
Enforcing fine-grained constant-time policies
Basavesh Ammanaghatta

Shivakumar

MPI-SP

Bochum, Germany

basavesh.shivakumar@mpi-sp.org

Gilles Barthe

MPI-SP

Bochum, Germany

IMDEA Software Institute

Pozuelo de Alarcón, Spain

gbarthe@mpi-sp.org

Benjamin Grégoire

Université Côte d’Azur, Inria

Sophia Antipolis, France

benjamin.gregoire@inria.fr

Vincent Laporte

Université de Lorraine, CNRS, Inria,

LORIA

F-54000 Nancy, France

vincent.laporte@inria.fr

Swarn Priya

Université Côte d’Azur, Inria

Sophia Antipolis, France

swarn.priya@inria.fr

ABSTRACT

Cryptographic constant-time (CT) is a popular programming disci-

pline used by cryptographic libraries to protect themselves against

timing attacks. The CT discipline aims to enforce that program ex-

ecution does not leak secrets, where leakage is defined by a formal

leakage model. In practice, different leakage models coexist, some-

times even within a single library, both to reflect different architec-

tures and to accommodate different security-efficiency trade-offs.

Constant-timeness is popular and can be checked automatically

by many tools. However, most sound tools are focused on a baseline

(BL) leakage model. In contrast, (sound) verification methods for

other leakage models are less developed, in part because these mod-

els require modular arithmetic reasoning. In this paper, we develop

a systematic, sound, approach for enforcing fine-grained constant-

time policies beyond the BL model. Our approach combines two

main ingredients: a verification infrastructure, which proves that

source programs are constant-time, and a compiler infrastructure,

which provably preserves constant-timeness for these fine-grained

policies. By making these infrastructures parametric in the leakage

model, we achieve the first approach that supports fine-grained

constant-time policies. We implement the approach in the Jasmin

framework for high-assurance cryptography, and we evaluate our

approach with examples from the literature: OpenSSL and wolfSSL.

We found a bug in OpenSSL and provided a formally verified fix.

KEYWORDS

Secure Compilation, Cryptographic Constant-Time

1 INTRODUCTION

Timing attacks [27] are a class of side-channel attacks in which

attackers monitor (and analyze) program execution time to learn

about secret values used by these programs. Timing attacks remain

an important concern for cryptographic libraries more than twenty-

five years after their discovery. A pragmatic approach to minimize

these attacks is to ensure that program leakage does not depend on

secrets, using an idealized model of leakage. Many cryptographic

libraries adopt this approach under the generic umbrella of constant-
time cryptography. Over the last years, constant-time cryptography

has also become a main target for verification [6, 26] and secure

compilation [9, 14, 15].

Program Counter (PC) Conditionals leak their guards

Baseline (BL) PC + Memory R/W leak addresses

Cache line (CL) PC + Mem. accesses leak cache lines

Time-Variable (TV) BL + TV arithmetic operators leak

TV + CL TV arithmetic operators leak + CL

Figure 1: Common leakage models

However, constant-time cryptography is based on a family of

leakage models rather than a single model; see Figure 1 for a short

description of some key models. In general, these models differ sub-

tly based on the considered threat model, the intended target plat-

form, and the tractability of the constant-time verification problem

for this model. In practice, cryptographic libraries such as OpenSSL

optimize their implementations for each leakage model and there-

fore provide one implementation per leakage model. Unfortunately,

the multiplicity of implementations and leakage models can lead to

a false sense of security. We provide two potential scenarios below:

• a library is verified for constant-time, but only for a specific

leakage model, so only the functions relevant to this model

are checked. For instance, OpenSSL provides multiple imple-

mentations of the same crypto routines optimized for different

leakage models. Therefore, when a library such as OpenSSL is

verified for constant-time, it is likely that only the functions

relevant to the BL leakage models are checked. In contrast,

no guarantee is given for functions that target the CL model,

which is harder to verify;

• a library is verified for constant-time in a weaker leakagemodel

than intended, because of inherent limitations in the verifica-

tion technology, and as a consequence, it may still leak in the

intended leakage model. For instance, some crypto routines

in (earlier versions of) OpenSSL are provably secure in the BL

leakage model but are insecure in the TV model and vulnerable

to practical timing attacks—such as Lucky13 [1].

These two scenarios reflect the existence of a potentially dangerous

gap in computer-aided cryptography. This paper considers the

broad problem of generalizing existing works on verification and

secure compilation of the constant-time policy to cover different

leakage models.

Contributions

The first contribution, which motivates for this work, is a review of

implementations of MEE-CBC, a component of the TLS protocol,

in the cache line (CL) leakage model defined as follows. In the CL

model, in contrast to the BL model where memory accesses leak the

exact address, memory accesses leak the cache line of the address

accessed, i.e. the address divided by the size of the cache line. This

makes constant-time analysis challenging and error-prone because

modular arithmetic reasoning is required for proving the equality

of leakages. In fact, we show that the OpenSSL implementation of

MEE-CBC tailored to the CL leakage model violates its intended

constant-time policy. We make no attempt to exploit this leakage

in a timing attack, mainly because a cheap fix closes the leakage.

The second and main technical contribution is a mechanized

proof in the Coq proof assistant that the Jasmin compiler preserves a

class of fine-grained constant-time policies. This class encompasses

the BL policy as well as policies that capture time-variable instruc-

tions and fine-grained leakage models of memory accesses. The

proof takes the form of an instrumented correctness theorem [15]

and shows that leakage of assembly programs can be computed

deterministically from leakage of source programs.

Our third contribution is a set of formal proofs that previously

unverified cryptographic code is constant-time in a (non-baseline)

leakage model. This includes Langley’s patch to Lucky13 and our

own fix of OpenSSL. The proofs are carried via an embedding of

Jasmin source code into EasyCrypt and using EasyCrypt’s imple-

mentation of relational Hoare logic. Although the proofs are carried

for Jasmin programs, our certified compiler carries the guarantees

to the generated code.

Overall, our work allows expands tool support for the constant-

time policy, which has been very beneficial and has contributed to

making cryptographic libraries more robust against timing attacks,

to a rich set of policies.

Supplementary material. The full development is provided as

supplementary material at https://github.com/jasmin-lang/jasmin/

tree/constant-time-op

2 BACKGROUND AND EXAMPLE

This section gives a background on Jasmin and EasyCrypt, explains

the different leakage models, and presents our motivating example.

2.1 Background on Jasmin

Jasmin is a framework for high-speed and high-assurance cryptog-

raphy [2, 3]. The Jasmin language smoothly combines high-level

and low-level constructs so as to support “assembly in the head”

programming. Programmers can control many low-level details

that are performance-critical: instruction selection and schedul-

ing, what registers to spill and when etc. They can also rely on

high-level abstractions (variables, functions, arrays, loops, etc.) to

structure their code and make it more amenable to formal verifica-

tion. Indeed, the Jasmin infrastructure has been used to implement

cryptographic constructions that are as efficient as state-of-the-

art handwritten assembly and, nonetheless, formally verified for

correctness and securitywithmachine-checked proofs. These imple-

mentations notably include scalar multiplication on the Curve25519

Figure 2: Timing behavior of the div instruction on a x86

microprocessor (amd epyc 7f52) with 64-bit (left) and 32-

bit (right) operands. It computes at once both quotient and

modulo of its arguments 𝑎 and 𝑏. Different microprocessor

models exhibit different timing profiles.

elliptic curve [2], the ChaCha20 stream cipher [3], and the SHA-

3 hash function [4]. Jasmin programs are compiled to assembly

code (currently targeting the x86 64 architecture) using a verified
compiler formally proved using Coq.

2.2 Constant-time leakage models

Baseline (BL) leakage model. This is the simplest leakage model but

not weakest. This model assumes:

• branching statements leak values of their guards;

• memory operations leak the addresses accessed;

• nothing else leaks.

This model is the basis of the baseline constant-time policy, which

mandates that leakage does not depend on secrets. This policy is

appealing for three main reasons. First, it captures many timing

attacks from the literature. Second, the model is quite tractable and

can be used effectively by cryptographic engineers to guide their

implementations. Moreover, there is a large spectrum of automated

tools [6] for (dis)proving that programs satisfy the baseline constant-

time property, i.e. their leakage is independent of secrets. Third,

there is a recent line of work [9, 15] that establishes the preservation

of the baseline constant-time policy for some realistic compilers.

Time-variable (TV) leakage model. The baseline leakage model does

not capture leakage resulting from time-variable instructions. Such

instructions, which leak information about their operands, are

pervasive in all modern architectures; for the x86 architecture,

they include division and modulo (see Figure 2). As a consequence,

constant-time programs may still leak through their time-variable

instructions. In specific circumstances, this leakage may be ex-

ploited to recover cryptographic keys. To address this issue, the TV

leakage model strengthens the BL leakage model by making time-

variable arithmetic instructions leak a function of their operands.

In this paper, we assume that the modulo operation leaks the base-2

integer logarithm of its operands.

Cache line (CL) leakage model. The baseline constant-time leakage

model assumes that memory operations leak the addresses of the

memory accessed. This assumption helps in protecting against

attacks that exploit cache-bank conflicts but also makes programs

harder to write and less efficient. As a consequence, cryptographic

libraries often provide implementations for the CL leakage model.

In this leakage model, memory accesses leak the cache line of the

addresses being accessed. In this paper, memory accesses leak the

address divided by the length of the cache line (32, 64, ...).

2

https://github.com/jasmin-lang/jasmin/tree/constant-time-op
https://github.com/jasmin-lang/jasmin/tree/constant-time-op

Figure 3: Memory layout of a decrypted SSL3 record

Summary of models.

• the baseline (BL) leakage model, where guards and memory

addresses are leaked;

• the time-variable (TV) leakage model, where guards and mem-

ory addresses are leaked, and time-variable arithmetic instruc-

tions leak a function of their operands;

• the cache line model (CL), where guards and cache lines of

memory addresses are leaked;

• the TV + CL model, combining the TV and CL models.

2.3 Background on EasyCrypt

EasyCrypt [10] is a proof assistant used for reasoning about cryp-

tographic primitives. EasyCrypt features an ambient higher-order

logic with a backend to SMT solvers as well as several program

logics to reason about (probabilistic) imperative programs written

in a core language. EasyCrypt was originally used for proving se-

curity properties for several cryptographic primitives [7, 12, 13].

