
Byzantine Fault Tolerance fromWeak Certificates
Sisi Duan

Tsinghua University

duansisi@tsinghua.edu.cn

Haibin Zhang

Beijing Institute of Technology

haibin@bit.edu.cn

Xiao Sui

Shandong University

suixiao@mail.sdu.edu.cn

Baohan Huang

Shandong University

huangbaohan@mail.sdu.edu.cn

Changchun Mu

Digital Currency Institute, the

People’s Bank of China

mchangchun@pbc.gov.cn

Gang Di

Digital Currency Institute, the

People’s Bank of China

digang@pbcdci.cn

Xiaoyun Wang

Tsinghua University

xiaoyunwang@tsinghua.edu.cn

ABSTRACT

State-of-the-art Byzantine fault-tolerant (BFT) protocols assuming

partial synchrony such as SBFT and HotStuff use regular certificates

obtained from 2𝑓 +1 (partial) signatures. We show in this paper that

one can use weak certificates obtained from only 𝑓 + 1 signatures
to design more robust and much more efficient BFT protocols. We

devise Dashing (a family of three HotStuff-style BFT protocols) and

Star (a parallel BFT framework).

We begin with Dashing1 that targets both efficiency and robust-

ness using weak certificates. Dashing1 is partition-tolerant and

network-adaptive, and does not rely on fallback asynchronous BFT

protocols. Dashing2 is a variant of Dashing1 and focuses on perfor-

mance only. Then we show in Dashing3 how to further enable a

fast path by using strong certificates obtained from 3𝑓 +1 signatures,
a challenging task we tackled in the paper.

We then leverage weak certificates to build a highly efficient

BFT framework (Star) that delivers transactions from 𝑛 − 𝑓 replicas

using only a single consensus instance in the standard BFT model.

Star completely separates bulk data transmission from consensus.

Moreover, its data transmission process uses 𝑂 (𝑛2) messages only

and can be effectively pipelined.

We demonstrate that the Dashing protocols achieve 10.7%-29.9%

higher peak throughput than HotStuff. Meanwhile, Star, when be-

ing instantiated using PBFT, is an order of magnitude faster than

HotStuff. Furthermore, unlike the Dashing protocols and HotStuff

whose performance degrades as 𝑓 grows, the peak throughput

of Star increases as 𝑓 grows. When deployed in a WAN with 91

replicas across five continents, Star achieves 243 ktx/sec, 15.8x the

throughput of HotStuff.

1 INTRODUCTION

Byzantine fault-tolerant state machine replication (BFT) is known

as the core building block for permissioned blockchains. This paper

focuses on highly efficient, partially synchronous BFT protocols [15,

19]. Almost universally, these protocols rely critically on regular

(quorum) certificates which, roughly speaking, are sets with at least

2𝑓 + 1 messages from different replicas. Recent protocols such as

SBFT [22] and HotStuff [41] require using (threshold) signatures

for regular certificates as transferable proofs.

This paper demonstrates that one can build various BFT pro-

tocols that outperform existing ones (in one way or another) by

leveraging weak certificates which are sets with at least 𝑓 + 1 signa-
tures from different replicas.

Intuitively, weak certificates may lead to more efficient BFT

protocols, because replicas only need to wait for signatures from

𝑓 + 1 replicas and combine only 𝑓 + 1 signature shares. Indeed, as
shown in a recent paper [18], asynchronous BFT protocols using

common coins with the 𝑓 +1 threshold can be (much) more efficient

than their counterparts with the 2𝑓 +1 threshold. This paper explores
novel usages of weak certificates much beyond this intuition.

Table 1 summarizes our protocols using weak certificates. The

Dashing protocols (Dashing1, Dashing3, and Dashing3) are new

BFT protocols in the HotStuff family, while Star is a new (asynchro-

nous) BFT framework that has𝑂 (𝑛2) messages, separating message

transmission from consensus, and allowing pipelining in message

transmission. Below, let us describe the features of protocols.

1.1 The Dashing Protocols: Gaining in

Robustness and Efficiency

Dashing1 is built on top of the HotStuff protocol and designed

with two goals in mind: 1) efficiency (due to the usage of weak

certificates) and 2) robustness (again due to the usage of weak

certificates).

On the one hand, it is known that HotStuff and all its deriva-

tives [20, 21, 25] (have to) use regular certificates to ensure liveness

and safety. It is an interesting open problem to provide a meaningful

way of using weak certificates in BFT protocols for better efficiency.

On the other hand, partially synchronous BFT protocols cannot

make progress during asynchrony (e.g., network partitions) and

may loop on view changes (leader election). Recent HotStuff-style

protocols, such as Ditto [20] and Bolt-Dumbo [31], run BFT pro-

tocols in the optimistic mode and rely on fallback asynchronous

protocols during asynchrony [28]. When the protocols are in the

pessimistic mode, their performance is significantly reduced. More-

over, all known such BFT protocols lack an effective mechanism to

decide when to switch from the pessimistic mode to the optimistic

mode, as it is (often) unpredictable when the network becomes

synchronous. The situation is only exacerbated, if the network is

intermittently synchronous or adaptively manipulated [34]. It is

1

protocols described in QC type used features authenticator communication

Dashing1 Sec. 4.4 wQC; rQC partition-tolerant; more robust and efficient 𝑂 (𝑛) 𝑂 (𝐿𝑛 + _𝑛)
Dashing2 Sec. 4.5 wQC; rQC derived from Dashing1; targeting performance only 𝑂 (𝑛) 𝑂 (𝐿𝑛 + _𝑛)
Dashing3 Sec. 4.6 wQC; rQC; sQC targeting low latency; one-phase fast path 𝑂 (𝑛)/𝑂 (𝑛2) 𝑂 (𝐿𝑛 + _𝑛2)

Star Sec. 5 wQC; rQC

(separating bulk data transmission from consensus;)

supporting parallelism using one consensus instance;

pipelined data transmission;

lower message and communication complexity

𝑂 (𝑛2) 𝑂 (𝐿𝑛2 + _𝑛2)

Table 1: Our protocols. 𝐿 is the proposal size for each replica and _ is the security parameter. As Star allows replicas to propose transactions in

parallel, one cannot simply say that the Dashing protocols have lower communication complexity than Star.

natural to ask if we have alternative solutions to build network-

adaptive and efficient BFT protocols.

Dashing1. The idea underlying Dashing1 is that when the net-

work partition occurs, we allow replicas to proceed with weak

certificates. Once the network becomes synchronous and a trans-

action with a regular certificate is delivered, all prior transactions

with weak certificates are immediately delivered. The mechanism

is partition-tolerant, as the system can make meaningful progress

in the presence of partitions, and network adaptive in the sense

that as long as the leader can collect weak certificates from 𝑓 + 1
replicas, progress will be eventually made. Dashing1 may avoid

unnecessary view changes and accelerate transaction processing

in both failure-free and failure scenarios.

Turning the idea into a fully-fledged BFT protocol, however, is

highly challenging. We demonstrate the safety and liveness issues

and provide an efficient protocol for handling them.

Dashing2. Dashing2 is a (simple) variant of Dashing1 and targets

performance only. In particular, we use two ideas to improve the

system throughput. First, we adopt the idea of using 𝑓 + 1 actively
participating replicas for normal case operations [26]. Second, we

ask replicas to periodically switch between weak certificates and

regular certificates to guarantee that transactions with weak cer-

tificates are committed in a timely manner. For instance, replicas

can process one transaction using a regular certificate immediately

after ten transactions using weak certificates.

Dashing3.We show how to enable a (one-phase) fast path by lever-

aging strong certificates from 3𝑓 + 1 signatures in our BFT protocols.

We demonstrate that such a task is technically challenging and

provide an efficient and secure solution.

1.2 Star: Gaining in Parallelism and Pipelining

We use weak certificates to build a partially synchronous BFT pro-

tocol (Star) that can deliver transactions from 𝑛 − 𝑓 replicas using

only a single consensus instance. Star assumes the standard BFT

model with no other supporting servers.

As depicted in Fig. 1, Star completely separates bulk data trans-

mission from consensus such that these two processes can be run

independently. In particular, the data transmission process can be

effectively pipelined, which significantly improves the performance.

Star can be viewed as a BFT protocol that inherits the benefits

of two beautiful recent systems—Narwhal [17] and ISS [38], and

further improves on them by using new techniques.

As in Narwhal, Star dissociates data dissemination from consen-

sus. Star, however, works in the standard BFT model and does not

rely on additional nodes helping data transmission; more crucially,

with our new design using weak certificates, the pipelining and

parallelism features of the data transmission process is no longer

the obvious performance bottleneck.

Similar to ISS (a partially synchronous BFT framework), Star

can deliver transactions from 𝑛 − 𝑓 replicas. Despite the similarity,

the idea underlying our design is actually motivated by completely

asynchronous BFT protocols [8, 14, 17]. As a result, different from

ISS that requires running 𝑛 consensus protocols, Star only needs

to run a single consensus protocol for each epoch. Also, ISS relies

on Byzantine failure detector to ensure safety and liveness, and

replicas have towait for the slowest consensus instance to terminate

(possibly with view changes or until timers run out) before they

can process transactions; in contrast, Star can process transactions

once the single consensus instance completes. Also, the message

complexity of Star is only 𝑂 (𝑛2) even in the worst case. A detailed

comparison can be found in Sec. 2.

Figure 1: The Star BFT framework. Star consists of an asynchronous

transmission process (that takes as input queues of pending trans-

actions and outputs queues of weak certificates) and a consensus

process (that takes at input 𝑛 − 𝑓 weak certificates and outputs a

union of transactions corresponding to the weak certificates deliv-

ered).

1.3 Summary of Contributions

We summarize our contributions in the following.

• We design a family of Dashing protocols (Dashing1, Dashing2,

and Dashing3) using weak certificates. Compared to prior proto-

cols, our protocols offer improved performance and robustness.

Besides, they also have their unique features and provide in-

teresting trade-offs. We have added novel techniques to the

HotStuff family.

2

• We provide a novel (asynchronous) BFT framework allowing

one to process transactions in parallel using only one BFT in-

stance and 𝑂 (𝑛2) messages. We also give an efficient instantia-

tion based on PBFT.

• We formally prove the correctness of all our protocols.

• We implement the four new BFT protocols (the three Dashing

protocols and an instantiation of Star). We have performed

extensive evaluation of the protocols and we show that these

protocols outperform existing protocols. We briefly summarize

the evaluation results in the following:

(1) The peak throughput of Dashing1 is 21.5% higher than that

of HotStuff for 𝑓 = 1. When 𝑓 = 30, Dashing1 still achieves

28.1% higher peak throughput than HotStuff.

(2) The peak throughput of Dashing2 is 2.6%-9.8% higher than

that of Dashing1. The throughput of Dashing1 and Dash-

ing3 is very close, but Dashing3 in general achieves lower

latency by using strong certificates, at the cost of more

expensive view changes.

(3) The peak throughput of Star is an order of magnitude

higher than Dashing protocols and HotStuff in most sce-

narios. Unlike Dashing protocols and HotStuff whose per-

formance degrades as 𝑓 grows, the peak throughput of Star

increases as 𝑓 grows. When 𝑓 = 30 in WAN environments,

Star achieves 15.8x the throughput of HotStuff.

2 RELATEDWORK

HotStuff and its derivatives. HotStuff [41] is known as the first

partially synchronous BFT protocol with linearity. HotStuff has

three round-trips for both normal case operations and view changes.

Subsequent works focus on reducing the number of phases for

HotStuff, including Fast-HotStuff [25], Jolteon [20], andWendy [21].

HotStuff has a basic mode and a chained (pipelining) mode (called

chained HotStuff). The protocols presented and introduced in this

paper are described in their chained mode.

The technique underlying HotStuff has also been shown signifi-

cant in building various Byzantine-resilient protocols [4–6, 40].

Protocol switching in BFT protocols. Following the idea ini-

tially proposed by Kursawe and Shoup [28], Bolt-Dumbo [31] and

Ditto [20] are two recent systems that provide high performance

in the steady state by using partially synchronous protocols and

provide progress during asynchrony by using asynchronous ones.

Our protocol Dashing1 provides an alternative solution to ad-

dress network asynchrony. On the one hand, Dashing1 tolerates

many forms of asynchrony, e.g., network partition. As long as there

are 𝑓 + 1 correct replicas in the partition with the leader, Dashing1

may make meaningful progress. Also, Dashing1 also works well in

the intermittently asynchronous environment where the network

often experience interruptions [34]. On the other hand, Dashing1

is network-adaptive, in the sense that once the network becomes

synchronous or less partitioned, Dashing1 can make faster progress

and commit all prior pending transactions (with weak certificates)

immediately. But of course, Dashing1, being a partially synchro-

nous BFT protocol, does not tolerate the general asynchronous

network scheduler.

Meanwhile, systems and frameworks [7, 23] have been proposed

to allow switching among different partially synchronous BFT pro-

tocols. These protocols offer excellent adaptive performance but

do not tolerate network asynchrony: during asynchrony, they may

achieve zero throughput [34].

BFT with strong quorums. Strong quorums (with 3𝑓 + 1 replicas)
for consensus have been used in Zyzzyva [27] and FaB [33]. The

protocols have been found to have errors [2] and then fixed [3]. The

fixed algorithm is at the center of SBFT [22] which also features

the usage of strong quorums.

Dashing3 tackles the new and subtle challenges due to weak

certificates (which are not used in the above-mentioned protocols).

Multiple thresholds in a single timing model or two differ-

ent timing models. Some Byzantine-resilient protocols such as

UpRight [16, 24] study different thresholds for different correctness

properties (e.g., different thresholds for safety and liveness) in a

single timing model.

Some other protocols, however, consider two different timing

models. Most of these protocols (except XFT [30]) focus on the

asynchronous-synchronous timing model [9, 10, 32, 35]. For in-

stance, the recent work of Malkhi, Nayak, and Ren [32] and the

work of Momose and Ren [35] consider these two timing models

and separate thresholds for safety and liveness properties. In con-

trast, XFT considers the partially synchronous-synchronous timing

model. XFT tolerates 𝑓 < 𝑛/2 Byzantine failures under synchrony
but no Byzantine failures under partial synchrony.

Our protocols are all different from these protocols. Our protocols

are classic BFT protocols designed in a single timing model and

assume the 𝑓 < 𝑛/3 threshold for both safety and liveness. The

different thresholds in our protocols are used to improve efficiency

or robustness.

Parallel BFT using multiple BFT instances. Systems such as

Mir-BFT [37] and the recent ISS [38] are beautiful and practical

BFT systems aiming at running 𝑛 parallel BFT instances for high

throughput. By design, the two protocols are very different from

Star: Mir-BFT and ISS work in the partially synchronous environ-

ment and rely on timers or Byzantine failure detectors, while Star

is asynchronous if the underlying atomic broadcast component is

asynchronous and uses a single atomic broadcast instance.

Handling parallel transactions using 𝑛 BFT instances in one

epoch turns out to be highly challenging. For instance, ISS can

deliver transactions only when all BFT instances successfully ter-

minate. In the full paper of ISS [39], ISS discusses how to select

the 𝑛 leaders for each epoch in the presence of failures and attacks

to ensure liveness. In particular, ISS proposes three different and

mutually exclusive policies for leader selection. These policies pro-

vide inherent trade-offs in terms of performance and robustness.

Instead, Star has one BFT instance and does not have to deal with

the issues.

3 SYSTEM MODEL

BFT. This paper studies Byzantine fault-tolerant state machine

replication (BFT) protocols. In a BFT protocol, clients submit trans-

actions (requests) and replicas deliver them. The client obtains a

final response to the submitted transaction from the replica re-

sponses. In a BFT system with 𝑛 replicas, it tolerates 𝑓 ≤ ⌊𝑛−1
3
⌋

3

Byzantine failures. The correctness of a BFT protocol is specified

as follows:

• Safety: If a correct replica delivers a transaction 𝑡𝑥 before de-

livering 𝑡𝑥 ′, then no correct replica delivers a transaction 𝑡𝑥 ′

without first delivering 𝑡𝑥 .

• Liveness: If a transaction 𝑡𝑥 is submitted to all correct replicas,

then all correct replicas eventually deliver 𝑡𝑥 .

Liveness is alternatively called "censorship resilience" (a blockchain

terminology). We use them interchangeably.

We also need an equivalent primitive, atomic broadcast, as a

building block. Atomic broadcast is only syntactically different

from BFT. In atomic broadcast, a replica a-broadcasts messages and

all replicas a-deliver messages.

• Safety: If a correct replica a-delivers a message 𝑚 before a-

delivering𝑚′, then no correct replica a-delivers a message𝑚′

without first a-delivering𝑚.

• Liveness: If a correct replica a-broadcasts a message𝑚, then all

correct replicas eventually a-deliver 𝑚.

Note that when describing atomic broadcast, we restrict the

API of atomic broadcast in the sense that only a single replica a-

broadcasts a message. One can alternatively allow all replicas to

a-broadcast transactions (which is the case for completely asyn-

chronous protocols).

This papermainly considers the partially synchronousmodel [19],

where there exists an unknown global stabilization time (GST) such

that after GST, messages sent between two correct replicas arrive

within a fixed delay. One of our protocols (Star) works in completely

asynchronous environments if the underlying atomic broadcast pro-

tocol is asynchronous.

(Best-effort) broadcast. We use the term "broadcast" to represent

that event that a replica sends a message to all replicas in a system.

Cryptographic building blocks. We define a (𝑡, 𝑛) threshold sig-

nature scheme with the following algorithms (tgen, tsign, tcombine,

tverfiy). tgen outputs a threshold signature public key and a vector

of 𝑛 private keys. A signature signing algorithm tsign takes as input

a message𝑚 and a private key 𝑠𝑘𝑖 and outputs a partial signature

𝜎𝑖 . A combining algorithm tcombine takes as input 𝑝𝑘 , a message

𝑚, and a set of 𝑡 valid partial signatures, and outputs a signature

𝜎 . A signature verification algorithm tverify takes as input 𝑝𝑘 , a

message𝑚, and a signature 𝜎 , and outputs a single bit. We require

the robustness and unforgeability properties for threshold signa-

tures. When describing the algorithms, we leave the verification of

partial signatures and threshold signatures implicit.

Dedicated threshold signatures can be realized using pairings [11,

12]. One can also use a group of 𝑛 signatures to build a (𝑡, 𝑛) thresh-
old signature for efficiency, as used in various libraries such as

HotStuff [1, 41], Jolteon and Ditto [20], and Wendy [21]. The ap-

proach is also preferred for our protocols, as many of our protocols

havemore than one thresholds. (Otherwise, one should use different

threshold signatures for different thresholds.)

We use a collision-resistant hash function ℎ𝑎𝑠ℎ mapping a mes-

sage of arbitrary length to a fixed-length output.

Byzantine quorums and quorum certificates.We assume 𝑛 ≥
3𝑓 + 1 for our protocols. For simplicity, we simply let 𝑛 = 3𝑓 + 1

for this paper. A Byzantine quorum consists of ⌈𝑛+𝑓 +1
2
⌉ replicas, or

simply 2𝑓 + 1 if 𝑛 = 3𝑓 + 1. We call it a regular quorum.

Slightly abusing notation, we additionally define two different

types of quorums: a weak quorum consisting of 𝑓 + 1 replicas and
a strong quorum consisting of 𝑛 = 3𝑓 + 1 replicas. A message

with signatures signed by a weak quorum, a regular quorum, and

a strong quorum is called a weak (quorum) certificate (wQC), a

regular (quorum) certificate (rQC), and a strong (quorum) certificate

(sQC), respectively. A certificate can be a threshold signature with

a threshold 𝑡 or a set of 𝑡 digital signatures.

Steps.We follow the standard definition of steps [13]. A step con-

sists of receiving a message from some replica, running a local

computation, and sending a message to some replica.

4 THE FAMILY OF DASHING PROTOCOLS

4.1 Overview of (Chained) HotStuff

HotStuff describes the syntax of leader-based BFT replication using

the language of trees over blocks for leader-based protocols. Here

we use a slightly more general notation, where multiple blocks,

rather than just one block, may be delivered within a view until

view change occurs.

Each replica stores a tree of blocks. A block 𝑏 contains a parent

link 𝑝𝑙 , a batch of transactions, and their metadata. A parent link

for 𝑏 is a hash of its parent block. A branch led by a given block 𝑏

is the path from 𝑏 all the way to the root of the tree (i.e., the genesis

block). The ℎ𝑒𝑖𝑔ℎ𝑡 for 𝑏 is the number of blocks on the branch led

by 𝑏.

Each time, a monotonically growing branch becomes committed

and a block extends the branch led by its parent block. A block 𝑏 ′

is an extension of a block 𝑏, if 𝑏 is on the branch led by 𝑏 ′. Two
branches are conflicting, if neither is an extension of the other.

Two blocks are conflicting, if the branches led by the blocks are

conflicting. A safe BFT protocol must ensure that no two correct

replicas commit two conflicting blocks.

HotStuff uses three phases (prepare phase, precommit phase, and

commit phase) to deliver a block. In the prepare phase, the leader

broadcasts a proposal (a block) 𝑏 to all replicas and waits for signed

responses (also called votes) from a quorum of 𝑛 − 𝑓 replicas to

form a threshold signature as a quorum certificate (𝑝𝑟𝑒𝑝𝑎𝑟𝑒𝑄𝐶). In

the following precommit phase, the leader broadcasts 𝑝𝑟𝑒𝑝𝑎𝑟𝑒𝑄𝐶

and waits for responses to form 𝑝𝑟𝑒𝑐𝑜𝑚𝑚𝑖𝑡𝑄𝐶 . Similarly, in the

commit phase, the leader broadcasts 𝑝𝑟𝑒𝑐𝑜𝑚𝑚𝑖𝑡𝑄𝐶 , and waits to

form and broadcasts 𝑐𝑜𝑚𝑚𝑖𝑡𝑄𝐶 . Upon receiving the 𝑝𝑟𝑒𝑐𝑜𝑚𝑚𝑖𝑡𝑄𝐶 ,

a replica becomes locked on 𝑏. Upon receiving the 𝑐𝑜𝑚𝑚𝑖𝑡𝑄𝐶 , a

replica delivers 𝑏.

In case of view changes, each replica sends its latest 𝑝𝑟𝑒𝑝𝑎𝑟𝑒𝑄𝐶

to the leader. Upon receiving a quorum of 𝑛 − 𝑓 such messages, the

leader selects the QC with the largest height and extends the block

for the QC using a new proposal.

Throughout the paper, we use the chained version for Hot-

Stuff and the Dashing protocols, where phases are overlapped and

pipelined.

4.2 Overview of Dashing1

In Dashing1, we aim at using weak certificates (signatures from 𝑓 +1
replicas) to improve on both efficiency and robustness. The reason

4

why weak certificates may improve efficiency is straightforward:

replicas only need to collect 𝑓 + 1 signatures and combine 𝑓 + 1
signatures. It is less intuitive that one may use weak certificates to

enhance BFT robustness.

Figure 2: Dashing1 under network partition.

Fig. 2 describes a network partition scenario, where the leader

𝑝1 can only receive messages from two other replicas (𝑝2 and 𝑝3).

As long as the partition persists, replicas in existing BFT protocols

cannot make meaningful progress. For partially synchronous BFT

protocols, replicas have to wait for their timers to expire and loop

on view changes.

The idea of Dashing1 is that during network asynchrony, we

allow replicas to proceed with weak certificates. When the network

becomes synchronous and a transaction with a regular certificate

is delivered, all transactions with weak certificates may be simulta-

neously delivered.

Note in the above approach, the leader may propose multiple

blocks before the timer expires and collect multiple weak certifi-

cates. Even if a view change occurs, we still want to make the

effort worthwhile. Namely, after the network becomes synchro-

nous (either before or after the timer expires), transactions with

weak certificates may be immediately delivered—all at a time.

Transforming the idea into a fully secure BFT protocol, however,

is highly non-trivial. First, a faulty leader may easily create forks

and generate up to 2𝑓 + 1 conflicting weak certificates. To prevent

the forks from growing exponentially, we can ask each correct

replica to vote for at most one block at each height.

