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Abstract—State-of-the-art Byzantine fault-tolerant (BFT) pro-
tocols assuming partial synchrony such as SBFT and HotStuff
use regular certificates obtained from 2f+1 (partial) signatures.
We show in this paper that one can use weak certificates
obtained from only f+1 signatures to assist in designing more
robust and more efficient BFT protocols. We design and im-
plement two BFT systems: Dashing (a family of two HotStuff-
style BFT protocols) and Star (a parallel BFT framework).
Our protocols have been deployed in mission-critical Central
Bank Digital Currency (CBDC) infrastructures.

We first present Dashing1 that targets both efficiency and
robustness using weak certificates. Dashing1 is also network-
adaptive in the sense that it can leverage network connec-
tion discrepancy to improve performance. We demonstrate
that Dashing1 outperforms HotStuff in various failure-free
and failures scenarios. We further show in Dashing2 how to
further enable a one-phase fast path by using strong certificates
obtained from 3f +1 signatures, a highly challenging task we
tackled in the paper.

We then leverage weak certificates to build Star, a highly
efficient BFT framework that delivers transactions from n−f

replicas using only a single consensus instance. Star compares
favorably with existing protocols in terms of censorship re-
sistance, communication complexity, pipelining, state transfer,
performance and scalability, and/or robustness under failures.

We demonstrate that the Dashing protocols achieve 47%-
107% higher peak throughput than HotStuff for experiments
conducted on Amazon EC2. Meanwhile, unlike all known BFT
protocols whose performance degrades as f grows large, the
peak throughput of Star keeps increasing as f grows. When
deployed in a WAN with 91 replicas across five continents, Star
achieves an impressive throughput of 256 ktx/sec, 35.9x that of
HotStuff, 23.9x that of Dashing1, and 2.38x that of Narwhal.

1. Introduction

Byzantine fault-tolerant state machine replication (BFT)
is known as the core building block for permissioned
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blockchains. This paper focuses on highly efficient, partially
synchronous BFT protocols [10], [15]. Almost universally,
these protocols rely critically on regular (quorum) certifi-
cates which, roughly speaking, are sets with at least 2f +1
messages from different replicas. Recent protocols such
as SBFT [21] and HotStuff [40] require using (threshold)
signatures for regular certificates as transferable proofs.

This paper demonstrates that one can build BFT systems
that outperform existing ones—in one way or another—by
using weak certificates with at least f + 1 signatures from
different replicas.

Intuitively, weak certificates may lead to more efficient
BFT protocols, because replicas only need to wait for sig-
natures from f + 1 replicas and combine only f + 1 sig-
nature shares. Indeed, as shown in prior works (e.g., [14]),
Byzantine agreement protocols with the f +1 threshold can
be (much) more efficient than their counterparts with the
2f +1 threshold. This paper explores novel usages of weak
certificates much beyond this intuition.

Table 1 summarizes our protocols using weak certifi-
cates. The Dashing protocols (Dashing1 and Dashing2) are
new BFT protocols in the HotStuff family and gain in
efficiency during failure-free cases and robustness under un-
expected network interruptions. Star is a new asynchronous
BFT framework targeting scalability. Our protocols have
been deployed in Central Bank Digital Currency (CBDC)
platforms, and their custom-made systems have been tested
in the mBridge project for Bank for International Settle-
ments (BIS).

1.1. Dashing: Gaining in Efficiency, Network Adap-
tivity, and Robustness

In Dashing, we challenge the conventional wisdom and
offer new insights into the design of BFT protocols.
• Using weak certificates. It is well-known that BFT pro-

tocols need to use regular certificates to ensure liveness
and safety. So far, weak certificates are shown not to be
helpful in building faster BFT protocols. Our first goal is
to challenge the intuition and provide a meaningful way
of using weak certificates to assist in the BFT design.



protocols section QC type used features authenticator communication
Dashing1 Sec. 3.4 wQC; rQC network-adaptive; more robust and efficient O(n) O(Ln+ λn)
Dashing2 Sec. 3.5 wQC; rQC; sQC targeting low latency; one-phase fast path O(n)/O(n2) O(Ln+ λn2)

Star Sec. 4 wQC; rQC
1. pipelined transmission; 2. weak certificates
for efficiency; 3. effective blockchain quality;

4. efficient state transfer; 5. lower communication
O(n2) O(Ln2 + λn2)

TABLE 1: Our protocols. L is the proposal size for each replica and λ is the security parameter. As Star allows replicas to process n−f
transactions in parallel, one cannot simply say that the Dashing protocols have lower communication complexity than Star.

(a) Distributions of replicas on Amazon EC2 instances.
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(b) Peak throughput under three settings for
f = 1.
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(c) Throughput of Dashing1 and HotStuff
under one-second unexpected network delay
for f = 10. The duration of the experiment is
six seconds in total. The dashed lines denote
the average throughput of the experiment.
The solid lines denote the average throughput
without the unexpected network delay.

Figure 1: Throughput of HotStuff and Dashing1 in three different settings on Amazon EC2.

• Leveraging network connection discrepancy. When
designing and evaluating a partially synchronous BFT
protocol, we implicitly assume the simplistic network
configuration, where replicas communicate with each
other with about the same latency (either all in LANs or
WANs). But in practice, the latency discrepancy among
different replicas naturally exists. A realistic scenario is
that some replicas (say, 1/3 of the replicas) naturally
have better connections than the rest of them. We find
the fact is overlooked by existing BFT protocols. We
experimentally show in Fig. 1 that HotStuff does not
exhibit visible performance differences even if we place
some replicas in the same region. The result is somewhat
expected: intuitively, the safety of BFT depends on the
BFT network overall, so the performance of BFT should
depend on the BFT network overall. Again, we challenge
this intuition, showing that BFT can benefit from network
connection discrepancies.

• Useful work during asynchrony. Partially synchronous
BFT protocols cannot make progress during asynchrony.
Existing partially synchronous BFT protocols would sim-
ply wait until the network becomes synchronous (before
view change occurs) or loop on view changes—in either
case, no "meaningful" progress can be made. The situa-
tion is only exacerbated, if the network is intermittently
synchronous or adaptively manipulated [32]. Naturally, it
seems that there is nothing we can do about the situation:
existing partially synchronous BFT protocols are deter-
ministic and subject to the celebrated FLP impossibility
result [16]. We take a fresh look at the problem: while
one indeed cannot make progress during asynchrony, we

do not waste our computation and network bandwidth
during asynchrony. The idea is that we perform "useful"
operations such that once the network becomes syn-
chronous, we can efficiently commit a large number of
cumulative transactions—the longer the asynchrony, the
more transactions committed—in some sense, the "best"
that one could anticipate.

Dashing1. One crucial idea in Dashing1 is that we attempt
to use weak certificates instead of regular certificates as
much as possible—during the normal case, during transient
failures or network interruptions, during unresponsive repli-
cas (e.g., crashes, slow replicas), and during view changes.
Transforming the idea into a fully secure BFT protocol,
however, is tricky: we have tackled subtle safety and liveness
challenges within a view and across views due to the usage
of weak certificates. Correspondingly, Dashing1 gains in
improved efficiency and robustness in various scenarios,
including during normal cases and across views, and in
the presence of transient network interruptions, network
connection discrepancies, and unresponsive failures.

As shown in Fig. 1a, we deploy HotStuff and Dashing1
on Amazon EC2 (for f = 1 and n = 4) in three different
settings: in setting 1, the four replicas are distributed in four
continents; in setting 2 and setting 3, we place two of the
replicas in closer locations. In all three settings (Fig. 1b), we
find Dashing1 consistently outperforms HotStuff; in setting
1 and setting 2, Dashing1 achieves about 2x and 3x the
throughput of HotStuff, respectively. The experiments show
that Dashing1 achieves improved performance in the normal
case and in the presence of (natural) network connection
discrepancies.
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As another example (Fig. 1c), we run an experiment
for Dashing1 and HotStuff with 1,200 clients for a duration
of six seconds in a WAN setting with 31 replicas. In the
middle of the experiments, we inject a one-second network
delay using the qdisc traffic control command. While nei-
ther HotStuff nor Dashing1 can make progress during the
network delay, the throughput of Dashing1 reaches roughly
10x that of HotStuff when the network recovers. The average
throughput of Dashing1 is 79.3% and 49.1% higher than that
of HotStuff with the unexpected network delay (dashed line)
and without the delay (solid line), respectively. Moreover,
Dashing1 achieves roughly the same average throughput as
that without the delay, while we witness a more visible
decrease in throughput for HotStuff.

We also show in the paper that Dashing1 enjoys better
robustness and efficiency in various other scenarios such as
leader failures and backup failures.
Dashing2. We show how to enable a one-phase fast path
by leveraging strong certificates from 3f + 1 signatures
in our BFT protocols. We demonstrate that such a task
is technically challenging—being more subtle than that in
SBFT [21]—and offer a secure and efficient solution.

1.2. Star: Gaining in Efficiency and Scalability

We use weak certificates to help build Star, a highly
scalable BFT framework that delivers transactions from
n − f replicas using only a single consensus instance.
As depicted in Fig. 2, Star completely separates bulk data
transmission from consensus such that these two processes
can be run independently, an idea originally from [13]. Star
has five distinctive features compared to prior works: 1)
the data transmission process can be effectively pipelined
to gain in efficiency; 2) Star uses weak certificates for the
data transmission process to further improve performance;
3) unlike prior works, the transmission process and the
consensus process are implicitly "correlated" with epoch
numbers, and the consensus process only handles messages
transmitted in the same epoch, which helps achieve effective
censorship resilience and blockchain quality (at least 1/2
of the total transactions contained in a committed block in
an epoch are from correct replicas); 4) Star admits a more
efficient (O(1) time) state transfer mechanism outpacing
existing ones; and 5) Star achieves lower communication
complexity than existing protocols.

All the features add up to a highly scalable and robust
BFT framework. Simply using PBFT [11] in our underlying
consensus layer, Star is the first conventional BFT protocol
whose throughput strictly keeps increasing as n grows.
As illustrated in Fig. 3, when deploying Star, HotStuff,
Narwhal [13] (the state-of-the-art protocol1) in a WAN with
91 replicas across five continents, Star achieves a throughput
of 256 ktx/sec, 35.9x that of HotStuff and 2.38x that of
Narwhal.

1. As claimed by authors in Bullshark [20], Bullshark and Narwhal
share almost identical throughput in normal cases (as they share the same
mempool protocol), and BullShark offers almost 2x the throughput of
MirBFT at the same latency.

Figure 2: The Star BFT framework. Star consists of an asyn-
chronous transmission process (that takes as input queues of pend-
ing transactions and outputs queues of weak certificates) and a
consensus process (that takes at input n − f weak certificates
and outputs a union of transactions corresponding to the weak
certificates delivered). Two processes are run independently but
are implicitly correlated with an increasing epoch number.
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Figure 3: Throughput of the protocols in WAN (with default
setting1 on AWS EC2) as f grows.

Comparison with existing protocols. Besides the perfor-
mance and scalability benefits, Star compares favorably with
existing protocols, such as Narwhal [13], Bullshark [20],
ISS [37], Mir-BFT [36], and Dumbo-NG [17], in terms of
censorship resistance, message complexity, pipelined trans-
mission, state transfer, and/or performance under failures.

Concurrent to our work (posted online May 2022), Gao,
Lu, Lu, Tang, Xu, and Zhang proposed Dumbo-NG [17]
(posted online Sep 2022), an asynchronous BFT protocol.
Indeed, while we instantiate Star using a partially syn-
chronous BFT protocol, Star can be an asynchronous BFT
protocol if the underlying BFT is asynchronous. Moreover,
both Dumbo-NG and Star separate message transmission
from agreement. However, Star does not use any of the
other three techniques we used to improve efficiency or
blockchain quality: 1) weak certificates for better efficiency;
2) associating transmission layer and consensus layer with
epoch numbers for better blockchain quality; 3) a more
efficient state transfer mechanism. In particular, without as-
sociating transmission layer with consensus layer, a specific
transaction could be significantly delayed or censored due
to faster commitments of transactions initiated by faulty
replicas. Indeed, faulty replicas can form a long chain
consisting of an unbounded number of certificates. In this
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way, a specific transaction may have the opportunity to be
processed only after all associated transactions from faulty
replicas have been committed, losing constant commit time;
moreover, the fraction of transactions from correct replicas
in a block may be made arbitrarily small.

Different from ISS [37] (and its predecessor
MirBFT [36]) that require running n parallel consensus
protocols for each epoch, Star only needs to run a single
consensus protocol for each epoch. ISS relies on Byzantine
failure detector to ensure safety and liveness, and replicas
have to wait for the slowest consensus instance to terminate
(possibly with view changes or until timers run out) before
they can process transactions; in contrast, Star can process
transactions once the single consensus instance completes.
Also, Star achieves O(n2) messages, which is in contrast to
ISS that incurs at least O(n3) messages. Last, during crash
failures, the throughput of ISS and MirBFT may drop to 0
for a long period of time; it needs to run a reconfiguration
mechanism to exclude faulty replicas [36], [37].

1.3. Summary of Contributions

We summarize our contributions in the following.
• We design a family of Dashing protocols—Dashing1 and

Dashing2—using weak certificates. In particular, Dash-
ing1 gains in improved efficiency and robustness in both
failure and failure-free scenarios and in normal cases and
across views; unlike prior partially synchronous proto-
cols, Dashing1 excels in performance in the presence of
transient network interruptions and network connection
discrepancies. Dashing2 enables a one-phase fast path
for Dashing1 and offers improved latency.

• We provide a novel (asynchronous) BFT framework
(Star) allowing one to process transactions in parallel
using only one BFT instance and O(n2) messages. Star
separates a pipelined message transmission layer from
the consensus layer, yet associates the layers using an
increasing epoch number. Doing so allows us to achieve
a strong blockchain quality property. Additionally, Star
enables an O(1) time state transfer (recovery) mechanism
that is much more efficient than existing ones.

• We formally prove the correctness of all our protocols.
• We implement the BFT protocols (the two Dashing pro-

tocols and an instantiation of Star). We have performed
extensive evaluations of the protocols, showing that our
protocols outperform existing protocols in various met-
rics.

2. System Model

BFT. This paper studies Byzantine fault-tolerant state ma-
chine replication (BFT) protocols. In a BFT protocol, clients
submit transactions (requests) and replicas deliver them. The
client obtains a final response to the submitted transaction
from the replica responses. In a BFT system with n replicas,
it tolerates f ≤ ⌊n−1

3 ⌋ Byzantine failures. The correctness
of a BFT protocol is specified as follows:

• Safety: If a correct replica delivers a transaction tx
before delivering tx′, then no correct replica delivers a
transaction tx′ without first delivering tx.

• Liveness: If a transaction tx is submitted to all correct
replicas, then all correct replicas eventually deliver tx.
Liveness is alternatively called "censorship resilience" (a

blockchain terminology). We use them interchangeably.
We also need an equivalent primitive, atomic broadcast,

as a building block. Atomic broadcast is only syntacti-
cally different from BFT. In atomic broadcast, a replica a-
broadcasts messages and all replicas a-deliver messages.
• Safety: If a correct replica a-delivers a message m before

a-delivering m′, then no correct replica a-delivers a
message m′ without first a-delivering m.

