
Dashing and Star: Byzantine Fault Tolerance with

Weak Certificates

Sisi Duan

Tsinghua University

duansisi@tsinghua.edu.cn

Haibin Zhang

Beijing Institute of Technology

haibin@bit.edu.cn

Xiao Sui

Shandong University

suixiao@mail.sdu.edu.cn

Baohan Huang

Shandong University

huangbaohan@mail.sdu.edu.cn

Changchun Mu

Digital Currency Institute, the

People’s Bank of China

mchangchun@pbc.gov.cn

Gang Di

Tsinghua University

Digital Currency Institute, the

People’s Bank of China

digang@pbcdci.cn

Xiaoyun Wang

Tsinghua University

xiaoyunwang@tsinghua.edu.cn

Abstract

State-of-the-art Byzantine fault-tolerant (BFT) protocols as-

suming partial synchrony such as SBFT and HotStuff use

regular certificates obtained from 2𝑓 + 1 (partial) signatures.
We show that one can use weak certificates obtained from

only 𝑓 + 1 signatures to assist in designing more robust and

more efficient BFT protocols. We design and implement two

BFT systems: Pichu (a family of two HotStuff-style BFT pro-

tocols) and Sonic (a parallel BFT framework).

We first present Pichu1 that targets both efficiency and

robustness using weak certificates. Pichu1 is also network-

adaptive in the sense that it can leverage network connection

discrepancy to improve performance. We show that Pichu1

outperforms HotStuff in various failure-free and failure sce-

narios. We then present Pichu2 enabling a one-phase fast

path by using strong certificates from 3𝑓 + 1 signatures.
We then leverage weak certificates to build Sonic, a highly

scalable BFT framework that delivers transactions from 𝑛− 𝑓
replicas. Sonic compares favorably with existing protocols in

terms of liveness, communication, state transfer, scalability,

and/or robustness under failures.

We demonstrate that Pichu achieves 47%-107% higher peak

throughput than HotStuff for experiments on Amazon EC2.

Meanwhile, unlike all known BFT protocols whose perfor-

mance degrades as 𝑓 grows large, the peak throughput of

Sonic increases as 𝑓 grows.When deployed in aWANwith 91

replicas across five continents, Sonic achieves an impressive

throughput of 256 ktx/sec, 2.38x that of Narwhal.

1 Introduction

Byzantine fault-tolerant state machine replication (BFT) is

known as the core building block for permissioned blockchains

[5, 6, 14, 29, 30, 34, 37]. This paper focuses on highly effi-

cient, partially synchronous BFT protocols [10, 19]. Almost

universally, these protocols rely critically on regular (quo-

rum) certificates which, roughly speaking, are sets with at

least 2𝑓 +1messages from different replicas. Recent protocols

such as SBFT [25] and HotStuff [39] require using (threshold)

signatures for regular certificates as transferable proofs.

This paper demonstrates that one can build BFT systems

that outperform existing ones—in one way or another—by

using weak certificates with at least 𝑓 + 1 signatures from

different replicas.

Intuitively, weak certificates may lead to more efficient

BFT protocols, because replicas only need to wait for signa-

tures from 𝑓 + 1 replicas and combine only 𝑓 + 1 signature
shares. Indeed, as shown in prior works (e.g., [18]), Byzan-

tine agreement protocols with the 𝑓 + 1 threshold can be

(much) more efficient than their counterparts with the 2𝑓 + 1
threshold. This paper explores novel usages of weak certificates

much beyond this intuition.

1.1 Dashing: Gaining in Efficiency, Network

Adaptivity, and Robustness

In Dashing, we challenge the conventional wisdom and offer

new insights into the design of BFT protocols.

• Using weak certificates. It is well-known that BFT pro-

tocols need to use regular certificates to ensure liveness and

safety. So far, weak certificates do not appear to be helpful in

building faster BFT protocols. Our first goal is to challenge

the intuition and provide a way to exploit weak certificates

to assist in the BFT design.

• Leveraging network connection discrepancy.When

designing and evaluating a partially synchronous BFT, we im-

plicitly assume the simplistic network configuration, where

replicas communicate with each other with about the same

latency (either all in LANs or WANs). But in practice, the

latency discrepancy among different replicas naturally exists.

A realistic scenario is that some replicas (say, 1/3 of the repli-

cas) naturally have better connections than the rest of them.

This fact is overlooked by existing BFT protocols. We experi-

mentally show in Fig. 1 that HotStuff does not exhibit visible

1

Full report, November, 2023 Sisi Duan, Haibin Zhang, Xiao Sui, Baohan Huang, Changchun Mu, Gang Di, and Xiaoyun Wang

(a) Distributions of replicas on Amazon EC2 in-

stances.

setting1 setting2 setting3

0

10

20

30

40

8.98 9.19 9.82
10.59

19.14

30.05

P
e
a
k
t
h
r
o
u
g
h
p
u
t
(
k
t
x
/
s
e
c
)

HotStuff Dashing1

(b) Peak throughput under three

settings for 𝑓 = 1.

0 10 20 30 40 50

0

10

20

30

40

— avg tps w.o. delay

-- avg tps w. delay

Time (100ms)

T
h
r
o
u
g
h
p
u
t
(
k
t
x
/
s
e
c
)

HotStuff

Dashing1

(c) Throughput under one-second

unexpected delay for 𝑓 = 1.

0 10 20 30 40 50 60

0

5

10

15

— avg tps w.o. delay

-- avg tps w. delay

Time (100ms)

T
h
r
o
u
g
h
p
u
t
(
k
t
x
/
s
e
c
)

HotStuff

Dashing1

(d) Throughput under one-second

unexpected delay for 𝑓 = 10.

Figure 1. Throughput of HotStuff and Dashing1 in three different settings on Amazon EC2.

performance differences even if we place some replicas in the

same region. The result is somewhat expected: intuitively,

the safety of BFT depends on the overall BFT network, so

the performance of BFT should depend on the overall BFT

network. Again, we challenge this intuition, showing that

BFT can benefit from network connection discrepancies.

•Useful work during asynchrony. Partially synchronous

BFT protocols cannot make progress during asynchrony.

They would simply wait until the network becomes synchro-

nous (before view change/leader election occurs) or loop

on view changes until a correct leader is selected—in either

case, no meaningful progress can be made. The situation

is only exacerbated, if the network is intermittently syn-

chronous or adaptively manipulated [32]. Naturally, it seems

that there is nothing we can do about the situation: exist-

ing partially synchronous BFT protocols are deterministic

and subject to the celebrated FLP impossibility result [20].

We take a fresh look at the problem: while one indeed can-

not make progress during asynchrony, we do not waste our

computation and network bandwidth during asynchrony.

We perform "useful" operations such that once the network

becomes synchronous, we can commit a large number of cu-

mulative transactions—the longer the asynchrony, the more

transactions committed—in some sense, the "best" that one

could anticipate.

Dashing1. In Dashing1, we attempt to use weak certificates

instead of regular certificates as much as possible—during

the normal case, during transient failures or network inter-

ruptions, during unresponsive replicas (e.g., crashes, slow

replicas), and during view changes. Transforming the idea

into a fully secure BFT protocol, however, is tricky: we tack-

led subtle safety and liveness challenges within a view and

across views due to the usage of weak certificates. Corre-

spondingly, Dashing1 gains in efficiency and robustness in

various scenarios, including during normal cases and across

views, and in the presence of transient network interrup-

tions, network connection discrepancies, or unresponsive

failures.

As shown in Fig. 1a, we deploy HotStuff and Dashing1 on

Amazon EC2 (for 𝑛 = 4) in three different settings: in set-

ting 1, the four replicas are distributed over four continents;

in setting 2 and setting 3, we place two replicas in closer

locations. In all three settings (Fig. 1b), we find Dashing1

consistently outperforms HotStuff; in setting 2 and setting

3, Dashing1 achieves about 2x and 3x the throughput of

HotStuff, respectively. The experiments show that Dashing1

substantially improved performance in the normal case and

in the presence of (natural) network connection discrepan-

cies.

We also run experiments for Dashing1 and HotStuff with

1,200 clients in a WAN setting with 4 replicas (Fig. 1c) and 31

replicas (Fig. 1d), respectively. In the experiments, we inject

a one-second network delay at 2𝑓 replicas using the tc traffic

control command. We report the throughput for a duration

of five seconds and six seconds for the experiment with 4

replicas and 31 replicas, respectively. In both experiments,

while neither HotStuff nor Dashing1 can make progress dur-

ing the network delay, the throughput of Dashing1 reaches

roughly 10x that of HotStuff when the network recovers. For

the experiments for 𝑓 = 10, the average throughput of Dash-

ing1 is 79.3% and 49.1% higher than that of HotStuff with

the unexpected network delay (dashed line) and without

delay (solid line), respectively. Moreover, Dashing1 achieves

roughly the same average throughput as that without delay,

while we witness a more visible decrease in throughput for

HotStuff. Indeed, all transactions corresponding to the wQCs

are delivered all at once after the network resumes in Dash-

ing1; in contrast, HotStuff cannot make any progress before

the network resumes. Note the throughput gain depends on

the network-induced downtime.

Dashing2.We show how to enable a one-phase fast path by

leveraging strong certificates from 3𝑓 + 1 signatures in our

BFT protocols. We demonstrate that such a task is technically

challenging—being more subtle than that in SBFT [25]—and

offer a secure and efficient solution.

1.2 Star: Gaining in Efficiency and Scalability

We use weak certificates to help design Star, a scalable BFT

framework that delivers transactions from 𝑛 − 𝑓 replicas

using only a single consensus instance. As shown in Table 1,

Star has improved prior protocols in terms of message, com-

munication, and state transfer complexity, while achieving

2

Dashing and Star: Byzantine Fault Tolerance with Weak Certificates Full report, November, 2023

protocols QC type message communication state transfer quality

ISS (PBFT) [36] rQC 𝑂 (𝑛3) 𝑂 (𝐿𝑛2 + 𝜆𝑛3) 𝑶 (1) yes

Narwhal [15] rQC 𝑂 (𝑛3) 𝑂 (𝐿𝑛2 + 𝜆𝑛3) 𝑂 (𝑘) yes

Dumbo-NG [21] rQC 𝑶 (𝒏2) 𝑶 (𝑳𝒏2 + 𝝀𝒏2) 𝑂 (𝑘) no

Star (this work) wQC 𝑶 (𝒏2) 𝑶 (𝑳𝒏2 + 𝝀𝒏2) 𝑶 (1) yes

Table 1. 𝐿 is the proposal size for each replica and 𝜆 is the security parameter. Narwhal provides a variant reducing the messages to 𝑂 (𝑛2)
but the communication remains 𝑂 (𝐿𝑛2 + 𝜆𝑛3). State transfer denotes the time to obtain a transaction proposed 𝑘 epochs ago. Quality means

if at least a fraction of the transactions in a committed block are from correct replicas.

standard liveness and quality (meaning that at least a non-

negligible fraction of the total transactions in a committed

block are from correct replicas) guarantees.

More concretely, while Star inherits the architecture that

separates bulk data transmission from consensus such that

these two processes can be run independently [15], Star uses

the more efficient weak certificates for the data transmis-

sion layer and importantly, such a layer can be effectively

pipelined and provides more efficient communication and

state transfer. Moreover, Star associates the layers using

an increasing epoch number, which allows us to achieve a

strong blockchain quality property.

Simply using PBFT [12] in our underlying consensus layer,

the throughput of Star strictly keeps increasing as 𝑛 grows.

When deploying Star and Narwhal [15] (the state-of-the-art

protocol) in a WAN with 91 replicas across five continents

(Fig. 7o), Star achieves a throughput of 256 ktx/sec, 2.38x

that of Narwhal.

1.3 Summary of Contributions

• We design a family of Dashing protocols—Dashing1 and

Dashing2—using weak certificates. In particular, Dash-

ing1 gains in improved efficiency and robustness in both

failure and failure-free scenarios and in normal cases and

across views; unlike prior protocols, Dashing1 excels in

performance with transient network interruptions and

network connection discrepancies. Dashing2 enables a

one-phase fast path for Dashing1 and offers improved

latency.

• Weprovide a new parallel BFT framework (Star) achieving

reduced communication and state transfer time and being

more scalable than prior ones.

• We implement the BFT protocols (the two Dashing pro-

tocols and a Star instantiation). We performed extensive

evaluations of the protocols, showing that our protocols

outperform existing protocols in various metrics.

2 Related Work

Dashing vs. PBFT.Conventional protocols such as PBFT [11]

allow running multiple consensus instances in parallel: a

leader can propose new transactions even if previous ones

have not been prepared at this point. This makes PBFT look

relevant to Dashing: both take approaches to fully utilize the

bandwidth. However, in each instance in PBFT, replicas can-

not deliver any block if they fail to receive 2𝑓 + 1 matching

votes. In Dashing1, replicas may make progress if the leader

receives 𝑓 + 1 matching votes (wQCs). Hence, transactions

corresponding to wQCs may be delivered in Dashing even if

no correct replica receives 2𝑓 + 1 matching votes.

Why pick Narwhal for performance comparison? As

shown in [24], Bullshark and Narwhal share almost identi-

cal throughput in normal cases, and BullShark offers almost

2x the throughput of Mir-BFT at the same latency. While

Tusk appears to have slightly better performance than Nar-

whal, Tusk does not implement the underlying common coin

protocol—a key performance bottleneck.

Detailed comparison between Star and existing proto-

cols. DAG-based purely asynchronous BFT protocols have

liveness problems. DAG Rider [28] requires unbounded mem-

ory for liveness, while Bullshark [24] and Tusk [15] achieve

weak liveness (assuming some form of synchrony).

Concurrently, Dumbo-NG [21] is proposed as an asyn-

chronous protocol. Indeed, while we instantiate Star using

a partially synchronous one, Star can be asynchronous if

the underlying BFT is asynchronous. However, Dumbo-NG

does not use any of the following techniques for efficiency or

blockchain quality: 1) weak certificates for better efficiency;

2) associating transmission layer and consensus layer with

epoch numbers for better blockchain quality; 3) a constant-

time state transfer. In particular, without associating trans-

mission layer with consensus layer, a specific transaction

can be delayed or censored due to faster commitments of

transactions from faulty replicas. Indeed, faulty replicas can

form a long chain with an unbounded number of certificates.

Thus, a valid transaction may be processed only after all

transactions from faulty replicas are committed; moreover,

the fraction of transactions from correct replicas in a block

may be made arbitrarily small. Last, Dumbo-NG requires

unbounded memory for liveness.

Different from ISS [36] (and Mir-BFT [35]) requiring run-

ning 𝑛 parallel consensus for each epoch, Star only needs a

single consensus protocol. ISS relies on a Byzantine failure de-

tector to ensure safety and liveness and replicas need to wait

for the slowest consensus instance to terminate (possibly

with view changes or until timers run out) before processing

transactions; in contrast, Star can process transactions once

the single consensus instance completes. Also, Star achieves

𝑂 (𝑛2) messages, in contrast to ISS with𝑂 (𝑛3) messages. Last,

with crash failures, the throughput of ISS and Mir-BFT may

drop to 0 for a long duration; they need to run reconfigura-

tion mechanisms to exclude faulty replicas [35, 36].

3

Full report, November, 2023 Sisi Duan, Haibin Zhang, Xiao Sui, Baohan Huang, Changchun Mu, Gang Di, and Xiaoyun Wang

BFT with trusted hardware. Using trusted hardware, BFT

protocols can use 2𝑓 + 1 replicas to tolerate 𝑓 faulty replicas,

and 𝑓 +1matching votes form a quorum certificate [13, 16, 17,

27]. Instead, our protocols are conventional BFT protocols

assuming 𝑛 ≥ 3𝑓 + 1, and use weak certificates for efficiency

or robustness.

Separating agreement from execution. The architecture

by Yin et al. [38] separates BFT agreement replicas from

execution replicas. In contrast, Sonic separates transaction

dissemination from agreement to improve the performance

and scalability of the system.

3 System Model

BFT. This paper studies Byzantine fault-tolerant state ma-

chine replication (BFT) protocols. In a BFT protocol, clients

submit transactions (requests) and replicas deliver them. The

client obtains a final response to the submitted transaction

from the replica responses. A BFT system with 𝑛 replicas

tolerates 𝑓 ≤ ⌊𝑛−1
3
⌋ Byzantine failures. The correctness of a

BFT protocol is specified as follows:

• Safety: If a correct replica delivers a transaction 𝑡𝑥 before

delivering 𝑡𝑥 ′, then no correct replica delivers a transac-

tion 𝑡𝑥 ′ without first delivering 𝑡𝑥 .
• Liveness: If a transaction 𝑡𝑥 is submitted to all correct

replicas, then all correct replicas eventually deliver 𝑡𝑥 .

We also need an equivalent primitive, atomic broadcast,

as a building block. Atomic broadcast is only syntactically

different fromBFT. In atomic broadcast, a replica a-broadcasts

messages and all replicas a-deliver messages.

• Safety: If a correct replica a-delivers amessage𝑚 before a-

delivering𝑚′, then no correct replica a-delivers a message

𝑚′ without first a-delivering𝑚.

• Liveness: If a correct replica a-broadcasts a message𝑚,

then all correct replicas eventually a-deliver 𝑚.

Note that when describing atomic broadcast, we restrict its

API in the sense that only a single replica a-broadcasts a mes-

sage. One can alternatively allow all replicas to a-broadcast

transactions as in asynchronous protocols.

This paper mainly considers the partially synchronous

model [19], where there exists an unknown global stabiliza-

tion time (GST) such that after GST, messages sent between

two correct replicas arrive within a fixed delay. One of our

protocols (Star) works in purely asynchronous environments

if the underlying atomic broadcast is asynchronous.

Cryptographic building blocks. We define a (𝑡, 𝑛) thresh-
old signature scheme with the following algorithms (tgen,

tsign, tcombine, tverify). tgen outputs a threshold signature

public key and a vector of 𝑛 private keys. A signature sign-

ing algorithm tsign takes as input a message𝑚 and a private

key 𝑠𝑘𝑖 and outputs a partial signature 𝜎𝑖 . A combining al-

gorithm tcombine takes as input 𝑝𝑘 , a message𝑚, and a set

of 𝑡 valid partial signatures, and outputs a signature 𝜎 . A

signature verification algorithm tverify takes as input 𝑝𝑘 ,

a message 𝑚, and a signature 𝜎 , and outputs a single bit.

We require the robustness and unforgeability properties for

threshold signatures. When describing the algorithms, we

leave the verification of partial signatures and threshold

signatures implicit. Dedicated threshold signatures can be

realized using pairings [7, 8]. One can also use a group of con-

ventional signatures to build a (𝑡, 𝑛) threshold signature for

efficiency, as used in various libraries such as HotStuff [2, 39],

Jolteon and Ditto [22], and Wendy [23]. The approach is also

preferred for our protocols, as many of our protocols have

more than one threshold. (Otherwise, one should use differ-

ent threshold signatures for different thresholds.)

Byzantine quorums and quorum certificates.We con-

sider a system with 𝑛 replicas, of which at most 𝑓 are Byzan-

tine faulty. We assume 𝑛 ≥ 3𝑓 + 1 for our protocols, but for
simplicity, let 𝑛 = 3𝑓 + 1. A Byzantine quorum consists of

⌈𝑛+𝑓 +1
2
⌉ replicas, or simply 2𝑓 + 1 if 𝑛 = 3𝑓 + 1. We call it a

regular quorum. Slightly abusing notation, we additionally

define two different types of quorums: a weak quorum con-

sisting of 𝑓 + 1 replicas and a strong quorum consisting of

𝑛 = 3𝑓 + 1 replicas. A message with signatures signed by

a weak quorum, a regular quorum, and a strong quorum is

called a weak (quorum) certificate (wQC), a regular (quorum)

certificate (rQC), and a strong (quorum) certificate (sQC), re-

spectively. A certificate can be a threshold signature with a

threshold 𝑡 or a set of 𝑡 digital signatures.

4 The Family of Dashing Protocols

4.1 Overview of (Chained) HotStuff

HotStuff describes the syntax of leader-based BFT replication

using the language of trees over blocks for leader-based

protocols. Here we use a slightly more general notation,

where multiple blocks, rather than just one block, may be

delivered within a view until a view change.

Each replica stores a tree of blocks. Each block 𝑏 contains

a hash pointer 𝑝𝑙 to its parent block. A branch led by a given

block 𝑏 is the path from 𝑏 all the way to the root of the tree

(i.e., the genesis block). The ℎ𝑒𝑖𝑔ℎ𝑡 for 𝑏 is the number of

blocks on the branch led by 𝑏. A block 𝑏 ′ is an extension

of block 𝑏, if 𝑏 is on the branch led by 𝑏 ′. Two blocks are

conflicting if neither is an extension of the other. During the

protocol, a monotonically growing branch becomes commit-

ted. A safe BFT ensures that no two correct replicas commit

two conflicting blocks.

HotStuff uses three phases (prepare phase, precommit phase,

and commit phase) to deliver a block. In the prepare phase,

the leader broadcasts a proposal (a block) 𝑏 to all replicas

and waits for signed responses (also called votes) from a

quorum of 𝑛 − 𝑓 replicas to form a threshold signature as a

quorum certificate (𝑝𝑟𝑒𝑝𝑎𝑟𝑒𝑄𝐶). In the precommit phase, the

leader broadcasts 𝑝𝑟𝑒𝑝𝑎𝑟𝑒𝑄𝐶 andwaits for responses to form

𝑝𝑟𝑒𝑐𝑜𝑚𝑚𝑖𝑡𝑄𝐶 . In the commit phase, the leader broadcasts

𝑝𝑟𝑒𝑐𝑜𝑚𝑚𝑖𝑡𝑄𝐶 , waits to form 𝑐𝑜𝑚𝑚𝑖𝑡𝑄𝐶 , and broadcasts it.

4

Dashing and Star: Byzantine Fault Tolerance with Weak Certificates Full report, November, 2023

t1

... ...

t2

duration of unexpected
network delay starts

duration of unexpected
network delay ends

Dashing1 time

rQC(bk+1)wQC(bk)wQC(b2)wQC(b1)

(a) Dashing1.

t1

...

t2

HotStuff
and other
protocols

wait for rQC...
time

duration of unexpected
network delay starts

duration of unexpected
network delay ends

rQC(b1)

(b) Conventional BFT (e.g., HotStuff).

Figure 2. The way how Dashing1 and a regular BFT handle unex-

pected network delays, respectively.

Upon receiving the 𝑝𝑟𝑒𝑐𝑜𝑚𝑚𝑖𝑡𝑄𝐶 , a replica becomes locked

on 𝑏. Upon receiving the 𝑐𝑜𝑚𝑚𝑖𝑡𝑄𝐶 , a replica delivers 𝑏.

During view changes, each replica sends the leader its

latest 𝑝𝑟𝑒𝑝𝑎𝑟𝑒𝑄𝐶 . Upon receiving a quorum of 𝑛 − 𝑓 such

messages, the leader selects the QC of the largest height and

extends the block for the QC using a new proposal.

Throughout the paper, we use the chained version for

HotStuff and Dashing, where phases are overlapping and

pipelined.

4.2 Overview of Dashing1

Dashing1 in a nutshell. In Dashing1, we use weak cer-

tificates (signatures from 𝑓 + 1 replicas) to improve both

efficiency and robustness. The main idea is to use weak cer-

tificates as much as possible, during normal cases, across

views, and in the presence of transient network interrup-

tions and connection discrepancies. In any of the above cases,

we allow replicas to "proceed" with weak certificates.