More recently, it has been used to prove functional correctness and

side-channel security of cryptographic primitives written in Jasmin.

For the latter, proofs proceed by embedding Jasmin programs with

their leakage into EasyCrypt, and by using relational Hoare logic to

prove that leakage is independent of secrets. In prior work, focus-

ing on the BL model, application of relational Hoare logic is fully

automated. We provide more detail in Section 5.

2.4 Motivating Example: MEE-CBC

MEE-CBC (MAC-then-Encode-then-CBC-Encrypt) is an authenti-

cated encryption scheme used in the TLS 1.2 ciphersuite. In 2013,

AlFardan and Paterson [1] designed Lucky13, a sophisticated timing

attack against several open-source cryptographic libraries support-

ing MEE-CBC. In response to the attack, several libraries devel-

oped new implementations of MEE-CBC that loosely follow the

constant-time programming discipline. However, proving that these

implementations are constant-time according to the baseline leak-

age model is not always possible, as some implementations use

time-variable instructions, or optimize code in a way that degrades

security to a weaker model. In this section, we review different

implementations of two core functions of MEE-CBC and analyze

their security in the four different leakage models discussed in the

previous section.

1 /* public: md_size, scan_start */
2 /* secret: mac_start */
3 fn rotate_offset_BL(reg u32 md_size, mac_start, scan_start) −→ reg u32 {
4 reg u32 rotate_offset;
5 rotate_offset = mac_start;
6 rotate_offset -= scan_start;
7 rotate_offset = rotate_offset % md_size;
8 return rotate_offset;
9 }

1 /* pre: 16 ≤ md_size ≤ 64 ∧ 0 ≤ mac_start - scan_start < 256 */
2 /* public: md_size, scan_start */
3 /* secret: mac_start */
4 fn rotate_offset_TV(reg u32 md_size, mac_start, scan_start) −→ reg u32 {
5 reg u32 div_spoiler;
6 reg u32 rotate_offset;
7 div_spoiler = md_size;
8 div_spoiler <<= 23;
9 rotate_offset = mac_start;
10 rotate_offset -= scan_start;
11 rotate_offset += div_spoiler;
12 rotate_offset = rotate_offset % md_size;
13 return rotate_offset;
14 }

Figure 4: Two implementations computing the rotation offset

CBC decoding. We briefly review the CBC decoding function, in

which the functions we study are used. Figure 3 provides a pictorial

description of the inputs to the function ssl3 cbc copy mac. This
function takes four arguments, 1. rec pointer to a ssl3 record struc-

ture which contains a pointer to data buffer and a secret length

field which denotes the length after removing padding overhead;

2. out buffer, where extracted message authentication code (MAC)

will be copied to; 3. md size denotes the MAC size and 4. orig len
representing the record’s original length, including padding.

Initially, ciphertext is decrypted into data buffer, containing the

payload, the MAC and finally the padding overhead. The goal is
to copy the MAC in constant-time to the out buffer. Unfortunately,
we cannot simply copy the MAC, because mac start and mac end
are secret. We also do not want to scan the whole data buffer, for
efficiency reasons.

However, we know that orig len is public, and that the padding

overhead is at most 256 bytes long. Therefore, it suffices to begin

copying from scan start = max(0, orig len − (md size + 256)).
However, there is a twist: constant-time copying might yield byte-

wise rotated values. Therefore, in order to recover the original MAC,

one must compute the offset and perform the rotation relative to

this offset in constant-time.

Computing the rotation offset. Figure 4 shows the functions ro-
tate offset BL and rotate offset TV for computing the offset. For

readability, we annotate these functions with security levels and

preconditions.

The first function rotate offset BL is a simple arithmetic pro-

gram that computes (mac start − scan start) mod md size. This
function is trivially constant-time in the baseline (BL) constant-time

leakage model, as it does not branch nor perform memory accesses.

However, the variable mac start is secret; hence this function is

not constant-time in the time-variable (TV) leakage model.

The second function rotate offset TV is a Jasmin implemen-

tation of Langley’s original fix to Lucky13 and is constant-time

3

1 /* public: md_size, out */
2 /* secret: rotate_offset */
3 fn rotate_mac_BL (reg u32 md_size, rotate_offset,
4 reg u64 out, stack u8[128] rotated_mac) {
5 reg u64 i, j;
6 reg u32 old, new, zero, ro;
7 zero = 0;
8 // ro = (-rotate_offset) % md_size
9 ro = opp_mod(rotate_offset, md_size);
10 i = 0;
11 while (i < md_size) {
12 j = 0;
13 while (j < md_size) {
14 old = (32u) (u8)[out + j];
15 new = (32u) rotated_mac[(int) i];
16 new = old if j != ro;
17 (u8)[out + j] = new;
18 j += 1;
19 }
20 ro += 1; ro = zero if md_size <= ro;
21 i += 1;
22 }
23 }

1 /* rotated_mac % 64 = 0 ∧ 0 ≤ rotate_offset ≤ mdsize ≤ 64*/
2 /* public: md_size, out, rotated_mac */
3 /* secret: rotate_offset */
4 fn rotate_mac_CL (reg u32 md_size, rotate_offset,
5 reg u64 out, rotated_mac) {
6 reg u8 new;
7 reg u64 i, zero, ro;
8 zero = 0;
9 ro = (64u) rotate_offset;
10 i = 0;
11 while (i < md_size) {
12 new = (u8)[rotated_mac + ro];
13 (u8)[out + i] = new;
14 ro += 1; ro = zero if md_size <= ro;
15 i += 1;
16 }
17 }

Figure 5: Two implementations of MAC rotation

in the TV model. This is achieved by making the first argument

large enough, by first setting div spoiler = md size << 23 and

by setting rotate offset to div spoiler + (mac start − scan start).
Note that the denominator (md size) is a public value, so only the

numerator (rotate offset) needs to be patched in such a way. Under

the assumptions on the parameters set by the precondition, we

can prove that the change does not affect the result of the instruc-

tion and also makes leakage independent of mac start. Indeed, the
leakage of the modulo instruction is equal to:

log
2
(md size × 223), log

2
(md size)

and hence only depends on public values. To justify the above claim,

note that by definition of the leakage model, the first component of

the leakage is

log
2
(md size × 223 + (mac start − scan start))

= log
2
(md size × 223).

The equality above follows from the precondition.

Rotating the MAC. Figure 5 presents the two Jasmin implemen-

tations. This code uses some Jasmin specific notation: the notation

(u8)[p] is the Jasmin syntax for byte memory load/store at address p,

#if defined(CBC_MAC_ROTATE_IN_PLACE)
j = 0;
for (i = 0; i < md_size; i++) {
/* in case cache-line is 32 bytes, touch second line */
((volatile unsigned char *)rotated_mac)[rotate_offset ^ 32];
out[j++] = rotated_mac[rotate_offset++];
rotate_offset &= constant_time_lt_s(rotate_offset, md_size);

}
#else ...

Figure 6: Buggy C implementation of OpenSSL rotate offset

the notation (64u)x is the syntax for zero-extension (i.e., cast from

32-bits to 64-bits).

The first implementation performs a nested loop. Before the loop

ro is set to (−rotate offset) mod md size (line 9). For each i, the
inner loop writes to out buffer, if j equals rotate offset, new value

obtained at line 15 is written, else the old value is rewritten. The

selection is done at line 16 using a conditional assignment, and will

be compiled using a constant-time CMOVcc instruction. Line 20
computes (rotate offset + 1) mod md size in constant-time.

This implementation is constant-time in the baseline leakage

model, since branching statements (here the while loop) only de-

pend on public data (i, j andmd size), and similarly for memory and

array accesses, which only depend on i, j and out. The drawback is

that the implementation performs a nested loop and so the copy is

quadratic in md size.
In contrast, the second implementation rotated mac CL per-

forms a single loop. The code is straightforward. Observe that the

leakage corresponding to branching instructions only depends on

public data, concretely i and md size. Next, we consider leakage
from memory instructions. The instruction at line 13 only depends

on public data (i and out), so it does not leak. However, the in-

struction at line 12 leaks the secret index rotate offset at the first
iteration. Hence the function is not constant-time in the BL leakage

model. On the other hand, rotated mac CL is constant-time in the

CL leakage model assuming that rotated mac is 64-byte aligned
memory pointer, and the MAC data will fit in a cache line—these

assumptions correspond to the precondition. This is because in

this model the instruction leaks: ⌊(rotated mac + ro)/64⌋. Since
rotated mac mod 64 = 0 and 0 ≤ ro < md size ≤ 64, it follows:

⌊(rotated mac + ro)/64⌋ = ⌊rotated mac/64⌋.
Since the value of the pointer rotated mac is public, the leakage
does not depend on secrets.

OpenSSL bug and responsible disclosure. Figure 6 shows the code1

used by OpenSSL in CL model to accommodate CPUs with 32-byte

cache lines. Here rotated mac is a 64-byte aligned buffer (i.e., its

address is 64𝑞 for some 𝑞) and assumed that this data would fit

into two 32-byte cache lines. The developer has added a dummy

unoptimizable
2
first access to load rotated mac[rotate offset ^ 32]

and then the actual load to ensure that they touch both lines in

every iteration to make it look like constant-time. The comment

1
still present in the master branch: https://github.com/openssl/openssl/blob/

c9007bda79291179ed2df31b3dfd9f1311102847/ssl/record/tls_pad.c#L292

2
Normally, a compiler can remove an unused load instruction since it does not change

the semantic. However, volatile keyword prevents the compiler from performing this

kind of optimization.