• Liveness: If a correct replica a-broadcasts a message m,
then all correct replicas eventually a-deliver m.
Note that when describing atomic broadcast, we restrict

the API of atomic broadcast in the sense that only a single
replica a-broadcasts a message. One can alternatively allow
all replicas to a-broadcast transactions (which is the case for
completely asynchronous protocols).

This paper mainly considers the partially synchronous
model [15], where there exists an unknown global stabi-
lization time (GST) such that after GST, messages sent
between two correct replicas arrive within a fixed delay. One
of our protocols (Star) works in completely asynchronous
environments if the underlying atomic broadcast protocol is
asynchronous.
(Best-effort) broadcast. We use the term "broadcast" to
represent that event that a replica sends a message to all
replicas in a system.
Cryptographic building blocks. We define a (t, n) thresh-
old signature scheme with the following algorithms (tgen,
tsign, tcombine, tverfiy). tgen outputs a threshold signature
public key and a vector of n private keys. A signature
signing algorithm tsign takes as input a message m and
a private key ski and outputs a partial signature σi. A
combining algorithm tcombine takes as input pk, a message
m, and a set of t valid partial signatures, and outputs a
signature σ. A signature verification algorithm tverify takes
as input pk, a message m, and a signature σ, and outputs
a single bit. We require the robustness and unforgeability
properties for threshold signatures. When describing the
algorithms, we leave the verification of partial signatures
and threshold signatures implicit.

Dedicated threshold signatures can be realized using
pairings [7], [8]. One can also use a group of n signatures
to build a (t, n) threshold signature for efficiency, as used
in various libraries such as HotStuff [40], [1], Jolteon and
Ditto [18], and Wendy [19]. The approach is also preferred
for our protocols, as many of our protocols have more
than one thresholds. (Otherwise, one should use different
threshold signatures for different thresholds.)

We use a collision-resistant hash function hash mapping
a message of arbitrary length to a fixed-length output.
Byzantine quorums and quorum certificates. We assume
n ≥ 3f + 1 for our protocols. For simplicity, we simply let
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n = 3f + 1 for this paper. A Byzantine quorum consists of
⌈n+f+1

2 ⌉ replicas, or simply 2f +1 if n = 3f +1. We call
it a regular quorum.

Slightly abusing notation, we additionally define two
different types of quorums: a weak quorum consisting of
f+1 replicas and a strong quorum consisting of n = 3f+1
replicas. A message with signatures signed by a weak quo-
rum, a regular quorum, and a strong quorum is called a weak
(quorum) certificate (wQC), a regular (quorum) certificate
(rQC), and a strong (quorum) certificate (sQC), respectively.
A certificate can be a threshold signature with a threshold t
or a set of t digital signatures.

3. The Family of Dashing Protocols

3.1. Overview of (Chained) HotStuff

HotStuff describes the syntax of leader-based BFT repli-
cation using the language of trees over blocks for leader-
based protocols. Here we use a slightly more general nota-
tion, where multiple blocks, rather than just one block, may
be delivered within a view until view change occurs.

Each replica stores a tree of blocks. A block b contains
a parent link pl, a batch of transactions, and their metadata.
A parent link for b is a hash of its parent block. A branch
led by a given block b is the path from b all the way to the
root of the tree (i.e., the genesis block). The height for b is
the number of blocks on the branch led by b.

Each time, a monotonically growing branch becomes
committed and a block extends the branch led by its parent
block. A block b′ is an extension of a block b, if b is on the
branch led by b′. Two branches are conflicting, if neither
is an extension of the other. Two blocks are conflicting, if
the branches led by the blocks are conflicting. A safe BFT
protocol must ensure that no two correct replicas commit
two conflicting blocks.

HotStuff uses three phases (prepare phase, precommit
phase, and commit phase) to deliver a block. In the prepare
phase, the leader broadcasts a proposal (a block) b to all
replicas and waits for signed responses (also called votes)
from a quorum of n−f replicas to form a threshold signature
as a quorum certificate (prepareQC). In the following
precommit phase, the leader broadcasts prepareQC and
waits for responses to form precommitQC. Similarly, in the
commit phase, the leader broadcasts precommitQC, and
waits to form and broadcasts commitQC. Upon receiving
the precommitQC, a replica becomes locked on b. Upon
receiving the commitQC, a replica delivers b.

In case of view changes, each replica sends its latest
prepareQC to the leader. Upon receiving a quorum of
n − f such messages, the leader selects the QC with the
largest height and extends the block for the QC using a new
proposal.

Throughout the paper, we use the chained version for
HotStuff and the Dashing protocols, where phases are over-
lapped and pipelined.

3.2. Overview of Dashing1

Dashing1 in a nutshell. In Dashing1, we use weak certifi-
cates (signatures from f + 1 replicas) to improve on both
efficiency and robustness. The core idea is that we attempt
to use weak certificates as much as possible, during normal
cases and across views, and in the presence of transient
network interruptions and network connection discrepancies.
In any of above cases, we allow replicas to "proceed" with
weak certificates.

Figure 4: Dashing1 under unexpected network delay.

(a) Dashing1.

(b) Conventional BFT (e.g., HotStuff).

Figure 5: The way how Dashing1 and a regular BFT handle
unexpected network delays, respectively.

As an example, Fig. 4 describes a scenario with unex-
pected network delay, where the leader p1 can only receive
messages from two other replicas (p2 and p3). As long as
the network interruption persists, replicas in existing BFT
protocols cannot make meaningful progress. For partially
synchronous BFT protocols, the leader has to wait until a
regular certificate is formed, or until view change occurs.
In contrast, Dashing1 allows replicas to make meaningful
progress and accumulate proposals under unexpected delays.

Fig. 5a describes the way how Dashing1 and a regular
BFT protocol (e.g., HotStuff) handle unexpected network
delays. For both protocols, starting from time t1, the leader
could not form a rQC until t2 when the network resumes
synchronous. During the network delay, the leader in the
regular BFT protocol proposes block b1 and waits for its
rQC.

In contrast, for the case of Dashing1, the leader can form
a sequence of wQCs for blocks b1, · · · , bk. Then when the
network becomes synchronous, replicas that fail to receive
messages from the leader will catch up with the leader. This
catching up phase, as we find, completes in a very short
period of time, in contrast to the process of proposing blocks
and collecting wQCs. Then replicas resume their normal-
case operation and rQCs can be formed. After three rQCs for
block bk+1 are formed, blocks b1, · · · , bk+1 are committed
simultaneously. Namely, during expected network delays or
interruptions, we do not waste our computation and network
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bandwidth; once the network becomes synchronous, we can
commit all the cumulative transactions simultaneously and
instantaneously.

Note that if t2− t1 is larger than the view change timer,
view change will be triggered. Even during a view change,
the design of Dashing1 allows the new leader (if correct)
to create a new proposal based on wQCs from the prior
view. With the new leader, once a single transaction with
rQC is committed, all prior wQCs can be simultaneously
delivered. Namely, the view change protocol in Dashing1
can also benefit from our design.

With our design, Dashing1 can naturally leverage net-
work connection discrepancy for adaptive performance. The
performance of Dashing1 depends on the group of fast repli-
cas (1/3 of total replicas) rather than the Byzantine quorum
of replicas (the overall network condition). Meanwhile, we
can carefully setup timers such that our system can also
benefit from wQCs even in the normal case.
Challenges and our design. Transforming the idea into a
fully secure BFT protocol, however, is non-trivial. First, a
faulty leader may easily create forks and generate up to
2f + 1 conflicting weak certificates. To prevent the forks
from growing exponentially, we can ask each correct replica
to vote for at most one block at each height.

(a) The safety challenge within a view.

(b) The safety challenge across views.

(c) The liveness challenge.
Figure 6: Challenges of building BFT from weak certificates. Blue
boxes with horizontal lines and green boxes with diagonal lines
represent blocks such that regular certificates and weak certificates
are formed, respectively. (The figures are best viewed in color.)

Second, we need to ensure that safety is still preserved
in the presence of weak certificates. Namely, we should
guarantee that if two conflicting blocks are extended from
two conflicting branches, a regular certificate can only be
formed for at most one of them. As shown in Fig. 6a, b0 and
b′0 are conflicting blocks and weak certificates are formed
for both of them. In addition, b1 extends b0 and b′1 extends
b′0. Then a regular certificate is formed for b1. While a weak
certificate can still be formed for b′1 and its descendant
blocks, we need to ensure that a regular certificate will

never be formed for any of them. We solve the problem by
enforcing a constraint: if a replica receives a proposal for a
block (e.g., b′2) that extends a block with a weak certificate
(i.e., b′1), a replica votes for block b′2 if and only if it has
previously voted for the parent block b′1. In this example, as
2f + 1 replicas have already voted for b1, it is impossible
that 2f + 1 replicas will vote for b′2.

Third, we need to ensure that across view changes (or in
the rotating leader mode), transactions with weak certificates
can be processed. During view changes, we ask each replica
to send its highest weak certificate to the new leader and
the new leader can select a weak certificate to create a new
proposal. After the proposed block is committed, all the
blocks on the branch led by the block will be committed.
However, we cannot simply let the new leader select the
highest wQC it receives due to a subtle safety problem. As
shown in Fig. 6b, rQCs are formed for b0, b1, and b2, while
wQCs for b′0, b′1, b′2, and b′3 are formed too (a "fork"). Note
that a rQC for b2 is also the commitQC for b0. If a view
change occurs and we let the leader select the highest weak
certificate b′3, a proposal extending b′3 will be proposed. To
attain liveness, all replicas need to vote for the proposal and
b′3 will be committed. But b0 has already been committed by
at least one correct replica, violating safety. To address this
issue, for any block b, we define stable block as the highest
block for which a rQC has been formed on the branch led by
b. Correspondingly, we require that each block b additionally
maintains a stable link field sl which stores the hash digest
of the stable block of b. (Note that the use of the stable
link resembles the use of the parent link.) After the leader
collects the certificates from the replicas, it will either select
the highest rQC, or the wQC for which the stable block is the
highest. In this example, as the stable block of b′3 is b and b
is lower than b2, the leader will create a proposal extending
b2. Upon receiving a proposal b′, if b′ extends a rQC for
b, replicas decide whether to vote for b′ by comparing b’s
stable block to its locked block (just as in HotStuff).

In fact, allowing the new leader to extend a weak cer-
tificate during view changes introduces a liveness challenge.
Recall that in the normal case operation, we ask every
replica to vote a block b that extends a weak certificate
only if the replica has voted for the parent block of b.
Unfortunately, we cannot enforce the same rule during view
changes, as there may not even exist f + 1 correct replicas
that have previously voted for the parent block of b. Fig. 6c
illustrates an example where in view 1, the leader creates
forks by creating multiple weak certificates, and in view 2,
the new leader receives a weak certificate for b0 or b′1 (or
both). According to the rule (for the normal case), the leader
is allowed to extend a weak certificate and create a proposal
(e.g., b1 that extends b0 or b′2 that extends b′1). As b0 and b′1
have been voted by only f+1 replicas, there is no guarantee
that either b1 or b′2 will be voted by f + 1 correct replicas
in view 1. In this scenario, a proposal from a correct replica
will not be voted by any correct replica, creating a liveness
issue. To address this challenge, we require that a correct
replica pi decide whether to vote for a block extending a
wQC (e.g., b1) during view change by comparing the stable
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block of received block to the locked block of pi. In the
example, pi vote for b1 if pi is not locked on a conflicting
block of b (the stable block of b1).

One more (liveness) challenge is about timers. In Dash-
ing1, besides the regular view change timer ∆1, the leader
additionally maintains a timer ∆2. After forming a wQC
with f + 1 matching votes, the leader starts a timer ∆2.
The leader can propose a new block if either of the two
conditions is met: 1) ∆2 expires (and it has not formed
a rQC); 2) it forms a rQC. We need to be careful about
∆2. According to our experiments, even if ∆2 is set as a
relatively small value (or even 0), the percentage of rQCs
formed among all QCs, perhaps surprisingly, is large. This
is because while a replica is packing the proposal, more
signatures may have been received and a rQC can be formed.
Note, however, a too small ∆2 may lead to lower number
of rQCs formed and increased latency. Also note that while
a too small ∆2 may trigger view change, but the view
change in Dashing1 is as efficient as that in HotStuff. To
deal with the situation, we require that after a view change,
the new leader needs to form three consecutive rQCs; doing
so allows all corresponding blocks for wQCs accumulated in
the prior view can be committed. In addition, we optionally
limit the number of consecutive wQCs for the normal case
to avoid unnecessary view changes. Namely, we can add
an additional rule such that a leader needs to form three
consecutive rQCs once every k (a constant, say, 50) wQCs
have been extended on the branch. Namely, we enforce
the leader to commit at least one block with rQC after
proposing "sufficient" blocks with wQCs. Doing so ensures
that even with too small ∆2 values, view change might not
be triggered.

Note that an overly large ∆2 does not cause any (per-
formance) issues, as the leader will propose a new block
once n − f votes are received. Namely, even if we set an
overly large ∆2, Dashing1 would remain as least as efficient
as HotStuff and Dashing1 remains optimistically responsive.
Also we comment that in settings where there exists natural
network discrepancies, we set ∆2 according to concrete
network connection conditions.

The last challenge is to maintain certificates with two
thresholds. If favoring maintaining linear authenticator com-
plexity using threshold signatures, one should setup two
threshold signature schemes—one for wQCs and the other
for rQCs. In each round-trip communication, replicas should
generate both a partial signature for wQC and a partial
signature for rQC. The leader should maintain two sets
storing threshold signatures for wQC and rQC, respectively.
In a different approach, one can simply use conventional
signatures and track all valid signatures in a single set. In
our implementation, we adopt the second approach that uses
conventional signatures, one also used in a series of HotStuff
libraries [40], [34], [19], [1].

3.3. Notation for Dashing Protocols

We specify the notation for the Dashing protocols.

Blocks. A block b is of the form ⟨req, pl, sl, view, height⟩.
We use b.x to represent the element x in block b. Fixing a
block b, b.pl is the hash digest of b’s parent block, b.height
is the number of blocks on the branch led by b, and b.view
is the view in which b is proposed. Note that different
from prior notation, sl is a new element in b. Formally,
b.sl denotes the hash digest of b’s stable block (the highest
block with a regular certificate on the branch led by b). For
simplicity, we also use b.parent and b.stable to represent
the parent block and the stable block of b, respectively.
Messages. Messages transmitted among nodes are of the
form ⟨TYPE, block, justify⟩. We use three message types:
GENERIC, VIEW-CHANGE, and NEW-VIEW. The VIEW-
CHANGE and NEW-VIEW messages are used during view
change: VIEW-CHANGE messages are sent by replicas to the
next leader, while NEW-VIEW message is sent by the new
leader to the replicas. The justify field stores certificates
to validate the block. Fields may be set as ⊥.
Functions and notation for QCs. A QC for message m is
also called a QC for m.block. Fixing a QC qc for a block
b, let QCBLOCK(qc) return the block b .

