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Abstract

We initiate the study of software watermarking against quantum adversaries. A quantum adversary
generates a quantum state as a pirate software that potentially removes an embedded message from a
classical marked software. Extracting an embedded message from quantum pirate software is difficult
since measurement could irreversibly alter the quantum state. In software watermarking against
classical adversaries, a message extraction algorithm crucially uses the (input-output) behavior of a
classical pirate software to extract an embedded message. Even if we instantiate existing watermarking
PRFs with quantum-safe building blocks, it is not clear whether they are secure against quantum
adversaries due to the quantum-specific property above. Thus, we need entirely new techniques to
achieve software watermarking against quantum adversaries.

In this work, we define secure watermarking PRFs and PKE for quantum adversaries (unremov-
ability against quantum adversaries). We also present two watermarking PRFs and one watermarking
PKE as follows.

• We construct a privately extractable watermarking PRF against quantum adversaries from the
quantum hardness of the learning with errors (LWE) problem. The marking and extraction
algorithms use a public parameter and a private extraction key, respectively. The watermarking
PRF is unremovable even if adversaries have (the public parameter and) access to the extraction
oracle, which returns a result of extraction for a queried quantum circuit.

• We construct a publicly extractable watermarking PRF against quantum adversaries from
indistinguishability obfuscation (IO) and the quantum hardness of the LWE problem. The
marking and extraction algorithms use a public parameter and a public extraction key, respectively.
The watermarking PRF is unremovable even if adversaries have the extraction key (and the
public parameter).

• We construct a publicly extractable watermarking PKE against quantum adversaries from
standard PKE. The marking algorithm can directly generate a marked decryption from a
decryption key, and the extraction algorithm uses a public key of the PKE scheme for extraction.

We develop a quantum extraction technique to extract information (a classical string) from a
quantum state without destroying the state too much. We also introduce the notions of extraction-less
watermarking PRFs and PKE as crucial building blocks to achieve the results above by combining the
tool with our quantum extraction technique.
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1 Introduction

1.1 Background

Software watermarking is a cryptographic primitive that achieves a digital analog of watermarking. A
marking algorithm of software watermarking can embed an arbitrary message (bit string) into a computer
software modeled as a circuit. A marked software almost preserves the functionality of the original
software. An extraction algorithm of software watermarking can extract the embedded message from
a marked software. Secure software watermarking should guarantee that no adversary can remove the
embedded message without significantly destroying the functionality of the original software (called
unremovability).

Barak, Goldreich, Impagliazzo, Rudich, Sahai, Vadhan, and Yang [BGI+12] initiate the study
of software watermarking and present the first definition of cryptographically secure software wa-
termarking. Hopper, Molnar, and Wagner [HMW07] also study the definition of cryptographically
secure watermarking for perceptual objects. However, both works do not present a secure con-
crete scheme. A few works study secure constructions of watermarking for cryptographic primi-
tives [NSS99, YF11, Nis13, Nis19], but they consider only restricted removal strategies. Cohen,
Holmgren, Nishimaki, Wichs, and Vaikuntanathan [CHN+18] present stronger definitions for software
watermarking and the first secure watermarking schemes for cryptographic primitives against arbitrary
removal strategies. After the celebrated work, watermarking for cryptographic primitives have been
extensively studied [BLW17, KW21, QWZ18, KW19, YAL+19, GKM+19, YAYX20, Nis20].

Primary applications of watermarking are identifying ownership of objects and tracing users that
distribute illegal copies. Watermarking for cryptographic primitives also has another exciting application.
Aaronson, Liu, Liu, Zhandry, and Zhang [ALL+21] and Kitagawa, Nishimaki, and Yamakawa [KNY21]
concurrently and independently find that we can construct secure software leasing schemes by combining
watermarking with quantum cryptography.1 Secure software leasing [AL21] is a quantum cryptographic
primitive that prevents users from generating authenticated pirated copies of leased software.2 Since
watermarking has such an exciting application in quantum cryptography and quantum computers might
be an imminent threat to cryptography due to rapid progress in research on quantum computing, it is
natural and fascinating to study secure software watermarking in the quantum setting.

In quantum cryptography, building blocks must be quantum-safe such as lattice-based cryp-
tography [Reg09]. However, even if we replace building blocks of existing cryptographic primi-
tives/protocols with quantum-safe ones, we do not necessarily obtain quantum-safe cryptographic
primitives/protocols [BDF+11, ARU14]. We sometimes need new proof techniques which are dif-
ferent from classical ones due to quantum specific properties such as no-cloning and superposition
access [Wat09, Zha12b, Zha12a, Unr12, Zha19, CMSZ21]. Even worse, we must consider entirely
different security models in some settings. Zhandry [Zha20] studies traitor tracing [CFN94] in the
quantum setting as such an example. In quantum traitor tracing, an adversary can output a quantum state
as a pirate decoder. Zhandry shows that we need new techniques for achieving quantum traitor tracing
because running a quantum pirate decoder to extract information may irreversibly alter the state due to
measurement.

Zhandry [Zha20] refers to software watermarking as a cryptographic primitive that has a similar issue
to quantum traitor tracing. However, his work focuses only on traitor tracing and does not study software
watermarking against quantum adversaries. If we use software watermarking in the quantum setting, an
adversary can output a quantum state as a pirate circuit where an embedded message might be removed.
However, previous works consider a setting where an adversary outputs a classical pirate circuit. It is not
clear whether watermarking schemes based on quantum-safe cryptography are secure against quantum

1Precisely speaking, Aaronson et al. achieve copy-detection schemes [ALL+21], which are essentially the same as secure
software leasing schemes.

2Leased software must be a quantum state since classical bit strings can be easily copied.
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adversaries because we need an entirely new extraction algorithm to extract an embedded message from a
quantum pirate circuit. Thus, the main question in this study is:

Can we achieve secure watermarking for cryptographic primitives against quantum adversaries?

We affirmatively answer this question in this work.

1.2 Our Result

Our main contributions are two-fold. One is the definitional work. We define watermarking for
pseudorandom functions (PRFs) against quantum adversaries, where adversaries output a quantum state
as a pirate circuit that distinguishes a PRF from a random function.3 The other one is constructing the first
secure watermarking PRFs against quantum adversaries. We present two watermarking PRFs as follows.

• We construct a privately extractable watermarking PRF against quantum adversaries from the
quantum hardness of the learning with errors (LWE) problem. This watermarking PRF is secure
in the presence of the extraction oracle and supports public marking. That is, the marking
and extraction algorithms use a public parameter and secret extraction key, respectively. The
watermarking PRF is unremovable even if adversaries have access to the extraction oracle, which
returns a result of extraction for a queried quantum circuit.

• We construct a publicly extractable watermarking PRF against quantum adversaries from indistin-
guishability obfuscation (IO) and the quantum hardness of the LWE problem. This watermarking
PRF also supports public marking. That is, the marking and extraction algorithms use a public
parameter and a public extraction key, respectively. The watermarking PRF is unremovable (we do
not need to consider the mark and extraction oracles since it supports public marking and public
extraction).

The former and latter PRFs satisfy weak pseudorandomness and standard (strong) pseudorandomness
even against a watermarking authority, respectively.

We develop a quantum extraction algorithm to achieve the results above. Zhandry [Zha20] presents
a useful technique for extracting information from quantum states without destroying them too much.
However, we cannot simply apply his technique to the watermarking setting. Embedded information
(arbitrary string) is chosen from an exponentially large set in the watermarking setting. On the other
hand, in the traitor tracing setting, we embed a user index, which could be chosen from a polynomially
large set, in a decryption key. Zhandry’s technique is tailored to traitor tracing based on private linear
broadcast encryption (PLBE) [BSW06] where user information is chosen from a polynomially large set
with linear structure. Thus, we extend Zhandry’s technique [Zha20] to extract information chosen from an
exponentially large set. We also introduce the notion of extraction-less watermarking as a crucial tool to
achieve watermarking against quantum adversaries. This tool is a suitable building block for our quantum
extraction technique in our watermarking extraction algorithm. These are our technical contributions.
See Section 1.3 for the detail.

Our secondary contributions are watermarking public-key encryption (PKE). It is easy to extend our
definitions to watermarking PKE against quantum adversaries. In addition, our construction technique
based on extraction-less watermarking easily yields watermarking PKE (where a decryption circuit is
marked) schemes. We present a watermarking PKE scheme as follows.

• We construct a publicly extractable watermarking PKE against quantum adversaries from standard
PKE. This watermarking PKE also supports public marking. That is, the marking algorithm can
directly generate a marked decryption from a decryption key, and the extraction algorithm uses
a public key of the PKE scheme for extraction. The watermarking PKE is unremovable (we do

3This definitional choice comes from the definition of traceable PRFs [GKWW21]. See Sections 1.3 and 1.4 for the detail.
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not need to consider the mark and extraction oracles since it supports public marking and public
extraction).

We focus on watermarking with public marking in this paper. However, we can easily convert our
constructions into ones with private marking, to achieve unforgeability that roughly guarantees that valid
marked keys can be generated only by the authority who has the secret marking key. See Remark 3.4 for
the detail.

1.3 Technical Overview

Syntax of watermarking PRF. We first review the syntax of watermarking PRF used in this work. A
watermarking PRF scheme consists of five algorithms (Setup, Gen, Eval, Mark, Extract).4 Setup outputs
a public parameter pp and an extraction key xk. Gen is given pp and outputs a PRF key prfk and a public
tag τ. Eval is the PRF evaluation algorithm that takes as an input prfk and x in the domain and outputs y.
By using Mark, we can generate a marked evaluation circuit that has embedded message m ∈ {0, 1}ℓm

and can be used to evaluate Eval(prfk, x′) for almost all x′. Finally, Extract is the extraction algorithm
supposed to extract the embedded message from a pirated quantum evaluation circuit generated from the
marked evaluation circuit. By default, in this work, we consider the public marking setting, where anyone
can execute Mark. Thus, Mark takes pp as an input. On the other hand, we consider both the private
extraction and the public extraction settings. Thus, the extraction key xk used by Extract is kept secret by
an authority in the private extraction setting and made public in the public extraction setting.

In this work, we allow Extract to take the public tag τ generated with the original PRF key corresponding
to the pirate circuit. In reality, we execute Extract for a software when a user claims that the software is
illegally generated by using her/his PRF key. Thus, it is natural to expect we can use a user’s public tag
for extraction. Moreover, pirate circuits are distinguishers, not predictors in this work. As discussed by
Goyal et al. [GKWW21], security against pirate distinguishers is much preferable compared to security
against pirate predictors considered in many previous works on watermarking. In this case, it seems that
such additional information fed to Extract is unavoidable. For a more detailed discussion on the syntax,
see the discussion in Section 3.1.

It is also natural to focus on distinguishers breaking weak pseudorandomness of PRFs when we
consider pirate distinguishers instead of pirate predictors. Goyal et al. [GKWW21] already discussed this
point. Thus, we focus on watermarking weak PRF in this work.

Definition of unremovability against quantum adversaries. We say that a watermarking PRF scheme
satisfies unremovability if given a marked evaluation circuit C̃ that has an embedded message m, any
adversary cannot generate a circuit such that it is a “good enough circuit”, but the extraction algorithm
fails to output m. In this work, we basically follow the notion of “good enough circuit” defined by Goyal et
al. [GKWW21] as stated above. Let D be the following distribution for a PRF Eval(prfk, ·) : Dom→ Ran.

D: Generate b← {0, 1}, x ← Dom, and y0 ← Ran. Compute y1 ← Eval(prfk, x). Output (b, x, yb).

A circuit is defined as good enough circuit with respect to Eval(prfk, ·) if given (x, yb) output by D, it
can correctly guess b with probability significantly greater than 1/2. In other words, a circuit is defined
as good enough if the circuit breaks weak PRF security.