4

https://github.com/openssl/openssl/blob/c9007bda79291179ed2df31b3dfd9f1311102847/ssl/record/tls_pad.c#L292
https://github.com/openssl/openssl/blob/c9007bda79291179ed2df31b3dfd9f1311102847/ssl/record/tls_pad.c#L292

𝑒 ∈ Expr ::= 𝑥 variable

| 𝑐 constant

| 𝑎 [𝑒] array read

| ∗𝑒 memory load

| if 𝑒 then 𝑒 else 𝑒 conditional expression

| op(𝑒, . . . , 𝑒) operator

𝑑 ∈ Lval ::= 𝑥 variable

| 𝑎 [𝑒] array write

| ∗𝑒 memory store

𝑖 ∈ Instr ::= 𝑑 := 𝑒 assignment

| if 𝑒 then 𝑖 else 𝑖 conditional

| while 𝑒 do 𝑖 while loop

| {𝑖; . . . ; 𝑖 } sequencing

𝑎 ranges over array variables; 𝑥 ranges over scalar variables

Figure 7: Syntax of Jasmin programs

in the code says it will touch the “second line”. However, this is

incorrect, and it touches “other line”. According to 32-byte cache

line model (CL32), the address divided by 32 is leaked. Thus, for

the two load operations, when 0 ⩽ rotate offset < 32, values

2𝑞 + 1 and 2𝑞 are leaked (i.e second cache line is touched first and

then the first line) and when 32 ⩽ rotate offset < 64, values 2𝑞

and 2𝑞 + 1 are leaked (i.e first cache line is touched first and then

the second). We have reported this issue and provided a formally

verified fix (presented in Section 7.3.2) in the intended leakage

model to OpenSSL developers. The bug is acknowledged and the

fix is reviewed by OpenSSL developers.

Outline. In the next sections, we introduce a general setting to

reason about fine-grained constant-time policies and prove that the

above examples verify their policies using relational program logic.

We also provide a generic proof that these policies are preserved

by compilation. Finally, we implement our approach and evaluate

its working on the illustrative and other examples.

3 FINE-GRAINED POLICIES IN JASMIN

This section introduces fine-grained leakage policies in the context

of a core language inspired by Jasmin [2, 3].

3.1 Syntax & Semantics

Figure 7 introduces the syntax of our language
3
: it features scalar

and array variables, memory accesses through pointer expressions,

conditional expressions, a wide range of operators reflecting the

instructions of the target assembly, and structured control-flow.

So as to enable the definition of a wide range of policies cor-

responding to various hardware and adversary capabilities, the

definition of leakage is layered in two stages. First, its syntactic

shape — formally defined on Figure 8 — is a tree whose structure

reflects the program execution. The leakage ℓ𝑒 of the evaluation

of an expression is a tree whose leaves may be empty (•) or hold
some value. This structure is fixed and corresponds to the “program

3
For clarity of the exposition, only a fragment of the Jasmin language is presented. In

particular, function calls and some kinds of loops are omitted. The actual formalization

and proofs cover the full Jasmin language.

ℓ𝑒 ::= • empty

| 𝑣 value

| (ℓ𝑒 , . . . , ℓ𝑒) sub-leakage

ℓ ::= ℓ𝑒 := ℓ𝑒 assignment

| if𝑏 (ℓ𝑒 , ℓ) conditional

| whilet (ℓ𝑒 , ℓ, ℓ) iteration

| whilef (ℓ𝑒) loop end

| {ℓ ; . . . ; ℓ } sequence

Figure 8: Syntax of structured leakages

counter” leakage model. By leaking more or less precise values,

the leakage model can be fine tuned: the second layer consists of

two parameters: A⋄(𝑣1, . . . , 𝑣𝑛) defines the leakage produced by

the evaluation of the operator ⋄ applied to arguments (𝑣1, . . . , 𝑣𝑛);
andM(𝑝) defines the leakage produced by a memory access at

address 𝑝 .

Figure 9 presents the rules of the instrumented semantics of the

Jasmin language. They follow a standard definition of a big-step

semantics for a while language. There are three kinds of judgements:

1. 𝑒 ↓𝑠
ℓ𝑒
𝑣 corresponds to the evaluation of expression 𝑒 in state 𝑠

producing value 𝑣 and leakage ℓ𝑒 ; 2. 𝑑 := 𝑣 ↓𝑠
ℓ𝑒

𝑠 ′ corresponds to
the assignment of value 𝑣 into the left-value 𝑑 in state 𝑠 producing

the updated state 𝑠 ′ and leakage ℓ𝑒 ; 3. 𝑖 : 𝑠 ⇓ℓ 𝑠 ′ corresponds
to the execution of instruction 𝑖 starting in state 𝑠 and ending in

state 𝑠 ′ while producing leakage ℓ . We sometimes use the notation

𝑠 ⇓A ,M
ℓ

𝑠 ′ to make explicit the dependency of the semantic on the

leakage model. For a given program 𝑖 , an initial state 𝑠 is said to be

safe when there exists an execution from this state, ending in some

final state 𝑠 ′ and producing some leakage ℓ .

Note that constant and local variables do not leak; array accesses

leak the value of the index; memory accesses leak according toM;

conditional expressions produce the leakage corresponding to the

evaluation of the three sub-expressions (the guard as well as both

branches) but do not leak the value of the guard; the leakage for
arithmetic operators correspond to the leakage of the evaluation

of their arguments followed by one of the computations of the

operator (as defined by A). The parameter defining the leakage of

memory accesses is also used for defining the semantics of stores

(not shown in the Figure).

3.2 Constant-Time Policies

Given this generic leakage model, the constant-time security prop-

erty can be defined as usual. As the leakage model is parameterized,

each instance of the parameters yields a particular policy.

Informally, a program is constant-time if two executions from

two related input states yield equal leakage. The definition of leak-

age is parameterized by A andM–and a relation 𝜑 on safe states

— and gives rise to the notion of fine-grained constant-time.

Definition 3.1 (Fine-Grained Constant-Time). A program 𝑝 is

constant-time with respect to a relation 𝜑 on states and a leakage

model A andM, written CTA ,M
𝜑 (𝑝), when

∀𝑠1 𝑠 ′1 𝑠2 𝑠
′
2
ℓ1 ℓ2, 𝑠1 𝜑 𝑠2 =⇒

{
𝑝 : 𝑠1 ⇓ℓ1 𝑠 ′1
𝑝 : 𝑠2 ⇓ℓ2 𝑠 ′2

=⇒ ℓ1 = ℓ2.

5

Parameters:

M(𝑣),Aop (𝑣1, . . . , 𝑣𝑛) ∈ ℓ𝑒

Expression semantics:

𝑐 ↓𝑠• 𝑐 𝑥 ↓𝑠• 𝑠 (𝑥)

𝑒 ↓𝑠ℓ𝑒 𝑧 𝑠 (𝑎) = 𝑡

𝑎 [𝑒] ↓𝑠(ℓ𝑒 ,𝑧) 𝑡 [𝑧]
𝑒 ↓𝑠ℓ𝑒 𝑝

∗𝑒 ↓𝑠(ℓ𝑒 ,M(𝑝)) 𝑠 [𝑝]

𝑒 ↓𝑠ℓ𝑒 𝑏 𝑒𝑡𝑡 ↓𝑠ℓ𝑡𝑡 𝑣𝑡𝑡 𝑒𝑓𝑓 ↓𝑠ℓ𝑓𝑓 𝑣𝑓𝑓

if 𝑒 then 𝑒𝑡𝑡 else 𝑒𝑓𝑓 ↓𝑠(ℓ𝑒 ,ℓ𝑡𝑡 ,ℓ𝑓𝑓) 𝑣𝑏

𝑒𝑖 ↓𝑠
ℓ𝑖𝑒

𝑣𝑖 op(𝑣1, . . . , 𝑣𝑛) = 𝑣 Aop (𝑣1, . . . , 𝑣𝑛) = ℓ𝑒

op(𝑒1, . . . , 𝑒𝑛) ↓𝑠((ℓ1𝑒 ,...,ℓ𝑛𝑒),ℓ𝑒)
𝑣

Assignment semantics:

𝑥 := 𝑣 ↓𝑠• 𝑠 {𝑥 ← 𝑣 }

𝑒 ↓𝑠ℓ𝑒 𝑧 𝑠 (𝑎) = 𝑡 𝑡 ′ = 𝑡 {𝑧 ← 𝑣 }
𝑎 [𝑒] := 𝑣 ↓𝑠(ℓ𝑒 ,𝑧) 𝑠 {𝑎 ← 𝑡 ′ }

𝑒 ↓𝑠ℓ𝑒 𝑝

∗𝑒 := 𝑣 ↓𝑠(ℓ𝑒 ,M(𝑝)) 𝑠 {𝑝 ← 𝑣 }

Instruction semantics:

{} : 𝑠 ⇓{} 𝑠

𝑖 : 𝑠 ⇓ℓ𝑖 𝑠1 {𝑐 } : 𝑠1 ⇓{ℓ𝑐 } 𝑠2
{𝑖;𝑐 } : 𝑠 ⇓{ℓ𝑖 ;ℓ𝑐 } 𝑠2

𝑒 ↓𝑠ℓ𝑒 𝑣 𝑑 := 𝑣 ↓𝑠ℓ𝑑 𝑠′

𝑑 := 𝑒 : 𝑠 ⇓ℓ𝑑 :=ℓ𝑒 𝑠′

𝑒 ↓𝑠ℓ𝑒 𝑏 𝑐𝑏 : 𝑠 ⇓ℓ𝑐 𝑠′

if 𝑒 then 𝑐𝑡𝑡 else 𝑐 𝑓𝑓 : 𝑠 ⇓if𝑏 (ℓ𝑒 ,ℓ𝑐) 𝑠
′

𝑒 ↓𝑠ℓ𝑒 𝑓𝑓

while 𝑒 do 𝑐 : 𝑠 ⇓whilef (ℓ𝑒) 𝑠

𝑒 ↓𝑠ℓ𝑒 𝑡𝑡 𝑐, 𝑠 ⇓ℓ𝑐 𝑠1 while 𝑒 do 𝑐 : 𝑠1 ⇓ℓ𝑤 𝑠2

while 𝑒 do 𝑐 : 𝑠 ⇓whilet (ℓ𝑒 ,ℓ𝑐 ,ℓ𝑤) 𝑠2

Figure 9: Instrumented semantics

3.3 Instances

To illustrate the versatility of our definition, we present here ex-

ample instantiations that correspond to the four leakage models

of Section 2.4. In the BL model, arithmetic operations produce an

empty leakage and memory accesses leak the pointer value. This

can be expressed by the instances ABL andMBL which satisfy, for

all operation ⋄, argument list a, and pointer 𝑝:

A⋄BL (a) = •
MBL (𝑝) = 𝑝 .