We have discussed two approaches to maintaining wQCs
and rQCs (the last paragraph in Sec. 3.2). To hide the imple-
mentation detail, we let QCVOTE(m) denote the output of a
partial signature signing algorithm for m or a conventional
signing algorithm and let QCCREATE(M) be a QC generated
from signatures in M . QCCREATE(M) may be a wQC or a
rQC.
Rank of QCs and blocks. Following the notion in [18], we
now define the rank() function for QCs and blocks. rank()
does not return a concrete number. Instead, it takes as input
two blocks/QCs and outputs whether the rank of a block/QC
is higher than the other one. The rank of two blocks/QCs is
first compared by the view number, then by the height.
Local state at replicas. Each replica maintains the fol-
lowing state parameters, including the current view number
cview, the highest rQC QCr, the highest wQC QCw, the
locked block lb, and the last voted block vb.

3.4. Dashing1

We present in Algorithm 2 and Algorithm 3 the normal
case protocol and view change protocol of Dashing1, respec-
tively. The utility functions are presented in Algorithm 1. We
largely follow the description of HotStuff and highlight how
Dashing1 supports wQCs in dotted boxes.
Normal case protocol (Algorithm 2). We describe the
chained version of the protocol. In each phase, the leader
broadcasts a message to all replicas and waits for signed
responses from replicas. At ln 10, the leader first proposes a
new block b and broadcasts a ⟨GENERIC, b, qchigh⟩ message,
where qchigh is the last QC it receives (either a wQC or a
rQC). The leader waits for the votes from the replicas. After
collecting f+1 matching votes, the leader starts a timer ∆2

(ln 6) to determine whether the leader should stop waiting
for more votes and propose a new block. Namely, the leader
can propose a new block if either one of the two conditions
is met: 1) ∆2 expires; 2) it forms a rQC. After that, the
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Algorithm 1: Utilities
1 procedure CREATEBLOCK(b′, v, req, qc)
2 b.pl← hash(b′), b.parent← b′, b.height← b′.height+1
3 b.req ← req, b.view = v

4

if qc is a wQC then
b.sl← b′.sl, b.stable← b′.stable, return b

5 if qc is a rQC then b.sl← b.pl, b.stable← b′ return b
6 procedure STATEUPDATE(QCw, QCr, lb, qc)
7 b′ ← QCBLOCK(qc), b′′ ← b′.parent, b∗ ← b′′.parent,
8 v←b′.view, b0←QCBLOCK(QCw), bhigh←QCBLOCK(QCr)
9 if qc is a rQC then

10 if rank(b′) > rank(bhigh) then QCr ← qc
11 if b′.stable = b′′ and rank(b′′) > rank(lb) then lb← b′′

12 if b′.stable = b′′ and b′′.stable = b∗ and
13 b′′.view = b∗.view = v then
14 deliver the transactions in b∗ and ancestors of b∗

15

if qc is a wQC and rank(b′.stable) ≥ rank(b0.stable) then
QCw ← qc

Algorithm 2: Normal case protocol for Dashing1
1 initialization: cview←1, vb, QCw ,QCr , lb are initialized to⊥.
2 Start a timer ∆1 for the first request in the queue of pending

transactions
3 ▷ GENERIC phase:
4 as a leader
5 wait for votes for b:

M ← {σ|σ is a signature for ⟨GENERIC, b,⊥⟩ }
6 upon |M | = f + 1 then set a start timer ∆2

7 upon ∆2 timeout or receiving n−f matching messages then
8 qchigh ← QCCREATE(M)
9 b←CREATEBLOCK(b,cview, req, qchigh)

10 broadcast m = ⟨GENERIC, b, qchigh⟩
11 as a replica
12 wait for m = ⟨GENERIC, b, π⟩ from LEADER(cview)
13 b′←b.parent, b′′←b′.parent, bs ← b.stable
14 m←⟨GENERIC, b,⊥⟩
15 if rank(b′)≥ rank(b) or b.height ̸= b′.height+ 1
16 discard the message

17

if π is a wQC for b′ and bs = b′.stable and
bs.view = b′.view = b′′.view = cview and b′ = vb then
vb ← b, STATEUPDATE(QCw, QCr, lb, π)

18 if π is a rQC for b′ and bs = b′ and rank(b′) ≥ rank(vb)
19 vb ← b, STATEUPDATE(QCw, QCr, lb, π)
20 if vb = b then send QCVOTE(m) to LEADER(cview)
21 ▷ NEW-VIEW phase: switch to this line if ∆1 timeout occurs
22 as a replica
23 cview ← cview +1

24
send ⟨VIEW-CHANGE,⊥, (QCr, QCw)⟩ to LEADER(cview)

leader combines the signatures in the votes into qchigh for
the next phase.

Upon receiving a ⟨GENERIC, b, π⟩ message from the
leader, each replica pi first verifies whether b is well-formed
(ln 13-16), i.e., b has a higher rank than its parent block b′

and b.height = b′.height + 1. Let b′′ denote the parent of
b′, we distinguish two cases. For ease of understanding, we
illustrate in Fig. 7 the relationships of b, b′, b′′, and b∗.
• If the π field is a wQC for b′ (ln 17), pi verifies if the

stable block of b and b′ are the same block such that b
indeed extends b′. pi also verifies if b, b′ and b′′ are all
proposed in the same view and pi has previously voted

Algorithm 3: View change protocol for Dashing1
1 ▷ VIEW-CHANGE phase
2 as a new leader
3 //M is a set of n− f VIEW-CHANGE messages collected by

the new leader
4 qchigh ← the rQC with the highest rank contained in M
5 b1 ← QCBLOCK(qchigh)

6

for m ∈M
if a wQC qcd ∈ m.justify and QCBLOCK(qcd) = d and
rank(d.stable)> rank(b0.stable) then vc←qcd, b0 ← d

if rank(b0.stable)≥rank(b1) then
b← CREATEBLOCK(b0,cview,req,vc),
broadcast m = ⟨GENERIC, b, vc⟩

7 else then
8 b← CREATEBLOCK(b1, cview, req, qchigh)
9 broadcast m = ⟨GENERIC, b, qchigh⟩

10 //switch to normal case protocol
11 as a replica
12 wait for m = ⟨GENERIC, b, π⟩ from LEADER(cview)
13 b′ ← b.parent, bs ← b.stable, m← ⟨GENERIC, b,⊥⟩
14 if b′.view≥cview or rank(b′)≥ rank(b) or

b.height ̸=b′.height+1 then
15 discard the message

16

if π is a wQC for b′ and bs = b′.stable and rank(bs) ≥
rank(lb) then vb ← b, STATEUPDATE(QCw, QCr, lb, π)

17 if π is a rQC for b′ and bs = b′ and rank(bs) ≥ rank(lb)
18 then vb ← b, STATEUPDATE(QCw, QCr, lb, π)
19 if vb = b then send QCVOTE(m) to LEADER(cview)
20 //switch to normal case protocol. Three consecutive rQCs are

required for the first block proposed during the view change.
21 ▷ NEW-VIEW phase: switch to NEW-VIEW phase if ∆1

timeout occurs

b’’ b

pl: hash(bs)

sl: hash(bs)

b’b*... rQC(bs) wQC(b’’) wQC(b’)

pl: hash(b’’)

sl: hash(bs)

stable link

pl: hash(b’)

sl: hash(bs)

b* is also the stable 

block bsof b

Figure 7: Illustration of the relationships of blocks in Algorithm 2.

for b′. If so, pi updates its local parameter QCw to π
and creates a signature for b (Algorithm 1, ln 15).

• If π is a rQC for b′ (ln 18-19), pi verifies if b’s parent
block b′ has a higher rank than vb. If so, pi updates its
local parameter QCr to π and generates a signature. If
b′′ has a rQC and b′′ has a higher rank than the locked
block of pi, then pi updates its lb to b′′. If pi has received
a rQC for both b′′ and b∗ (the parent block of b′′),
then pi commits block b∗ and delivers transactions in
b∗ (Algorithm 1, ln 6-14).
In both cases, the replica updates its vb to b, and sends

its vote (a signature for m) to the leader (ln 19).
View change protocol (Algorithm 3). Every replica starts
timer ∆1 for the first transaction in its queue. If the
transaction is not processed before ∆1 expires, the replica
triggers view change. In particular, the replica sends a
⟨VIEW-CHANGE,⊥, (QCr, QCw)⟩ message to the leader (Al-
gorithm 2, ln 23). Upon receiving n − f VIEW-CHANGE

messages, the leader first obtains a block b1 with a QC that
has the highest rank (ln 8). The leader then obtains a block
b0 with a wQC vc such that among all the blocks with weak
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QCs, b0 has the highest stable block (first part of ln 6). Then
the leader checks if the rank of the stable block of b0 is no
less than that of b1 (second part of ln 6). If so, the leader
creates a new block b extending b0 and broadcasts b to all
replicas. Otherwise, the leader extends b1 and creates block
b and broadcasts to the replicas (ln 8 and ln 9).

Upon receiving a ⟨GENERIC, b, π⟩ message from a new
leader, each replica pi verifies if the proposed block b
extends a block of a prior view (ln 14-15). Then pi votes
for b if either of the following conditions is satisfied:
• b extends a block b′ with a wQC (ln 16), the stable blocks

of b and b′ are the same block (denoted as bs), and the
rank of bs is no less than that of the locked block of pi;

• b extends a block b′ with a rQC (ln 17-18), and the rank
of the stable block of b is no less than that of the locked
block of pi.
For the first block proposed in a new view, the leader

needs to collect three consecutive rQCs after replicas switch
to normal case protocol (ln 20). As discussed in Sec. 3.2,
this is crucial for dealing with the liveness challenge caused
by the timer ∆2. Moreover, one may optionally enforce an
additional rule such that the leader should commit at least
one block after proposing "sufficient" blocks with wQCs
(say, 100 wQCs).
State transfer. As in HotStuff, replicas in Dashing1 may
need to perform state transfer with other replicas to obtain
the QCs or transactions included in the QCs. For the state
transfer of QCs, if a replica learns that a block b with height
h is committed but it has not received any QCs between
height h′ of its locked block and h, the replica has to
synchronize all the QCs for blocks between h′ and h on the
branch led by b. For the state transfer of the transactions,
for each QC, the replica needs to obtain the proposal from
other replicas such that the hash of the proposal matches
that included in the QC.

We prove the correctness of Dashing1 in Appendix B.

3.5. Dashing2

We now show in Dashing2 how to further enable a fast
path using strong certificates (sQCs). Intuitively, supporting
3f + 1 threshold may allow replicas to deliver the transac-
tions in a single phase: if the leader collects a sQC for a
block and broadcasts to the replicas, replicas can directly
commit the block.

While prior works have demonstrated how to design
secure BFT protocols using strong quorums [2], [3], [21],
integrating sQCs in Dashing1, however, has its unique chal-
lenges due to usage of wQCs. Indeed, as a block supported
by a sQC may be extended from a block with only a weak
certificate, replicas cannot directly commit the block upon
receiving a sQC. As depicted in Fig. 8, two conflicting
blocks b and b′ are proposed in the same view 1 with the
same height. Moreover, a rQC is formed for b and a wQC
is formed for b′. Besides, a wQC for block b′1 that extends
b′0 is formed. Suppose now a view change occurs, the new
leader in view 2 extends b′1 and proposes b′2. In Dashing1,

replicas can vote for b′2, so a sQC can be formed. Then
we consider a scenario where another view change occurs
and replicas enter view 3. As there is no guarantee on how
many correct replicas have received the sQC for b′2, the new
leader in view 3 may choose to extend b0. And b0 can be
later committed in view 3, in which case safety is violated
as b′2 is committed in view 2. As view change may occur at
any moment, replicas cannot directly commit a block when
a sQC is received.

Figure 8: Challenge of integrating strong certificates in Dashing2.

In Dashing2, we treat a sQC for the first block proposed
after view change as a rQC and the block cannot be com-
mitted immediately. Furthermore, during the view change,
the new leader needs to send the VIEW-CHANGE messages
from the replicas to all replicas, serving as a proof for the
block it proposes. In fact, the view change protocol now be-
comes similar to that in Fast-HotStuff [24] and Jolteon [18].
Accordingly, Dashing2 has O(n2) authenticator complexity
and O(n) message complexity. In addition, Dashing2 is a
two-phase protocol with a one-phase fast path.

We make several major changes on top of Dashing1.
First, Dashing2 follows the two-phase commit rule that if
a replica receives a rQC for both a block b and b′ (the
parent block of b), block b′ can be committed. Second, if
a replica pi receives a sQC for block b from the leader in
normal case operation, pi directly commits b and delivers
the transactions unless b extends a block with a wQC.
Third, during view change, the NEW-VIEW message from
the new leader includes a set of at least n − f VIEW-
CHANGE messages. Upon receiving the NEW-VIEW message
with a proposal, a correct replica verifies the proposal by
performing a computation as the one used by the new leader
to create the proposal. Replicas resume normal operations
only after the NEW-VIEW message is verified. Finally, for
the first block b proposed after each view change, the leader
form a rQC rather than wQC or sQC for b to start the normal
case operations.

Note that as in BFT protocols using strong quorums [2],
[3], [21], Dashing2 does not achieve optimistic respon-
siveness (which is unavoidable due to the one-phase fast
path). We show the pseudocode of Dashing2 and proof of
correctness in Appendix C.

4. The Star Framework

We present Star, a new BFT framework that allows
replicas to concurrently propose transactions and at least
n− f proposals will be delivered in each epoch.

9



4.1. Overview of the Star Architecture

As in Narwhal and Tusk [13], the transmission and
consensus processes in Star (as described in Fig. 9) are
decoupled. The transmission process is fully parallelizable
and works in asynchronous environments. It proceeds in
epochs, where all replicas can propose transactions and
output a queue of weak certificates numbered by epochs.
The consensus process has only one BFT instance and does
not carry bulk data. It takes as input weak certificates of
the proposals and agrees on which proposals in each epoch
should be delivered.

Compared to prior works, Star has the following distinc-
tive features: 1) we use pipelining for the data transmission
process to gain in efficiency; 2) Star uses wQCs for the
data transmission process to further improve performance;
3) crucially, the transmission process and the consensus
process are implicitly "correlated" with epoch numbers, and
the consensus process only handles messages transmitted in
the same epoch, which helps achieve effective censorship
resilience and improve blockchain quality; 4) Star admits a
more efficient and O(1) time state transfer mechanism; and
5) Star has lower communication in both the gracious and
uncivil scenarios than existing ones.

4.2. Star Details

The transmission process. The transmission process
evolves in epochs. Each epoch consists of n parallel wCBC
instances, as shown in Fig. 9 (a). Each replica maintains
a queue Q of pending transactions and outputs a growing
set W [e] containing weak certificates for each epoch e.
In each wCBC instance, a designated replica broadcasts a
proposal (a batch of transactions) from its queue of pending
transactions. Upon completing n−f wCBC instances, each
replica starts the next epoch and continues to propose new
transactions.

wCBC may be viewed as a weak version of consistent
broadcast (CBC), i.e., CBC with weak certificates. A wCBC
instance consists of three steps. First, a designated sender
sends a proposal containing a set of transactions to all
replicas. The sender waits for signed responses from f + 1
replicas to form a wQC and sends it to all replicas. Upon
receiving a valid wQC, each replica delivers the correspond-
ing proposal. Note it is possible that for a particular wCBC
instance, a correct replica delivers m and another correct
replica delivers m′ ̸= m. While multiple conflicting wQCs
might be provided by a faulty sender, we can trivially solve
the issue by asking each replica to deliver only the first wQC
for each epoch.