Below, for a distribution D′ whose output is of the form (b, x, y), letMD′ = (MD′,0, MD′,1) be
binary positive operator valued measures (POVMs) that represents generating random (b, x, y) from
D′ and testing if a quantum circuit can guess b from (x, y). Then, for a quantum state |ψ⟩, the overall
distinguishing advantage of it for the above distribution D is ⟨ψ|MD,0 |ψ⟩. Thus, a natural adaptation
of the above notion of goodness for quantum circuits might be to define a quantum state |ψ⟩ as good if

4In this paper, standard math font stands for classical algorithms, and calligraphic font stands for quantum algorithms.
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⟨ψ|MD,0 |ψ⟩ is significantly greater than 1/2. However, this notion of goodness for quantum circuits
is not really meaningful. The biggest issue is that it does not consider the stateful nature of quantum
programs.

This issue was previously addressed by Zhandry [Zha20] in the context of traitor tracing against
quantum adversaries. In the context of classical traitor tracing or watermarking, we can assume that a
pirate circuit is stateless, or can be rewound to its original state. This assumption is reasonable. If we have
the software description of the pirate circuit, such a rewinding is trivial. Even if we have a hardware box
in which a pirate circuit is built, it seems that such a rewinding is possible by hard reboot or cutting power.
On the other hand, in the context of watermarking against quantum adversaries, we have to consider that a
pirate circuit is inherently stateful since it is described as a quantum state. Operations to a quantum state
can alter the state, and in general, it is impossible to rewind the state into its original state. Regarding the
definition of good quantum circuits above, if we can somehow compute the average success probability
⟨ψ|MD,0 |ψ⟩ of the quantum state |ψ⟩, the process can change or destroy the quantum state |ψ⟩. Namely,
even if we once confirm that the quantum state |ψ⟩ is good by computing ⟨ψ|MD,0 |ψ⟩, we cannot know
the success probability of the quantum state even right after the computation. Clearly, the above notion of
goodness is not the right notion, and we need one that captures the stateful nature of quantum programs.

In the work on traitor tracing against quantum adversaries, Zhandry [Zha20] proposed a notion of
goodness for quantum programs that solves the above issue. We adopt it. For the above POVMsMD,
letM′

D be the projective measurement {Pp}p∈[0,1] that projects a state onto the eigenspaces of MD,0,
where each p is an eigenvalue of MD,0. M′

D is called projective implementation ofMD and denoted as
ProjImp(MD). Zhandry showed that the following process has the same output distribution asMD:

1. Apply the projective measurementM′
D = ProjImp(MD) and obtain p.

2. Output 0 with probability p and output 1 with probability 1− p.

Intuitively,M′
D project a state to an eigenvector of MD,0 with eigenvalue p, which can be seen as a

quantum state with success probability p. UsingM′
D, Zhandry defined that a quantum circuit is Live if

the outcome of the measurementM′
D is significantly greater than 1/2. The notion of Live is a natural

extension of the classical goodness since it collapses to the classical goodness for a classical decoder.
Moreover, we can ensure that a quantum state that is tested as Live still has a high success probability. On
the other hand, the above notion of goodness cannot say anything about the post-tested quantum state’s
success probability even if the test is passed. In this work, we use the notion of Live quantum circuits as
the notion of good quantum circuits.

Difficulty of watermarking PRF against quantum adversaries. From the above discussion, our goal
is to construct a watermarking PRF scheme that guarantees that we can extract the embedded message
correctly if a pirated quantum circuit is Live. In watermarking PRF schemes, we usually extract an
embedded message by applying several tests on success probability to a pirate circuit. When a pirate
circuit is a quantum state, the set of tests that we can apply is highly limited compared to a classical circuit
due to the stateful nature of quantum states.

One set of tests we can apply without destroying the quantum state is ProjImp(MD′) for distributions
D′ that are indistinguishable from D from the view of the pirate circuit.5 We denote this set as
{ProjImp(MD′) | D′

c≈ D}. Zhandry showed that if distributions D1 and D2 are indistinguishable, the
outcome of ProjImp(MD1) is close to that of ProjImp(MD2). By combining this property with the
projective property of projective implementations, as long as the initial quantum state is Live and we apply
only tests contained in {ProjImp(MD′) | D′

c≈ D}, the quantum state remains Live. On the other hand,
if we apply a test outside of {ProjImp(MD′) | D′

c≈ D}, the quantum state might be irreversibly altered.

5In the actual extraction process, we use an approximation of projective implementation introduced by Zhandry [Zha20]
since applying a projective implementation is inefficient. In this overview, we ignore this issue for simplicity.
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This fact is a problem since the set {ProjImp(MD′) | D′
c≈ D} only is not sufficient to implement the

existing widely used construction method for watermarking PRF schemes.
To see this, we briefly review the method. In watermarking PRF schemes, the number of possible

embedded messages is super-polynomial, and thus we basically need to extract an embedded message in a
bit-by-bit manner. In the method, such a bit-by-bit extraction is done as follows. For every i ∈ [ℓm], we
define two distributions Si,0 and Si,1 whose output is of the form (b, x, y) as D above. Then, we design a
marked circuit with embedded message m ∈ {0, 1}ℓm so that it can be used to guess b from (x, y) with
probability significantly greater than 1/2 only for Si,0 (resp. Si,1) if m[i] = 0 (resp. m[i] = 1). The
extraction algorithm can extract i-th bit of the message m[i] by checking for which distributions of Si,0
and Si,1 a pirate circuit has a high distinguishing advantage.

As stated above, we cannot use this standard method to extract a message from quantum pirate circuits.
The reason is that Si,0 and Si,1 are typically distinguishable. This implies that at least either one of
ProjImp(MSi,0) or ProjImp(MSi,1) is not contained in {ProjImp(MD′) | D′

c≈ D}. Since the test
outside of {ProjImp(MD′) | D′

c≈ D} might destroy the quantum state, we might not be able to perform
the process for all i, and fail to extract the entire bits of the embedded message.

It seems that to perform the bit-by-bit extraction for a quantum state, we need to extend the set of
applicable tests and come up with a new extraction method.

Our solution: Use of reverse projective property. We find that as another applicable set of tests,
we have ProjImp(MD′) for distributions D′ that are indistinguishable from Drev, where Drev is the
following distribution.

Drev: Generate b ← {0, 1}, x ← Dom, and y0 ← Ran. Compute y1 ← Eval(prfk, x). Output
(1⊕ b, x, yb).

We denote the set as {ProjImp(MD′) | D′
c≈ Drev}. Drev is the distribution the first bit of whose

output is flipped from that of D. Then,MDrev can be seen as POVMs that represents generating random
(b, x, yb) from D and testing if a quantum circuit cannot guess b from (x, yb). Thus, we see that
MDrev = (MD,1, MD,0). Recall thatMD = (MD,0, MD,1).

Let D1 ∈ {ProjImp(MD′) | D′
c≈ D} and Drev

1 be the distribution that generates (b, x, y) ← D1

and outputs (1⊕ b, x, y). Drev
1 is a distribution contained in {ProjImp(MD′) | D′

c≈ Drev}. Similarly
to the relation between D and Drev, ifMD1 = (MD1,0, MD1,1), we haveMDrev

1
= (MD1,1, MD1,0).

Since MD1,0 + MD1,1 = I, MD1,0 and MD1,1 share the same set of eigenvectors, and if a vector is an
eigenvector of MD1,0 with eigenvalue p, then it is also an eigenvector of MD1,1 with eigenvalue 1− p.
Thus, if we apply ProjImp(MD1) and ProjImp(MDrev

1
) successively to a quantum state and obtain the

outcomes p̃1 and p̃′1, it holds that p̃′1 = 1− p̃1. We call this property the reverse projective property of
the projective implementation.

Combining projective and reverse projective properties and the outcome closeness for indistinguishable
distributions of the projective implementation, we see that the following key fact holds.

Key fact: As long as the initial quantum state is Live and we apply tests contained in {ProjImp(MD′) |
D′

c≈ D} or {ProjImp(MD′)|D′
c≈ Drev}, the quantum state remains Live. Moreover, if the

outcome of applying ProjImp(MD) to the initial state is p, we get the outcome close to p every
time we apply a test in {ProjImp(MD′) | D′

c≈ D}, and we get the outcome close to 1− p every
time we apply a test in {ProjImp(MD′) | D′

c≈ Drev}.

In this work, we perform bit-by-bit extraction of embedded messages by using the above key fact of
the projective implementation. To this end, we introduce the new notion of extraction-less watermarking
PRF as an intermediate primitive.
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Via extraction-less watermarking PRF. An extraction-less watermarking PRF scheme has almost the
same syntax as a watermarking PRF scheme, except that it does not have an extraction algorithm Extract
and instead has a simulation algorithm Sim. Sim is given the extraction key xk, the public tag τ, and an
index i ∈ [ℓm], and outputs a tuple of the form (γ, x, y). Sim simulates outputs of D or Drev for a pirate
circuit depending on the message embedded to the marked circuit corresponding to the pirate circuit.
More concretely, we require that from the view of the pirate circuit generated from a marked circuit with
embedded message m ∈ {0, 1}ℓm , outputs of Sim are indistinguishable from those of D if m[i] = 0 and
are indistinguishable from those of Drev if m[i] = 1 for every i ∈ [ℓm]. We call this security notion
simulatability for mark-dependent distributions (SIM-MDD security).

By using an extraction-less watermarking PRF scheme ELWMPRF, we construct a watermarking PRF
scheme WMPRF against quantum adversaries as follows. We use Setup, Gen, Eval, Mark of ELWMPRF
as Setup, Gen, Eval, Mark of WMPRF, respectively. We explain how to construct the extraction algorithm
Extract of WMPRF using Sim of ELWMPRF. For every i ∈ [ℓm], we define Dτ,i as the distribution that
outputs randomly generated (γ, x, y) ← Sim(xk, τ, i). Given xk, τ, and a quantum state |ψ⟩, Extract
extracts the embedded message in the bit-by-bit manner by repeating the following process for every
i ∈ [ℓm].

• Apply ProjImp(MDτ,i) to |ψi−1⟩ and obtain the outcome p̃i, where |ψ0⟩ = |ψ⟩ and |ψi−1⟩ is the
state after the (i− 1)-th loop for every i ∈ [ℓm].

• Set m′i = 0 if p̃i > 1/2 and otherwise m′i = 1.

The extracted message is set to m′1∥ · · · ∥m′ℓm
.

We show that the above construction satisfies unremovability. Suppose an adversary is given marked
circuit C̃ ← Mark(pp, prfk, m) and generates a quantum state |ψ⟩, where (pp, xk) ← Setup(1λ) and
(prfk, τ) ← Gen(pp). Suppose also that |ψ⟩ is Live. This assumption means that the outcome p of
applying ProjImp(MD) to |ψ⟩ is 1/2+ ϵ, where ϵ is an inverse polynomial. For every i ∈ [ℓm], from the
SIM-MDD security of ELWMPRF, Dτ,i is indistinguishable from D if m[i] = 0 and is indistinguishable
from Drev if m[i] = 1. This means that Dτ,i ∈ {ProjImp(MD′) | D′

c≈ D} if m[i] = 0 and
Dτ,i ∈ {ProjImp(MD′) | D′

c≈ Drev} if m[i] = 1. Then, from the above key fact of the projective
implementation, it holds that p̃i is close to 1/2 + ϵ > 1/2 if m[i] = 0 and is close to 1/2− ϵ < 1/2 if
m[i] = 1. Therefore, we see that Extract correctly extract m from |ψ⟩. This means that WMPRF satisfies
unremovability.

The above definition, construction, and security analysis are simplified and ignore many subtleties.
The most significant point is that we use approximated projective implementations introduced by
Zhandry [Zha20] instead of projective implementations in the actual construction since applying a
projective implementation is an inefficient process. Moreover, though the outcomes of (approximate)
projective implementations for indistinguishable distributions are close, in the actual analysis, we have to
take into account that the outcomes gradually change every time we apply an (approximate) projective
implementation. These issues can be solved by doing careful parameter settings.