3.3.1 Time-variable division. The TV leakage model captures that

division instructions (signed and unsigned division and remain-

der computations) have a variable execution time. The arithmetic

leakage function for this model is denoted by ATV and assumes

that
4 A÷TV (𝑎, 𝑏) = (log2 (𝑎), log2 (𝑏)). Similar equations hold for

the other division-like operations. Other operations are modeled

as constant-time and therefore produce an empty leakage, e.g.,

A×TV (𝑎, 𝑏) = •.
This leakage model is a sound approximation that covers a wide

range of actual architectures. For instance, this leakage model

soundly approximates the behavior of the epyc-7f52 processor,

see Figure 2. For such a processor, leakage satisfies the following

equation (and similar equations for other division-like operations):

A÷E (𝑎, 𝑏) = max(0, log
2
(𝑎
𝑏
)). This expresses that the execution time

of the computation of 𝑎 mod 𝑏 is an affine function of the relative

size of both arguments (when the dividend 𝑎 is larger than the

divisor 𝑏). Our model leaks more, and therefore absence of leakage

with A÷TV entails absence of leakage with A÷E .

3.3.2 Cache-line. The CL leakage model assumes that truncated

addresses are leaked:MCL (𝑝) =
⌊ 𝑝
64

⌋
, where 64 is the (byte) gran-

ularity of cache lines. This model intuitively captures an adversary

that can only witness cache-line conflicts. We use CL32 for a 32

bytes granularity.

3.3.3 Combining models. We can combine leakage functions. This

leads to different models, including the BL leakage model, the TV

leakage model, the CL leakage model (with 64 and 32 bytes), and

the TV + CL leakage model.

4 COMPILER PRESERVATION OF

FINE-GRAINED CONSTANT-TIME POLICIES

The Jasmin language gives the programmers precise control over

low-level features: the compiler is predictable. Nonetheless, the

compilation to assembly is a complex sequence of program trans-

formations that rely on a handful of intermediate representations,

as shown in Figure 10. In this section, we show that the Jasmin

compiler preserves fine-grained constant-time policies. We first

provide some relevant background.

4.1 Correctness

The Jasmin compiler preserves the behavior of programs.

Theorem 4.1 (Correctness [2]). For all 𝑝 𝑝 ′,

jasminc(𝑝) = OK(𝑝 ′) ⇒ ∀𝑠i 𝑠f , 𝑝 : 𝑠i ⇓ 𝑠f ⇒ 𝑝 ′ : 𝑠i ⇓ 𝑠f

where OK(𝑝 ′) denotes that the compiler did not fail and returned the
target program 𝑝 ′.

Compiler correctness guarantees that trace properties carry from

source to assembly programs. However, it does not provide any

guarantee with respect to leakage.

4
For readability, we simply note log

2
(𝑥) the integer part of the base-2 logarithm

of 𝑥 + 1; in the formal development we use the “complement” of this value that is

computed by the lzcnt instruction.

6

Figure 10: Compilation passes in the Jasmin compiler

4.2 Baseline instrumented correctness

Compilers typically do not preserve leakage. Indeed compilation

reorders instructions, simplifies or even removes computations;

it also introduces intermediate computations to implement high-

level features that are not readily available in the target language.

Nonetheless, previous work [15] has shown that leakage in the base-

line model is usually transformed in a way that is statically known:

leakage transformations follow in some way the program transfor-

mations performed by the compiler, and the correctness property

can be strengthened to instrumented correctness. The compiler also

produces a function 𝐹 that describes how leakage is transformed

for all executions.

Theorem 4.2 (Instrumented Correctness [15]).

∀𝑝 𝑝 ′ 𝐹, jasminc(𝑝) = OK(𝑝 ′, 𝐹) =⇒
∀𝑠i ℓ 𝑠f , 𝑝 : 𝑠i ⇓ℓ 𝑠f =⇒ 𝑝 ′ : 𝑠i ⇓𝐹 (ℓ) 𝑠f

where OK(𝑝 ′, 𝐹) denotes that the compiler did not fail and returned
the target program 𝑝 ′ and the leakage transformer 𝐹 .

Preservation of baseline constant-time follows.

Corollary 4.3 (Baseline Constant-Time Preservation).

∀𝑝 𝑝 ′ 𝐹, jasminc(𝑝) = OK(𝑝 ′, 𝐹) =⇒

∀𝜑, CT
ABL,MBL
𝜑 (𝑝) =⇒ CT

ABL,MBL
𝜑 (𝑝 ′).

4.3 Fine-Grained Instrumented Correctness

In this section, we extend instrumented correctness to fine-grained

leakage models.

Theorem 4.4 (Fine-Grained Instrumented Correctness).

∀𝑝 𝑝 ′ 𝐹, jasminc(𝑝) = OK(𝑝 ′, 𝐹) =⇒

∀𝑠i ℓ 𝑠f A M, 𝑝 : 𝑠i ⇓A ,M
ℓ

𝑠f =⇒ 𝑝 ′ : 𝑠i ⇓A ,M
𝐹 (ℓ) 𝑠f .

The implementation of the compiler does not depend on the

instance of the leakage model. Therefore, in the statement above,

the function 𝐹 that transforms the leakages only depends on the

source and target programs. A single function accurately describes

the transformation of leakages for all executions and in all leakage

models.

This theorem entails that the Jasmin compiler preserves fine-

grained constant-time security. Indeed, given two source executions

with the same leakage ℓ , both corresponding executions at the target

level have the same leakage 𝐹 (ℓ).

Corollary 4.5 (Fine-Grained Constant-Time Preservation).

∀𝑝 𝑝 ′ 𝐹, jasminc(𝑝) = OK(𝑝 ′, 𝐹) =⇒

∀A M 𝜑, CTA ,M
𝜑 (𝑝) =⇒ CTA ,M

𝜑 (𝑝 ′).

5 DEDUCTIVE ENFORCEMENT OF

FINE-GRAINED CONSTANT-TIME POLICIES

(Fine-grained) constant-time policies are 2-safety properties and

can be enforced using relational program logics, such as Relational

Hoare Logic [16]. These logics manipulate judgements of the form:

𝑐1 ∼ 𝑐2 : 𝜑 =⇒ 𝜓

where 𝑐1, 𝑐2 are programs and 𝜑 is a relational pre-condition and

𝜓 a relational post-condition. Both the pre-condition and the post-

condition are interpreted as relations over the states of the two

programs. Concretely, the interpretation of such a judgement is:

∀𝑠1, 𝑠 ′1, 𝑠2, 𝑠
′
2
,


𝑠1 𝜑 𝑠2
𝑐1 : 𝑠1 ⇓ 𝑠 ′

1

𝑐2 : 𝑠2 ⇓ 𝑠 ′
2

=⇒ 𝑠 ′
1
𝜓 𝑠 ′

2

In other words, if we start the evaluation of 𝑐1 and 𝑐2 in two states

that are in relation for the pre-condition (𝑠1 𝜑 𝑠2), the final states will

be in relation for the post-condition (𝑠 ′
1
𝜓 𝑠 ′

2
). Note that the validity

of a judgement is implicitly parametrized by an interpretation of

operators. We write A ,M |= 𝑐1 ∼ 𝑐2 : 𝜑 =⇒ 𝜓 to reflect that a

judgement is valid w.r.t. an interpretation of operators and memory

leakage.

Relational Hoare Logic naturally captures information flow prop-

erties. For instance, consider a basic setting where every variable

comes with a security label 𝐻 or 𝐿. This induces an equivalence

relation ={low} on states. Then a program is non-interfering iff the

following judgement is valid:

𝑐 ∼ 𝑐 : ={low} =⇒ ={low}

A similar approach can be used to reason about side-channel leakage

(see related work), at the cost of instrumenting programs to track

their leakage. In the next paragraph, we sketch the instrumentation

process and establish its correctness.

5.1 Instrumentation

The instrumentation of programs is generic and transforms every

source program 𝑝 into a new program [𝑝]. 𝑝 and [𝑝] have the same

semantics except that [𝑝] accumulates the leakage generated by

the evaluation of 𝑝 in a special fresh program variable named leak.
The instrumentation relies on expressions extended with con-

structions M(𝑒), A⋄(𝑒, . . . , 𝑒), ∅, and 𝑒 ⊎ 𝑒 , as shown on top of

Figure 11. The semantics of the M(·) and A⋄(·) constructions de-
pends on the leakage model (M and A). ⊎ operator is used for

concatenation of leakages.

Instrumentation is defined first on expressions and then on in-

structions. The instrumentation {𝑒} of an expression 𝑒 is shown in

7

Extended expressions:

Expr ::= . . . | M(𝑒) | A⋄ (𝑒, . . . , 𝑒) | ∅ | 𝑒 ⊎ 𝑒

Translation of expressions:

{𝑐 } = {𝑥 } = ∅
{∗𝑒 } =M(𝑒) ⊎ {𝑒 }
{𝑎 [𝑒] } = 𝑒 ⊎ {𝑒 }

{⋄(𝑒1, . . . , 𝑒𝑛) } = A⋄ (𝑒1, . . . , 𝑒𝑛) ⊎ {𝑒1 } ⊎ . . . ⊎ {𝑒𝑛 }
{if 𝑒 then 𝑒𝑡𝑡 else 𝑒𝑓𝑓 } = {𝑒 } ⊎ {𝑒𝑡𝑡 } ⊎ {𝑒𝑓𝑓 }

Translation of instructions:

[𝑑 := 𝑒] = leak := {𝑑 } ⊎ {𝑒 } ⊎ leak;𝑑 := 𝑒

[if 𝑒 then 𝑐𝑡𝑡 else 𝑐 𝑓𝑓] = leak := 𝑒 ⊎ {𝑒 } ⊎ leak;
if 𝑒 then [𝑐𝑡𝑡] else [𝑐 𝑓𝑓]

[while 𝑒 do 𝑐] = leak := 𝑒 ⊎ {𝑒 } ⊎ leak;
while 𝑒 do [𝑐]; leak := 𝑒 ⊎ {𝑒 } ⊎ leak

[𝑖1; . . . ; 𝑖𝑛] = [𝑖1]; . . . ; [𝑖𝑛]

Figure 11: Program instrumentation with explicit leakage

Figure 11. The instrumentation computes a new expression that will

evaluate the leakage generated by 𝑒: if 𝑒 : 𝑠 ↓ℓ𝑒 𝑣 then {𝑒} : 𝑠 ↓ ℓ𝑒 .
For array accesses 𝑎[𝑒] the leakage contains the index 𝑒 and

the leakage {𝑒} generated by its evaluation. The case of memory

accesses is similar except thatM(𝑒) is leaked instead of 𝑒 . In the case
of operators, their leakages contain the leakage of their arguments

and they also contain the leakage due to the operation. Remark

that the leakage of an if expression5 does not leak the value of the

conditional expression 𝑒 (only the leakage {𝑒} generated by 𝑒 is

leaked), this is possible because Jasmin compiler will compile this

kind of expression using a conditional move instruction which is

constant-time.