As an example, consider a system with seven replicas,

𝑝1 to 𝑝7. The leader 𝑝1 can only receive messages from 𝑝2
and 𝑝3, but not from other replicas. During the network

interruption, replicas in existing partially synchronous BFTs

cannot make meaningful progress. They have to wait until a

regular certificate is formed, or until a view change occurs.

In contrast, Dashing1 allows replicas to make meaningful

progress and accumulate proposals under unexpected delays.

Fig. 2a describes the way how Dashing1 and a regular BFT

protocol (e.g., HotStuff or PBFT) handle unexpected network

delays. For both protocols, starting from time 𝑡1, the leader

could not form an rQC until 𝑡2 when the network becomes

synchronous again. During the network delay, the leader in

conventional BFT protocol simply waits for its rQC. In con-

trast, in Dashing1 the leader can form a sequence of wQCs for

blocks 𝑏1, · · · , 𝑏𝑘 . Then when the network becomes synchro-

nous, replicas can receive all the messages and catch up with

the leader in a very short period of time. After generating

three rQCs for block 𝑏𝑘+1, blocks 𝑏1, · · · , 𝑏𝑘+1 are committed

simultaneously. Hence, we make full use of our computation

and network bandwidth during expected network delays.

With our design, Dashing1 can naturally leverage network

connection discrepancies for adaptive performance. The per-

formance of Dashing1 depends on the group of fast replicas

wQC(b0)

wQC(b0') wQC(b1')

b0

b0'

b1

b1' b2'

...

rQC is formed
b

rQC(b)

rQC(b)

(a) The safety challenge within a view.

rQC(b0)

wQC(b0') wQC(b1')

b0

b0'

b1

b1' b2'

...

b

rQC(b)

rQC(b)

rQC(b1)
b2

wQC(b2')

b3'

...

(b) The safety challenge across views.

Figure 3. Challenges of building BFT from weak certificates.

(1/3 of total replicas) rather than the Byzantine quorum of

replicas (the overall network condition).

Challenges and our design. Transforming the idea into

a fully secure BFT protocol, however, is non-trivial. First, a

faulty leader may easily create forks and generate conflicting

weak certificates. To prevent the forks from growing expo-

nentially, we can ask each correct replica to vote for at most

one block at each height.

Second, we need to ensure that the protocol achieves safety

within a view even if wQCs are used. Namely, if forks are

formed, an rQC can only be formed for at most one of the

branches. As shown in Fig. 3a,𝑏1 and𝑏
′
2
are conflicting blocks

and an rQC is formed for 𝑏1. Here we need to ensure that

an rQC will never be formed for 𝑏 ′
2
. We solve the problem

by enforcing a constraint: if a replica receives a proposal for

block𝑏 ′
2
that extends a block𝑏 ′

1
with a wQC, the replica votes

for 𝑏 ′
2
if and only if it has previously voted for the parent

block 𝑏 ′
1
. Then due to the quorum intersection, rQC for 𝑏 ′

2

cannot be formed within the view.

Third, the protocol should achieve safety across views.

During view changes, we ask each replica to send its highest

wQC to the new leader and the new leader can select a branch

led by a wQC to extend. However, the new leader may not

choose the right wQC. As shown in Fig. 3b, rQCs are formed

for𝑏0,𝑏1, and𝑏2, while wQCs for𝑏 ′
0
,𝑏 ′

1
,𝑏 ′

2
, and𝑏 ′

3
are formed

too (a "fork"). Note that an rQC for 𝑏2 is also the 𝑐𝑜𝑚𝑚𝑖𝑡𝑄𝐶

for 𝑏0. If a view change occurs and the leader selects the

highest weak certificate (a wQC for 𝑏 ′
3
), a conflicting proposal

with the committed block 𝑏0 will be proposed.

To address this issue, for any block 𝑏, we additionally

define a stable block as the highest block with an rQC on the

branch led by 𝑏. After a new leader collects the certificates

from 2𝑓 + 1 replicas, it will select a safe block to extend based
on the highest rQC and the wQC with the highest stable

block. In this example, as the stable block of 𝑏 ′
3
is 𝑏 and 𝑏 is

lower than 𝑏2, the leader will create a proposal extending 𝑏2.

Correct replicas can check whether the new leader selects

the right branch according to their locked blocks.

5

Full report, November, 2023 Sisi Duan, Haibin Zhang, Xiao Sui, Baohan Huang, Changchun Mu, Gang Di, and Xiaoyun Wang

One more (liveness) challenge is about timers. In Dash-

ing1, besides the regular view change timer Δ1, the leader

additionally maintains a timer Δ2. After forming a wQC for

block 𝑏 with 𝑓 + 1 matching votes, the leader starts a timer

Δ2. When Δ2 expires or an rQC for 𝑏 is formed, the leader

continues to propose a new block. Therefore, we need to be

careful about Δ2. Fortunately, an overly large Δ2 does not

cause any (performance) issues, as the leader will propose a

new block once 𝑛 − 𝑓 votes are received. Namely, even if we

set an overly large Δ2, Dashing1 would remain at least as ef-

ficient as HotStuff and is still optimistically responsive. Also,

we comment that in settings with natural network discrep-

ancies, we set Δ2 according to concrete network connection

conditions.

4.3 Notation for the Dashing Protocols

Blocks. A block 𝑏 is of the form ⟨𝑟𝑒𝑞, 𝑝𝑙, 𝑠𝑙, 𝑣𝑖𝑒𝑤,ℎ𝑒𝑖𝑔ℎ𝑡⟩.
We use 𝑏.𝑥 to represent the element 𝑥 in block 𝑏. Fixing a

block 𝑏, 𝑏.𝑝𝑙 is the hash digest of 𝑏’s parent block, 𝑏.ℎ𝑒𝑖𝑔ℎ𝑡

is the number of blocks on the branch led by 𝑏, and 𝑏.𝑣𝑖𝑒𝑤 is

the view in which 𝑏 is proposed. Note that different from the

prior notation, 𝑠𝑙 is a new element in𝑏. Formally,𝑏.𝑠𝑙 denotes

the hash digest of 𝑏’s stable block (the highest block with a

regular certificate on the branch led by 𝑏). For simplicity, we

also use 𝑏.𝑝𝑎𝑟𝑒𝑛𝑡 and 𝑏.𝑠𝑡𝑎𝑏𝑙𝑒 to represent the parent block

and the stable block of 𝑏, respectively.

Messages. Messages transmitted among replicas are of the

form ⟨type, 𝑏𝑙𝑜𝑐𝑘, 𝑗𝑢𝑠𝑡𝑖 𝑓 𝑦⟩. We use three message types—

generic, view-change, and new-view. generic messages

are used in normal operations. view-change and new-view

messages are used during view change: view-change mes-

sages are sent by replicas to the next leader, while new-view

messages are sent by the new leader to the replicas. The

𝑗𝑢𝑠𝑡𝑖 𝑓 𝑦 field stores certificates to validate the 𝑏𝑙𝑜𝑐𝑘 . Fields

may be set as ⊥.
Functions and notation for QCs. A QC for message𝑚 is

also called a QC for𝑚.𝑏𝑙𝑜𝑐𝑘 . Fixing a QC 𝑞𝑐 for a block 𝑏,

let qcBlock(𝑞𝑐) return the block 𝑏.

To hide implementation details of theQCs, we let qcVote(𝑚)
denote the output of a partial signing algorithm for𝑚 or a

conventional signing algorithm and let qcCreate(𝑀) be a
QC generated from signatures in𝑀 . qcCreate(𝑀) may be

a wQC, an rQC, or an sQC.

Rank of QCs and blocks. Following the notion in [22], we

now define the 𝑟𝑎𝑛𝑘 () function for QCs and blocks. 𝑟𝑎𝑛𝑘 ()
does not return a concrete number. Instead, it takes as in-

put two blocks or QCs and outputs whether the rank of

a block/QC is higher than the other one. The rank of two

blocks/QCs is first compared by the view number, then by

the height.

Local state at replicas. Each replicamaintains the following

state parameters, including the current view number 𝑐𝑣𝑖𝑒𝑤 ,

the highest rQC𝑄𝐶𝑟 , the highest wQC𝑄𝐶𝑤 , the locked block

𝑙𝑏, and the last voted block 𝑣𝑏.

Algorithm 1: Utilities

1 procedure createBlock(𝑏′, 𝑣, 𝑟𝑒𝑞,𝑞𝑐)
2 𝑏.𝑝𝑙 ← ℎ𝑎𝑠ℎ (𝑏′) , 𝑏.𝑝𝑎𝑟𝑒𝑛𝑡 ← 𝑏′, 𝑏.ℎ𝑒𝑖𝑔ℎ𝑡 ← 𝑏′.ℎ𝑒𝑖𝑔ℎ𝑡+1
3 𝑏.𝑟𝑒𝑞 ← 𝑟𝑒𝑞, 𝑏.𝑣𝑖𝑒𝑤 = 𝑣

4

if 𝑞𝑐 is a wQC then

𝑏.𝑠𝑙 ← 𝑏′.𝑠𝑙 , 𝑏.𝑠𝑡𝑎𝑏𝑙𝑒 ← 𝑏′.𝑠𝑡𝑎𝑏𝑙𝑒 , return 𝑏

5 if 𝑞𝑐 is an rQC then 𝑏.𝑠𝑙 ← 𝑏.𝑝𝑙 , 𝑏.𝑠𝑡𝑎𝑏𝑙𝑒 ← 𝑏′ return 𝑏

6 procedure stateUpdate(𝑄𝐶𝑤 ,𝑄𝐶𝑟 , 𝑙𝑏, 𝑞𝑐)
7 𝑏′ ← qcBlock(𝑞𝑐), 𝑏′′ ← 𝑏′.𝑝𝑎𝑟𝑒𝑛𝑡,𝑏∗ ← 𝑏′′.𝑝𝑎𝑟𝑒𝑛𝑡 ,

8 𝑣←𝑏′.𝑣𝑖𝑒𝑤, 𝑏0←qcBlock(𝑄𝐶𝑤), 𝑏ℎ𝑖𝑔ℎ←qcBlock(𝑄𝐶𝑟)
9 if 𝑞𝑐 is an rQC then

10 if rank(𝑏′) > rank(𝑏ℎ𝑖𝑔ℎ) then𝑄𝐶𝑟 ← 𝑞𝑐

11 if 𝑏′.𝑠𝑡𝑎𝑏𝑙𝑒 = 𝑏′′ and rank(𝑏′′) > rank(𝑙𝑏) then 𝑙𝑏 ← 𝑏′′

12 if 𝑏′.𝑠𝑡𝑎𝑏𝑙𝑒 = 𝑏′′ and 𝑏′′.𝑠𝑡𝑎𝑏𝑙𝑒 = 𝑏∗ and

13 𝑏′′.𝑣𝑖𝑒𝑤 = 𝑏∗ .𝑣𝑖𝑒𝑤 = 𝑣 then

14 deliver the transactions in 𝑏∗ and ancestors of 𝑏∗

15

if 𝑞𝑐 is a wQC and rank(𝑏′.𝑠𝑡𝑎𝑏𝑙𝑒) ≥ rank(𝑏0 .𝑠𝑡𝑎𝑏𝑙𝑒) then
𝑄𝐶𝑤 ← 𝑞𝑐

b’’ b

pl: hash(bs)

sl: hash(bs)

b’b*... rQC(bs) wQC(b’’) wQC(b’)

pl: hash(b’’)

sl: hash(bs)

stable link

pl: hash(b’)

sl: hash(bs)

b* is also the stable

block bsof b

Figure 4. Illustration of the relationships of blocks in Algorithm 2.

4.4 Dashing1

We present in Algorithm 2 and Algorithm 3 the normal case

protocol and view change protocol of Dashing1, respectively.

The utility functions are presented in Algorithm 1.We largely

follow the description of HotStuff and highlight how Dash-

ing1 supports wQCs in dotted boxes.

Normal case protocol (Algorithm 2). In each phase, the

leader broadcasts a message and waits for signed responses

from replicas. At lines 9-10, the leader first proposes a new

block 𝑏 and broadcasts a ⟨generic, 𝑏, 𝑞𝑐ℎ𝑖𝑔ℎ⟩ message, where

𝑞𝑐ℎ𝑖𝑔ℎ is the last QC it received (either a wQC or an rQC). The

leader waits for the votes from the replicas. After collecting

𝑓 + 1 matching votes, the leader starts a timer Δ2 (ln 6) to

determine if the leader should stop waiting for more votes

and propose a new block. Namely, the leader can propose a

new block if either one of the two conditions is met: 1) Δ2

expires; 2) an rQC for 𝑏 is formed. Then the leader combines

the signatures in the votes into 𝑞𝑐ℎ𝑖𝑔ℎ for the next phase.

Upon receiving a ⟨generic, 𝑏, 𝜋⟩ message from the leader,

each replica 𝑝𝑖 first verifies whether 𝑏 is well-formed (ln 13-

16), i.e., 𝑏 has a higher rank than its parent block 𝑏 ′ and
𝑏.ℎ𝑒𝑖𝑔ℎ𝑡 = 𝑏 ′.ℎ𝑒𝑖𝑔ℎ𝑡 + 1. Let 𝑏 ′′ denote the parent of 𝑏 ′,
we distinguish two cases. For ease of understanding, we

illustrate in Fig. 4 the relationships of 𝑏, 𝑏 ′, 𝑏 ′′, and 𝑏∗.

• If the 𝜋 field is a wQC for 𝑏 ′ (ln 17), 𝑝𝑖 verifies if the stable

block of 𝑏 and 𝑏 ′ are the same such that 𝑏 indeed extends

𝑏 ′. 𝑝𝑖 also verifies if 𝑏, 𝑏 ′ and 𝑏 ′′ are all proposed in the

6

Dashing and Star: Byzantine Fault Tolerance with Weak Certificates Full report, November, 2023

Algorithm 2: Normal case protocol of Dashing1 for

𝑝𝑖

1 initialization: 𝑐𝑣𝑖𝑒𝑤←1, 𝑣𝑏,𝑄𝐶𝑤 ,𝑄𝐶𝑟 , 𝑙𝑏 are initialized to⊥.
2 Start a timer Δ1 for the first request in the queue of pending

transactions

3 ▷ generic phase:

4 as a leader

5 wait for votes for 𝑏:

𝑀 ← {𝜎 |𝜎 is a signature for ⟨generic, 𝑏,⊥⟩ }
6 upon |𝑀 | = 𝑓 + 1 then set a start timer Δ2

7 upon Δ2 𝑡𝑖𝑚𝑒𝑜𝑢𝑡 or receiving 𝑛− 𝑓 matching messages then

8 𝑞𝑐ℎ𝑖𝑔ℎ ← qcCreate(𝑀)
9 𝑏←createBlock(𝑏,𝑐𝑣𝑖𝑒𝑤, 𝑟𝑒𝑞,𝑞𝑐ℎ𝑖𝑔ℎ)

10 broadcast𝑚 = ⟨generic, 𝑏, 𝑞𝑐ℎ𝑖𝑔ℎ ⟩
11 as a replica

12 wait for𝑚 = ⟨generic, 𝑏, 𝜋 ⟩ from Leader(𝑐𝑣𝑖𝑒𝑤)
13 𝑏′←𝑏.𝑝𝑎𝑟𝑒𝑛𝑡 , 𝑏′′←𝑏′.𝑝𝑎𝑟𝑒𝑛𝑡 , 𝑏𝑠 ← 𝑏.𝑠𝑡𝑎𝑏𝑙𝑒

14 𝑚← ⟨generic, 𝑏,⊥⟩
15 if rank(𝑏′) ≥ rank(𝑏) or 𝑏.ℎ𝑒𝑖𝑔ℎ𝑡 ≠ 𝑏′.ℎ𝑒𝑖𝑔ℎ𝑡 + 1
16 discard the message

17

if 𝜋 is a wQC for 𝑏′ and 𝑏𝑠 = 𝑏′.𝑠𝑡𝑎𝑏𝑙𝑒 and

𝑏𝑠 .𝑣𝑖𝑒𝑤 = 𝑏′.𝑣𝑖𝑒𝑤 = 𝑏′′.𝑣𝑖𝑒𝑤 = 𝑐𝑣𝑖𝑒𝑤 and 𝑏′ = 𝑣𝑏 then

𝑣𝑏 ← 𝑏, stateUpdate(𝑄𝐶𝑤 ,𝑄𝐶𝑟 , 𝑙𝑏, 𝜋)

18 if 𝜋 is an rQC for 𝑏′ and 𝑏𝑠 = 𝑏′ and rank(𝑏′) ≥ rank(𝑣𝑏)
19 𝑣𝑏 ← 𝑏, stateUpdate(𝑄𝐶𝑤 ,𝑄𝐶𝑟 , 𝑙𝑏, 𝜋)
20 if 𝑣𝑏 = 𝑏 then send qcVote(𝑚) to Leader(𝑐𝑣𝑖𝑒𝑤)
21 ▷ new-view phase: switch to this line if Δ1 𝑡𝑖𝑚𝑒𝑜𝑢𝑡 occurs

22 as a replica

23 𝑐𝑣𝑖𝑒𝑤← 𝑐𝑣𝑖𝑒𝑤 +1

24

send ⟨view-change,⊥, (𝑄𝐶𝑟 ,𝑄𝐶𝑤) ⟩ to Leader(𝑐𝑣𝑖𝑒𝑤)

same view and 𝑝𝑖 has voted for 𝑏 ′. If so, 𝑝𝑖 updates its
local parameter 𝑄𝐶𝑤 to 𝜋 (Algorithm 1, ln 15).

• If 𝜋 is an rQC for 𝑏 ′ (ln 18-19), 𝑝𝑖 verifies if 𝑏’s parent

block 𝑏 ′ has a higher rank than 𝑣𝑏. If so, 𝑝𝑖 updates its

𝑄𝐶𝑟 to 𝜋 and generates a signature. If 𝑏 ′′ has an rQC and

𝑏 ′′ has a higher rank than the locked block of 𝑝𝑖 , then 𝑝𝑖
updates its 𝑙𝑏 to 𝑏 ′′. If 𝑝𝑖 has received an rQC for both 𝑏 ′′

and 𝑏∗ (the parent block of 𝑏 ′′), then 𝑝𝑖 commits block 𝑏∗

and delivers the transactions in 𝑏∗ (Algorithm 1, ln 6-14).

In both cases, the replica updates its 𝑣𝑏 to 𝑏 and sends its

vote (a signature for𝑚) to the leader (ln 20).

View change protocol (Algorithm 3). Every replica starts

timer Δ1 for the first transaction in its queue. If the trans-

action is not processed before Δ1 expires, the replica trig-

gers view change. In particular, the replica sends a ⟨view-

change,⊥, (𝑄𝐶𝑟 , 𝑄𝐶𝑤)⟩ message to the new leader (Algo-

rithm 2, ln 23-24). Upon receiving 𝑛 − 𝑓 view-change mes-

sages, the leader first obtains a block 𝑏1 with an rQC that

has the highest rank (ln 4). The leader then obtains a block

𝑏0 with a wQC 𝑣𝑐 such that among all the blocks with weak

QCs, 𝑏0 has the highest stable block (first part of ln 5). Then

the leader checks if the rank of the stable block of 𝑏0 is no

less than that of 𝑏1 (second part of ln 5). If so, the leader

Algorithm 3: View change protocol of Dashing1 for

𝑝𝑖

1 ▷ view-change phase

2 as a new leader //𝑀 is a set of 𝑛 − 𝑓 view-change messages

3 𝑞𝑐ℎ𝑖𝑔ℎ ← the rQC of highest rank contained in𝑀

4 𝑏1 ← qcBlock(𝑞𝑐ℎ𝑖𝑔ℎ)

5

for𝑚 ∈ 𝑀
if a wQC 𝑞𝑐𝑑 ∈𝑚.𝑗𝑢𝑠𝑡𝑖 𝑓 𝑦 and qcBlock(𝑞𝑐𝑑) = 𝑑 and

rank(𝑑.𝑠𝑡𝑎𝑏𝑙𝑒) > rank(𝑏0 .𝑠𝑡𝑎𝑏𝑙𝑒) then 𝑣𝑐←𝑞𝑐𝑑 , 𝑏0 ← 𝑑

if rank(𝑏0 .𝑠𝑡𝑎𝑏𝑙𝑒) ≥rank(𝑏1) then
𝑏 ← createBlock(𝑏0,𝑐𝑣𝑖𝑒𝑤,𝑟𝑒𝑞,𝑣𝑐) ,
broadcast𝑚 = ⟨generic, 𝑏, 𝑣𝑐 ⟩

6 else then

7 𝑏←createBlock(𝑏1, 𝑐𝑣𝑖𝑒𝑤, 𝑟𝑒𝑞,𝑞𝑐ℎ𝑖𝑔ℎ)
8 broadcast𝑚=⟨generic, 𝑏, 𝑞𝑐ℎ𝑖𝑔ℎ⟩
9 //switch to normal case protocol

10 as a replica

11 wait for𝑚 = ⟨generic, 𝑏, 𝜋 ⟩ from Leader(𝑐𝑣𝑖𝑒𝑤)
12 𝑏′ ← 𝑏.𝑝𝑎𝑟𝑒𝑛𝑡 , 𝑏𝑠 ← 𝑏.𝑠𝑡𝑎𝑏𝑙𝑒 ,𝑚 ← ⟨generic, 𝑏,⊥⟩
13 if 𝑏′.𝑣𝑖𝑒𝑤 ≥𝑐𝑣𝑖𝑒𝑤 or rank(𝑏′) ≥ rank(𝑏) or

𝑏.ℎ𝑒𝑖𝑔ℎ𝑡 ≠𝑏′.ℎ𝑒𝑖𝑔ℎ𝑡+1 then discard the message

14

if 𝜋 is a wQC for 𝑏′ and 𝑏𝑠 = 𝑏′.𝑠𝑡𝑎𝑏𝑙𝑒 and rank(𝑏𝑠) ≥
rank(𝑙𝑏) then 𝑣𝑏 ← 𝑏, stateUpdate(𝑄𝐶𝑤 ,𝑄𝐶𝑟 , 𝑙𝑏, 𝜋)

15 if 𝜋 is an rQC for 𝑏′ and 𝑏𝑠 = 𝑏′ and rank(𝑏𝑠) ≥ rank(𝑙𝑏)
16 then 𝑣𝑏 ← 𝑏, stateUpdate(𝑄𝐶𝑤 ,𝑄𝐶𝑟 , 𝑙𝑏, 𝜋)
17 if 𝑣𝑏 = 𝑏 then send qcVote(𝑚) to Leader(𝑐𝑣𝑖𝑒𝑤)
18 //switch to normal case protocol. Three consecutive rQCs are

required for the first block proposed during the view change.

19 ▷ new-view phase: switch to new-view phase if Δ1 times out

creates a new block 𝑏 extending 𝑏0 and broadcasts 𝑏 to all

replicas. Otherwise, the leader extends 𝑏1, and creates and

broadcasts block 𝑏 to the replicas (ln 7 and ln 8).