Comparison with the work by Zhandry [Zha20]. Some readers familiar with Zhandry’s work [Zha20]
might think that our technique contradicts the lesson from Zhandry’s work since it essentially says that
once we find a large gap in success probabilities, the tested quantum pirate circuit might self-destruct.
However, this is not the case. What Zhandry’s work really showed is the following. Once a quantum
pirate circuit itself detects that there is a large gap in success probabilities, it might self-destruct. Even if
an extractor finds a large gap in success probabilities, if the tested quantum pirate circuit itself cannot
detect the large gap, the pirate circuit cannot self-destruct. In Zhandry’s work, whenever an extractor
finds a large gap, the tested pirate circuit also detects the large gap. In our work, the tested pirate circuit
cannot detect a large gap throughout the extraction process while an extractor can find it.
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The reason why a pirate circuit cannot detect a large gap in our scheme even if an extractor can find
it is as follows. Recall that in the above extraction process of our scheme based on an extraction-less
watermarking PRF scheme, we apply ProjImp(MDτ,i) to the tested pirate circuit for every i ∈ [ℓm].
Each Dτ,i outputs a tuple of the form (b, x, y) and is indistinguishable from D or Drev depending on the
embedded message. In the process, we apply ProjImp(MDτ,i) for every i ∈ [ℓm], and we get the success
probability p if Dτ,i is indistinguishable from D and we get 1− p if Dτ,i is indistinguishable from Drev.
The tested pirate circuit needs to know which of D or Drev is indistinguishable from the distribution Dτ,i
behind the projective implementation to know which of p or 1− p is the result of an application of a
projective implementation. However, this is impossible. The tested pirate circuit receives only (x, y) part
of Dτ,i’s output and not b part. (Recall that the task of the pirate circuit is to guess b from (x, y).) The
only difference between D and Drev is that the first-bit b is flipped. Thus, if the b part is dropped, Dτ,i is,
in fact, indistinguishable from both D and Drev. As a result, the pirate program cannot know which of p
or 1− p is the result of an application of a projective implementation. In other words, the pirate circuit
cannot detect a large gap in our extraction process.

Instantiating extraction-less watermarking PRF. In the rest of this overview, we will explain how to
realize extraction-less watermarking PRF.

We consider the following two settings similar to the ordinary watermarking PRF. Recall that we
consider the public marking setting by default.

Private-simulatable: In this setting, the extraction key xk fed into Sim is kept secret. We require that
SIM-MDD security hold under the existence of the simulation oracle that is given a public tag τ′

and an index i′ ∈ [ℓm] and returns Sim(xk, τ′, i′). An extraction-less watermarking PRF scheme in
this setting yields a watermarking PRF scheme against quantum adversaries in private-extractable
setting where unremovability holds for adversaries who can access the extraction oracle.

Public-simulatable: In this setting, the extraction key xk is publicly available. An extraction-less
watermarking PRF scheme in this setting yields a watermarking PRF scheme against quantum
adversaries in the public-extractable setting.

We provide a construction in the first setting using private constrained PRF based on the hardness of the
LWE assumption. Also, we provide a construction in the second setting based on IO and the hardness of
the LWE assumption.

To give a high-level idea behind the above constructions, in this overview, we show how to construct
a public-simulatable extraction-less watermarking PRF in the token-based setting [CHN+18]. In the
token-based setting, we treat a marked circuit C̃ ← Mark(pp, prfk, m) as a tamper-proof hardware token
that an adversary can only access in a black-box way.

Before showing the actual construction, we explain the high-level idea. Recall that SIM-MDD security
requires that an adversary A who is given C̃ ← Mark(pp, prfk, m) cannot distinguish (γ∗, x∗, y∗) ←
Sim(xk, τ, i∗) from an output of D if m[i∗] = 0 and from that of Drev if m[i∗] = 1. This is the same as
requiring that A cannot distinguish (γ∗, x∗, y∗)← Sim(xk, τ, i∗) from that of the following distribution
Dreal,i∗ . We can check that Dreal,i∗ is identical with D if m[i∗] = 0 and with Drev if m[i∗] = 1.

Dreal,i∗: Generate γ← {0, 1} and x ← Dom. Then, if γ = m[i∗], generate y← Ran, and otherwise,
compute y← Eval(prfk, x). Output (γ, x, y).

Essentially, the only attack that A can perform is to feed x∗ contained in the given tuple (γ∗, x∗, y∗) to C̃
and compares the result C̃(x∗) with y∗, if we ensure that γ∗, x∗ are pseudorandom. In order to make the
construction immune to this attack, letting C̃ ← Mark(pp, prfk, m) and (γ∗, x∗, y∗) ← Sim(xk, τ, i∗),
we have to design Sim and C̃ so that

• If γ = m[i∗], C̃(x∗) outputs a value different from y∗.
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• If γ ̸= m[i∗], C̃(x∗) outputs y∗.

We achieve these conditions as follows. First, we set (γ∗, x∗, y∗) output by Sim(xk, τ, i∗) so that γ∗

and y∗ is random values and x∗ is an encryption of y∗∥i∗∥γ∗ by a public-key encryption scheme with
pseudorandom ciphertext property, where the encryption key pk is included in τ. Then, we set C̃ as a
token such that it has the message m and the decryption key sk corresponding to pk hardwired, and it
outputs y∗ if the input is decryptable and γ∗ ̸= m[i∗] holds for the decrypted y∗∥i∗∥γ∗, and otherwise
behaves as Eval(prfk, ·). The actual construction is as follows.

Let PRF be a PRF family consisting of functions {Fprfk(·) : {0, 1}n → {0, 1}λ|prfk}, where λ is
the security parameter and n is sufficiently large. Let PKE = (KG, E, D) be a CCA secure public-key
encryption scheme satisfying pseudorandom ciphertext property. Using these ingredients, We construct
an extraction-less watermarking PRF scheme ELWMPRF = (Setup, Gen, Eval, Mark, Sim) as follows.

Setup(1λ): In this construction, pp := ⊥ and xk := ⊥.

Gen(pp): It generates a fresh PRF key prfk of PRF and a key pair (pk, sk)← KG(1λ). The PRF key is
(prfk, sk) and the corresponding public tag is pk.

Eval((prfk, sk), x): It simply outputs Fprfk(x).

Mark(pp, (prfk, sk), m): It generates the following taken C̃[prfk, sk, m].

Hard-Coded Constants: prfk, sk, m.
Input: x ∈ {0, 1}n.

1. Try to decrypt y∥i∥γ← D(sk, x) with y ∈ {0, 1}λ, i ∈ [ℓm], and γ ∈ {0, 1}.
2. If decryption succeeds, output y if γ ̸= m[i] and Fprfk(x) otherwise.
3. Otherwise, output Fprfk(x).

Sim(xk, τ, i): It first generates γ ← {0, 1} and y ← {0, 1}λ. Then, it parses τ := pk and generates
x ← E(pk, y∥i∥γ). Finally, it outputs (γ, x, y).

We check that ELWMPRF satisfies SIM-MDD security. For simplicity, we fix the message m ∈ [ℓm]
embedded into the challenge PRF key. Then, for any adversary A and i∗ ∈ [ℓm], SIM-MDD security
requires that given C̃[prfk, sk, m] ← Mark(mk, prfk, m) and τ = pk, A cannot distinguish (γ∗, x∗ =
E(pk, y∗∥i∗∥γ∗), y∗)← Sim(xk, τ, i∗) from an output of D if m[i∗] = 0 and is indistinguishable from
Drev if m[i∗] = 1.

We consider the case of m[i∗] = 0. We can finish the security analysis by considering the following se-
quence of mutually indistinguishable hybrid games, where A is given (γ∗, x∗ = E(pk, y∗∥i∗∥γ∗), y∗)←
Sim(xk, τ, i∗) in the first game, and on the other hand, is given (γ∗, x∗, y∗)← D in the last game. We first
change the game so that x∗ is generated as a uniformly random value instead of x∗ ← E(pk, y∗∥i∗∥γ∗)
by using the pseudorandom ciphertext property under CCA of PKE. This is possible since the CCA
oracle can simulate access to the marked token C̃[prfk, sk, m] by A . Then, we further change the security
game so that if γ∗ = 1, y∗ is generated as Fprfk(x∗) instead of a uniformly random value by using the
pseudorandomness of PRF. Note that if γ∗ = 0, y∗ remains uniformly at random. We see that if γ∗ = 1,
the token C̃[prfk, sk, m] never evaluate Fprfk(x∗) since m[i∗] ̸= γ∗. Thus, this change is possible. We
see that now the distribution of (γ∗, x∗, y∗) is exactly the same as that output by D. Similarly, in the
case of m[i∗] = 1, we can show that an output of Sim(xk, τ, i∗) is indistinguishable from that output by
Drev. The only difference is that in the final step, we change the security game so that y∗ is generated as
Fprfk(x∗) if γ∗ = 0.

In the actual public-simulatable construction, we implement this idea using iO and puncturable
encryption [CHN+18] instead of token and CCA secure public-key encryption. Also, in the actual
secret-simulatable construction, we basically follow the same idea using private constrained PRF and
secret-key encryption.
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Watermarking PKE against quantum adversaries. Our framework using reverse projective property
of projective implementation and extraction-less watermarking is highly general. We show that we
can achieve watermarking PKE against quantum adversaries using this framework. Also, we provide
a construction of extraction-less watermarking PKE based on single-key ciphertext policy functional
encryption that can be based on any standard PKE scheme.

1.4 More on Related Work

Watermarking against classical adversaries. Cohen et al. [CHN+18] present a publicly extractable
watermarking PRF from IO and injective OWFs. It is unremovable against adversaries who can access
the mark oracle only before a target marked circuit is given. The mark oracle returns a marked circuit
for a queried arbitrary polynomial-size circuit. Suppose we additionally assume the hardness of the
decisional Diffie-Hellman or LWE problem. In that case, their watermarking PRF is unremovable against
adversaries that can access the mark oracle before and after a target marked circuit is given. However,
adversaries can query a valid PRF key to the mark oracle in that case. They also present definitions and
constructions of watermarking for public-key cryptographic primitives.

Boneh, Lewi, and Wu [BLW17] present a privately extractable watermarking PRF from privately
programmable PRFs, which are variants of private constrained PRFs [BLW17, CC17]. It is unremovable
in the presence of the mark oracle. However, it is not secure in the presence of the extraction oracle and
does not support public marking. They instantiate a privately programmable PRF with IO and OWFs, but
later, Peikert and Shiehian [PS18] instantiate it with the LWE assumption.

Kim and Wu [KW21] (KW17), Quach, Wichs, and Zirdelis [QWZ18] (QWZ), and Kim and
Wu [KW19] (KW19) present privately extractable watermarking PRFs from the LWE assumption. They
are secure in the presence of the mark oracle. KW17 construction is not secure in the presence of the
extraction oracle and does not support public marking. QWZ construction is unremovable in the presence
of the extraction oracle and supports public marking. However, it does not have pseudorandomness
against an authority that generates a marking and extraction key. KW19 construction is unremovable in
the presence of the extraction oracle and has some restricted pseudorandomness against an authority (see
the reference [KW19] for the detail). However, it does not support public marking.6

Yang et al. [YAL+19] present a collusion-resistant watermarking PRF from IO and the LWE
assumption. Collusion-resistant watermarking means unremovability holds even if adversaries receive
multiple marked circuits with different embedded messages generated from one target circuit.

Goyal, Kim, Manohar, Waters, and Wu [GKM+19] improve the definitions of watermarking for
public-key cryptographic primitives and present constructions. In particular, they introduce collusion-
resistant watermarking and more realistic attack strategies for public-key cryptographic primitives.
Nishimaki [Nis20] present a general method for equipping many existing public-key cryptographic
schemes with the watermarking functionality.

Goyal, Kim, Waters, and Wu [GKWW21] introduce the notion of traceable PRFs, where we can
identify a user that creates a pirate copy of her/his authenticated PRF. The difference between traceable
PRF and (collusion-resistant) watermarking PRF is that there is only one target original PRF and multiple
authenticated copies of it with different identities in traceable PRF. In (collusion-resistant) watermarking
PRF, we consider many different PRF keys. In addition, Goyal et al. introduce a refined attack model.
Adversaries in previous watermarking PRF definitions output a pirate PRF circuit that correctly computes
the original PRF values for 1/2 + ϵ fraction of inputs. However, adversaries in traceable PRFs output a
pirate circuit that distinguishes whether an input pair consists of a random input and a real PRF value or a
random input and output value. This definition captures wide range of attacks. For example, it captures
adversaries who create a pirate PRF circuit that can compute the first quarter bits of the original PRF

6Their construction supports public marking in the random oracle model.
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output. Such an attack is not considered in previous watermarking PRFs. We adopt the refined attack
model in our definitions.