The bottom of Figure 11 provides the instrumentation for in-

structions [𝑐]. The instrumentation of an assignment instruction

[𝑑 := 𝑒] is a sequence of two assignments, the first extends the

variable leak with {𝑑} and {𝑒} and then do the assignment 𝑑 := 𝑒 .

For conditional instructions, the leak variable is extended with the

leakage {𝑒} generated by 𝑒 but also with the value of the conditional
itself (i.e., 𝑒). For the while loop, the instrumentation follows the

same spirit; notice that the leak variable is updated once before the

loop (to capture the leakage of conditional for the first iteration)

and then at the end of each loop iteration.

5.2 Correctness of instrumentation

In this section, we provide the lemmas ensuring the correctness

of instrumentation. The first lemma shows that the instrumented

program correctly accumulates the leakage in the variable leak.

Lemma 1 (Correctness of the instrumentation). For all program 𝑐 ,

if its evaluation starting from a state 𝑠 generates a leakage ℓ and

a state 𝑠 ′, then the evaluation of its instrumentation [𝑐] starting
from the state 𝑠 extended with ℓ0 for the variable leak leads to the

5
This is true for if expression not for if instruction.

state 𝑠 ′ extended with ℓ ⊎ ℓ0 for the variable leak:

∀𝑐 𝑠 𝑠 ′ ℓ ℓ0 A M, 𝑐 : 𝑠 ⇓A ,M
ℓ

𝑠 ′ =⇒

[𝑐] : 𝑠 + {leak← ℓ0} ⇓A ,M 𝑠 ′ + {leak← ℓ ⊎ ℓ0}
where the notation 𝑠 + {leak← ℓ0} represents the state 𝑠 extended
with a fresh variable leak and its associated value ℓ0.

The next lemma shows that fine-grained constant-time policies

can be verified using relational Hoare logic.

Lemma 2 (Fine-grained constant-time, relationally). If

A ,M |= [𝑐] ∼ [𝑐] : 𝜑∧ ={leak} =⇒ ={leak}

then CTA ,M
𝜑 (𝑐).

The proof is a direct consequence of lemma 1 and of the in-

terpretation of relational Hoare logic. It follows that any sound

proof system for relational Hoare logic can be used for proving

fine-grained constant-time.

6 IMPLEMENTATION

We have have implemented our approach in the Jasmin framework.

Our implementation consists of:

• a Coq formalization of fine-grained leakage, and a formal proof

that the Jasmin compiler preserves fine-grained constant-time

policies;

• an OCaml implementation that extracts an EasyCrypt program

from a Jasmin program;

• an OCaml implementation of an evaluator for testing constant-

timeness.

The first two components of the implementation preserve the work-

flow for Jasmin programs:

• Jasmin programs are checked for safety and compiled;

• proofs of constant-timeness are carried on source Jasmin pro-

grams via an embedding into EasyCrypt
6
. Program instrumen-

tation is performed during the embedding, in a way similar to

what is presented in Section 5.

The last component adds an additional functionality (testing for

constant-timeness), which is extremely helpful when dealing with

fine-grained policies, which have considerablymore complex proofs.

6.1 Coq formalization

We extended the work presented in [15] to reason about the fine-

grained constant-time policies. The instrumented semantics are

adapted to take into account the fact that each division-like opera-

tor ⋄ generates a leakage depending on its arguments A⋄ (in [15]

this leakage was assumed to be constant). As well, the leakage for

memory access has been made generic to support weaker models

(like CL). All the proofs of the compiler have been adapted and

generalized over the leakage model. We have reused the leakage

transformers of the prior work [15] with modifications to the ones

that are used in the compiler passes like constant folding and in-

struction selection as they deal with propagation and lowering of

operators. The correctness statements for each compiler pass and

6
In principle it would be possible to verify constant-timeness within Coq using a

formalization of relational Hoare logic, but this is orthogonal to the concerns of this

paper.

8

their proofs are updated accordingly. The main theorems presented

in 4.3 are stated once for the compiler as a whole, and their proofs

are just corollaries of the correctness theorem.

Proof effort. The overall adaptation in the formalization made

the Coq development grow from about 37 × 103 lines to 38 × 103
lines and required about four weeks of work.

6.2 Extraction to EasyCrypt & Jasmin evaluator

Jasmin provides different ways to extract programs to EasyCrypt.

The first is used to prove functional correctness and cryptographic

security of Jasmin programs; this is not affected by our work. The

second is used to prove that Jasmin programs are constant-time.

We have modified the latter to make it parametric in the leakage

model. The extraction is done generically, independently of the

model, then the users can specify their model in EasyCrypt. We

provide the models presented in this paper, but the users are free

to define their own models. This makes sense because the proof of

preservation of constant-time is generic in the model.

Programming effort. The extraction to EasyCrypt is implemented

in Ocaml, and the overall changes w.r.t. [15] amounts to around

50 lines of code. The evaluator is also implemented as an Ocaml

wrapper; it uses automatically generated file (from the extraction

of the Jasmin semantic defined in Coq), the wrapper represent

represents around 200 lines of code.

6.3 Impact on compilation time

A natural question is whether the time for compilation and genera-

tion to EasyCrypt increases with the complexity of models. There

is no noticeable overhead compared to [15], so we do not report

any benchmark here.

7 EVALUATION

We evaluate the verification of fine-grained policies presented in

this paper along different axes: its cost relative to the verification of

the base-line policy; its effectiveness on actual examples extracted

from existing code bases; its potential to support the design of

secure and efficient implementations. More specifically, through

several case studies, we study the following questions:

• what is the overhead of our generic approach for proving pro-

grams that are constant-time in the baseline model?

• what is the cost of proving programs constant-time with re-

spect to other policies?

• how can formal tools supporting fine-grained policies con-

tribute to the design of new implementations?

The first question is primarily a sanity check: indeed, one would

like that our generic approach incurs minimal overhead in com-

parison to prior approaches. More specifically, we would like that

programs that have a fully automated proof of BL constant-time

in [15] also have an automated proof with our new pipeline, and

programs that have an interactive proof of BL constant-time in [15]

have a very similar interactive proof of constant-time in the new

pipeline. We consider a set of examples from the Jasmin library,

and validate this intuition.

The second question is more interesting because proofs in fine-

grained models involve arithmetic and are thus more complex than

proofs that focus on data-dependencies. We implement a set of

examples that target fine-grained policies and prove or disprove

that these examples satisfy their intended policies. As an indicative

measure of the cost of verification, we report the number of lines

in interactive proofs.

The last question illustrates how formal methods can be used in

the early phases of development. To this end, we have developed

and proved a generic version of the modulo which is secure in the

TV model.

7.1 Impact on verifying the baseline policy

As a first case study, we consider Jasmin implementations that are

secure in the BL model. Apart from the first implementations of the

motivating example from Section 2.4 (ssl3 cbc copy mac BL BL
and ssl3 cbc copy mac TV BL) that have been adapted for this

work from OpenSSL, all implementations are taken from previous

works [3, 4]. They consist of three versions of the ChaCha20 stream

cipher [17] (a reference implementation and two optimized ones

targeting specific vector instruction set extensions, namely avx and

avx2); three versions of the Poly1305 authenticator; three versions

of the Keccak1600 (SHA3 [18]) hashing algorithm (a reference im-

plementation, an optimized one using avx2 vector instructions, and

an optimized one using scalar instructions only); two versions of

MAC extraction based on the functions shown in Figure 4.

The results of this case study are reported in the first rows of

Table 1. Here are a few observations. Eight out of the ten imple-

mentations can be proved secure in any of the considered policies

in a proof script of seven lines only. The proof is a one-line call to

a fully automatic tactic. The other lines are the statement of the

theorem. The proof script for the vectorized version of Keccak1600

is much longer: this implementation uses in-memory tables, and

its proof involves a lot of reasoning about pointers, similarly to

what is done in the proof of functional correctness. This suggests

possible improvements to the Jasmin programming language.

The last example also has a very short proof script (sixteen

lines): since the precondition of the security statement involves the

contents of the initial memory, the proof requires user interaction

in a couple of places; it is nonetheless straightforward and mostly

automatic.

In all cases, the proof can be carried once in the BL model, and

the same script can be reused as-is in any weaker model (CL32
and CL64). Also, for implementations that do not use time-variable

instructions, proof extends without modification to the stronger

TV and TV + CL models.

7.2 Verification effort of other policies

In this second case study, we consider implementations designed

to be secure in non-baseline policies. They either target the TV
model and ensure that time-variable operations only leak public

information, or target one of the CL32 and CL64 models and make

sure that only the least significant bits of pointers may be secret. We

studied 10 cryptographic libraries; out of them, we found 8 libraries

that contain such code, and we selected three examples that are

the most representative or challenging. The corpus consists in four

implementations of MAC extraction as explained in Section 2.4, one

MAC verification, and the char2val routine used in base64 decoding.
9

Table 1: Compliance of examples with fine-grained policies. The table reports the size (lines of code) of each version of examples,

and for each model whether it can be proved constant-time (number of lines of the proof) or if there is a counter-example

(given in the supplementary material, marked with a ✘) witnessing a security violation.