Upon receiving a ⟨generic, 𝑏, 𝜋⟩message from a new leader,

each replica 𝑝𝑖 verifies if the proposed block𝑏 extends a block

of a prior view (ln 13). Then 𝑝𝑖 votes for 𝑏 if either of the

following conditions is satisfied: 1) 𝑏 extends a block 𝑏 ′ with
a wQC (ln 14), the stable blocks of 𝑏 and 𝑏 ′ are the same

block (denoted as 𝑏𝑠), and the rank of 𝑏𝑠 is no less than that

of the locked block of 𝑝𝑖 ; 2) 𝑏 extends a block 𝑏 ′ with an rQC

(ln 15-16), and the rank of the stable block of 𝑏 is no less than

that of the locked block of 𝑝𝑖 .

For the first block proposed in a new view, the leader needs

to collect three consecutive rQCs after replicas switch to the

normal case protocol (ln 17). As discussed in Sec. 4.2, this

rule is crucial for dealing with the liveness challenge caused

by the timer Δ2. Moreover, one may optionally enforce an

additional rule such that the leader should commit at least

one block after proposing a "sufficient" number of blocks

with wQCs (say, 50 blocks).

State transfer. As in HotStuff, replicas in Dashing1 may

need to perform state transfer with other replicas to obtain

the QCs or transactions included in the QCs. For the state

transfer of QCs, if a replica learns that a block 𝑏 with height

7

Full report, November, 2023 Sisi Duan, Haibin Zhang, Xiao Sui, Baohan Huang, Changchun Mu, Gang Di, and Xiaoyun Wang

ℎ is committed but it has not received any QCs between

height ℎ′ of its latest committed block and ℎ, the replica has

to synchronize all the QCs for blocks between ℎ′ and ℎ on

the branch led by 𝑏. For the state transfer of the transactions

for each QC, the replica needs to obtain the proposal from

other replicas such that the hash of the proposal matches

that in the QC.

Correctness. Below we briefly argue how Dashing1 ad-

dresses the challenges mentioned in Sec. 4.2. For safety

within a view, as every correct replica votes for a block

𝑏 with wQC only if it has voted for all the blocks on the

branch led by 𝑏, correct replicas will never commit blocks on

two conflicting branches. For safety across views, the stable

block introduced ensures that a new leader always proposes

blocks extending the right branch, where the blocks are non-

conflicting with any committed block. For liveness, the crux

is to show that after GST, each block proposed by a correct

leader can be accepted by all correct replicas. Indeed, the

leader extends either the highest rQC received from other

replicas or a wQC extending the highest rQC; eventually all

correct replicas will vote for the block. We provide the full

proof in Appendix A.

4.5 Dashing2

We show in Dashing2 how to further enable a fast path using

sQCs. Intuitively, supporting a 3𝑓 + 1 threshold may allow

replicas to deliver the transactions in a single phase: if the

leader collects an sQC for a block and broadcasts to the

replicas, replicas can directly commit the block.

While prior works have demonstrated how to design se-

cure BFT protocols using strong quorums [3, 4, 25], integrat-

ing sQCs in Dashing1, however, has its unique challenges

due to the usage of wQCs. Indeed, as a block supported by

an sQC may be extended from a block with only a weak

certificate, replicas cannot directly commit the block upon

receiving an sQC. As depicted in Fig. 5, two conflicting blocks

𝑏 and 𝑏 ′ are proposed in the same view (view 1) with the

same height. Moreover, an rQC is formed for 𝑏 and a wQC is

formed for 𝑏 ′. Besides, a wQC for block 𝑏 ′
1
that extends 𝑏 ′

0
is

formed. Suppose now a view change occurs, the new leader

in view 2 extends 𝑏 ′
1
and proposes 𝑏 ′

2
. Replicas can vote for

𝑏 ′
2
, so an sQC can be formed and at least one correct replica

commits 𝑏 ′
2
. Then we consider a scenario where another

view change occurs and replicas enter view 3. As there is no

guarantee on how many correct replicas have received the

sQC for 𝑏 ′
2
, the new leader in view 3 may choose to extend

𝑏0. And 𝑏0 can be later committed in view 3, in which case

safety is violated as 𝑏 ′
2
is committed in view 2. As a view

change may occur at any moment, replicas cannot directly

commit a block when an sQC is received.

We thus make several major changes on top of Dashing1

to address the challenge. First, in normal cases, if replica

𝑝𝑖 receives an sQC for a block 𝑏 that extends a block with

an rQC/sQC, 𝑝𝑖 immediately commits 𝑏 and our protocol

rQC(b)

rQC(b)

rQC(b0)

wQC(b0') wQC(b1')

b0

b0'

b1

b1' b2'

...rQC is formed

sQC is formed

view 1 view 2 view 3
b

Figure 5. Challenge of integrating strong certificates in Dashing2.

admits a fast path in this way. However, if block 𝑏 extends

a block with a wQC, we prevent 𝑝𝑖 from committing 𝑏 in

the fast path. In this case, 𝑝𝑖 should wait for two consecutive

rQCs for 𝑏 before committing 𝑏. Second, Dashing2 follows

the two-phase commit rule that if a replica receives an rQC

for both a block 𝑏 and 𝑏 ′ (the parent block of 𝑏), block 𝑏 ′ can
be committed. Third, we modify the view change protocol.

For the first block 𝑏 proposed after each view change, the

leader forms an rQC rather than wQC or sQC to start the

normal case operations. Also, during view change, the new-

view message from the new leader includes a set of at least

𝑛 − 𝑓 view-change messages. Upon receiving the new-view

message with a proposal, a correct replica verifies the pro-

posal by performing a computation as the one used by the

new leader to create the proposal. Replicas resume normal

operations only after the new-view message is verified. In-

deed, the view change protocol now becomes similar to that

in Fast-HotStuff [26] and Jolteon [22]. Hence, Dashing2 has

𝑂 (𝑛2) authenticators and 𝑂 (𝑛) messages.

Note that like BFT protocols using strong quorums [3, 4,

25], Dashing2 does not achieve optimistic responsiveness

(which is unavoidable due to the one-phase fast path). We

show the pseudocode of Dashing2 in Appendix B and proof

of correctness in Appendix B.1.

5 The Star Framework

We present Star that allows replicas to concurrently pro-

pose transactions and deliver at least 𝑛 − 𝑓 proposals in

each epoch. As in Narwhal and Tusk [15], the transmission

and consensus processes in Star (as described in Fig. 6) are

decoupled. However, Star uses several new techniques for

improved performance over DAG-based protocols. First, we

use the more efficient wQCs for the data transmission layer.

The transmission process is fully parallelizable and works in

asynchronous environments. It proceeds in epochs, where all

replicas can propose transactions and output a queue of weak

certificates numbered by epochs. The consensus process has

only one BFT instance and does not carry bulk data. It takes

as input weak certificates of the proposals and agrees on

which proposals in each epoch should be delivered. Second,

the transmission layer in Star can be effectively pipelined

and provides more efficient communication and state trans-

fer. Moreover, the transmission process and the consensus

process are implicitly "correlated" with epoch numbers, and

the consensus process only handles messages transmitted in

the same epoch, which helps achieve effective censorship re-

silience and improve blockchain quality. Such a design leads

to reduced complexity and improved performance overall.

8

Dashing and Star: Byzantine Fault Tolerance with Weak Certificates Full report, November, 2023

Figure 6. The Star architecture.

The transmission process.The transmission process evolves

in epochs. Each epoch consists of 𝑛 parallel weak consistent

broadcast (wCBC) instances, as shown in Fig. 6 (a). Each

replica maintains a queue 𝑄 of pending transactions and

outputs a growing set𝑊 [𝑒] containing weak certificates for

each epoch 𝑒 . In each wCBC instance, a designated replica

broadcasts a proposal (a batch of transactions) from its queue

of pending transactions. Upon completing 𝑛 − 𝑓 wCBC in-

stances, each replica starts the next epoch and continues to

propose new transactions.

wCBC may be viewed as a weak version of consistent

broadcast (CBC), i.e., CBC with weak certificates. A wCBC

instance consists of three steps. First, a designated sender

sends a proposal containing a set of transactions to all repli-

cas. The sender waits for signed responses from 𝑓 +1 replicas
to form a wQC and sends it to all replicas. Upon receiving a

valid wQC, each replica delivers the corresponding proposal.

Note it is possible that for a particular wCBC instance, a cor-

rect replica delivers𝑚 and another correct replica delivers

𝑚′ ≠𝑚. While multiple conflicting wQCs might be provided

by a faulty sender, at most one wQC will be delivered.

So why wCBC? wCBC ensures that if a wQC is formed,

at least one correct replica has received and stored the corre-

sponding proposal. The use of wQCs is sufficient to ensure

liveness, because any replica 𝑝 𝑗 , once obtaining wQC, can

ask for the corresponding proposal from correct replicas; any

correct replica that stores the proposal can simply send it

to 𝑝 𝑗 , which can then validate the correctness of the proposal

via the wQC. The above procedure is needed only when a

correct replica stored a wQC but had no corresponding pro-

posal. Even if the scenario occurs, it would not incur higher

message or communication complexity.

Star develops the above idea and offers a pipelined version

for high performance. Concretely, each replica can directly

put forward a new proposal in the third step of wCBC. We

describe the code of the transmission process at ln 3-13 of

Algorithm 4, where each replica 𝑝𝑖 (𝑖 ∈ [0..𝑛 − 1]) runs
the initepoch(𝑒) function to start a new epoch 𝑒 . Replica 𝑝𝑖
chooses a set of transactions from 𝑄 as a proposal (say, 𝑏)

using the select function. (The select function is vital to live-

ness and we will discuss its specification shortly.) It then

broadcasts a message ⟨proposal, 𝑒, 𝑏,𝑤𝑞𝑐⟩, where𝑤𝑞𝑐 is the

Algorithm 4: The code of Star for 𝑝𝑖

1 initialization: epoch number 𝑒 and the epoch number of the

current block 𝑙𝑒 are initialized to 1. Queue𝑄 of pending

transactions, received proposals 𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝑠 , the latest weak

certificate𝑤𝑞𝑐 , and queue𝑊 of weak certificates are initialized to⊥.
2 ▷ transmission process in the chaining (pipelined) mode

3 func initepoch(𝑒)
4 𝑏.𝑡𝑥 ← select(𝑄) , 𝑏.𝑒𝑝𝑜𝑐ℎ ← 𝑒 //select a proposal 𝑏 from𝑄

5 broadcast ⟨proposal, 𝑒, 𝑏, 𝑤𝑞𝑐 ⟩
6 upon receiving a set𝑀 of 𝑓 + 1 signed votes for 𝑏

7 𝑤𝑞𝑐←qcCreate(𝑀) //create a weak certificate

8 wait until |𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝑠 [𝑒] | ≥ 𝑛 − 𝑓 //enter the next epoch

9 𝑒 ← 𝑒 + 1, initepoch(𝑒)
10 upon receiving ⟨proposal, 𝑒, 𝑏 𝑗 , 𝑤𝑞𝑐 𝑗 ⟩ from 𝑝 𝑗 for the first time

11 send signed vote for 𝑏 𝑗 to 𝑝 𝑗

12 𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝑠 [𝑒] ← 𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝑠 [𝑒] ∪ 𝑏 𝑗

13 𝑊 [𝑒−1]←𝑊 [𝑒−1] ∪ 𝑤𝑞𝑐 𝑗 //certificates in the output queue

14 ▷ consensus process

15 upon |𝑊 [𝑙𝑒] | ≥ 𝑛 − 𝑓

16 a-broadcast(𝑊 [𝑙𝑒]) //run the underlying atomic broadcast

17 upon a-deliver(𝑙𝑒,𝑚)

18 𝑂 ← obtain(𝑙𝑒,𝑚)
19 deliver 𝑂 //deliver the transactions in𝑂 in deterministic order

20 𝑙𝑒 ← 𝑙𝑒 + 1
21 ▷ state transfer

22 func obtain(𝑒,𝑚)
23 𝑂 ← ⊥
24 for wQC 𝑞𝑐 ∈𝑚
25 if qcProposal(𝑞𝑐) ∈ 𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝑠 [𝑒]
26 𝑂 ← 𝑂 ∪ qcProposal(𝑞𝑐)
27 else broadcast ⟨fetch, 𝑒, 𝑞𝑐 ⟩
28 wait for a proposal containing qcProposal(𝑞𝑐)
29 𝑂 ← 𝑂 ∪ qcProposal(𝑞𝑐)
30 clear𝑊 [𝑒], remove transactions in𝑂 from𝑄

31 upon receiving message ⟨fetch, 𝑒, 𝑞𝑐 ⟩ from replica 𝑝 𝑗

32 if qcProposal(𝑞𝑐)∈𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝑠 [𝑒] //fetch missing proposals

33 send ⟨proposal, qcProposal(𝑞𝑐) ⟩ to 𝑝 𝑗

wQC formed in epoch 𝑒 − 1. (If we are working in the non-

chaining mode, then𝑤𝑞𝑐 is simply⊥.) 𝑝𝑖 waits for 𝑓 +1 votes
for 𝑏 to form a wQC. Then after receiving 𝑛 − 𝑓 proposals

for epoch 𝑒 , 𝑝𝑖 enters the next epoch 𝑒 + 1. Upon receiv-

ing ⟨proposal, 𝑒, 𝑏 𝑗 ,𝑤𝑞𝑐 𝑗 ⟩ from 𝑝 𝑗 , each replica first verifies

𝑤𝑞𝑐 𝑗 , sends a signed vote for 𝑏 𝑗 to 𝑝 𝑗 , adds 𝑏 𝑗 to 𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝑠 ,

and adds𝑤𝑞𝑐 𝑗 to𝑊 [𝑒 − 1].
9

Full report, November, 2023 Sisi Duan, Haibin Zhang, Xiao Sui, Baohan Huang, Changchun Mu, Gang Di, and Xiaoyun Wang

The consensus process. The consensus process also pro-

ceeds in epochs, using only one BFT instance to agree on

wQCs. We can use any BFT protocol for the consensus pro-

cess. When describing the consensus process (Algorithm 4,

ln 15-20), we use the a-broadcast and a-deliver primitives.

Each replica 𝑝𝑖 maintains 𝑙𝑒 , a local parameter tracking the

current consensus epoch number. 𝑝𝑖 monitors its queue𝑊

(obtained from the transmission process) and checks whether

𝑊 [𝑙𝑒] has at least 𝑛 − 𝑓 weak certificates. If so, replicas run

a-broadcast(𝑊 [𝑙𝑒]). (If the underlying BFT is leader-based,

then only the leader proposes𝑊 [𝑙𝑒]). When the a-deliver

primitive terminates, each replica waits for the transactions

corresponding to the a-delivered wQCs (from the transmis-

sion process) and delivers the transactions in a deterministic

order. If some proposals are missing, the replica may sim-

ply fetch the proposals from other replicas (via the state

transfer process at ln 21-33 of Algorithm 4). During state

transfer, for each wQC 𝑞𝑐 in epoch 𝑒 , a replica 𝑝𝑖 broadcasts

a ⟨fetch, 𝑒, 𝑞𝑐⟩ message to all replicas. Upon receiving such

a message, a replica sends the corresponding proposal to 𝑝𝑖 .

Liveness and blockchain quality. Protocols allowing all

replicas to propose different transactions should address

transaction censorship (liveness) which prevents a particular

transaction proposed by a replica from never being delivered.

First, the use of wQC ensures that if the underlying atomic

broadcast completes, then the corresponding proposal has

been obtained by correct replicas, or can be obtained via the

fetch operation by correct replicas. We should also ensure

that adversaries cannot censor certain transactions. So we

have to be careful in specifying the select function. Honey-

BadgerBFT [32] invents a method where replicas randomly

select transactions from their queue and use threshold en-

cryption to achieve censorship resilience. EPIC [31] com-

bines the conventional FIFO strategy used in [9] and the

random selection strategy used in HoneyBadgerBFT to avoid

threshold encryption. The asynchronous pattern in Star al-

lows us to adopt the same approach as in EPIC: replicas select

random transactions for most epochs and periodically switch

to FIFO. Hence, Star achieves liveness under asynchrony.

Star has a strong form of blockchain quality, ensuring at

least 1/2 of transactions contained in any committed block

in an epoch are from correct replicas. Note the concurrent

work of Dumbo-NG [21] sacrifices this desirable feature.

Instantiating Star using PBFT. In Star, we use a variant of

PBFT with the following small differences. First, as the pro-

posed transactions are already assigned with epoch number

in the transmission process, we directly use the epoch num-

bers as the sequence number in the consensus process. We

additionally require that the leader cannot skip any epoch

number. Last, during a view change, the new leader is not al-

lowed to propose a nil block for any epoch number. Namely,

for any epoch 𝑒 such that an agreement is not reached in a

prior view, the new leader simply proposes𝑊 [𝑒].

Complexity analysis. Star has 𝑛 parallel wCBC instances

and one instance of the underlying BFT protocol, so Star has

𝑂 (𝑛2) messages (whether using PBFT or HotStuff). The com-

munication is𝑂 (𝐿𝑛2 + 𝜆𝑛2) for the transmission process and

𝑂 (𝜆𝑛2) for the consensus process. As a replica can directly

obtain a proposal based on epoch number and each QC, the

time for state transfer of multiple QCs is 𝑂 (1).
Instead, Narwhal has a complex state transfer process. In

particular, replicas have to obtain sequentially the blocks

for each epoch since there is no guarantee that at least one

correct replica holds the entire history. Hence, if a replica

performs state transfer for a transaction proposed 𝑘 epochs

ago, the time is 𝑂 (𝑘). Moreover, Narwhal has 𝑂 (𝐿𝑛2 + 𝜆𝑛3)
communication, as each block includes at least 2𝑓 + 1 certifi-
cates of the prior epoch.

Discussion. An attempting approach relevant to Star is to

allow clients to distribute the full transactions to all replicas

and perform the agreement only on hashes. First, directly

broadcasting transactions may not be safe or live. For in-

stance, if Byzantine clients fail to send transactions consis-

tently, then not all correct replicas can receive transactions.

Intuitively, the transmission phase would use reliable broad-

cast, but Sonic allows the use of more efficient weak con-

sistent broadcast (wCBC) and wCBC can be pipelined for

better performance. Moreover, the attempting approach only

allows replicas to deliver transactions proposed from the

leader, while Star allows delivering transactions from 𝑛 − 𝑓

different replicas at the same time. Our approach thus fully

utilizes the network bandwidth.

6 Implementation and Evaluation

We implement all our protocols introduced in this work and

HotStuff in Golang using around 12,000 LOC, including 1,500

LOC for evaluation. We implement the chaining (pipelining)

mode for the Dashing protocols and HotStuff. For all the

protocols, we implement the checkpoint protocol for garbage

collection, where replicas run the checkpoint protocol every

5000 blocks. Following prior works [2, 23, 33, 39], we use a

set of digital signatures as quorum certificates. In particular,

we use SM2 signature (ISO standard) which has a similar

performance as ECDSA. We also evaluate the performance

of Narwhal using its open-source code [1].

We deploy the protocols in Amazon EC2 with up to 100

instances in both LAN and WAN. We use m5.xlarge instance

which has four virtual CPUs and 16 GB memory. In the LAN

setting, all the instances are located in the same region. In

the WAN setting, the servers are evenly distributed over four

different regions: us-west-1 (California, US), us-east-2 (Ohio,

US), ap-southeast-1 (Singapore), and eu-west-1 (Ireland).

For each experiment, we use 3𝑓 + 1 replicas and use 𝑓

to denote the network size. We ask the clients to submit

requests to the system in an open loop, i.e., a client does not

have to wait for the reply before sending the next request.

We set the size for transactions and replies as 512 bytes. We

10

Dashing and Star: Byzantine Fault Tolerance with Weak Certificates Full report, November, 2023

0 20 40 60 80 100

0

0.5

1

1.5

Throughput (ktx/sec)

L
a
t
e
n
c
y
(
S
e
c
)

HotStuff Dashing1 Dashing2

Star Narwhal

(a) Latency vs. throughput in LAN

for 𝑓 = 1.

0 50 100 150 200

0

0.5

1

1.5

Throughput (ktx/sec)

L
a
t
e
n
c
y
(
S
e
c
)

HotStuff Dashing1 Dashing2

Star Narwhal

(b) Latency vs. throughput in LAN for

𝑓 = 10.

0 500 1,000 1,500
0

50

100

Number of clients

T
h
r
o
u
g
h
p
u
t
(
t
x
/
s
e
c
)

HotStuff Dashing1 Dashing2

Star Narwhal

(c) Throughput in LAN for 𝑓 = 1.

0 200 400 600 800 1,000 1,200
0

50

100

150

200

Number of clients

T
h
r
o
u
g
h
p
u
t
(
k
t
x
/
s
e
c
)

HotStuff Dashing1 Dashing2

Star Narwhal

(d) Throughput in LAN for 𝑓 = 10.

0 10 20 30 40 50 60 70

0

1

2

3

4

Throughput (ktx/sec)

L
a
t
e
n
c
y
(
S
e
c
)

HotStuff Dashing1 Dashing2

Star Narwhal

(e) Latency vs. throughput in WAN

for 𝑓 = 1.

0 20 40 60 80 100 120 140 160

0

1

2

3

4

Throughput (ktx/sec)

L
a
t
e
n
c
y
(
S
e
c
)

HotStuff Dashing1 Dashing2

Star Narwhal

(f) Latency vs. throughput in WAN

for 𝑓 = 10.

0 50 100 150

0

1

2

3

4

Throughput (ktx/sec)

L
a
t
e
n
c
y
(
S
e
c
)

HotStuff Dashing1 Dashing2

Star Narwhal

(g) Latency vs. throughput in WAN

for 𝑓 = 20.

0 50 100 150 200 250

0

1

2

3

4

Throughput (ktx/sec)

L
a
t
e
n
c
y
(
S
e
c
)

HotStuff Dashing1 Dashing2

Star Narwhal

(h) Latency vs. throughput in WAN

for 𝑓 = 30.

0 500 1,000 1,500
0

20

40

60

80

Number of clients

T
h
r
o
u
g
h
p
u
t
(
t
x
/
s
e
c
)

HotStuff Dashing1 Dashing2

Star Narwhal

(i) Throughput in WAN for 𝑓 = 1.

0 500 1,000 1,500
0

50

100

150

200

Number of clients

T
h
r
o
u
g
h
p
u
t
(
k
t
x
/
s
e
c
)

HotStuff Dashing1 Dashing2

Star Narwhal

(j) Throughput in WAN for 𝑓 = 10.

0 500 1,000 1,500
0

50

100

150

200

Number of clients

T
h
r
o
u
g
h
p
u
t
(
k
t
x
/
s
e
c
)

HotStuff Dashing1 Dashing2

Star Narwhal

(k) Throughput in WAN for 𝑓 = 20.

0 500 1,000 1,500
0

100

200

300

Number of clients
T
h
r
o
u
g
h
p
u
t
(
k
t
x
/
s
e
c
)

HotStuff Dashing1 Dashing2

Star Narwhal

(l) Throughput in WAN for 𝑓 = 30.

0 10 20 30 40 50 60 70 80 90 100

HotStuff

Dashing1

Dashing2

HotStuff (40ms)

Dashing1 (40ms)

Dashing2 (40ms)

% of certificates

wQC rQC sQC

(m) Fractions of different certificates.

ktx/sec CPU bandwidth

Narwhal

19.4 130% 8.8MB/s

76.19 260% 33MB/s

104.5 (peak) 330% 40MB/s

Star

12.2 150% 8MB/s

34.0 190% 18MB/s

153.8 (peak) 380% 100MB/s

(n) CPU and bandwidth usage of Star and Nar-

whal. Maximum CPU usage is 400%.