Second, we need to ensure that safety is still preserved in the

presence of weak certificates. Namely, we should guarantee that if

two conflicting blocks are extended from two conflicting branches,

a regular certificate is formed for at most one of them. As shown

in Fig. 3a, 𝑏0 and 𝑏 ′
0
are conflicting blocks and weak certificates

are formed for both of them. In addition, 𝑏1 extends 𝑏0 and 𝑏 ′
1

extends 𝑏 ′
0
. Then a regular certificate is formed for 𝑏1. While a

weak certificate can still be formed for 𝑏 ′
1
and its descendant blocks,

we need to ensure that a regular certificate will never be formed

for any of them. We solve the problem by enforcing a constraint:

if a replica receives a proposal for a block (e.g., 𝑏 ′
2
) that extends a

block with a weak certificate (i.e., 𝑏 ′
1
), a replica votes for block 𝑏 ′

2
if

and only if it has previously voted for the parent block 𝑏 ′
1
. In this

example, as 2𝑓 +1 replicas have already voted for 𝑏1, it is impossible

that 2𝑓 + 1 replicas will vote for 𝑏 ′
2
.

Third, we need to ensure that across view changes (or in the

rotating leader mode), transactions with weak certificates can be

processed. During view changes, we ask each replica to send its

highest weak certificate to the new leader and the new leader can

select a weak certificate to create a new proposal. After the proposed

block is committed, all the blocks on the branch led by the block

will be committed. However, we cannot simply let the new leader

(a) The safety challenge within a view.

(b) The safety challenge across views.

(c) The liveness challenge.

Figure 3: Challenges of building BFT from weak certificates. Blue

boxes with horizontal lines and green boxes with diagonal lines

represent blocks such that regular certificates and weak certificates

are formed, respectively. (The figures are best viewed in color.)

select the highest wQC it receives due to a subtle safety problem. As

shown in Fig. 3b, rQCs are formed for 𝑏0, 𝑏1, and 𝑏2, while wQCs

for 𝑏 ′
0
, 𝑏 ′

1
, 𝑏 ′

2
, and 𝑏 ′

3
are formed too (a "fork"). Note that a rQC

for 𝑏2 is also the 𝑐𝑜𝑚𝑚𝑖𝑡𝑄𝐶 for 𝑏0. If a view change occurs and

we let the leader select the highest weak certificate 𝑏 ′
3
, a proposal

extending𝑏 ′
3
will be proposed. To attain liveness, all replicas need to

vote for the proposal and 𝑏 ′
3
will be committed. But 𝑏0 has already

been committed by at least one correct replica, violating safety. To

address this issue, for any block 𝑏, we define stable block as the

highest block for which a rQC has been formed on the branch led

by 𝑏. Correspondingly, we require that each block 𝑏 additionally

maintains a stable link field 𝑠𝑙 which stores the hash digest of the

stable block of 𝑏. (Note that the use of the stable link resembles

the use of the parent link.) After the leader collects the certificates

from the replicas, it will either select the highest rQC, or the wQC

for which the stable block is the highest. In this example, as the

stable block of 𝑏 ′
3
is 𝑏 and 𝑏 is lower than 𝑏2, the leader will create

a proposal extending 𝑏2. Upon receiving a proposal 𝑏 ′, if 𝑏 ′ extends
a rQC for 𝑏, replicas decide whether to vote for 𝑏 ′ by comparing

𝑏’s stable block to its locked block (just as in HotStuff).

In fact, allowing the new leader to extend a weak certificate

during view changes introduces a liveness challenge. Recall that

in the normal case operation, we ask every replica to vote a block

𝑏 that extends a weak certificate only if the replica has voted for

the parent block of 𝑏. Unfortunately, we cannot enforce the same

rule during view changes, as there may not even exist 𝑓 + 1 correct
replicas that have previously voted for the parent block of 𝑏. Fig. 3c

illustrates an example where in view 1, the leader creates forks by

creating multiple weak certificates, and in view 2, the new leader

receives a weak certificate for 𝑏0 or 𝑏 ′
1
(or both). According to

5

the rule (for the normal case), the leader is allowed to extend a

weak certificate and create a proposal (e.g., 𝑏1 that extends 𝑏0 or

𝑏 ′
2
that extends 𝑏 ′

1
). As 𝑏0 and 𝑏 ′

1
have been voted by only 𝑓 + 1

replicas, there is no guarantee that either 𝑏1 or 𝑏
′
2
will be voted by

𝑓 + 1 correct replicas in view 1. In this scenario, a proposal from

a correct replica will not be voted by any correct replica, creating

a liveness issue. To address this challenge, we require a correct

replica 𝑝𝑖 decide whether to vote for a block extending a wQC (e.g.,

𝑏1) during view change by comparing the stable block of received

block to the locked block of 𝑝𝑖 . In the example, 𝑝𝑖 voted for 𝑏1 if 𝑝𝑖
is not locked on a conflicting block of 𝑏 (the stable block of 𝑏1).

The last challenge is to maintain certificates with two thresh-

olds. If favoring maintaining linear authenticator complexity using

threshold signatures, one should setup two threshold signature

schemes—one for wQCs and the other for rQCs. In each round-trip

communication, replicas should generate both a partial signature

for wQC and a partial signature for rQC. The leader shouldmaintain

two sets storing threshold signatures for wQC and rQC, respectively.

In a different approach, one can simply use conventional signatures

and track all valid signatures in a single set. In our implementation,

we adopt the second approach that uses conventional signatures,

one also used in a series of HotStuff libraries [1, 21, 36, 41].

4.3 Notation for Dashing Protocols

We specify the notation for the Dashing protocols.

Blocks. A block 𝑏 is of the form ⟨𝑟𝑒𝑞, 𝑝𝑙, 𝑠𝑙, 𝑣𝑖𝑒𝑤,ℎ𝑒𝑖𝑔ℎ𝑡⟩. We use

𝑏.𝑥 to represent the element 𝑥 in block 𝑏. Fixing a block 𝑏, 𝑏.𝑝𝑙

is the hash digest of 𝑏’s parent block, 𝑏.ℎ𝑒𝑖𝑔ℎ𝑡 is the number of

blocks on the branch led by 𝑏, and 𝑏.𝑣𝑖𝑒𝑤 is the view in which 𝑏

is proposed. Note that different from prior notation, 𝑠𝑙 is a new

element in 𝑏. Formally, 𝑏.𝑠𝑙 denotes the hash digest of 𝑏’s stable

block (the highest block with a regular certificate on the branch led

by 𝑏).

Messages. Messages transmitted among nodes are of the form

⟨type, 𝑏𝑙𝑜𝑐𝑘, 𝑗𝑢𝑠𝑡𝑖 𝑓 𝑦⟩. We use three message types: generic, view-

change, andnew-view. The view-change andnew-viewmessage

are used during view change: view-change messages are sent by

replicas to the next leader, while new-view message is sent by the

new leader to the replicas. The 𝑗𝑢𝑠𝑡𝑖 𝑓 𝑦 field of message𝑚 stores

certificates to validate the 𝑏𝑙𝑜𝑐𝑘 contained in𝑚. Fields may be set

as ⊥.
Functions and notation for QCs. A QC for message𝑚 is also

called aQC for𝑚.𝑏𝑙𝑜𝑐𝑘 . Fixing aQC𝑞𝑐 for a block𝑏, letqcBlock(𝑞𝑐)
return the block 𝑏 .

We have discussed two approaches to maintaining wQCs and

rQCs (the last paragraph in Sec. 4.2). To hide the implementation

detail, we let qcVote(𝑚) denote the output of a partial signa-

ture signing algorithm for𝑚 or a conventional signing algorithm

and let qcCreate(𝑀) be a QC generated from signatures in 𝑀 .

qcCreate(𝑀) may be a wQC or a rQC.

Rank of QCs and blocks. Following the notion in [20], we now

define the 𝑟𝑎𝑛𝑘 () function for QCs and blocks. 𝑟𝑎𝑛𝑘 () does not
return a concrete number. Instead, it takes as input two blocks/QCs

and outputs whether the rank of a block/QC is higher than the

other one. The rank of two blocks/QCs is first compared by the

view number, then by the height.

Local state at replicas. Each replica maintains the following state

parameters, including the current view number 𝑐𝑣𝑖𝑒𝑤 , the highest

rQC 𝑄𝐶𝑟 , the highest wQC 𝑄𝐶𝑤 , the locked block 𝑙𝑏, and the last

voted block 𝑣𝑏.

4.4 Dashing1

We present in Algorithm 2 and Algorithm 3 the normal case op-

eration and view change protocol of Dashing1, respectively. The

utility functions are presented in Algorithm 1. We largely follow

the description of HotStuff and highlight how Dashing1 supports

weak certificates in dotted boxes.

Algorithm 1: Utilities

1 procedure createBlock(𝑏′, 𝑣, 𝑟𝑒𝑞,𝑞𝑐)
2 𝑏.𝑝𝑙 ← ℎ𝑎𝑠ℎ (𝑏′) , 𝑏.𝑝𝑎𝑟𝑒𝑛𝑡 ← 𝑏′, 𝑏.ℎ𝑒𝑖𝑔ℎ𝑡 ← 𝑏′.ℎ𝑒𝑖𝑔ℎ𝑡+1
3 𝑏.𝑟𝑒𝑞 ← 𝑟𝑒𝑞, 𝑏.𝑣𝑖𝑒𝑤 = 𝑣

4

if 𝑞𝑐 is a wQC then 𝑏.𝑠𝑙 ← 𝑏′.𝑠𝑙 , 𝑏.𝑠𝑡𝑎𝑏𝑙𝑒 ← 𝑏′.𝑠𝑡𝑎𝑏𝑙𝑒 return 𝑏

5 if 𝑞𝑐 is a rQC then 𝑏.𝑠𝑙 ← 𝑏.𝑝𝑙 , 𝑏.𝑠𝑡𝑎𝑏𝑙𝑒 ← 𝑏′ return 𝑏

6 procedure stateUpdate(𝑄𝐶𝑤 ,𝑄𝐶𝑟 , 𝑙𝑏, 𝑞𝑐)
7 𝑏′ ← qcBlock(𝑞𝑐), 𝑏′′ ← 𝑏′.𝑝𝑎𝑟𝑒𝑛𝑡,𝑏∗ ← 𝑏′′.𝑝𝑎𝑟𝑒𝑛𝑡 , 𝑣 ← 𝑏′.𝑣𝑖𝑒𝑤
8 𝑏0 ← qcBlock(𝑄𝐶𝑤), 𝑏ℎ𝑖𝑔ℎ ← qcBlock(𝑄𝐶𝑟)
9 if 𝑞𝑐 is a rQC

10 if rank(𝑏′) > rank(𝑏ℎ𝑖𝑔ℎ) then𝑄𝐶𝑟 ← 𝑞𝑐

11 if 𝑏′.𝑠𝑡𝑎𝑏𝑙𝑒 = 𝑏′′ and rank(𝑏′′) > rank(𝑙𝑏) then 𝑙𝑏 ← 𝑏′′

12 if 𝑏′.𝑠𝑡𝑎𝑏𝑙𝑒 = 𝑏′′ and 𝑏′′.𝑠𝑡𝑎𝑏𝑙𝑒 = 𝑏∗ and 𝑏′′.𝑣𝑖𝑒𝑤 = 𝑏∗ .𝑣𝑖𝑒𝑤 = 𝑣

13 deliver the transactions in 𝑏∗

14

if 𝑞𝑐 is a wQC and rank(𝑏′.𝑠𝑡𝑎𝑏𝑙𝑒) ≥ rank(𝑏0 .𝑠𝑡𝑎𝑏𝑙𝑒) then𝑄𝐶𝑤 ← 𝑞𝑐

Algorithm 2:Normal case protocol for Dashing1 and Dash-

ing2

1 initialization: 𝑐𝑣𝑖𝑒𝑤←1, 𝑣𝑏,𝑄𝐶𝑤 ,𝑄𝐶𝑟 , 𝑙𝑏 are initialized to⊥.
2 Start a timer Δ1 for the first request in the queue of pending transactions

3 ▷ generic phase:

4 as a leader

5 wait for votes for 𝑏:𝑀 ← {𝜎 |𝜎 is a signature for ⟨generic, 𝑏,⊥⟩ }
6 upon |𝑀 | = 𝑓 + 1 then set a start timer Δ2

7 upon Δ2 𝑡𝑖𝑚𝑒𝑜𝑢𝑡 then 𝑞𝑐ℎ𝑖𝑔ℎ ← qcCreate(𝑀)
8 𝑏←createBlock(𝑏,𝑐𝑣𝑖𝑒𝑤, 𝑟𝑒𝑞,𝑞𝑐ℎ𝑖𝑔ℎ)
9 broadcast𝑚 = ⟨generic, 𝑏, 𝑞𝑐ℎ𝑖𝑔ℎ ⟩

10 as a replica

11 wait for𝑚 = ⟨generic, 𝑏, 𝜋 ⟩ from Leader(𝑐𝑣𝑖𝑒𝑤)
12 𝑏′←𝑏.𝑝𝑎𝑟𝑒𝑛𝑡 , 𝑏′′←𝑏′.𝑝𝑎𝑟𝑒𝑛𝑡 , 𝑏𝑠 ← 𝑏.𝑠𝑡𝑎𝑏𝑙𝑒

13 𝑚← ⟨generic, 𝑏,⊥⟩
14 if rank(𝑏′) ≥ rank(𝑏) or 𝑏.ℎ𝑒𝑖𝑔ℎ𝑡 ≠ 𝑏′.ℎ𝑒𝑖𝑔ℎ𝑡 + 1
15 discard the message

16

if 𝜋 is a wQC for 𝑏′ and 𝑏𝑠 = 𝑏′.𝑠𝑡𝑎𝑏𝑙𝑒 and

𝑏𝑠 .𝑣𝑖𝑒𝑤 = 𝑏′.𝑣𝑖𝑒𝑤 = 𝑏′′.𝑣𝑖𝑒𝑤 = 𝑐𝑣𝑖𝑒𝑤 and 𝑏′ = 𝑣𝑏

𝑣𝑏← 𝑏, stateUpdate(𝑄𝐶𝑤 ,𝑄𝐶𝑟 , 𝑙𝑏, 𝜋)

17 if 𝜋 is a rQC for 𝑏′ and 𝑏𝑠 = 𝑏′ and rank(𝑏′) ≥ rank(𝑣𝑏)
18 𝑣𝑏← 𝑏, stateUpdate(𝑄𝐶𝑤 ,𝑄𝐶𝑟 , 𝑙𝑏, 𝜋)
19 if 𝑣𝑏 = 𝑏 then send qcVote(𝑚) to Leader(𝑐𝑣𝑖𝑒𝑤)
20 ▷ new-view phase: switch to this line if Δ1 𝑡𝑖𝑚𝑒𝑜𝑢𝑡 occurs

21 as a replica

22 𝑐𝑣𝑖𝑒𝑤← 𝑐𝑣𝑖𝑒𝑤 +1

23

send ⟨view-change,⊥, (𝑄𝐶𝑟 ,𝑄𝐶𝑤) ⟩ to Leader(𝑐𝑣𝑖𝑒𝑤)

Normal case protocol (Algorithm 2).We describe the chained

version of the protocol. In each phase, the leader broadcasts a mes-

sage to all replicas and waits for signed responses from replicas.

6

Algorithm3:View change protocol for Dashing1 andDash-

ing2

1 ▷ view-change phase

2 as a new leader

3 //𝑀 is a set of 𝑛 − 𝑓 view-change messages collected by the new leader

4 𝑞𝑐ℎ𝑖𝑔ℎ ← the rQC with the highest rank contained in𝑀

5 𝑏1 ← qcBlock(𝑞𝑐ℎ𝑖𝑔ℎ) , 𝑏 ← createBlock(𝑏1, 𝑐𝑣𝑖𝑒𝑤, 𝑟𝑒𝑞,𝑞𝑐ℎ𝑖𝑔ℎ)

6

for𝑚 ∈ 𝑀
if a wQC 𝑞𝑐𝑑 ∈𝑚.𝑗𝑢𝑠𝑡𝑖 𝑓 𝑦 and qcBlock(𝑞𝑐𝑑) = 𝑑 and

rank(𝑑.𝑠𝑡𝑎𝑏𝑙𝑒) > rank(𝑏0 .𝑠𝑡𝑎𝑏𝑙𝑒) then 𝑣𝑐←𝑞𝑐𝑑 , 𝑏0 ← 𝑑

if rank(𝑏0 .𝑠𝑡𝑎𝑏𝑙𝑒) ≥ rank(𝑏1) then 𝑏←createBlock(𝑏0,𝑐𝑣𝑖𝑒𝑤,𝑟𝑒𝑞,𝑣𝑐) ,
broadcast𝑚 = ⟨generic, 𝑏, 𝑣𝑐 ⟩

7 else then broadcast𝑚 = ⟨generic, 𝑏, 𝑞𝑐ℎ𝑖𝑔ℎ ⟩
8 //switch to normal case protocol

9 as a replica

10 wait for𝑚 = ⟨generic, 𝑏, 𝜋 ⟩ from Leader(𝑐𝑣𝑖𝑒𝑤)
11 𝑏′ ← 𝑏.𝑝𝑎𝑟𝑒𝑛𝑡 , 𝑏𝑠 ← 𝑏.𝑠𝑡𝑎𝑏𝑙𝑒 ,𝑚 ← ⟨generic, 𝑏,⊥⟩
12 if 𝑏′.𝑣𝑖𝑒𝑤 ≥𝑐𝑣𝑖𝑒𝑤 or rank(𝑏′) ≥ rank(𝑏) or 𝑏.ℎ𝑒𝑖𝑔ℎ𝑡 ≠𝑏′.ℎ𝑒𝑖𝑔ℎ𝑡+1
13 discard the message

14

if 𝜋 is a wQC for 𝑏′ and 𝑏𝑠 = 𝑏′.𝑠𝑡𝑎𝑏𝑙𝑒 and rank(𝑏𝑠) ≥ rank(𝑙𝑏)
𝑣𝑏← 𝑏, stateUpdate(𝑄𝐶𝑤 ,𝑄𝐶𝑟 , 𝑙𝑏, 𝜋)

15 if 𝜋 is a rQC for 𝑏′ and 𝑏𝑠 = 𝑏′ and rank(𝑏𝑠) ≥ rank(𝑙𝑏)
16 𝑣𝑏← 𝑏, stateUpdate(𝑄𝐶𝑤 ,𝑄𝐶𝑟 , 𝑙𝑏, 𝜋)
17 if 𝑣𝑏 = 𝑏 then send qcVote(𝑚) to Leader(𝑐𝑣𝑖𝑒𝑤)
18 //switch to normal case protocol

19 ▷ new-view phase: switch to new-view phase if Δ1 𝑡𝑖𝑚𝑒𝑜𝑢𝑡 occurs

At ln 9, the leader first proposes a new block 𝑏 and broadcasts a

⟨generic, 𝑏, 𝑞𝑐ℎ𝑖𝑔ℎ⟩ message, where 𝑞𝑐ℎ𝑖𝑔ℎ is the last QC it receives

(either a wQC or a rQC). The leader waits for the votes from the

replicas. After collecting 𝑓 + 1 matching votes, the leader starts a

timer Δ2 (ln 6). The timer is used to determine if the leader can form

a rQC in time. The timer can be set as a small value or even zero in

many circumstances and we will shortly discuss how to setup this

timer. After Δ2 expires, the leader combines the signatures in the

votes into 𝑞𝑐ℎ𝑖𝑔ℎ for the next phase.

Upon receiving a ⟨generic, 𝑏, 𝜋⟩ message from the leader, each

replica 𝑝𝑖 first verifies whether 𝑏 is well-formed (ln 12-15), i.e., 𝑏 has

a higher rank than its parent block 𝑏 ′ and 𝑏.ℎ𝑒𝑖𝑔ℎ𝑡 = 𝑏 ′.ℎ𝑒𝑖𝑔ℎ𝑡 + 1.
Let 𝑏 ′′ denote the parent of 𝑏 ′. We distinguish two cases:

• If the 𝜋 field is a wQC for 𝑏 ′ (ln 16), 𝑝𝑖 verifies if the stable block

of 𝑏 and 𝑏 ′ are the same block such that 𝑏 indeed extends 𝑏 ′. 𝑝𝑖
also verifies if 𝑏, 𝑏 ′ and 𝑏 ′′ are all proposed in the same view

and 𝑝𝑖 has previously voted for 𝑏 ′. If so, 𝑝𝑖 updates its local
parameter 𝑄𝐶𝑤 to 𝜋 and creates a signature for 𝑏 (Algorithm 1,

ln 14).

• If 𝜋 is a rQC for 𝑏 ′ (ln 17-18), 𝑝𝑖 verifies if 𝑏’s parent block 𝑏
′

has a higher rank than 𝑣𝑏. If so, 𝑝𝑖 updates its local parameter

𝑄𝐶𝑟 to 𝜋 and generates a signature. If 𝑏 ′′ has a rQC and 𝑏 ′′ has
a higher rank than the locked block of 𝑝𝑖 , then 𝑝𝑖 updates its 𝑙𝑏

to 𝑏 ′′. If 𝑝𝑖 has received a rQC for both 𝑏 ′′ and 𝑏∗ (the parent
block of 𝑏 ′′), then 𝑝𝑖 commits block 𝑏∗ and delivers transactions
in 𝑏∗ (Algorithm 1, ln 6-13).

In both cases, the replica updates its 𝑣𝑏 to 𝑏, and sends its signa-

ture to the leader.

View change protocol (Algorithm 3). Every replica starts timer

Δ1 for the first transaction in its queue. If the transaction is not

processed before Δ1 expires, the replica triggers view change. In par-

ticular, the replica sends a ⟨view-change,⊥, (𝑄𝐶𝑟 , 𝑄𝐶𝑤)⟩ message

to the leader (Algorithm 2, ln 23). Upon receiving 𝑛− 𝑓 view-change

messages, the leader first obtains a block 𝑏1 with a QC that has

the highest rank (ln 5). The leader then obtains a block 𝑏0 with a

wQC 𝑣𝑐 such that among all the blocks with weak QCs, 𝑏0 has the

highest stable block (first part of ln 6). Then the leader checks if

the rank of the stable block of 𝑏0 is no less than that of 𝑏1 (second

part of ln 6). If so, the leader creates a new block 𝑏 extending 𝑏0
and broadcasts 𝑏 to all replicas. Otherwise, the leader extends 𝑏1
and creates block 𝑏 and broadcasts to the replicas (ln 5 and ln 7).

Upon receiving a ⟨generic, 𝑏, 𝜋⟩ message from a new leader, each

replica 𝑝𝑖 verifies if the proposed block 𝑏 extends a block of a

prior view (ln 12-13). Then 𝑝𝑖 votes for 𝑏 if either of the following

conditions is satisfied:

• 𝑏 extends a block 𝑏 ′ with a wQC (ln 14), the stable blocks of 𝑏

and 𝑏 ′ are the same block (denoted as 𝑏𝑠), and the rank of 𝑏𝑠 is

no less than that of the locked block of 𝑝𝑖 ;

• 𝑏 extends a block 𝑏 ′ with a rQC (ln 15-16), and the rank of the

stable block of 𝑏 is no less than that of the locked block of 𝑝𝑖 .

On setting up the timers. In Dashing1, the leader maintains an

additional timer Δ2 to determine if it can receive enough signatures

to form a rQC. One might wonder if the timer could impact system

performance or system liveness. Indeed, if Δ2 is too small, then it

is possible that too many wQCs are formed and eventually a view

change might be triggered. If Δ2 is too large, the performance could

be degraded accordingly.

For the first concern, we set up an upper bound on the number

of wQCs that a leader can propose consecutively. A leader should

form a rQC before sending to all replicas once the number of wQCs

reach the bound.

For the second concern, we find that in the normal case (where

there are no attacks), even if the timer Δ2 is set as a very small

value or even 0, the percentage that rQCs are formed among all

QCs, perhaps surprisingly, is large. This is because while a replica

is packing the proposal, other signatures may have been received

by the replica and a rQC can be formed.

4.5 Dashing2

Dashing2 is a variant of Dashing1 and focuses on enhancing per-

formance for the normal case. First of all, we use the idea of using

𝑓 + 1 actively participating replicas for normal case operations

(e.g., [26]). Instead of broadcasting a block to all replicas, the leader

may choose to broadcast to only 𝑓 replicas for wQCs. Note that the

other 2𝑓 replicas now serve as only backups, thereby reducing the

bandwidth consumption.

Periodically, the leader needs to switch to rQCs. In Dashing2,

we set a parameter 𝑘 : after 𝑘 blocks with wQCs are proposed, the

leader needs to collect a rQC for three phases so replicas can then

deliver the 𝑘 blocks with wQCs simultaneously. It is easy to find

that Dashing2 eliminates the need of the Δ2 timer, as the leader

now collects wQCs for a fixed number of 𝑘 phases.