So why wCBC? wCBC ensures that if a wQC is formed,
at least one correct replica has received and stored the corre-
sponding proposal. The use of wQCs is sufficient to ensure
liveness, because any replica pj , once obtaining wQC, can
ask for the corresponding proposal from correct replicas;
any correct replica that stores the proposal can simply send
it to pj that can validate the correctness of the proposal
via the wQC. The above procedure is needed only when

a correct replica stored a wQC but had no corresponding
proposal. Even if the scenario occurs, it would not incur
higher message or communication complexity.

Star develops the above idea and offers a pipelined
version for high performance. Concretely, each replica can
directly propose a new proposal in the third step of wCBC.
We describe the code of the transmission process in Algo-
rithm 4, where each replica pi (i ∈ [0..n − 1]) runs the
initepoch(e) function to start a new epoch e. Replica pi
chooses a set of transactions from Q as a proposal (say,
b) using the select function. (The select function is vital
to liveness and we will discuss its specification shortly.) It
then broadcasts a message ⟨PROPOSAL, b, wqc⟩, where wqc
is the wQC formed in epoch e − 1. (If we are working in
the non-chaining mode, then wqc is simply ⊥.) pi waits for
f+1 votes for b to form a wQC. Then after receiving n−f
proposals for epoch e, pi enters the next epoch e+1. Upon
receiving ⟨PROPOSAL, bj , wqcj⟩ from pj , each replica first
verifies wqcj , sends a signed vote for bj to pj , adds bj to
proposals, and adds wqcj to W [e− 1].

Note we describe the code of the obtain function in
the transmission process too, because only the transmission
process has message queues. Jumping ahead, the obtain
function takes as input wQCs a-delivered from the con-
sensus process and outputs the corresponding proposals as
delivered transactions.

Algorithm 4: The transmission process of Star
(code shown for replica pi; the chaining (pipelined)
mode)
1 initialization: epoch number e, queue Q of pending

transactions, received proposals proposals, the latest weak
certificate wqc, and queue W of weak certificates are all
initialized to ⊥.

2 func initepoch(e)
3 b.tx← select(Q), b.epoch← e //select a proposal b from Q
4 broadcast ⟨PROPOSAL, b, wqc⟩

//broadcast the proposal and wqc; pipelined mode
5 upon receiving a set M of f + 1 signed votes for b
6 wqc←QCCREATE(M) //create a weak certificate
7 wait until |proposals[e]| ≥ n− f //enter the next epoch
8 e← e+ 1, initepoch(e)
9 upon receiving ⟨PROPOSAL, bj , wqcj⟩ from replica pj in e for

the first time
10 send signed vote for bj to pj
11 proposals[e]← proposals[e] ∪ bj

12 W [e−1]←W [e−1]∪wqcj //certificates in the output queue

Algorithm 5: The consensus process of Star
1 initialization: the epoch number of the current block le is

initialized to 1. W is the queue of wQCs obtained from the
transmission process

2 upon |W [le]| ≥ n− f
3 a-broadcast(W [le]) //run the underlying atomic broadcast
4 upon a-deliver(le,m)
5 O ← obtain(le,m)
6 deliver O //deliver the transactions inO in deterministic order
7 le← le+ 1
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Figure 9: The Star architecture.

Algorithm 6: State transfer of Star
1 external: proposals, Q //obtained from the transmission process
2 func obtain(e,m)

//obtain the union of proposals for a delivered message
3 O ← ⊥ //to store delivered proposals
4 for wQC qc ∈ m
5 if QCPROPOSAL(qc) ∈ proposals[e]

//already have the proposal
6 O ← O ∪ QCPROPOSAL(qc)
7 else broadcast ⟨FETCH, e, qc⟩
8 wait for a PROPOSAL message containing

QCPROPOSAL(qc)
9 O ← O ∪ QCPROPOSAL(qc)

10 clear W [e], remove transactions in O from Q
11 upon receiving message ⟨FETCH, e, qc⟩ from replica pj
12 if QCPROPOSAL(qc)∈proposals[e] //fetch missing proposals
13 send ⟨PROPOSAL, QCPROPOSAL(qc)⟩ to pj

The consensus process. The consensus process also pro-
ceeds in epochs, using only one BFT instance to agree on
the wQCs. We can use any BFT protocol for the consensus
process. When describing the consensus process in Algo-
rithm 5, we use the a-broadcast and a-deliver primitives in
atomic broadcast.

Each replica pi maintains le, a local parameter tracking
the current consensus epoch number. pi monitors its queue
W (obtained from the transmission process) and checks
whether W [le] has at least n − f weak certificates. If so,
replicas run a-broadcast(W [le]). (If the underlying BFT is
leader-based, then only the leader proposes W [le]). When
the a-deliver primitive terminates, each replica waits the
transactions (from the transmission process) corresponding
to wQCs a-delivered and delivers the transactions in deter-
ministic order. If some proposals are missing, the replica
may simply fetch the proposals from other replicas (via the
state transfer process in Algorithm 6). In the state transfer
protocol, for each wQC qc in epoch e, a replica pi broadcasts
a ⟨FETCH, e, qc⟩ message to all replicas. Upon receiving such
a message, a replica sends the corresponding proposal to pi
if it has the proposal.
Censorship resilience (liveness) and blockchain quality.
Protocols allowing all replicas to propose different transac-
tions should address transaction censorship which prevents a
particular transaction proposed by a replica from never being
delivered. First, the use of wQC ensures that if the under-
lying atomic broadcast completes, then the corresponding

proposal has been obtained by correct replicas, or can be
obtained via the fetch operation by correct replicas.

We should in addition ensure that adversary cannot
censor certain transactions. So we have to be careful in
specifying the select function. HoneyBadgerBFT [32] in-
vents a method that replicas randomly select transactions
from their queue and use threshold encryption to achieve
censorship resilience. EPIC [27] combines the conventional
FIFO strategy used in [9] and the random selection strategy
used in HoneyBadgerBFT to avoid threshold encryption.
The asynchronous pattern in Star allows us to adopt the same
approach in EPIC and achieve liveness under asynchrony.

Our work enforces a strong form of blockchain quality,
ensuring at least 1/2 of the total transactions contained in any
committed block in an epoch are from correct replicas. Note
that the concurrent work of Dumbo-NG does not satisfy
this desirable feature: note the quality of the multi-valued
Byzantine agreement (MVBA) in Dumbo-NG does not lead
to blockchain quality.
Instantiating Star using PBFT. In Star, we use a variant
of PBFT that is only slightly different from PBFT. First, as
the proposed transactions are already assigned with epoch
number in the transmission process, we directly use the
epoch number as the sequence number in the consensus pro-
cess. We additionally require that the leader cannot skip any
epoch number. Last, during a view change, the new leader
is not allowed to propose a nil block for any epoch number.
Namely, for any epoch number e such that an agreement is
not reached in a prior view, the new leader simply proposes
W [e]. We describe the details of the protocol in Appendix D.
Complexity analysis. Star has n parallel wCBC and one
instance of the underlying BFT protocol (say, PBFT, Hot-
Stuff), so Star has O(n2) messages (whether using PBFT or
HotStuff). The communication complexity is O(Ln2+λn2)
for the transmission process and O(λn2) for the consensus
process. As a replica can directly obtains a proposal based
on epoch number and each QC, for state transfer of multiple
QCs, the time complexity is O(1).

In contrast, Narwhal changes the reliable broadcast used
in DAG-Rider to consistent broadcast and the change leads
to a complex and expensive state transfer mechanism. In
particular, to obtain the transactions for round r, a replica
has to perform state transfer to obtain the corresponding
block. Then based on the block, the replica obtains the list of
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certificates (for round r−1) and then needs to perform state
transfer for the corresponding blocks. This process repeats
until the replica obtains the entire causal history. Each of
these steps has to be executed one after another since there is
no guarantee that at least one correct replica holds the entire
causal history. Therefore, if a replica needs to perform state
transfer for k epochs in the transmission process, the time
complexity if O(k) while ours is O(1). Moreover, Narwhal
has O(Ln2 + λn3) communication, as each block consists
of at least 2f + 1 certificates of the prior round.

We proof the correctness of Star in Appendix E.

5. Implementation and Evaluation

We implement all our protocols introduced in this work
and HotStuff in Golang using around 12,000 LOC, includ-
ing 1,500 LOC for evaluation. We implement the chaining
(pipelining) mode for the Dashing protocols and HotStuff.
For all the protocols, we implement the checkpoint protocol
for garbage collection, where replicas run the checkpoint
protocol every 5000 blocks. We use gRPC as the underlying
communication library. As in prior works [40], [34], [19],
[1], we use digital signatures for quorum certificates. In
particular, we use SM2 signature (ISO standard) which
has similar performance as ECDSA. We also evaluate the
performance of Narwhal [13] using their source code 2.

We deploy the protocols in a local cluster with 40 servers
(LAN) and also Amazon EC2 with up to 100 instances
where the servers are evenly distributed across five conti-
nents (WAN). In the LAN setting, each server has a 16-
core 2.3GHz CPU and 128 GB RAM in the cluster. The
network round-trip time between two servers is on average
2 ms. The network bandwidth is 200 Mbps. In the WAN
setting, we use m5.xlarge instance which has four virtual
CPUs and 16 GB memory. Throughout the paper, we use
different distributions of the instances to understand the pro-
tocol performance under network connection discrepancies
(see Fig. 1 in the introduction). This section focuses on
the setting where the servers are eventually distributed in
four different regions: us-west-1 (California, US), us-east-
2 (Ohio, US), ap-southeast-1 (Singapore), and eu-west-1
(Ireland).

For each experiment, we use 3f+1 replicas and use f to
denote the network size. Unlike some existing experiments
where the replicas generate client requests, we use real VMs
to simulate the clients. We ask the clients to submit requests
to the system in a non-closed loop, i.e., a client does not
have to wait for the reply before sending the next request.
Our experiments thus provide more realistic performance
evaluation. We set the size for transactions and replies as
512 bytes. For the choice of ∆2, we set it as ∆r−∆w

2 , where
∆r is the average latency for the leader to collect a rQC and
∆w is the average latency for the leader to collect a wQC.
Doing so allows use to obtain reasonable fractions of wQCs
and rQCs in Dashing protocols.

2. https://github.com/MystenLabs/narwhal

Performance (latency vs. throughput; throughput). We
report the performance of Dashing1, Dashing2, Star, Hot-
Stuff, and Narwhal in both LAN (our local cluster) and
WAN (cloud) settings. For latency, we measure the average
consensus time on the server side for each proposed block
to be committed.

In the LAN setting, we report latency vs. throughput
for f = 1 and f = 10 in Fig. 10a and Fig. 10b and
throughput as the number of clients increases in Fig. 10c and
Fig. 10d. Dashing1 and Dashing2 consistently outperform
HotStuff. For instance, the peak throughput of Dashing1 is
11.3% higher and 5.07% higher than HotStuff for f = 1
and f = 10, respectively. Meanwhile, Star significantly and
consistently outperforms other protocols. For f = 1 and
f = 10, the peak throughput of Star is 3.25x and 9.19x the
throughput of HotStuff, respectively. Star also outperforms
Narwhal consistently. Compared to that of Narwhal, the
peak throughput of Star is 1.35% higher for f = 1 and
37.2% higher for f = 10.

In the WAN setting, we report the performance of the
protocols in Fig. 10e-10l. Both Dashing protocols consis-
tently outperform HotStuff, while Star significantly outpaces
Narwhal. For instance, the peak throughput of Dashing1 is
107.36% higher and 49.8% higher than that of HotStuff
for f = 1 and f = 30, respectively. Furthermore, when
f = 30, Star achieves 35.9x the throughput of HotStuff,
23.9x the throughput of Dashing1, and 2.38x the throughput
of Narwhal.

While Dashing1 and Dashing2 provide some interesting
performance trade-offs, they offer similar throughput in most
of the experiments. But Dashing2 has a fast path in the
failure-free scenario, having lower latency in most cases.
Scalability. We report in Fig. 3 the peak throughput of Dash-
ing1, Dashing2, Star, and HotStuff in the WAN environment
as f grows. All the Dashing protocols outperform HotStuff
consistently. The peak throughput of Dashing1 is 47%-107%
higher than that of HotStuff.

For Dashing protocols and HotStuff, the throughput
degrades as f grows, echoing other protocols in the HotStuff
family. The throughput of Narwhal first increases as f
grows and then decreases as f grows further, matching the
evaluation result reported in Narwhal [13].

In comparison, the peak throughput of Star keeps grow-
ing as f increases (to 30). In particular, the performance
of Star for f = 30 is 3.84x the throughput for f = 1.
Meanwhile, the peak throughput of Star consistently outper-
forms other protocols. When f = 30, the peak throughput
of Star is 243 ktx/sec, in contrast to 7 ktx/sec for HotStuff,
10 ktx/sec for Dashing1, and 102 ktx/sec for Narwhal.
This is mainly because: 1) replicas only agree on a set of
wQCs; 2) all n replicas propose transactions concurrently
and the transmission process and consensus process are fully
decoupled but implicitly correlated using epoch numbers;
3) the transmission process is highly efficient and can be
pipelined. We comment that by asking the consensus pro-
cesses to process the transactions transmitted with the same
epoch number, Star can ensure O(1) time delivery. Note that
both Star and Narwhal employ leaderless approaches for
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(a) Latency vs. throughput in LAN
for f = 1.
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(b) Latency vs. throughput in LAN for
f = 10.
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(c) Throughput in LAN for f = 1.
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(d) Throughput in LAN for f = 10.
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(e) Latency vs. throughput in WAN
for f = 1.
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(f) Latency vs. throughput in WAN
for f = 10.
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(g) Latency vs. throughput in WAN
for f = 20.
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(h) Latency vs. throughput in WAN
for f = 30.
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(i) Throughput in WAN for f = 1.
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(j) Throughput in WAN for f = 10.
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(k) Throughput in WAN for f = 20.
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(l) Throughput in WAN for f = 30.

Figure 10: Performance of the protocols. Figures that compare only Dashing protocols and HotStuff are presented in Appendix A.
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(b) Peak throughput of under failures
(f = 5).

Figure 11: View change and performance under failures.

transmission of block proposals, each replica in Star only
needs to collect f+1 instead of 2f+1 matching votes. In a
large-scale network, the overhead of collecting an additional
f matching votes is high. This validates our motivation that
wQC can be used to achieve higher efficiency.
Performance under failures. We assess the performance
under failures for Dashing1, Dashing2, and HotStuff. We
use 1200 clients in all the experiments.