0 20 40 60 80 100

0

100

200

300

Number of replicas

T
h
r
o
u
g
h
p
u
t
(
k
t
x
/
s
e
c
)

HotStuff Dashing1 Dashing2

Star Narwhal

(o) Throughput of the protocols in

WAN as 𝑓 grows.

Dashing1 HotStuff

0

0.5

1

1.5

0.7

0.8

0.25 0.27

1.13

1.33

L
a
t
e
n
c
y
(
s
)

view change avg

first block

(p) Finality latency during

view changes.

𝑓 = 1 𝑓 = 5

0

0.2

0.4

0.6

0.8

1

1.2

0.8

0.89

0.7
0.73

0.81

0.89

L
a
t
e
n
c
y
(
s
)

HotStuff Dashing1

Dashing2

(q) View change latency un-

der failures.

𝑓 = 1 𝑓 = 10 𝑓 = 20

0

5

10

15

20

25

12.69

9.5

4.14

11.33

7.3

2.51

15.86

10.28

4.96

14.59

9.25

4.39

14.67

9.84

4.68

13.67

8.96

4.23

P
e
a
k
t
h
r
o
u
g
h
p
u
t
(
k
t
x
/
s
e
c
)

HotStuff HotStuff-failures

Dashing1 Dashing1-failures

Dashing2 Dashing2-failures

(r) Peak throughput of Dashing1, Dashing2, and

HotStuff under 𝑓 failures.

𝑓 = 1 𝑓 = 10 𝑓 = 20

0

50

100

150

200

70.26

122.51
113.14

59.83

80.3 79.71

59.82

153.88

167.74

39.92

102.78

153.58

P
e
a
k
t
h
r
o
u
g
h
p
u
t
(
k
t
x
/
s
e
c
)

Narwhal Narwhal-failures

Star Star-failures

(s) Peak throughput of Star and Narwhal

under 𝑓 failures.

Figure 7. Performance of the protocols.

11

Full report, November, 2023 Sisi Duan, Haibin Zhang, Xiao Sui, Baohan Huang, Changchun Mu, Gang Di, and Xiaoyun Wang

set Δ2 as the average duration for one replica (e.g., the leader)

from the point of time obtaining 𝑓 + 1 votes to the point of

time obtaining 2𝑓 + 1 votes. (The range spans from 20ms to

800ms as 𝑓 increases in our experiments.) We evaluate the

throughput and latency of the protocols, where throughput is

the number of transactions that can be delivered in a second

and latency is the consensus time for each proposed block

to be committed. We repeat each experiment five times and

report the average results.

Performance (latency vs. throughput; throughput). We

report the performance of protocols in both LAN and WAN

settings. In LANs, we report latency vs. throughput for 𝑓 = 1

and 𝑓 = 10 in Fig. 7a and Fig. 7b and throughput as the

number of clients increases in Fig. 7c and Fig. 7d. In the

WAN setting, we report the performance of the protocols in

Fig. 7e-7l. In all our experiments, Dashing1 and Dashing2

consistently outperformHotStuff. For instance, inWANs, the

peak throughput of Dashing1 is 107.36% higher and 49.8%

higher than that of HotStuff for 𝑓 = 1 and 𝑓 = 30, respec-

tively. Indeed, the leader in Dashing only needs to collect

wQCs rather than rQCs to proceed to the next phase, and

thus Dashing protocols are more communication-efficient.

To help understand Dashing vs. HotStuff, we additionally

evaluate the fraction of QCs in Dashing1 and Dashing2. Our

experiments are conducted in LANs for 𝑓 = 1 in two settings:

a setting with no network delay; and a setting with a 40ms

network delay injected using the tc command. As shown

in Fig. 7m, for Dashing1, the fraction of wQCs is 36.8% for

the experiment with no delay and 32.4% for the one with

40ms delay. Similar results apply to Dashing2. The finding

explains why Dashing improves HotStuff.

Star significantly and consistently outperforms other pro-

tocols. Meanwhile, when 𝑓 = 30, Star achieves 2.38x the

throughput of Narwhal. This improvement is due to the

lower communication and a (much) simpler data structure

used in Star, as well as the use of wQCs and pipelining.

To further understand the performance bottlenecks of the

protocols, we also assess the CPU and bandwidth usage of the

protocols using the htop and nethogs commands, respectively.

We summarize the results for Narwhal vs. Star in Fig. 7n

for 𝑓 = 10 in WAN. Our results show that the bottleneck

of both protocols is CPU (the maximum usage is 400% as

each instance has 4 vCPU). When the CPU is fully utilized,

Star in general consumes higher network bandwidth and

processes more transactions than Narwhal, which explains

why Star outperforms Narwhal. We observe a similar result

for Dashing protocols vs. HotStuff.

Scalability. We report in Fig. 7o the peak throughput of

Dashing1, Dashing2, Star, and HotStuff in WAN as 𝑓 grows.

All the Dashing protocols outperform HotStuff consistently.

The peak throughput of Dashing1 is 47%-107% higher than

that of HotStuff. For the Dashing protocols and HotStuff, the

throughput degrades as 𝑓 grows, echoing other protocols

bandwidth HotStuff Dashing1 improvement

10 Mbps 575 942 63.8%

20 Mbps 1,134 1,616 42.5%

50 Mbps 1,668 2,483 48.8%

200 Mbps 1,896 3,034 60.02%

Table 2. Peak throughput of HotStuff and Dashing1 in operation.

in the HotStuff family. The throughput of Narwhal first in-

creases as 𝑓 grows and then decreases as 𝑓 grows further,

matching the evaluation result reported in Narwhal [15].

In comparison, the peak throughput of Star keeps growing

as 𝑓 increases (to 30). Meanwhile, the peak throughput of Star

consistently outperforms other protocols. When 𝑓 = 30, the

peak throughput of Star is 243 ktx/sec, in contrast to 7 ktx/sec

for HotStuff, 10 ktx/sec for Dashing1, and 102 ktx/sec for

Narwhal. The performance difference is due to the separation

from (pipelined) transmission from agreement as well as the

parallel processing of transactions. For Sonic and Narwhal,

the total peak throughput (roughly) equals the batch size

multiplied by the network size (𝑛 − 𝑓). While, for instance,

the throughput of Sonic for 𝑓 = 10 and that of 𝑓 = 20 are

rather similar, they reached their peak throughput under

difference batch sizes.

Performance under failures. We assess the performance

under failures for Dashing1, Dashing2, and HotStuff. We use

1,200 clients in all these experiments.

We first assess the average latency of view changes due to

the leader failures caused by halting the leader in the middle

of each experiment. We report the view change latency for

𝑓 = 1 and 𝑓 = 5 in Fig. 7q. We find the view change latency

for Dashing2 is higher than Dashing1 and HotStuff, because

each new-view message consists of 𝑛 − 𝑓 messages and

replicas need to verify them accordingly.

We also report the peak throughput of the protocols for

𝑓 = 1, 10, and 20, where we crash 𝑓 replicas in each experi-

ment. The throughput of Dashing1, Dashing2, and HotStuff

degrades slightly under failures as shown in Fig. 7r. The

throughput of HotStuff under failures is 10.71%-39.37% lower

than that in the failure-free case. Meanwhile, the throughput

degradation is 8.00%-11.39% and 6.80%-9.61% for Dashing1

and Dashing2, respectively. The lower performance degrada-

tion of Dashing protocols is again due to the use of wQCs.

We report the performance of Star and Narwhal under

failures in Fig. 7s. Except for 𝑓 = 1, the performance degrada-

tion of Star in the failure case is lower than that of Narwhal.

For instance, when 𝑓 = 10, the peak throughput of Star

during failures is 33.21% lower than in the failure-free case,

while the throughput of Narwhal during failures is 34.45%

lower. When 𝑓 = 20, the throughput degradation for Star

and Narwhal is 8.44% and 29.5%, respectively.

Dashing1 in operation. Dashing1 has been deployed in

a major cross-border payment system with nearly 20 com-

mercial banks involved. The system uses dedicated bank

networking channels (called Direct Connect) for communi-

cation. The average bandwidth between the sites is 25.7Mbps.

12

Dashing and Star: Byzantine Fault Tolerance with Weak Certificates Full report, November, 2023

(In contrast, the bandwidth in our Amazon EC2 experiments

is significantly higher—around 10 Gbps.) Here we report the

peak throughput with four sites (replicas) for Dashing1 and

HotStuff with the following bandwidth settings: 10 Mbps, 20

Mbps, 50 Mbps, and 200 Mbps. Moreover, the machines used

have 16-core CPU and 64 GB memory, and the transaction

size is 218 bytes. As shown in Table 2, while both Dashing1

and HotStuff achieve lower performance when compared to

those conducted on EC2, Dashing1 consistently outperforms

HotStuff, showing weak certificates indeed lead to better

performance.

In our production system, some application-level transac-

tion validation may have high overhead due to the complex

business logic and the protocol may thus experience un-

expected view changes (even with a correct leader). Thus,

we have to adjust the transaction processing programs to

smooth the execution time and carefully tune view change

timers. Also, for the 4-replica deployment, the system indeed

can have more than 1 failure on rare occasions, calling for

deployment on a larger scale.

7 Conclusion

We design and implement efficient BFT protocols using weak

certificates, including Dashing offering improved efficiency

and robustness compared to HotStuff, and a new BFT frame-

work Star allowing processing parallel transactions using a

single BFT instance. Via a deployment in both the LAN and

WAN environments, we show that our protocols outperform

existing ones of the same kind.

References

[1] Narwhal code base. https://github.com/MystenLabs/narwhal.
[2] HotStuff (Relab). https://github.com/relab/hotstuff, 2022.
[3] I. Abraham, G. Gueta, D. Malkhi, L. Alvisi, R. Kotla, and J.-P. Martin.

Revisiting fast practical Byzantine fault tolerance. arXiv preprint

arXiv:1712.01367, 2017.

[4] I. Abraham, G. Gueta, D. Malkhi, and J.-P. Martin. Revisiting fast

practical Byzantine fault tolerance: Thelma, Velma, and Zelma. arXiv

preprint arXiv:1801.10022, 2018.

[5] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis,

A. De Caro, D. Enyeart, C. Ferris, G. Laventman, Y. Manevich, S. Mu-

ralidharan, C. Murthy, B. Nguyen, M. Sethi, G. Singh, K. Smith,

A. Sorniotti, C. Stathakopoulou, M. Vukolić, S. W. Cocco, and J. Yellick.

Hyperledger Fabric: A distributed operating system for permissioned

blockchains. In EuroSys, page 15, 2018.

[6] A. Bessani, E. Alchieri, J. Sousa, A. Oliveira, and F. Pedone. From

Byzantine replication to blockchain: Consensus is only the beginning.

In 2020 50th Annual IEEE/IFIP International Conference on Dependable

Systems and Networks (DSN), pages 424–436. IEEE, 2020.

[7] A. Boldyreva. Threshold signatures, multisignatures and blind signa-

tures based on the Gap-Diffie-Hellman-Group signature scheme. In

PKC, pages 31–46, 2003.

[8] D. Boneh, B. Lynn, and H. Shacham. Short signatures from the Weil

pairing. Journal of cryptology, 17(4):297–319, 2004.

[9] C. Cachin, K. Kursawe, F. Petzold, and V. Shoup. Secure and efficient

asynchronous broadcast protocols. In Annual International Cryptology

Conference, pages 524–541. Springer, 2001.

[10] C. Cachin and M. Vukolić. Blockchain consensus protocols in the wild.

In DISC, pages 1:1–1:16, 2017.

[11] M. Castro and B. Liskov. Practical byzantine fault tolerance. In OSDI,

pages 173–186, 1999.

[12] M. Castro and B. Liskov. Practical byzantine fault tolerance and proac-

tive recovery. TOCS, 20(4):398–461, 2002.

[13] B.-G. Chun, P. Maniatis, S. Shenker, and J. Kubiatowicz. Attested

append-only memory: making adversaries stick to their word. In SOSP,

pages 189–204, 2007.

[14] J. Cowling, D. Myers, B. Liskov, R. Rodrigues, and L. Shrira. Hq repli-

cation: A hybrid quorum protocol for Byzantine fault tolerance. In

OSDI, pages 177–190. USENIX Association, 2006.

[15] G. Danezis, L. Kokoris-Kogias, A. Sonnino, and A. Spiegelman. Nar-

whal and Tusk: a DAG-based mempool and efficient BFT consensus.

In Proceedings of the Seventeenth European Conference on Computer

Systems, pages 34–50, 2022.

[16] J. Decouchant, D. Kozhaya, V. Rahli, and J. Yu. DAMYSUS: stream-

lined BFT consensus leveraging trusted components. In Y. Bromberg,

A. Kermarrec, and C. Kozyrakis, editors, EuroSys, pages 1–16. ACM,

2022.

[17] S. Duan, K. Levitt, H. Meling, S. Peisert, and H. Zhang. ByzID: Byzan-

tine fault tolerance from intrusion detection. In SRDS, pages 253–264.

IEEE, 2014.

[18] S. Duan and H. Zhang. PACE: Fully parallelizable BFT from repropos-

able Byzantine agreement. IACR Cryptol. ePrint Arch., 2022.

[19] C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in the presence of

partial synchrony. Journal of ACM, 32(2):288–323, 1988.

[20] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of dis-

tributed consensus with one faulty process. Technical report, Mas-

sachusetts Inst of Tech Cambridge lab for Computer Science, 1982.

[21] Y. Gao, Y. Lu, Z. Lu, Q. Tang, J. Xu, and Z. Zhang. Dumbo-NG: Fast

asynchronous BFT consensus with throughput-oblivious latency. In

CCS, page 15, 2022.

[22] R. Gelashvili, L. Kokoris-Kogias, A. Sonnino, A. Spiegelman, and Z. Xi-

ang. Jolteon and Ditto: Network-adaptive efficient consensus with

asynchronous fallback. FC, 2022.

[23] N. Giridharan, H. Howard, I. Abraham, N. Crooks, and A. Tomescu. No-

commit proofs: Defeating livelock in BFT. Cryptology ePrint Archive,

2021.

[24] N. Giridharan, L. Kokoris-Kogias, A. Sonnino, and A. Spiegelman.

Bullshark: DAG bft protocols made practical. In CCS, 2022.

[25] G. Golan-Gueta, I. Abraham, S. Grossman, D. Malkhi, B. Pinkas, M. K.

Reiter, D. Seredinschi, O. Tamir, and A. Tomescu. SBFT: A scalable

and decentralized trust infrastructure. In DSN, pages 568–580, 2019.

[26] M. M. Jalalzai, J. Niu, C. Feng, and F. Gai. Fast-Hotstuff: A fast and

resilient Hotstuff protocol. arXiv preprint arXiv:2010.11454, 2021.

[27] R. Kapitza, J. Behl, C. Cachine, T. Distler, S. Kuhnle, S. V. Mohammadi,

W. Schröder-Preikschat, and K. Stengel. CheapBFT: Resource-efficient

Byzantine fault tolerance. In EuroSys, pages 295–308, 2012.

[28] I. Keidar, E. Kokoris-Kogias, O. Naor, and A. Spiegelman. All you need

is DAG. In Proceedings of the 2021 ACM Symposium on Principles of

Distributed Computing, pages 165–175, 2021.

[29] R. Kolta, L. Alvisi, M. Dahlin, A. Clement, and E. Wong. Zyzzyva:

speculative Byzantine fault tolerance. ACM Transactions on Computer

Systems, 27(4):7:1–7:39, 2009.

[30] P. Kuznetsov and R. Rodrigues. Bftw3: Why? when? where? workshop

on the theory and practice of byzantine fault tolerance. ACM SIGACT

News, 40(4):82–86, 2010.

[31] C. Liu, S. Duan, and H. Zhang. EPIC: Efficient asynchronous BFT with

adaptive security. In DSN, pages 437–451, 2020.

[32] A. Miller, Y. Xia, K. Croman, E. Shi, and D. Song. The honey badger of

bft protocols. In Proceedings of the SIGSAC Conference on Computer

and Communications Security, pages 31–42. ACM, 2016.

13

https://github.com/MystenLabs/narwhal
https://github.com/relab/hotstuff

Full report, November, 2023 Sisi Duan, Haibin Zhang, Xiao Sui, Baohan Huang, Changchun Mu, Gang Di, and Xiaoyun Wang

[33] R. Neiheiser, M. Matos, and L. Rodrigues. Kauri: Scalable BFT consen-

sus with pipelined tree-based dissemination and aggregation. In SOSP,

pages 35–48, 2021.

[34] J. Sousa, A. Bessani, and M. Vukolić. A Byzantine fault-tolerant order-

ing service for the Hyperledger Fabric blockchain platform. In DSN,

pages 51–58, 2018.

[35] C. Stathakopoulou, T. David, and M. Vukolic. Mir-BFT: High-

throughput BFT for blockchains. arXiv preprint arXiv:1906.05552, 2019.

[36] C. Stathakopoulou, M. Pavlovic, and M. Vukolić. State machine replica-

tion scalability made simple. In Proceedings of the Seventeenth European

Conference on Computer Systems, pages 17–33, 2022.

[37] M. Vukolić. Rethinking permissioned blockchains. In Proceedings

of the ACM Workshop on Blockchain, Cryptocurrencies and Contracts,

pages 3–7. ACM, 2017.

[38] J. Yin, J.-P. Martin, A. Venkataramani, L. Alvisi, and M. Dahlin. Sepa-

rating agreement from execution for Byzantine fault tolerant services.

ACM SIGOPS Operating Systems Review, 37(5):253–267, 2003.

[39] M. Yin, D. Malkhi, M. K. Reiter, G. G. Gueta, and I. Abraham. HotStuff:

BFT consensus with linearity and responsiveness. In PODC, 2019.

A Correctness of Dashing1

We first introduce some notation we use in this section.

Let 𝑏 ′, 𝑏 denote two blocks such that 𝑏.𝑝𝑎𝑟𝑒𝑛𝑡 = 𝑏 ′. Ac-
cording to Algorithm 2 and Algorithm 3, after receiving

a generic message ⟨generic, 𝑏, 𝑞𝑐⟩, a correct replica votes
for 𝑏 only if (1) 𝑏.𝑠𝑡𝑎𝑏𝑙𝑒 = 𝑏 ′ and 𝑞𝑐 is an rQC for 𝑏 ′ (ln
18-19 of Algorithm 2 and ln 17-18 of Algorithm 3); or (2)

𝑏.𝑠𝑡𝑎𝑏𝑙𝑒 = 𝑏 ′.𝑠𝑡𝑎𝑏𝑙𝑒 and 𝑞𝑐 is a wQC for 𝑏 ′ (ln 17 of Algo-

rithm 2 and ln 16 of Algorithm 3). In both cases, we say that

𝑞𝑐 and 𝑏 are matching.

Let 𝑏,𝑏 ′ and 𝑏 ′′ denote three consecutive blocks. In Algo-

rithm 1, we have that a replica 𝑝𝑖 commits 𝑏 only after receiv-

ing an rQC 𝑞𝑐 for 𝑏 ′′ such that 𝑏 ′′.𝑠𝑡𝑎𝑏𝑙𝑒 = 𝑏 ′, 𝑏 ′.𝑠𝑡𝑎𝑏𝑙𝑒 = 𝑏,

and 𝑏.𝑣𝑖𝑒𝑤 = 𝑏 ′.𝑣𝑖𝑒𝑤 = 𝑏 ′′.𝑣𝑖𝑒𝑤 = 𝑣 . In this case, we call 𝑞𝑐

a 𝑐𝑜𝑚𝑚𝑖𝑡𝑄𝐶 for 𝑏.

LemmaA.1. If𝑏 and𝑑 are two conflicting blocks and rank(𝑏) =
rank(𝑑), then an rQC cannot be formed for both 𝑏 and 𝑑 .

Proof. Let 𝑣 denote 𝑏.𝑣𝑖𝑒𝑤 . As rank(𝑏) = rank(𝑑), we have
𝑑.𝑣𝑖𝑒𝑤 = 𝑣 . Suppose, towards a contradiction, an rQC is

formed for both 𝑏 and 𝑑 . As a valid rQC consists of 2𝑓 + 1
votes, a correct replica has voted for both 𝑏 and 𝑑 in view 𝑣 .

This causes a contradiction, because in the same view and for

any height, a correct replica votes for at most one block. □

Lemma A.2. Suppose that there exists an rQC or a wQC 𝑞𝑐

for 𝑏; if block 𝑑 and 𝑑𝑐 are on the branch led by 𝑏 such that

𝑑𝑐 .𝑝𝑎𝑟𝑒𝑛𝑡 = 𝑑 , then we have that

(1) 𝑑.ℎ𝑒𝑖𝑔ℎ𝑡 < 𝑑𝑐 .ℎ𝑒𝑖𝑔ℎ𝑡 and at least one correct replica has

received a certificate 𝑞𝑐𝑑 for 𝑑 , where 𝑞𝑐𝑑 and 𝑑𝑐 are matching;

(2) and if the view of the parent block of 𝑑 is lower than

𝑑.𝑣𝑖𝑒𝑤 , then at least one correct replica has received an rQC

𝑞𝑐𝑑 for 𝑑 and 𝑑𝑐 .𝑠𝑡𝑎𝑏𝑙𝑒 = 𝑑 .

Proof. (1) We prove the claim (1) by induction for 𝑑 . If 𝑑 =

𝑏.𝑝𝑎𝑟𝑒𝑛𝑡 , then 𝑑𝑐 equals 𝑏. Since 𝑞𝑐 is an rQC or a wQC for 𝑏,

at least one correct replica has voted for 𝑑𝑐 . Then we have

that 𝑑.ℎ𝑒𝑖𝑔ℎ𝑡 < 𝑑𝑐 .ℎ𝑒𝑖𝑔ℎ𝑡 and 𝑝𝑖 has received a 𝑞𝑐𝑑 before

voting for 𝑑𝑐 , where 𝑞𝑐𝑑 and 𝑑𝑐 are matching.

If 𝑑 ≠ 𝑏.𝑝𝑎𝑟𝑒𝑛𝑡 , then there exists an rQC or a wQC for any

block higher than 𝑑 on the branch led by 𝑏. In this situation,

there exists a block 𝑑𝑐 on the branch led by 𝑏 such that

𝑑𝑐 .𝑝𝑎𝑟𝑒𝑛𝑡 = 𝑑 ; an rQC or a wQC 𝑞𝑐𝑐 for 𝑑𝑐 is received by at

least one correct replica. Since 𝑞𝑐𝑐 consists of at least 𝑓 + 1
votes, at least one correct replica 𝑝𝑖 has voted for 𝑑𝑐 in view

𝑑𝑐 .𝑣𝑖𝑒𝑤 . Then we have that 𝑑.ℎ𝑒𝑖𝑔ℎ𝑡 < 𝑑𝑐 .ℎ𝑒𝑖𝑔ℎ𝑡 and 𝑝𝑖 has

received a 𝑞𝑐𝑑 before voting for 𝑑𝑐 , where 𝑞𝑐𝑑 and 𝑑𝑐 are

matching. This completes the proof of claim (1).