Note in Dashing2, the leader should periodically switch between

wQCs and rQCs. This is different from the strategy used in Dashing1

which sets an upper bound 𝑘 on the number of consecutive wQCs:

in Dashing1, the leader may simply collect a rQC before the upper

7

bound. The approach used in Dashing2 targets the normal case

performance only and does not consider improving robustness

under network partitions.

Figure 4: Periodically, Dashing2 collects wQCs for 𝑘 blocks and then

collects rQCs for one block.

4.6 Dashing3

Wenow show inDashing3 how to further enable a fast path by using

strong certificates (sQCs). Intuitively, supporting 3𝑓 + 1 threshold
may allow replicas to deliver the transactions in a single phase: if

the leader collects a sQC for a block and broadcasts to the replicas,

replicas can directly commit the block.

While prior works have demonstrated how to design secure

BFT protocols using strong quorums [2, 3, 22], integrating sQCs in

Dashing1, however, has its unique challenges due to usage of wQCs.

Indeed, as a block supported by a sQCmay be extended from a block

with only a weak certificate, replicas cannot directly commit the

block upon receiving a sQC. As depicted in Fig. 5, two conflicting

blocks 𝑏 and 𝑏 ′ are proposed in the same view 1 with the same

height. Moreover, a rQC is formed for 𝑏 and a wQC is formed for

𝑏 ′. Besides, a wQC for block 𝑏 ′
1
that extends 𝑏 ′

0
is formed. Suppose

now a view change occurs, the new leader in view 2 extends 𝑏 ′
1

and proposes 𝑏 ′
2
. In Dashing1, replicas can vote for 𝑏 ′

2
, so a sQC

can be formed. Then we consider a scenario where another view

change occurs and replicas enter view 3. As there is no guarantee

on how many correct replicas have received the sQC for 𝑏 ′
2
, the

new leader in view 3 may choose to extend 𝑏0. And 𝑏0 can be later

on committed in view 3, in which case safety is violated as 𝑏 ′
2
is

committed in view 2. As view change may occur at any moment,

replicas cannot directly commit a block when a sQC is received.

Figure 5: Challenge of integrating strong certificates in Dashing3.

In Dashing3, we treat a sQC for the first block proposed after view

change as a rQC and the block cannot be committed immediately.

Furthermore, during the view change, the new leader needs to send

the view-change messages from the replicas to all replicas, serving

as a proof for the block it proposes. In fact, the view change process

now becomes similar to that in Fast-HotStuff [25] and Jolteon [20].

Accordingly, Dashing3 has 𝑂 (𝑛2) authenticator complexity and

𝑂 (𝑛) message complexity. In addition, Dashing3 is a two-phase

protocol with a one-phase fast path.

We show the pseudocode of Dashing3 in Appendix C. We make

several major changes on top of Dashing1. First, if a replica 𝑝𝑖 re-

ceives a strong certificate for block 𝑏 from the leader, 𝑝𝑖 directly

commits 𝑏 and delivers the transactions unless 𝑏 is the first block

proposed after the view change or 𝑏 extends a block with a wQC.

Second, during view change, the new-view message from the new

leader includes a set of at least 𝑛 − 𝑓 view-change messages. Upon

receiving the new-view message with a proposal, a correct replica

verifies the proposal by performing a computation similar to the

one used by the new leader to create the proposal. Replicas resume

normal operations only after the new-view message is verified.

Third, for the first block 𝑏 proposed after each view change such

that a strong certificate is received, each replica treats it as a regu-

lar certificate and does not commit the block immediately. Finally,

Dashing3 follows the two-phase commit rule that if a replica re-

ceives a regular certificate for both a block𝑏 and𝑏 ′ (the parent block
of 𝑏), block 𝑏 ′ can be committed. The concrete proof of correctness

for Dashing3 is complex and we provide the proof in Appendix C.2.

4.7 Characteristics of the Dashing Protocols (Or:

Benefits and Drawbacks for Individual

Dashing Protocols)

We now summarize the characteristics of the Dashing protocols.

Dashing1. Dashing1 has two benefits compared to prior protocols:

improved efficiency and enhanced robustness. First of all, we em-

phasize that being a partially synchronous BFT protocol, Dashing1,

just as other such protocols, may not make progress in completely

asynchronous environments. But Dashing1 offers an alternative

way of handling some asynchrony scenarios.

Dashing1 excels in partition tolerance, because as long as there

are 𝑓 + 1 correct replicas in the primary partition then the sys-

tem can proceed with wQCs. Similarly, Dashing1 offers benefits

in intermittently asynchronous environments [34] or occasionally

asynchronous environments. Due to these features, we view Dash-

ing1 as a valuable addition to robust BFT protocols.

In one of our deployment scenarios, we set the view change

timer as a value that is larger than the conventional ones in similar

BFT protocols, in order to have better efficiency and robustness.

Dashing2. Dashing2 targets performance only and does not aim at

improving robustness. It can no longer tolerate partitions or other

asynchrony scenarios, but its design and implementation become

neat: replicas just need to maintain regular timers for view changes.

It is particularly well suited in scenarios where dedicated hardware

and networks are used and failures are rare.

Dashing3. Dashing3 offers some interesting trade-offs among la-

tency and throughput when compared to Dashing1. In general,

Dashing3 has a more complex algorithm, a more subtle proof of

correctness, and a more challenging implementation.

5 THE STAR FRAMEWORK

We present Star, a new asynchronous framework that allows repli-

cas to concurrently propose transactions and at least𝑛− 𝑓 proposals
will be delivered in each epoch.

5.1 Overview of the Star Architecture

As in Narwhal and Tusk [17], the transmission and consensus pro-

cesses in Star (as described in Fig. 6) are decoupled. The trans-

mission process is fully parallizable and works in asynchronous

environments. It proceeds in epochs, where all replicas can propose

8

transactions and output a queue of weak certificates numbered by

epochs. Replicas do not have to interact with the consensus process

before advancing to the next epoch. The consensus process has only

one BFT instance. The process does not carry bulk data. It takes

as input weak certificates of the proposals and agrees on which

proposals in each epoch should be delivered.

The crucial difference between Star and the work [17] is that

Star achieves less communication for both the gracious and uncivil

scenarios. In particular, the transmission process in Star achieves

𝑂 (𝑛2) messages and 𝑂 (𝐿𝑛2 + _𝑛2) communication, where 𝐿 is the

size of the proposal from each replica and _ is the security param-

eter. If being instantiated using HotStuff or PBFT, the consensus

layer has 𝑂 (_𝑛) or 𝑂 (_𝑛2) communication, respectively, and the

total communication for Star remains 𝑂 (𝐿𝑛2 + _𝑛2). Moreover, the

linear communication pattern allows us to pipeline the message

transmission process.

5.2 Star Details

The transmission process. The transmission process evolves in

epochs. Each epoch consists of 𝑛 parallel wCBC instances, as shown

in Fig. 6a. Each replica maintains a queue𝑄 of pending transactions

and outputs a growing set𝑊 [𝑒] containing weak certificates for

each epoch 𝑒 . In each wCBC instance, a designated replica broad-

casts a proposal (a batch of transactions) from its queue of pending

transactions. Upon completing 𝑛 − 𝑓 wCBC instances, each replica

starts the next epoch and continues to propose new transactions.

wCBC may be viewed as a weak version of consistent broadcast

(CBC), i.e., CBCwith weak certificates. A wCBC instance consists of

three steps. First, a designated sender sends a proposal containing

a set of transactions to all replicas. The sender waits for signed

responses from 𝑓 + 1 replicas to form a wQC and sends it to all

replicas. Upon receiving a valid wQC, each replica delivers the

corresponding proposal. Note it is possible that for a particular

wCBC instance, a correct replica delivers𝑚 and another correct

replica delivers𝑚′ ≠ 𝑚. While multiple conflicting wQCs might

be provided by a faulty sender, we can trivially solve the issue by

asking each replica to deliver only the first wQC for each epoch.

So why wCBC? wCBC ensures that if a wQC is formed, at least

one correct replica has received and stored the corresponding pro-

posal. The use of wQCs is sufficient to ensure liveness, because

any replica 𝑝 𝑗 , once obtaining wQC, can ask for the corresponding

proposal from correct replicas; any correct replica that stores the

proposal can simply send it to 𝑝 𝑗 that can validate the correctness

of the proposal via the wQC. The above procedure is the "worst-

case" scenario, where a correct replica stored a wQC but had no

corresponding proposal. Even if the worst case occurs, it would not

incur higher message or communication complexity.

Star develops the above idea and offers a pipelined version for

high performance. Concretely, each replica can directly propose

a new proposal in the third step of wCBC. We describe the code

of the transmission process in Algorithm 4, where each replica 𝑝𝑖
(𝑖 ∈ [0..𝑛 − 1]) runs the initepoch(𝑒) function to start a new epoch

𝑒 . Replica 𝑝𝑖 chooses a set of transactions from𝑄 as a proposal (say,

𝑏) using the select function. (The select function is vital to liveness

and we will discuss its specification shortly.) It then broadcasts a

message ⟨proposal, 𝑏,𝑤𝑞𝑐⟩, where𝑤𝑞𝑐 is the wQC formed in epoch

𝑒 − 1. (If we are working in the non-chaining mode, then 𝑤𝑞𝑐 is

simply ⊥.) 𝑝𝑖 waits for 𝑓 + 1 votes for 𝑏 to form a wQC. Then after

receiving 𝑛 − 𝑓 proposals for epoch 𝑒 , 𝑝𝑖 enters the next epoch

𝑒 +1. Upon receiving ⟨proposal, 𝑏 𝑗 ,𝑤𝑞𝑐 𝑗 ⟩ from 𝑝 𝑗 , each replica first

verifies𝑤𝑞𝑐 𝑗 , sends a signed vote for 𝑏 𝑗 to 𝑝 𝑗 , adds 𝑏 𝑗 to 𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝑠 ,

and adds𝑤𝑞𝑐 𝑗 to𝑊 [𝑒 − 1].
Note we describe the code of the obtain function in the trans-

mission process too, because only the transmission process has

message queues. Jumping ahead, the obtain function takes as in-

put wQCs a-delivered from the consensus process and outputs the

corresponding proposals as delivered transactions.

Algorithm4:The transmission process of Star (code shown

for replica 𝑝𝑖 ; the chaining (pipelined) mode)

1 initialization: epoch number 𝑒 , queue𝑄 of pending transactions, received

proposals 𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝑠 , the latest weak certificate 𝑤𝑞𝑐 , and queue𝑊 of weak

certificates are all initialized to ⊥.
2 func initepoch(𝑒)
3 𝑏.𝑡𝑥 ← select(𝑄) , 𝑏.𝑒𝑝𝑜𝑐ℎ ← 𝑒 //select a proposal 𝑏 from𝑄

4 broadcast ⟨proposal, 𝑏, 𝑤𝑞𝑐 ⟩ //broadcast the proposal and 𝑤𝑞𝑐 ;

pipelined mode

5 upon receiving a set𝑀 of 𝑓 + 1 signed votes for 𝑏

6 𝑤𝑞𝑐←qcCreate(𝑀) //create a weak certificate

7 wait until |𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝑠 [𝑒] | ≥ 𝑛 − 𝑓 //enter the next epoch

8 𝑒 ← 𝑒 + 1, initepoch(𝑒)
9 upon receiving ⟨proposal, 𝑏 𝑗 , 𝑤𝑞𝑐 𝑗 ⟩ from replica 𝑝 𝑗 in 𝑒 for the first time

10 send signed vote for 𝑏 𝑗 to 𝑝 𝑗

11 𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝑠 [𝑒] ← 𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝑠 [𝑒] ∪ 𝑏 𝑗

12 𝑊 [𝑒 − 1] ←𝑊 [𝑒 − 1] ∪ 𝑤𝑞𝑐 𝑗 //certificates in the output queue

13 func obtain(𝑒,𝑚) //obtain the union of proposals

14 𝑂 ← ⊥ //to store delivered proposals

15 for wQC 𝑞𝑐 ∈𝑚
16 if qcProposal(𝑞𝑐) ∈ 𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝑠 [𝑒] //qcProposal(𝑞𝑐) returns the

proposal for 𝑞𝑐

17 𝑂 ← 𝑂 ∪ qcProposal(𝑞𝑐)
18 else broadcast ⟨fetch, 𝑒, 𝑞𝑐 ⟩
19 wait for a proposal message containing qcProposal(𝑞𝑐)
20 𝑂 ← 𝑂 ∪ qcProposal(𝑞𝑐)
21 clear𝑊 [𝑒], remove transactions in𝑂 from𝑄

22 upon receiving message ⟨fetch, 𝑒, 𝑞𝑐 ⟩ from replica 𝑝 𝑗

23 if qcProposal(𝑞𝑐) ∈ 𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝑠 [𝑒]//fetch missing proposals; triggered

by func obtain

24 send ⟨proposal, qcProposal(𝑞𝑐) ⟩ to 𝑝 𝑗

Algorithm 5: The consensus process of Star

1 initialization: the epoch number of the current block 𝑙𝑒 is initialized to 1.

external:𝑊 //obtained from the transmission process

2 upon |𝑊 [𝑙𝑒] | ≥ 𝑛 − 𝑓

3 a-broadcast(𝑊 [𝑙𝑒]) //run the underlying atomic broadcast

4 upon a-deliver(𝑙𝑒,𝑚)

5 𝑂 ← obtain(𝑙𝑒,𝑚)
6 deliver 𝑂 //deliver the transactions in𝑂 in deterministic order

7 𝑙𝑒 ← 𝑙𝑒 + 1

As there are at most 𝑛 wCBC instances, the transmission process

has 𝑂 (𝑛2) messages and 𝑂 (𝐿𝑛2 + _𝑛2) communication.

The consensus process. The consensus process also proceeds in

epochs, using only one BFT instance to agree on the wQCs. We can

use any BFT protocol for the consensus process. When describing

the consensus process in Algorithm 5, we use the a-broadcast and

a-deliver primitives in atomic broadcast.

9

(a) Transmission process. (b) Consensus process.

Figure 6: The Star architecture.

Each replica 𝑝𝑖 maintains 𝑙𝑒 , a local parameter tracking the cur-

rent consensus epoch number. 𝑝𝑖 monitors its queue𝑊 (obtained

from the transmission process) and checks whether𝑊 [𝑙𝑒] has at
least 𝑛 − 𝑓 weak certificates. If so, replicas run a-broadcast(𝑊 [𝑙𝑒]).
(If the underlying BFT is leader-based, then only the leader proposes

𝑊 [𝑙𝑒]). When the a-deliver primitive terminates, each replica waits

the transactions (from the transmission process) corresponding to

wQCs a-delivered and delivers the transactions in deterministic

order. If some proposals are missing, the replica may simply fetch

the proposals from other replicas (via obtain). The fetch step is

triggered only when needed and does not increase the message

complexity or communication complexity of the whole protocol.

Censorship resilience (liveness) in Star. Protocols allowing all

replicas to propose different transactions should address transac-

tion censorship which prevents a particular transaction proposed

by a replica from never being delivered. First, the use of wQC en-

sures that if the underlying atomic broadcast completes, then the

corresponding proposal has been obtained by correct replicas, or

can be obtained via the fetch operation by correct replicas.

We should in addition ensure that adversary cannot censor cer-

tain transactions. So we have to be careful in specify the select

function. HoneyBadgerBFT [34] invents a method that replicas

randomly select transactions from their queue and use threshold

encryption to achieve censorship resilience. EPIC [29] combines the

conventional FIFO strategy used in [14] and the random selection

strategy used in HoneyBadgerBFT to avoid threshold encryption.

The completely asynchronous pattern in Star allows us to adopt

the same approach in EPIC and achieve liveness under asynchrony.

Note that doing so does not increase complexity.

In contrast, Mir-BFT and ISS devise interesting algorithms for

liveness assuming partial synchrony. Note that an adversarial net-

work scheduler can censor transactions for Mir-BFT and ISS.

Instantiating Star with PBFT (with good reason). When in-

stantiating Star, we do not choose to use HotStuff or any Dashing

protocol. This is because we cannot leverage the pipelining feature

of these protocols with the Star framework and because using these

protocols would incur higher latency. In contrast, PBFT allows the

leader to propose new proposals without having to wait for the

result from the last epoch, which makes it a better fit for Star. We

comment using PBFT does not increase the message complexity

or communication complexity for Star, because the transmission

process in Star dominates the complexity for the protocol.

In Star, we use a variant of PBFT that is only slightly different

from PBFT. First, as the proposed transactions are already assigned

with epoch number in the transmission process, we directly use the

epoch number as the sequence number in the consensus process. We

additionally require that the leader cannot skip any epoch number.

Second, during a view change, the new leader is not allowed to

propose a nil block for any epoch number. Namely, for any epoch

number 𝑒 such that an agreement is not reached in a prior view,

the new leader simply proposes𝑊 [𝑒]. We describe the details of

the protocol in Appendix D.

A Star variant. Star can be modified to support both wQC and rQC

in the transmission process. The resulting protocol has a fast path

for the consensus process: in the optimal case, we can reduce the

number of phases from three to two (for both PBFT and HotStuff).

While we did not implement the variant, we present the protocol

variant in Appendix D.2.

6 IMPLEMENTATION AND EVALUATION

We implement all the four protocols introduced in this work and

HotStuff in Golang using around 10,000 LOC, including 1,500 LOC

for evaluation.We implement the chaining (pipelining) mode for the

Dashing protocols and HotStuff. For Star, we implement a variant

of PBFT for the consensus process as mentioned in Sec. 5.2. For all

the protocols, we implement the checkpoint protocol for garbage

collection, where replicas run the checkpoint protocol every 5000

blocks. We use gRPC as the underlying communication library.

We use digital signatures for quorum certificates, as in many prior

works [1, 21, 36, 41].

We deploy the protocols in a local cluster with 40 servers (LAN)

and also a popular cloud platformwith 91 replicas where the servers

are evenly distributed across five continents (WAN). In the LAN

setting, each server has a 16-core 2.3GHz CPU and 128 GB RAM in

the cluster. The network round-trip time between two servers is

on average 5 ms. The network bandwidth is 200 Mbps. In the WAN

setting, each instance has four virtual CPUs and 16 GB memory.

The network round-trip time is 100-110 ms.

For each experiment, we use 3𝑓 + 1 replicas and use 𝑓 to denote

the network size. We set the size for transactions and replies as 150

bytes. For all experiments for the Dashing protocols, we set the

value of Δ2 as 20 ms.

For readability, we first report the performance of Dashing1,

Dashing3, and Star, and then compare Dashing2 (a variant of Dash-

ing1) with Dashing1.

Performance (latency vs. throughput; throughput). We report

the performance of Dashing1, Dashing3, Star, and HotStuff in both

LAN (our local cluster) and WAN (cloud) settings.

10

0 20 40 60 80 100

0

0.5

1

1.5

Throughput (ktx/sec)

L
a
t
e
n
c
y
(
S
e
c
)

HotStuff Dashing1

Dashing3 Star

(a) Latency vs. throughput in LAN for

𝑓 = 1.

0 50 100 150 200

0

0.5

1

1.5

Throughput (ktx/sec)

L
a
t
e
n
c
y
(
S
e
c
)

HotStuff Dashing1

Dashing3 Star

(b) Latency vs. throughput in LAN for

𝑓 = 10.

0 500 1,000 1,500
0

20

40

60

80

100

120

Number of clients

T
h
r
o
u
g
h
p
u
t
(
t
x
/
s
e
c
)

HotStuff Dashing1

Dashing3 Star

(c) Throughput in LAN for 𝑓 = 1.

0 200 400 600 800 1,000 1,200
0

50

100

150

200

Number of clients

T
h
r
o
u
g
h
p
u
t
(
k
t
x
/
s
e
c
)

HotStuff Dashing1

Dashing3 Star

(d) Throughput in LAN for 𝑓 = 10.

0 10 20 30 40 50 60

0

0.5

1

1.5

2

2.5

Throughput (ktx/sec)

L
a
t
e
n
c
y
(
S
e
c
)

HotStuff Dashing1

Dashing3 Star

(e) Latency vs. throughput inWAN for

𝑓 = 1.

0 20 40 60 80 100 120 140 160

0

0.5

1

1.5

2

2.5

Throughput (ktx/sec)

L
a
t
e
n
c
y
(
S
e
c
)

HotStuff Dashing1

Dashing3 Star

(f) Latency vs. throughput inWAN for

𝑓 = 10.

0 50 100 150

0

1

2

3

4

Throughput (ktx/sec)

L
a
t
e
n
c
y
(
S
e
c
)

HotStuff Dashing1

Dashing3 Star

(g) Latency vs. throughput in WAN

for 𝑓 = 20.

0 50 100 150 200 250

0

1

2

3

4

Throughput (ktx/sec)

L
a
t
e
n
c
y
(
S
e
c
)

HotStuff Dashing1

Dashing3 Star

(h) Latency vs. throughput in WAN

for 𝑓 = 30.

0 500 1,000 1,500
0

20

40

60

80

Number of clients

T
h
r
o
u
g
h
p
u
t
(
t
x
/
s
e
c
)

HotStuff Dashing1

Dashing3 Star

(i) Throughput in WAN for 𝑓 = 1.

0 500 1,000 1,500
0

50

100

150

200

Number of clients

T
h
r
o
u
g
h
p
u
t
(
k
t
x
/
s
e
c
)

HotStuff Dashing1

Dashing3 Star

(j) Throughput in WAN for 𝑓 = 10.

0 500 1,000 1,500
0

50

100

150

200

Number of clients

T
h
r
o
u
g
h
p
u
t
(
k
t
x
/
s
e
c
)

HotStuff Dashing1

Dashing3 Star

(k) Throughput in WAN for 𝑓 = 20.

0 500 1,000 1,500
0

50

100

150

200

250

Number of clients

T
h
r
o
u
g
h
p
u
t
(
k
t
x
/
s
e
c
)

HotStuff Dashing1

Dashing3 Star

(l) Throughput in WAN for 𝑓 = 30.

0 20 40 60 80 100

0

100

200

300

Number of replicas

T
h
r
o
u
g
h
p
u
t
(
k
t
x
/
s
e
c
)

HotStuff Dashing1

Dashing3 Star

(m) Throughput of the protocols in WAN as 𝑓

grows.

0ms 10ms 20ms 40ms

0

20

40

60

80

100

120

66.31

59.16

23.14

11.84

78.2

68.28

25.21

15.38

74.19

68.47

23.13

13.25

Network delay (normal distribution)

T
h
r
o
u
g
h
p
u
t
(
k
t
x
/
s
e
c
)

HotStuff Dashing1 Dashing3

(n) Peak throughput under network delay for 𝑓 =

1.

0 10 20 30 40 50 60 70 80 90 100

HotStuff

Dashing1

Dashing3

HotStuff (40ms)

Dashing1 (40ms)

Dashing3 (40ms)

% of certificates

sQC rQC sQC

(o) Fractions of different certficiates.

Figure 7: Performance of the protocols. Figures that compare only Dashing protocols and HotStuff are presented in Appendix A.

In the LAN setting, we report latency vs. throughput for 𝑓 = 1

and 𝑓 = 10 in Fig. 7a and Fig. 7b and throughput as the number

of clients increases in Fig. 7c and Fig. 7d. Dashing1 and Dashing3

consistently outperformHotStuff. For 𝑓 = 1, the peak throughput of

Dashing1 and Dashing3 is 17.9% and 11.8% higher than that of Hot-

Stuff, respectively. When 𝑓 = 10, Dashing1 and Dashing3 achieve

63.8% and 43.7% higher peak throughput than HotStuff. In compari-

son, Star significantly and consistently outperforms HotStuff and

the Dashing protocols. For 𝑓 = 1 and 𝑓 = 10, the peak throughput

of Star is 55.6% higher than HotStuff and 9x the throughput of

HotStuff, respectively.

In the WAN setting, we report the performance of the proto-

cols in Fig. 7e-7l. We also provide enlarged figures for Dashing1,

11

Dashing3, and HotStuff in Appendix A that do not contain Star.

The performance of the protocols in the WAN environment is con-

sistently lower than that in the LAN setting, due to the network

delay. For the experiments we conduct in the WAN setting, all the

Dashing protocols consistently outperform HotStuff, and Star more

outperforms the Dashing protocols. In addition, the performance

difference between Star and the family protocols in theWAN setting

is much more significant than that in the LAN setting. In particular,

when 𝑓 = 1, the peak throughput of Dashing1, Dashing3, and Star

are 21.5%, 21.2%, and 71.1% higher than that of HotStuff. When

𝑓 = 30, the throughput of Dashing1 and Dashing3 are 28.1%, 8.8%

higher than that of HotStuff; the throughput of Star is 15.8x the

throughput of HotStuff.