We first assess the average latency of view changes due
to the leader failures, where we halt the leader in the middle

of each experiment. We report the view change latency for
f = 1 and f = 5 in Fig. 11a. In our experiments, the view
change latency for Dashing2 is higher than Dashing1 and
HotStuff, mostly because each NEW-VIEW message consists
of n− f messages and replicas need to verify the messages
accordingly.

We also report the peak throughput for f = 5 with
backup replica failures in Fig. 11b, where we evaluate
the case of no failures, three failures, and five failures,
respectively. For the case with three failures, we halt one
server in each of the us-east-2, ap-southeast-1, and eu-west-
1 regions. For the case with five failures, we halt two replicas
in the eu-west-1 region, and one replica in each of the
other three regions. For the case of failures, the performance
of HotStuff degrades dramatically. In contrast, the Dashing
protocols are highly robust against crash failures. Indeed,
during failures, the leader in HotStuff always needs to
collect n − f votes from the remaining correct replicas;
but the Dashing protocols can exploit wQCs and maintain
consistent performance.
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6. Additional Related Work

Much related work is discussed in the course of the
paper. Here we discuss additional related work.
HotStuff and its derivatives. HotStuff [40] is known as the
first partially synchronous BFT protocol with linearity. Hot-
Stuff has three round-trips for both normal case operations
and view changes. Subsequent works focus on reducing the
number of phases for HotStuff, including Fast-HotStuff [24],
Jolteon [18], Wendy [19], and Marlin [39]. HotStuff has a
basic mode and a chained (pipelining) mode (called chained
HotStuff). The protocols introduced and implemented in this
paper are described in their chained mode.
Protocol switching in BFT protocols. Following the
idea initially proposed by Kursawe and Shoup [26], Bolt-
Dumbo [29] and Ditto [18] run partially synchronous BFT
protocols in the optimistic mode and rely on fallback asyn-
chronous protocols during asynchrony [26]. All known such
BFT protocols lack an effective mechanism to decide when
to switch from the pessimistic mode to the optimistic mode,
as it is (often) unpredictable when the network becomes
synchronous again. The situation is only exacerbated, if the
network is intermittently synchronous or adaptively manipu-
lated [32]. Meanwhile, systems have been proposed to allow
switching among (restricted) BFT protocols [22], [4]. These
protocols offer adaptive performance but (largely) inherit the
issues of protocol switching [26], [29], [18].
Weak certificates for eventual consistency. Zeno[35] uses
weak certificates to handle network partitions. It allows
f + 1 replicas to make progress, including view changes.
Zeno leverages a conflict-resolution mechanism to achieve
eventual synchrony, a consistency goal that is much weaker
than ours. In contrast, Dashing1 combines weak certificates
and regular certificates to achieve standard BFT guarantees,
additionally gaining in efficiency and robustness.
BFT with strong quorums. Strong quorums (with 3f + 1
replicas) for consensus have been used in Zyzzyva [25] and
FaB [31]. The protocols have been found to have errors [2]
and then fixed [3]. The fixed algorithm is at the center of
SBFT [21] which also features the usage of strong quorums.
Dashing2 tackles the new and subtle challenges due to weak
certificates and linear communication.
Multiple thresholds in a single timing model or two dif-
ferent timing models. Some Byzantine-resilient protocols
such as UpRight [12], [23] study different thresholds for
different correctness properties (e.g., different thresholds for
safety and liveness) in a single timing model. Some other
protocols, however, consider two different timing models.
Most of these protocols (except XFT [28]) focus on the
asynchronous-synchronous timing model [30], [33], [5],
[6]. For instance, the recent work of Malkhi, Nayak, and
Ren [30] and the work of Momose and Ren [33] con-
sider these two timing models and separate thresholds for
safety and liveness properties. In contrast, XFT considers
the partially synchronous-synchronous timing model. XFT
tolerates f < n/2 Byzantine failures under synchrony but
no Byzantine failures under partial synchrony.

Our protocols are different from these protocols. Our
protocols use a single timing model and assume the n/3
threshold for both safety and liveness. The different thresh-
olds in our protocols are used to improve efficiency or
robustness.
Leader replacement in ISS. Systems such as Mir-BFT [36]
and the recent ISS [37] are beautiful and practical BFT
systems aiming at running n parallel BFT instances for
high throughput. Handling parallel transactions using n
BFT instances in one epoch turns out to be challenging.
ISS can deliver transactions only when all BFT instances
successfully terminate. The full paper of ISS [38] discusses
how to select n correct leaders for each epoch during failures
and attacks to ensure liveness. In particular, ISS proposes
three different and mutually exclusive policies for leader
replacement. These policies provide trade-offs in terms of
performance and robustness. Instead, Star has one BFT
instance and does not have to deal with the issues.

7. Conclusion

We design and implement efficient BFT protocols using
weak certificates, including a family of two Dashing proto-
cols that offer improved efficiency and robustness compared
to HotStuff, and a new (asynchronous) BFT framework Star
allowing processing parallel transactions using a single BFT
instance. Via a deployment in both the LAN and WAN
environments, we show that the our protocols outperform
existing ones. In contrast to existing protocols, the through-
put of Star keeps increasing as n grows; in particular, in the
WAN setting with 91 replicas across different continents,
Star has a throughput of 243 ktx/sec, 35.9x the throughput
of HotStuff and 2.38x the throughput of Narwhal.
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Appendix A.
Additional Evaluation Results

We report evaluation results for Dashing1, Dashing2,
and HotStuff with enlarged figures in Fig. 12.

Appendix B.
Correctness of Dashing1

We first introduce some notation we use in this section.
Let b′, b denote two blocks such that b.parent = b′. Ac-
cording to Algorithm 2 and Algorithm 3, after receiving a
GENERIC message ⟨GENERIC, b, qc⟩, a correct replica votes
for b only if (1) b.stable = b′ and qc is a rQC for b′ (ln
17-19 of Algorithm 2 and ln 15 of Algorithm 3); or (2)
b.stable = b′.stable and qc is a wQC for b′ (ln 16 of
Algorithm 2 and ln 14 of Algorithm 3). In both cases, we
say that qc and b are matching.

Let b, b′ and b′′ denote three consecutive blocks. In
Algorithm 1, we have that a replica pi commits b only
after receiving a rQC qc for b′′ such that b′′.stable = b′,
b′.stable = b, and b.view = b′.view = b′′.view = v. In this
case, we call qc a commitQC for b.

Lemma B.1. If b and d are two conflicting blocks and
rank(b) = rank(d), then a rQC cannot be formed for both
b and d.

Proof. Let v denote b.view. As rank(b) = rank(d), we have
d.view = v. Suppose, towards a contradiction, a rQC is
formed for both b and d. As a valid rQC consists of 2f +1
votes, a correct replica has voted for both b and d in view v.
This causes a contradiction, because a correct replica votes
for at most one block with each height in the same view.
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(a) Latency vs. throughput in WAN
for f = 10.
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(b) Latency vs. throughput in WAN
for f = 20.
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(c) Latency vs. throughput in WAN
for f = 30.
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(d) Throughput in WAN for f = 10.

0 500 1,000 1,500
0

5

10

15

Number of clients

T
hr

ou
gh

pu
t

(k
tx

/s
ec

)

HotStuff Dashing1
Dashing2

(e) Throughput in WAN for f = 20.
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(f) Throughput in WAN for f = 30.
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grows.

Figure 12: Evaluation results for Dashing1, Dashing2, and HotStuff with enlarged figures.

Lemma B.2. Suppose that there exists a rQC or a wQC qc
for b; block d and dc are on the branch led by b such that
dc.parent = d, then we have that

(1) d.height < dc.height and at least one correct
replica has received a certificate qcd for d, where qcd and
dc are matching;

(2) and if the view of the parent block of d is lower than
d.view, then at least one correct replica has received a rQC
qcd for d and dc.stable = d.

Proof. (1) We prove the claim (1) by induction for d. If
d = b.parent, then dc equals b. Since qc is a rQC or a wQC
for b, at least one correct replica has voted for dc. Then we
have that d.height < dc.height and pi has received a qcd
before voting for dc, where qcd and dc are matching.

If d ̸= b.parent, then there exists a rQC or a wQC
for any block higher than d on the branch led by b. In this
situation, there exists a block dc on the branch led by b such
that dc.parent = d; a rQC or a wQC qcc for dc is received
by at least one correct replica. Since qcc consists of at least
f + 1 votes, at least one correct replica pi has voted for dc
in view dc.view. Then we have that d.height < dc.height
and pi has received a qcd before voting for dc, where qcd
and dc are matching. This completes the proof of claim (1).

(2) Based on claim (1), we know that at least one correct
replica pi has voted for dc in view dc.view. Let d′ denote
the parent block of b. Then d′.view < d.view. According
to ln 16-18 of Algorithm 2, pi votes for dc only if pi has
received a rQC qcd for d and dc.stable = d.

Lemma B.3. If there exists a wQC qcd for block d, then d
extends d.stable and a rQC for d.stable has been received
by at least one correct replica.

Proof. Let d0 denote d.parent. As there exists a wQC for
d, at least one correct replica pi has received a certificate
qc and voted for d in view d.view, where qc and d are
matching. We distinguish two cases:

(1) qc is a rQC for d0 and d.stable = d0. Then we know
that d extends d.stable, because d0 is the parent block of
d. Accordingly, at least one correct replica pi has received
a rQC qc for d.stable before voting for d.

(2) qc is a wQC for d0 and d.stable = d0.stable.
Let dv denote the block with the highest height on the
branch led by d such that dv.stable ̸= d.stable. Let d′v
denote the block on the branch such that d′v.parent = dv.
We have d′v.height > dv and d′v.stable = d.stable.
Therefore, at least one correct replica pi has voted for d′v
from Lemma B.2. Thus, we have d′v.stable = dv.stable
or d′v.stable = dv according to Algorithm 2 (ln 16-18).
Since dv.stable ̸= d.stable, d′v.stable ̸= dv.stable. Then
we know that d′v.stable = d.stabe = dv and d extends
d.stable. Meanwhile, pi has received a rQC for dv before
voting for d′v.

In both cases, d extends d.stable and a correct replica
has received a rQC for d.stable.

Lemma B.4. If there exists at least one rQC formed in view
v, then there exists only one rQC qc with the lowest rank
in view v, and we have that

(1) The view of b.parent is lower than v, where b be
QCBLOCK(qc);
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(2) If there exists a rQC for b1 and b1.parent.view < v,
then b1 equals b.

Proof. If a rQC is formed in view v, then there exists only
one rQC qc with the lowest rank in view v (according to
Lemma B.1).

(1) Let b denote QCBLOCK(qc) and bv denote the block
with the lowest height such that bv.view = v on the branch
led by b. Therefore, bv.height ≤ b.height and the view of
bv.parent is lower than v. According to Lemma B.2, there
must exist a rQC for bv. Since qc is the lowest rQC formed
in view v, we have that bv = b and the view of b.parent is
lower than v.

(2) If there exists a rQC for b1, then at least a correct
replica has voted for b1 and b in view v. Note that in view
v, a correct replica only votes for one block that extends a
block proposed in a lower view according to Algorithm 3.
Therefore, it must hold that b1 = b.

Lemma B.5. If rQC qc for b is the rQC with the lowest
height formed in view v and there exists a rQC for block d
such that d.view = v, then d equals b or d is an extension
of b.

Proof. Let d0 denote the block with the lowest height on
the branch led by d such that d0.view = v. Then the view
of the parent block of d0 is lower than v. According to
Lemma B.2, at least one correct replica has received a rQC
for d0. By Lemma B.4, it holds that d0 equals b. As d0 is a
block on the branch led by d, d equals b or d is an extension
of b.

Lemma B.6. Suppose qc1 and qc2 are two rQCs, each is
received by at least one correct replicas. Let b1 and b2
be QCBLOCK(qc1) and QCBLOCK(qc2), respectively. If b1
is conflicting with b2, then b1.view ̸= b2.view.

Proof. Assume, towards a contradiction, that b1.view =
b2.view
= v. According to Lemma B.5, we know that there exists
a block b which is the block with the lowest height for
which a rQC was formed in view v, b1 and b2 are blocks
and either b1 or b2 is equals b or is an extensions of b.
Then b1.height ≥ b.height and b2.height ≥ b.height. We
consider three cases:

(1) If b1.height = b.height or b2.height = b.height,
then b1 equals b or b2 equals b. Therefore, b1 and b2 are the
same block or they are on the same branch.

(2) If b.height < b1.height, b.height < b2.height, and
b1.height = b2.height, then according to Lemma B.1, b1
and b2 must be the same block.

(3) If b.height < b1.height, b.height < b2.height, and
b1.height ̸= b2.height, then b1 and b2 are extensions of
b. W.l.o.g., we assume that b1.height < b2.height. Let b′2
denote a block on the branch led by b2 such that b′2.height =
b1.height. Then b′2 is an extension of b. If b′2 is conflicting
with b1, then according to Lemma B.1, we have that no
rQC for b′2 can be formed in view v and at most f correct
replicas voted for b′2. Thus, a rQC for any extensions of b′2

cannot be formed by Algorithm 2. Therefore, we have that
b′2 must be equal to b1.

In all cases, b1 and b2 must be blocks on the same
branch, contradicting the condition that they are conflicting
blocks. Therefore, we have that b1.view ̸= b2.view.

Lemma B.7. If there exists a commitQC qc for b and a
rQC qcd for d, each is received by at least correct replica,
and rank(b) < rank(d), then d must be an extension of b.

Proof. Let v denote b.view, vd denote d.view, b′′ de-
note QCBLOCK(qc), and b′ denote b′′.parent. As qc is a
commitQC for b, we have that b′.stable = b′.parent = b,
b′′.stable = b′, and b.view = b′.view = b′′.view = v.
According to Lemma B.2, there exist rQCs for b, b′, and b′′

such that all these rQCs are received by at least one correct
replica. Note that a rQC for b′ is also a lockedQC for b. Let
S denote the set of correct replicas that have voted for b′′.
Since qc consists of 2f+1 votes, we know that |P | ≥ f+1.

Since rank(d) > rank(b), vd ≥ v. Then we prove the
lemma by induction over the view vd, starting from view v.
Base case: Suppose vd = v. According to Lemma B.6, d
must be an extension of b.
Inductive case: Assume this property holds for view vd
from v to v + k − 1 for some k ≥ 1. We now prove that
it holds for vd = v + k. Let b0 denote the block with the
lowest height for which a rQC qc0 was formed in view
vd and b′0 denote b0.parent. Let m denote the GENERIC
message for b0. According to Lemma B.4, b′0.view < vd
and b0 is proposed during view change. Since qc0 consists
of 2f + 1 votes, at least one replica pi ∈ S has voted for
b0 in view vd. Let block denote the locked block lb of pi
when voting for b0. Note that pi updates its lb only after
receiving a lockedQC for a block with a higher rank than
its locked block. Then we know that rank(block) ≥ rank(b).
Note that block.view < vd. According to Lemma B.6 and
the inductive hypothesis, block must be either equal to b or
an extension of b. Then pi votes for b0 only if one of the
following conditions is satisfied:
1) b0.stable = b′0.stable, m.justfy is a wQC for b′0,

b′0.view < vd and rank(b′0.stable) ≥ rank(block) (ln 14
in Algorithm 3).