(2) Based on claim (1), we know that at least one correct

replica 𝑝𝑖 has voted for 𝑑𝑐 in view 𝑑𝑐 .𝑣𝑖𝑒𝑤 . Let 𝑑 ′ denote the
parent block of 𝑏. Then 𝑑 ′.𝑣𝑖𝑒𝑤 < 𝑑.𝑣𝑖𝑒𝑤 . According to ln

16-18 of Algorithm 2, 𝑝𝑖 votes for 𝑑𝑐 only if 𝑝𝑖 has received a

rQC 𝑞𝑐𝑑 for 𝑑 and 𝑑𝑐 .𝑠𝑡𝑎𝑏𝑙𝑒 = 𝑑 . □

Lemma A.3. If there exists a wQC 𝑞𝑐𝑑 for block 𝑑 , then 𝑑

extends 𝑑.𝑠𝑡𝑎𝑏𝑙𝑒 and at least one correct replica has received a

rQC for 𝑑.𝑠𝑡𝑎𝑏𝑙𝑒 .

Proof. Let 𝑑0 denote 𝑑.𝑝𝑎𝑟𝑒𝑛𝑡 . As there exists a wQC for 𝑑 ,

at least one correct replica 𝑝𝑖 has received a certificate 𝑞𝑐

and voted for 𝑑 in view 𝑑.𝑣𝑖𝑒𝑤 , where 𝑞𝑐 and 𝑑 are matching.

We distinguish two cases:

(1) 𝑞𝑐 is an rQC for 𝑑0 and 𝑑.𝑠𝑡𝑎𝑏𝑙𝑒 = 𝑑0. Then we know

that 𝑑 extends 𝑑.𝑠𝑡𝑎𝑏𝑙𝑒 , because 𝑑0 is the parent block of 𝑑 .

Accordingly, at least one correct replica 𝑝𝑖 has received a

rQC 𝑞𝑐 for 𝑑.𝑠𝑡𝑎𝑏𝑙𝑒 before voting for 𝑑 .

(2) 𝑞𝑐 is a wQC for 𝑑0 and 𝑑.𝑠𝑡𝑎𝑏𝑙𝑒 = 𝑑0.𝑠𝑡𝑎𝑏𝑙𝑒 . Let 𝑑𝑣
denote the block of highest height on the branch led by 𝑑

such that 𝑑𝑣 .𝑠𝑡𝑎𝑏𝑙𝑒 ≠ 𝑑.𝑠𝑡𝑎𝑏𝑙𝑒 . Let 𝑑 ′𝑣 denote the block on the
branch such that𝑑 ′𝑣 .𝑝𝑎𝑟𝑒𝑛𝑡 = 𝑑𝑣 . We have𝑑 ′𝑣 .ℎ𝑒𝑖𝑔ℎ𝑡 > 𝑑𝑣 and

𝑑 ′𝑣 .𝑠𝑡𝑎𝑏𝑙𝑒 = 𝑑.𝑠𝑡𝑎𝑏𝑙𝑒 . Therefore, it follows from Lemma A.2

that at least one correct replica 𝑝𝑖 has voted for 𝑑 ′𝑣 . Thus,
we have 𝑑 ′𝑣 .𝑠𝑡𝑎𝑏𝑙𝑒 = 𝑑𝑣 .𝑠𝑡𝑎𝑏𝑙𝑒 or 𝑑 ′𝑣 .𝑠𝑡𝑎𝑏𝑙𝑒 = 𝑑𝑣 accord-

ing to Algorithm 2 (ln 17-19). Since 𝑑𝑣 .𝑠𝑡𝑎𝑏𝑙𝑒 ≠ 𝑑.𝑠𝑡𝑎𝑏𝑙𝑒 ,

we have that 𝑑 ′𝑣 .𝑠𝑡𝑎𝑏𝑙𝑒 ≠ 𝑑𝑣 .𝑠𝑡𝑎𝑏𝑙𝑒 . Then we know that

𝑑 ′𝑣 .𝑠𝑡𝑎𝑏𝑙𝑒 = 𝑑.𝑠𝑡𝑎𝑏𝑒 = 𝑑𝑣 and 𝑑 extends 𝑑.𝑠𝑡𝑎𝑏𝑙𝑒 . Meanwhile,

𝑝𝑖 has received an rQC for 𝑑𝑣 before voting for 𝑑 ′𝑣 .
In both cases, 𝑑 extends 𝑑.𝑠𝑡𝑎𝑏𝑙𝑒 and a correct replica has

received an rQC for 𝑑.𝑠𝑡𝑎𝑏𝑙𝑒 . □

Lemma A.4. If there exists at least one rQC formed in view 𝑣 ,

then there exists only one rQC 𝑞𝑐 of lowest rank in view 𝑣 , and

we have that

(1) The view of 𝑏.𝑝𝑎𝑟𝑒𝑛𝑡 is lower than 𝑣 , where 𝑏 equals

qcBlock(𝑞𝑐);
(2) If there exists an rQC for 𝑏1 and 𝑏1.𝑝𝑎𝑟𝑒𝑛𝑡 .𝑣𝑖𝑒𝑤 < 𝑣 ,

then 𝑏1 equals 𝑏.

Proof. If an rQC is formed in view 𝑣 , then there exists only

one rQC𝑞𝑐 of lowest rank in view 𝑣 (according to LemmaA.1).

(1) Let 𝑏 denote qcBlock(𝑞𝑐) and 𝑏𝑣 denote the block of

lowest height such that 𝑏𝑣 .𝑣𝑖𝑒𝑤 = 𝑣 on the branch led by 𝑏.

Therefore, 𝑏𝑣 .ℎ𝑒𝑖𝑔ℎ𝑡 ≤ 𝑏.ℎ𝑒𝑖𝑔ℎ𝑡 and the view of 𝑏𝑣 .𝑝𝑎𝑟𝑒𝑛𝑡 is

14

Dashing and Star: Byzantine Fault Tolerance with Weak Certificates Full report, November, 2023

lower than 𝑣 . According to Lemma A.2, there must exist a

rQC for 𝑏𝑣 . Since 𝑞𝑐 is the lowest rQC formed in view 𝑣 , we

have that 𝑏𝑣 = 𝑏 and the view of 𝑏.𝑝𝑎𝑟𝑒𝑛𝑡 is lower than 𝑣 .

(2) If there exists an rQC for 𝑏1, then at least one correct

replica has voted for 𝑏1 and 𝑏 in view 𝑣 . Note that in view 𝑣 ,

a correct replica only votes for one block that extends a

block proposed in a lower view according to Algorithm 3.

Therefore, it must hold that 𝑏1 = 𝑏. □

LemmaA.5. If rQC𝑞𝑐 for𝑏 is the rQC of lowest height formed

in view 𝑣 and there exists an rQC for block 𝑑 such that 𝑑.𝑣𝑖𝑒𝑤 =

𝑣 , then 𝑑 equals 𝑏 or 𝑑 is an extension of 𝑏.

Proof. Let 𝑑0 denote the block of lowest height on the branch

led by 𝑑 such that 𝑑0 .𝑣𝑖𝑒𝑤 = 𝑣 . Then the view of the parent

block of 𝑑0 is lower than 𝑣 . According to Lemma A.2, at least

one correct replica has received an rQC for𝑑0. By LemmaA.4,

it holds that 𝑑0 equals 𝑏. As 𝑑0 is a block on the branch led

by 𝑑 , 𝑑 equals 𝑏 or 𝑑 is an extension of 𝑏. □

Lemma A.6. Suppose 𝑞𝑐1 and 𝑞𝑐2 are two rQCs, and each

is received by at least one correct replica. Let 𝑏1 and 𝑏2 be

qcBlock(𝑞𝑐1) and qcBlock(𝑞𝑐2), respectively. If 𝑏1 is conflict-
ing with 𝑏2, then 𝑏1.𝑣𝑖𝑒𝑤 ≠ 𝑏2 .𝑣𝑖𝑒𝑤 .

Proof. Assume towards contradiction that 𝑏1.𝑣𝑖𝑒𝑤 = 𝑏2 .𝑣𝑖𝑒𝑤

= 𝑣 . According to Lemma A.5, we know that there exists a

block 𝑏 which is the block of lowest height for which an rQC

was formed in view 𝑣 , 𝑏1 and 𝑏2 are blocks and either 𝑏1 or 𝑏2
is equals𝑏 or is an extensions of𝑏. Then𝑏1 .ℎ𝑒𝑖𝑔ℎ𝑡 ≥ 𝑏.ℎ𝑒𝑖𝑔ℎ𝑡

and 𝑏2.ℎ𝑒𝑖𝑔ℎ𝑡 ≥ 𝑏.ℎ𝑒𝑖𝑔ℎ𝑡 . We consider three cases:

(1) If 𝑏1 .ℎ𝑒𝑖𝑔ℎ𝑡 = 𝑏.ℎ𝑒𝑖𝑔ℎ𝑡 or 𝑏2 .ℎ𝑒𝑖𝑔ℎ𝑡 = 𝑏.ℎ𝑒𝑖𝑔ℎ𝑡 , then 𝑏1
equals 𝑏 or 𝑏2 equals 𝑏. Therefore, 𝑏1 and 𝑏2 are the same

block or they are on the same branch.

(2) If 𝑏.ℎ𝑒𝑖𝑔ℎ𝑡 < 𝑏1 .ℎ𝑒𝑖𝑔ℎ𝑡 , 𝑏.ℎ𝑒𝑖𝑔ℎ𝑡 < 𝑏2.ℎ𝑒𝑖𝑔ℎ𝑡 , and

𝑏1 .ℎ𝑒𝑖𝑔ℎ𝑡 = 𝑏2.ℎ𝑒𝑖𝑔ℎ𝑡 , then according to Lemma A.1, 𝑏1 and

𝑏2 must be the same block.

(3) If 𝑏.ℎ𝑒𝑖𝑔ℎ𝑡 < 𝑏1 .ℎ𝑒𝑖𝑔ℎ𝑡 , 𝑏.ℎ𝑒𝑖𝑔ℎ𝑡 < 𝑏2.ℎ𝑒𝑖𝑔ℎ𝑡 , and

𝑏1 .ℎ𝑒𝑖𝑔ℎ𝑡 ≠ 𝑏2.ℎ𝑒𝑖𝑔ℎ𝑡 , then 𝑏1 and 𝑏2 are extensions of 𝑏.

W.l.o.g., we assume that 𝑏1.ℎ𝑒𝑖𝑔ℎ𝑡 < 𝑏2 .ℎ𝑒𝑖𝑔ℎ𝑡 . Let 𝑏
′
2
de-

note a block on the branch led by 𝑏2 such that 𝑏 ′
2
.ℎ𝑒𝑖𝑔ℎ𝑡 =

𝑏1 .ℎ𝑒𝑖𝑔ℎ𝑡 . Then 𝑏 ′
2
is an extension of 𝑏. If 𝑏 ′

2
is conflicting

with 𝑏1, then according to Lemma A.1, we have that no rQC

for 𝑏 ′
2
can be formed in view 𝑣 and at most 𝑓 correct replicas

voted for 𝑏 ′
2
. Thus, an rQC for any extensions of 𝑏 ′

2
cannot

be formed by Algorithm 2. Therefore, we have that 𝑏 ′
2
must

be equal to 𝑏1.

In all cases, 𝑏1 and 𝑏2 must be blocks on the same branch,

contradicting the condition that they are conflicting blocks.

Therefore, we have that 𝑏1.𝑣𝑖𝑒𝑤 ≠ 𝑏2 .𝑣𝑖𝑒𝑤 . □

Lemma A.7. If there exists a 𝑐𝑜𝑚𝑚𝑖𝑡𝑄𝐶 𝑞𝑐 for 𝑏 and an

rQC 𝑞𝑐𝑑 for 𝑑 , each is received by at least correct replica, and

rank(𝑏) < rank(𝑑), then 𝑑 must be an extension of 𝑏.

Proof. Let 𝑣 be 𝑏.𝑣𝑖𝑒𝑤 , 𝑣𝑑 be 𝑑.𝑣𝑖𝑒𝑤 , 𝑏 ′′ be qcBlock(𝑞𝑐), and
𝑏 ′ be 𝑏 ′′.𝑝𝑎𝑟𝑒𝑛𝑡 . As 𝑞𝑐 is a 𝑐𝑜𝑚𝑚𝑖𝑡𝑄𝐶 for 𝑏, we have that

𝑏 ′.𝑠𝑡𝑎𝑏𝑙𝑒 = 𝑏 ′.𝑝𝑎𝑟𝑒𝑛𝑡 = 𝑏, 𝑏 ′′.𝑠𝑡𝑎𝑏𝑙𝑒 = 𝑏 ′, and 𝑏.𝑣𝑖𝑒𝑤 =

𝑏 ′.𝑣𝑖𝑒𝑤 = 𝑏 ′′.𝑣𝑖𝑒𝑤 = 𝑣 . According to Lemma A.2, there exist

rQCs for 𝑏, 𝑏 ′, and 𝑏 ′′ such that all these rQCs are received

by at least one correct replica. Note that an rQC for 𝑏 ′ is also
a 𝑙𝑜𝑐𝑘𝑒𝑑𝑄𝐶 for 𝑏. Let 𝑆 denote the set of correct replicas that

have voted for 𝑏 ′′. Since 𝑞𝑐 consists of 2𝑓 + 1 votes, we know
that |𝑆 | ≥ 𝑓 + 1.
Since rank(𝑑) > rank(𝑏), 𝑣𝑑 ≥ 𝑣 . Then we prove the

lemma by induction over the view 𝑣𝑑 , starting from view 𝑣 .

Base case: Suppose 𝑣𝑑 = 𝑣 . According to Lemma A.6, 𝑑 must

be an extension of 𝑏.

Inductive case: Assume this property holds for view 𝑣𝑑
from 𝑣 to 𝑣 + 𝑘 − 1 for some 𝑘 ≥ 1. We now prove that

it holds for 𝑣𝑑 = 𝑣 + 𝑘 . Let 𝑏0 denote the block of lowest

height for which an rQC 𝑞𝑐0 was formed in view 𝑣𝑑 and 𝑏 ′
0

denote 𝑏0 .𝑝𝑎𝑟𝑒𝑛𝑡 . Let𝑚 denote the generic message for 𝑏0.

According to Lemma A.4, 𝑏 ′
0
.𝑣𝑖𝑒𝑤 < 𝑣𝑑 and 𝑏0 is proposed

during view change. Since 𝑞𝑐0 consists of 2𝑓 + 1 votes, at

least one replica 𝑝𝑖 ∈ 𝑆 has voted for 𝑏0 in view 𝑣𝑑 . Let 𝑏𝑙𝑜𝑐𝑘
denote the locked block 𝑙𝑏 of 𝑝𝑖 when voting for 𝑏0. Note that

𝑝𝑖 updates its 𝑙𝑏 only after receiving a 𝑙𝑜𝑐𝑘𝑒𝑑𝑄𝐶 for a block

of a higher rank than its locked block. Then we know that

rank(𝑏𝑙𝑜𝑐𝑘) ≥ rank(𝑏). Note that 𝑏𝑙𝑜𝑐𝑘 .𝑣𝑖𝑒𝑤 < 𝑣𝑑 . According

to Lemma A.6 and the inductive hypothesis, 𝑏𝑙𝑜𝑐𝑘 must be

either equal to 𝑏 or an extension of 𝑏. Then 𝑝𝑖 votes for 𝑏0
only if one of the following conditions is satisfied:

1) 𝑏0.𝑠𝑡𝑎𝑏𝑙𝑒 = 𝑏 ′
0
.𝑠𝑡𝑎𝑏𝑙𝑒 ,𝑚.𝑗𝑢𝑠𝑡 𝑓 𝑦 is a wQC for𝑏 ′

0
,𝑏 ′

0
.𝑣𝑖𝑒𝑤 <

𝑣𝑑 and rank(𝑏 ′0 .𝑠𝑡𝑎𝑏𝑙𝑒) ≥ rank(𝑏𝑙𝑜𝑐𝑘) (ln 16 inAlgorithm 3).

2) 𝑏0.𝑠𝑡𝑎𝑏𝑙𝑒 = 𝑏 ′
0
,𝑚.𝑗𝑢𝑠𝑡 𝑓 𝑦 is an rQC for 𝑏 ′

0
, 𝑏 ′

0
.𝑣𝑖𝑒𝑤 < 𝑣𝑑 ,

and rank(𝑏 ′
0
) ≥ rank(𝑏𝑙𝑜𝑐𝑘) (ln 17 in Algorithm 3).

If condition 1) is satisfied, then according to Lemma A.3,

𝑏 ′
0
is an extension of 𝑏 ′

0
.𝑠𝑡𝑎𝑏𝑙𝑒 and at least one correct replica

has received an rQC for𝑏 ′
0
.𝑠𝑡𝑎𝑏𝑙𝑒 . Note that rank(𝑏 ′

0
.𝑠𝑡𝑎𝑏𝑙𝑒) ≥

rank(𝑏𝑙𝑜𝑐𝑘). According to Lemma A.1 and the inductive hy-

pothesis, 𝑏 ′
0
.𝑠𝑡𝑎𝑏𝑙𝑒 is equal to 𝑏 or an extension of 𝑏. Hence,

𝑏0 must be an extension of 𝑏.

If condition 2) is satisfied, then rank(𝑏 ′
0
) ≥ rank(𝑏𝑙𝑜𝑐𝑘) ≥

rank(𝑏) and𝑚.𝑗𝑢𝑠𝑡𝑖 𝑓 𝑦 is an rQC for𝑏 ′
0
. According to LemmaA.1

and the inductive hypothesis, 𝑏 ′
0
is either equal to 𝑏 or an

extension of 𝑏.

Either way, 𝑏0 must be an extension of 𝑏. Note that an

rQC for 𝑑 is formed in view 𝑣𝑑 . According to Lemma A.5, we

know that 𝑑 is equal to 𝑏0 or an extension of 𝑏0. Therefore, 𝑑

must be an extension of𝑏 and the property holds in view 𝑣+𝑘 .
This completes the proof of the lemma. □

Theorem A.8. (safety) If 𝑏 and 𝑑 are conflicting blocks, then

they cannot be committed each by at least one correct replica.

Proof. Suppose that a 𝑐𝑜𝑚𝑚𝑖𝑡𝑄𝐶 is formed for both 𝑏 and 𝑑 .

According to Lemma A.2, there must exist rQCs for both

𝑏 and 𝑑 , each received by at least one correct replica. If

𝑏.𝑣𝑖𝑒𝑤 = 𝑑.𝑣𝑖𝑒𝑤 , then according to Lemma A.6, rQCs for

both 𝑏 and 𝑑 cannot be formed. If 𝑏.𝑣𝑖𝑒𝑤 ≠ 𝑑.𝑣𝑖𝑒𝑤 , w.l.o.g.,

15

Full report, November, 2023 Sisi Duan, Haibin Zhang, Xiao Sui, Baohan Huang, Changchun Mu, Gang Di, and Xiaoyun Wang

we assume that rank(𝑏) < rank(𝑑). According to Lemma A.7,

an rQC for 𝑑 cannot be formed in view 𝑑.𝑣𝑖𝑒𝑤 . Hence, no

𝑐𝑜𝑚𝑚𝑖𝑡𝑄𝐶 for 𝑑 can be formed in view 𝑑.𝑣𝑖𝑒𝑤 . In both cases,

𝑐𝑜𝑚𝑚𝑖𝑡𝑄𝐶 for both 𝑏 and 𝑑 cannot be formed. □

Theorem A.9. (liveness) After 𝐺𝑆𝑇 , there exists a bounded

time period 𝑇𝑓 such that if the leader of view 𝑣 is correct and

all correct replicas remain in view 𝑣 during 𝑇𝑓 , then a decision

is reached.

Proof. Suppose after GST, in a new view 𝑣 , the leader 𝑝𝑖 is

correct. Then 𝑝𝑖 can collect a set 𝑀 of 2𝑓 + 1 view-change

messages from correct replicas and broadcast a new block 𝑏

in a message𝑚 = ⟨generic, 𝑏, 𝑞𝑐⟩.
Let 𝑏 ′ denote 𝑏.𝑝𝑎𝑟𝑒𝑛𝑡 . Let 𝑏ℎ𝑖𝑔ℎ denote the block of high-

est rank locked by at least one correct replica. Note that a

correct replica locks 𝑏ℎ𝑖𝑔ℎ only after receiving a 𝑙𝑜𝑐𝑘𝑒𝑑𝑄𝐶

𝑞𝑐 for it. Let 𝑏1 denote qcBlock(𝑞𝑐). Then we know that

𝑏1 .𝑝𝑎𝑟𝑒𝑛𝑡 = 𝑏1.𝑠𝑡𝑎𝑏𝑙𝑒 = 𝑏ℎ𝑖𝑔ℎ and a set 𝑆 of at least 𝑓 + 1
correct replicas have voted for 𝑏1. Therefore, at least one

message in𝑀 is sent by a replica 𝑝 𝑗 ∈ 𝑆 . According to Algo-

rithm 2 and Algorithm 3, a correct replica votes for block 𝑏1
only after receiving an rQC for 𝑏ℎ𝑖𝑔ℎ and 𝑄𝐶𝑟 of the replica

is the rQC of highest rank received by the replica. Thus, the

rank of the rQC 𝑞𝑐 𝑗 sent in view-change message by 𝑝 𝑗

is no less than that of 𝑏ℎ𝑖𝑔ℎ . From Algorithm 3, there are

two cases for 𝑏: (1) 𝑏.𝑠𝑡𝑎𝑏𝑙𝑒 = 𝑏 ′, 𝑞𝑐 is an rQC for 𝑏 ′ and
rank(𝑞𝑐) ≥ rank(𝑞𝑐 𝑗); (2) 𝑏.𝑠𝑡𝑎𝑏𝑙𝑒 = 𝑏 ′.𝑠𝑡𝑎𝑏𝑙𝑒 , 𝑞𝑐 is a wQC

for 𝑏 ′ and rank(𝑏 ′.𝑠𝑡𝑎𝑏𝑙𝑒) ≥ rank(𝑞𝑐 𝑗). In case (1), 𝑏 will be

voted for by all the correct replicas as conditions on ln 17 of

Algorithm 3 are satisfied. In case (2), 𝑏 will be voted for by

all the correct replicas as conditions on ln 16 of Algorithm 3

are satisfied.

If all correct replicas are synchronized in their view, 𝑝𝑖
is able to form a 𝑄𝐶 for 𝑏 and generate new blocks. All

correct replicas will vote for the new blocks proposed by 𝑝𝑖 .

Therefore a 𝑐𝑜𝑚𝑚𝑖𝑡𝑄𝐶 for 𝑏 can be formed by 𝑝𝑖 , leading to

a new decision. Hence, after GST, the duration 𝑇𝑓 for these

phases to complete is of bounded length. This completes the

proof of the theorem. □

B Dashing2

We present the pseudocode and the correctness proof of

Dashing2 in this section.

Dashing2Details.Comparedwith Dashing1, an sQC is used

as a certificate for a fast path in Dashing2. We present in

Algorithm 6 and Algorithm 7 the normal case operation and

view change protocol of Dashing2, respectively. The utility

functions are presented in Algorithm 5. Dashing2 follows

the notation of Dashing1. rQCs and sQCs are collectively

called qualified QCs in this section.

Normal case protocol (Algorithm 6). Similar to Dashing1,

in each phase, the leader broadcasts a block 𝑏 in message

⟨generic, 𝑏, 𝑞𝑐ℎ𝑖𝑔ℎ⟩ to all replicas and waits for signed re-

sponses from the replicas. 𝑞𝑐ℎ𝑖𝑔ℎ is the last QC the leader

receives (either a wQC, an rQC, or an sQC). After collecting

𝑓 + 1 matching votes, the leader starts a timer Δ2 (ln 6). The

timer is used to determine if the leader can form an rQC or

an sQC in time. After Δ2 expires, the leader combines the

signatures in the votes into 𝑞𝑐ℎ𝑖𝑔ℎ for the next phase.

