj (x)}j ̸=i. Here k = k1 + k2 + k3 + k4. We denote
this by JFk(x)K = FJkK(x). If some party Pi knows k, then this party knows Fk(x).

Double sharings We use ⟨x⟩ to denote additive secret sharing among P1, P2, P3 of x. Let JkK =
Jk(1)K + Jk(2)K + Jk(3)K. The parties can locally obtain JrK where r = Fk(x) as indicated above. Since Pi

knows k(i), this means that (r1, r2, r3), with ri = Fk(x), constitute sharings ⟨r⟩. Furthermore, the parties
have Jk(i)K, they can obtain JriK, which means that the additive shares of r are J·K-shared among the
parties. The pair (JrK, ⟨r⟩) is called a double-sharing, and we assume that the parties use a pre-agreed
different input x for double-sharing generation (e.g. a counter).

Shares of zero Given k ∈ R in secret-shared form JkK, the parties can obtain randomly-looking shares
of zero L0M as follows. Let ri = Fki

(x). Define the share zi+1,i+2 = ri+1 − ri+2 for i ∈ [4], and zjk = 0
otherwise. Observe that each party Pi can locally compute zjk for j, k /∈ {i}, and 0 =

∑
i≤j zij .

A.3 Input Phase

Let xi be the input of Pi. To distribute shares of this input, let Jk(i)K be the shares of the key k(i)

distributed by Pi as part of the setup phase. Then Pi broadcasts xi − ri to the parties, where ri = Fki
(x),

who locally compute JxiK = JriK + (xi − ri). Notice that the parties have shares JriK, as described in the
previous section.

A.4 Secure Multiplication

The protocol is presented as Protocol 6. It is a direct instantiation of Protocol 2 to the case of n = 4. The
messages sent by the parties are made more explicit in order to showcase the communication pattern.

Communication Complexity. We see that P2 and P3 send one element each to P1, who sends one element
back to P2 and P3, resulting in a total of 4 ring elements being communicated. Observe also that P4 is
not involved in any of these interactions. As observed in Section 7, the communication pattern of our
protocol enables running the computation among 2t+ 1 = 3 parties only, requiring only the involvement
of the remaining party for the final check, discussed in the next section.

Observe that, if P4 does not need to provide input, it does not even need to participate of the input
protocol. Hence, we can think of our protocol as a three-party protocol that requires the aid of a fourth
party that joins only during the final check phase. This fourth party only needs to share the same set-up
as the other parties, which in fact can be distributed to this extra party during the final check phase (so it
does not even need to share some state with the other parties prior to joining the verification step).

The above is in contrast to other existing four-party protocols such as [37,44], which require permanent
participation from all the four participants (on top of requiring more communication per party). However,
other four-party works like [29,45] also allow for active participation from two parties only.
16 For the rest of this section, the subindices wrap around modulo 4 in the set [4].
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PROTOCOL 6 (The Optimized DN Multiplication Protocol)

– Inputs: The parties hold JxK, JyK.
– Setup: The parties obtain a double-sharing (JrK, ⟨r⟩) non-interactively. The additive shares are

denoted by (r1, r2, r3).
– The protocol:

1. P2 sends e2 = x1y3 + x1y4 + x2y1 + x3y1 + x4y1 − r2 to P1, and P3 sends e3 = x1y2 + x2y1 − r3
to P1.

2. P1 reconstructs xy − r = e1 + e2 + e3, where e1 = −r1 +
∑4

i,j=2 xiyj .
3. P1 sends e = xy − r to P2 and P3.
4. The parties output the shares JzK = JrK + e.

A.5 Identifying a Semi-Corrupt Pair

Now we discuss how the parties can detect that some party cheated in the multiplication protocol. For
simplicity we discuss how this is done for the case in which there is only one multiplication. If there are
many, the transcript can be compressed into one single check, as discussed in Section 5.2.

We make use of the notation of the protocols above. Let JxK and JyK be the inputs to the multiplication
protocol. As discussed in Section A.1, the parties automatically hold shares JxiK and JyiK for i ∈ [4]. Also,
by design of the non-interactive procedure to generate the double-sharings from Section A.2, this also
holds for the additive shares JriK, i ∈ [4].

The verification protocol is presented as Protocol 7.