Example Implementation Leakage model

size (loc) CL32 CL64 BL TV + CL32 TV + CL64 TV

ChaCha20 (ref) 396 7 7 7 7 7 7

ChaCha20 (avx) 900 7 7 7 7 7 7

ChaCha20 (avx2) 1006 7 7 7 7 7 7

Poly1305 (ref) 239 7 7 7 7 7 7

Poly1305 (avx) 1065 7 7 7 7 7 7

Poly1305 (avx2) 1037 7 7 7 7 7 7

keccak1600 (ref) 392 7 7 7 7 7 7

keccak1600 (avx2) 446 361 361 361 361 361 361

keccak1600 (scalar) 469 7 7 7 7 7 7

ssl3 cbc copy mac BL BL 99 16 16 16 ✘ ✘ ✘

ssl3 cbc copy mac TV BL 103 16 16 16 59 59 59

ssl3 cbc copy mac BL CL64 82 ✘ 56 ✘ ✘ ✘ ✘

ssl3 cbc copy mac TV CL32 89 153 156 ✘ 159 162 ✘

ssl3 cbc copy mac TV CL64 86 ✘ 59 ✘ ✘ 90 ✘

pmac verify hmac 78 118 118 ✘ 118 118 ✘

coding wolfSSL 34 ✘ 58 ✘ ✘ 58 ✘

All of them are new ports to Jasmin of existing code: the first five

from OpenSSL and the last one from wolfSSL. Moreover, all of these

examples are out of reach of the previous Jasmin pipeline.

TheMACverification (coined pmac verify hmac) accesses using
secret dependent indices a 32-byte-aligned buffer of length at most

twenty. Its security, therefore, relies on the assumption that the

size of a cache line is at least 32 bytes. The base64 decoding excerpt

(coding wolfSSL) uses a table lookup at a secret dependent index:

said table is 64-byte-aligned, size of 80 bytes and assumed to fit in

two cache lines.

The sizes of the proofs corresponding to these examples are

reported in the last six lines of Table 1. These proofs are gener-

ally longer than the ones for the baseline model: some arithmetic

invariants about the arguments to time-variable operations and

constraints on the base address and offsets for secret dependent

memory accesses must be established.

As illustrated by the coding wolfSSL case, which does not use

time-variable operations, the proof script for the CL32 model can

be reused without modification in the stronger TV + CL32 model.

Overall, the complexity of these proofs matches our expectations

and is reasonable. For comparison, functional correctness proofs of

ChaCha20 and SHA3 (to be found in earlier works) need hundreds

and thousands lines respectively; the security proof of SHA3 needs

tens of thousands of lines.

7.3 Security of MAC extraction

We now present in Section 7.3.1 some details of the proof of the

ssl3 cbc copy mac implementations and in Section 7.3.2 that part

of OpenSSL implementation of rotate mac is insecure in the 32-

byte cache line model and a verified patch.

7.3.1 Proving ssl3 cbc copy mac. We provide the EasyCrypt spec-

ification of some functions and insights to understand their proofs.

The function is mainly a composition of the functions rotated offset
and rotate mac since we have two implementations for each of

them, this lead to four implementations.

The first function we consider is the rotate mac BL (top of

Figure 5). This function is constant-time in the BL leakage model

(and so in CL). This is captured by the following judgment:

rotate mac ∼ rotate mac : ={leak, out, md size} =⇒ ={leak}

This judgment states that if we start from two states in which the

values of the variables leak, out, and md size are equal, then the

evaluations will end in two states where the value of the variable

leak will be equal. In other words, if out and md size are public,
then the function is constant-time. out is a pointer that is public,
which means its value (the address) will be equal on both sides, and

it reveals nothing about the data stored at the address. The judgment

requires no assumptions for the value of the variable rotate offset;
hence it can be secret dependent. The proof in EasyCrypt is fully

automatic and uses an automated tactic based on dependency analy-

sis. Similarly, we prove that the function rotate offset BL is secure

in the BL model.

Next we prove that rotate offset TV is secure in the TV model.

The pre-condition is:

={leak, md size, scan start}
∧ (0 ≤ mac start{1} − scan start{1} < 256)
∧ (0 ≤ mac start{2} − scan start{2} < 256)
∧ 16 ≤ md size{1} ≤ 64

and the post-condition is simply ={leak} . The notation x{1} refers
to the value of the variable x in the left state while x{2} refers to its
value in the right state. Remark that the variable mac start is not

10

for (j = 0, i = 0; i < md_size; i++) {
aux1 = rotated_mac[rotate_offset & ~32];
aux2 = rotated_mac[rotate_offset | 32];
mask = constant_time_eq_8(rotate_offset & ~32, rotate_offset);
aux3 = constant_time_select_8(mask, aux1, aux2);
out[j++] = aux3;
rotate_offset++;
rotate_offset &= constant_time_lt_s(rotate_offset, md_size);

}

Figure 12: Fixed C implementation of OpenSSL rotate offset

required to be equal on both sides (i.e., the variable can be private),

the precondition simply requires that its distance to scan start is
bounded (on both sides).

The proof of this statement requires about 25 lines of EasyCrypt

code. It requires basic results on non-linear arithmetic. We use a

shift by 23 to match the OpenSSL implementation, but a shift by 8

would suffice. One other interesting remark is that the original code

for the shift was of the form (md size >> 1) << 24. As md size is
even, it is equivalent tomd size << 23, but compilers can not infer it.

The idea of writing it in this form by the OpenSSL developer was to

prevent compiler from optimizing the code by removing introduced

counter measure (i.e., replace ((md size << 23) + rotate offset) %
md size by (rotate offset) % md size, this replacement is function-

ally correct but does not preserve constant-time hyperproperty).

The function rotate mac CL is proved constant-time in the CL
model, and it requires a stronger pre-conditions:

={leak, out, md size, rotated mac}
∧ rotated mac{1}%64 = 0

∧ 16 ≤ md size{1} ≤ 64

∧ 0 ≤ rotate offset{1} < md size{1}
∧ 0 ≤ rotate offset{2} < md size{1}

In this implementation rotated mac is a pointer to a buffer of

length md size, which should be public (={rotated mac}) and 64

byte aligned (it is the role of the caller of rotate mac CL to ensure

this condition). The proof follows the intuition provided in Sec-

tion 2.4. Since the specification also requires that rotate offset{1}<
md size{1}, the specification of rotate offset TV needs to be ex-

tended to ensure that the result will satisfy this condition.

7.3.2 Verified countermeasure on rotating MAC with 32-byte cache
line. OpenSSL implementation of rotate mac CL for 32-byte cache
line model has a bug (see Figure 6 for original code). As the data

will fit in two cache lines, there are two load operations within a

loop. When trying to prove it against the CL32 model, we realized

that this is incorrect and it is dependent on secret rotate offset. We

were able to easily create a counterexample using Jasmin evaluator.

With a 64-byte aligned rotated mac buffer, rotate offsetwith value
31 touches the second cache line first and then the first. However,

rotate offset with value 63 touches the first cache line first and

then the second.

Figure 12 shows the verified fix where we always access the

first cache line and then the second cache line. Later, we select the

correct value in constant-time. This incurs an overhead of 5.9% at

ssl3 cbc copy mac function granularity. However, the overhead

is negligeable in OpenSSL macro benchmarks.

7.4 Efficient Constant-Time Modulo

As a final example, we demonstrate how our approach can be

used to guide the design of efficient constant-time code. The code

for computing the modulus in constant-time manner (function ro-
tated offset TV) works only because the value of the numerator

(resp. the denominator) is small, less than 256 (resp. 64). In this

section, we show that it is possible to implement a constant-time

modulus without any requirement on the arguments except that

the denominator needs to be public.

7.4.1 Jasmin implementation. Here is an implementation with the

following assumptions: a is private, b is public, and we want to

compute the (unsigned) remainder of the division of a by b. As the

divisor is public, we know that the timing behavior of the hard-

ware modulo instruction only depends on the size of the dividend.

Therefore, before calling this instruction, we ensure that its first

argument has a particular (public) size: its most significant bit must

be set. This means that the modulo instruction is always called with

its first argument in the range [263; 264 − 1].
To get a meaningful result, we compute an integer 𝑛 such that

𝑎′ = 𝑏 ·2𝑛+𝑎 falls in the expected range. In this way, the computation

of 𝑎′ mod 𝑏 will give the expected result.

The complete implementation in Jasmin is given in Figure 13.

It relies on an auxiliary function lzcnt (lines 1–6) that counts the

number of leading zeros of its argument and also returns a boolean

flag telling if this number is null. We first compute (lines 11–17) lzb

the number𝑚 of leading zeros of 𝑏 and in the variable flag an integer

whose value is one if 𝑎 is already in the range and zero if 𝑎 is not

in the range but 𝑏 is. A first attempt (lines 18–21) is to compute in

variable dividend the value 𝑏 ·2𝑚−1 +𝑎. The use of the lea instruction

is an optimization that saves a copy. This value may be too small

to fall in the target range; therefore a second attempt (lines 22–23)

computes in variable temp2 the value 𝑏 · 2𝑚 + 𝑎. This value is used
as a dividend only if the addition did not overflow (line 24). In case

𝑏 is in the range and 𝑎 is not, then the result is 𝑎: in this case a

dummy division of themaximal 64-bit unsigned integer is computed

(lines 25–27) and the result accordingly corrected (line 30) using a

conditional move.

7.4.2 Functional correctness. This implementation is correct (i.e.,

it always computes the modulo of its arguments). Correctness can

be formally stated in EasyCrypt as follows:

{a = 𝑎0 ∧ b = 𝑏0 ∧ b ≠ 0} mod TV {result = 𝑎0 mod 𝑏0} .
This is a Hoare triple with universally quantified logical variables

𝑎0 and 𝑏0 that allow referring to the initial values of the arguments.

The proof boils down to showing that no overflow badly interferes

with the computation and is about 60 lines long.

7.4.3 Constant-time security. This implementation is secure in the

TV model, under the precondition that argument 𝑏 is public and

non-zero. Formally, the security is stated as follows, where the

instrumentation of the mod TV function is interpreted in the TV
model:

mod TV ∼ mod TV : ={leak,b} ∧𝑏{1} ≠ 0 =⇒ ={leak}
11

1 inline fn lzcnt(reg u64 x) −→ reg bool, reg u64 {
2 reg u64 result;
3 reg bool zf;
4 _, _, _, _, zf, result = #LZCNT(x);
5 return zf, result;
6 }
7 export fn mod_TV(reg u64 a, reg u64 b) −→ reg u64 {
8 reg u64 flag, one, zero, dividend, modulo, result;
9 reg u64 lzb, lzb_m1, b_lzb, b_lzb_m1, temp2;
10 reg bool lzaz, lzbz, cf;
11 flag = 0x1234;
12 one = 1;
13 zero = 0;
14 lzbz, lzb = lzcnt(b);
15 flag = zero if lzbz;
16 lzaz, _ = lzcnt(a);
17 flag = one if lzaz;
18 lzb_m1 = #LEA(lzb - 1);
19 b_lzb_m1 = b;
20 b_lzb_m1 = b_lzb_m1 << lzb_m1;
21 dividend = #LEA(b_lzb_m1 + a);
22 b_lzb = b_lzb_m1 << 1;
23 cf, temp2 = b_lzb + a;
24 dividend = temp2 if ! cf;
25 dividend = a if flag == 1;
26 temp2 = 0xFFFFFFFFFFFFFFFF;
27 dividend = temp2 if flag == 0;
28 modulo = dividend % b;
29 result = modulo;
30 result = a if flag == 0;
31 return result;
32 }

Figure 13: Generic constant-time modulus operation

Figure 14: Timing behavior of the mod TV function on one

x86 microprocessor (same experimental setup as in Figure 2).