While Dashing1 and Dashing3 provide some interesting perfor-

mance trade-offs, they offer similar performance in most of the

experiments. But Dashing3 has a fast path in the failure-free sce-

nario, having lower latency in contention-free situations.

Scalability.We report in Fig. 7m the peak throughput of Dashing1,

Dashing3, Star, and HotStuff in the WAN environment as 𝑓 grows.

All the Dashing protocols outperform HotStuff consistently. The

peak throughput of Dashing1 is 29.9%, 16.2%, 10.7%, and 28.1%

higher than that of HotStuff for 𝑓 = 5, 10, 20, and 30, respectively.

As discussed before, the performance improvement is due to the

usage of wQCs.

For Dashing protocols and HotStuff, the throughput degrades as

𝑓 grows, echoing the results for the HotStuff family of protocols. For

instance, the peak throughput of Dashing1 degrades 52.7% for 𝑓 =

30, compared to that for 𝑓 = 1. In comparison, the peak throughput

of Star actually grows as 𝑓 grows. In particular, the performance

of Star for 𝑓 = 30 is 3.84x the throughput for 𝑓 = 1. Meanwhile,

the peak throughput of Star is 5.08x, 6.75x, 7.92x, and 15.8x the

throughput of HotStuff for 𝑓 = 5, 10, 20, and 30, respectively. This

is mainly because: 1) replicas only agree on a set of wQCs; 2) all 𝑛

replicas propose transactions concurrently and the transmission

process and consensus process are decoupled; 3) the transmission

process is highly efficient and can be pipelined. When 𝑓 = 30, the

peak throughput of Star is 243 ktx/sec, in contrast to 16 ktx/sec for

that of HotStuff and 20 ktx/sec for that of Dashing1.

Performance of the Dashing protocols under network delays.

In the LAN setting, besides the original 5 ms delay, we inject delay

of 10 ms, 20 ms, and 40 ms and random +−10 ms, +−20 ms, and

+−40 ms normal distribution, respectively. For instance, for the 10

ms delay scenario, packets will experience a mean latency of 5 + 10
ms with a standard deviation of 10 ms with a normal distribution.

We compare the performance of HotStuff, Dashing1, and Dash-

ing3 and report the peak throughput (when the number of clients

is 1200) for 𝑓 = 1 in Fig. 7n. Compared to the performance in the

LAN setting with no network delays, the performance of HotStuff

degrades by 17.8%, 67,9%, 83.58% under 10ms, 20ms, and 40ms net-

work delay, respectively. In contrast, the performance of Dashing1

degrades by 12.7%, 67.7%, and 80.3%. For Dashing3, the through-

put degrades 7.7%, 68.8%, and 82.14%, respectively. Dashing1 and

Dashing3 consistently outperform HotStuff, which highlights the

robustness of our protocols under random network delays.

Additionally, we also report the fractions of wQCs, rQCs, and

sQCs in the experiments with no delay and with 40ms delay in

𝑓 = 1 𝑓 = 5

0

100

200

300

400

500

92

170

81

171

138

412

L
a
t
e
n
c
y
(
m
s
)

HotStuff

Dashing1

Dashing3

(a) View change latency.

no-failure 3-failure 5-failure

0

20

40

60

80

43.97

33.8

20.09

63.35

38.76
36.21

60.18

36.51

32.6

P
e
a
k
t
h
r
o
u
g
h
p
u
t
(
k
t
x
/
s
e
c
)

HotStuff Dashing1 Dashing3

(b) Peak throughput of under failures (𝑓 = 5).

Figure 8: View change and performance under failures.

𝑓 = 1 𝑓 = 10

0

20

40

60

80

100

120

66.31

19.97

78.2

32.73

80.31

35.95

T
h
r
o
u
g
h
p
u
t
(
k
t
x
/
s
e
c
)

HotStuff Dashing1 Dashing2

Figure 9: Dashing1 vs. Dashing2.

Fig. 7o. For Dashing1, the fraction of wQCs is 36.8% for the experi-

ment with no delay and 32.4% for the experiment with 40ms delay.

The finding explains why Dashing1 improves the performance of

HotStuff. For Dashing3, its main benefit is reduced latency rather

than improved throughput.

Performance under failures.We assess the performance under

failures for Dashing1, Dashing3, and HotStuff. We evaluate the

rotating leader mode, where the leader is rotated (view change)

every second. We use 1200 clients in all the experiments.

We assess the average latency of view changes (due to failures)

and report the results for 𝑓 = 1 and 𝑓 = 5 in Fig. 8a. In our ex-

periments, the view change latency for Dashing3 is higher than

Dashing1 and HotStuff, mostly because each new-view message

consists of 𝑛− 𝑓 view-changemessages, and replicas have to verify

the messages accordingly. For 𝑓 = 5, the view change latency of

Dashing3 is about 2x the latency of Dashing1 and HotStuff.

We also report the peak throughput for 𝑓 = 5 in Fig. 8b where

there are no failures, three failures, and five failures, respectively.

We fail the replicas at the beginning of each experiment for the

experiments with failures. When there are failures, the performance

for all three protocols degrades (due to view changes). When there

are three failures, the performance of HotStuff, Dashing1, and Dash-

ing3 is 23.1%, 38.8%, and 39.3% lower than the failure-free scenario,

respectively. For the 5-failure scenario, the performance of HotStuff,

Dashing1, and Dashing3 is 54.3%, 42.8%, and 45.8%. The perfor-

mance of Dashing3 is consistently lower than Dashing1, largely

because view change in Dashing3 is more expensive.

Dashing1 vs. Dashing2.We compare the performance of Dash-

ing1 and Dashing2 in the LAN setting for 𝑓 = 1 and 𝑓 = 10. We

set up the upper bound parameter 𝑘 as 20 for Dashing2, where the

leader broadcasts its proposal to only 𝑓 replicas for 𝑘 phases and

then switch to collect rQCs. As depicted in Fig. 9, the performance

12

of Dashing2 is higher than Dashing1 due to the low network band-

width consumption. For 𝑓 = 1, the peak throughput of Dashing2

is 2.6% higher than Dashing1 and 21.1% higher than HotStuff. For

𝑓 = 10, Dashing2 achieves 9.8% higher throughput than Dashing1

and 80.0% higher throughput than HotStuff.

7 CONCLUSION

We design and implement efficient BFT protocols using weak cer-

tificates, including a family of three Dashing protocols (that offer

improved efficiency or robustness compared to HotStuff) and a

new asynchronous BFT framework Star allowing proposing and

processing parallel transactions using a single BFT instance. Via

a deployment in both the LAN and WAN environments, we show

that the our protocols outperform their counterparts. In particular,

based on the test of the WAN setting with 91 replicas across five

continents, the Star instantiation has a throughput of 243 ktx/sec,

15.8x the throughput of HotStuff.

REFERENCES

[1] 2022. HotStuff (Relab). https://github.com/relab/hotstuff. (2022).

[2] Ittai Abraham, Guy Gueta, Dahlia Malkhi, Lorenzo Alvisi, Rama Kotla, and Jean-

Philippe Martin. 2017. Revisiting fast practical Byzantine fault tolerance. arXiv

preprint arXiv:1712.01367 (2017).

[3] Ittai Abraham, Guy Gueta, Dahlia Malkhi, and Jean-Philippe Martin. 2018. Re-

visiting fast practical byzantine fault tolerance: Thelma, velma, and zelma. arXiv

preprint arXiv:1801.10022 (2018).

[4] Ittai Abraham, Philipp Jovanovic, Mary Maller, Sarah Meiklejohn, Gilad Stern,

and Alin Tomescu. 2021. Reaching Consensus for Asynchronous Distributed

Key Generation. In PODC.

[5] Ittai Abraham, Dahlia Malkhi, Kartik Nayak, Ling Ren, and Maofan Yin. 2020.

Sync hotstuff: Simple and practical synchronous state machine replication. In

S&P (Oakland). IEEE, 106–118.

[6] Ittai Abraham, Dahlia Malkhi, and Alexander Spiegelman. 2019. Asymptotically

Optimal Validated Asynchronous Byzantine Agreement. In Proceedings of the

Symposium on Principles of Distributed Computing. ACM, 337–346.

[7] Jean-Paul Bahsoun, Rachid Guerraoui, and Ali Shoker. 2015. Making BFT proto-

cols really adaptive. In IPDPS. IEEE, 904–913.

[8] Michael Ben-Or, Boaz Kelmer, and Tal Rabin. 1994. Asynchronous secure com-

putations with optimal resilience. In Proceedings of the 13th annual symposium

on Principles of distributed computing. ACM, 183–192.

[9] Erica Blum, Jonathan Katz, and Julian Loss. 2019. Synchronous consensus with

optimal asynchronous fallback guarantees. In Theory of Cryptography Conference.

Springer, 131–150.

[10] Erica Blum, Chen-Da Liu-Zhang, and Julian Loss. 2020. Always have a backup

plan: fully secure synchronous MPC with asynchronous fallback. In Annual

International Cryptology Conference. Springer, 707–731.

[11] Alexandra Boldyreva. 2003. Threshold Signatures, Multisignatures and Blind

Signatures Based on the Gap-Diffie-Hellman-Group Signature Scheme. In PKC.

31–46.

[12] Dan Boneh, Ben Lynn, and Hovav Shacham. 2004. Short signatures from the

Weil pairing. Journal of cryptology 17, 4 (2004), 297–319.

[13] Christian Cachin, Rachid Guerraoui, and Lus Rodrigues. 2011. Introduction to

Reliable and Secure Distributed Programming (2nd ed.).

[14] Christian Cachin, Klaus Kursawe, Frank Petzold, and Victor Shoup. 2001. Se-

cure and efficient asynchronous broadcast protocols. In Annual International

Cryptology Conference. Springer, 524–541.

[15] Christian Cachin and Marko Vukolić. 2017. Blockchain consensus protocols in

the wild. In DISC. 1:1–1:16.

[16] Allen Clement, Manos Kapritsos, Sangmin Lee, Yang Wang, Lorenzo Alvisi, Mike

Dahlin, and Taylor Riche. 2009. Upright cluster services. In Proceedings of the

ACM SIGOPS 22nd symposium on Operating systems principles. 277–290.

[17] George Danezis, Lefteris Kokoris-Kogias, Alberto Sonnino, and Alexander

Spiegelman. 2022. Narwhal and Tusk: a DAG-based mempool and efficient BFT

consensus. In Proceedings of the Seventeenth European Conference on Computer

Systems. 34–50.

[18] Sisi Duan and Haibin Zhang. 2022. PACE: Fully Parallelizable BFT from Repro-

posable Byzantine Agreement. IACR Cryptol. ePrint Arch. (2022).

[19] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. 1988. Consensus in the

presence of partial synchrony. Journal of ACM 32, 2 (1988), 288–323.

[20] Rati Gelashvili, Lefteris Kokoris-Kogias, Alberto Sonnino, Alexander Spiegel-

man, and Zhuolun Xiang. 2021. Jolteon and Ditto: Network-Adaptive Efficient

Consensus with Asynchronous Fallback. arXiv preprint arXiv:2106.10362 (2021).

[21] Neil Giridharan, Heidi Howard, Ittai Abraham, Natacha Crooks, and Alin

Tomescu. 2021. No-commit proofs: Defeating livelock in bft. Cryptology ePrint

Archive (2021).

[22] Guy Golan-Gueta, Ittai Abraham, Shelly Grossman, Dahlia Malkhi, Benny Pinkas,

Michael K. Reiter, Dragos-Adrian Seredinschi, Orr Tamir, and Alin Tomescu.

2019. SBFT: A Scalable and Decentralized Trust Infrastructure. In DSN. 568–580.

[23] Rachie Guerraoui, Nikola Knežević, Vivien Quéma, and Marko Vukolić. 2015.

The next 700 bft protocols. ACM Transactions on Computer Systems 32, 4 (2015),

12:1–12:45.

[24] Martin Hirt, Ard Kastrati, and Chen-Da Liu-Zhang. 2020. Multi-Threshold

Asynchronous Reliable Broadcast and Consensus. In 24th International Conference

on Principles of Distributed Systems.

[25] Mohammad M. Jalalzai, Jianyu Niu, Chen Feng, and Fangyu Gai. 2021. Fast-

HotStuff: A Fast and Resilient HotStuff Protocol. arXiv preprint arXiv:2010.11454

(2021).

[26] Rüdiger Kapitza, Johannes Behl, Christian Cachine, Tobias Distler, Simon Kuhnle,

Seyed Vahid Mohammadi, Wolfgang Schröder-Preikschat, and Klaus Stengel.

2012. CheapBFT: Resource-efficient Byzantine fault tolerance. In EuroSys. 295–

308.

[27] Ramakrishna Kolta, Lorenzo Alvisi, Mike Dahlin, Allen Clement, and Edmund

Wong. 2009. Zyzzyva: speculative Byzantine fault tolerance. ACM Transactions

on Computer Systems 27, 4 (2009), 7:1–7:39.

[28] Klaus Kursawe and Victor Shoup. 2005. Optimistic Asynchronous Atomic Broad-

cast. In ICALP. 204–215.

[29] Chao Liu, Sisi Duan, and Haibin Zhang. 2020. EPIC: Efficient Asynchronous BFT

with Adaptive Security. In DSN.

[30] Shengyun Liu, Paolo Viotti, Christian Cachin, Vivien Quéma, and Marko Vukolic.

2016. XFT: Practical Fault Tolerance beyond Crashes. In OSDI. 485–500.

[31] Yuan Lu, Zhenliang Lu, and Qiang Tang. 2022. Bolt-Dumbo Transformer: Asyn-

chronous Consensus As Fast As Pipelined BFT. In CCS.

[32] Dahlia Malkhi, Kartik Nayak, and Ling Ren. 2019. Flexible byzantine fault

tolerance. In CCS. 1041–1053.

[33] J.-P. Martin and L. Alvisi. 2006. Fast Byzantine Consensus. IEEE Transactions on

Dependable and Secure Computing 3, 3 (2006), 202–215.

[34] Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and Dawn Song. 2016. The

honey badger of BFT protocols. In Proceedings of the SIGSAC Conference on

Computer and Communications Security. ACM, 31–42.

[35] Atsuki Momose and Ling Ren. 2021. Multi-Threshold Byzantine Fault Tolerance.

In CCS, Yongdae Kim, Jong Kim, Giovanni Vigna, and Elaine Shi (Eds.). ACM,

1686–1699.

[36] Ray Neiheiser, Miguel Matos, and Luís Rodrigues. 2021. Kauri: Scalable BFT

Consensus with Pipelined Tree-Based Dissemination and Aggregation. In SOSP.

35–48.

[37] Chrysoula Stathakopoulou, Tudor David, and Marko Vukolic. 2019. Mir-BFT:

High-throughput BFT for blockchains. arXiv preprint arXiv:1906.05552 (2019).

[38] Chrysoula Stathakopoulou, Matej Pavlovic, and Marko Vukolić. 2022. State

machine replication scalability made simple. In Proceedings of the Seventeenth

European Conference on Computer Systems. 17–33.

[39] Chrysoula Stathakopoulou, Matej Pavlovic, and Marko Vukolić. 2022. State-

machine replication scalability made simple (extended version). arXiv preprint

arXiv:2203.05681 (2022).

[40] Gilad Stern and Ittai Abraham. 2020. Information Theoretic HotStuff. In OPODIS.

[41] Maofan Yin, Dahlia Malkhi, Micheal K. Reiter, Guy Golan Gueta, and Ittai Abra-

ham. 2019. HotStuff: BFT consensus with linearity and responsiveness. In PODC.

A ADDITIONAL EVALUATION RESULTS

We report evaluation results for Dashing1, Dashing3, and HotStuff

with enlarged figures in Fig. 10.

B PROOF OF CORRECTNESS

B.1 Correctness of Dashing1 and Dashing2

We first introduce some notation we use in this section. Let 𝑏 ′, 𝑏 de-

note two blocks such that 𝑏.𝑝𝑎𝑟𝑒𝑛𝑡 = 𝑏 ′. According to Algorithm 2

and Algorithm 3, after receiving a genericmessage ⟨generic, 𝑏, 𝑞𝑐⟩,
a correct replica votes for 𝑏 only if (1) 𝑏.𝑠𝑡𝑎𝑏𝑙𝑒 = 𝑏 ′ and 𝑞𝑐 is a rQC
for 𝑏 ′ (ln 17-19 of Algorithm 2 and ln 15 of Algorithm 3); or (2)

𝑏.𝑠𝑡𝑎𝑏𝑙𝑒 = 𝑏 ′.𝑠𝑡𝑎𝑏𝑙𝑒 and 𝑞𝑐 is a wQC for 𝑏 ′ (ln 16 of Algorithm 2

13

https://github.com/relab/hotstuff

0 5 10 15 20 25 30

0

0.5

1

1.5

2

2.5

Throughput (ktx/sec)

L
a
t
e
n
c
y
(
S
e
c
)

HotStuff Dashing1

Dashing3

(a) Latency vs. throughput in WAN for

𝑓 = 10.

0 5 10 15 20 25

0

1

2

3

4

Throughput (ktx/sec)

L
a
t
e
n
c
y
(
S
e
c
)

HotStuff Dashing1

Dashing3

(b) Latency vs. throughput in WAN

for 𝑓 = 20.

0 5 10 15 20

0

1

2

3

4

Throughput (ktx/sec)

L
a
t
e
n
c
y
(
S
e
c
)

HotStuff Dashing1

Dashing3

(c) Latency vs. throughput in WAN

for 𝑓 = 30.

0 500 1,000 1,500
0

10

20

30

Number of clients

T
h
r
o
u
g
h
p
u
t
(
k
t
x
/
s
e
c
)

HotStuff Dashing1

Dashing3

(d) Throughput in WAN for 𝑓 = 10.

0 500 1,000 1,500
0

10

20

30

Number of clients

T
h
r
o
u
g
h
p
u
t
(
k
t
x
/
s
e
c
)

HotStuff Dashing1

Dashing3

(e) Throughput in WAN for 𝑓 = 20.

0 500 1,000 1,500
0

10

20

30

Number of clients

T
h
r
o
u
g
h
p
u
t
(
k
t
x
/
s
e
c
)

HotStuff Dashing1

Dashing3

(f) Throughput in WAN for 𝑓 = 30.

0 20 40 60 80 100

0

20

40

60

Number of replicas

T
h
r
o
u
g
h
p
u
t
(
k
t
x
/
s
e
c
)

HotStuff Dashing1

Dashing3

(g) Throughput of the protocols in WAN as 𝑓

grows.

Figure 10: Evaluation results for Dashing1, Dashing3, and HotStuff with enlarged figures.

and ln 14 of Algorithm 3). In both cases, we say that 𝑞𝑐 and 𝑏 are

matching.

Let 𝑏,𝑏 ′ and 𝑏 ′′ denote three consecutive blocks. In Algorithm 1,

we have that a replica 𝑝𝑖 commits 𝑏 only after receiving a rQC 𝑞𝑐 for

𝑏 ′′ such that 𝑏 ′′.𝑠𝑡𝑎𝑏𝑙𝑒 = 𝑏 ′, 𝑏 ′.𝑠𝑡𝑎𝑏𝑙𝑒 = 𝑏, and 𝑏.𝑣𝑖𝑒𝑤 = 𝑏 ′.𝑣𝑖𝑒𝑤 =

𝑏 ′′.𝑣𝑖𝑒𝑤 = 𝑣 . In this case, we call 𝑞𝑐 a 𝑐𝑜𝑚𝑚𝑖𝑡𝑄𝐶 for 𝑏.

Lemma B.1. If 𝑏 and 𝑑 are two conflicting blocks and rank(𝑏) =
rank(𝑑), then a rQC cannot be formed for both 𝑏 and 𝑑 .

Proof. Let 𝑣 denote 𝑏.𝑣𝑖𝑒𝑤 . As rank(𝑏) = rank(𝑑), we have

𝑑.𝑣𝑖𝑒𝑤 = 𝑣 . Suppose, towards a contradiction, a rQC is formed for

both𝑏 and𝑑 . As a valid rQC consists of 2𝑓 +1 votes, a correct replica
has voted for both 𝑏 and 𝑑 in view 𝑣 . This causes a contradiction,

because a correct replica votes for at most one block with each

height in the same view. □

Lemma B.2. Suppose that there exists a rQC or a wQC 𝑞𝑐 for 𝑏;

block 𝑑 and 𝑑𝑐 are on the branch led by 𝑏 such that 𝑑𝑐 .𝑝𝑎𝑟𝑒𝑛𝑡 = 𝑑 ,

then we have that

(1) 𝑑.ℎ𝑒𝑖𝑔ℎ𝑡 < 𝑑𝑐 .ℎ𝑒𝑖𝑔ℎ𝑡 and at least one correct replica has re-

ceived a certificate 𝑞𝑐𝑑 for 𝑑 , where 𝑞𝑐𝑑 and 𝑑𝑐 are matching;

(2) and if the view of the parent block of 𝑑 is lower than 𝑑.𝑣𝑖𝑒𝑤 ,

then at least one correct replica has received a rQC 𝑞𝑐𝑑 for 𝑑 and

𝑑𝑐 .𝑠𝑡𝑎𝑏𝑙𝑒 = 𝑑 .

Proof. (1) We prove the claim (1) by induction for 𝑑 . If 𝑑 =

𝑏.𝑝𝑎𝑟𝑒𝑛𝑡 , then 𝑑𝑐 equals 𝑏. Since 𝑞𝑐 is a rQC or a wQC for 𝑏, at least

one correct replica has voted for 𝑑𝑐 . Then we have that 𝑑.ℎ𝑒𝑖𝑔ℎ𝑡 <

𝑑𝑐 .ℎ𝑒𝑖𝑔ℎ𝑡 and 𝑝𝑖 has received a 𝑞𝑐𝑑 before voting for 𝑑𝑐 , where 𝑞𝑐𝑑
and 𝑑𝑐 are matching.

If 𝑑 ≠ 𝑏.𝑝𝑎𝑟𝑒𝑛𝑡 , then there exists a rQC or a wQC for any block

higher than 𝑑 on the branch led by 𝑏. In this situation, there exists a

block 𝑑𝑐 on the branch led by 𝑏 such that 𝑑𝑐 .𝑝𝑎𝑟𝑒𝑛𝑡 = 𝑑 ; a rQC or a

wQC 𝑞𝑐𝑐 for 𝑑𝑐 is received by at least one correct replica. Since 𝑞𝑐𝑐
consists of at least 𝑓 +1 votes, at least one correct replica 𝑝𝑖 has voted
for 𝑑𝑐 in view 𝑑𝑐 .𝑣𝑖𝑒𝑤 . Then we have that 𝑑.ℎ𝑒𝑖𝑔ℎ𝑡 < 𝑑𝑐 .ℎ𝑒𝑖𝑔ℎ𝑡 and

𝑝𝑖 has received a 𝑞𝑐𝑑 before voting for 𝑑𝑐 , where 𝑞𝑐𝑑 and 𝑑𝑐 are

matching. This completes the proof of claim (1).

(2) Based on claim (1), we know that at least one correct replica

𝑝𝑖 has voted for𝑑𝑐 in view𝑑𝑐 .𝑣𝑖𝑒𝑤 . Let𝑑 ′ denote the parent block of
𝑏. Then 𝑑 ′.𝑣𝑖𝑒𝑤 < 𝑑.𝑣𝑖𝑒𝑤 . According to ln 16-18 of Algorithm 2, 𝑝𝑖
votes for 𝑑𝑐 only if 𝑝𝑖 has received a rQC 𝑞𝑐𝑑 for 𝑑 and 𝑑𝑐 .𝑠𝑡𝑎𝑏𝑙𝑒 =

𝑑 . □

Lemma B.3. If there exists a wQC 𝑞𝑐𝑑 for block 𝑑 , then 𝑑 extends

𝑑.𝑠𝑡𝑎𝑏𝑙𝑒 and a rQC for 𝑑.𝑠𝑡𝑎𝑏𝑙𝑒 has been received by at least one

correct replica.