Learning information from adversarial entities in the quantum setting. Zhandry [Zha20] introduces
the definition of secure traitor tracing against quantum adversaries. In traitor tracing, each legitimate user
receives a secret key that can decrypt broadcasted ciphertexts and where identity information is embedded.
An adversary outputs a pirate decoder that can distinguish whether an input is a ciphertext of m0 or m1
where m0 and m1 are adversarially chosen plaintexts. A tracing algorithm must identify a malicious user’s
identity such that its secret decryption key is embedded in the pirate decoder. Thus, we need to extract
information from adversarially generated objects. Such a situation also appears in security proofs of
interactive proof systems [Wat09, Unr12, ARU14, CMSZ21] (but not in real cryptographic algorithms)
since we rewind a verifier.

Zhandry presents how to estimate the success decryption probability of a quantum pirate decoder
without destroying the decoding (distinguishing) capability. He achieves a quantum tracing algorithm
that extracts a malicious user identity by combining the probability approximation technique above
with PLBE [BSW06]. However, his technique is limited to the setting where user identity spaces are
only polynomially large while there are several traitor tracing schemes with exponentially large identity
spaces [NWZ16, GKW19]. As observed in previous works [GKM+19, Nis20, GKWW21], traitor tracing
and watermarking have similarities since an adversary outputs a pirate circuit in the watermarking setting
and an extraction algorithm tries to retrieve information from it. However, a notable difference is that we
must consider exponentially large message spaces by default in the (message-embedding) watermarking
setting.

Application of (classical) watermarking. As we explained above, Aaronson et al. [ALL+21], and
Kitagawa et al. [KNY21] achieve secure software leasing schemes by using watermarking. A leased
software consists of a quantum state and watermarked circuit. Although they use watermarking schemes
in the quantum setting, it is sufficient for their purpose to use secure watermarking against adversaries that
output a classical pirate circuit. This is because a returned software is verified by a checking algorithm
and must have a specific format in secure software leasing.7 That is, a returned software is rejected if it
does not have a classical circuit part that can be tested by an extraction algorithm of the building block
watermarking.

Subsequent works. Since our extraction technique is versatile, subsequent works use it in other settings.
Agrawal, Kitagawa, Nishimaki, Yamada, Yamakawa [AKN+23] used our watermarking extraction
technique to achieve public key encryption with secure key leasing, where decryption keys are quantum
state and we can verify that a decryption key was returned. Kitagawa and Nishimaki [KN23] used our
watermarking extraction technique to achieve secret key single-decryptor encryption, where decryption
keys are copy-protected, for multi-bit plaintext in the standard model.

Zhandry [Zha23] achieved collusion-resistant traitor tracing with embedded identities in the keys
for quantum state decoders. His result is an improvement of our watermarking PKE against quantum
adversaries since such a traitor tracing is essentially the same as collusion-resistant watermarking PKE
against quantum adversaries.8 As Zhandry compared in his work [Zha23, Section 2.2], his technique is
different from ours. It is unclear whether we can use his technique to achieve watermarking PRFs against
quantum adversaries.

7A valid software must run on a legitimate platform. For example, a video game title of Xbox must run on Xbox.
8We did not provide the detail of our watermarking PKE in the proceedings version [KN22]. However, it is easy to apply our

extraction technique to PKE as we see in Section 9.
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2 Preliminaries

Notations and conventions. In this paper, standard math or sans serif font stands for classical algorithms
(e.g., C or Gen) and classical variables (e.g., x or pk). Calligraphic font stands for quantum algorithms
(e.g., Gen) and calligraphic font and/or the bracket notation for (mixed) quantum states (e.g., q or |ψ⟩). For
strings x and y, x∥y denotes the concatenation of x and y. Let [ℓ] denote the set of integers {1, · · · , ℓ},
λ denote a security parameter, and y := z denote that y is set, defined, or substituted by z.

In this paper, for a finite set X and a distribution D, x ← X denotes selecting an element from
X uniformly at random, x ← D denotes sampling an element x according to D. Let y ← A(x) and
y← A(x ) denote assigning to y the output of a probabilistic or deterministic algorithm A and a quantum
algorithm A on an input x and x , respectively. When we explicitly show that A uses randomness r, we
write y ← A(x; r). PPT and QPT algorithms stand for probabilistic polynomial time algorithms and
polynomial time quantum algorithms, respectively. Let negl denote a negligible function.

2.1 Quantum Information

LetH be a finite-dimensional complex Hilbert space. A (pure) quantum state is a vector |ψ⟩ ∈ H. Let
S(H) be the space of Hermitian operators onH. A density matrix is a Hermitian operator X ∈ S(H)
with Tr(X ) = 1, which is a probabilistic mixture of pure states. A quantum state over H = C2 is
called qubit, which can be represented by the linear combination of the standard basis {|0⟩ , |1⟩}. More
generally, a quantum system over (C2)⊗n is called an n-qubit quantum system for n ∈N \ {0}.

A Hilbert space is divided into registersH = HR1 ⊗HR2 ⊗ · · · ⊗HRn . We sometimes write X Ri to
emphasize that the operator X acts on registerHRi .9 When we apply X R1 to registersHR1 andHR2 , X R1

is identified with X R1 ⊗ IR2 .
A unitary operation is represented by a complex matrix U such that UU† = I. The operation

U transforms |ψ⟩ and X into U |ψ⟩ and UX U†, respectively. A projector P is a Hermitian operator
(P† = P) such that P2 = P.

For a quantum state X over two registersHR1 andHR2 , we denote the state inHR1 as X [R1], where
X [R1] = Tr2[X ] is a partial trace of X (trace out R2).

Given a function F : X → Y, a quantum-accessible oracle O of F is modeled by a unitary
transformation UF operating on two registersHin andHout, in which |x⟩ |y⟩ is mapped to |x⟩ |y⊕ F(x)⟩,
where ⊕ denotes XOR group operation on Y. We write A |O⟩ to denote that the algorithm A’s oracle O is
a quantum-accessible oracle.

Definition 2.1 (Quantum Program with Classical Inputs and Outputs [ALL+21]). A quantum program
with classical inputs is a pair of quantum state q and unitaries {Ux}x∈[N] where [N] is the domain, such
that the state of the program evaluated on input x is equal to UxqU†

x. We measure the first register
of UxqU†

x to obtain an output. We say that {Ux}x∈[N] has a compact classical description U when
applying Ux can be efficiently computed given U and x.

Definition 2.2 (Positive Operator-Valued Measure). Let I be a finite index set. A positive operator
valued measure (POVM)M is a collection {M i}i∈I of Hermitian positive semi-define matrices M i such
that ∑i∈I M i = I. When we apply POVMM to a quantum state X , the measurement outcome is i with
probability pi = Tr(X M i). We denote byM(|ψ⟩) the distribution obtained by applyingM to |ψ⟩.

Definition 2.3 (Quantum Measurement). A quantum measurement E is a collection {Ei}i∈I of matrices
Ei such that ∑i∈I E†

i Ei = I. When we apply E to a quantum state X , the measurement outcome is i
with probability pi = Tr(X E†

i Ei). Conditioned on the outcome being i, the post-measurement state is
EiX E†

i /pi.

9The superscript parts are gray colored.
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We can construct a POVMM from any quantum measurement E by setting M i := E†
i Ei. We say

that E is an implementation ofM. The implementation of a POVM may not be unique.

Definition 2.4 (Projective Measurement/POVM). A quantum measurement E = {Ei}i∈I is projective if
for all i ∈ I , Ei is a projector. This implies that EiEj = 0 for distinct i, j ∈ I . In particular, two-outcome
projective measurement is called a binary projective measurement, and is written as E = (P, I − P),
where P is associated with the outcome 1, and I − P with the outcome 0. Similarly, a POVMM is
projective if for all i ∈ I , M i is a projector. This also implies that M i M j = 0 for distinct i, j ∈ I .

Definition 2.5 (Controlled Projection). Let P = {Mi}i∈I be a collection of projective measurement
over a Hilbert spaceH, whereMi = (Πi, I −Πi) for i ∈ I . Let D be a distribution whose randomness
space isR. The controlled projection CProjP ,D = (CProj1P ,D, CProj0P ,D) is defined as follows.10

CProj1P ,D := ∑
r∈R
|r⟩ ⟨r| ⊗ΠD(r), CProj0P ,D := ∑

r∈R
|r⟩ ⟨r| ⊗ (I −ΠD(r))

2.2 Measurement Implementation

Definition 2.6 (Projective Implementation). Let:

• D be a finite set of distributions over an index set I .

• P = {Pi}i∈I be a POVM

• E = {ED}D∈D be a projective measurement with index set D.

We consider the following measurement procedure.

1. Measure under the projective measurement E and obtain a distribution D.

2. Output a random sample from the distribution D.

We say E is the projective implementation of P , denoted by ProjImp(P), if the measurement process
above is equivalent to P .

Theorem 2.7 ([Zha20, Lemma 1]). Any binary outcome POVM P = (P, I − P) has a unique projective
implementation ProjImp(P).

Definition 2.8 (Shift Distance). For two distributions D0, D1, the shift distance with parameter ϵ, denoted
by ∆ϵ

Shift(D0, D1), is the smallest quantity δ such that for all x ∈ R:

Pr[D0 ≤ x] ≤ Pr[D1 ≤ x + ϵ] + δ, Pr[D0 ≥ x] ≤ Pr[D1 ≥ x− ϵ] + δ,
Pr[D1 ≤ x] ≤ Pr[D0 ≤ x + ϵ] + δ, Pr[D1 ≥ x] ≤ Pr[D0 ≥ x− ϵ] + δ.

For two real-valued measurementsM and N over the same quantum system, the shift distance between
M and N with parameter ϵ is

∆ϵ
Shift(M,N ) := sup

|ψ⟩
∆ϵ

Shift(M(|ψ⟩),N (|ψ⟩)).

Definition 2.9 ((ϵ, δ)-Almost Projective [Zha20]). A real-valued quantum measurementM = {M i}i∈I
is (ϵ, δ)-almost projective if the following holds. For any quantum state |ψ⟩, we applyM twice in a row
to |ψ⟩ and obtain measurement outcomes x and y, respectively. Then, Pr[|x− y| ≤ ϵ] ≥ 1− δ.

Definition 2.10 (Mixture of Projective Measurement [Zha20]). Let P = {Pi}i∈I be a collection
of binary outcome projective measurements Pi = (Pi, I − Pi). Let PD be the POVM which does the
following:

10We use superscript b to denote that it is associated with the outcome b here.
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1. Sample a random i← D.

2. Apply Pi.

3. Output the resulting bit.

We call PD a mixture of projective measurement. The POVM is given by (PD, QD) where PD =

∑i∈I Pr[i← D]Pi and QD = ∑i∈I Pr[i← D](I − Pi).

Theorem 2.11 ([Zha20, Theorem 2]). Let D be any probability distribution over I and P be a collection
of projective measurements. For any 0 < ϵ, δ < 1, there exists an algorithm of measurement API ϵ,δ

P ,D
that satisfies the following.

• ∆ϵ
Shift(API ϵ,δ

P ,D, ProjImp(PD)) ≤ δ.

• API ϵ,δ
P ,D is (ϵ, δ)-almost projective.

• The expected running time of API ϵ,δ
P ,D is TP ,D · poly(1/ϵ, log(1/δ)) where TP ,D is the combined

running time of D, the procedure mapping i→ (Pi, I − Pi), and the running time of measurement
(Pi, I − Pi).

Theorem 2.12 ([Zha20, Corollary 1]). Let q be an efficiently constructible, potentially mixed state, and
D0, D1 efficiently sampleable distributions. If D0 and D1 are computationally indistinguishable, for any
inverse polynomial ϵ and any function δ, we have ∆3ϵ

Shift(API ϵ,δ
P ,D0

, API ϵ,δ
P ,D1

) ≤ 2δ + negl(λ).