PROTOCOL 7 (Semi-Corrupt Pair Detection)

– Inputs: JxK, JyK, and the double-sharing (JrK, ⟨r⟩).
– The protocol:

1. P1 broadcasts e2 and e3, P2 broadcasts e2 and P3 broadcasts e3. The parties output a semi-
corrupt pair (P1, Pj) if the message ej announced by P1 and Pj are not consistent.

2. The parties locally compute

Le2M = Jx1K · Jy3K + Jx1K · Jy4K + Jx2K · Jy1K
+ Jx3K · Jy1K + Jx4K · Jy1K − Jr2K + L0M

and
Le3M = Jx1K · Jy2K + Jx2K · Jy1K − Jr3K + L0M.

3. The parties call reconstruct(Le2M, i) and reconstruct(Le3M, i) for i ∈ [4] to reconstruct these values
towards the parties.

4. If no semi-corrupt pair was identified in the previous step, then the parties proceed as follows
• If the e2 reconstructed from the previous step is different from the one announced by P1 (or

P2, which have been checked to be the same) in the first step of the protocol, then the parties
output the corrupt party P1.

• If the e3 reconstructed from the previous step is different from the one announced by P1 (or
P3, which have been checked to be the same) in the first step of the protocol, then the parties
output the corrupt party P3.

B Reducing the Number of Rounds

Our protocol, which is based on the DN protocol, requires two rounds to evaluate a single multiplication
gate: one round for the parties to send shares to the “king” P1, and another round for this party to
send the reconstructed masked value to (a subset of) the other parties. In [38], a method to securely
evaluate two multiplication layers using two rounds, which amounts to one round per layer overall, is
presented. However, this is introduced in the context of the original DN protocol, which makes use of
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Shamir secret-sharing. In this section we show that these techniques can also be used in our current
setting with replicated secret-sharing to achieve one-round multiplication without substantially hurting
communication complexity. Furthermore, we combine the techniques from [38] with these from [8] in order
to futher optimize our protocol. We remark that such optimizations, with some tweaks, can also be applied
to the original work of [38] with Shamir secret-sharing, improving over that protocol.

B.1 Applying ATLAS to our Setting

The intuition of the round compression techniques in [38] are as follows. For illustrative purposes suppose
we have a two-layer circuit like this: there are four inputs x1, x2, y1, y2, the first layer multiplies z1 = x1 ·y1
and z2 = x2 · y2, and the second layer multiplies w = z1 · z2. The goal is to evaluate these two layers in
two rounds. To do this, the parties begin as in our current protocol: to multiply xi · yi, 2t parties send in
the first round their shares of ei = xi · yi − ri to P1, and in the second round, P1 will send e1 and e2 to all
the parties (in our original protocol from Section 5.1 it suffices for P1 to send these values to a subset of
the parties, but here P1 needs to send these to all the parties).

At this point the parties can define JziKd = JriKd + ei for i = 1, 2 as in our original protocol, but the
ultimate goal is to obtain Jw = z1 · z2Kd, and no more communication is allowed given that two rounds
have been already spent. However, this can be done by noticing that, if the parties had preprocessed
Jr1 · r2Kd, they could compute JwKd = e1 · Jr2Kd + e2 · Jr1Kd + Jr1 · r2Kd + e1 · e2. Intuitively, one could say
this techniques uses the masked values e1 and e2 as the openings required for Beaver-based multiplication,
where the corresponding multiplication triple is (Jr1Kd, Jr2Kd, Jr1 · r2Kd).

B.2 Using the Turbospeedz Invariant

Coupled with the above, we can also make use of the invariant for secure computation introduced in [8].
Currently, in order to securely evaluate a given circuit, the parties hold shares JxKd of each intermediate
value x. Progress through the computation is guaranteed via the linearity of J·Kd, together with our
multiplication protocol. Furthermore, privacy is achieved since an adversary controlling at most d parties
cannot infer anything about x from JxKd.

An alternative invariant is proposed in [8] where, instead of the parties holding shares JxKd of each
intermediate value, the parties hold shares of a completely random value JλxKd, together with a public
value µx known to all parties that perfectly hides the actual wire value x as µx = x−λx. If x is the output
of an addition gate x = u+ v, then we assume that λx = λu + λv. This ensures that the invariant can be
preserved through addition gates by also defining µx = µu + µv. In what follows we discuss how this new
invariant can be combined with the techniques sketched in the previous section to further improve our
protocol.