Upon receiving a ⟨generic, 𝑏, 𝜋⟩ message from the leader,

each replica 𝑝𝑖 first verifies whether 𝑏 is well-formed and

proposed during normal operation (ln 16-17), i.e., 𝑏 has a

higher rank than its parent block 𝑏 ′, 𝑏.ℎ𝑒𝑖𝑔ℎ𝑡 = 𝑏 ′.ℎ𝑒𝑖𝑔ℎ𝑡 + 1,
and 𝑏 ′ and 𝑏 are proposed in the same view. Let 𝑏 ′′ denote
the parent of 𝑏 ′. We distinguish two cases:

• If the 𝜋 field is a wQC for 𝑏 ′ (ln 19-22), 𝑝𝑖 verifies if the

stable block of 𝑏 and 𝑏 ′ are the same block such that 𝑏

indeed extends 𝑏 ′. 𝑝𝑖 also verifies if 𝑏, 𝑏 ′, 𝑏 ′′, and 𝑏.𝑠𝑡𝑎𝑏𝑙𝑒
are all proposed in the same view and 𝑝𝑖 has previously

voted for 𝑏 ′. If so, 𝑝𝑖 updates its local parameter 𝑄𝐶𝑤 to

𝜋 and creates a signature for 𝑏 (Algorithm 5, ln 13).

• If 𝜋 is an rQC or an sQC for 𝑏 ′ (ln 23-25), 𝑝𝑖 verifies if

the stable block of 𝑏 is 𝑏 ′, 𝑏 ′ does not have a lower rank
than 𝑣𝑏, and 𝑏 ′ does not have a lower rank than the 𝑄𝐶𝑟

of 𝑝𝑖 . If so, 𝑝𝑖 updates its local parameter 𝑄𝐶𝑟 to 𝜋 and

generates a signature (Algorithm 5, ln 10 and ln 15). If

𝜋 is an rQC, 𝑏 ′′ has a qualified QC, and 𝑏 ′′ and 𝑏 are

proposed in the same view, then 𝑝𝑖 commits block 𝑏 ′′ and
delivers transactions in 𝑏 ′′ (Algorithm 5, ln 11-12). If 𝜋 is

an sQC, 𝑏 ′′ has a qualified QC, and 𝑏 ′′ and 𝑏 are proposed

in the same view, then 𝑝𝑖 commits block 𝑏 ′ and delivers

the transactions in 𝑏 ′ (Algorithm 5, ln 14-15).

In both cases, the replica updates its 𝑣𝑏 to 𝑏, and sends its

signature to the leader.

View change protocol (Algorithm 7). Every replica starts

timer Δ1 for the first transaction in its queue. If the trans-

action is not processed before Δ1 expires, the replica trig-

gers view change. In particular, the replica sends a ⟨view-

change, 𝑣𝑏, (𝑄𝐶𝑟 , 𝑄𝐶𝑤)⟩ message to the leader (Algorithm 6,

ln 30). Upon receiving 𝑛 − 𝑓 view-change messages (denoted

as 𝑀), the leader chooses a block to extend based on the

output of safeBlock(𝑀) in Algorithm 5.

We now describe the procedure in more detail. Below, all

number of lines is referred to as that in Algorithm 5. First,

the leader obtains a block 𝑏1 with a QC that has the highest

rank (ln 17-18). The leader then obtains a block 𝑏0 with a

wQC 𝑣𝑐 such that 𝑏0, 𝑏0 .𝑝𝑎𝑟𝑒𝑛𝑡 and 𝑏0 .𝑠𝑡𝑎𝑏𝑙𝑒 are proposed

in the same view, and among all the blocks with weak QCs,

𝑏0 has the highest stable block (ln 19-24). The leader also

obtains block 𝑏2 such that 𝑏2 is contained in more than 𝑓 + 1
view-change messages in𝑀 . If no such block exists, 𝑏2 is

set to ⊥ (ln 18 and ln 25-26). Then the leader checks if the

rank of the stable block of 𝑏2 is no less than that of 𝑏1 (ln 27).

If so, the leader selects 𝑏0 to extend. Otherwise, the leader

checks if the rank of the stable block of 𝑏0 is no less than

that of 𝑏1 (ln 28). If so, the leader will extend 𝑏0. If neither is

satisfied, the leader chooses 𝑏1 to extend (ln 29).

16

Dashing and Star: Byzantine Fault Tolerance with Weak Certificates Full report, November, 2023

Then the leader extends the selected block with a block 𝑏

and broadcasts 𝑏 to the replicas (ln 4-5 of Algorithm 7).

Upon receiving a ⟨new-view, 𝑏, 𝑀⟩ message from a new

leader, each replica 𝑝𝑖 verifies 𝑏 basing on the output of

safeBlock(𝑀) (ln 14-18). If 𝑏 is a block extending the output
block of safeBlock(𝑀), then 𝑝𝑖 votes for 𝑏 (ln 16 and ln 18).

Algorithm 5: Utilities for Dashing2

1 procedure createBlock(𝑏′, 𝑣, 𝑟𝑒𝑞,𝑞𝑐)
2 𝑏.𝑝𝑙 ← ℎ𝑎𝑠ℎ (𝑏′), 𝑏.𝑝𝑎𝑟𝑒𝑛𝑡 ← 𝑏′, 𝑏.𝑟𝑒𝑞 ← 𝑟𝑒𝑞,

3 𝑏.ℎ𝑒𝑖𝑔ℎ𝑡 ← 𝑏′.ℎ𝑒𝑖𝑔ℎ𝑡+1, 𝑏.𝑣𝑖𝑒𝑤 ← 𝑣

4 if 𝑞𝑐 is a wQC or ⊥ then 𝑏.𝑠𝑙 ← 𝑏′.𝑠𝑙 , 𝑏.𝑠𝑡𝑎𝑏𝑙𝑒 ← 𝑏′.𝑠𝑡𝑎𝑏𝑙𝑒

5 then return 𝑏

6 if 𝑞𝑐 is an rQC or an sQC then 𝑏.𝑠𝑙 ← ℎ𝑎𝑠ℎ (𝑏′) return 𝑏

7 procedure stateUpdate(𝑄𝐶𝑤 ,𝑄𝐶𝑟 , 𝑞𝑐)
8 𝑏′ ← qcBlock(𝑞𝑐), 𝑏′′ ← 𝑏′.𝑝𝑎𝑟𝑒𝑛𝑡 ,

9 𝑏0 ← qcBlock(𝑄𝐶𝑤), 𝑏ℎ𝑖𝑔ℎ ← qcBlock(𝑄𝐶𝑟)
10 if 𝑞𝑐 is an rQC then

11 𝑄𝐶𝑟 ← 𝑞𝑐

12 if 𝑏′.𝑠𝑡𝑎𝑏𝑙𝑒 = 𝑏′′ and 𝑏′′.𝑣𝑖𝑒𝑤 = 𝑏′.𝑣𝑖𝑒𝑤 then

13 deliver the transactions in 𝑏′′

14 if 𝑞𝑐 is a wQC then𝑄𝐶𝑤 ← 𝑞𝑐

15 if 𝑞𝑐 is an sQC and 𝑏′.𝑠𝑡𝑎𝑏𝑙𝑒 = 𝑏′′ and 𝑏′.𝑣𝑖𝑒𝑤 = 𝑏′′.𝑣𝑖𝑒𝑤

16 then𝑄𝐶𝑟 ← 𝑞𝑐 , deliver the transactions in 𝑏′

17 procedure safeBlock(𝑀)
18 𝑏0 ← ⊥, 𝑏1 ← ⊥
19 𝑞𝑐ℎ𝑖𝑔ℎ ← the qualified QC of highest rank contained in𝑀

20 𝑏1←qcBlock(𝑞𝑐ℎ𝑖𝑔ℎ) ,𝑏←createBlock(𝑏1,𝑐𝑣𝑖𝑒𝑤,𝑟𝑒𝑞,𝑞𝑐ℎ𝑖𝑔ℎ)
21 for a wQC 𝑞𝑐 ∈ 𝑀.𝑗𝑢𝑠𝑡𝑖 𝑓 𝑦

22 𝑑 ← qcBlock(𝑞𝑐) , 𝑑′ ← 𝑑.𝑝𝑎𝑟𝑒𝑛𝑡 , 𝑑𝑠 ← 𝑑.𝑠𝑡𝑎𝑏𝑙𝑒

23 if 𝑑𝑠 .𝑣𝑖𝑒𝑤 = 𝑑′.𝑣𝑖𝑒𝑤 = 𝑑.𝑣𝑖𝑒𝑤 then

24 if rank(𝑑𝑠) > rank(𝑏0 .𝑠𝑡𝑎𝑏𝑙𝑒) then 𝑣𝑐←𝑞𝑐 , 𝑏0 ← 𝑑

25 if rank(𝑑𝑠) = rank(𝑏0 .𝑠𝑡𝑎𝑏𝑙𝑒) and rank(𝑑) > rank(𝑏0)
26 then 𝑣𝑐←𝑞𝑐 , 𝑏0 ← 𝑑

27 for 𝑑 ∈ 𝑀.𝑏𝑙𝑜𝑐𝑘

28 if num(𝑑,𝑀.𝑏𝑙𝑜𝑐𝑘) ≥ 𝑓 + 1 then 𝑏1 ← 𝑑

29 if rank(𝑏1 .𝑠𝑡𝑎𝑏𝑙𝑒) ≥ rank(𝑏2) then return (𝑏1,⊥)
30 else if rank(𝑏0 .𝑠𝑡𝑎𝑏𝑙𝑒) ≥ rank(𝑏1) then return (𝑏0, 𝑣𝑐)
31 return (𝑏2, 𝑞𝑐ℎ𝑖𝑔ℎ)

B.1 Correctness of Dashing2

We first introduce some notation we use for the proof. Let

𝑏 ′ and 𝑏 denote two blocks such that 𝑏.𝑝𝑎𝑟𝑒𝑛𝑡 = 𝑏 ′ and
𝑏 ′.𝑣𝑖𝑒𝑤 = 𝑏.𝑣𝑖𝑒𝑤 . According to Algorithm 6, after receiving

a genericmessage ⟨generic, 𝑏, 𝑞𝑐⟩, a correct replica votes for
𝑏 only if (1) 𝑏.𝑠𝑡𝑎𝑏𝑙𝑒 = 𝑏 ′ and 𝑞𝑐 is an rQC or an sQC for 𝑏 ′

(ln 23-25); or (2) 𝑏.𝑠𝑡𝑎𝑏𝑙𝑒 = 𝑏 ′.𝑠𝑡𝑎𝑏𝑙𝑒 and 𝑞𝑐 is a wQC for 𝑏 ′

(ln 19-22). In both cases, we say that 𝑞𝑐 and 𝑏 are matching.

Let𝑏 ′ and𝑏 denote two consecutive blocks. In Algorithm 5,

a replica 𝑝𝑖 commits 𝑏 only after receiving a certificate 𝑞𝑐

and one of the following conditions is satisfied:

(1) 𝑞𝑐 is an rQC for 𝑏 ′ such that 𝑏 ′.𝑠𝑡𝑎𝑏𝑙𝑒 = 𝑏 ′.𝑝𝑎𝑟𝑒𝑛𝑡 = 𝑏

and 𝑏.𝑣𝑖𝑒𝑤 = 𝑏 ′.𝑣𝑖𝑒𝑤 (ln 9-12);

(2)𝑞𝑐 is an sQC for𝑏,𝑏.𝑠𝑡𝑎𝑏𝑙𝑒 = 𝑏.𝑝𝑎𝑟𝑒𝑛𝑡 and𝑏.𝑝𝑎𝑟𝑒𝑛𝑡 .𝑣𝑖𝑒𝑤 =

𝑏.𝑣𝑖𝑒𝑤 (ln 14-15).

Algorithm 6: Normal case protocol of Dashing2 for

𝑝𝑖

1 initialization: 𝑐𝑣𝑖𝑒𝑤←1, 𝑣𝑏,𝑄𝐶𝑤 ,𝑄𝐶𝑟 are initialized to ⊥.
2 Start a timer Δ1 for the first request in the queue of pending

transactions

3 ▷ generic phase:

4 as a leader

5 wait for votes for 𝑏:

𝑀 ← {𝜎 |𝜎 is a signature for ⟨generic, 𝑏,⊥⟩ }
6 upon |𝑀 | = 𝑓 + 1 then set a start timer Δ2

7 upon Δ2 𝑡𝑖𝑚𝑒𝑜𝑢𝑡 then 𝑞𝑐ℎ𝑖𝑔ℎ ← qcCreate(𝑀)
8 𝑏←createBlock(𝑏,𝑐𝑣𝑖𝑒𝑤, 𝑟𝑒𝑞,𝑞𝑐ℎ𝑖𝑔ℎ)
9 broadcast𝑚 = ⟨generic, 𝑏, 𝑞𝑐ℎ𝑖𝑔ℎ ⟩

10 if 𝑞𝑐ℎ𝑖𝑔ℎ is a wQC then𝑄𝐶𝑤←𝑞𝑐ℎ𝑖𝑔ℎ

11 if 𝑞𝑐ℎ𝑖𝑔ℎ is an rQC or an sQC then𝑄𝐶𝑟←𝑞𝑐ℎ𝑖𝑔ℎ

12 as a replica

13 wait for𝑚 = ⟨generic, 𝑏, 𝜋 ⟩ from Leader(𝑐𝑣𝑖𝑒𝑤)
14 𝑏′←𝑏.𝑝𝑎𝑟𝑒𝑛𝑡 , 𝑏′′←𝑏′.𝑝𝑎𝑟𝑒𝑛𝑡 , 𝑏𝑠←𝑏.𝑠𝑡𝑎𝑏𝑙𝑒 ,

15 𝑏ℎ𝑖𝑔ℎ←qcBlock(𝑄𝐶𝑟) ,𝑚← ⟨generic, 𝑏,⊥⟩
16 if rank(𝑏′) ≥ rank(𝑏) or 𝑏.ℎ𝑒𝑖𝑔ℎ𝑡 ≠ 𝑏′.ℎ𝑒𝑖𝑔ℎ𝑡 + 1 or
17 𝑏′.𝑣𝑖𝑒𝑤 ≠ 𝑐𝑣𝑖𝑒𝑤 then discard the message

18 if 𝜋 is a wQC for 𝑏′ and 𝑏.𝑠𝑙 = 𝑏′.𝑠𝑙 and rank(𝑏𝑠) ≥
19 rank(𝑏ℎ𝑖𝑔ℎ) and 𝑏𝑠 .𝑣𝑖𝑒𝑤 = 𝑏′′.𝑣𝑖𝑒𝑤 = 𝑏′.𝑣𝑖𝑒𝑤 = 𝑐𝑣𝑖𝑒𝑤

20 and 𝑏′ = 𝑣𝑏 then 𝑣𝑏 ← 𝑏, stateUpdate(𝑄𝐶𝑤 ,𝑄𝐶𝑟 , 𝜋)
21 if 𝜋 is an rQC or an sQC for 𝑏′ and 𝑏.𝑠𝑡𝑎𝑏𝑙𝑒 = 𝑏′

22 and rank(𝑏′) ≥ rank(𝑣𝑏) and rank(𝑏′) ≥ rank(𝑏ℎ𝑖𝑔ℎ)
23 then 𝑣𝑏 ← 𝑏, stateUpdate(𝑄𝐶𝑤 ,𝑄𝐶𝑟 , 𝜋)
24 if 𝑣𝑏 = 𝑏 then send qcVote(𝑚) to Leader(𝑐𝑣𝑖𝑒𝑤)
25 ▷ new-view phase: switch to this line if Δ1 𝑡𝑖𝑚𝑒𝑜𝑢𝑡 occurs

26 as a replica

27 𝑐𝑣𝑖𝑒𝑤← 𝑐𝑣𝑖𝑒𝑤 +1
28 send ⟨view-change, 𝑣𝑏, (𝑄𝐶𝑟 ,𝑄𝐶𝑤) ⟩ to Leader(𝑐𝑣𝑖𝑒𝑤)

In both cases, 𝑞𝑐 is a 𝑐𝑜𝑚𝑚𝑖𝑡𝑄𝐶 for 𝑏.

Lemma B.1. Suppose a block 𝑏 has been voted for by a correct

replica, then

(1) any block 𝑑 on the branch led by 𝑏 has been voted for by

at least one correct replica and 𝑑.𝑝𝑎𝑟𝑒𝑛𝑡 .ℎ𝑒𝑖𝑔ℎ𝑡 +1 = 𝑑.ℎ𝑒𝑖𝑔ℎ𝑡 ;

(2) if 𝑑 and 𝑑𝑐 are two blocks on the branch led by 𝑏 such

that 𝑑𝑐 .𝑝𝑎𝑟𝑒𝑛𝑡 = 𝑑 and 𝑑𝑐 .𝑣𝑖𝑒𝑤 = 𝑑.𝑣𝑖𝑒𝑤 = 𝑣 , then we have

that (i) at least one correct replica has received a certificate

(wQC, rQC, or sQC) 𝑞𝑐𝑑 for 𝑑 , where 𝑞𝑐𝑑 and 𝑑𝑐 are matching;

(ii) if the view of the parent block of 𝑑 is lower than 𝑣 , then at

least one correct replica has received a qualified QC for 𝑑 and

𝑑𝑐 .𝑠𝑡𝑎𝑏𝑙𝑒 = 𝑑 .

Proof. Let 𝑑 denote a block on the branch led by 𝑏.

(1) We prove claim (1) by induction for 𝑑 . If 𝑑 = 𝑏, then 𝑑

has been voted for by at least one correct replica.

If 𝑑 ≠ 𝑏 and any block higher than 𝑑 on the branch led

by 𝑏 has been voted for by at least one correct replica, then

we need to prove that 𝑑 is voted for by at least one correct

replica. In this situation, there exists a block 𝑑𝑐 on the branch

led by 𝑏 such that 𝑑𝑐 .𝑝𝑎𝑟𝑒𝑛𝑡 = 𝑑 and 𝑑𝑐 has been voted for by

at least one correct replica 𝑝𝑖 . According to Algorithm 2 and

17

Full report, November, 2023 Sisi Duan, Haibin Zhang, Xiao Sui, Baohan Huang, Changchun Mu, Gang Di, and Xiaoyun Wang

Algorithm 7: View change protocol of Dashing2 for

𝑝𝑖

1 ▷ view-change phase

2 as a new leader

3 //𝑀 is a set of 𝑛 − 𝑓 view-change messages collected by the new

leader

4 (𝑏′, 𝑞𝑐)←safeBlock(𝑀), 𝑏←createBlock(𝑏′, 𝑐𝑣𝑖𝑒𝑤, 𝑟𝑒𝑞,𝑞𝑐)
5 broadcast𝑚 = ⟨new-view, 𝑏,𝑀 ⟩
6 //switch to normal case protocol

7 as a replica

8 wait for𝑚 = ⟨new-view, 𝑏, 𝜋 ⟩ from Leader(𝑐𝑣𝑖𝑒𝑤)
9 𝑏′←𝑏.𝑝𝑎𝑟𝑒𝑛𝑡 , 𝑏𝑠 ← 𝑏.𝑠𝑡𝑎𝑏𝑙𝑒 , 𝑏ℎ𝑖𝑔ℎ ← qcBlock(𝑄𝐶𝑟) ,

10 𝑚← ⟨generic, 𝑏,⊥⟩
11 if 𝑏′.𝑣𝑖𝑒𝑤 ≥ 𝑐𝑣𝑖𝑒𝑤 or rank(𝑏′) ≥ rank(𝑏) or 𝑏.ℎ𝑒𝑖𝑔ℎ𝑡 ≠
12 𝑏′.ℎ𝑒𝑖𝑔ℎ𝑡 + 1 then discard the message

13 if 𝑀 ∈ 𝜋 then

14 (𝑏𝑝 , 𝑞𝑐) ← safeBlock(𝑀) ,𝑚 ← ⟨generic, 𝑏,⊥⟩
15 if 𝑏𝑝 = 𝑏′ and 𝑞𝑐 is a wQC or ⊥ and 𝑏.𝑠𝑡𝑎𝑏𝑙𝑒 = 𝑏′.𝑠𝑡𝑎𝑏𝑙𝑒

16 then send qcVote(𝑚) to Leader(𝑐𝑣𝑖𝑒𝑤)
17 if 𝑏𝑝 = 𝑏′ and 𝑞𝑐 is an rQC or sQC and 𝑏.𝑠𝑡𝑎𝑏𝑙𝑒 = 𝑏′

18 then send qcVote(𝑚) to Leader(𝑐𝑣𝑖𝑒𝑤)
19 //switch to normal case protocol. Three consecutive rQCs are

required for the first block proposed during the view change.

20 ▷ new-view phase: switch to new-view phase if Δ1 times out

Algorithm 3, rank(𝑑) < rank(𝑑𝑐) and𝑑𝑐 .ℎ𝑒𝑖𝑔ℎ𝑡 = 𝑑.ℎ𝑒𝑖𝑔ℎ𝑡+1.
Therefore, 𝑑.𝑣𝑖𝑒𝑤 ≤ 𝑑𝑐 .𝑣𝑖𝑒𝑤 .

We now distinguish two cases: 𝑑.𝑣𝑖𝑒𝑤 = 𝑑𝑐 .𝑣𝑖𝑒𝑤 and

𝑑.𝑣𝑖𝑒𝑤 < 𝑑𝑐 .𝑣𝑖𝑒𝑤 .

If𝑑.𝑣𝑖𝑒𝑤 = 𝑑𝑐 .𝑣𝑖𝑒𝑤 , then 𝑝𝑖 has received a𝑞𝑐𝑑 for𝑑 , where

𝑞𝑐𝑑 and 𝑑𝑐 are matching according to Algorithm 6. As 𝑞𝑐𝑑
consists of at least 𝑓 + 1 votes, at least one correct replica
has voted for 𝑑 and 𝑑.𝑝𝑎𝑟𝑒𝑛𝑡 .ℎ𝑒𝑖𝑔ℎ𝑡 + 1 = 𝑑.ℎ𝑒𝑖𝑔ℎ𝑡 .

If 𝑑.𝑣𝑖𝑒𝑤 < 𝑑𝑐 .𝑣𝑖𝑒𝑤 , then from Algorithm 7 we know that

𝑑𝑐 is proposed in a new-viewmessage𝑚 in view𝑑𝑐 .𝑣𝑖𝑒𝑤 and

𝑚.𝑗𝑢𝑠𝑡𝑖 𝑓 𝑦 contains a set𝑀 of 2𝑓 +1 view-changemessages

for view 𝑑𝑐 .𝑣𝑖𝑒𝑤 . Then 𝑝𝑖 votes for 𝑑𝑐 if (i) a wQC, an rQC

or an sQC for 𝑑 is provided by a replica in𝑀 , or (ii) for 𝑓 + 1
messages in𝑀 , the 𝑏𝑙𝑜𝑐𝑘 fields are all set to 𝑑 . In either case,

𝑑 has been voted for by at least one correct replica. This

completes the proof of claim (1).