The proof methodology is similar to the other examples discussed

earlier. The central argument is that the leakage produced by the

execution of this function is a known function of 𝑏 (hence indepen-

dent of the value of the first argument 𝑎). Thanks to the simplicity

of the control-flow structure of this program, the EasyCrypt ma-

chinery for computing the weakest preconditions can transform the

program-verification task into a pure arithmetic formula. Discharg-

ing this proof is a bit tedious, as usual with machine arithmetic, due

to the possible overflows. The proof script is about 130 lines long.

7.4.4 Experimental timing behavior. As illustrated in Figure 14, we

experimentally observe that there is no longer any timing variation

while changing the private input. The execution time of the whole

function may still vary depending on the size of the public input.

Notice on the right-hand-side plot that the execution times of the

secure implementation range between 14 and 45 cycles, which is

the same as the range of execution times of the lone hardware mod-

ulo instruction reported on the left of Figure 2 (for this particular

microprocessor). Reproducing the same experiment on a different

microprocessor (Intel Xeon e5-2687w) leads to the same conclusion:

although the div instruction is time-variable, the execution time

of the mod TV function does not depend on the value of its first

argument.

8 RELATEDWORK

There is a large spectrum of tools for analyzing side-channel leak-

age [6, 25] of cryptographic implementations. Many tools, including

ct-verif [11], flowtracker [28], virtualcert [8] and binsec/rel [23]

explicitly target the baseline constant-time policy. These tools are

supported by soundness claims. Only CacheD [32] considers a

weaker leakage model where the cacheline is leaked. CacheD fa-

vors automation and precision over soundness and are therefore

not supported by a soundness claim. As noted by Bernstein, no

tool supports time-variable operations. There are many other tools,

such as CacheAudit [24] or CacheFix [21], which use automated

techniques to reason about cache behavior. However, these tools do

not target a constant-time policy. In particular, they do not consider

control-flow leakage and do not allow values to carry a security

level. We refer to [6, 25] for a description of other tools. In addi-

tion, there are general-purpose tools that can also be applied to

side-channel analysis. This is the case of Themis [22], which intro-

duces QCHL, a quantitative variant of Cartesian Hoare Logic [29]

and uses QCHL to reason about side-channels of Java bytecode.

Another (earlier) instance is Blazer [5], which introduces a proof

technique to reason about hypersafety and applies the proof tech-

nique to reason about side-channels of Java bytecode. Another line

of work develops constraint-based methods for verifying relational

properties of hardware, and applies these methods to reason about

constant-time [30, 31]. There is also a large body of work that de-

velops automated transformation methods for making programs

constant-time, see e.g. [19, 20], or that develops frameworks that

are secure-by-design: [34] features a language with mechanisms

to control timing channels and a type system that quantitatively

bound the information leakage of well-typed programs; [33] intro-

duces a timing-channel aware ISA that serves as contract between

software and hardware.

Constant-time analysis tools target source programs, intermedi-

ate languages, or low-level (assembly or binary) programs. Except

in the latter case, compilers may turn non-constant-time programs

that have been formally proved to be constant-time. This raises the

question of proving that compilers preserve the constant-time prop-

erty. Barthe, Grégoire and Laporte [14] develop a general approach

based on CT-simulations for proving that a compiler preserves

constant-time. CompCert-CT [9] is a formally verified (mild) variant

of the CompCert compiler that preserves constant-time. The proof

of preservation uses CT-simulations when needed but relies on

the simpler property of leakage transformation when possible—for

many compiler passes. The leakage transformer technique from [15]

further refines this approach by introducing structured leakage and

a syntax for leakage transformers. Our work leverages the benefits

of leakage transformers to consider fine-grained information flow

policies.

12

9 CONCLUSION

Proving that secure implementations are constant-time in fine-

grained leakage models is difficult and requires complex reasoning

about control flow and arithmetic invariants. We have extended the

constant-time preservation proof of the Jasmin compiler to such

fine-grained policies. Therefore, proofs of these policies can be done

at the source level, using relational logic. We have demonstrated

the flexibility of our approach on several challenging examples that

were not proved before, and in the process fixed some leakage bug

in OpenSSL.

An important direction for future work is to extend Jasmin with

support for other CPU architectures, including ARM (Cortex), and

other leakage models, including some newly proposed conceptual

models (such as silent stores). We would then use this extension to

prove preservation of constant-time and to formally verify constant-

time of a broad corpus of cryptographic implementations.

REFERENCES

[1] Nadhem J Al Fardan and Kenneth G Paterson. 2013. Lucky thirteen: Breaking the

TLS and DTLS record protocols. In 2013 IEEE Symposium on Security and Privacy.
IEEE, 526–540.

[2] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Arthur Blot, Benjamin

Grégoire, Vincent Laporte, Tiago Oliveira, Hugo Pacheco, Benedikt Schmidt,

and Pierre-Yves Strub. 2017. Jasmin: High-Assurance and High-Speed Cryp-

tography. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security. ACM, 1807–1823.

[3] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Benjamin Grégoire, Adrien

Koutsos, Vincent Laporte, Tiago Oliveira, and Pierre-Yves Strub. 2020. The Last

Mile: High-Assurance and High-Speed Cryptographic Implementations. In 2020
IEEE Symposium on Security and Privacy (S&P). 965–982. https://doi.org/10.1109/

SP40000.2020.00028

[4] José Bacelar Almeida, Cécile Baritel-Ruet, Manuel Barbosa, Gilles Barthe, François

Dupressoir, Benjamin Grégoire, Vincent Laporte, Tiago Oliveira, Alley Stoughton,

and Pierre-Yves Strub. 2019. Machine-Checked Proofs for Cryptographic Stan-

dards: Indifferentiability of Sponge and Secure High-Assurance Implementations

of SHA-3. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2019, London, UK, November 11-15, 2019. 1607–1622.
https://doi.org/10.1145/3319535.3363211

[5] Timos Antonopoulos, Paul Gazzillo, Michael Hicks, Eric Koskinen, Tachio Ter-

auchi, and ShiyiWei. 2017. Decomposition instead of self-composition for proving

the absence of timing channels. In Proceedings of the 38th ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation, PLDI 2017, Barcelona,
Spain, June 18-23, 2017, Albert Cohen and Martin T. Vechev (Eds.). ACM, 362–375.

https://doi.org/10.1145/3062341.3062378

[6] Manuel Barbosa, Gilles Barthe, Karthik Bhargavan, Bruno Blanchet, Cas Cremers,

Kevin Liao, and Bryan Parno. 2021. SoK: Computer-aided cryptography. In 42nd
IEEE Symposium on Security and Privacy.

[7] Cécile Baritel-Ruet, François Dupressoir, Pierre-Alain Fouque, and Benjamin

Gregoire. 2018. Formal Security Proof of CMAC and Its Variants. In 2018 IEEE
31st Computer Security Foundations Symposium (CSF). 91–104. https://doi.org/10.

1109/CSF.2018.00014

[8] Gilles Barthe, Gustavo Betarte, Juan Diego Campo, Carlos Daniel Luna, and David

Pichardie. 2014. System-level Non-interference for Constant-time Cryptography.

In Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communica-
tions Security, Scottsdale, AZ, USA, November 3-7, 2014, Gail-Joon Ahn, Moti Yung,

and Ninghui Li (Eds.). ACM, 1267–1279. https://doi.org/10.1145/2660267.2660283

[9] Gilles Barthe, Sandrine Blazy, Benjamin Grégoire, Rémi Hutin, Vincent Laporte,

David Pichardie, and Alix Trieu. 2020. Formal verification of a constant-time

preserving C compiler. Proc. ACM Program. Lang. 4, POPL (2020), 7:1–7:30.

https://doi.org/10.1145/3371075

[10] Gilles Barthe, Francois Dupressoir, Benjamin Grégoire, Cesar Kunz, Benedikt

Schmidt, and Pierre-Yves Strub. 2013. EasyCrypt: A Tutorial. In FOSAD 2013
(Foundations of Security Analysis and Design {VII} - {FOSAD} 2012/2013 Tutorial
Lectures). Bertinoro, Italy. https://doi.org/10.1007/978-3-319-10082-1_6

[11] Gilles Barthe, Marco Gaboardi, Emilio Jesús Gallego Arias, Justin Hsu, Aaron

Roth, and Pierre-Yves Strub. 2016. Computer-Aided Verification for Mechanism

Design. InWeb and Internet Economics - 12th International Conference, WINE 2016,
Montreal, Canada, December 11-14, 2016, Proceedings (Lecture Notes in Computer
Science, Vol. 10123), Yang Cai and Adrian Vetta (Eds.). Springer, 279–293. https:

//doi.org/10.1007/978-3-662-54110-4_20

[12] Gilles Barthe, Benjamin Grégoire, Sylvain Heraud, and Santiago Zanella Béguelin.

2011. Computer-aided security proofs for the working cryptographer. In Annual
Cryptology Conference. Springer, 71–90.

[13] Gilles Barthe, Benjamin Grégoire, Yassine Lakhnech, and Santiago

Zanella Béguelin. 2011. Beyond provable security verifiable IND-CCA

security of OAEP. In Cryptographers’ Track at the RSA Conference. Springer,
180–196.

[14] Gilles Barthe, Benjamin Grégoire, and Vincent Laporte. 2018. Secure Compilation

of Side-Channel Countermeasures: The Case of Cryptographic "Constant-Time".

In 31st IEEE Computer Security Foundations Symposium, CSF 2018, Oxford, United
Kingdom, July 9-12, 2018. IEEE Computer Society, 328–343. https://doi.org/10.