Proof. Let 𝑑0 denote 𝑑.𝑝𝑎𝑟𝑒𝑛𝑡 . As there exists a wQC for 𝑑 , at

least one correct replica 𝑝𝑖 has received a certificate 𝑞𝑐 and voted

for 𝑑 in view 𝑑.𝑣𝑖𝑒𝑤 , where 𝑞𝑐 and 𝑑 are matching. We distinguish

two cases:

(1) 𝑞𝑐 is a rQC for 𝑑0 and 𝑑.𝑠𝑡𝑎𝑏𝑙𝑒 = 𝑑0. Then we know that 𝑑

extends 𝑑.𝑠𝑡𝑎𝑏𝑙𝑒 , because 𝑑0 is the parent block of 𝑑 . Therefore, at

least one correct replica 𝑝𝑖 has received a rQC 𝑞𝑐 for 𝑑.𝑠𝑡𝑎𝑏𝑙𝑒 before

voting for 𝑑 .

14

(2) 𝑞𝑐 is a wQC for 𝑑0 and 𝑑.𝑠𝑡𝑎𝑏𝑙𝑒 = 𝑑0 .𝑠𝑡𝑎𝑏𝑙𝑒 . Let 𝑑𝑣 de-

note the block with the highest height on the branch led by 𝑑

such that 𝑑𝑣 .𝑠𝑡𝑎𝑏𝑙𝑒 ≠ 𝑑.𝑠𝑡𝑎𝑏𝑙𝑒 . Let 𝑑 ′𝑣 denote the block on the

branch such that 𝑑 ′𝑣 .𝑝𝑎𝑟𝑒𝑛𝑡 = 𝑑𝑣 . We have 𝑑 ′𝑣 .ℎ𝑒𝑖𝑔ℎ𝑡 > 𝑑𝑣 and

𝑑 ′𝑣 .𝑠𝑡𝑎𝑏𝑙𝑒 = 𝑑.𝑠𝑡𝑎𝑏𝑙𝑒 . Therefore, at least one correct replica 𝑝𝑖
has voted for 𝑑 ′𝑣 from Lemma B.2. Thus, we have 𝑑 ′𝑣 .𝑠𝑡𝑎𝑏𝑙𝑒 =

𝑑𝑣 .𝑠𝑡𝑎𝑏𝑙𝑒 or 𝑑 ′𝑣 .𝑠𝑡𝑎𝑏𝑙𝑒 = 𝑑𝑣 according to Algorithm 2 (ln 16-18).

Since 𝑑𝑣 .𝑠𝑡𝑎𝑏𝑙𝑒 ≠ 𝑑.𝑠𝑡𝑎𝑏𝑙𝑒 , 𝑑 ′𝑣 .𝑠𝑡𝑎𝑏𝑙𝑒 ≠ 𝑑𝑣 .𝑠𝑡𝑎𝑏𝑙𝑒 . Then we know

that 𝑑 ′𝑣 .𝑠𝑡𝑎𝑏𝑙𝑒 = 𝑑.𝑠𝑡𝑎𝑏𝑒 = 𝑑𝑣 and 𝑑 extends 𝑑.𝑠𝑡𝑎𝑏𝑙𝑒 . Meanwhile,

𝑝𝑖 has received a rQC for 𝑑𝑣 before voting for 𝑑
′
𝑣 .

In both cases, 𝑑 extends 𝑑.𝑠𝑡𝑎𝑏𝑙𝑒 and a correct replica has re-

ceived a rQC for 𝑑.𝑠𝑡𝑎𝑏𝑙𝑒 . □

Lemma B.4. If there exists at least one rQC formed in view 𝑣 , then

there exists only one rQC 𝑞𝑐 with the lowest rank in view 𝑣 , and we

have that

(1) The view of 𝑏.𝑝𝑎𝑟𝑒𝑛𝑡 is lower than 𝑣 , where 𝑏 be qcBlock(𝑞𝑐) ;
(2) If there exists a rQC for 𝑏1 and 𝑏1 .𝑝𝑎𝑟𝑒𝑛𝑡 .𝑣𝑖𝑒𝑤 < 𝑣 , then 𝑏1

equals 𝑏.

Proof. If a rQC is formed in view 𝑣 , then there exists only one

rQC 𝑞𝑐 with the lowest rank in view 𝑣 (according to Lemma B.1).

(1) Let 𝑏 denote qcBlock(𝑞𝑐) and 𝑏𝑣 denote the block with the

lowest height such that 𝑏𝑣 .𝑣𝑖𝑒𝑤 = 𝑣 on the branch led by 𝑏. There-

fore, 𝑏𝑣 .ℎ𝑒𝑖𝑔ℎ𝑡 ≤ 𝑏.ℎ𝑒𝑖𝑔ℎ𝑡 and the view of 𝑏𝑣 .𝑝𝑎𝑟𝑒𝑛𝑡 is lower than

𝑣 . According to Lemma B.2, there must exist a rQC for 𝑏𝑣 . Since 𝑞𝑐

is the lowest rQC formed in view 𝑣 , we have that 𝑏𝑣 = 𝑏 and the

view of 𝑏.𝑝𝑎𝑟𝑒𝑛𝑡 is lower than 𝑣 .

(2) If there exists a rQC for 𝑏1, then at least a correct replica

has voted for 𝑏1 and 𝑏 in view 𝑣 . Note that in view 𝑣 , a correct

replica only votes for one block that extends a block proposed in a

lower view according to Algorithm 3. Therefore, it must hold that

𝑏1 = 𝑏. □

LemmaB.5. If rQC𝑞𝑐 for𝑏 is the rQCwith the lowest height formed

in view 𝑣 and there exists a rQC for block 𝑑 such that 𝑑.𝑣𝑖𝑒𝑤 = 𝑣 ,

then 𝑑 equals 𝑏 or 𝑑 is an extension of 𝑏.

Proof. Let 𝑑0 denote the block with the lowest height on the

branch led by 𝑑 such that 𝑑0 .𝑣𝑖𝑒𝑤 = 𝑣 . Then the view of the parent

block of 𝑑0 is lower than 𝑣 . According to Lemma B.2, at least one

correct replica has received a rQC for 𝑑0. By Lemma B.4, it holds

that 𝑑0 equals 𝑏. As 𝑑0 is a block on the branch led by 𝑑 , 𝑑 equals 𝑏

or 𝑑 is an extension of 𝑏. □

Lemma B.6. Suppose 𝑞𝑐1 and 𝑞𝑐2 are two rQCs, each is received

by at least one correct replicas. Let 𝑏1 and 𝑏2 be qcBlock(𝑞𝑐1) and
qcBlock(𝑞𝑐2) , respectively. If𝑏1 is conflicting with𝑏2, then𝑏1 .𝑣𝑖𝑒𝑤 ≠

𝑏2 .𝑣𝑖𝑒𝑤 .

Proof. Assume, towards a contradiction, that𝑏1 .𝑣𝑖𝑒𝑤 = 𝑏2 .𝑣𝑖𝑒𝑤

= 𝑣 . According to Lemma B.5, we know that there exists a block 𝑏

which is the block with the lowest height for which a rQC was

formed in view 𝑣 , 𝑏1 and 𝑏2 are blocks and either 𝑏1 or 𝑏2 is

equals 𝑏 or is an extensions of 𝑏. Then 𝑏1 .ℎ𝑒𝑖𝑔ℎ𝑡 ≥ 𝑏.ℎ𝑒𝑖𝑔ℎ𝑡 and

𝑏2 .ℎ𝑒𝑖𝑔ℎ𝑡 ≥ 𝑏.ℎ𝑒𝑖𝑔ℎ𝑡 . We consider three cases:

(1) If𝑏1 .ℎ𝑒𝑖𝑔ℎ𝑡 = 𝑏.ℎ𝑒𝑖𝑔ℎ𝑡 or𝑏2 .ℎ𝑒𝑖𝑔ℎ𝑡 = 𝑏.ℎ𝑒𝑖𝑔ℎ𝑡 , then𝑏1 equals

𝑏 or 𝑏2 equals 𝑏. Therefore, 𝑏1 and 𝑏2 are the same block or they

are on the same branch.

(2) If𝑏.ℎ𝑒𝑖𝑔ℎ𝑡 < 𝑏1 .ℎ𝑒𝑖𝑔ℎ𝑡 ,𝑏.ℎ𝑒𝑖𝑔ℎ𝑡 < 𝑏2 .ℎ𝑒𝑖𝑔ℎ𝑡 , and𝑏1 .ℎ𝑒𝑖𝑔ℎ𝑡 =

𝑏2 .ℎ𝑒𝑖𝑔ℎ𝑡 , then according to Lemma B.1, 𝑏1 and 𝑏2 must be the same

block.

(3) If𝑏.ℎ𝑒𝑖𝑔ℎ𝑡 < 𝑏1 .ℎ𝑒𝑖𝑔ℎ𝑡 ,𝑏.ℎ𝑒𝑖𝑔ℎ𝑡 < 𝑏2 .ℎ𝑒𝑖𝑔ℎ𝑡 , and𝑏1 .ℎ𝑒𝑖𝑔ℎ𝑡 ≠

𝑏2 .ℎ𝑒𝑖𝑔ℎ𝑡 , then 𝑏1 and 𝑏2 are extensions of 𝑏. W.l.o.g., we assume

that 𝑏1 .ℎ𝑒𝑖𝑔ℎ𝑡 < 𝑏2 .ℎ𝑒𝑖𝑔ℎ𝑡 . Let 𝑏
′
2
denote a block on the branch

led by 𝑏2 such that 𝑏 ′
2
.ℎ𝑒𝑖𝑔ℎ𝑡 = 𝑏1 .ℎ𝑒𝑖𝑔ℎ𝑡 . Then 𝑏

′
2
is an extension

of 𝑏. If 𝑏 ′
2
is conflicting with 𝑏1, then according to Lemma B.1, we

have that no rQC for 𝑏 ′
2
can be formed in view 𝑣 and at most 𝑓

correct replicas voted for 𝑏 ′
2
. Thus, a rQC for any extensions of 𝑏 ′

2

cannot be formed by Algorithm 2. Therefore, we have that 𝑏 ′
2
must

be equal to 𝑏1.

In all cases, 𝑏1 and 𝑏2 must be blocks on the same branch, con-

tradicting the condition that they are conflicting blocks. Therefore,

we have that 𝑏1 .𝑣𝑖𝑒𝑤 ≠ 𝑏2 .𝑣𝑖𝑒𝑤 . □

Lemma B.7. If there exists a 𝑐𝑜𝑚𝑚𝑖𝑡𝑄𝐶 𝑞𝑐 for 𝑏 and a rQC 𝑞𝑐𝑑 for

𝑑 , each is received by at least correct replica, and rank(𝑏) < rank(𝑑),
then 𝑑 must be an extension of 𝑏.

Proof. Let 𝑣 denote𝑏.𝑣𝑖𝑒𝑤 , 𝑣𝑑 denote𝑑.𝑣𝑖𝑒𝑤 ,𝑏 ′′ denote qcBlock(𝑞𝑐) ,
and 𝑏 ′ denote 𝑏 ′′.𝑝𝑎𝑟𝑒𝑛𝑡 . As 𝑞𝑐 is a 𝑐𝑜𝑚𝑚𝑖𝑡𝑄𝐶 for 𝑏, we have that

𝑏 ′.𝑠𝑡𝑎𝑏𝑙𝑒 = 𝑏 ′.𝑝𝑎𝑟𝑒𝑛𝑡 = 𝑏, 𝑏 ′′.𝑠𝑡𝑎𝑏𝑙𝑒 = 𝑏 ′, and 𝑏.𝑣𝑖𝑒𝑤 = 𝑏 ′.𝑣𝑖𝑒𝑤 =

𝑏 ′′.𝑣𝑖𝑒𝑤 = 𝑣 . According to Lemma B.2, there exist rQCs for 𝑏, 𝑏 ′,
and 𝑏 ′′ such that all these rQCs are received by at least one correct

replica. Note that a rQC for 𝑏 ′ is also a 𝑙𝑜𝑐𝑘𝑒𝑑𝑄𝐶 for 𝑏. Let 𝑆 denote

the set of correct replicas that have voted for 𝑏 ′′. Since 𝑞𝑐 consists
of 2𝑓 + 1 votes, we know that |𝑃 | ≥ 𝑓 + 1.

Since rank(𝑑) > rank(𝑏), 𝑣𝑑 ≥ 𝑣 . Then we prove the lemma by

induction over the view 𝑣𝑑 , starting from view 𝑣 .

Base case: Suppose 𝑣𝑑 = 𝑣 . According to Lemma B.6, 𝑑 must be an

extension of 𝑏.

Inductive case: Assume this property holds for view 𝑣𝑑 from

𝑣 to 𝑣 + 𝑘 − 1 for some 𝑘 ≥ 1. We now prove that it holds for

𝑣𝑑 = 𝑣 +𝑘 . Let 𝑏0 denote the block with the lowest height for which

a rQC 𝑞𝑐0 was formed in view 𝑣𝑑 and 𝑏 ′
0
denote 𝑏0 .𝑝𝑎𝑟𝑒𝑛𝑡 . Let

𝑚 denote the generic message for 𝑏0. According to Lemma B.4,

𝑏 ′
0
.𝑣𝑖𝑒𝑤 < 𝑣𝑑 and 𝑏0 is proposed during view change. Since 𝑞𝑐0

consists of 2𝑓 + 1 votes, at least one replica 𝑝𝑖 ∈ 𝑆 has voted for 𝑏0
in view 𝑣𝑑 . Let 𝑏𝑙𝑜𝑐𝑘 denote the locked block 𝑙𝑏 of 𝑝𝑖 when voting

for 𝑏0. Note that 𝑝𝑖 updates its 𝑙𝑏 only after receiving a 𝑙𝑜𝑐𝑘𝑒𝑑𝑄𝐶

for a block with a higher rank than its locked block. Then we know

that rank(𝑏𝑙𝑜𝑐𝑘) ≥ rank(𝑏). Note that 𝑏𝑙𝑜𝑐𝑘 .𝑣𝑖𝑒𝑤 < 𝑣𝑑 . According

to Lemma B.6 and the inductive hypothesis, 𝑏𝑙𝑜𝑐𝑘 must be either

equal to 𝑏 or an extension of 𝑏. Then 𝑝𝑖 votes for 𝑏0 only if one of

the following conditions is satisfied:

1) 𝑏0 .𝑠𝑡𝑎𝑏𝑙𝑒 = 𝑏 ′
0
.𝑠𝑡𝑎𝑏𝑙𝑒 ,𝑚.𝑗𝑢𝑠𝑡 𝑓 𝑦 is a wQC for 𝑏 ′

0
, 𝑏 ′

0
.𝑣𝑖𝑒𝑤 < 𝑣𝑑

and rank(𝑏 ′
0
.𝑠𝑡𝑎𝑏𝑙𝑒) ≥ rank(𝑏𝑙𝑜𝑐𝑘) (ln 14 in Algorithm 3).

2) 𝑏0 .𝑠𝑡𝑎𝑏𝑙𝑒 = 𝑏 ′
0
, 𝑚.𝑗𝑢𝑠𝑡 𝑓 𝑦 is a rQC for 𝑏 ′

0
, 𝑏 ′

0
.𝑣𝑖𝑒𝑤 < 𝑣𝑑 , and

rank(𝑏 ′
0
) ≥ rank(𝑏𝑙𝑜𝑐𝑘) (ln 15 in Algorithm 3).

If condition 1) is satisfied, then according to Lemma B.3, 𝑏 ′
0
is an

extension of 𝑏 ′
0
.𝑠𝑡𝑎𝑏𝑙𝑒 and at least one correct replica has received

a rQC for 𝑏 ′
0
.𝑠𝑡𝑎𝑏𝑙𝑒 . Note that rank(𝑏 ′

0
.𝑠𝑡𝑎𝑏𝑙𝑒) ≥ rank(𝑏𝑙𝑜𝑐𝑘). Ac-

cording to Lemma B.1 and the inductive hypothesis, 𝑏 ′
0
.𝑠𝑡𝑎𝑏𝑙𝑒 is

equal to 𝑏 or an extension of 𝑏. Hence, 𝑏0 must be an extension of

𝑏.

15

If condition 2) is satisfied, then rank(𝑏 ′
0
) ≥ rank(𝑏𝑙𝑜𝑐𝑘) ≥ rank(𝑏)

and𝑚.𝑗𝑢𝑠𝑡𝑖 𝑓 𝑦 is a rQC for 𝑏 ′
0
. According to Lemma B.1 and the

inductive hypothesis, 𝑏 ′
0
is either equal to 𝑏 or an extension of 𝑏.

Either way, 𝑏0 must be an extension of 𝑏. Note that a rQC for 𝑑

is formed in view 𝑣𝑑 . According to Lemma B.5, we know that 𝑑 is

equal to 𝑏0 or an extension of 𝑏0. Therefore, 𝑑 must be an extension

of 𝑏 and the property holds in view 𝑣 + 𝑘 . This completes the proof

of the lemma. □

Theorem B.8. (safety) If 𝑏 and 𝑑 are conflicting blocks, then they

cannot be committed each by at least a correct replica.

Proof. Suppose that a 𝑐𝑜𝑚𝑚𝑖𝑡𝑄𝐶 is formed for both 𝑏 and 𝑑 .

According to Lemma B.2, there must exist rQCs for both 𝑏 and 𝑑 ,

each received by at least one correct replica. If𝑏.𝑣𝑖𝑒𝑤 = 𝑑.𝑣𝑖𝑒𝑤 , then

according to Lemma B.6, rQCs for both 𝑏 and 𝑑 cannot be formed.

If 𝑏.𝑣𝑖𝑒𝑤 ≠ 𝑑.𝑣𝑖𝑒𝑤 , w.l.o.g., we assume that rank(𝑏) < rank(𝑑).
According to Lemma B.7, a rQC for 𝑑 cannot be formed in view

𝑑.𝑣𝑖𝑒𝑤 . Hence, no 𝑐𝑜𝑚𝑚𝑖𝑡𝑄𝐶 for 𝑑 can be formed in view 𝑑.𝑣𝑖𝑒𝑤 .

In both cases, 𝑐𝑜𝑚𝑚𝑖𝑡𝑄𝐶 for both 𝑏 and 𝑑 cannot be formed. □

Theorem B.9. (liveness) After 𝐺𝑆𝑇 , there exists a bounded time

period 𝑇𝑓 such that if the leader of view 𝑣 is correct and all correct

replicas remain in view 𝑣 during 𝑇𝑓 , then a decision is reached.

Proof. Suppose after GST, in a new view 𝑣 , the leader 𝑝𝑖 is

correct. Then 𝑝𝑖 can collect a set𝑀 of 2𝑓 +1 view-changemessages

from correct replicas and broadcast a new block 𝑏 in a message

𝑚 = ⟨generic, 𝑏, 𝑞𝑐⟩.
Let 𝑏 ′ denote 𝑏.𝑝𝑎𝑟𝑒𝑛𝑡 . Let 𝑏ℎ𝑖𝑔ℎ denote the block with the

highest rank locked by at least one correct replica. Note that a

correct replica locks 𝑏ℎ𝑖𝑔ℎ only after receiving a 𝑙𝑜𝑐𝑘𝑒𝑑𝑄𝐶 𝑞𝑐 for

it. Let 𝑏1 denote qcBlock(𝑞𝑐). Then we know that 𝑏1 .𝑝𝑎𝑟𝑒𝑛𝑡 =

𝑏1 .𝑠𝑡𝑎𝑏𝑙𝑒 = 𝑏ℎ𝑖𝑔ℎ and a set 𝑆 of at least 𝑓 + 1 correct replicas have
voted for 𝑏1. Therefore, at least one message in 𝑀 is sent by a

replica 𝑝 𝑗 ∈ 𝑆 . According to Algorithm 2 and Algorithm 3, a correct

replica votes for block 𝑏1 only after receiving a rQC for 𝑏ℎ𝑖𝑔ℎ and

𝑄𝐶𝑟 of the replica is the rQC with the highest rank received by

the replica. Thus, the rank of the rQC 𝑞𝑐 𝑗 sent in view-change

message by 𝑝 𝑗 is no less than that of 𝑏ℎ𝑖𝑔ℎ . From Algorithm 3,

there are two cases for 𝑏: (1) 𝑏.𝑠𝑡𝑎𝑏𝑙𝑒 = 𝑏 ′, 𝑞𝑐 is a rQC for 𝑏 ′ and
rank(𝑞𝑐) ≥ rank(𝑞𝑐 𝑗); (2) 𝑏.𝑠𝑡𝑎𝑏𝑙𝑒 = 𝑏 ′.𝑠𝑡𝑎𝑏𝑙𝑒 , 𝑞𝑐 is a wQC for 𝑏 ′

and rank(𝑏 ′.𝑠𝑡𝑎𝑏𝑙𝑒) ≥ rank(𝑞𝑐 𝑗). In case (1), 𝑏 will be voted by

all the correct replicas as conditions on ln 15 of Algorithm 3 are

satisfied. In case (2), 𝑏 will be voted by all the correct replicas as

conditions on ln 14 of Algorithm 3 are satisfied.

If all correct replicas are synchronized in their view, 𝑝𝑖 is able to

form a 𝑄𝐶 for 𝑏 and generate new blocks. All correct replicas will

vote for the new blocks proposed by 𝑝𝑖 . Therefore a 𝑐𝑜𝑚𝑚𝑖𝑡𝑄𝐶 for

𝑏 can be formed by 𝑝𝑖 , leading to a new decision. Hence, after GST,

the duration 𝑇𝑓 for these phases to complete is of bounded length.

This completes the proof of the theorem. □

C DASHING3

C.1 Dashing3 Details

Compared with Dashing1, a sQC is used as a certificate for a fast

path in Dashing3. We present in Algorithm 7 and Algorithm 8

the normal case operation and view change protocol of Dashing3,

respectively. The utility functions are presented in Algorithm 6.

Dashing3 follows the notation of Dashing1. rQCs and sQCs are

collectively called qualified QCs in this section.

Normal case protocol (Algorithm7). Similar to Dashing1, in each

phase, the leader broadcasts a block𝑏 in message ⟨generic, 𝑏, 𝑞𝑐ℎ𝑖𝑔ℎ⟩
to all replicas and waits for signed responses from replicas. 𝑞𝑐ℎ𝑖𝑔ℎ
is the last QC the leader receives (either a wQC, a rQC, or a sQC).

After collecting 𝑓 + 1 matching votes, the leader starts a timer Δ2

(ln 7). The timer is used to determine if the leader can form a rQC or

a sQC in time. After Δ2 expires, the leader combines the signatures

in the votes into 𝑞𝑐ℎ𝑖𝑔ℎ for the next phase.

Upon receiving a ⟨generic, 𝑏, 𝜋⟩ message from the leader, each

replica 𝑝𝑖 first verifies whether 𝑏 is well-formed and proposed

during normal operation (ln 16-17), i.e., 𝑏 has a higher rank than

its parent block 𝑏 ′, 𝑏.ℎ𝑒𝑖𝑔ℎ𝑡 = 𝑏 ′.ℎ𝑒𝑖𝑔ℎ𝑡 + 1, 𝑏 ′ and 𝑏 are proposed

in the same view. Let 𝑏 ′′ denote the parent of 𝑏 ′. We distinguish

two cases:

• If the 𝜋 field is a wQC for 𝑏 ′ (ln 18), 𝑝𝑖 verifies if the stable block

of 𝑏 and 𝑏 ′ are the same block such that 𝑏 indeed extends 𝑏 ′. 𝑝𝑖
also verifies if𝑏,𝑏 ′,𝑏 ′′, and𝑏.𝑠𝑡𝑎𝑏𝑙𝑒 are all proposed in the same

view and 𝑝𝑖 has previously voted for 𝑏
′
. If so, 𝑝𝑖 updates its local

parameter 𝑄𝐶𝑤 to 𝜋 and creates a signature for 𝑏 (Algorithm 6,

ln 13).

• If 𝜋 is a rQC or a sQC for 𝑏 ′ (ln 21-22), 𝑝𝑖 verifies if the stable

block of 𝑏 is 𝑏 ′, 𝑏 ′ has a higher rank than 𝑣𝑏, and 𝑏 ′ has a higher
rank than the𝑄𝐶𝑟 of 𝑝𝑖 . If so, 𝑝𝑖 updates its local parameter𝑄𝐶𝑟
to 𝜋 and generates a signature (Algorithm 6, ln 10 and ln 15). If 𝜋

is a rQC,𝑏 ′′ has a qualified QC, and𝑏 ′′ and𝑏 are proposed in the
same view, then 𝑝𝑖 commits block 𝑏 ′′ and delivers transactions

in𝑏 ′′ (Algorithm 6, ln 11-12). If 𝜋 is a sQC,𝑏 ′′ has a qualified QC,
and 𝑏 ′′ and 𝑏 are proposed in the same view, then 𝑝𝑖 commits

block 𝑏 ′ and delivers transactions in 𝑏 ′ (Algorithm 6, ln 14-15).