Note that the indistinguishability of D0 and D1 needs to hold against distinguishers who can construct
q in the theorem above. However, this fact is not explicitly stated in [Zha20]. We need to care about this
condition if we need secret information to construct q , and the secret information is also needed to sample
an output from D0 or D1. We handle such a situation when analyzing the unremovability of our privately
extractable watermarking PRF. In that situation, we need a secret extraction key to construct q and sample
an output from D0 and D1.

We also define the notion of the reverse almost projective property of API.

Definition 2.13 ((ϵ, δ)-Reverse Almost Projective). Let P = {(Πi, I −Πi)}i be a collection of binary
outcome projective measurements. Let D be a distribution. We also let Prev = {(I −Πi, Πi)}i. We
say API is (ϵ, δ)-reverse almost projective if the following holds. For any quantum state |ψ⟩, we apply
API ϵ,δ

P ,D and API ϵ,δ
Prev,D in a row to |ψ⟩ and obtain measurement outcomes x and y, respectively. Then,

Pr[|(1− x)− y| ≤ ϵ] ≥ 1− δ.

We show that the measurement algorithm API ϵ,δ
P ,D in Theorem 2.11 also satisfies Definition 2.13.

First, we describe the detail of API ϵ,δ
P ,D in Figure 1. API uses an ancilla register HR besides the

original Hilbert space HH. Let R be the randomness space of distribution D. We define IsUR :=
(|1R⟩ ⟨1R| , I − |1R⟩ ⟨1R|) where

|1R⟩ :=
1√
|R| ∑

r∈R
|r⟩ .

We use the following lemma to analyze API ϵ,δ
P ,D.

Lemma 2.14 ([Jor75]). For any two Hermitian projectors Πv and Πw on a Hilbelt spaceH, there exists
an orthogonal decomposition of H into one-dimensional and two-dimensional subspaces (the Jordan
subspaces) that are invariant under both Πv and Πw. Moreover:

• in each one-dimensional space, Πv and Πw act as identity or rank-zero projectors; and
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Algorithm API ϵ,δ
P ,D

Parameter: Collection of projective measurement P , distribution D, real values ϵ, δ.
Input: A quantum state |ψ⟩.

1. Initialize a state |1R⟩ |ψ⟩.
2. Initialize a classical list L := (1).

3. Repeat the following T :=
⌈

ln 4/δ
ϵ2

⌉
.

(a) Apply CProjP ,D to registerHR ⊗HH. Let b2i−1 be the measurement outcome and set L := (L, b2i−1).

(b) Apply IsUR to registerHR. Let b2i be the measurement outcome and set L := (L, b2i).

4. Let t be the number of index i such that bi−1 = bi in the list L = (0, b1, . . . , b2T), and p̃ := t/2T.
5. If b2T = 0, repeat the loop again until b2i = 1.
6. DiscardHR register, and output p̃.

Figure 1: The description of API .

∣∣vj
〉 ∣∣wj

〉 ∣∣vj
〉 ∣∣wj

〉
· · ·

∣∣∣v⊥j 〉 ∣∣∣w⊥j 〉 ∣∣∣v⊥j 〉 ∣∣∣w⊥j 〉 · · ·

pj

1− pj 1− pj

pj

pj

1− pj

pj

pj

Figure 2: Solid lines denote that the measurement outcome is 1. Dashed line denote that the measurement
outcome is 0. Double lines denote we apply CProjP ,D = (CProj1P ,D, CProj0P ,D). Single lines denote we apply
IsUR = (|1R⟩ ⟨1R| , I − |1R⟩ ⟨1R|).

• in each two-dimensional subspace Sj, Πv and Πw are rank-one projectors: there exists
∣∣vj

〉
,
∣∣wj

〉
∈

Sj such that Πv projects onto
∣∣vj

〉
and Πw projects onto

∣∣wj
〉
.

For each two-dimensional subspace Sj, we call pj :=
∣∣〈vj

∣∣wj
〉∣∣2 the eigenvalue of the j-th subspace.

It is easy to see that
∣∣vj

〉
is an eigenvector of the Hermitian matrix ΠvΠwΠv with eigenvalue pj.

As previous works observed [MW05, Reg, CMSZ21], we obtain the following by Lemma 2.14. There
exists orthogonal vectors

∣∣vj
〉

,
∣∣∣v⊥j 〉 that span Sj, such that Πv

∣∣vj
〉
=

∣∣vj
〉

and Πv

∣∣∣v⊥j 〉 = 0. Similarly,

Πw
∣∣wj

〉
=

∣∣wj
〉

and Πw

∣∣∣w⊥j 〉 = 0. By setting appropriate phases, we have

∣∣wj
〉
=

√
pj
∣∣vj

〉
+

√
1− pj

∣∣∣v⊥j 〉 ,
∣∣∣w⊥j 〉 =

√
1− pj

∣∣vj
〉
−√

pj

∣∣∣v⊥j 〉 ,∣∣vj
〉
=

√
pj
∣∣wj

〉
+

√
1− pj

∣∣∣w⊥j 〉 ,
∣∣∣v⊥j 〉 =

√
1− pj

∣∣wj
〉
−√

pj

∣∣∣w⊥j 〉 ,

where
∣∣∣v⊥j 〉 ,

∣∣∣w⊥j 〉 ∈ Sj such that
〈

vj

∣∣∣v⊥j 〉 =
〈

wj

∣∣∣w⊥j 〉 = 0. We also have

Πv
∣∣wj

〉
=

√
pj
∣∣vj

〉
, Πw

∣∣vj
〉
=

√
pj
∣∣wj

〉
.

Theorem 2.15. API ϵ,δ
P ,D in Figure 1 is (ϵ, δ)-reverse almost projective.
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∣∣vj
〉 ∣∣∣w⊥j 〉 ∣∣vj

〉 ∣∣∣w⊥j 〉 · · ·

∣∣∣v⊥j 〉 ∣∣wj
〉 ∣∣∣v⊥j 〉 ∣∣wj

〉
· · ·

1− pj

pj pj

1− pj

1− pj

pj

1− pj

1− pj

Figure 3: Solid lines denote that the measurement outcome is 1. Dashed line denote that the measurement outcome
is 0. Double lines denote we apply CProjrev

P ,D = (CProj1Prev,D, CProj0Prev,D) = (CProj0P ,D, CProj1P ,D). Single
lines denote we apply IsUR = (|1R⟩ ⟨1R| , I − |1R⟩ ⟨1R|).

Proof of Theorem 2.15. To analyze API ϵ,δ
P ,D, we set Πw := CProj1P ,D, Πv := |1R⟩ ⟨1R| ⊗ I, and

apply Lemma 2.14. Then, we have the following relationships:

CProj1P ,D
∣∣vj

〉
=

√
pj
∣∣wj

〉
, (|1R⟩ ⟨1R|)

∣∣wj
〉
=

√
pj
∣∣vj

〉
CProj0P ,D

∣∣vj
〉
=

√
1− pj

∣∣∣w⊥j 〉 , (I − |1R⟩ ⟨1R|)
∣∣wj

〉
=

√
1− pj

∣∣∣v⊥j 〉
CProj1P ,D

∣∣∣v⊥j 〉 =
√

1− pj
∣∣wj

〉
, (|1R⟩ ⟨1R|)

∣∣∣w⊥j 〉 =
√

1− pj
∣∣vj

〉
CProj0P ,D

∣∣∣v⊥j 〉 = −√pj

∣∣∣w⊥j 〉 , (I − |1R⟩ ⟨1R|)
∣∣∣w⊥j 〉 = −√pj

∣∣∣v⊥j 〉 ,

where
∣∣wj

〉
and

∣∣vj
〉

are decompositions of Πw and Πv, and pj =
∣∣〈vj

∣∣wj
〉∣∣2.

Suppose we apply API ϵ,δ
P ,D to a |ψ⟩ onHH. We can write the initial state in Figure 1 as |1R⟩ |ψ⟩ =

∑j αj
∣∣vj

〉
+ α⊥j

∣∣∣v⊥j 〉 since {
∣∣vj

〉
,
∣∣∣v⊥j 〉}j is a basis. We also have that |1R⟩ ⟨1R|R ⊗ I = ∑j

∣∣vj
〉 〈

vj
∣∣

since Πv projects onto
∣∣vj

〉
in each decomposed subspace Sj. It is easy to see that (|1R⟩ ⟨1R| ⊗

I) |1R⟩ |ψ⟩ = |1R⟩ |ψ⟩. Thus, for all j, α⊥j = 0. Therefore, for any |ψ⟩, we can write |1R⟩ |ψ⟩ =
∑j αj

∣∣vj
〉
. As we see in Figure 1, when we run API ϵ,δ

P ,D(|ψ⟩), the initial state is |1R⟩ |ψ⟩ = ∑j αj
∣∣vj

〉
and we apply CProjP ,D and IsUR alternately. Therefore, the quantum state

∣∣vj
〉

in each decomposed
subspace Sj changes as in Figure 2 when we run API ϵ,δ

P ,D(|ψ⟩).
Next, suppose we apply API ϵ,δ

Prev,D to the quantum state immediately after applying API ϵ,δ
P ,D to |ψ⟩.

API ϵ,δ
P ,D ensures that the final measurement is IsUR and its result is 1. This means that the state going into

the main loop of API ϵ,δ
Prev,D (the third item in Figure 1) is identical to the state before HR is discarded

at the application of API ϵ,δ
P ,D to |ψ⟩. By the definition of Prev, we have CProjbP ,D = CProj1−b

Prev,D for
b ∈ {0, 1}. Thus, the quantum state

∣∣vj
〉

in each decomposed subspace Sj changes as in Figure 3 when
we apply API ϵ,δ

Prev,D.
From the above discussions, we can view a successive execution of API ϵ,δ

P ,D and API ϵ,δ
Prev,D to |ψ⟩ as

the following single experiment.

• Sample pj from {pj}j with the probability α2
j .

• Flip 2T biased random coins whose probability of outputting 1 is pj.

• Flip an even number of additional random coins until 0 is found.

• Flip 2T biased random coins whose probability of outputting 1 is 1− pj.

• Let K be the overall list of coin flips.
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Let p̃x and p̃y be the outcome of API ϵ,δ
P ,D and API ϵ,δ

Prev,D, respectively. p̃x is the fraction of 1’s in the
first 2T bits of K. Also, p̃y is the fraction of 1’s in the last 2T bits of K. Then, we have

Pr
[∣∣ p̃x − pj

∣∣ ≥ ϵ/2
]
≤ δ/2 (1)

Pr
[∣∣ p̃y − (1− pj)

∣∣ ≥ ϵ/2
]
≤ δ/2. (2)

It is easy to see that Equation (2) is equivalent to Pr
[∣∣(1− p̃y)− pj

∣∣ ≥ ϵ/2
]
≤ δ/2 due to |a| = |−a|.

Therefore, by combining it with Equation (1), we obtain

Pr
[∣∣ p̃x − (1− p̃y)

∣∣ ≥ ϵ
]
≤ δ.

This completes the proof.

2.3 Cryptographic Tools

Definition 2.16 (Learning with Errors). Let n, m, q ∈N be integer functions of the security parameter
λ. Let χ = χ(λ) be an error distribution over Z. The LWE problem LWEn,m,q,χ is to distinguish the
following two distributions.

D0 := {(A, s⊺A+ e) | A← Zn×m
q , s← Zn

q , e← χm} and D1 := {(A, u) | A← Zn×m
q , u← Zm

q }.

When we say we assume the quantum hardness of the LWE problem or the QLWE assumption holds,
we assume that for any QPT adversary A , it holds that

|Pr[A(D0) = 1]− Pr[A(D1) = 1]| ≤ negl(λ).

Definition 2.17 (Pseudorandom Generator). A pseudorandom generator (PRG) PRG : {0, 1}λ →
{0, 1}λ+ℓ(λ) with stretch ℓ(λ) (ℓ is some polynomial function) is a polynomial-time computable function
that satisfies the following. For any QPT adversary A , it holds that∣∣∣Pr[A(PRG(s)) = 1 | s← Uλ]− Pr

[
A(r) | r ← Uλ+ℓ(λ)

]∣∣∣ ≤ negl(λ),

where Um denotes the uniform distribution over {0, 1}m.