(2) Based on claim (1), at least one correct replica 𝑝𝑖 has

voted for 𝑑𝑐 . (i) If 𝑑𝑐 .𝑣𝑖𝑒𝑤 = 𝑑.𝑣𝑖𝑒𝑤 = 𝑣 , then 𝑑𝑐 is proposed

during normal case operation. According to ln 19 and ln 23

of Algorithm 6, 𝑝𝑖 has received a certificate (wQC, rQC, or

sQC) 𝑞𝑐𝑑 for𝑑 before voting for𝑑𝑐 , where𝑑 and𝑑𝑐 are match-

ing. (ii) Meanwhile, according to ln 16-25 of Algorithm 6, if

𝑑.𝑝𝑎𝑟𝑒𝑛𝑡 .𝑣𝑖𝑒𝑤 < 𝑣 , then 𝑝𝑖 votes for𝑑𝑐 only if 𝑝𝑖 has received

an rQC or an sQC for 𝑑 and 𝑑𝑐 .𝑠𝑡𝑎𝑏𝑙𝑒 = 𝑑 . □

Lemma B.2. Suppose that 𝑞𝑐𝑏 and 𝑞𝑐𝑑 are two qualified QCs,

and each is received by at least one correct replica. Let 𝑏 and 𝑑

be qcBlock(𝑞𝑐𝑏) and qcBlock(𝑞𝑐𝑑), respectively. If 𝑏 and 𝑑

are two conflicting blocks, then rank(𝑏) ≠ rank(𝑑).

Proof. Assume, on the contrary, that rank(𝑏) = rank(𝑑).
Let 𝑣 denote the view of 𝑏 and 𝑑 . As each qualified QC con-

sists of at least 2𝑓 + 1 votes, at least one correct replica has
voted for both 𝑏 and 𝑑 . Let 𝑏 ′ and 𝑑 ′ denote the parent block
of 𝑏 and 𝑑 , respectively. Since a correct replica votes for at

most one block of each height during normal case opera-

tion, at least one of 𝑏 and 𝑑 is proposed during view change.

Therefore, 𝑏 ′.𝑣𝑖𝑒𝑤 < 𝑣 or 𝑑 ′.𝑣𝑖𝑒𝑤 < 𝑣 . Now we consider two

cases:

(1)𝑏 ′.𝑣𝑖𝑒𝑤 < 𝑣 and𝑑 ′.𝑣𝑖𝑒𝑤 < 𝑣 . According to Algorithm 7,

a correct replica 𝑝𝑖 votes for at most one block that extends

a block proposed in a lower view. Hence, 𝑏 equals 𝑑 .

(2) (𝑏 ′.𝑣𝑖𝑒𝑤 < 𝑣 and 𝑑 ′.𝑣𝑖𝑒𝑤 = 𝑣) or (𝑏 ′.𝑣𝑖𝑒𝑤 = 𝑣 and

𝑑 ′.𝑣𝑖𝑒𝑤 < 𝑣). If 𝑏 ′.𝑣𝑖𝑒𝑤 < 𝑣 and 𝑑 ′.𝑣𝑖𝑒𝑤 = 𝑣 , then there

exists a block 𝑑0 of lowest height on the branch led by 𝑑

such that 𝑑0.𝑣𝑖𝑒𝑤 = 𝑣 . Hence, the view of 𝑑0.𝑝𝑎𝑟𝑒𝑛𝑡 is lower

than 𝑣 . Let 𝑑 ′
0
denote a block on the branch led by 𝑑 such that

𝑑 ′
0
.𝑝𝑎𝑟𝑒𝑛𝑡 = 𝑑0. By Lemma B.1, at least one correct replica

𝑝𝑖 has voted for 𝑑 ′
0
. According to ln 16-25 in Algorithm 6, 𝑝𝑖

has received an rQC or an sQC for 𝑑0. Note that the view of

𝑑0 .𝑝𝑎𝑟𝑒𝑛𝑡 is lower than 𝑣 . Then 𝑑0 and 𝑏 must be the same

block according to case (1). Therefore, 𝑑 is an extension

of 𝑏. The proof is similar in the case where 𝑏 ′.𝑣𝑖𝑒𝑤 = 𝑣 and

𝑑 ′.𝑣𝑖𝑒𝑤 < 𝑣 .

In both cases, 𝑑 and 𝑏 are either the same block or on

the same branch, contradicting the condition that they are

conflicting blocks. Therefore, rank(𝑏) ≠ rank(𝑑). □

Lemma B.3. If a correct replica has voted for 𝑑 and set its 𝑣𝑏

to 𝑑 , then 𝑑 must be an extension of 𝑑.𝑠𝑡𝑎𝑏𝑙𝑒 and at least one

correct replica has received a qualified QC for 𝑑.𝑠𝑡𝑎𝑏𝑙𝑒 .

Proof. Let 𝑑0 denote 𝑑.𝑝𝑎𝑟𝑒𝑛𝑡 . Let 𝑝𝑖 denote a correct replica

that has voted for 𝑑 and set its 𝑣𝑏 to 𝑑 . According to ln 19-25

of Algorithm 6, 𝑝𝑖 has received a certificate 𝑞𝑐 for 𝑑0, where

𝑞𝑐 and 𝑑 are matching. We distinguish two cases.

(1) 𝑞𝑐 is an rQC or an sQC for 𝑑0 and 𝑑.𝑠𝑡𝑎𝑏𝑙𝑒 = 𝑑0 (ln 23-

25 in Algorithm 6). In this case, 𝑑 is an extension of 𝑑.𝑠𝑡𝑎𝑏𝑙𝑒

and 𝑝𝑖 received a qualified QC for 𝑑.𝑠𝑡𝑎𝑏𝑙𝑒 .

(2) 𝑞𝑐 is a wQC for 𝑑0 and 𝑑.𝑠𝑡𝑎𝑏𝑙𝑒 = 𝑑0.𝑠𝑡𝑎𝑏𝑙𝑒 (ln 19-22

in Algorithm 6). Let 𝑑𝑣 denote the block of lowest height on

the branch led by 𝑑 such that 𝑑𝑣 .𝑠𝑡𝑎𝑏𝑙𝑒 = 𝑑.𝑠𝑡𝑎𝑏𝑙𝑒 . Let 𝑑 ′𝑣
denote 𝑑𝑣 .𝑝𝑎𝑟𝑒𝑛𝑡 . Then 𝑑𝑣 .𝑠𝑡𝑎𝑏𝑙𝑒 ≠ 𝑑 ′𝑣 .𝑠𝑡𝑎𝑏𝑙𝑒 . According to
Lemma B.1, at least one correct replica 𝑝 𝑗 has voted for 𝑑𝑣
since 𝑑𝑣 .𝑠𝑡𝑎𝑏𝑙𝑒 ≠ 𝑑 ′𝑣 .𝑠𝑡𝑎𝑏𝑙𝑒 . Note 𝑝 𝑗 votes for 𝑑𝑣 only if one

of the following conditions holds: i) 𝑑𝑣 .𝑠𝑡𝑎𝑏𝑙𝑒 = 𝑑 ′𝑣 .𝑠𝑡𝑎𝑏𝑙𝑒 ; ii)
𝑑𝑣 .𝑠𝑡𝑎𝑏𝑙𝑒 = 𝑑 ′𝑣 and 𝑝𝑖 receives a qualified QC for 𝑑 ′𝑣 . In this

case, 𝑑𝑣 .𝑠𝑡𝑎𝑏𝑙𝑒 = 𝑑.𝑠𝑡𝑎𝑏𝑙𝑒 = 𝑑 ′𝑣 , 𝑑 is an extension of 𝑑.𝑠𝑡𝑎𝑏𝑙𝑒 ,

and 𝑝 𝑗 has received a qualified QC for 𝑑.𝑠𝑡𝑎𝑏𝑙𝑒 .

Either way, 𝑑 is an extension of 𝑑.𝑠𝑡𝑎𝑏𝑙𝑒 and at least one

correct replica has received a qualified QC for 𝑑.𝑠𝑡𝑎𝑏𝑙𝑒 . □

Lemma B.4. If a qualified QC is formed in view 𝑣 , then there

exists only one block 𝑏 of lowest rank for which a qualified QC

is formed in view 𝑣 , and we have that:

18

Dashing and Star: Byzantine Fault Tolerance with Weak Certificates Full report, November, 2023

(1) the view of 𝑏.𝑝𝑎𝑟𝑒𝑛𝑡 is lower than 𝑣 ;

(2) if there exists a qualified QC for 𝑏1, 𝑏1 .𝑣𝑖𝑒𝑤 = 𝑣 , and the

view of 𝑏1.𝑝𝑎𝑟𝑒𝑛𝑡 is lower than 𝑣 , then 𝑏1 equals 𝑏;

(3) if there exists a qualified QC for 𝑑 and 𝑑.𝑣𝑖𝑒𝑤 = 𝑣 , then

𝑑 equals 𝑏 or 𝑑 is an extension of 𝑏.

Proof. If a qualified QC is formed in view 𝑣 , then there exists

only one block 𝑏 of lowest rank for which a qualified QC is

formed in view 𝑣 (according to Lemma B.2).

(1) Let 𝑏𝑣 denote the block of lowest height such that

𝑏𝑣 .𝑣𝑖𝑒𝑤 = 𝑣 on the branch led by 𝑏. We have 𝑏𝑣 .ℎ𝑒𝑖𝑔ℎ𝑡 ≤
𝑏.ℎ𝑒𝑖𝑔ℎ𝑡 and the view of 𝑏𝑣 .𝑝𝑎𝑟𝑒𝑛𝑡 is lower than 𝑣 . If 𝑏𝑣 ≠ 𝑏,

then there exists a block 𝑏 ′𝑣 on the branch led by 𝑏 such that

𝑏 ′𝑣 .𝑝𝑎𝑟𝑒𝑛𝑡 = 𝑏𝑣 and 𝑏
′
𝑣 .𝑣𝑖𝑒𝑤 = 𝑏𝑣 .𝑣𝑖𝑒𝑤 = 𝑣 . From Lemma B.1,

at least one correct replica 𝑝𝑖 has received an rQC or an sQC

for 𝑏𝑣 . Thus, 𝑏𝑣 is a block of lower rank than 𝑏 and a qualified

QC for 𝑏𝑣 is formed in view 𝑣 , contradicting the definition

of 𝑏. Hence, we have 𝑏𝑣 = 𝑏 and the view of 𝑏.𝑝𝑎𝑟𝑒𝑛𝑡 is lower

than 𝑣 .

(2) If there exists a qualified QC for 𝑏1, at least one correct

replica has voted for both 𝑏1 and 𝑏 in view 𝑣 . According to

Algorithm 7, in view 𝑣 , a correct replica only votes for one

block that extends a block proposed in a lower view than 𝑣 .

Therefore, it must hold that 𝑏1 = 𝑏.

(3) There exists a qualified QC for 𝑑 and 𝑑.𝑣𝑖𝑒𝑤 = 𝑣 . Let

𝑑0 denote the block of lowest height on the branch led by 𝑑

such that 𝑑0.𝑣𝑖𝑒𝑤 = 𝑣 . Then the view of the parent block of

𝑑0 is lower than 𝑣 . From Lemma B.1, a correct replica has

received a qualified QC for 𝑑0. According to claim (2), we

know 𝑑0 equals 𝑏. Therefore, 𝑑 equals 𝑏 or 𝑑 is an extension

of 𝑏. □

Lemma B.5. For any qualified QC 𝑞𝑐 , if qcBlock(𝑞𝑐) = 𝑏

and 𝑏.𝑣𝑖𝑒𝑤 = 𝑣 , then any block proposed in view 𝑣 on the

branch led by 𝑏 has been voted for by at least 𝑓 + 1 correct

replicas.

Proof. Assume that block𝑑 is on the branch led by𝑏 such that

𝑑.𝑣𝑖𝑒𝑤 = 𝑣 and fewer than 𝑓 + 1 correct replicas have voted
for 𝑑 . We immediately know that a qualified QC for 𝑑 cannot

be formed. Let 𝑑 ′ denote a block such that 𝑑 ′.𝑝𝑎𝑟𝑒𝑛𝑡 = 𝑑 . So,

a correct replica 𝑝𝑖 votes for𝑑
′
only if a wQC for𝑑 is received

and 𝑝𝑖 has voted for 𝑑 . Since fewer than 𝑓 +1 correct replicas
have voted for 𝑑 , a qualified QC for 𝑑 or any extensions of 𝑑

(including 𝑏) cannot be formed (a contradiction). □

Lemma B.6. For any two qualified QCs 𝑞𝑐1 and 𝑞𝑐2, let 𝑏1
and 𝑏2 be qcBlock(𝑞𝑐1) and qcBlock(𝑞𝑐2), respectively. If 𝑏1
is conflicting with 𝑏2, then 𝑏1 .𝑣𝑖𝑒𝑤 ≠ 𝑏2.𝑣𝑖𝑒𝑤 .

Proof. Assume, on the contrary, that 𝑏1.𝑣𝑖𝑒𝑤 = 𝑏2.𝑣𝑖𝑒𝑤 = 𝑣 .

Let 𝑏 be the block of lowest height for which a qualified QC

was formed in view 𝑣 . Then according to Lemma B.4, either

𝑏1 or 𝑏2 equals 𝑏 or is an extension of 𝑏. Hence, 𝑏1.ℎ𝑒𝑖𝑔ℎ𝑡 ≥
𝑏.ℎ𝑒𝑖𝑔ℎ𝑡 and 𝑏2.ℎ𝑒𝑖𝑔ℎ𝑡 ≥ 𝑏.ℎ𝑒𝑖𝑔ℎ𝑡 . We consider three cases:

(1) If 𝑏1 .ℎ𝑒𝑖𝑔ℎ𝑡 = 𝑏.ℎ𝑒𝑖𝑔ℎ𝑡 or 𝑏2.ℎ𝑒𝑖𝑔ℎ𝑡 = 𝑏.ℎ𝑒𝑖𝑔ℎ𝑡 , then 𝑏1
equals 𝑏 or 𝑏2 equals 𝑏. Therefore, 𝑏1 and 𝑏2 are the same

block or they are on the same branch.

(2) If 𝑏.ℎ𝑒𝑖𝑔ℎ𝑡 < 𝑏1.ℎ𝑒𝑖𝑔ℎ𝑡 , 𝑏.ℎ𝑒𝑖𝑔ℎ𝑡 < 𝑏2.ℎ𝑒𝑖𝑔ℎ𝑡 , and

𝑏1.ℎ𝑒𝑖𝑔ℎ𝑡 = 𝑏2 .ℎ𝑒𝑖𝑔ℎ𝑡 , then according to Lemma B.2, 𝑏1 and

𝑏2 must be the same block.

(3) If 𝑏.ℎ𝑒𝑖𝑔ℎ𝑡 < 𝑏1.ℎ𝑒𝑖𝑔ℎ𝑡 , 𝑏.ℎ𝑒𝑖𝑔ℎ𝑡 < 𝑏2.ℎ𝑒𝑖𝑔ℎ𝑡 , and

𝑏1.ℎ𝑒𝑖𝑔ℎ𝑡 ≠ 𝑏2.ℎ𝑒𝑖𝑔ℎ𝑡 , then 𝑏1 and 𝑏2 are extensions of 𝑏.

W.l.o.g., we assume that 𝑏1.ℎ𝑒𝑖𝑔ℎ𝑡 < 𝑏2 .ℎ𝑒𝑖𝑔ℎ𝑡 . Let 𝑏
′
2
de-

note a block on the branch led by 𝑏2 such that 𝑏 ′
2
.ℎ𝑒𝑖𝑔ℎ𝑡 =

𝑏1.ℎ𝑒𝑖𝑔ℎ𝑡 . Then 𝑏 ′
2
is an extension of 𝑏 and 𝑏 ′

2
and 𝑏1 are

blocks proposed during the normal case operation in view 𝑣 .

According to Lemma B.5, at least 𝑓 + 1 correct replicas have
voted for 𝑏 ′

2
. Since each rQC consists of at least 2𝑓 + 1 votes,

at least one correct replica has voted for both 𝑏 ′
2
and 𝑏1. Note

that during the normal case operation, a correct replica votes

for at most one block of each height. Therefore, it holds that

𝑏 ′
2
and 𝑏1 must be either the same block or on the same

branch.

In all cases, 𝑏1 and 𝑏2 are the same block or are blocks on

the same branch, contradicting the condition that they are

conflicting blocks. Therefore, 𝑏1.𝑣𝑖𝑒𝑤 ≠ 𝑏2.𝑣𝑖𝑒𝑤 . □

Lemma B.7. Suppose that all the correct replicas have voted

for 𝑏 in view 𝑣 , 𝑏.𝑝𝑎𝑟𝑒𝑛𝑡 = 𝑏.𝑠𝑡𝑎𝑏𝑙𝑒 and 𝑏.𝑝𝑎𝑟𝑒𝑛𝑡 is proposed

in view 𝑣 . If a correct replica has received a wQC 𝑞𝑐 for 𝑑 such

that rank(𝑑.𝑠𝑡𝑎𝑏𝑙𝑒) ≥ rank(𝑏.𝑝𝑎𝑟𝑒𝑛𝑡), and 𝑑 , 𝑑.𝑝𝑎𝑟𝑒𝑛𝑡 , and
𝑑.𝑠𝑡𝑎𝑏𝑙𝑒 are blocks proposed in view 𝑣 , then 𝑑 equals 𝑏 or 𝑑 is

an extension of 𝑏.

Proof. As𝑏,𝑏.𝑝𝑎𝑟𝑒𝑛𝑡 ,𝑑 , and𝑑.𝑝𝑎𝑟𝑒𝑛𝑡 are all blocks proposed

in view 𝑣 , 𝑏 and 𝑑 are blocks proposed during normal case

operation in view 𝑣 . According to Algorithm 6, we know that

if a correct replica has voted for 𝑑 , the replica will set its 𝑣𝑏

to 𝑑 at the same time. Since 𝑞𝑐 consists of 𝑓 + 1 votes, at least
one correct replica has voted for 𝑑 . From Lemma B.3, 𝑑 is

an extension of 𝑑.𝑠𝑡𝑎𝑏𝑙𝑒 and at least one correct replica has

received a qualified QC for 𝑑.𝑠𝑡𝑎𝑏𝑙𝑒 . Now we consider two

cases:

(1) rank(𝑑.𝑠𝑡𝑎𝑏𝑙𝑒) = rank(𝑏.𝑝𝑎𝑟𝑒𝑛𝑡). Since 𝑏.𝑝𝑎𝑟𝑒𝑛𝑡 =

𝑏.𝑠𝑡𝑎𝑏𝑙𝑒 , any correct replica votes for 𝑏 only after receiv-

ing a qualified QC for 𝑏.𝑝𝑎𝑟𝑒𝑛𝑡 . Then 𝑑.𝑠𝑡𝑎𝑏𝑙𝑒 = 𝑏.𝑝𝑎𝑟𝑒𝑛𝑡

and 𝑑.ℎ𝑒𝑖𝑔ℎ𝑡 ≥ 𝑏.ℎ𝑒𝑖𝑔ℎ𝑡 (according to Lemma B.2). Let 𝑑 ′

denote the block on the branch led by 𝑑 such that 𝑑 ′.ℎ𝑒𝑖𝑔ℎ𝑡 =
𝑏.ℎ𝑒𝑖𝑔ℎ𝑡 . Then at least one correct replica has voted for 𝑑 ′ in
view 𝑣 according to Lemma B.1. Since correct replicas vote

for at most one block of each height during normal operation

in a view, 𝑑 ′ must be equal to 𝑏. Therefore, 𝑑 equals 𝑏 or 𝑑 is

an extension of 𝑏.

(2) rank(𝑑.𝑠𝑡𝑎𝑏𝑙𝑒) > rank(𝑏.𝑝𝑎𝑟𝑒𝑛𝑡). It is straightforward
to see that rank(𝑑.𝑠𝑡𝑎𝑏𝑙𝑒) ≥ rank(𝑏). According to LemmaB.6,

𝑑.𝑠𝑡𝑎𝑏𝑙𝑒 is equal to 𝑏 or 𝑑.𝑠𝑡𝑎𝑏𝑙𝑒 is an extension of 𝑏. Hence,

𝑑 is an extension of 𝑏. □

19

Full report, November, 2023 Sisi Duan, Haibin Zhang, Xiao Sui, Baohan Huang, Changchun Mu, Gang Di, and Xiaoyun Wang

Lemma B.8. For a 𝑐𝑜𝑚𝑚𝑖𝑡𝑄𝐶 𝑞𝑐 for 𝑏 and a qualified QC

𝑞𝑐𝑑 for 𝑑 , if rank(𝑏) < rank(𝑑), then 𝑑 must be an extension

of 𝑏.

Proof. Let 𝑣 denote𝑏.𝑣𝑖𝑒𝑤 and 𝑣𝑑 denote𝑑.𝑣𝑖𝑒𝑤 . As rank(𝑑) >
rank(𝑏), then 𝑣𝑑 ≥ 𝑣 . Let 𝑏 ′ denote qcBlock(𝑞𝑐). Since 𝑞𝑐 is
a 𝑐𝑜𝑚𝑚𝑖𝑡𝑄𝐶 for 𝑏, there are two conditions: (1) 𝑞𝑐 is an rQC

for 𝑏 ′, 𝑏 ′.𝑠𝑡𝑎𝑏𝑙𝑒 = 𝑏 ′.𝑝𝑎𝑟𝑒𝑛𝑡 = 𝑏 and 𝑏 ′.𝑣𝑖𝑒𝑤 = 𝑣 ; (2) 𝑞𝑐 is

an sQC for 𝑏, 𝑏.𝑝𝑎𝑟𝑒𝑛𝑡 = 𝑏.𝑠𝑡𝑎𝑏𝑙𝑒 and the view of 𝑏.𝑝𝑎𝑟𝑒𝑛𝑡

equals 𝑣 .

We prove the lemma by induction over the view 𝑣𝑑 , start-

ing from view 𝑣 .

Base case: Suppose 𝑣𝑑 = 𝑣 . From Lemma B.6, for condition

(1) or (2), 𝑑 must be an extension of 𝑏.

Inductive case: Assume this property holds for view 𝑣𝑑
from 𝑣 to 𝑣 + 𝑘 − 1 for some 𝑘 ≥ 1. We now prove that it

holds for 𝑣𝑑 = 𝑣 + 𝑘 .
Let 𝑑0 denote the block of lowest height on the branch

led by 𝑑 such that 𝑑0.𝑣𝑖𝑒𝑤 = 𝑣𝑑 . Then the view of the parent

block of 𝑑0 is lower than 𝑣𝑑 , 𝑑0 is proposed during view

change in view 𝑣𝑑 , and 𝑑0 is voted for by at least one correct

replica 𝑝𝑖 (Lemma B.1).

Let𝑚 denote the new-view message for 𝑑0. According to

Algorithm 7,𝑚.𝑗𝑢𝑠𝑡𝑖 𝑓 𝑦 is a set 𝑀 of 2𝑓 + 1 view-change

messages for view 𝑣𝑑 . Let 𝑞𝑐1 denote the qualified QC with

the highest rank contained in 𝑀.𝑗𝑢𝑠𝑡𝑖 𝑓 𝑦 and let 𝑏1 denote

qcBlock(𝑞𝑐1). For all the wQCs contained in 𝑀.𝑗𝑢𝑠𝑡𝑖 𝑓 𝑦, a

correct replica chooses the wQC for a block with the highest

stable block according to ln 19-24 in Algorithm 5 and sets

the wQC as 𝑣𝑐 . Let 𝑏0 denote qcBlock(𝑣𝑐). Note that 𝑏0,

𝑏0 .𝑝𝑎𝑟𝑒𝑛𝑡 and 𝑏0 .𝑠𝑡𝑎𝑏𝑙𝑒 are proposed in the same view. Then

𝑏0 is a block proposed during the normal case operation. Let

𝑏2 denote the block which is included in more than 𝑓 + 1
messages in𝑀 . If no such block exists, 𝑏2 is set to ⊥.