In both cases, the replica updates its 𝑣𝑏 to 𝑏, and sends its signa-

ture to the leader.

View change protocol (Algorithm 8). Every replica starts timer

Δ1 for the first transaction in its queue. If the transaction is not

processed before Δ1 expires, the replica triggers view change. In par-

ticular, the replica sends a ⟨view-change, 𝑣𝑏, (𝑄𝐶𝑟 , 𝑄𝐶𝑤)⟩ message

to the leader (Algorithm 7, ln 28). Upon receiving 𝑛− 𝑓 view-change

messages (denoted as𝑀), the leader chooses a block to extend based

on the output of safeBlock(𝑀) in Algorithm 6.

We now describe the procedure in more detail. Below, all number

of lines is referred to as that in Algorithm 6. First, the leader obtains

a block 𝑏1 with a QC that has the highest rank (ln 17-18). The leader

then obtains a block 𝑏0 with a wQC 𝑣𝑐 such that 𝑏0, 𝑏0 .𝑝𝑎𝑟𝑒𝑛𝑡 and

𝑏0 .𝑠𝑡𝑎𝑏𝑙𝑒 are proposed in the same view, and among all the blocks

with weak QCs,𝑏0 has the highest stable block (ln 19-24). The leader

also obtains block 𝑏2 such that 𝑏2 is contained in more than 𝑓 + 1
view-change messages in 𝑀 . If no such block exists, 𝑏2 is set to

⊥ (ln 25-26). Then the leader checks if the rank of the stable block

of 𝑏2 is no less than that of 𝑏1 (ln 27). If so, the leader selects 𝑏0 to

extend. Otherwise, the leader checks if the rank of the stable block

of 𝑏0 is no less than that of 𝑏1 (ln 28). If so, the leader will extend

𝑏0. If neither is satisfied, the leader chooses 𝑏1 to extend (ln 29).

Then the leader extends the selected block with a block 𝑏 and

broadcasts 𝑏 to the replicas (ln 5 of Algorithm 8).

16

Upon receiving a ⟨new-view, 𝑏, 𝑀⟩ message from a new leader,

each replica 𝑝𝑖 verifies 𝑏 basing on the output of safeBlock(𝑀) (ln
14-18). If 𝑏 is a block extending the output block of safeBlock(),
then 𝑝𝑖 votes for 𝑏 (ln 16 and ln 18).

Algorithm 6: Utilities for Dashing3

1 procedure createBlock(𝑏′, 𝑣, 𝑐𝑚𝑑,𝑞𝑐)
2 𝑏.𝑝𝑙 ← ℎ𝑎𝑠ℎ (𝑏′), 𝑏.𝑝𝑎𝑟𝑒𝑛𝑡 ← 𝑏′, 𝑏.𝑟𝑒𝑞 ← 𝑟𝑒𝑞,

3 𝑏.ℎ𝑒𝑖𝑔ℎ𝑡 ← 𝑏′.ℎ𝑒𝑖𝑔ℎ𝑡+1, 𝑏.𝑣𝑖𝑒𝑤 ← 𝑣

4 if 𝑞𝑐 is a wQC or ⊥ then 𝑏.𝑠𝑙 ← 𝑏′.𝑠𝑙 , 𝑏.𝑠𝑡𝑎𝑏𝑙𝑒 ← 𝑏′.𝑠𝑡𝑎𝑏𝑙𝑒 , return 𝑏

5 if 𝑞𝑐 is a rQC or a sQC then 𝑏.𝑠𝑙 ← ℎ𝑎𝑠ℎ (𝑏′) return 𝑏

6 procedure stateUpdate(𝑄𝐶𝑤 ,𝑄𝐶𝑟 , 𝑞𝑐)
7 𝑏′ ← qcBlock(𝑞𝑐), 𝑏′′ ← 𝑏′.𝑝𝑎𝑟𝑒𝑛𝑡 ,
8 𝑏0 ← qcBlock(𝑄𝐶𝑤), 𝑏ℎ𝑖𝑔ℎ ← qcBlock(𝑄𝐶𝑟)
9 if 𝑞𝑐 is a rQC

10 𝑄𝐶𝑟 ← 𝑞𝑐

11 if 𝑏′.𝑠𝑡𝑎𝑏𝑙𝑒 = 𝑏′′ and 𝑏′′.𝑣𝑖𝑒𝑤 = 𝑏′.𝑣𝑖𝑒𝑤
12 deliver the transactions in 𝑏′′

13 if 𝑞𝑐 is a wQC then𝑄𝐶𝑤 ← 𝑞𝑐

14 if 𝑞𝑐 is a sQC and 𝑏′.𝑠𝑡𝑎𝑏𝑙𝑒 = 𝑏′′ and 𝑏′.𝑣𝑖𝑒𝑤 = 𝑏′′.𝑣𝑖𝑒𝑤
15 𝑄𝐶𝑟 ← 𝑞𝑐 , deliver the transactions in 𝑏′

16 procedure safeBlock(𝑀)
17 𝑞𝑐ℎ𝑖𝑔ℎ ← the qualified QC with the highest rank contained in𝑀

18 𝑏1 ← qcBlock(𝑞𝑐ℎ𝑖𝑔ℎ) , 𝑏 ← createBlock(𝑏1, 𝑐𝑣𝑖𝑒𝑤, 𝑟𝑒𝑞,𝑞𝑐ℎ𝑖𝑔ℎ)
19 for a wQC 𝑞𝑐 ∈ 𝑀.𝑗𝑢𝑠𝑡𝑖 𝑓 𝑦

20 𝑑 ← qcBlock(𝑞𝑐) , 𝑑′ ← 𝑑.𝑝𝑎𝑟𝑒𝑛𝑡 , 𝑑𝑠 ← 𝑑.𝑠𝑡𝑎𝑏𝑙𝑒

21 if 𝑑𝑠 .𝑣𝑖𝑒𝑤 = 𝑑′.𝑣𝑖𝑒𝑤 = 𝑑.𝑣𝑖𝑒𝑤

22 if rank(𝑑𝑠) > rank(𝑏0 .𝑠𝑡𝑎𝑏𝑙𝑒) then 𝑣𝑐←𝑞𝑐 , 𝑏0 ← 𝑑

23 if rank(𝑑𝑠) = rank(𝑏0 .𝑠𝑡𝑎𝑏𝑙𝑒) and rank(𝑑) > rank(𝑏0)
24 𝑣𝑐←𝑞𝑐 , 𝑏0 ← 𝑑

25 for 𝑑 ∈ 𝑀.𝑏𝑙𝑜𝑐𝑘

26 if num(𝑑,𝑀.𝑏𝑙𝑜𝑐𝑘) ≥ 𝑓 + 1 then 𝑏2 ← 𝑑

27 if rank(𝑏2 .𝑠𝑡𝑎𝑏𝑙𝑒) ≥ rank(𝑏1) then return (𝑏2,⊥)
28 else if rank(𝑏0 .𝑠𝑡𝑎𝑏𝑙𝑒) ≥ rank(𝑏1) return (𝑏0, 𝑣𝑐)
29 return (𝑏1, 𝑞𝑐ℎ𝑖𝑔ℎ)

C.2 Correctness of Dashing3

We first introduce some notation we use for the proof. Let 𝑏 ′

and 𝑏 denote two blocks such that 𝑏.𝑝𝑎𝑟𝑒𝑛𝑡 = 𝑏 ′ and 𝑏 ′.𝑣𝑖𝑒𝑤 =

𝑏.𝑣𝑖𝑒𝑤 . According to Algorithm 7, after receiving a generic mes-

sage ⟨generic, 𝑏, 𝑞𝑐⟩, a correct replica votes for𝑏 only if (1)𝑏.𝑠𝑡𝑎𝑏𝑙𝑒 =
𝑏 ′ and 𝑞𝑐 is a rQC or a sQC for 𝑏 ′ (ln 21-23); or (2) 𝑏.𝑠𝑡𝑎𝑏𝑙𝑒 =

𝑏 ′.𝑠𝑡𝑎𝑏𝑙𝑒 and 𝑞𝑐 is a wQC for 𝑏 ′ (ln 18-20). In both cases, we say

that 𝑞𝑐 and 𝑏 are matching.

Let 𝑏 ′ and 𝑏 denote two consecutive blocks. In Algorithm 6, a

replica 𝑝𝑖 commits 𝑏 only after receiving a certificate 𝑞𝑐 and one of

the following condition is satisfied:

(1) 𝑞𝑐 is a rQC for 𝑏 ′ such that 𝑏 ′.𝑠𝑡𝑎𝑏𝑙𝑒 = 𝑏 ′.𝑝𝑎𝑟𝑒𝑛𝑡 = 𝑏 and

𝑏.𝑣𝑖𝑒𝑤 = 𝑏 ′.𝑣𝑖𝑒𝑤 (ln 9-12);

(2) 𝑞𝑐 is a sQC for 𝑏, 𝑏.𝑠𝑡𝑎𝑏𝑙𝑒 = 𝑏.𝑝𝑎𝑟𝑒𝑛𝑡 and 𝑏.𝑝𝑎𝑟𝑒𝑛𝑡 .𝑣𝑖𝑒𝑤 =

𝑏.𝑣𝑖𝑒𝑤 (ln 14-15).

In both cases, 𝑞𝑐 is a 𝑐𝑜𝑚𝑚𝑖𝑡𝑄𝐶 for 𝑏.

Lemma C.1. Suppose a block 𝑏 has been voted by a correct replica,

then

(1) any block 𝑑 on the branch led by 𝑏 has been voted by at least

one correct replica and 𝑑.𝑝𝑎𝑟𝑒𝑛𝑡 .ℎ𝑒𝑖𝑔ℎ𝑡 + 1 = 𝑑.ℎ𝑒𝑖𝑔ℎ𝑡 ;

(2) if 𝑑 and 𝑑𝑐 are two blocks on the branch led by 𝑏 such that

𝑑𝑐 .𝑝𝑎𝑟𝑒𝑛𝑡 = 𝑑 and 𝑑𝑐 .𝑣𝑖𝑒𝑤 = 𝑑.𝑣𝑖𝑒𝑤 = 𝑣 , then we have that (i) at

least one correct replica has received a certificate (wQC, rQC, or sQC)

Algorithm 7: Normal case protocol for Dashing3

1 initialization: 𝑐𝑣𝑖𝑒𝑤←1, 𝑣𝑏,𝑄𝐶𝑤 , and𝑄𝐶𝑟 are initialized to⊥.
2 Start a timer Δ1 for the first request in the queue of pending transactions

3 ▷ generic phase:

4 as a leader

5 wait for votes for 𝑏:𝑀 ← {𝜎 |𝜎 is a signature for ⟨generic, 𝑏,⊥⟩ }
6 upon |𝑀 | = 𝑓 + 1 then set a start timer Δ2

7 upon Δ2 𝑡𝑖𝑚𝑒𝑜𝑢𝑡 then 𝑞𝑐ℎ𝑖𝑔ℎ ← qcCreate(𝑀)
8 𝑏←createBlock(𝑏,𝑐𝑣𝑖𝑒𝑤, 𝑐𝑚𝑑,𝑞𝑐ℎ𝑖𝑔ℎ)
9 broadcast𝑚 = ⟨generic, 𝑏, 𝑞𝑐ℎ𝑖𝑔ℎ ⟩

10 if 𝑞𝑐ℎ𝑖𝑔ℎ is a wQC then𝑄𝐶𝑤←𝑞𝑐ℎ𝑖𝑔ℎ
11 if 𝑞𝑐ℎ𝑖𝑔ℎ is a rQC or a sQC then𝑄𝐶𝑟←𝑞𝑐ℎ𝑖𝑔ℎ
12 as a replica

13 wait for𝑚 = ⟨generic, 𝑏, 𝜋 ⟩ from Leader(𝑐𝑣𝑖𝑒𝑤)
14 𝑏′←𝑏.𝑝𝑎𝑟𝑒𝑛𝑡 , 𝑏′′←𝑏′.𝑝𝑎𝑟𝑒𝑛𝑡 , 𝑏𝑠←𝑏.𝑠𝑡𝑎𝑏𝑙𝑒 ,

15 𝑏𝑔𝑒𝑛←qcBlock(𝑄𝐶𝑟) ,𝑚← ⟨generic, 𝑏,⊥⟩
16 if rank(𝑏′) ≥ rank(𝑏) or 𝑏.ℎ𝑒𝑖𝑔ℎ𝑡 ≠ 𝑏′.ℎ𝑒𝑖𝑔ℎ𝑡 + 1 or
17 𝑏′.𝑣𝑖𝑒𝑤 ≠ 𝑐𝑣𝑖𝑒𝑤 or 𝑏.𝑣𝑖𝑒𝑤 ≠ 𝑐𝑣𝑖𝑒𝑤 then discard the message

18 if 𝜋 is a wQC for 𝑏′ and 𝑏.𝑠𝑙 = 𝑏′.𝑠𝑙 and rank(𝑏𝑠) ≥ rank(𝑏𝑔𝑒𝑛) and
19 𝑏𝑠 .𝑣𝑖𝑒𝑤 = 𝑏′′.𝑣𝑖𝑒𝑤 = 𝑏′.𝑣𝑖𝑒𝑤 = 𝑐𝑣𝑖𝑒𝑤 and 𝑏′ = 𝑣𝑏

20 𝑣𝑏← 𝑏, stateUpdate(𝑄𝐶𝑤 ,𝑄𝐶𝑟 , 𝜋)
21 if 𝜋 is a rQC or a sQC for 𝑏′ and 𝑏.𝑠𝑡𝑎𝑏𝑙𝑒 = 𝑏′

22 and rank(𝑏′) ≥ rank(𝑣𝑏) and rank(𝑏′) ≥ rank(𝑏𝑔𝑒𝑛)
23 𝑣𝑏← 𝑏, stateUpdate(𝑄𝐶𝑤 ,𝑄𝐶𝑟 , 𝜋)
24 if 𝑣𝑏 = 𝑏 then send qcVote(𝑚) to Leader(𝑐𝑣𝑖𝑒𝑤)
25 ▷ new-view phase: switch to this line if Δ1 𝑡𝑖𝑚𝑒𝑜𝑢𝑡 occurs

26 as a replica

27 𝑐𝑣𝑖𝑒𝑤← 𝑐𝑣𝑖𝑒𝑤 +1
28 send ⟨view-change, 𝑣𝑏, (𝑄𝐶𝑟 ,𝑄𝐶𝑤) ⟩ to Leader(𝑐𝑣𝑖𝑒𝑤)

Algorithm 8: View change protocol for Dashing3

1 ▷ view-change phase

2 as a new leader

3 //𝑀 is a set of 𝑛 − 𝑓 view-change messages collected by the new leader

4 (𝑏′, 𝑞𝑐) ← safeBlock(𝑀), 𝑏 ← createBlock(𝑏′, 𝑐𝑣𝑖𝑒𝑤, 𝑐𝑚𝑑,𝑞𝑐)
5 broadcast𝑚 = ⟨new-view, 𝑏,𝑀 ⟩
6 //switch to normal case protocol

7 as a replica

8 wait for𝑚 = ⟨new-view, 𝑏, 𝜋 ⟩ from Leader(𝑐𝑣𝑖𝑒𝑤)
9 𝑏′←𝑏.𝑝𝑎𝑟𝑒𝑛𝑡 , 𝑏𝑠 ← 𝑏.𝑠𝑡𝑎𝑏𝑙𝑒 , 𝑏𝑔𝑒𝑛 ← qcBlock(𝑄𝐶𝑟) ,

10 𝑚← ⟨generic, 𝑏,⊥⟩
11 if 𝑏′.𝑣𝑖𝑒𝑤 ≥ 𝑐𝑣𝑖𝑒𝑤 or rank(𝑏′) ≥ rank(𝑏) or 𝑏.ℎ𝑒𝑖𝑔ℎ𝑡 ≠ 𝑏′.ℎ𝑒𝑖𝑔ℎ𝑡 + 1
12 discard the message

13 if 𝑀 ∈ 𝜋
14 (𝑏𝑝 , 𝑞𝑐) ← safeBlock(𝑀) ,𝑚 ← ⟨generic, 𝑏,⊥⟩
15 if 𝑏𝑝 = 𝑏′ and 𝑞𝑐 is a wQC or ⊥ and 𝑏.𝑠𝑡𝑎𝑏𝑙𝑒 = 𝑏′.𝑠𝑡𝑎𝑏𝑙𝑒
16 send qcVote(𝑚) to Leader(𝑐𝑣𝑖𝑒𝑤)
17 if 𝑏𝑝 = 𝑏′ and 𝑞𝑐 is a rQC or sQC and 𝑏.𝑠𝑡𝑎𝑏𝑙𝑒 = 𝑏′

18 send qcVote(𝑚) to Leader(𝑐𝑣𝑖𝑒𝑤)
19 //switch to normal case protocol

20 ▷ new-view phase: switch to new-view phase if Δ1 𝑡𝑖𝑚𝑒𝑜𝑢𝑡 occurs

𝑞𝑐𝑑 for 𝑑 , where 𝑞𝑐𝑑 and 𝑑𝑐 are matching; (ii) if the view of the parent

block of 𝑑 is lower than 𝑣 , then at least one correct replica has received

a qualified QC for 𝑑 and 𝑑𝑐 .𝑠𝑡𝑎𝑏𝑙𝑒 = 𝑑 .

Proof. Let 𝑑 denote a block on the branch led by 𝑏.

(1) We prove claim (1) by induction for 𝑑 . If 𝑑 = 𝑏, then 𝑑 has

been voted by at least one correct replica.

If 𝑑 ≠ 𝑏 and any block higher than 𝑑 on the branch led by

𝑏 has been voted by at least one correct replica, then we need

to prove that 𝑑 is voted by at least one correct replica. In this

situation, there exists a block 𝑑𝑐 on the branch led by 𝑏 such that

17

𝑑𝑐 .𝑝𝑎𝑟𝑒𝑛𝑡 = 𝑑 and 𝑑𝑐 has been voted by at least one correct replica

𝑝𝑖 . According to Algorithm 2 and Algorithm 3, rank(𝑑) < rank(𝑑𝑐)
and 𝑑𝑐 .ℎ𝑒𝑖𝑔ℎ𝑡 = 𝑑.ℎ𝑒𝑖𝑔ℎ𝑡 + 1. Therefore, 𝑑.𝑣𝑖𝑒𝑤 ≤ 𝑑𝑐 .𝑣𝑖𝑒𝑤 .

We now differentiate two cases: 𝑑.𝑣𝑖𝑒𝑤 = 𝑑𝑐 .𝑣𝑖𝑒𝑤 and 𝑑.𝑣𝑖𝑒𝑤 <

𝑑𝑐 .𝑣𝑖𝑒𝑤 .

If 𝑑.𝑣𝑖𝑒𝑤 = 𝑑𝑐 .𝑣𝑖𝑒𝑤 , then 𝑝𝑖 has received a 𝑞𝑐𝑑 for 𝑑 , where 𝑞𝑐𝑑
and 𝑑𝑐 are matching according to Algorithm 7. As 𝑞𝑐𝑑 consists of

at least 𝑓 + 1 votes, at least one correct replica has voted for 𝑑 and

𝑑.𝑝𝑎𝑟𝑒𝑛𝑡 .ℎ𝑒𝑖𝑔ℎ𝑡 + 1 = 𝑑.ℎ𝑒𝑖𝑔ℎ𝑡 .

If 𝑑.𝑣𝑖𝑒𝑤 < 𝑑𝑐 .𝑣𝑖𝑒𝑤 , then from Algorithm 8, we know that 𝑑𝑐 is

proposed in a new-viewmessage𝑚 in view 𝑑𝑐 .𝑣𝑖𝑒𝑤 and𝑚.𝑗𝑢𝑠𝑡𝑖 𝑓 𝑦

contains a set𝑀 of 2𝑓 + 1 view-changemessages for view 𝑑𝑐 .𝑣𝑖𝑒𝑤 .

Then 𝑝𝑖 votes for 𝑑𝑐 if (i) a wQC, a rQC or a sQC for 𝑑 is provided

by a replica in𝑀 , or (ii) for 𝑓 + 1messages in𝑀 , the 𝑏𝑙𝑜𝑐𝑘 fields are

all set to 𝑑 . In either case, 𝑑 has been voted by at least one correct

replica. This completes the proof of claim (1).

(2) Based on claim (1), at least one correct replica 𝑝𝑖 has voted for

𝑑𝑐 . (i) If 𝑑𝑐 .𝑣𝑖𝑒𝑤 = 𝑑.𝑣𝑖𝑒𝑤 = 𝑣 , then 𝑑𝑐 is proposed during normal

case operation. According to ln 18 and ln 21 of Algorithm 7, 𝑝𝑖 has

received a certificate (wQC, rQC, or sQC) 𝑞𝑐𝑑 for 𝑑 before voting

for 𝑑𝑐 , where 𝑑 and 𝑑𝑐 are matching. (ii) Meanwhile, according to

ln 18-23 of Algorithm 7, if 𝑑.𝑝𝑎𝑟𝑒𝑛𝑡 .𝑣𝑖𝑒𝑤 < 𝑣 , then 𝑝𝑖 votes for 𝑑𝑐
only if 𝑝𝑖 has received a rQC or a sQC for 𝑑 and 𝑑𝑐 .𝑠𝑡𝑎𝑏𝑙𝑒 = 𝑑 . □

Lemma C.2. Suppose that 𝑞𝑐𝑏 and 𝑞𝑐𝑑 are two qualified QCs, each

is received by at least one correct replica. Let 𝑏 and 𝑑 be qcBlock(𝑞𝑐𝑏)
and qcBlock(𝑞𝑐𝑑) , respectively. If 𝑏 and 𝑑 are two conflicting blocks,

then rank(𝑏) ≠ rank(𝑑).

Proof. Assume, on the contrary, that rank(𝑏) = rank(𝑑). Let 𝑣
denote the view of 𝑏 and 𝑑 . As each qualified QC consists of at least

2𝑓 + 1 votes, at least one correct replica has voted for both 𝑏 and

𝑑 . Let 𝑏 ′ and 𝑑 ′ denote the parent block of 𝑏 and 𝑑 , respectively.

Since a correct replica votes for at most one block with each height

during normal case operation, at least one of 𝑏 and 𝑑 is proposed

during view change. Therefore, 𝑏 ′.𝑣𝑖𝑒𝑤 < 𝑣 or 𝑑 ′.𝑣𝑖𝑒𝑤 < 𝑣 . Now

we consider two cases:

(1) 𝑏 ′.𝑣𝑖𝑒𝑤 < 𝑣 and 𝑑 ′.𝑣𝑖𝑒𝑤 < 𝑣 . According to Algorithm 8, a

correct replica 𝑝𝑖 votes for at most one block that extends a block

proposed in a lower view. Hence, 𝑏 equals 𝑑 .

(2) (𝑏 ′.𝑣𝑖𝑒𝑤 < 𝑣 and 𝑑 ′.𝑣𝑖𝑒𝑤 = 𝑣) or (𝑏 ′.𝑣𝑖𝑒𝑤 = 𝑣 and 𝑑 ′.𝑣𝑖𝑒𝑤 <

𝑣). If 𝑏 ′.𝑣𝑖𝑒𝑤 < 𝑣 and 𝑑 ′.𝑣𝑖𝑒𝑤 = 𝑣 , then there exists a block 𝑑0 with

the lowest height on the branch led by 𝑑 such that 𝑑0 .𝑣𝑖𝑒𝑤 = 𝑣 .

Hence, the view of 𝑑0 .𝑝𝑎𝑟𝑒𝑛𝑡 is lower than 𝑣 . Let 𝑑 ′
0
denote a block

on the branch led by 𝑑 such that 𝑑 ′
0
.𝑝𝑎𝑟𝑒𝑛𝑡 = 𝑑0. By Lemma C.1, at

least one correct replica 𝑝𝑖 has voted for 𝑑 ′
0
. According to ln 18-23

in Algorithm 7, 𝑝𝑖 has received a rQC or a sQC for 𝑑0. Note that the

view of 𝑑0 .𝑝𝑎𝑟𝑒𝑛𝑡 is lower than 𝑣 . Then 𝑑0 and 𝑏 must be the same

block according to case (1). Therefore, 𝑑 is an extension of 𝑏. The

situation is similar to the case where 𝑏 ′.𝑣𝑖𝑒𝑤 = 𝑣 and 𝑑 ′.𝑣𝑖𝑒𝑤 < 𝑣 .