Theorem 2.18 ([HILL99]). If there exists a OWF, there exists a PRG.

Definition 2.19 (Quantum-Accessible Pseudo-Random Function). Let {PRFK : {0, 1}ℓ1 → {0, 1}ℓ2 |
K ∈ {0, 1}λ} be a family of polynomially computable functions, where ℓ1 and ℓ2 are some polynomials
of λ. We say that PRF is a quantum-accessible pseudo-random function (QPRF) family if for any QPT
adversary A , it holds that

Advprf
A (λ) =

∣∣∣Pr
[

A |PRFK(·)⟩(1λ) = 1 | K ← {0, 1}λ
]
− Pr

[
A |R(·)⟩(1λ) = 1 | R← U

]∣∣∣ ≤ negl(λ),

where U is the set of all functions from {0, 1}ℓ1 to {0, 1}ℓ2 .

Theorem 2.20 ([Zha12a]). If there exists a OWF, there exists a QPRF.

Definition 2.21 (Puncturable PRF). A puncturable PRF (PPRF) is a tuple of algorithms PPRF =
(PRF.Gen, F, Puncture) where {FK : {0, 1}ℓ1 → {0, 1}ℓ2 | K ∈ {0, 1}λ} is a PRF family and satisfies
the following two conditions. Note that ℓ1 and ℓ2 are polynomials of λ.

Punctured correctness: For any polynomial-size set S ⊆ {0, 1}ℓ1 and any x ∈ {0, 1}ℓ1 \ S, it holds
that

Pr
[
FK(x) = FK/∈S(x) | K ← PRF.Gen(1λ), K/∈S ← Puncture(K, S)

]
= 1.
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Pseudorandom at punctured point: For any polynomial-size set S ⊆ {0, 1}ℓ1 and any QPT distin-
guisher A , it holds that

|Pr
[
A(FK/∈S , {FK(xi)}xi∈S) = 1

]
− Pr

[
A(FK/∈S , (Uℓ2)

|S|) = 1
]
| ≤ negl(λ),

where K ← PRF.Gen(1λ), K/∈S ← Puncture(K, S) and Uℓ2 denotes the uniform distribution over
{0, 1}ℓ2 .

If S = {x∗} (i.e., puncturing a single point), we simply write F ̸=x∗(·) instead of FK/∈S(·).

It is easy to see that the Goldwasser-Goldreich-Micali tree-based construction of PRFs (GGM
PRF) [GGM86] from one-way function yield puncturable PRFs where the size of the punctured key grows
polynomially with the size of the set S being punctured [BW13, BGI14, KPTZ13]. Thus, we have:

Theorem 2.22 ([GGM86, BW13, BGI14, KPTZ13]). If OWFs exist, then for any polynomials ℓ1(λ)
and ℓ2(λ), there exists a PPRF that maps ℓ1-bits to ℓ2-bits.

Definition 2.23 (SKE). An SKE scheme with plaintext space P = {Pλ}λ∈N and ciphertext space
C = {Cλ}λ∈N, where Cλ ⊆ {0, 1}ℓct for some ℓct = ℓct(λ), is a tuple of three algorithms.

Gen(1λ)→ k: The key generation algorithm takes as input the security parameter λ, and outputs an
encryption key k.

Enc(k, m)→ ct: The encryption algorithm takes as input k and a plaintext m ∈ Pλ, and outputs a
ciphertext ct ∈ Cλ.

Dec(k, ct)→ m′: The decryption algorithm takes as input k and ct ∈ Cλ, and outputs a plaintext
m′ ∈ Pλ ∪ {⊥}.

Correctness: An SKE scheme is correct if for all λ ∈N and m ∈ Pλ,

Pr
[
Dec(k, ct) = m | k← Gen(1λ, 1κ), ct← Enc(k, m)

]
= 1.

Sparseness: In this work, we also require that most strings are not valid ciphertexts under a randomly
generated key of an SKE scheme:

Pr
[
Dec(k, c) ̸= ⊥

∣∣∣ k← Gen(1λ), c← {0, 1}ℓct
]
≤ negl(λ).

Definition 2.24 (Ciphertext Pseudorandomness for SKE). An SKE scheme satisfies ciphertext pseudo-
randomness if for any (stateful) QPT A , it holds that

2

∣∣∣∣∣∣Pr

AEnc(k,·)(ctb) = b

∣∣∣∣∣∣
1κ ← A(1λ), k← Gen(1λ, 1κ),
m← AEnc(k,·), b← {0, 1},
ct0 ← Enc(k, m), ct1 ← {0, 1}ℓct

− 1
2

∣∣∣∣∣∣ ≤ negl(λ).

Theorem 2.25. If OWFs exist, there exists an SKE scheme with sparseness and ciphertext pseudorandom-
ness.

The well-known PRF-based SKE satisfies ciphertext pseudorandomness. However, we need padding
for sparseness. That is, a ciphertext is (r, PRFk(r)⊕ 0ℓ−ℓµ∥m) where r ∈ {0, 1}n is randomness of
encryption, k is a PRF key, PRF : {0, 1}n → {0, 1}ℓ is a PRF, and |m| = ℓµ. We check that the first
ℓ− ℓµ bits of m′ = Dec(k, (c1, c2)) equals to 0ℓ−ℓµ . If ℓ is sufficiently long, the scheme has sparseness.

Definition 2.26 (Constrained PRF (Syntax)). A constrained PRF (CPRF) with domain Dom, range
Ran, and constraint family F = {Fλ,κ}λ,κ∈N where Fλ,κ = { f : Dom → {0, 1}} is a tuple of four
algorithms.
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Setup(1λ, 1κ)→ msk: The setup algorithm takes as input the security parameter λ and a constraint-
family parameter κ, and outputs a master PRF key msk.

Constrain(msk, f )→ sk f : The constrain algorithm takes as input λ and a constraint f ∈ Fλ,κ, and
outputs a constrained key sk f .

Eval(msk, x)→ y: The evaluation algorithm takes as input msk and an input x ∈ Dom, and outputs a
value y ∈ Ran.

CEval(sk f , x)→ y: The constrained evaluation algorithm takes as input sk f and x ∈ Dom, and outputs
a value y ∈ Ran.

Definition 2.27 (Security for CPRF). A private CPRF should satisfy correctness, pseudorandomness,
and privacy.

Correctness: A CPRF is correct if for any (stateful) QPT adversary A , it holds that

Pr

 Eval(msk, x) ̸= CEval(sk f , x)
∧ x ∈ Dom∧ f (x) = 0

∣∣∣∣∣∣∣∣
(1κ, f )← A(1λ),
msk← Setup(1λ, 1κ),
sk f ← Constrain(msk, f ),
x ← AEval(msk,·)(sk f )

 ≤ negl(λ).

Selective single-key pseudorandomness: A CPRF is selectively single-key pseudorandom if for any
(stateful) QPT adversary A , it hods that

2

∣∣∣∣∣∣∣∣∣∣∣∣
Pr


AEval(msk,·)(yb) = b
∧ x /∈ Qe
∧ f (x) ̸= 0

∣∣∣∣∣∣∣∣∣∣∣∣

(1κ, f )← A(1λ),
msk← Setup(1λ, 1κ),
sk f ← Constrain(msk, f )
x ← AEval(msk,·)(sk f )
y0 := Eval(msk, x), y1 ← Ran,
b← {0, 1}

−
1
2

∣∣∣∣∣∣∣∣∣∣∣∣
≤ negl(λ),

where Qe is the sets of queries to Eval(msk, ·).
Selective single-key privacy: A CPRF is selectively single-key private if for any (stateful) QPT adversary

A , there exists a stateful PPT simulator Sim = (Sim1, Sim2) that satisfying that

2

∣∣∣∣∣∣∣∣Pr

AOb(·)(skb) = b

∣∣∣∣∣∣∣∣
(1κ, f )← A(1λ),
msk← Setup(1λ, 1κ), b← {0, 1},
sk0 ← Constrain(msk, f ),
(stSim, sk1)← Sim1(1κ, 1λ)

− 1
2

∣∣∣∣∣∣∣∣ ≤ negl(λ),

where O0(·) := Eval(msk, ·) and O1(·) := Sim2(stSim, ·, f (·)).
We say that a CPRF is a selectively single-key private CPRF if it satisfies correctness, selective single-key
pseudorandomness, and selective single-key privacy.

Theorem 2.28 ([BTVW17, PS18]). If the QLWE assumption holds, there exists a selectively signle-key
private CPRF for polynomial-size classical circuits.

Definition 2.29 (PKE). A PKE with plaintext space P = {Pλ}λ∈N, ciphertext space C = {Cλ}λ∈N is
a tuple of three algorithms.

Gen(1λ)→ (pk, sk): The key generation algorithm takes as input the security parameter λ and outputs
a key pair (pk, sk).
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Enc(pk, m)→ ct: The encryption algorithm takes as input pk, a plaintext m ∈ P , and outputs a
ciphertext ct ∈ C.

Dec(sk, ct)→ m′/⊥: The decryption algorithm takes as input sk and ct ∈ C, and outputs a plaintext
m′ ∈ P or ⊥.

Correctness: A PKE scheme is correct if for all λ ∈N and m ∈ Pλ, it holds that

Pr
[
Dec(sk, ct) = m | (pk, sk)← Gen(1λ), ct← Enc(pk, m)

]
= 1.

Definition 2.30 (CCA Security for PKE). A PKE scheme is CCA secure if for any (stateful) QPT
adversary A , it holds that

2

∣∣∣∣∣∣∣∣Pr

 b∗ = b
∧ ctb /∈ Q

∣∣∣∣∣∣∣∣
(pk, sk)← Gen(1λ),
(m0, m1)← ADec(sk,·)(1λ, pk),
b← {0, 1}, ctb ← Enc(pk, mb),
b′ ← ADec(sk,·)(1λ, ctb)

− 1
2

∣∣∣∣∣∣∣∣ ≤ negl(λ),

where Q is the set of queries to Dec(sk, ·) after A is given ctb.

Theorem 2.31 ([Pei09]). If the QLWE assumption holds, there exists a PKE scheme that satisfies CCA
security.

Definition 2.32 (Ciphertext-Policy Functional Encryption). A CPFE scheme for the circuit space C
and the input space X is a tuple of algorithms (Setup, KG, Enc, Dec).

• The setup algorithm Setup takes as input a security parameter 1λ, and outputs a master public key
MPK and master secret key MSK.

• The key generation algorithm KG takes as input the master secret key MSK and x ∈ X , and outputs
a decryption key skx.

• The encryption algorithm Enc takes as input the master public key MPK and C ∈ C, and outputs a
ciphertext ct.

• The decryption algorithm Dec takes as input a functional decryption key skx and a ciphertext ct,
and outputs y.

Decryption Correctness: We require Dec(KG(MSK, x), Enc(MPK, C)) = C(x) for every C ∈ C,
x ∈ X , and (MPK, MSK)← Setup(1λ).

Next, we introduce 1-bounded security for PKFE schemes.

Definition 2.33 (1-Bounded Security). Let CPFE be a CPFE scheme. We define the game Expt1-bounded
A ,CPFE (λ, coin)

as follows.

1. The challenger generates (MPK, MSK) ← Setup(1λ) and sends MPK to A . A sends x ∈ X to
the challenger. The challenger generates skx ← KG(MSK, x) and sends skx to A .

2. A outputs (C0, C1) such that C0(x) = C1(x). The challenger picks coin ← {0, 1}, generates
ct← Enc(MPK, Ccoin), and sends ct to A .

3. A outputs coin′ ∈ {0, 1}.

We say that CPFE is 1-bounded secure if for every QPT A , we have

Adv1-bounded
A ,CPFE (λ) = 2

∣∣∣∣Pr
[
Expt1-bounded

A ,CPFE (λ) = 1
]
− 1

2

∣∣∣∣ = negl(λ).
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We can derive 1-bounded secure CPFE from the adaptively signle-key secure PKFE by Gourbunov,
Vaikuntanathan, and Wee [GVW12] via universal circuits.