B.3 Final Protocol with Passive Security

We begin by describing, for the sake of simplicity, the passively secure version of our optimized protocol.
The fully-secure version is described below in the next section. Here, because of the adversary being
passive, we can further modify the required invariant by allowing µx to be only known by the parties in
the fixed set U .

Our goal is to maintain the invariant previously described, namely, for every intermediate wire value
x, the parties hold shares of a uniformly random value JλxKd, together with a publicly known value µx

satisfying µx = x− λx (with the additional restriction for output wires of multiplication gates). These
sharings can be processed non-interactively as described in Section 4.2. This invariant can be achieved
for input gates by simply enabling each party Pi to learn λx, with x being an input wire associated to
this party, and asking this party to broadcast µx = x− λx. For the other wires in the circuit, the parties
proceed as we describe below.

We begin by splitting the layers (after the input layer) into groups of two layers each, and assume for
the sake of recursion that the invariant already holds for all the wires originating from previous layers.
First, the parties execute the following local operations:

1. For every multiplication gate in the first layer taking inputs x and y, the parties preprocess JλxλyKd. Let
JλzKd be the random value associated with the output z = x · y. The parties in U , knowing (µx, JλxKd)
and (µy, JλyKd), compute locally JzKd = µyJλxKd+µxJλyKd+µxµy+ JλxλyKd and JµzKd = JxyKd− JλzKd.
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2. Consider a multiplication gate in the second layer taking inputs u and v, and producing output w = uv.
Observe that the parties in U have JuKd and JvKd.17 Let JλwKd be the random value associated with
the output z = x · y, and assumed it is preprocessed together with ⟨λw⟩U , as in Section 4.2. At this
point the parties in U can locally compute ⟨µw⟩U = JuKd ⊙U JvKd − ⟨λw⟩U .

Once this is done, the parties engage in the following two-round interaction:

1. For every multiplication gate in the first layer with output z, the parties in U have JµzKd; In case the
output wire of this gate is also used as an input to a gate of the first layer, then d+ 1 of these parties
in U send their share to P1.18 For every multiplication gate in the second layer with output w, the
parties in U have ⟨µw⟩d; the parties in U send their shares to P1.

2. P1 reconstructs µz and µw for every mutiplication gate as above, and send these values to the parties
in U .

After this interaction, the invariant is now preserved for the outputs of the current pair of layers, which
concludes the presentation of the protocol

Communication cost. Let us consider a given pair of subsequent layers being evaluated with the technique
above, and let N1 and N2 be the number of multiplication gates in the first and second layers respectively.

In the optimistic scenario, which applies to many natural circuits, the cost for the first type of gates
is n + d − 1 sent elements in the offline phase and the online phase requires no interaction. For the
second type, there are 2d messages to P1, and again n − 1 messages back. Hence, the total cost is
N1(n+ d− 1) +N2(2d+ n− 1) elements being communicated.

Assuming the circuit is balanced, i.e., N1 = N2 =: N/2, we have that the cost is N
2 · (2(n− 1) + 3d),

which since n− 1 = 3d, is equal to N · 32 (n− 1) elements. Thus, the communication cost per gate is ≤ 3
2

elements per party. In the 4-party setting, the cost is 9
8 elements per gate sent per party.

However, in case the circuit has a “bad" structure, i.e., each gate from the first layer feeds gates from
both layers, then we need to add communication cost for the first layer of d messages towards P1 and n− 1
messages from P1 to the parties. In this case, the total cost is N1(2(n+ d− 1)) +N2(2d+ n− 1), and so
assuming N1 = N2 =: N/2 as before, this can be approximated to N

2 · (4d+ 3(n− 1)). This corresponds
to an amortized communication complexity of 2d+ 3

2 (n− 1) elements per gate. Given that n− 1 = 3d,
this is equal to 13

6 (n− 1) elements and so ≤ 2 1
6 elements per gate for each party. In the 4-party case, this

amounts to 13
8 elements per gate per party.

B.4 Achieving Full Security

To achieve full security, the parties need to verify that the correct messages were sent in the protocol
above. Note that there are three types of interactions to check: (i) interaction to compute the second layer
of gates in the above description; (ii) interaction to convert additive shares on the output wires of the first
layer of gates in the above description, into public masked values (to maintain the invariant on the wires);
and (iii) interaction to compute the preprocessed random triples (JλxK, JλyK, JλxλyK) for the gates in the
first layer.