2) b0.stable = b′0, m.justfy is a rQC for b′0, b′0.view < vd,
and rank(b′0) ≥ rank(block) (ln 15 in Algorithm 3).
If condition 1) is satisfied, then according to Lemma B.3,

b′0 is an extension of b′0.stable and at least one cor-
rect replica has received a rQC for b′0.stable. Note that
rank(b′0.stable) ≥ rank(block). According to Lemma B.1
and the inductive hypothesis, b′0.stable is equal to b or an
extension of b. Hence, b0 must be an extension of b.

If condition 2) is satisfied, then rank(b′0) ≥
rank(block) ≥ rank(b) and m.justify is a rQC for b′0.
According to Lemma B.1 and the inductive hypothesis, b′0
is either equal to b or an extension of b.

Either way, b0 must be an extension of b. Note that a rQC
for d is formed in view vd. According to Lemma B.5, we
know that d is equal to b0 or an extension of b0. Therefore,
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d must be an extension of b and the property holds in view
v + k. This completes the proof of the lemma.

Theorem B.1. (safety) If b and d are conflicting blocks, then
they cannot be committed each by at least a correct replica.

Proof. Suppose that a commitQC is formed for both b and
d. According to Lemma B.2, there must exist rQCs for both
b and d, each received by at least one correct replica. If
b.view = d.view, then according to Lemma B.6, rQCs
for both b and d cannot be formed. If b.view ̸= d.view,
w.l.o.g., we assume that rank(b) < rank(d). According to
Lemma B.7, a rQC for d cannot be formed in view d.view.
Hence, no commitQC for d can be formed in view d.view.
In both cases, commitQC for both b and d cannot be
formed.

Theorem B.2. (liveness) After GST , there exists a bounded
time period Tf such that if the leader of view v is correct
and all correct replicas remain in view v during Tf , then a
decision is reached.

Proof. Suppose after GST, in a new view v, the leader pi
is correct. Then pi can collect a set M of 2f + 1 VIEW-
CHANGE messages from correct replicas and broadcast a
new block b in a message m = ⟨GENERIC, b, qc⟩.

Let b′ denote b.parent. Let bhigh denote the block with
the highest rank locked by at least one correct replica. Note
that a correct replica locks bhigh only after receiving a
lockedQC qc for it. Let b1 denote QCBLOCK(qc). Then
we know that b1.parent = b1.stable = bhigh and a set
S of at least f + 1 correct replicas have voted for b1.
Therefore, at least one message in M is sent by a replica
pj ∈ S. According to Algorithm 2 and Algorithm 3, a
correct replica votes for block b1 only after receiving a
rQC for bhigh and QCr of the replica is the rQC with
the highest rank received by the replica. Thus, the rank
of the rQC qcj sent in VIEW-CHANGE message by pj is
no less than that of bhigh. From Algorithm 3, there are
two cases for b: (1) b.stable = b′, qc is a rQC for b′ and
rank(qc) ≥ rank(qcj); (2) b.stable = b′.stable, qc is a wQC
for b′ and rank(b′.stable) ≥ rank(qcj). In case (1), b will
be voted by all the correct replicas as conditions on ln 15 of
Algorithm 3 are satisfied. In case (2), b will be voted by all
the correct replicas as conditions on ln 14 of Algorithm 3
are satisfied.

If all correct replicas are synchronized in their view, pi
is able to form a QC for b and generate new blocks. All
correct replicas will vote for the new blocks proposed by
pi. Therefore a commitQC for b can be formed by pi,
leading to a new decision. Hence, after GST, the duration
Tf for these phases to complete is of bounded length. This
completes the proof of the theorem.

Appendix C.
Dashing2

C.1. Dashing2 Details

Compared with Dashing1, a sQC is used as a certificate
for a fast path in Dashing2. We present in Algorithm 8 and
Algorithm 9 the normal case operation and view change
protocol of Dashing2, respectively. The utility functions are
presented in Algorithm 7. Dashing2 follows the notation of
Dashing1. rQCs and sQCs are collectively called qualified
QCs in this section.
Normal case protocol (Algorithm 8). Similar to Dashing1,
in each phase, the leader broadcasts a block b in message
⟨GENERIC, b, qchigh⟩ to all replicas and waits for signed
responses from replicas. qchigh is the last QC the leader
receives (either a wQC, a rQC, or a sQC). After collecting
f + 1 matching votes, the leader starts a timer ∆2 (ln 7).
The timer is used to determine if the leader can form a rQC
or a sQC in time. After ∆2 expires, the leader combines the
signatures in the votes into qchigh for the next phase.

Upon receiving a ⟨GENERIC, b, π⟩ message from the
leader, each replica pi first verifies whether b is well-formed
and proposed during normal operation (ln 16-17), i.e., b
has a higher rank than its parent block b′, b.height =
b′.height+ 1, b′ and b are proposed in the same view. Let
b′′ denote the parent of b′. We distinguish two cases:
• If the π field is a wQC for b′ (ln 18), pi verifies if the

stable block of b and b′ are the same block such that b
indeed extends b′. pi also verifies if b, b′, b′′, and b.stable
are all proposed in the same view and pi has previously
voted for b′. If so, pi updates its local parameter QCw

to π and creates a signature for b (Algorithm 7, ln 13).
• If π is a rQC or a sQC for b′ (ln 21-22), pi verifies

if the stable block of b is b′, b′ has a no lower rank
than vb, and b′ has a no lower rank than the QCr of
pi. If so, pi updates its local parameter QCr to π and
generates a signature (Algorithm 7, ln 10 and ln 15). If
π is a rQC, b′′ has a qualified QC, and b′′ and b are
proposed in the same view, then pi commits block b′′

and delivers transactions in b′′ (Algorithm 7, ln 11-12).
If π is a sQC, b′′ has a qualified QC, and b′′ and b are
proposed in the same view, then pi commits block b′ and
delivers transactions in b′ (Algorithm 7, ln 14-15).
In both cases, the replica updates its vb to b, and sends

its signature to the leader.
View change protocol (Algorithm 9). Every replica starts
timer ∆1 for the first transaction in its queue. If the
transaction is not processed before ∆1 expires, the replica
triggers view change. In particular, the replica sends a
⟨VIEW-CHANGE, vb, (QCr, QCw)⟩ message to the leader (Al-
gorithm 8, ln 28). Upon receiving n−f VIEW-CHANGE mes-
sages (denoted as M ), the leader chooses a block to extend
based on the output of SAFEBLOCK(M) in Algorithm 7.

We now describe the procedure in more detail. Below,
all number of lines is referred to as that in Algorithm 7.
First, the leader obtains a block b1 with a QC that has the
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highest rank (ln 17-18). The leader then obtains a block b0
with a wQC vc such that b0, b0.parent and b0.stable are
proposed in the same view, and among all the blocks with
weak QCs, b0 has the highest stable block (ln 19-24). The
leader also obtains block b2 such that b2 is contained in more
than f+1 VIEW-CHANGE messages in M . If no such block
exists, b2 is set to ⊥ (ln 25-26). Then the leader checks if
the rank of the stable block of b2 is no less than that of b1
(ln 27). If so, the leader selects b0 to extend. Otherwise, the
leader checks if the rank of the stable block of b0 is no less
than that of b1 (ln 28). If so, the leader will extend b0. If
neither is satisfied, the leader chooses b1 to extend (ln 29).

Then the leader extends the selected block with a block
b and broadcasts b to the replicas (ln 5 of Algorithm 9).

Upon receiving a ⟨NEW-VIEW, b,M⟩ message from a new
leader, each replica pi verifies b basing on the output of
SAFEBLOCK(M) (ln 14-18). If b is a block extending the
output block of SAFEBLOCK(), then pi votes for b (ln 16
and ln 18).

Algorithm 7: Utilities for Dashing2
1 procedure CREATEBLOCK(b′, v, cmd, qc)
2 b.pl← hash(b′), b.parent← b′, b.req ← req,
3 b.height← b′.height+1, b.view ← v
4 if qc is a wQC or ⊥ then b.sl← b′.sl,
b.stable← b′.stable, return b

5 if qc is a rQC or a sQC then b.sl← hash(b′) return b
6 procedure STATEUPDATE(QCw, QCr, qc)
7 b′ ← QCBLOCK(qc), b′′ ← b′.parent,
8 b0 ← QCBLOCK(QCw), bhigh ← QCBLOCK(QCr)
9 if qc is a rQC

10 QCr ← qc
11 if b′.stable = b′′ and b′′.view = b′.view then
12 deliver the transactions in b′′

13 if qc is a wQC then QCw ← qc
14 if qc is a sQC and b′.stable = b′′ and b′.view = b′′.view
15 then QCr ← qc, deliver the transactions in b′

16 procedure SAFEBLOCK(M)
17 qchigh ← the qualified QC with the highest rank contained

in M
18 b1 ← QCBLOCK(qchigh), b←

CREATEBLOCK(b1, cview, req, qchigh)
19 for a wQC qc ∈M.justify
20 d← QCBLOCK(qc), d′ ← d.parent, ds ← d.stable
21 if ds.view = d′.view = d.view
22 if rank(ds) > rank(b0.stable) then vc←qc, b0 ← d
23 if rank(ds) = rank(b0.stable) and rank(d) >
24 rank(b0) then vc←qc, b0 ← d
25 for d ∈M.block
26 if num(d,M.block) ≥ f + 1 then b2 ← d
27 if rank(b2.stable) ≥ rank(b1) then return (b2,⊥)
28 else if rank(b0.stable) ≥ rank(b1) return (b0, vc)
29 return (b1, qchigh)

C.2. Correctness of Dashing2

We first introduce some notation we use for the proof.
Let b′ and b denote two blocks such that b.parent = b′ and
b′.view = b.view. According to Algorithm 8, after receiving
a GENERIC message ⟨GENERIC, b, qc⟩, a correct replica votes
for b only if (1) b.stable = b′ and qc is a rQC or a sQC for
b′ (ln 21-23); or (2) b.stable = b′.stable and qc is a wQC

Algorithm 8: Normal case protocol for Dashing2
1 initialization: cview←1, vb, QCw , and QCr are initialized to
⊥.

2 Start a timer ∆1 for the first request in the queue of pending
transactions

3 ▷ GENERIC phase:
4 as a leader
5 wait for votes for b: M ← {σ|σ is a signature for
⟨GENERIC, b,⊥⟩ }

6 upon |M | = f + 1 then set a start timer ∆2

7 upon ∆2 timeout then qchigh ← QCCREATE(M)
8 b←CREATEBLOCK(b,cview, cmd, qchigh)
9 broadcast m = ⟨GENERIC, b, qchigh⟩

10 if qchigh is a wQC then QCw←qchigh
11 if qchigh is a rQC or a sQC then QCr←qchigh
12 as a replica
13 wait for m = ⟨GENERIC, b, π⟩ from LEADER(cview)
14 b′←b.parent, b′′←b′.parent, bs←b.stable,
15 bgen←QCBLOCK(QCr), m←⟨GENERIC, b,⊥⟩
16 if rank(b′)≥ rank(b) or b.height ̸= b′.height+ 1 or
17 b′.view ̸= cview or b.view ̸= cview then
18 discard the message
19 if π is a wQC for b′ and b.sl = b′.sl and rank(bs) ≥
20 rank(bgen) and bs.view = b′′.view = b′.view = cview
21 and b′ = vb then
22 vb ← b, STATEUPDATE(QCw, QCr, π)
23 if π is a rQC or a sQC for b′ and b.stable = b′

24 and rank(b′) ≥ rank(vb) and rank(b′) ≥ rank(bgen)
25 vb ← b, STATEUPDATE(QCw, QCr, π)
26 if vb = b then send QCVOTE(m) to LEADER(cview)
27 ▷ NEW-VIEW phase: switch to this line if ∆1 timeout occurs
28 as a replica
29 cview ← cview +1
30 send ⟨VIEW-CHANGE, vb, (QCr, QCw)⟩ to

LEADER(cview)

for b′ (ln 18-20). In both cases, we say that qc and b are
matching.

Let b′ and b denote two consecutive blocks. In Al-
gorithm 7, a replica pi commits b only after receiving a
certificate qc and one of the following condition is satisfied:

(1) qc is a rQC for b′ such that b′.stable = b′.parent = b
and b.view = b′.view (ln 9-12);

(2) qc is a sQC for b, b.stable = b.parent and
b.parent.view = b.view (ln 14-15).

In both cases, qc is a commitQC for b.

Lemma C.1. Suppose a block b has been voted by a correct
replica, then

(1) any block d on the branch led by b has been voted
by at least one correct replica and d.parent.height+ 1 =
d.height;

(2) if d and dc are two blocks on the branch led by b
such that dc.parent = d and dc.view = d.view = v, then
we have that (i) at least one correct replica has received a
certificate (wQC, rQC, or sQC) qcd for d, where qcd and
dc are matching; (ii) if the view of the parent block of d is
lower than v, then at least one correct replica has received
a qualified QC for d and dc.stable = d.

Proof. Let d denote a block on the branch led by b.
(1) We prove claim (1) by induction for d. If d = b, then

d has been voted by at least one correct replica.
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Algorithm 9: View change protocol for Dashing2
1 ▷ VIEW-CHANGE phase
2 as a new leader
3 //M is a set of n− f VIEW-CHANGE messages collected by

the new leader
4 (b′, qc)← SAFEBLOCK(M), b←

CREATEBLOCK(b′, cview, cmd, qc)
5 broadcast m = ⟨NEW-VIEW, b,M⟩
6 //switch to normal case protocol
7 as a replica
8 wait for m = ⟨NEW-VIEW, b, π⟩ from LEADER(cview)
9 b′←b.parent, bs ← b.stable, bgen ← QCBLOCK(QCr),

10 m←⟨GENERIC, b,⊥⟩
11 if b′.view ≥ cview or rank(b′) ≥ rank(b) or b.height ̸=
12 b′.height+ 1 then
13 discard the message
14 if M ∈ π
15 (bp, qc)← SAFEBLOCK(M), m← ⟨GENERIC, b,⊥⟩
16 if bp = b′ and qc is a wQC or ⊥ and b.stable = b′.stable
17 then send QCVOTE(m) to LEADER(cview)
18 if bp = b′ and qc is a rQC or sQC and b.stable = b′

19 then send QCVOTE(m) to LEADER(cview)
20 //switch to normal case protocol
21 ▷ NEW-VIEW phase: switch to NEW-VIEW phase if ∆1

timeout occurs

If d ̸= b and any block higher than d on the branch
led by b has been voted by at least one correct replica,
then we need to prove that d is voted by at least one
correct replica. In this situation, there exists a block dc on
the branch led by b such that dc.parent = d and dc has
been voted by at least one correct replica pi. According
to Algorithm 2 and Algorithm 3, rank(d) < rank(dc) and
dc.height = d.height+ 1. Therefore, d.view ≤ dc.view.

We now differentiate two cases: d.view = dc.view and
d.view < dc.view.

If d.view = dc.view, then pi has received a qcd for d,
where qcd and dc are matching according to Algorithm 8.
As qcd consists of at least f + 1 votes, at least one correct
replica has voted for d and d.parent.height+1 = d.height.