Theorem 2.34. If CPA-secure PKE exists, there exists a 1-bounded secure CPFE for all circuits.

Definition 2.35 (Indistinguishability Obfuscator [BGI+12]). A PPT algorithm iO is a secure IO for a
classical circuit class {Cλ}λ∈N if it satisfies the following two conditions.

Functionality: For any security parameter λ ∈N, circuit C ∈ Cλ, and input x, we have that

Pr
[
C′(x) = C(x) | C′ ← iO(C)

]
= 1 .

Indistinguishability: For any PPT Samp and QPT distinguisher D, the following holds:

If Pr
[
∀x, C0(x) = C1(x) | (C0, C1, aux)← Samp(1λ)

]
> 1− negl(λ), then we have

Advio
iO,D(λ) :=

∣∣∣Pr
[

D(iO(C0), aux) = 1 | (C0, C1, aux)← Samp(1λ)
]

−Pr
[

D(iO(C1), aux) = 1 | (C0, C1, aux)← Samp(1λ)
]∣∣∣ ≤ negl(λ).

There are a few candidates of secure IO for polynomial-size classical circuits against quantum
adversaries [BGMZ18, CHVW19, AP20, DQV+21]. In some candidates [WW21, GP21], the assumptions
behind the constructions were found to be false [HJL21].

3 Definition of Watermarking PRF against Quantum Adversaries

We introduce definitions for watermarking PRFs against quantum adversaries in this section.

3.1 Syntax and Pseudorandomness

Definition 3.1 (Watermarking PRF). A watermarking PRF WMPRF for the message space M :=
{0, 1}ℓm with domain Dom and range Ran is a tuple of five algorithms (Setup, Gen, Eval, Mark, Extract).

Setup(1λ)→ (pp, xk): The setup algorithm takes as input the security parameter and outputs a public
parameter pp and an extraction key xk.

Gen(pp)→ (prfk, τ): The key generation algorithm takes as input the public parameter pp and outputs
a PRF key prfk and a public tag τ.

Eval(prfk, x)→ y: The evaluation algorithm takes as input a PRF key prfk and an input x ∈ Dom and
outputs y ∈ Ran.

Mark(pp, prfk, m)→ C̃: The mark algorithm takes as input the public parameter pp, a PRF key prfk,
and a message m ∈ {0, 1}ℓm , and outputs a marked evaluation circuit C̃.

Extract(xk, τ, C ′, ϵ)→ m′: The extraction algorithm takes as input an extraction key xk, a tag τ, a
quantum circuit with classical inputs and outputs C ′ = (q , U), and a parameter ϵ, and outputs m′
where m′ ∈ {0, 1}ℓm ∪ {unmarked}.

Evaluation Correctness: For any message m ∈ {0, 1}ℓm , it holds that

Pr

C̃(x) = Eval(prfk, x)

∣∣∣∣∣∣∣∣
(pp, xk)← Setup(1λ)
(prfk, τ)← Gen(pp)

C̃ ← Mark(pp, prfk, m)
x ← Dom

 ≥ 1− negl(λ).
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Remark 3.2 (On extraction correctness). Usually, a watermarking PRF scheme is required to satisfy
extraction correctness that ensures that we can correctly extract the embedded mark from an honestly
marked circuit. However, as observed by Quach et al. [QWZ18], if we require the extraction correctness
to hold for a randomly chosen PRF key, it is implied by unremovability defined below. Note that
the unremovability defined below considers a distinguisher as a pirate circuit. However, it implies
the extraction correctness since we can easily transform an honestly marked circuit into a successful
distinguisher. Thus, we do not explicitly require a watermarking PRF scheme to satisfy extraction
correctness in this work.

Remark 3.3 (On public marking). We consider only watermarking PRFs with public marking as in Defi-
nition 3.1 since we can achieve public marking by default. The reason is as follows. Suppose that we
generate pp, xk, and a marking key mk at the setup. When we generate a PRF key and a public tag at Gen,
we can first generate (pp′, xk′, mk′)← Setup(1λ) from scratch (ignoring the original (pp, xk, mk)) and
set a PRF key p̂rfk := (prfk′, mk′) and a public tag τ̂ := (pp′, xk′, τ′) where (prfk′, τ′) ← Gen(pp′).
That is, anyone can generate a marked circuit from p̂rfk = (prfk′, mk′) by Mark(mk′, prfk′, m). Therefore,
we consider public marking by default in our model.

Remark 3.4 (On private marking). We might prefer private marking in some settings since we might
want to prevent adversaries from forging a watermarked PRF. We can convert watermarking PRFs
in Definition 3.1 into ones with private marking by using signatures. Below, we assume that a PRF key
prfk includes its public tag τ since it does not harm security. At the setup phase, we also generate a
signature key pair (vk, sk) ← SIG.Gen(1λ) and set a mark key mk′ := (vk, sk) and an extraction key
xk′ := (xk, vk). To embed a message m into prfk, we generate a signature σ ← SIG.Sign(sk, τ∥m)
and generate C̃ ← Mark(pp, prfk, m∥σ). To extract a message, we run m′ ← Extract(xk, τ, C ′, ϵ),
parse m′ = m∥σ, and run SIG.Vrfy(vk, τ∥m, σ). If the verification result is ⊤, we output m. This
conversion is the same as what Goyal et al. [GKM+19] proposed. Adversaries cannot forge a signature
for τ∗∥m∗ ̸= τ∥m by the unforgeability of SIG. Intuitively, if an adversary can forge a watermarked
PRF whose functionality is different from those of watermarked PRFs given from a mark oracle, τ∗ ̸= τ
should hold since public tags are related to PRF keys. This breaks the unforgeability of SIG. Thus, we
expect that adversaries cannot break the unforgeability of watermarking. This conversion also works for
our watermakring PKE in Section 9. However, we do not formally define watermarking unforgeability
against quantum adversaries since it is not a scope of this work. We leave it as future work.

Discussion on syntax. Definition 3.1 is a natural quantum variant of classical watermarking PRFs except
that the key generation algorithm outputs a public tag τ, and the extraction algorithm uses it. Such a public
tag is not used in previous works on watermarking PRFs [CHN+18, KW21, QWZ18, KW19, YAL+19].
A public tag should not harm watermarking PRF security. We justify using τ as follows.

First, we need to obtain many pairs of input and output to extract an embedded message from a marked
PRF in almost all known (classical) watermarking constructions [CHN+18, BLW17, KW21, QWZ18,
KW19, YAL+19, GKM+19, Nis20]. This is because we must check whether a tested PRF circuit outputs
particular values for particular inputs which depends on the target PRF (such particular inputs are known
as marked points). Suppose marked points are fixed and do not depend on a PRF that will be marked. In
that case, an adversary can easily remove an embedded message by destroying functionalities at the fixed
marked points that could be revealed via a (non-target) marked PRF that an adversary generated. Recall
that we consider the public marking setting. The attack was already observed by Cohen et al. [CHN+18].

Second, we consider a stronger adversary model than that in most previous works as the definition of
traceable PRFs by Goyal et al. [GKWW21]. An adversary outputs a distinguisher-based pirate circuit
in our security definition rather than a pirate circuit that computes an entire output of a PRF. This is a
refined and realistic model, as Goyal et al. [GKWW21] argued (and we explain in Section 1.4). In this
model, we cannot obtain a valid input-output pair from a pirate circuit anymore. Such a pair is typical
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information related to a target PRF. Goyal et al. resolve this issue by introducing a tracing key that is
generated from a target PRF. Note that parameters of watermarking (pp and xk) should not be generated
from a PRF since we consider many different PRF keys in the watermarking PRF setting.

Thus, if we would like to achieve an extraction algorithm and the stronger security notion simultaneously,
an extraction algorithm should somehow take information related to a target PRF as input to correctly
extract an embedded message. In the weaker adversary model, an extraction algorithm can easily obtain
many valid input and output pairs by running a tested circuit many times. However, in the stronger
distinguisher-based pirate circuit model, a pirate circuit outputs a single decision bit.

To resolve this issue, we introduce public tags. We think it is natural to have information related to
the original PRF key in an extraction algorithm. In reality, we check a circuit when a user claims that
her/his PRF key (PRF evaluation circuit) is illegally used. Thus, it is natural to expect we can use a user’s
public tag for extraction. This setting resembles watermarking for public-key cryptographic primitives,
where a user public key is available in an extraction algorithm. In addition, public tags do not harm
PRF security in our constructions. It is unclear whether we can achieve unremovability in the stronger
distinguisher-based model without any syntax change (even in the classical setting). 11

Extended pseudorandomness. We consider extended weak pseudorandomness, where weak pseu-
dorandomness holds even if the adversary generates pp. This notion is the counterpart of extended
pseudorandomness by Quach et al. [QWZ18], where pseudorandomness holds in the presence of the
extraction oracle. However, our pseudorandomness holds even against an authority unlike extended
pseudorandomness by Quach et al. since we allow adversaries to generate a public parameter.

Definition 3.5 (Extended Weak Pseudorandomness against Authority). To define extended weak
pseudorandomness for watermarking PRFs, we define the game Expext-wprf

A ,WMPRF(λ) as follows.

1. A first sends pp to the challenger.

2. The challenger generates (prfk, τ)← Gen(pp) and sends τ to A .

3. The challenger chooses coin← {0, 1}. A can access to the following oracles.

Owprf: When this is invoked (no input), it returns (a, b) where a← Dom and b := Eval(prfk, a).
Ochall: When this is invoked (no input), it returns:

• (a, b) where a← Dom and b := Eval(prfk, a) if coin = 0,
• (a, b) where a← Dom and b← Ran if coin = 1.

This oracle is invoked only once.

4. When A terminates with output coin′, the challenger outputs 1 if coin = coin′ and 0 otherwise.

We say that WMPRF is extended weak pseudorandom if for every QPT A , we have

Advext-wprf
A ,WMPRF(λ) = 2

∣∣∣∣Pr
[
Expext-wprf

A ,WMPRF(λ) = 1
]
− 1

2

∣∣∣∣ = negl(λ).

11Even if we consider the weaker adversary model, the same issue appears in the quantum setting in the end. If we run a
quantum circuit for an input and measure the output, the measurement could irreversibly alter the quantum state and we lost the
functionality of the original quantum state. That is, there is no guarantee that we can correctly check whether a tested quantum
circuit is marked or not after we obtain a single valid pair of input and output by running the circuit. However, as we explained
above, we want to obtain information related to a target PRF for extraction. Thus, we need a public tag in the syntax in either
case.
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3.2 Unremovability against Quantum Adversaries

We define unremovability for watermarking PRFs against quantum adversaries.

Definition 3.6 (Unremovability for private extraction). We consider the public marking and secret
extraction setting here. Let ϵ ≥ 0. We define the game Expturmv

A ,WMPRF(λ, ϵ) as follows.

1. The challenger generates (pp, xk) ← Setup(1λ) and gives pp to the adversary A . A send
m ∈ {0, 1}ℓm to the challenger. The challenger generates (prfk, τ) ← Gen(pp), computes
C̃ ← Mark(pp, prfk, m), and sends τ and C̃ to A .

2. A can access to the following oracle.

Oext: On input τ′ and a quantum circuit C , it returns Extract(xk, C , τ′, ϵ).

3. Finally, the adversary outputs a “pirate” quantum circuit CA = (q , U), where CA is a quantum
program with classical inputs and outputs whose first register (i.e., output register) is C2 and U is
a compact classical description of {Ux,y}x∈Dom,y∈Ran.

Let D be the following distribution.

D: Generate b← {0, 1}, x ← Dom, and y0 ← Ran. Compute y1 ← Eval(prfk, x). Output (b, x, yb).

We also let P = (Pb,x,y, Qb,x,y)b,x,y be a collection of binary outcome projective measurements, where

Pb,x,y = U†
x,y |b⟩ ⟨b|Ux,y and Qb,x,y = I − Pb,x,y.

Moreover, we letMD = (PD, QD) be binary outcome POVMs, where

PD = ∑
r∈R

1
|R|PD(r) and QD = I − PD.