Note that in (i) and (iii) the parties simply run the DN protocol as in Section 5.1. Thus, verification
can work exactly as before, namely, as we described in Section 5.2. It remains to show how verifying
correctness for (ii) takes place. Recall that here the parties simply reveal µz by having d+ 1 parties send
shares to P1 who reconstructs µz and sends it back to the parties. Observe that at the begining of this
interaction, the parties hold JµzK, which means that µz is shared in a robust way across the parties. This
implies that in particular each share of µz is known by a majority of honest parties. Thus, we can apply
the same verification mechanism as before. Specifically, the parties first agree on the compressed transcript
by having each party who participated in the interaction publishing a random linear combination of
the its sent and received messages. Then, the parties can verify each party’s compressed message by
reconstructing it. Namely, each party who holds the shares that were sent by some party Pi to P1 compute
17 Indeed, if u (or v) is an output from a multiplication in the previous layer, then this follows from the first item.

If u (or v) is an output from a previous layer, then the invariant implies that the parties in U know µu (or µv),
so in particular they can define JuKd = µu + JλuKd (and similarly JvKd).

18 An important optimization is that, if the value z is only intended to be used as an input to multiplication gates
in the second layer, then the parties do not need to send this to P1. This is because the parties already used
JµzKd to compute the gate in the second layer where z appears as input, and they do not need to learn µz

anymore.
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Fig. 3. Number of multiplication gates required (in terms of the number of parties) in order to match
the communication cost of evaluating these gates with the cost of the final check. This is computed by
dividing the communication cost of the final check by the communication cost of a single multiplication
gate. When this number of gates is reached then the overhead of the final check is only 2x.

the random linear combination of these shares and publish it. Since each share is known by a majority
of honest parties, the parties will obtain the correct value and identify any cheating by Pi. Finally, if
all messages sent to P1 are correct, the parties can emulate P1’s role and verify the correctness of his
compressed message.

Note that the cost of the verification protocol remains constant, as in our main construction, and thus
is amortized away.

C More Comments on the Communication Costs

C.1 Overhead of the Final Check

The communication complexity of the final check FcheckTrans, although independent of the number of
multiplications being checked, grows exponentially with the number of parties. Hence, a natural question
is: at what point is the number of multiplication gates large enough so that the overhead of this final
check is less noticeable? To this end, in Fig. 3 we plot, in terms of the number of parties, the necessary
number of multiplication gates so that the communication complexity of securely computing them equals
that of the final check. In other words, when this number of gates is reached the overhead of the final
check is exactly 2x, and with more gates, the overhead shrinks accordingly (e.g. with k times the number
of gates the overhead becomes 1 1

k ).
We observe that, for circuits having one million (106) gates, we can reach up to 22 parties with a final

check that only doubles communication complexity, and if the circuit has one billion (109) gates then the
number of parties can be increased up to 31 while keeping the overhead of the final check below 2x. This
number of gates can be easily encountered, for example, in securely training/evaluating certain neural
network architectures (e.g. GPT319 itself has 175 billion parameters, which translates to roughly the same
number of multiplications).

C.2 On the Amount of Segments

Recall that the communication complexity of computing a circuit C depends on the amount of segments
m, and it also differs in the optimistic case with respect to the worst case. In the optimistic scenario
where there is no cheating, the communication complexity to evaluate a circuit C can be written as
|C| · (opt_mult) + (opt_check), while in the worst case where the last segment is executed t more times,

19 https://arxiv.org/abs/2005.14165
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Circuit size

m 103 104 105 106

Opt.

1 1.71 MiB 1.8 MiB 2.66 MiB 11.34 MiB
10 17.01 MiB 17.09 MiB 17.96 MiB 26.63 MiB
25 42.5 MiB 42.59 MiB 43.45 MiB 52.13 MiB
50 84.99 MiB 85.08 MiB 85.94 MiB 94.62 MiB

Worst

1 2.03 MiB 2.64 MiB 8.71 MiB 69.42 MiB
10 17.27 MiB 17.41 MiB 18.8 MiB 32.68 MiB
25 42.77 MiB 42.87 MiB 43.95 MiB 54.7 MiB
50 85.25 MiB 85.35 MiB 86.32 MiB 96.04 MiB