In both cases, 𝑑 and 𝑏 are either the same block or on the same

branch, contradicting the condition that they are conflicting blocks.

Therefore, rank(𝑏) ≠ rank(𝑑). □

Lemma C.3. If a correct replica has voted for 𝑑 and set its 𝑣𝑏 to

𝑑 , then 𝑑 must be an extension of 𝑑.𝑠𝑡𝑎𝑏𝑙𝑒 and at least one correct

replica has received a qualified QC for 𝑑.𝑠𝑡𝑎𝑏𝑙𝑒 .

Proof. Let 𝑑0 denote 𝑑.𝑝𝑎𝑟𝑒𝑛𝑡 . Let 𝑝𝑖 denote a correct replica

that has voted for 𝑑 and set its 𝑣𝑏 to 𝑑 . According to ln 16-23 of

Algorithm 7, 𝑝𝑖 has received a certificate 𝑞𝑐 for 𝑑0, where 𝑞𝑐 and 𝑑

are matching. We distinguish two cases.

(1) 𝑞𝑐 is a rQC or a sQC for 𝑑0 and 𝑑.𝑠𝑡𝑎𝑏𝑙𝑒 = 𝑑0 (ln 21-23

in Algorithm 7). In this case, 𝑑 is an extension of 𝑑.𝑠𝑡𝑎𝑏𝑙𝑒 and 𝑝𝑖
received a qualified QC for 𝑑.𝑠𝑡𝑎𝑏𝑙𝑒 .

(2) 𝑞𝑐 is a wQC for 𝑑0 and 𝑑.𝑠𝑡𝑎𝑏𝑙𝑒 = 𝑑0 .𝑠𝑡𝑎𝑏𝑙𝑒 (ln 18-20 in

Algorithm 7). Let 𝑑𝑣 denote the block with the lowest height on

the branch led by 𝑑 such that 𝑑𝑣 .𝑠𝑡𝑎𝑏𝑙𝑒 = 𝑑.𝑠𝑡𝑎𝑏𝑙𝑒 . Let 𝑑 ′𝑣 denote
𝑑𝑣 .𝑝𝑎𝑟𝑒𝑛𝑡 . Then 𝑑𝑣 .𝑠𝑡𝑎𝑏𝑙𝑒 ≠ 𝑑 ′𝑣 .𝑠𝑡𝑎𝑏𝑙𝑒 . According to Lemma C.1,

at least one correct replica 𝑝 𝑗 has voted for 𝑑𝑣 . Since 𝑑𝑣 .𝑠𝑡𝑎𝑏𝑙𝑒 ≠

𝑑 ′𝑣 .𝑠𝑡𝑎𝑏𝑙𝑒 . Note 𝑝 𝑗 votes for 𝑑𝑣 only if one of the following condi-

tions holds: i) 𝑑𝑣 .𝑠𝑡𝑎𝑏𝑙𝑒 = 𝑑 ′𝑣 .𝑠𝑡𝑎𝑏𝑙𝑒; ii) 𝑑𝑣 .𝑠𝑡𝑎𝑏𝑙𝑒 = 𝑑 ′𝑣 and 𝑝𝑖 re-

ceives a qualified QC for 𝑑 ′𝑣 . In this case, 𝑑𝑣 .𝑠𝑡𝑎𝑏𝑙𝑒 = 𝑑.𝑠𝑡𝑎𝑏𝑙𝑒 = 𝑑 ′𝑣 ,
𝑑 is an extension of 𝑑.𝑠𝑡𝑎𝑏𝑙𝑒 , and 𝑝 𝑗 has received a qualified QC for

𝑑.𝑠𝑡𝑎𝑏𝑙𝑒 .

Either way, 𝑑 is an extension of 𝑑.𝑠𝑡𝑎𝑏𝑙𝑒 and at least one correct

replica has received a qualified QC for 𝑑.𝑠𝑡𝑎𝑏𝑙𝑒 . □

Lemma C.4. If a qualified QC is formed in view 𝑣 , then there exists

only one block 𝑏 with the lowest rank for which a qualified QC is

formed in view 𝑣 , and we have that:

(1) the view of 𝑏.𝑝𝑎𝑟𝑒𝑛𝑡 is lower than 𝑣 ;

(2) if there exists a qualified QC for 𝑏1, 𝑏1 .𝑣𝑖𝑒𝑤 = 𝑣 , and the view

of 𝑏1 .𝑝𝑎𝑟𝑒𝑛𝑡 is lower than 𝑣 , then 𝑏1 equals 𝑏;

(3) if there exists a qualified QC for 𝑑 and 𝑑.𝑣𝑖𝑒𝑤 = 𝑣 , then 𝑑 equals

𝑏 or 𝑑 is an extension of 𝑏.

Proof. If a qualified QC is formed in view 𝑣 , then there exists

only one block 𝑏 with the lowest rank for which a qualified QC is

formed in view 𝑣 (according to Lemma C.2).

(1) Let 𝑏𝑣 denote the block with the lowest height such that

𝑏𝑣 .𝑣𝑖𝑒𝑤 = 𝑣 on the branch led by 𝑏. We have 𝑏𝑣 .ℎ𝑒𝑖𝑔ℎ𝑡 ≤ 𝑏.ℎ𝑒𝑖𝑔ℎ𝑡

and the view of 𝑏𝑣 .𝑝𝑎𝑟𝑒𝑛𝑡 is lower than 𝑣 . If 𝑏𝑣 ≠ 𝑏, then there

exists a block 𝑏 ′𝑣 on the branch led by 𝑏 such that 𝑏 ′𝑣 .𝑝𝑎𝑟𝑒𝑛𝑡 = 𝑏𝑣
and 𝑏 ′𝑣 .𝑣𝑖𝑒𝑤 = 𝑏𝑣 .𝑣𝑖𝑒𝑤 = 𝑣 . From Lemma C.1, at least one correct

replica 𝑝𝑖 has received a rQC or a sQC for 𝑏𝑣 . Thus, 𝑏𝑣 is a block

with a lower rank than 𝑏 and a qualified QC for 𝑏𝑣 is formed in

view 𝑣 , contradicting to the definition of 𝑏. Hence, we have 𝑏𝑣 = 𝑏

and the view of 𝑏.𝑝𝑎𝑟𝑒𝑛𝑡 is lower than 𝑣 .

(2) If there exists a qualified QC for 𝑏1, at least one correct replica

has voted for both 𝑏1 and 𝑏 in view 𝑣 . According to Algorithm 8,

in view 𝑣 , a correct replica only votes for one block that extends a

block proposed in a lower view than 𝑣 . Therefore, it must hold that

𝑏1 = 𝑏.

(3) There exists a qualified QC for𝑑 and𝑑.𝑣𝑖𝑒𝑤 = 𝑣 . Let𝑑0 denote

the block with the lowest height on the branch led by 𝑑 such that

𝑑0 .𝑣𝑖𝑒𝑤 = 𝑣 . Then the view of the parent block of 𝑑0 is lower than

𝑣 . From Lemma C.1, a correct replica has received a qualified QC

for 𝑑0. According to claim (2), we know 𝑑0 equals 𝑏. Therefore, 𝑑

equals 𝑏 or 𝑑 is an extension of 𝑏. □

Lemma C.5. For any qualified QC 𝑞𝑐 , if qcBlock(𝑞𝑐) = 𝑏 and

𝑏.𝑣𝑖𝑒𝑤 = 𝑣 , then any block proposed in view 𝑣 on the branch led by 𝑏

has been voted by at least 𝑓 + 1 correct replicas.
18

Proof. Assume that block 𝑑 is on the branch led by 𝑏 such that

𝑑.𝑣𝑖𝑒𝑤 = 𝑣 and fewer than 𝑓 + 1 correct replicas have voted for 𝑑 .

We immediately know that a qualified QC for 𝑑 cannot be formed.

Let 𝑑 ′ denote a block such that 𝑑 ′.𝑝𝑎𝑟𝑒𝑛𝑡 = 𝑑 . So, a correct replica

𝑝𝑖 votes for 𝑑
′
only if a wQC for 𝑑 is received and 𝑝𝑖 has voted for 𝑑 .

Since fewer than 𝑓 + 1 correct replicas have voted for 𝑑 , a qualified

QC for 𝑑 or any extensions of 𝑑 (including 𝑏) cannot be formed (a

contradiction). □

Lemma C.6. For any two qualified QCs 𝑞𝑐1 and 𝑞𝑐2, let 𝑏1 and 𝑏2
be qcBlock(𝑞𝑐1) and qcBlock(𝑞𝑐2), respectively. If 𝑏1 is conflicting
with 𝑏2, then 𝑏1 .𝑣𝑖𝑒𝑤 ≠ 𝑏2 .𝑣𝑖𝑒𝑤 .

Proof. Assume, on the contrary, that 𝑏1 .𝑣𝑖𝑒𝑤 = 𝑏2 .𝑣𝑖𝑒𝑤 = 𝑣 .

Let 𝑏 be the block with the lowest height for which a qualified QC

was formed in view 𝑣 . Then according to Lemma C.4, either 𝑏1 or

𝑏2 equals 𝑏 or is an extension of 𝑏. Hence, 𝑏1 .ℎ𝑒𝑖𝑔ℎ𝑡 ≥ 𝑏.ℎ𝑒𝑖𝑔ℎ𝑡 and

𝑏2 .ℎ𝑒𝑖𝑔ℎ𝑡 ≥ 𝑏.ℎ𝑒𝑖𝑔ℎ𝑡 . We consider three cases:

(1) If𝑏1 .ℎ𝑒𝑖𝑔ℎ𝑡 = 𝑏.ℎ𝑒𝑖𝑔ℎ𝑡 or𝑏2 .ℎ𝑒𝑖𝑔ℎ𝑡 = 𝑏.ℎ𝑒𝑖𝑔ℎ𝑡 , then𝑏1 equals

𝑏 or 𝑏2 equals 𝑏. Therefore, 𝑏1 and 𝑏2 are the same block or they

are on the same branch.

(2) If𝑏.ℎ𝑒𝑖𝑔ℎ𝑡 < 𝑏1 .ℎ𝑒𝑖𝑔ℎ𝑡 ,𝑏.ℎ𝑒𝑖𝑔ℎ𝑡 < 𝑏2 .ℎ𝑒𝑖𝑔ℎ𝑡 , and𝑏1 .ℎ𝑒𝑖𝑔ℎ𝑡 =

𝑏2 .ℎ𝑒𝑖𝑔ℎ𝑡 , then according to Lemma C.2,𝑏1 and𝑏2 must be the same

block.

(3) If𝑏.ℎ𝑒𝑖𝑔ℎ𝑡 < 𝑏1 .ℎ𝑒𝑖𝑔ℎ𝑡 ,𝑏.ℎ𝑒𝑖𝑔ℎ𝑡 < 𝑏2 .ℎ𝑒𝑖𝑔ℎ𝑡 , and𝑏1 .ℎ𝑒𝑖𝑔ℎ𝑡 ≠

𝑏2 .ℎ𝑒𝑖𝑔ℎ𝑡 , then 𝑏1 and 𝑏2 are extensions of 𝑏. W.l.o.g., we assume

that 𝑏1 .ℎ𝑒𝑖𝑔ℎ𝑡 < 𝑏2 .ℎ𝑒𝑖𝑔ℎ𝑡 . Let 𝑏
′
2
denote a block on the branch led

by 𝑏2 such that 𝑏 ′
2
.ℎ𝑒𝑖𝑔ℎ𝑡 = 𝑏1 .ℎ𝑒𝑖𝑔ℎ𝑡 . Then 𝑏

′
2
is an extension of 𝑏

and 𝑏 ′
2
and 𝑏1 are blocks proposed during the normal case operation

in view 𝑣 . According to Lemma C.5, at least 𝑓 + 1 correct replicas
have voted for 𝑏 ′

2
. Since each rQC consists of at least 2𝑓 + 1 votes,

at least one correct replica has voted for both 𝑏 ′
2
and 𝑏1. Note that

during the normal case operation, a correct replica votes for at most

one block with each height. Therefore, it holds that 𝑏 ′
2
and 𝑏1 must

be either the same block or on the same branch.

In all cases, 𝑏1 and 𝑏2 are the same block or are blocks on the

same branch, contradicting to the condition that they are conflicting

blocks. Therefore, 𝑏1 .𝑣𝑖𝑒𝑤 ≠ 𝑏2 .𝑣𝑖𝑒𝑤 . □

Lemma C.7. Suppose that all the correct replicas have voted for 𝑏

in view 𝑣 , 𝑏.𝑝𝑎𝑟𝑒𝑛𝑡 = 𝑏.𝑠𝑡𝑎𝑏𝑙𝑒 and 𝑏.𝑝𝑎𝑟𝑒𝑛𝑡 is proposed in view 𝑣 . If a

correct replica has received a wQC𝑞𝑐 for𝑑 such that rank(𝑑.𝑠𝑡𝑎𝑏𝑙𝑒) ≥
rank(𝑏.𝑝𝑎𝑟𝑒𝑛𝑡), and 𝑑 , 𝑑.𝑝𝑎𝑟𝑒𝑛𝑡 , and 𝑑.𝑠𝑡𝑎𝑏𝑙𝑒 are blocks proposed in
view 𝑣 , then 𝑑 equals 𝑏 or 𝑑 is an extension of 𝑏.

Proof. As𝑏,𝑏.𝑝𝑎𝑟𝑒𝑛𝑡 ,𝑑 , and𝑑.𝑝𝑎𝑟𝑒𝑛𝑡 are all blocks proposed in

view 𝑣 , 𝑏 and 𝑑 are blocks proposed during normal case operation

in view 𝑣 . According to Algorithm 7, we know that if a correct

replica has voted for 𝑑 , the replica will set its 𝑣𝑏 to 𝑑 at the same

time. Since 𝑞𝑐 consists of 𝑓 + 1 votes, at least one correct replica
has voted for 𝑑 . From Lemma C.3, 𝑑 is an extension of 𝑑.𝑠𝑡𝑎𝑏𝑙𝑒 and

at least one correct replica has received a qualified QC for 𝑑.𝑠𝑡𝑎𝑏𝑙𝑒 .

Now we consider two cases:

(1) rank(𝑑.𝑠𝑡𝑎𝑏𝑙𝑒) = rank(𝑏.𝑝𝑎𝑟𝑒𝑛𝑡). Since 𝑏.𝑝𝑎𝑟𝑒𝑛𝑡 = 𝑏.𝑠𝑡𝑎𝑏𝑙𝑒 ,

any correct replica votes for 𝑏 only after receiving a qualified QC

for 𝑏.𝑝𝑎𝑟𝑒𝑛𝑡 . Then 𝑑.𝑠𝑡𝑎𝑏𝑙𝑒 = 𝑏.𝑝𝑎𝑟𝑒𝑛𝑡 and 𝑑.ℎ𝑒𝑖𝑔ℎ𝑡 ≥ 𝑏.ℎ𝑒𝑖𝑔ℎ𝑡

(according to Lemma C.2). Let 𝑑 ′ denote the block on the branch

led by 𝑑 such that 𝑑 ′.ℎ𝑒𝑖𝑔ℎ𝑡 = 𝑏.ℎ𝑒𝑖𝑔ℎ𝑡 . Then at least one correct

replica has voted for 𝑑 ′ in view 𝑣 according to Lemma C.1. Since

correct replicas vote for at most one block with each height during

normal operation in a view, 𝑑 ′ must be equal to 𝑏. Therefore, 𝑑

equals 𝑏 or 𝑑 is an extension of 𝑏.

(2) rank(𝑑.𝑠𝑡𝑎𝑏𝑙𝑒) > rank(𝑏.𝑝𝑎𝑟𝑒𝑛𝑡). It is straightforward to see

that rank(𝑑.𝑠𝑡𝑎𝑏𝑙𝑒) ≥ rank(𝑏). According to Lemma C.6, 𝑑.𝑠𝑡𝑎𝑏𝑙𝑒 is

equal to 𝑏 or 𝑑.𝑠𝑡𝑎𝑏𝑙𝑒 is an extension of 𝑏. Hence, 𝑑 is an extension

of 𝑏. □

Lemma C.8. For a 𝑐𝑜𝑚𝑚𝑖𝑡𝑄𝐶 𝑞𝑐 for 𝑏 and a qualified QC 𝑞𝑐𝑑 for

𝑑 , if rank(𝑏) < rank(𝑑), then 𝑑 must be an extension of 𝑏.

Proof. Let 𝑣 denote 𝑏.𝑣𝑖𝑒𝑤 and 𝑣𝑑 denote 𝑑.𝑣𝑖𝑒𝑤 . As rank(𝑑) >
rank(𝑏), then 𝑣𝑑 ≥ 𝑣 . Let 𝑏 ′ denote qcBlock(𝑞𝑐). Since 𝑞𝑐 is a

𝑐𝑜𝑚𝑚𝑖𝑡𝑄𝐶 for 𝑏, there are two conditions: (1) 𝑞𝑐 is a rQC for 𝑏 ′,
𝑏 ′.𝑠𝑡𝑎𝑏𝑙𝑒 = 𝑏 ′.𝑝𝑎𝑟𝑒𝑛𝑡 = 𝑏 and 𝑏 ′.𝑣𝑖𝑒𝑤 = 𝑣 ; (2) 𝑞𝑐 is a sQC for 𝑏,

𝑏.𝑝𝑎𝑟𝑒𝑛𝑡 = 𝑏.𝑠𝑡𝑎𝑏𝑙𝑒 and the view of 𝑏.𝑝𝑎𝑟𝑒𝑛𝑡 equals 𝑣 .

We prove the lemma by induction over the view 𝑣𝑑 , starting from

view 𝑣 .

Base case: Suppose 𝑣𝑑 = 𝑣 . From Lemma C.6, for condition (1) or

(2), 𝑑 must be an extension of 𝑏.

Inductive case: Assume this property holds for view 𝑣𝑑 from 𝑣 to

𝑣 + 𝑘 − 1 for some 𝑘 ≥ 1. We now prove that it holds for 𝑣𝑑 = 𝑣 + 𝑘 .
Let 𝑑0 denote the block with the lowest height on the branch led

by 𝑑 such that 𝑑0 .𝑣𝑖𝑒𝑤 = 𝑣𝑑 . Then the view of the parent block of

𝑑0 is lower than 𝑣𝑑 , 𝑑0 is proposed during view change in view 𝑣𝑑 ,

and 𝑑0 is voted by at least one correct replica 𝑝𝑖 (Lemma C.1).

Let𝑚 denote the new-view message for 𝑑0. According to Al-

gorithm 8,𝑚.𝑗𝑢𝑠𝑡𝑖 𝑓 𝑦 is a set𝑀 of 2𝑓 + 1 view-change messages

for view 𝑣𝑑 . Let 𝑞𝑐1 denote the qualified QC with the highest rank

contained in𝑀.𝑗𝑢𝑠𝑡𝑖 𝑓 𝑦 and let 𝑏1 denote qcBlock(𝑞𝑐1) . For all the
wQCs contained in𝑀.𝑗𝑢𝑠𝑡𝑖 𝑓 𝑦, a correct replica chooses the wQC

for a block with the highest stable block according to ln 19-24 in

Algorithm 6 and sets the wQC as 𝑣𝑐 . Let 𝑏0 denote qcBlock(𝑣𝑐).
Note that 𝑏0, 𝑏0 .𝑝𝑎𝑟𝑒𝑛𝑡 and 𝑏0 .𝑠𝑡𝑎𝑏𝑙𝑒 are proposed in the same view.

Then 𝑏0 is a block proposed during the normal case operation. Let

𝑏2 denote the block which is included in more than 𝑓 + 1 messages

in𝑀 . If no such block exists, 𝑏2 is set to ⊥.
In view 𝑣𝑑 , 𝑝𝑖 votes for 𝑑0 if 𝑑 ′

0
= 𝑑0 .𝑝𝑎𝑟𝑒𝑛𝑡 , 𝑑

′
0
.𝑣𝑖𝑒𝑤 < 𝑣𝑑 ,

𝑑 ′
0
.ℎ𝑒𝑖𝑔ℎ𝑡 + 1 = 𝑑0 .ℎ𝑒𝑖𝑔ℎ𝑡 and one of the following conditions are

satisfied:

i) 𝑑 ′
0
= 𝑏2, rank(𝑏2 .𝑠𝑡𝑎𝑏𝑙𝑒) ≥ rank(𝑏1) (ln 24 in Algorithm 6).

ii) 𝑑 ′
0
= 𝑏0, i) is not satisfied and rank(𝑏0 .𝑠𝑡𝑎𝑏𝑙𝑒) ≥ rank(𝑏1) (ln 25

in Algorithm 6).

iii) 𝑑 ′
0
= 𝑏1, i) and ii) are not satisfied (ln 26 in Algorithm 6) .

Note that 𝑏0 is a block proposed during the normal case opera-

tion in view 𝑏0 .𝑣𝑖𝑒𝑤 . Since a wQC consists of 𝑓 + 1 votes, among

which at least one is sent by a correct replica. Hence, at least one

correct replica has voted for 𝑏0 and sets its 𝑣𝑏 as 𝑏0. According to

Lemma C.3, 𝑏0 is an extension of 𝑏0 .𝑠𝑡𝑎𝑏𝑙𝑒 and at least one correct

replica has received a qualified QC for 𝑏0 .𝑠𝑡𝑎𝑏𝑙𝑒 .

Next, we prove the property holds in view 𝑣 + 𝑘 for the two

situations for 𝑐𝑜𝑚𝑚𝑖𝑡𝑄𝐶 , respectively.

(1) 𝑞𝑐 is a rQC. Let 𝑆 denote the set of correct replicas who have

received a qualified QC for 𝑏 in view 𝑣 . Since in view 𝑣 correct

replicas vote for 𝑏 ′ only after receiving a qualified QC for 𝑏, we

have |𝑆 | ≥ 𝑓 + 1. Note that a correct replica updates its 𝑄𝐶𝑟 only
19

with a qualified QC with a higher rank. Thus, for any view-change

message sent by a replica in 𝑆 , the 𝑗𝑢𝑠𝑡𝑖 𝑓 𝑦 field is set to a qualified

QC with the same or a higher rank than 𝑏. Since 𝑀 consists of

2𝑓 + 1 messages, at least one message in𝑀 is sent by a replica in 𝑆 .

Therefore, rank(𝑏1) ≥ rank(𝑏) and 𝑏1 .𝑣𝑖𝑒𝑤 < 𝑣𝑑 .

According to the inductive hypothesis, 𝑏1 must be equal to 𝑏 or

an extension of 𝑏. Therefore, if condition iii) is satisfied, 𝑑0 must

be an extension of 𝑏. If condition i) is satisfied, then rank(𝑏2) >
rank(𝑏1) and rank(𝑏2 .𝑠𝑡𝑎𝑏𝑙𝑒) ≥ rank(𝑏1). Since at least one correct
replica has set its 𝑣𝑏 to 𝑏2, then 𝑏2 is an extension of 𝑏2 .𝑠𝑡𝑎𝑏𝑙𝑒

and a qualified QC 𝑞𝑐2 for 𝑏2 .𝑠𝑡𝑎𝑏𝑙𝑒 has been received by a correct

replica from Lemma C.3. According to the inductive hypothesis,

𝑏2 is an extension of 𝑏. Hence, 𝑑 ′
0
is an extension of 𝑏. If condition

ii) is satisfied, then rank(𝑏0 .𝑠𝑡𝑎𝑏𝑙𝑒) ≥ rank(𝑏1). Note that 𝑏0 is an
extension of 𝑏0 .𝑠𝑡𝑎𝑏𝑙𝑒 and at least one correct replica has received a

qualified QC for 𝑏0 .𝑠𝑡𝑎𝑏𝑙𝑒 . Thus, 𝑏0 is an extension of 𝑏 (according

to the inductive hypothesis). Therefore, 𝑑 ′
0
is an extension of 𝑏. No

matter which condition is satisfied, both𝑑0 and𝑑 must be extensions

of 𝑑 ′
0
and extensions of 𝑏.