If d.view < dc.view, then from Algorithm 9, we know
that dc is proposed in a NEW-VIEW message m in view
dc.view and m.justify contains a set M of 2f +1 VIEW-
CHANGE messages for view dc.view. Then pi votes for dc
if (i) a wQC, a rQC or a sQC for d is provided by a replica
in M , or (ii) for f + 1 messages in M , the block fields are
all set to d. In either case, d has been voted by at least one
correct replica. This completes the proof of claim (1).

(2) Based on claim (1), at least one correct replica pi
has voted for dc. (i) If dc.view = d.view = v, then dc
is proposed during normal case operation. According to ln
18 and ln 21 of Algorithm 8, pi has received a certificate
(wQC, rQC, or sQC) qcd for d before voting for dc, where
d and dc are matching. (ii) Meanwhile, according to ln 18-
23 of Algorithm 8, if d.parent.view < v, then pi votes
for dc only if pi has received a rQC or a sQC for d and
dc.stable = d.

Lemma C.2. Suppose that qcb and qcd are two qualified
QCs, each is received by at least one correct replica. Let b

and d be QCBLOCK(qcb) and QCBLOCK(qcd), respectively. If
b and d are two conflicting blocks, then rank(b) ̸= rank(d).

Proof. Assume, on the contrary, that rank(b) = rank(d). Let
v denote the view of b and d. As each qualified QC consists
of at least 2f+1 votes, at least one correct replica has voted
for both b and d. Let b′ and d′ denote the parent block of b
and d, respectively. Since a correct replica votes for at most
one block with each height during normal case operation,
at least one of b and d is proposed during view change.
Therefore, b′.view < v or d′.view < v. Now we consider
two cases:

(1) b′.view < v and d′.view < v. According to Algo-
rithm 9, a correct replica pi votes for at most one block that
extends a block proposed in a lower view. Hence, b equals
d.

(2) (b′.view < v and d′.view = v) or (b′.view = v and
d′.view < v). If b′.view < v and d′.view = v, then there
exists a block d0 with the lowest height on the branch led
by d such that d0.view = v. Hence, the view of d0.parent
is lower than v. Let d′0 denote a block on the branch led by
d such that d′0.parent = d0. By Lemma C.1, at least one
correct replica pi has voted for d′0. According to ln 18-23 in
Algorithm 8, pi has received a rQC or a sQC for d0. Note
that the view of d0.parent is lower than v. Then d0 and b
must be the same block according to case (1). Therefore,
d is an extension of b. The situation is similar to the case
where b′.view = v and d′.view < v.

In both cases, d and b are either the same block or on
the same branch, contradicting the condition that they are
conflicting blocks. Therefore, rank(b) ̸= rank(d).

Lemma C.3. If a correct replica has voted for d and set
its vb to d, then d must be an extension of d.stable and at
least one correct replica has received a qualified QC for
d.stable.

Proof. Let d0 denote d.parent. Let pi denote a correct
replica that has voted for d and set its vb to d. According to
ln 16-23 of Algorithm 8, pi has received a certificate qc for
d0, where qc and d are matching. We distinguish two cases.

(1) qc is a rQC or a sQC for d0 and d.stable = d0 (ln
21-23 in Algorithm 8). In this case, d is an extension of
d.stable and pi received a qualified QC for d.stable.

(2) qc is a wQC for d0 and d.stable = d0.stable (ln
18-20 in Algorithm 8). Let dv denote the block with the
lowest height on the branch led by d such that dv.stable =
d.stable. Let d′v denote dv.parent. Then dv.stable ̸=
d′v.stable. According to Lemma C.1, at least one correct
replica pj has voted for dv. Since dv.stable ̸= d′v.stable.
Note pj votes for dv only if one of the following conditions
holds: i) dv.stable = d′v.stable; ii) dv.stable = d′v and pi
receives a qualified QC for d′v. In this case, dv.stable =
d.stable = d′v, d is an extension of d.stable, and pj has
received a qualified QC for d.stable.

Either way, d is an extension of d.stable and at least one
correct replica has received a qualified QC for d.stable.
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Lemma C.4. If a qualified QC is formed in view v, then
there exists only one block b with the lowest rank for which
a qualified QC is formed in view v, and we have that:

(1) the view of b.parent is lower than v;
(2) if there exists a qualified QC for b1, b1.view = v,

and the view of b1.parent is lower than v, then b1 equals
b;

(3) if there exists a qualified QC for d and d.view = v,
then d equals b or d is an extension of b.

Proof. If a qualified QC is formed in view v, then there
exists only one block b with the lowest rank for which a
qualified QC is formed in view v (according to Lemma C.2).

(1) Let bv denote the block with the lowest height
such that bv.view = v on the branch led by b. We
have bv.height ≤ b.height and the view of bv.parent
is lower than v. If bv ̸= b, then there exists a block b′v
on the branch led by b such that b′v.parent = bv and
b′v.view = bv.view = v. From Lemma C.1, at least one
correct replica pi has received a rQC or a sQC for bv. Thus,
bv is a block with a lower rank than b and a qualified QC
for bv is formed in view v, contradicting to the definition
of b. Hence, we have bv = b and the view of b.parent is
lower than v.

(2) If there exists a qualified QC for b1, at least one
correct replica has voted for both b1 and b in view v.
According to Algorithm 9, in view v, a correct replica only
votes for one block that extends a block proposed in a lower
view than v. Therefore, it must hold that b1 = b.

(3) There exists a qualified QC for d and d.view = v.
Let d0 denote the block with the lowest height on the branch
led by d such that d0.view = v. Then the view of the parent
block of d0 is lower than v. From Lemma C.1, a correct
replica has received a qualified QC for d0. According to
claim (2), we know d0 equals b. Therefore, d equals b or d
is an extension of b.

Lemma C.5. For any qualified QC qc, if QCBLOCK(qc) = b
and b.view = v, then any block proposed in view v on the
branch led by b has been voted by at least f + 1 correct
replicas.

Proof. Assume that block d is on the branch led by b such
that d.view = v and fewer than f + 1 correct replicas
have voted for d. We immediately know that a qualified
QC for d cannot be formed. Let d′ denote a block such that
d′.parent = d. So, a correct replica pi votes for d′ only if a
wQC for d is received and pi has voted for d. Since fewer
than f +1 correct replicas have voted for d, a qualified QC
for d or any extensions of d ( including b) cannot be formed
(a contradiction).

Lemma C.6. For any two qualified QCs qc1 and qc2, let b1
and b2 be QCBLOCK(qc1) and QCBLOCK(qc2), respectively.
If b1 is conflicting with b2, then b1.view ̸= b2.view.

Proof. Assume, on the contrary, that b1.view = b2.view =
v. Let b be the block with the lowest height for which
a qualified QC was formed in view v. Then according to
Lemma C.4, either b1 or b2 equals b or is an extension of

b. Hence, b1.height ≥ b.height and b2.height ≥ b.height.
We consider three cases:

(1) If b1.height = b.height or b2.height = b.height,
then b1 equals b or b2 equals b. Therefore, b1 and b2 are the
same block or they are on the same branch.

(2) If b.height < b1.height, b.height < b2.height, and
b1.height = b2.height, then according to Lemma C.2, b1
and b2 must be the same block.

(3) If b.height < b1.height, b.height < b2.height, and
b1.height ̸= b2.height, then b1 and b2 are extensions of
b. W.l.o.g., we assume that b1.height < b2.height. Let b′2
denote a block on the branch led by b2 such that b′2.height =
b1.height. Then b′2 is an extension of b and b′2 and b1 are
blocks proposed during the normal case operation in view v.
According to Lemma C.5, at least f+1 correct replicas have
voted for b′2. Since each rQC consists of at least 2f+1 votes,
at least one correct replica has voted for both b′2 and b1. Note
that during the normal case operation, a correct replica votes
for at most one block with each height. Therefore, it holds
that b′2 and b1 must be either the same block or on the same
branch.

In all cases, b1 and b2 are the same block or are blocks
on the same branch, contradicting to the condition that they
are conflicting blocks. Therefore, b1.view ̸= b2.view.

Lemma C.7. Suppose that all the correct replicas have
voted for b in view v, b.parent = b.stable and b.parent
is proposed in view v. If a correct replica has received a
wQC qc for d such that rank(d.stable) ≥ rank(b.parent),
and d, d.parent, and d.stable are blocks proposed in view
v, then d equals b or d is an extension of b.

Proof. As b, b.parent, d, and d.parent are all blocks pro-
posed in view v, b and d are blocks proposed during normal
case operation in view v. According to Algorithm 8, we
know that if a correct replica has voted for d, the replica
will set its vb to d at the same time. Since qc consists of
f + 1 votes, at least one correct replica has voted for d.
From Lemma C.3, d is an extension of d.stable and at least
one correct replica has received a qualified QC for d.stable.
Now we consider two cases:

(1) rank(d.stable) = rank(b.parent). Since b.parent =
b.stable, any correct replica votes for b only after receiving
a qualified QC for b.parent. Then d.stable = b.parent
and d.height ≥ b.height (according to Lemma C.2). Let
d′ denote the block on the branch led by d such that
d′.height = b.height. Then at least one correct replica
has voted for d′ in view v according to Lemma C.1. Since
correct replicas vote for at most one block with each height
during normal operation in a view, d′ must be equal to b.
Therefore, d equals b or d is an extension of b.

(2) rank(d.stable) > rank(b.parent). It is straightfor-
ward to see that rank(d.stable) ≥ rank(b). According to
Lemma C.6, d.stable is equal to b or d.stable is an extension
of b. Hence, d is an extension of b.

Lemma C.8. For a commitQC qc for b and a qualified QC
qcd for d, if rank(b) < rank(d), then d must be an extension
of b.
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Proof. Let v denote b.view and vd denote d.view. As
rank(d) > rank(b), then vd ≥ v. Let b′ denote
QCBLOCK(qc). Since qc is a commitQC for b, there are two
conditions: (1) qc is a rQC for b′, b′.stable = b′.parent = b
and b′.view = v; (2) qc is a sQC for b, b.parent = b.stable
and the view of b.parent equals v.

We prove the lemma by induction over the view vd,
starting from view v.
Base case: Suppose vd = v. From Lemma C.6, for condition
(1) or (2), d must be an extension of b.
Inductive case: Assume this property holds for view vd
from v to v + k − 1 for some k ≥ 1. We now prove that it
holds for vd = v + k.

Let d0 denote the block with the lowest height on the
branch led by d such that d0.view = vd. Then the view
of the parent block of d0 is lower than vd, d0 is proposed
during view change in view vd, and d0 is voted by at least
one correct replica pi (Lemma C.1).

Let m denote the NEW-VIEW message for d0. According
to Algorithm 9, m.justify is a set M of 2f + 1 VIEW-
CHANGE messages for view vd. Let qc1 denote the qualified
QC with the highest rank contained in M.justify and
let b1 denote QCBLOCK(qc1). For all the wQCs contained
in M.justify, a correct replica chooses the wQC for a
block with the highest stable block according to ln 19-24
in Algorithm 7 and sets the wQC as vc. Let b0 denote
QCBLOCK(vc). Note that b0, b0.parent and b0.stable are
proposed in the same view. Then b0 is a block proposed
during the normal case operation. Let b2 denote the block
which is included in more than f +1 messages in M . If no
such block exists, b2 is set to ⊥.

In view vd, pi votes for d0 if d′0 = d0.parent, d′0.view <
vd, d′0.height + 1 = d0.height and one of the following
conditions are satisfied:
i) d′0 = b2, rank(b2.stable) ≥ rank(b1) (ln 24 in Algo-

rithm 7).
ii) d′0 = b0, i) is not satisfied and rank(b0.stable) ≥

rank(b1) (ln 25 in Algorithm 7).
iii) d′0 = b1, i) and ii) are not satisfied (ln 26 in Algorithm 7)

.
Note that b0 is a block proposed during the normal case

operation in view b0.view. Since a wQC consists of f + 1
votes, among which at least one is sent by a correct replica.
Hence, at least one correct replica has voted for b0 and sets
its vb as b0. According to Lemma C.3, b0 is an extension
of b0.stable and at least one correct replica has received a
qualified QC for b0.stable.

Next, we prove the property holds in view v+ k for the
two situations for commitQC, respectively.

(1) qc is a rQC. Let S denote the set of correct replicas
who have received a qualified QC for b in view v. Since
in view v correct replicas vote for b′ only after receiving a
qualified QC for b, we have |S| ≥ f+1. Note that a correct
replica updates its QCr only with a qualified QC with a
higher rank. Thus, for any VIEW-CHANGE message sent by
a replica in S, the justify field is set to a qualified QC with
the same or a higher rank than b. Since M consists of 2f+1

messages, at least one message in M is sent by a replica in
S. Therefore, rank(b1) ≥ rank(b) and b1.view < vd.

According to the inductive hypothesis, b1 must be equal
to b or an extension of b. Therefore, if condition iii) is satis-
fied, d0 must be an extension of b. If condition i) is satisfied,
then rank(b2) > rank(b1) and rank(b2.stable) ≥ rank(b1).
Since at least one correct replica has set its vb to b2, then
b2 is an extension of b2.stable and a qualified QC qc2
for b2.stable has been received by a correct replica from
Lemma C.3. According to the inductive hypothesis, b2 is an
extension of b. Hence, d′0 is an extension of b. If condition
ii) is satisfied, then rank(b0.stable) ≥ rank(b1). Note that
b0 is an extension of b0.stable and at least one correct
replica has received a qualified QC for b0.stable. Thus, b0
is an extension of b (according to the inductive hypothesis).
Therefore, d′0 is an extension of b. No matter which con-
dition is satisfied, both d0 and d must be extensions of d′0
and extensions of b.

(2) qc is a sQC, the view of b.parent equals v and
b.parent = b.stable. Since qc consists of 3f + 1 votes,
all the correct replicas have received a qualified QC for
b.parent, changed its QCr to a qualified QC for b.parent,
and voted for b in view v. Let V denote the set of correct
senders of messages in M . It is clear that |V | ≥ f + 1.
Since correct replicas only change their QCr to a qualified
QC with a higher rank, we have rank(b1) ≥ rank(b.parent).

(a) If rank(b1) ≥ rank(b), then from Lemma C.2 and
the induction hypothesis, b1 is equal to b or b1 is an
extension of b. If condition iii) is satisfied, then d0 and d
are extensions of b. If condition i) or ii) is satisfied, at least
one correct replica has voted for d′0 and set its vb to d′0, and
rank(d′0.stable) ≥ rank(b1). According to Lemma C.3, d′0
is an extension of d′0.stable and at least one correct replica
has received a qualified QC for d′0.stable. Again, from the
induction hypothesis, d′0.stable is equal to b or d′0.stable is
an extension of b. Therefore, d0 and d are extensions of b.

(b) If rank(b1) < rank(b), then rank(b1) =
rank(b.parent). If b2 = b, then condition i) is satisfied.
Hence, d′0 equals b and d0 and d are extensions of b.