In view 𝑣𝑑 , 𝑝𝑖 votes for 𝑑0 if 𝑑
′
0
= 𝑑0.𝑝𝑎𝑟𝑒𝑛𝑡 , 𝑑

′
0
.𝑣𝑖𝑒𝑤 < 𝑣𝑑 ,

𝑑 ′
0
.ℎ𝑒𝑖𝑔ℎ𝑡 +1 = 𝑑0 .ℎ𝑒𝑖𝑔ℎ𝑡 and one of the following conditions

are satisfied:

i) 𝑑 ′
0
= 𝑏2, rank(𝑏2 .𝑠𝑡𝑎𝑏𝑙𝑒) ≥ rank(𝑏1) (ln 27 in Algorithm 5).

ii) 𝑑 ′
0
= 𝑏0, i) is not satisfied and rank(𝑏0 .𝑠𝑡𝑎𝑏𝑙𝑒) ≥ rank(𝑏1)

(ln 28 in Algorithm 5).

iii) 𝑑 ′
0
= 𝑏1, i) and ii) are not satisfied (ln 29 in Algorithm 5) .

Note that 𝑏0 is a block proposed during the normal case

operation in view 𝑏0.𝑣𝑖𝑒𝑤 . Since a wQC consists of 𝑓 + 1
votes, at least one is sent by a correct replica. Hence, at least

one correct replica has voted for 𝑏0 and sets its 𝑣𝑏 as 𝑏0.

According to Lemma B.3, 𝑏0 is an extension of 𝑏0.𝑠𝑡𝑎𝑏𝑙𝑒 and

at least one correct replica has received a qualified QC for

𝑏0 .𝑠𝑡𝑎𝑏𝑙𝑒 .

Next, we prove the property holds in view 𝑣 + 𝑘 for the

two situations for 𝑐𝑜𝑚𝑚𝑖𝑡𝑄𝐶 , respectively.

(1)𝑞𝑐 is an rQC. Let 𝑆 denote the set of correct replicas that

have received a qualified QC for 𝑏 in view 𝑣 . Since in view 𝑣

correct replicas vote for 𝑏 ′ only after receiving a qualified

QC for 𝑏, we have |𝑆 | ≥ 𝑓 + 1. Note that a correct replica

updates its 𝑄𝐶𝑟 only with a qualified QC with a higher rank.

Thus, for any view-change message sent by a replica in 𝑆 ,

the 𝑗𝑢𝑠𝑡𝑖 𝑓 𝑦 field is set to a qualified QC with the same or a

higher rank than 𝑏. Since𝑀 consists of 2𝑓 + 1 messages, at

least one message in𝑀 is sent by a replica in 𝑆 . Therefore,

rank(𝑏1) ≥ rank(𝑏) and 𝑏1.𝑣𝑖𝑒𝑤 < 𝑣𝑑 .

According to the inductive hypothesis, 𝑏1 must be equal

to 𝑏 or an extension of 𝑏. Therefore, if condition iii) is satis-

fied, 𝑑0 must be an extension of 𝑏. If condition i) is satisfied,

then rank(𝑏2) > rank(𝑏1) and rank(𝑏2.𝑠𝑡𝑎𝑏𝑙𝑒) ≥ rank(𝑏1).
Since at least one correct replica has set its 𝑣𝑏 to 𝑏2, then 𝑏2 is

an extension of 𝑏2.𝑠𝑡𝑎𝑏𝑙𝑒 and a qualified QC 𝑞𝑐2 for 𝑏2.𝑠𝑡𝑎𝑏𝑙𝑒

has been received by a correct replica from Lemma B.3. Ac-

cording to the inductive hypothesis, 𝑏2 is an extension of 𝑏.

Hence, 𝑑 ′
0
is an extension of 𝑏. If condition ii) is satisfied,

then rank(𝑏0 .𝑠𝑡𝑎𝑏𝑙𝑒) ≥ rank(𝑏1). Note that 𝑏0 is an exten-

sion of 𝑏0.𝑠𝑡𝑎𝑏𝑙𝑒 and at least one correct replica has received

a qualified QC for 𝑏0.𝑠𝑡𝑎𝑏𝑙𝑒 . Thus, 𝑏0 is an extension of 𝑏

(according to the inductive hypothesis). Therefore, 𝑑 ′
0
is an

extension of 𝑏. No matter which condition is satisfied, both

𝑑0 and 𝑑 must be extensions of 𝑑 ′
0
and extensions of 𝑏.

(2)𝑞𝑐 is an sQC, the view of𝑏.𝑝𝑎𝑟𝑒𝑛𝑡 equals 𝑣 and𝑏.𝑝𝑎𝑟𝑒𝑛𝑡 =

𝑏.𝑠𝑡𝑎𝑏𝑙𝑒 . Since 𝑞𝑐 consists of 3𝑓 + 1 votes, all the correct

replicas have received a qualified QC for 𝑏.𝑝𝑎𝑟𝑒𝑛𝑡 , changed

its 𝑄𝐶𝑟 to a qualified QC for 𝑏.𝑝𝑎𝑟𝑒𝑛𝑡 , and voted for 𝑏 in

view 𝑣 . Let 𝑉 denote the set of correct senders of messages

in𝑀 . It is clear that |𝑉 | ≥ 𝑓 + 1. Since correct replicas only
change their𝑄𝐶𝑟 to a qualified QC of a higher rank, we have

rank(𝑏1) ≥ rank(𝑏.𝑝𝑎𝑟𝑒𝑛𝑡).
(a) If rank(𝑏1) ≥ rank(𝑏), then from Lemma B.2 and

the induction hypothesis, 𝑏1 is equal to 𝑏 or 𝑏1 is an ex-

tension of 𝑏. If condition iii) is satisfied, then 𝑑0 and 𝑑 are

extensions of 𝑏. If condition i) or ii) is satisfied, at least one

correct replica has voted for 𝑑 ′
0
and set its 𝑣𝑏 to 𝑑 ′

0
, and

rank(𝑑 ′
0
.𝑠𝑡𝑎𝑏𝑙𝑒) ≥ rank(𝑏1). According to Lemma B.3, 𝑑 ′

0
is

an extension of 𝑑 ′
0
.𝑠𝑡𝑎𝑏𝑙𝑒 and at least one correct replica

has received a qualified QC for 𝑑 ′
0
.𝑠𝑡𝑎𝑏𝑙𝑒 . Again, from the

induction hypothesis, 𝑑 ′
0
.𝑠𝑡𝑎𝑏𝑙𝑒 is equal to 𝑏 or 𝑑 ′

0
.𝑠𝑡𝑎𝑏𝑙𝑒 is

an extension of 𝑏. Therefore, 𝑑0 and 𝑑 are extensions of 𝑏.

(b) If rank(𝑏1) < rank(𝑏), then rank(𝑏1) = rank(𝑏.𝑝𝑎𝑟𝑒𝑛𝑡).
If 𝑏2 = 𝑏, then condition i) is satisfied. Hence, 𝑑 ′

0
equals 𝑏

and 𝑑0 and 𝑑 are extensions of 𝑏.

If 𝑏2 ≠ 𝑏, then there exists a correct replica 𝑝𝑖 in 𝑉 such

that when 𝑝𝑖 sent a view-change message for 𝑣𝑑 , its last

voted block 𝑣𝑏 is 𝑏𝑒 and 𝑏𝑒 ≠ 𝑏. Let 𝑏 ′𝑒 denote 𝑏𝑒 .𝑝𝑎𝑟𝑒𝑛𝑡 . Ac-
cording to ln 19-22 in Algorithm 6, 𝑝𝑖 has received a wQC 𝑞𝑐𝑒
for 𝑏 ′𝑒 , rank(𝑏 ′𝑒) ≥ rank(𝑏), and rank(𝑏 ′𝑒) ≥ rank(𝑏.𝑝𝑎𝑟𝑒𝑛𝑡).
If 𝑏 ′𝑒 .𝑣𝑖𝑒𝑤 = 𝑣 , then 𝑏 ′𝑒 equals 𝑏 or 𝑏 ′𝑒 is an extension of 𝑏

from Lemma B.7. If 𝑏 ′𝑒 .𝑣𝑖𝑒𝑤 > 𝑣 , then the view of 𝑏 ′𝑒 .𝑠𝑡𝑎𝑏𝑙𝑒
is higher than 𝑣 . From Lemma B.3, 𝑏 ′𝑒 is an extension of

𝑏 ′𝑒 .𝑠𝑡𝑎𝑏𝑙𝑒 and a correct replica has received a qualified QC for

𝑏 ′𝑒 .𝑠𝑡𝑎𝑏𝑙𝑒 . From the inductive hypothesis, as rank(𝑏 ′𝑒 .𝑠𝑡𝑎𝑏𝑙𝑒) >
rank(𝑏), it must hold that 𝑏 ′𝑒 .𝑠𝑡𝑎𝑏𝑙𝑒 is an extension of 𝑏.

Therefore, 𝑏𝑒 must be an extension of 𝑏, 𝑏2 is set to ⊥ or

20

Dashing and Star: Byzantine Fault Tolerance with Weak Certificates Full report, November, 2023

𝑏2 is an extension of 𝑏. If condition i) is satisfied, 𝑑 ′
0
equals 𝑏2.

We know that 𝑝𝑖 has sent 𝑞𝑐𝑒 in its view-change message.

Then rank(𝑏1.𝑠𝑡𝑎𝑏𝑙𝑒) ≥ rank(𝑏.𝑝𝑎𝑟𝑒𝑛𝑡). If condition i) is not

satisfied, condition ii) is satisfied and 𝑑 ′
0
equals 𝑏1. Note that

a wQC for 𝑏1 is included in 𝑀 and 𝑏1 is proposed during

normal case operation. Similar to 𝑏 ′𝑒 , 𝑏1 must be an extension

of 𝑏. Either way, 𝑑 ′
0
is equal to or an extension of 𝑏. Thus, 𝑑0

and 𝑑 are extensions of 𝑏.

Therefore, 𝑑 must be an extension of 𝑏 and the property

holds in view 𝑣 + 𝑘 based on Case (1) and Case (2). This

completes the proof of the lemma. □

Theorem B.9. (safety) If 𝑏 and 𝑑 are conflicting blocks, then

not both can be committed by at least one correct replica.

Proof. Suppose that there exist 𝑐𝑜𝑚𝑚𝑖𝑡𝑄𝐶’s for both 𝑏 and 𝑑 .

According to Lemma B.1, a qualified QC must have been

formed for both 𝑏 and 𝑑 . From Lemma B.2, if rank(𝑏) =

rank(𝑑), only one qualified QC for 𝑏 and 𝑑 can be formed in

the same view. For the case where rank(𝑏) ≠ rank(𝑑), we
assume w.l.o.g. that rank(𝑏) < rank(𝑑). From Lemma A.7,

we know that a qualified QC for 𝑑 cannot be formed in view

𝑑.𝑣𝑖𝑒𝑤 . This completes the proof of the theorem. □

Theorem B.10. (liveness) After 𝐺𝑆𝑇 , there exists a bounded

time period 𝑇𝑓 such that if the leader of view 𝑣 is correct and

all correct replicas remain in view 𝑣 during 𝑇𝑓 , then a decision

is reached.

Proof. Suppose after GST, in a new view 𝑣 , the leader 𝑝𝑖 is

correct. Then 𝑝𝑖 can collect a set 𝑀 of 2𝑓 + 1 view-change

messages from correct replicas and broadcast a new block

𝑏𝑣 in a new-view message𝑚. Since𝑚.𝑗𝑢𝑠𝑡𝑖 𝑓 𝑦 contains𝑀 ,

every correct replica can verify the block 𝑏𝑣 using a call

safeBlock(𝑀).
Under the assumption that all correct replicas are synchro-

nized in their view, 𝑝𝑖 is able to form a𝑄𝐶 for 𝑏 and generate

new blocks. All correct replicas will vote for the new blocks

from 𝑝𝑖 . Therefore a 𝑐𝑜𝑚𝑚𝑖𝑡𝑄𝐶 for𝑏 can be formed by 𝑝𝑖 and

any correct replica will vote for 𝑏. After GST, the duration

𝑇𝑓 for these phases to complete is of bounded length. □

C The Underlying BFT Protocol in Star

C.1 The Consensus Protocol Implemented in Star

We now describe the concrete atomic broadcast protocol that

we implemented in Star. We use a variant of PBFT that differs

from PBFT in two minor aspects. The protocol we will de-

scribe in the following is not presented in its general manner

but instead takes as input the output from the transmission

process.

Normal case operation. We first describe the normal case

protocol.

Step 1: Pre-prepare. The leader checks whether |𝑊 [𝑙𝑒] | ≥
𝑛 − 𝑓 . If so, it proposes a block 𝐵 and broadcasts a ⟨pre-
prepare, 𝑣, 𝐵⟩ message to all replicas.

The block 𝐵 is of the form ⟨𝑣, 𝑐𝑚𝑑,ℎ𝑒𝑖𝑔ℎ𝑡⟩, where 𝑣 is the
current view number, 𝐵.𝑐𝑚𝑑 =𝑊 [𝑙𝑒], and 𝐵.ℎ𝑒𝑖𝑔ℎ𝑡 = 𝑙𝑒 . We

directly use 𝐵.ℎ𝑒𝑖𝑔ℎ𝑡 as the sequence number for 𝐵 in the

protocol.

Step 2: Prepare. Replica receives a valid pre-preparemessage

for block 𝐵 and broadcasts a prepare message.

After receiving a pre-prepare message ⟨pre-prepare, 𝑣, 𝐵⟩
from the leader, a replica 𝑝 𝑗 first verifies whether 1) its cur-

rent view is 𝑣 , 2) 𝐵.𝑐𝑚𝑑 consists of at least 𝑛 − 𝑓 wQCs or

rQCs for epoch 𝑒 , and 3) 𝑝 𝑗 has not voted for a block 𝐵.ℎ𝑒𝑖𝑔ℎ𝑡

in the current view. Then 𝑝 𝑗 broadcasts a signed prepare

message ⟨prepare, 𝑣, ℎ𝑎𝑠ℎ(𝐵)⟩. The replica also updates its

𝑊 queue if any QC included in 𝐵.𝑐𝑚𝑑 is not in𝑊 [𝐵.ℎ𝑒𝑖𝑔ℎ𝑡].
Step 3: Commit. Replica receives 𝑛 − 𝑓 prepare messages for

𝐵 and broadcasts a commit message.

After receiving 𝑛 − 𝑓 matching prepare messages with

the same ℎ𝑎𝑠ℎ(𝐵), replica 𝑝 𝑗 combines the messages into a

regular certificate for 𝐵, called a prepare certificate. Then 𝑝 𝑗

broadcasts a ⟨commit, 𝑣, ℎ𝑎𝑠ℎ(𝐵)⟩ message. After receiving

𝑛 − 𝑓 commitmessages with the same ℎ𝑎𝑠ℎ(𝐵), 𝑝 𝑗 a-delivers

𝐵 with sequence number 𝑙𝑒 .

Note that the pre-prepare step and the commit step carry

only ℎ𝑎𝑠ℎ(𝐵) as the message transmitted. The total commu-

nication for the normal case operation is thus𝑂 (𝑛2𝜆) where
𝜆 is the security parameter.

Checkpointing.After a fixed number of blocks are a-delivered,

replicas execute the checkpoint protocol for the garbage col-

lection. Each replica broadcasts a checkpoint message that

includes its current system state and the epoch number for

the latest a-delivered block. Each replica waits for 𝑛 − 𝑓

matching checkpoint messages which form a stable check-

point. Then the system logs for epoch numbers lower than

the stable checkpoint can be deleted.

View change.We now describe the view change protocol.

After a correct replica times out, it sends a view-change

message to all replicas. Upon receiving 𝑓 + 1 view-change

messages, a replica also broadcasts a view-change message.

The new leader waits for 𝑛 − 𝑓 view-change messages,

denoted as𝑀 , and then broadcasts a new-view message to

all replicas.

The view-changemessage is of the form ⟨view-change, C,
P⟩, where C a stable checkpoint and P is a set of prepare

certificates. For P, a prepare certificate certificate for each
epoch number greater than C and lower than the replica’s

last vote is included.

The new-view message is of the form ⟨new-view, 𝑣 +
1, 𝑐, 𝑀,PP⟩, where 𝑐 is the latest stable checkpoint, 𝑀 is

the set of view-change messages 𝑀 , and PP is a set of

pre-prepare messages. The set PP is computed as follows:

For each epoch number 𝑒 between C and the epoch num-

ber of any replica’s last vote, the new leader creates a new

pre-prepare message. If a prepare certificate is provided by

any replica in the view-change message, the pre-prepare

message is of the form ⟨pre-prepare, 𝑣 + 1, ℎ⟩, where ℎ is the

21

Full report, November, 2023 Sisi Duan, Haibin Zhang, Xiao Sui, Baohan Huang, Changchun Mu, Gang Di, and Xiaoyun Wang

hash in the prepare certificate. If none of the replicas pro-

vides a prepare certificate, the new leader creates a message

⟨pre-prepare, 𝑣 + 1, 𝐵⟩, where 𝐵 is of the form ⟨𝑣 + 1,𝑊 [𝑒], 𝑒⟩.
Upon receiving a new-view message, a replica verifies

the pre-prepare messages in the PP field by executing the

same procedures as the leader based on𝑀 . Then the replicas

resume normal operation.

D Correctness of Star

Based on the safety and liveness properties of the underlying

atomic broadcast protocol in the consensus process, we now

prove the correctness of Star.

According to the Star specification, a set 𝑉 consisting of

transactions in batches {qcProposal(𝑞𝑐𝑘)}𝑘∈[1..𝑛−𝑓] deliv-
ered (in a deterministic order) by 𝑝𝑖 must correspond to the

set𝑚 (consisting of 𝑛 − 𝑓 wQCs {𝑞𝑐𝑘 }𝑘∈[1..𝑛−𝑓]) a-delivered
by 𝑝𝑖 from the underlying atomic broadcast protocol. In this

case, we simply say 𝑉 is associated with𝑚.

We prove the safety of Star by showing that different sets

of transactions cannot be committed together in the same

epoch, each by a correct replica. We begin with the following

lemma:

Lemma D.1. If 𝑉𝑖 associated with some𝑚 is delivered by 𝑝𝑖
and 𝑉𝑗 associated with the same𝑚 is delivered by 𝑝 𝑗 , then we

have 𝑉𝑖 = 𝑉𝑗 .

Proof. Assume, towards contradiction, that 𝑉𝑖 ≠ 𝑉𝑗 . Let

{𝑞𝑐𝑘 }𝑘∈[1..𝑛−𝑓] be the 𝑛 − 𝑓 wQCs contained in𝑚. Then we

have that𝑉𝑖 is a union of transactions in proposals {𝑏𝑘 }𝑖∈[1..𝑛−𝑓] ,
where we have 𝑏𝑘 = qcProposal(𝑞𝑐𝑘). Similarly, 𝑉𝑗 is a

union of transactions in proposals {𝑏 ′
𝑘
}𝑖∈[1..𝑛−𝑓] , where 𝑏 ′𝑘 =

qcProposal(𝑞𝑐𝑘). Since 𝑉𝑖 ≠ 𝑉𝑗 , we have that there exists

𝑘 ∈ [1..𝑛 − 𝑓] such that 𝑏𝑘 ≠ 𝑏 ′
𝑘
. Note that 𝑞𝑐𝑘 is a wQC

for 𝑏𝑘 and also a wQC for 𝑏 ′
𝑘
. Since 𝑏𝑘 ≠ 𝑏 ′

𝑘
, this violates

the unforgeability of digital signatures (or threshold signa-

tures). □

Now we are ready to prove safety.

Theorem D.2. (safety) If a correct replica delivers a transac-

tion 𝑡𝑥 before delivering 𝑡𝑥 ′, then no correct replica delivers a

transaction 𝑡𝑥 ′ without first delivering 𝑡𝑥 .

Proof. Suppose that a correct replica 𝑝𝑖 delivers a transaction

𝑡𝑥 before delivering 𝑡𝑥 ′. Let 𝐿𝑖 denote the a-delivered mes-

sages log of 𝑝𝑖 and 𝑇𝐿𝑖 denote the delivered transactions log

of 𝑝𝑖 . For any correct replica 𝑝 𝑗 , let 𝐿 𝑗 denote the a-delivered

messages log and 𝑇𝐿 𝑗 denote the delivered transactions log

of 𝑝 𝑗 . According to the safety of the consensus protocol, ei-

ther 𝐿𝑖 equals 𝐿 𝑗 or one of 𝐿𝑖 and 𝐿 𝑗 is a prefix of the other.

Note that 𝑇𝐿𝑖 and 𝑇𝐿 𝑗 contain transactions associated with

messages in the a-delivered messages logs in a deterministic

order. According to Lemma D.1, either𝑇𝐿𝑖 equals𝑇𝐿 𝑗 or one

of 𝑇𝐿𝑖 and 𝑇𝐿 𝑗 is a prefix of the other. This completes the

proof of the theorem. □

TheoremD.3. (liveness) If a transaction 𝑡𝑥 is submitted to all

correct replicas, then all correct replicas eventually deliver 𝑡𝑥 .

Proof. If a transaction 𝑡𝑥 is submitted to all correct replicas,

eventually in some epoch, 𝑡𝑥 is included in the proposal

by at least one correct replica. Using the strategy in EPIC

(following HoneyBadgerBFT), eventually the wQC𝑤𝑞𝑐 for

the proposal containing the transaction 𝑡𝑥 will be sent to the

consensus process.

At least 𝑛 − 𝑓 wQCs will be a-delivered in the consensus

process, and at least 𝑓 + 1 wQCs must be proposed by cor-

rect replicas. So there is some probability that 𝑤𝑞𝑐 for 𝑡𝑥

will be delivered. If the corresponding transaction has been

received by a correct replica, then we are done. Otherwise,

a correct replica just needs to run the fetch operation to

get the corresponding proposal containing 𝑡𝑥 . Recall that

the use of wQC ensures that a correct replica must have

stored the corresponding proposal. (If the underlying atomic

broadcast only achieves consistency rather than agreement,

then we can still use the standard state machine replication

mechanism such as state transfer to ensure that all correct

replicas deliver the transaction.) □

22

	Abstract
	1 Introduction
	1.1 Dashing: Gaining in Efficiency, Network Adaptivity, and Robustness
	1.2 Star: Gaining in Efficiency and Scalability
	1.3 Summary of Contributions

	2 Related Work
	3 System Model
	4 The Family of Dashing Protocols
	4.1 Overview of (Chained) HotStuff
	4.2 Overview of Dashing1
	4.3 Notation for the Dashing Protocols
	4.4 Dashing1
	4.5 Dashing2

	5 The Star Framework
	6 Implementation and Evaluation
	7 Conclusion
	References
	A Correctness of Dashing1
	B Dashing2
	B.1 Correctness of Dashing2

	C The Underlying BFT Protocol in Star
	C.1 The Consensus Protocol Implemented in Star

	D Correctness of Star