(2) 𝑞𝑐 is a sQC, the view of 𝑏.𝑝𝑎𝑟𝑒𝑛𝑡 equals 𝑣 and 𝑏.𝑝𝑎𝑟𝑒𝑛𝑡 =

𝑏.𝑠𝑡𝑎𝑏𝑙𝑒 . Since 𝑞𝑐 consists of 3𝑓 + 1 votes, all the correct replicas
have received a qualified QC for 𝑏.𝑝𝑎𝑟𝑒𝑛𝑡 , changed its 𝑄𝐶𝑟 to a

qualified QC for 𝑏.𝑝𝑎𝑟𝑒𝑛𝑡 , and voted for 𝑏 in view 𝑣 . Let 𝑉 denote

the set of correct senders of messages in𝑀 . It is clear that |𝑉 | ≥ 𝑓 +1.
Since correct replicas only change their𝑄𝐶𝑟 to a qualified QC with

a higher rank, we have rank(𝑏1) ≥ rank(𝑏.𝑝𝑎𝑟𝑒𝑛𝑡).
(a) If rank(𝑏1) ≥ rank(𝑏), then from Lemma C.2 and the in-

duction hypothesis, 𝑏1 is equal to 𝑏 or 𝑏1 is an extension of 𝑏. If

condition iii) is satisfied, then 𝑑0 and 𝑑 are extensions of 𝑏. If con-

dition i) or ii) is satisfied, at least one correct replica has voted for

𝑑 ′
0
and set its 𝑣𝑏 to 𝑑 ′

0
, and rank(𝑑 ′

0
.𝑠𝑡𝑎𝑏𝑙𝑒) ≥ rank(𝑏1). According

to Lemma C.3, 𝑑 ′
0
is an extension of 𝑑 ′

0
.𝑠𝑡𝑎𝑏𝑙𝑒 and at least one cor-

rect replica has received a qualified QC for 𝑑 ′
0
.𝑠𝑡𝑎𝑏𝑙𝑒 . Again, from

the induction hypothesis, 𝑑 ′
0
.𝑠𝑡𝑎𝑏𝑙𝑒 is equal to 𝑏 or 𝑑 ′

0
.𝑠𝑡𝑎𝑏𝑙𝑒 is an

extension of 𝑏. Therefore, 𝑑0 and 𝑑 are extensions of 𝑏.

(b) If rank(𝑏1) < rank(𝑏), then rank(𝑏1) = rank(𝑏.𝑝𝑎𝑟𝑒𝑛𝑡). If
𝑏2 = 𝑏, then condition i) is satisfied. Hence, 𝑑 ′

0
equals 𝑏 and 𝑑0 and

𝑑 are extensions of 𝑏.

If 𝑏2 ≠ 𝑏, then there exists a correct replica 𝑝𝑖 in 𝑉 such that

when 𝑝𝑖 sent a view-change message for 𝑣𝑑 , its last voted block

𝑣𝑏 is 𝑏𝑒 and 𝑏𝑒 ≠ 𝑏. Let 𝑏 ′𝑒 denote 𝑏𝑒 .𝑝𝑎𝑟𝑒𝑛𝑡 . According to ln 18-

20 in Algorithm 7, 𝑝𝑖 has received a wQC 𝑞𝑐𝑒 for 𝑏 ′𝑒 , rank(𝑏 ′𝑒) ≥
rank(𝑏), and rank(𝑏 ′𝑒) ≥ rank(𝑏.𝑝𝑎𝑟𝑒𝑛𝑡). If 𝑏 ′𝑒 .𝑣𝑖𝑒𝑤 = 𝑣 , then 𝑏 ′𝑒
equals 𝑏 or 𝑏 ′𝑒 is an extension of 𝑏 from Lemma C.7. If 𝑏 ′𝑒 .𝑣𝑖𝑒𝑤 > 𝑣 ,

then the view of 𝑏 ′𝑒 .𝑠𝑡𝑎𝑏𝑙𝑒 is higher than 𝑣 . From Lemma C.3, 𝑏 ′𝑒
is an extension of 𝑏 ′𝑒 .𝑠𝑡𝑎𝑏𝑙𝑒 and a correct replica has received a

qualified QC for 𝑏 ′𝑒 .𝑠𝑡𝑎𝑏𝑙𝑒 . According to the inductive hypothesis,

as rank(𝑏 ′𝑒 .𝑠𝑡𝑎𝑏𝑙𝑒) > rank(𝑏), it must hold that 𝑏 ′𝑒 .𝑠𝑡𝑎𝑏𝑙𝑒 is an

extension of 𝑏. Therefore, 𝑏𝑒 must be an extension of 𝑏, 𝑏2 is set to

⊥ or 𝑏2 is an extension of 𝑏. If condition i) is satisfied, 𝑑 ′
0
equals 𝑏2.

We know that 𝑝𝑖 has sent 𝑞𝑐𝑒 in its view-change message. Then

rank(𝑏1 .𝑠𝑡𝑎𝑏𝑙𝑒) ≥ rank(𝑏.𝑝𝑎𝑟𝑒𝑛𝑡). If condition i) is not satisfied,

condition ii) is satisfied and 𝑑 ′
0
equals 𝑏1. Note that a wQC for 𝑏1

is included in𝑀 and 𝑏1 is proposed during normal case operation.

Similar to 𝑏 ′𝑒 , 𝑏1 must be an extension of 𝑏. Either way, 𝑑 ′
0
is equal

to or an extension of 𝑏. Thus, 𝑑0 and 𝑑 are extensions of 𝑏.

Therefore, 𝑑 must be an extension of 𝑏 and the property holds in

view 𝑣 + 𝑘 based on Case (1) and Case (2). This completes the proof

of the lemma. □

Theorem C.9. (safety) If 𝑏 and 𝑑 are conflicting blocks, then they

cannot be both committed, each by at least a correct replica.

Proof. Suppose that there exist 𝑐𝑜𝑚𝑚𝑖𝑡𝑄𝐶’s for both 𝑏 and 𝑑 .

According to Lemma C.1, a qualified QC must have been formed

for both 𝑏 and 𝑑 . From Lemma C.2, if rank(𝑏) = rank(𝑑), only
one qualified QC for 𝑏 and 𝑑 can be formed in the same view.

For the case where rank(𝑏) ≠ rank(𝑑), we assume w.l.o.g. that

rank(𝑏) < rank(𝑑). From Lemma B.7, we know that a qualified QC

for 𝑑 cannot be formed in view 𝑑.𝑣𝑖𝑒𝑤 . This completes the proof of

the theorem. □

Theorem C.10. (liveness) After 𝐺𝑆𝑇 , there exists a bounded time

period 𝑇𝑓 such that if the leader of view 𝑣 is correct and all correct

replicas remain in view 𝑣 during 𝑇𝑓 , then a decision is reached.

Proof. Suppose after GST, in a new view 𝑣 , the leader 𝑝𝑖 is

correct. Then 𝑝𝑖 can collect a set𝑀 of 2𝑓 +1 view-changemessages

from correct replicas and broadcast a new block 𝑏𝑣 in a new-view

message𝑚. Since𝑚.𝑗𝑢𝑠𝑡𝑖 𝑓 𝑦 contains𝑀 , every correct replicas can

verify the block 𝑏𝑣 using function safeBlock() basing on input𝑀 .

Under the assumption that all correct replicas are synchronized

in their view, 𝑝𝑖 is able to form a𝑄𝐶 for 𝑏 and generate new blocks.

All correct replicas will vote for the new blocks from 𝑝𝑖 . Therefore

a 𝑐𝑜𝑚𝑚𝑖𝑡𝑄𝐶 for 𝑏 can be formed by 𝑝𝑖 and any correct replica will

vote for 𝑏. After GST, the duration 𝑇𝑓 for these phases to complete

is of bounded length. □

D THE UNDERLYING BFT PROTOCOL IN STAR

D.1 The Consensus Protocol Implemented in

Star

We now describe the concrete atomic broadcast protocol that we

implemented in Star. We use a variant of PBFT that differs from

PBFT in two minor aspects. The protocol we will describe in the

following is not presented in its general manner but instead takes

as input the output from the transmission process.

Normal case operation. We first describe the normal case proto-

col.

Step 1: Pre-prepare. The leader checks whether |𝑊 [𝑙𝑒] | ≥ 𝑛− 𝑓 . If so,
it proposes a block 𝐵 and broadcasts a ⟨pre-prepare, 𝑣, 𝐵⟩ message

to all replicas.

The block 𝐵 is of the form ⟨𝑣, 𝑐𝑚𝑑,ℎ𝑒𝑖𝑔ℎ𝑡⟩, where 𝑣 is the current
view number, 𝐵.𝑐𝑚𝑑 =𝑊 [𝑙𝑒], and 𝐵.ℎ𝑒𝑖𝑔ℎ𝑡 = 𝑙𝑒 . We directly use

𝐵.ℎ𝑒𝑖𝑔ℎ𝑡 as the sequence number for 𝐵 in the protocol.

Step 2: Prepare. Replica receives a valid pre-prepare message for

block 𝐵 and broadcasts a prepare message.

After receiving a pre-prepare message ⟨pre-prepare, 𝑣, 𝐵⟩ from
the leader, a replica 𝑝 𝑗 first verifies whether 1) its current view is

𝑣 , 2) 𝐵.𝑐𝑚𝑑 consists of at least 𝑛 − 𝑓 wQC or rQC for epoch 𝑒 , and

3) 𝑝 𝑗 has not voted for a block 𝐵.ℎ𝑒𝑖𝑔ℎ𝑡 in the current view. Then

𝑝 𝑗 broadcasts a signed prepare message ⟨prepare, 𝑣, ℎ𝑎𝑠ℎ(𝐵)⟩. The
replica also updates it𝑊 queue if any QC included in 𝐵.𝑐𝑚𝑑 is not

in𝑊 [𝐵.ℎ𝑒𝑖𝑔ℎ𝑡].
20

Step 3: Commit. Replica receives 𝑛 − 𝑓 prepare messages for 𝐵 and

broadcasts a commit message.

After receiving 𝑛 − 𝑓 matching prepare messages with the

same ℎ𝑎𝑠ℎ(𝐵), replica 𝑝 𝑗 combines the messages into a regular

certificate for 𝐵, called a prepare certificate. Then 𝑝 𝑗 broadcasts a

⟨commit, 𝑣, ℎ𝑎𝑠ℎ(𝐵)⟩ message. After receiving 𝑛 − 𝑓 commit mes-

sages with the same ℎ𝑎𝑠ℎ(𝐵), 𝑝 𝑗 a-delivers 𝐵.
Note that the pre-prepare step and the commit step carry only

ℎ𝑎𝑠ℎ(𝐵) as the message transmitted. The total communication for

the normal case operation is thus 𝑂 (𝑛2_) where _ is the security

parameter.

Checkpointing. After a fixed number of blocks are a-delivered,

replicas execute the checkpoint protocol for the garbage collection.

Each replica broadcasts a checkpoint message that includes its

current system state and the epoch number for the latest a-delivered

block. Each replica waits for 𝑛 − 𝑓 matching checkpoint messages

which form a stable checkpoint. Then the system logs for epoch

numbers lower than the stable checkpoint can be deleted.

View change. We now describe the view change protocol. After a

correct replica times out, it sends a view-change message to all

replicas. Upon receiving 𝑓 + 1 view-change messages, a replica

also broadcasts a view-change message. The new leader waits for

𝑛 − 𝑓 view-change messages, denoted as𝑀 , and then broadcasts

a new-view message to all replicas.

The view-change message is of the form ⟨view-change, C,P⟩,
whereC a stable checkpoint andP is a set of prepare certificates. For

P, a prepare certificate certificate for each epoch number greater

than C and lower than the replica’s last vote is included.

The new-viewmessage is of the form ⟨new-view, 𝑣+1, 𝑐, 𝑀,PP⟩,
where 𝑐 is the latest stable checkpoint,𝑀 is the set of view-change

messages𝑀 , and PP is a set of pre-prepare messages. The PP is

computed as follows: For each epoch number 𝑒 between C and the

epoch number of any replica’s last vote, the new leader creates a

new pre-preparemessage. If a prepare certificate is provided by any

replica in the view-change message, the pre-prepare message is

of the form ⟨pre-prepare, 𝑣 +1, ℎ⟩, where ℎ is the hash in the prepare

certificate. If none of the replicas provides a prepare certificate, the

new leader creates a ⟨pre-prepare, 𝑣 + 1, 𝐵⟩, where 𝐵 is of the form

⟨𝑣 + 1,𝑊 [𝑒], 𝑒⟩.
Upon receiving a new-view message, a replica verifies the pre-

preparemessages in thePP field by executing the same procedures

as the leader based on 𝑀 . Then the replicas resume the normal

operation.

D.2 A Star Variant

We now describe the variant of the protocol that has a fast path in

the consensus protocol. The idea is to support both regular certifi-

cates and weak certificates in the transmission process.

In this variant, we modify the transmission process as follows.

As in Algorithm 4, every replica additionally maintains a new local

parameter 𝑟𝑞𝑐 that is used to represent the latest rQC. We add the

following procedures after ln 6: upon receiving 2𝑓 + 1 matching

votes, replica 𝑝𝑖 creates a rQC and updates its 𝑟𝑞𝑐 accordingly. At

ln 4, a replica checks whether it has received a rQC for epoch 𝑒 − 1.
If so, it broadcasts a ⟨proposal, 𝑏, 𝑟𝑞𝑐⟩ message. Otherwise, it still

broadcasts the ⟨proposal, 𝑏,𝑤𝑞𝑐⟩ message.

Next, we modify the step 3 of the consensus protocol. If the

proposed message 𝐵 by the leader consists of 𝑛 regular certificates,

replicas can directly skip the commit step. Namely, after receiving

𝑛 − 𝑓 matching prepare messages, replica 𝑝 𝑗 directly a-delivers 𝐵.

Now we describe the view change protocol. In the view-change

message, each replica additionally includes L, a set of certificates
for proposals. In L, for any epoch number 𝑒 between C and the

replica’s last vote,𝑊 [𝑒] is included. After receiving 𝑛 − 𝑓 view-

change message, the leader additionally executes the following

procedure. For each epoch number of any replica’ last vote, if a pre-

pare certificate is provided, the pre-prepare message includes the

corresponding block. If the L field in any view-change messages

consists of rQCs for proposals proposed in epoch 𝑒 , the union of

these rQCs will be packed in a block with a height 𝑒 and broadcast

in the pre-prepare message. Otherwise,𝑊 [𝑒] is included.

E CORRECTNESS OF STAR

Basing on the safety and liveness properties of the underlying

atomic broadcast protocol in the consensus process, we now prove

the correctness of Star.

According to the Star specification, a set 𝑉 consisting of trans-

actions in batches {qcProposal(𝑞𝑐𝑘)}𝑘∈[1..𝑛−𝑓] delivered (in a

deterministic order) by 𝑝𝑖 must correspond to the set𝑚 (consisting

of 𝑛 − 𝑓 wQCs {𝑞𝑐𝑘 }𝑘∈[1..𝑛−𝑓]) a-delivered by 𝑝𝑖 from the under-

lying atomic broadcast protocol. In this case, we simply say 𝑉 is

associated with𝑚.

We prove the safety of Star by showing that different sets of

transactions cannot be committed together in the same epoch, each

by a correct replica. We begin with the following lemma:

Lemma E.1. If𝑉𝑖 associated with some𝑚 is delivered by 𝑝𝑖 and𝑉𝑗
associated with the same𝑚 is delivered by 𝑝 𝑗 , the we have 𝑉𝑖 = 𝑉𝑗 .

Proof. Assume, towards a contradiction, that 𝑉𝑖 ≠ 𝑉𝑗 . Let

{𝑞𝑐𝑘 }𝑘∈[1..𝑛−𝑓] denote the 𝑛 − 𝑓 wQCs contained in𝑚. Then we

have that 𝑉𝑖 is a union of transactions in proposals {𝑏𝑘 }𝑖∈[1..𝑛−𝑓] ,
where 𝑏𝑘 = qcProposal(𝑞𝑐𝑘). Similarly, 𝑉𝑗 is a union of transac-

tions in proposals {𝑏 ′
𝑘
}𝑖∈[1..𝑛−𝑓] , where 𝑏 ′𝑘 = qcProposal(𝑞𝑐𝑘).

Since 𝑉𝑖 ≠ 𝑉𝑗 , we have that there exists 𝑘 ∈ [1..𝑛 − 𝑓] such that

𝑏𝑘 ≠ 𝑏 ′
𝑘
. Note that 𝑞𝑐𝑘 is a wQC for 𝑏𝑘 and also a wQC for 𝑏 ′

𝑘
. Since

𝑏𝑘 ≠ 𝑏 ′
𝑘
, this violates the unforgeability of digital signatures (or

threshold signatures). □

Now we are ready to prove safety.

Theorem E.2. (safety) If a correct replica delivers a transaction

𝑡𝑥 before delivering 𝑡𝑥 ′, then no correct replica delivers a transaction

𝑡𝑥 ′ without first delivering 𝑡𝑥 .

Proof. Suppose that a correct replica 𝑝𝑖 delivers a transaction

𝑡𝑥 before delivering 𝑡𝑥 ′. Let 𝐿𝑖 denote the a-delivered messages log

of 𝑝𝑖 and 𝑇𝐿𝑖 denote the delivered transactions log of 𝑝𝑖 . For any

correct replica 𝑝 𝑗 , let 𝐿𝑗 denote the a-delivered messages log and

𝑇𝐿𝑖 denote the delivered transactions log of 𝑝𝑖 . According to the

safety of the consensus protocol, either 𝐿𝑖 equals 𝐿𝑗 or one of 𝐿𝑖
and 𝐿𝑗 is an an prefix of the other. Note that 𝑇𝐿𝑖 and 𝑇𝐿𝑗 contains

transactions associated with messages in the a-delivered messages

logs in a deterministic order. According to Lemma E.1, either 𝑇𝐿𝑖

21

equals 𝑇𝐿𝑗 or one of 𝑇𝐿𝑖 and 𝑇𝐿𝑗 is an prefix of the other. This

completes the proof of the theorem. □

Theorem E.3. (liveness) If a transaction 𝑡𝑥 is submitted to all

correct replicas, then all correct replicas eventually deliver 𝑡𝑥 .

Proof. If a transaction 𝑡𝑥 is submitted to all correct replicas,

eventually in some epoch, 𝑡𝑥 is included in the proposal by at least

one correct replica. Using the strategy in EPIC (following Honey-

BadgerBFT), eventually the wQC𝑤𝑞𝑐 for the proposal containing

the transaction 𝑡𝑥 will be sent to the consensus process.

At least 𝑛− 𝑓 wQCs will be a-delivered in the consensus process,

and at least 𝑓 + 1 wQCs must be proposed by correct replicas. So

there is some probability that 𝑤𝑞𝑐 for 𝑡𝑥 will be delivered. If the

corresponding transaction has been received by a correct replica,

then we are done. Otherwise, a correct replica just needs to run

the fetch operation to get the corresponding proposal containing

𝑡𝑥 . Recall the use of wQC ensures that a correct replica must have

stored the corresponding proposal. (If the underlying atomic broad-

cast only achieves consistency rather than agreement, then we can

still the standard state machine replication mechanism such as state

transfer to ensure all correct replicas deliver the transaction.) □

F CORRECTNESS OF THE STAR VARIANT

We prove the correctness of the Star variant as described in Ap-

pendix D.2. For safety, we prove that the consensus process is safe

within a view and across views. For liveness, we prove that after

GST, a correct primary is able to lead all the replicas to reach an

agreement.

Lemma F.1. If 𝐵1 and 𝐵2 are different blocks that are proposed with

the same epoch number in the same view and a prepare certificate is

formed for both blocks, then 𝐵1 = 𝐵2.

Proof. We prove the lemma towards contradiction by assuming

𝐵1 ≠ 𝐵2. Let 𝑣 denote the view in which 𝐵1 is proposed. As a valid

prepare certificate consists of 2𝑓 + 1 partial signatures, at least one
correct replica has sent a prepare message for both 𝐵1 and 𝐵2 in

view 𝑣 . However, a correct replica votes for at most one block with

a specific height in view 𝑣 , a contradiction. □

Lemma F.2. If a one correct replica 𝑝𝑖 has a-delivered block 𝐵1 in

view 𝑣 with epoch number 𝑒 , another correct replica has a-delivered

a block 𝐵2 in view 𝑣 ′ with epoch number 𝑒 such that 𝑣 ′ > 𝑣 , then

𝐵1 = 𝐵2.

Proof. If 𝑝𝑖 has a-delivered 𝐵1, it has received 2𝑓 + 1 matching

commit messages (let the set of replicas be 𝑆1), among which at

least 𝑓 + 1 are sent by correct replicas. Any of the 𝑓 + 1 correct

replicas have received a prepare certificate for 𝐵1. As 𝑣
′ > 𝑣 , we

consider the new-view message in view 𝑣 ′. As a valid new-view

message consists of 2𝑓 + 1 view-change messages (let the set

of replicas be 𝑆2), 𝑆1 and 𝑆2 has at least one correct replica 𝑝𝑖 in

common. According to the view change rules, replica 𝑝𝑖 will include

a prepare certificate for 𝐵1 in its view-change message. However,

the leader in view 𝑣 ′ has not received such a message so the leader

proposes 𝐵2, a contradiction.

Note that correctness holds even if a fast path occurs. During a

fast path, a block 𝐵1 with epoch number 𝑒 consists of 𝑛 rQCs. After

receiving a prepare certificate for 𝐵1, a correct replica 𝑝𝑖 a-delivers

𝐵1 directly. In this case, 𝑝𝑖 knows that at least 𝑓 + 1 correct replicas
stores 𝑛 rQCs for epoch number 𝑒 . For any of the correct replicas, 𝑛

rQCs will be included in view-change messages in the L field. If

in view 𝑣 ′, a replica a-delivers 𝐵2, a prepare certificate is formed. In

other words, a correct replica has received 𝑛 rQCs (for 𝐵1) but has

not sent it to the leader during the view change, a contradiction. □

As every block is a-delivered in order according to the epoch

number of the delivered block, We prove safety for the consensus

by proving the following theorem:

Theorem F.3. (safety) If a correct replica a-delivers a message𝑚

before a-delivering𝑚′, then no correct replica a-delivers a message

𝑚′ without first a-delivering𝑚.

Proof. Correctness in the same view follows from Lemma F.1

and correctness across views follows from Lemma F.2. That com-

pletes the proof. □

Theorem F.4. (liveness) If a correct replica a-broadcasts a message

𝑚, then all correct replicas eventually a-deliver𝑚.

Proof. We consider two cases: a correct replica a-broadcasts a

message𝑚 in the normal case protocol; a correct replica a-broadcasts

a message𝑚 after view change. Correctness of the first case fol-

lows from the fact that all messages will be received after GST.

We now show the correctness of the second case. After GST, a

correct replica 𝑝𝑖 is able to collect a set𝑀 of 𝑛 − 𝑓 view-change

message for view 𝑣 and broadcasts a new-view message with a

proposal𝑚. Any pre-prepare message included in the new-view

message includes either the hash of a block such that a prepare

certificate is provided in the new-view message, or𝑊 [𝑒], a set of
wQCs. As prepare certificates and the wQCs/rQCs in𝑊 [𝑒] can be

verified by any correct replica, then the proposal from 𝑝𝑖 can be

verified. Accordingly, any correct replica can then resume normal

case operation and eventually a-deliver𝑚. □

22

	Abstract
	1 Introduction
	1.1 The Dashing Protocols: Gaining in Robustness and Efficiency
	1.2 Star: Gaining in Parallelism and Pipelining
	1.3 Summary of Contributions

	2 Related Work
	3 System Model
	4 The Family of Dashing Protocols
	4.1 Overview of (Chained) HotStuff
	4.2 Overview of Dashing1
	4.3 Notation for Dashing Protocols
	4.4 Dashing1
	4.5 Dashing2
	4.6 Dashing3
	4.7 Characteristics of the Dashing Protocols (Or: Benefits and Drawbacks for Individual Dashing Protocols)

	5 The Star Framework
	5.1 Overview of the Star Architecture
	5.2 Star Details

	6 Implementation and Evaluation
	7 Conclusion
	References
	A Additional Evaluation Results
	B Proof of Correctness
	B.1 Correctness of Dashing1 and Dashing2

	C Dashing3
	C.1 Dashing3 Details
	C.2 Correctness of Dashing3

	D The Underlying BFT Protocol in Star
	D.1 The Consensus Protocol Implemented in Star
	D.2 A Star Variant

	E Correctness of Star
	F Correctness of the Star Variant