If b2 ̸= b, then there exists a correct replica pi in V such
that when pi sent a VIEW-CHANGE message for vd, its last
voted block vb is be and be ̸= b. Let b′e denote be.parent.
According to ln 18-20 in Algorithm 8, pi has received
a wQC qce for b′e, rank(b′e) ≥ rank(b), and rank(b′e) ≥
rank(b.parent). If b′e.view = v, then b′e equals b or b′e is
an extension of b from Lemma C.7. If b′e.view > v, then
the view of b′e.stable is higher than v. From Lemma C.3,
b′e is an extension of b′e.stable and a correct replica has
received a qualified QC for b′e.stable. According to the
inductive hypothesis, as rank(b′e.stable) > rank(b), it must
hold that b′e.stable is an extension of b. Therefore, be must
be an extension of b, b2 is set to ⊥ or b2 is an extension
of b. If condition i) is satisfied, d′0 equals b2. We know
that pi has sent qce in its VIEW-CHANGE message. Then
rank(b1.stable) ≥ rank(b.parent). If condition i) is not
satisfied, condition ii) is satisfied and d′0 equals b1. Note
that a wQC for b1 is included in M and b1 is proposed
during normal case operation. Similar to b′e, b1 must be an
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extension of b. Either way, d′0 is equal to or an extension of
b. Thus, d0 and d are extensions of b.

Therefore, d must be an extension of b and the property
holds in view v + k based on Case (1) and Case (2). This
completes the proof of the lemma.

Theorem C.1. (safety) If b and d are conflicting blocks, then
they cannot be both committed, each by at least a correct
replica.

Proof. Suppose that there exist commitQC’s for both b and
d. According to Lemma C.1, a qualified QC must have been
formed for both b and d. From Lemma C.2, if rank(b) =
rank(d), only one qualified QC for b and d can be formed
in the same view. For the case where rank(b) ̸= rank(d), we
assume w.l.o.g. that rank(b) < rank(d). From Lemma B.7,
we know that a qualified QC for d cannot be formed in view
d.view. This completes the proof of the theorem.

Theorem C.2. (liveness) After GST , there exists a bounded
time period Tf such that if the leader of view v is correct
and all correct replicas remain in view v during Tf , then a
decision is reached.

Proof. Suppose after GST, in a new view v, the leader pi
is correct. Then pi can collect a set M of 2f + 1 VIEW-
CHANGE messages from correct replicas and broadcast a
new block bv in a NEW-VIEW message m. Since m.justify
contains M , every correct replicas can verify the block bv
using function SAFEBLOCK() basing on input M .

Under the assumption that all correct replicas are syn-
chronized in their view, pi is able to form a QC for b and
generate new blocks. All correct replicas will vote for the
new blocks from pi. Therefore a commitQC for b can be
formed by pi and any correct replica will vote for b. After
GST, the duration Tf for these phases to complete is of
bounded length.

Appendix D.
The Underlying BFT Protocol in Star

D.1. The Consensus Protocol Implemented in Star

We now describe the concrete atomic broadcast protocol
that we implemented in Star. We use a variant of PBFT
that differs from PBFT in two minor aspects. The protocol
we will describe in the following is not presented in its
general manner but instead takes as input the output from
the transmission process.
Normal case operation. We first describe the normal case
protocol.
Step 1: Pre-prepare. The leader checks whether |W [le]| ≥
n− f . If so, it proposes a block B and broadcasts a ⟨PRE-
PREPARE, v, B⟩ message to all replicas.

The block B is of the form ⟨v, cmd, height⟩, where v is
the current view number, B.cmd = W [le], and B.height =
le. We directly use B.height as the sequence number for
B in the protocol.

Step 2: Prepare. Replica receives a valid PRE-PREPARE
message for block B and broadcasts a PREPARE message.

After receiving a PRE-PREPARE message ⟨PRE-
PREPARE, v, B⟩ from the leader, a replica pj first verifies
whether 1) its current view is v, 2) B.cmd consists of at
least n−f wQC or rQC for epoch e, and 3) pj has not voted
for a block B.height in the current view. Then pj broadcasts
a signed PREPARE message ⟨PREPARE, v, hash(B)⟩. The
replica also updates it W queue if any QC included in
B.cmd is not in W [B.height].
Step 3: Commit. Replica receives n− f PREPARE messages
for B and broadcasts a COMMIT message.

After receiving n−f matching PREPARE messages with
the same hash(B), replica pj combines the messages into
a regular certificate for B, called a prepare certificate.
Then pj broadcasts a ⟨COMMIT, v, hash(B)⟩ message. After
receiving n−f COMMIT messages with the same hash(B),
pj a-delivers B with sequence number le.

Note that the PRE-PREPARE step and the COMMIT step
carry only hash(B) as the message transmitted. The to-
tal communication for the normal case operation is thus
O(n2λ) where λ is the security parameter.
Checkpointing. After a fixed number of blocks are a-
delivered, replicas execute the checkpoint protocol for the
garbage collection. Each replica broadcasts a checkpoint
message that includes its current system state and the epoch
number for the latest a-delivered block. Each replica waits
for n−f matching checkpoint messages which form a stable
checkpoint. Then the system logs for epoch numbers lower
than the stable checkpoint can be deleted.
View change. We now describe the view change proto-
col. After a correct replica times out, it sends a VIEW-
CHANGE message to all replicas. Upon receiving f + 1
VIEW-CHANGE messages, a replica also broadcasts a VIEW-
CHANGE message. The new leader waits for n − f VIEW-
CHANGE messages, denoted as M , and then broadcasts a
NEW-VIEW message to all replicas.

The VIEW-CHANGE message is of the form ⟨VIEW-
CHANGE, C,P⟩, where C a stable checkpoint and P is a set
of prepare certificates. For P , a prepare certificate certificate
for each epoch number greater than C and lower than the
replica’s last vote is included.

The NEW-VIEW message is of the form ⟨NEW-VIEW, v+
1, c,M,PP⟩, where c is the latest stable checkpoint, M is
the set of VIEW-CHANGE messages M , and PP is a set of
PRE-PREPARE messages. The PP is computed as follows:
For each epoch number e between C and the epoch number
of any replica’s last vote, the new leader creates a new PRE-
PREPARE message. If a prepare certificate is provided by any
replica in the VIEW-CHANGE message, the PRE-PREPARE
message is of the form ⟨PRE-PREPARE, v + 1, h⟩, where h
is the hash in the prepare certificate. If none of the replicas
provides a prepare certificate, the new leader creates a ⟨PRE-
PREPARE, v+1, B⟩, where B is of the form ⟨v+1,W [e], e⟩.

Upon receiving a NEW-VIEW message, a replica verifies
the PRE-PREPARE messages in the PP field by executing
the same procedures as the leader based on M . Then the
replicas resume the normal operation.
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D.2. A Star Variant

Star can be modified to support both wQC and rQC in
the transmission process. The resulting protocol has a fast
path for the consensus process: in the optimal case, we can
reduce the number of phases from three to two. We now
describe the variant of the protocol that has a fast path in
the consensus protocol. The idea is to support both regular
certificates and weak certificates in the transmission process.

In this variant, we modify the transmission process
as follows. As in Algorithm 4, every replica additionally
maintains a new local parameter rqc that is used to represent
the latest rQC. We add the following procedures after ln 6:
upon receiving 2f + 1 matching votes, replica pi creates
a rQC and updates its rqc accordingly. At ln 4, a replica
checks whether it has received a rQC for epoch e − 1. If
so, it broadcasts a ⟨PROPOSAL, b, rqc⟩ message. Otherwise,
it still broadcasts the ⟨PROPOSAL, b, wqc⟩ message.

Next, we modify the step 3 of the consensus protocol.
If the proposed message B by the leader consists of n
regular certificates, replicas can directly skip the commit
step. Namely, after receiving n − f matching PREPARE
messages, replica pj directly a-delivers B.

Now we describe the view change protocol. In the VIEW-
CHANGE message, each replica additionally includes L,
a set of certificates for proposals. In L, for any epoch
number e between C and the replica’s last vote, W [e] is
included. After receiving n − f VIEW-CHANGE message,
the leader additionally executes the following procedure. For
each epoch number of any replica’ last vote, if a prepare
certificate is provided, the PRE-PREPARE message includes
the corresponding block. If the L field in any VIEW-CHANGE
messages consists of rQCs for proposals proposed in epoch
e, the union of these rQCs will be packed in a block with
a height e and broadcast in the PRE-PREPARE message.
Otherwise, W [e] is included.

Appendix E.
Correctness of Star

Basing on the safety and liveness properties of the un-
derlying atomic broadcast protocol in the consensus process,
we now prove the correctness of Star.

According to the Star specification, a set V consisting
of transactions in batches {QCPROPOSAL(qck)}k∈[1..n−f ]

delivered (in a deterministic order) by pi must correspond
to the set m (consisting of n − f wQCs {qck}k∈[1..n−f ])
a-delivered by pi from the underlying atomic broadcast
protocol. In this case, we simply say V is associated with
m.

We prove the safety of Star by showing that different
sets of transactions cannot be committed together in the
same epoch, each by a correct replica. We begin with the
following lemma:

Lemma E.1. If Vi associated with some m is delivered by
pi and Vj associated with the same m is delivered by pj ,
the we have Vi = Vj .

Proof. Assume, towards a contradiction, that Vi ̸= Vj . Let
{qck}k∈[1..n−f ] denote the n − f wQCs contained in m.
Then we have that Vi is a union of transactions in proposals
{bk}i∈[1..n−f ], where bk = QCPROPOSAL(qck). Similarly,
Vj is a union of transactions in proposals {b′k}i∈[1..n−f ],
where b′k = QCPROPOSAL(qck). Since Vi ̸= Vj , we have
that there exists k ∈ [1..n − f ] such that bk ̸= b′k. Note
that qck is a wQC for bk and also a wQC for b′k. Since
bk ̸= b′k, this violates the unforgeability of digital signatures
(or threshold signatures).

Now we are ready to prove safety.

Theorem E.1. (safety) If a correct replica delivers a trans-
action tx before delivering tx′, then no correct replica
delivers a transaction tx′ without first delivering tx.

Proof. Suppose that a correct replica pi delivers a transac-
tion tx before delivering tx′. Let Li denote the a-delivered
messages log of pi and TLi denote the delivered transac-
tions log of pi. For any correct replica pj , let Lj denote
the a-delivered messages log and TLi denote the deliv-
ered transactions log of pi. According to the safety of the
consensus protocol, either Li equals Lj or one of Li and
Lj is an an prefix of the other. Note that TLi and TLj

contains transactions associated with messages in the a-
delivered messages logs in a deterministic order. According
to Lemma E.1, either TLi equals TLj or one of TLi and
TLj is an prefix of the other. This completes the proof of
the theorem.

Theorem E.2. (liveness) If a transaction tx is submitted
to all correct replicas, then all correct replicas eventually
deliver tx.

Proof. If a transaction tx is submitted to all correct replicas,
eventually in some epoch, tx is included in the proposal
by at least one correct replica. Using the strategy in EPIC
(following HoneyBadgerBFT), eventually the wQC wqc for
the proposal containing the transaction tx will be sent to the
consensus process.

At least n−f wQCs will be a-delivered in the consensus
process, and at least f + 1 wQCs must be proposed by
correct replicas. So there is some probability that wqc for tx
will be delivered. If the corresponding transaction has been
received by a correct replica, then we are done. Otherwise,
a correct replica just needs to run the fetch operation to get
the corresponding proposal containing tx. Recall the use of
wQC ensures that a correct replica must have stored the
corresponding proposal. (If the underlying atomic broadcast
only achieves consistency rather than agreement, then we
can still the standard state machine replication mechanism
such as state transfer to ensure all correct replicas deliver
the transaction.)

Appendix F.
Correctness of the Star Variant

We prove the correctness of the Star variant as described
in Appendix D.2. For safety, we prove that the consensus
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process is safe within a view and across views. For liveness,
we prove that after GST, a correct primary is able to lead
all the replicas to reach an agreement.

Lemma F.1. If B1 and B2 are different blocks that are
proposed with the same epoch number in the same view
and a prepare certificate is formed for both blocks, then
B1 = B2.

Proof. We prove the lemma towards contradiction by as-
suming B1 ̸= B2. Let v denote the view in which B1 is
proposed. As a valid prepare certificate consists of 2f + 1
partial signatures, at least one correct replica has sent a
PREPARE message for both B1 and B2 in view v. However,
a correct replica votes for at most one block with a specific
height in view v, a contradiction.

Lemma F.2. If a one correct replica pi has a-delivered
block B1 in view v with epoch number e, another correct
replica has a-delivered a block B2 in view v′ with epoch
number e such that v′ > v, then B1 = B2.

Proof. If pi has a-delivered B1, it has received 2f + 1
matching COMMIT messages (let the set of replicas be S1),
among which at least f + 1 are sent by correct replicas.
Any of the f + 1 correct replicas have received a prepare
certificate for B1. As v′ > v, we consider the NEW-VIEW
message in view v′. As a valid NEW-VIEW message consists
of 2f + 1 VIEW-CHANGE messages (let the set of replicas
be S2), S1 and S2 has at least one correct replica pi in
common. According to the view change rules, replica pi will
include a prepare certificate for B1 in its VIEW-CHANGE
message. However, the leader in view v′ has not received
such a message so the leader proposes B2, a contradiction.

Note that correctness holds even if a fast path occurs.
During a fast path, a block B1 with epoch number e consists
of n rQCs. After receiving a prepare certificate for B1, a
correct replica pi a-delivers B1 directly. In this case, pi
knows that at least f +1 correct replicas stores n rQCs for
epoch number e. For any of the correct replicas, n rQCs
will be included in VIEW-CHANGE messages in the L field.
If in view v′, a replica a-delivers B2, a prepare certificate
is formed. In other words, a correct replica has received n
rQCs (for B1) but has not sent it to the leader during the
view change, a contradiction.

As every block is a-delivered in order according to the
epoch number of the delivered block, We prove safety for
the consensus by proving the following theorem:

Theorem F.1. (safety) If a correct replica a-delivers a
message m before a-delivering m′, then no correct replica
a-delivers a message m′ without first a-delivering m.

Proof. Correctness in the same view follows from
Lemma F.1 and correctness across views follows from
Lemma F.2. That completes the proof.

Theorem F.2. (liveness) If a correct replica a-broadcasts
a message m, then all correct replicas eventually a-deliver
m.

Proof. We consider two cases: a correct replica a-broadcasts
a message m in the normal case protocol; a correct replica
a-broadcasts a message m after view change. Correctness
of the first case follows from the fact that all messages will
be received after GST. We now show the correctness of
the second case. After GST, a correct replica pi is able to
collect a set M of n− f VIEW-CHANGE message for view
v and broadcasts a NEW-VIEW message with a proposal
m. Any PRE-PREPARE message included in the NEW-VIEW
message includes either the hash of a block such that a
prepare certificate is provided in the NEW-VIEW message,
or W [e], a set of wQCs. As prepare certificates and the
wQCs/rQCs in W [e] can be verified by any correct replica,
then the proposal from pi can be verified. Accordingly, any
correct replica can then resume normal case operation and
eventually a-deliver m.
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