1109/CSF.2018.00031

[15] Gilles Barthe, Benjamin Grégoire, Vincent Laporte, and Swarn Priya. 2021. Struc-

tured Leakage and Applications to Cryptographic Constant-Time and Cost. In Pro-
ceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Se-
curity (Virtual Event, Republic of Korea) (CCS ’21). Association for ComputingMa-

chinery, New York, NY, USA, 462–476. https://doi.org/10.1145/3460120.3484761

[16] Nick Benton. 2004. Simple relational correctness proofs for static analyses

and program transformations. In Proceedings of the 31st ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2004, Venice, Italy,
January 14-16, 2004, Neil D. Jones and Xavier Leroy (Eds.). ACM, 14–25. https:

//doi.org/10.1145/964001.964003

[17] Daniel J Bernstein et al. 2008. ChaCha, a variant of Salsa20. InWorkshop record
of SASC, Vol. 8. 3–5.

[18] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. 2013.

Keccak. In Annual international conference on the theory and applications of
cryptographic techniques. Springer, 313–314.

[19] Pietro Borrello, Daniele Cono D’Elia, Leonardo Querzoni, and Cristiano Giuffrida.

2021. Constantine: Automatic Side-Channel Resistance Using Efficient Control

and Data Flow Linearization. In CCS ’21: 2021 ACM SIGSAC Conference on Com-
puter and Communications Security, Virtual Event, Republic of Korea, November 15
- 19, 2021, Yongdae Kim, Jong Kim, Giovanni Vigna, and Elaine Shi (Eds.). ACM,

715–733. https://doi.org/10.1145/3460120.3484583

[20] Sunjay Cauligi, Gary Soeller, Brian Johannesmeyer, Fraser Brown, Riad S. Wahby,

John Renner, Benjamin Grégoire, Gilles Barthe, Ranjit Jhala, and Deian Stefan.

2019. FaCT: a DSL for timing-sensitive computation. In Proceedings of the 40th
ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI 2019, Phoenix, AZ, USA, June 22-26, 2019, Kathryn S. McKinley and Kathleen

Fisher (Eds.). ACM, 174–189. https://doi.org/10.1145/3314221.3314605

[21] Sudipta Chattopadhyay and Abhik Roychoudhury. 2018. Symbolic Verification

of Cache Side-Channel Freedom. IEEE Trans. Comput. Aided Des. Integr. Circuits
Syst. 37, 11 (2018), 2812–2823. https://doi.org/10.1109/TCAD.2018.2858402

[22] Jia Chen, Yu Feng, and Isil Dillig. 2017. Precise Detection of Side-Channel

Vulnerabilities using Quantitative Cartesian Hoare Logic. In Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications Security, CCS
2017, Dallas, TX, USA, October 30 - November 03, 2017, Bhavani M. Thuraisingham,

David Evans, Tal Malkin, and Dongyan Xu (Eds.). ACM, 875–890. https://doi.

org/10.1145/3133956.3134058

[23] Lesly-Ann Daniel, Sébastien Bardin, and Tamara Rezk. 2020. Binsec/Rel: Efficient

Relational Symbolic Execution for Constant-Time at Binary-Level. In 2020 IEEE
Symposium on Security and Privacy, SP 2020, San Francisco, CA, USA, May 18-21,
2020. IEEE, 1021–1038. https://doi.org/10.1109/SP40000.2020.00074

[24] Goran Doychev, Dominik Feld, Boris Köpf, Laurent Mauborgne, and Jan Reineke.

2013. CacheAudit: A Tool for the Static Analysis of Cache Side Channels. In

Proceedings of the 22th USENIX Security Symposium, Washington, DC, USA, August
14-16, 2013, Samuel T. King (Ed.). USENIX Association, 431–446. https://www.

usenix.org/conference/usenixsecurity13/technical-sessions/paper/doychev

[25] Jan Jancar. 2021. The state of tooling for verifying constant-timeness of crypto-

graphic implementations. https://neuromancer.sk/article/26

[26] Jan Jancar, Marcel Fourné, Daniel De Almeida Braga, Mohamed Sabt, Peter

Schwabe, Gilles Barthe, Pierre-Alain Fouque, and Yasemin Acar. 2022. “They’re

not that hard to mitigate”: What Cryptographic Library Developers Think About

Timing Attacks. In IEEE SP.
[27] Paul C Kocher. 1996. Timing attacks on implementations of Diffie-Hellman, RSA,

DSS, and other systems. In Annual International Cryptology Conference. Springer,
104–113.

[28] Bruno Rodrigues, Fernando Magno Quintão Pereira, and Diego F. Aranha. 2016.

Sparse representation of implicit flowswith applications to side-channel detection.

In Proceedings of the 25th International Conference on Compiler Construction, CC
2016, Barcelona, Spain, March 12-18, 2016, Ayal Zaks and Manuel V. Hermenegildo

(Eds.). ACM, 110–120. https://doi.org/10.1145/2892208.2892230

[29] Marcelo Sousa and Isil Dillig. 2016. Cartesian hoare logic for verifying k-safety

properties. In Proceedings of the 37th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2016, Santa Barbara, CA, USA, June
13-17, 2016, Chandra Krintz and Emery D. Berger (Eds.). ACM, 57–69. https:

//doi.org/10.1145/2908080.2908092

13

https://doi.org/10.1109/SP40000.2020.00028
https://doi.org/10.1109/SP40000.2020.00028
https://doi.org/10.1145/3319535.3363211
https://doi.org/10.1145/3062341.3062378
https://doi.org/10.1109/CSF.2018.00014
https://doi.org/10.1109/CSF.2018.00014
https://doi.org/10.1145/2660267.2660283
https://doi.org/10.1145/3371075
https://doi.org/10.1007/978-3-319-10082-1_6
https://doi.org/10.1007/978-3-662-54110-4_20
https://doi.org/10.1007/978-3-662-54110-4_20
https://doi.org/10.1109/CSF.2018.00031
https://doi.org/10.1109/CSF.2018.00031
https://doi.org/10.1145/3460120.3484761
https://doi.org/10.1145/964001.964003
https://doi.org/10.1145/964001.964003
https://doi.org/10.1145/3460120.3484583
https://doi.org/10.1145/3314221.3314605
https://doi.org/10.1109/TCAD.2018.2858402
https://doi.org/10.1145/3133956.3134058
https://doi.org/10.1145/3133956.3134058
https://doi.org/10.1109/SP40000.2020.00074
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/paper/doychev
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/paper/doychev
https://neuromancer.sk/article/26
https://doi.org/10.1145/2892208.2892230
https://doi.org/10.1145/2908080.2908092
https://doi.org/10.1145/2908080.2908092

[30] Klaus von Gleissenthall, Rami Gökhan Kici, Deian Stefan, and Ranjit Jhala. 2019.

IODINE: Verifying Constant-Time Execution of Hardware. In 28th USENIX Se-
curity Symposium, USENIX Security 2019, Santa Clara, CA, USA, August 14-16,
2019, Nadia Heninger and Patrick Traynor (Eds.). USENIX Association, 1411–

1428. https://www.usenix.org/conference/usenixsecurity19/presentation/von-

gleissenthall

[31] Klaus von Gleissenthall, Rami Gökhan Kici, Deian Stefan, and Ranjit Jhala. 2021.

Solver-Aided Constant-TimeHardware Verification. InCCS ’21: 2021 ACM SIGSAC
Conference on Computer and Communications Security, Virtual Event, Republic
of Korea, November 15 - 19, 2021, Yongdae Kim, Jong Kim, Giovanni Vigna, and

Elaine Shi (Eds.). ACM, 429–444. https://doi.org/10.1145/3460120.3484810

[32] Shuai Wang, Pei Wang, Xiao Liu, Danfeng Zhang, and Dinghao Wu. 2017.

CacheD: Identifying Cache-Based Timing Channels in Production Software. In

26th USENIX Security Symposium, USENIX Security 2017, Vancouver, BC, Canada,
August 16-18, 2017, Engin Kirda and Thomas Ristenpart (Eds.). USENIX Associa-

tion, 235–252. https://www.usenix.org/conference/usenixsecurity17/technical-

sessions/presentation/wang-shuai

[33] Drew Zagieboylo, G. Edward Suh, and Andrew C. Myers. 2019. Using Information

Flow toDesign an ISA that Controls Timing Channels. In 2019 IEEE 32nd Computer
Security Foundations Symposium (CSF). 272–27215. https://doi.org/10.1109/CSF.

2019.00026

[34] Danfeng Zhang, Aslan Askarov, and Andrew C. Myers. 2012. Language-Based

Control and Mitigation of Timing Channels. In Proceedings of the 33rd ACM SIG-
PLAN Conference on Programming Language Design and Implementation (Beijing,

China) (PLDI ’12). Association for Computing Machinery, New York, NY, USA,

99–110. https://doi.org/10.1145/2254064.2254078

14

https://www.usenix.org/conference/usenixsecurity19/presentation/von-gleissenthall
https://www.usenix.org/conference/usenixsecurity19/presentation/von-gleissenthall
https://doi.org/10.1145/3460120.3484810
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/wang-shuai
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/wang-shuai
https://doi.org/10.1109/CSF.2019.00026
https://doi.org/10.1109/CSF.2019.00026
https://doi.org/10.1145/2254064.2254078

	Abstract
	1 Introduction
	2 Background and example
	2.1 Background on Jasmin
	2.2 Constant-time leakage models
	2.3 Background on EasyCrypt
	2.4 Motivating Example: MEE-CBC

	3 Fine-grained policies in Jasmin
	3.1 Syntax & Semantics
	3.2 Constant-Time Policies
	3.3 Instances

	4 Compiler preservation of fine-grained constant-time policies
	4.1 Correctness
	4.2 Baseline instrumented correctness
	4.3 Fine-Grained Instrumented Correctness

	5 Deductive enforcement of fine-grained constant-time policies
	5.1 Instrumentation
	5.2 Correctness of instrumentation

	6 Implementation
	6.1 Coq formalization
	6.2 Extraction to EasyCrypt & Jasmin evaluator
	6.3 Impact on compilation time

	7 Evaluation
	7.1 Impact on verifying the baseline policy
	7.2 Verification effort of other policies
	7.3 Security of MAC extraction
	7.4 Efficient Constant-Time Modulo

	8 Related Work
	9 Conclusion
	References