Ratio

1 1.19 1.47 3.27 6.12
10 1.02 1.02 1.05 1.23
25 1.01 1.01 1.01 1.05
50 1 1 1 1.02

Table 3. Total communication complexity in the optimistic and worst-case scenarios for different circuit
sizes and different values of m, the number of segments. Here n, the number of parties, equals 19. We
note that the gap between the optimistic and worst-case scenarios is larger for small m, and this is more
notorious as the circuit size grows larger. This gap shrinks if m increases, but at the expense of making
the complexities concretely much more expensive.

each with three less parties, we can write this as |C| · (worst_mult) + (worst_check). We can find close
formulas for these quantities:

opt_mult =
4

3

worst_mult = opt_mult · (1 + t

m
)

opt_check = m · Chn

worst_check = opt_check+

t∑
ℓ=1

Chn−3ℓ,

where Chn =
(
n−1
2t

)
· 2t. In Section 7.1 we reported concrete costs for the case in which m = 1, which

minimizes opt_check, and hence minimizes the total communication complexity of the optimistic case.
In the event of a real-world deployment the choice m = 1 is arguably the most sensible one in practice.

Nevertheless, it is still relevant to explore the trade-offs of considering other values of m. As m increases,
the ratio between the total communication complexity in the worst case w.r.t. the optimistic case gets
smaller, which can be interpreted as reducing how much adversarial behavior can affect the communication
complexity. However, this happens at the expense of increasing the concrete complexity of the optimistic
case, which may not be ideal.

We explore in Table 3, for different choices of m, the total communication complexity in both the
optimistic and worst-case settings, for a fixed number of parties and for a varying range of circuit sizes.
The table confirms our observations that the gap between the optimistic and the worst-case settings
shrinks if we choose a larger m, but this increases the concrete efficiency of the optimistic (and hence the
worst-case) scenario.

C.3 Comparison with [34]

Let us assume that ωR ≈ 2s, so the number of repetitions needed for the final check is only 1. Furthermore,
let us assume that |S| = |C|, that is, the whole circuit is the only segment. In this setting, the total
communication of our protocol is C1 = (1+ t−1

n ) · |C|+ |FcheckTrans|, where |FcheckTrans| =
(
n−1
2t

)
·2t (ignoring

the cost of broadcast). On the other hand, under these circumstances the communication complexity of
[34] is C2 = 2 2

3 · |C|+ 6 2
3n. Their communication per multiplication is higher than ours, but the additive

term independent of the circuit size is smaller. It is important to take into account at this point that our
protocol achieves G.O.D. , while the protocol from [34] only ensures fairness.

We are interested in the behavior of the quotient C2/C1, which represents the improvement factor of
our work with respect to [34]. For fixed n, this quotient approaches 2 as |C| → ∞, but our goal is to
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Fig. 4. Improvement factor of our protocol with respect to the one from [34] as the number of multiplication
gates grow, for some values of n. Asymptotically, our protocol performs two times better than the one
from [34], but as n grows the number of multiplication gates required to reach that factor increases
(exponentially).

determine more concretely at which point this happens. To this end, in Figure 4 we plot this quotient for
n ∈ {4, 10, 16, 22}. We observe that for a small number of parties, like n = 4 or n = 10, even relatively
small circuits with a few thousand multiplication gates already benefit from our protocol, which has a
communication complexity of roughly half with respect to [34]. For larger values of n, like n = 16 and
n = 22, the threshold in which the improvement factor starts approaching 2 is above ≈ 105 and ≈ 107

multiplication gates, respectively.
We remark that our protocol, in contrast to the one from [34], does not make use of polynomial-based

arithmetic, and instead, only uses simple integer arithmetic. In addition, the communication of our protocol
is less during most of the protocol execution, with the heaviest messages appearing at the end at the
verification stage.

C.4 Communication Pattern

Another feature of our protocol that has practical impact is that its communication pattern is such that
not all parties need to interact in the execution of the protocol, except for the final verification step, where
all the parties are involved. Indeed, we see that, for each multiplication gate, the communication pattern
follows a star topology in which the 2t parties in the set U \ {P1} send messages to P1, who then replies
back to these parties. The remaining ≥ t parties are inactive during these executions, and only participate
in the final verification phase. This is important since it reduces communication channels, and allows us
to save in other resources like monetary costs of keeping parties alive.
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