Live: When applying the measurement ProjImp(MD) to q , we obtain a value p such that p ≥ 1
2 + ϵ.

GoodExt: When Computing m′ ← Extract(xk, CA, τ, ϵ), it holds that m′ ̸= unmarked.

BadExt: When Computing m′ ← Extract(xk, CA, τ, ϵ), it holds that m′ /∈ {m, unmarked}.

We say that WMPRF satisfies unremovability if for every ϵ > 0 and QPT A , we have

Pr[BadExt] ≤ negl(λ) and Pr[GoodExt] ≥ Pr[Live]− negl(λ).

Intuitively, (Pb,x,y, Qb,x,y) is a projective measurement that feeds (x, y) to CA and checks whether
the outcome is b or not (and then uncomputes). Then,MD can be seen as POVMs that results in 0 with
the probability that CA can correctly guess b from (x, yb) for (b, x, yb) generated randomly from D.

Remark 3.7 (On attack model). We check whether CA correctly distinguishes a real PRF value from a
random value or not by applying ProjImp(MD) to q . This attack model follows the refined and more
realistic attack model by Goyal et al. [GKWW21]. The adversary outputs a pirate circuit that computes
an entire PRF value in all previous works except their work.

The distinguisher-based pirate circuit model is compatible with the (quantum) pirate decoder model
of traitor tracing. Thus, our attack model also follows the attack model of quantum traitor tracing (the
black box projection model) by Zhandry [Zha20, Section 4.2].12

12In the watermarking setting, an extraction algorithm can take the description of a pirate circuit as input (corresponding to the
software decoder model [Zha20, Section 4.2]), unlike the black-box tracing model of traitor tracing. However, we use a pirate
circuit in the black box way for our extraction algorithms. Thus, we follow the black box projection model by Zhandry [Zha20].
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As in the traitor tracing setting [Zha20], ProjImp(MD) is inefficient in general. We can handle
this issue as Zhandry did. We will use an approximate version of ProjImp(MD) to achieve an efficient
reduction. In addition, we cannot apply both ProjImp(MD) and Extract to CA simultaneously. However,
the condition Pr[GoodExt] ≥ Pr[Live]− negl(λ) claims that an embedded mark cannot be removed
as long as the pirate circuit is alive. This fits the spirit of watermarking. See Zhandry’s paper [Zha20,
Section 4] for more discussion on the models.

Remark 3.8 (On selective message). As we see in Definition 3.6, we consider the selective setting for
private extraction case, where A must send the target message m to the challenger before A accesses to
the oracle Oext and after pp is given. This is the same setting as that by Quach et al. [QWZ18]. We
can consider the fully adaptive setting, where A can send the target message m after it accesses to the
oracle Oext, as Kim and Wu [KW19]. However, our privately extractable watermarking PRF satisfies
only selective security. Thus, we write only the selective variant for the private extraction case.

Definition 3.9 (Unremovability for Public Extraction). This is the same as Definition 3.6 except we
use the game Exppub-ext-urmv

A ,WMPRF (λ, ϵ) defined in the same way as Expturmv
A ,WMPRF(λ, ϵ) except the following

differences.

• In item 1, A is given xk together with pp.

• Item 2 is removed.

4 Definition of Extraction-Less Watermarking

We introduce the notion of extraction-less watermarking PRF as an intermediate primitive towards
watermarking PRFs secure against quantum adversaries.

4.1 Syntax and Pseudorandomness

Definition 4.1 (Extraction-Less Watermarking PRF). An extraction-less watermarking PRF WMPRF
for the message space {0, 1}ℓm with domain Dom and range Ran is a tuple of five algorithms
(Setup, Gen, Eval, Mark, Sim), where the first four algorithms have the same input/output behavior
as those defined in Definition 3.1 and Sim has the following input/output behavior.

Sim(xk, τ, i)→ (γ, x, y): The simulation algorithm Sim takes as input the extraction key xk, a tag τ,
and an index i, and outputs a tuple (γ, x, y).

Evaluation Correctness: It is defined in exactly the same way as the evaluation correctness for water-
marking PRF defined in Definition 3.1.

Extended pseudorandomness. Extended pseudorandomness for extraction-less watermarking PRF is
defined in exactly the same way as that for watermarking PRF, that is Definition 3.5.

4.2 Simulatability for Mark-Dependent Distributions (SIM-MDD Security)

We introduce the security notion for extraction-less watermarking PRF that we call simulatability for
mark-dependent distributions. Let D and Drev be the following distributions.

D: Generate b← {0, 1}, x ← Dom, and y0 ← Ran. Compute y1 ← Eval(prfk, x). Output (b, x, yb).

Drev: Generate (b, x, y)← D. Output (1⊕ b, x, y).
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Namely, D is the distribution that outputs a random value if the first bit b = 0 and a PRF evaluation if the
first bit b = 1, and Drev is its opposite (i.e., a PRF evaluation if b = 0 and a random value if b = 1).
SIM-MDD security is a security notion that guarantees that an adversary given C̃ ← Mark(mk, prfk, m)
cannot distinguish an output of Sim(xk, τ, i) from that of D if m[i] = 0 and from that of Drev if m[i] = 1.

Definition 4.2 (SIM-MDD Security with Private Simulation). To define SIM-MDD security with private
simulation, we define the game Exptsim-mdd

i∗,A ,WMPRF(λ) as follows, where i∗ ∈ [ℓm].

1. The challenger generates (pp, xk)← Setup(1λ) and sends pp to A . A sends m ∈ {0, 1}ℓm to the
challenger. The challenger generates (prfk, τ)← Gen(pp) and computes C̃ ← Mark(mk, prfk, m).
The challenger sends τ and C̃ to A .

2. A can access to the following oracle.

Osim: On input τ′ and i′ ∈ [ℓm], it returns Sim(xk, τ′, i′).

3. Let Dreal,i∗ be the following distribution. Note that Dreal,i∗ is identical with D if m[i∗] = 0 and
with Drev if m[i∗] = 1.

Dreal,i∗: Generate γ ← {0, 1} and x ← Dom. Then, if γ = m[i∗], generate y ← Ran, and
otherwise, compute y← Eval(prfk, x). Output (γ, x, y).

The challenger generates coin← {0, 1}. If coin = 0, the challenger samples (γ, x, y)← Dreal,i∗ .
If coin = 1, the challenger generates (γ, x, y)← Sim(xk, τ, i∗). The challenger sends (γ, x, y) to
A .

4. When A terminates with output coin′, the challenger outputs 1 if coin = coin′ and 0 otherwise.

Note that A is not allowed to access to Osim after A is given (γ, x, y).
We say that WMPRF is SIM-MDD secure if for every i∗ ∈ [ℓm] and QPT A , we have

Advsim-mdd
i∗,A ,WMPRF(λ) = 2

∣∣∣∣Pr
[
Exptsim-mdd

i∗,A ,WMPRF(λ) = 1
]
− 1

2

∣∣∣∣ = negl(λ).

We consider the selective setting above as unremovability for private extraction in Definition 3.6 since
we use SIM-MDD security with private simulation to achieve unremovability for private simulation.

Remark 4.3 (On multi challenge security). We can prove that the above definition implies the multi-
challenge variant where polynomially many outputs of Sim(xk, τ, i∗) are required to be indistinguishable
from those of Dreal,i∗ . This is done by hybrid arguments where outputs of Sim(xk, τ, i∗) are simulated
using Osim and those of Dreal,i∗ are simulated using C̃. To apply Theorem 2.12, we need the multi
challenge variant. However, we consider the single challenge variant due to the implication above. A
similar remark is applied to the variants of SIM-MDD security introduced below.

SIM-MDD security with private simulation under the API oracle. Let the API oracle be an oracle
that is given (ϵ, δ, τ′, i′) and a quantum state q , and returns the result of API ϵ,δ

P ,Dτ′ ,i′
(q) and the post

measurement state, whereP is defined in the same way as that in Definition 3.6 and Dτ′,i′ be the distribution
that outputs randomly generated (γ, x, y)← Sim(xk, τ′, i′). The API oracle cannot be simulated using
the simulation oracle Osim since we need superposition of outputs of Sim to compute API ϵ,δ

P ,Dτ′ ,i′
(q).

When constructing watermarking PRFs with private simulation from extraction-less watermarking PRFs,
the underlying extraction-less watermarking PRF scheme needs to satisfy SIM-MDD security with private
simulation under the API oracle that we call QSIM-MDD security with private simulation. The reason is
as follows. In the security analysis of the construction, the indistinguishability guarantee provided by
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SIM-MDD security needs to hold for an adversary against the resulting watermarking scheme who can
access the extraction oracle. This means that it also needs to hold for an adversary who can access the
API oracle since API is repeatedly invoked in the extraction algorithm of the resulting scheme.

Fortunately, as we will see, we can generically convert an extraction-less watermarking PRF scheme
satisfying SIM-MDD security with private simulation into one satisfying QSIM-MDD security with
private simulation, using QPRFs. Thus, when realizing an extraction-less watermarking PRF scheme as
an intermediate step towards privately extractable watermarking PRFs, we can concentrate on realizing
one satisfying SIM-MDD security with private simulation.

Remark 4.4. There is a similar issue in the traitor tracing setting. If PLBE is a secret-key based one, we
need a counterpart of QSIM-MDD in secret-key based PLBE to achieve traitor tracing with a secret
tracing algorithm against quantum adversaries by using Zhandry’s framework [Zha20]. Note that Zhandry
focuses on public-key based PLBE in his work [Zha20].

Definition 4.5 (QSIM-MDD Security with Private Simulation). Let Dτ,i be a distribution defined as
follows.

Dτ,i: Output (γ, x, y)← Sim(xk, τ, i).

Then, we define the game Expq-sim-mdd
i∗,A ,WMPRF(λ) in the same way as Expsim-mdd

i∗,A ,WMPRF(λ) except that in addition
to Osim, A can access to the following oracle in the step 2.

Oapi: On input (ϵ, δ, τ′, i′) and a quantum state q , it returns the result of API ϵ,δ
P ,Dτ′ ,i′

(q) and the post
measurement state, where P is defined in the same way as that in Definition 3.6.

We say that WMPRF is QSIM-MDD secure with private simulation if for every i∗ ∈ [ℓm] and QPT A ,
we have

Advq-sim-mdd
i∗,A ,WMPRF(λ) = 2

∣∣∣∣Pr
[
Expq-sim-mdd

i∗,A ,WMPRF(λ) = 1
]
− 1

2

∣∣∣∣ = negl(λ).

We have the following theorem.

Theorem 4.6. Assume there exists an extraction-less watermarking PRF scheme satisfying SIM-MDD
security with private simulation and a QPRF. Then, there exists an extraction-less watermarking PRF
scheme satisfying QSIM-MDD security with private simulation.

We prove this theorem in Appendix A.

Definition 4.7 (SIM-MDD Security with Public Simulation). We define the game Expsim-mdd-pub
i∗,A ,WMPRF (λ) in

the same way as Exptsim-mdd
i∗,A ,WMPRF(λ) except the following differences, where i∗ ∈ [ℓm].

• In item 1, A is given xk together with pp.

• Item 2 is removed.

We say that WMPRF satisfies SIM-MDD security with public simulation if for every i∗ ∈ [ℓm] and
QPT A , we have

Advsim-mdd-pub
i∗,A ,WMPRF (λ) = 2

∣∣∣∣Pr
[
Expsim-mdd-pub

i∗,A ,WMPRF (λ) = 1
]
− 1

2

∣∣∣∣ = negl(λ).

5 Watermarking PRF from Extraction-Less Watermarking PRF

We show how to construct watermarking PRF secure against quantum adversaries from extraction-less
watermarking PRF.
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Let ELWMPRF = (Setup, Gen, Eval, Mark, Sim) be an extraction-less watermarking PRF scheme
whose message space is {0, 1}ℓm+1. We construct a watermarking PRF scheme WMPRF = (WM.Setup,
WM.Gen, WM.Eval, WM.Mark, Extract) whose message space is {0, 1}ℓm as follows. We use Setup,
Gen, and Eval as WM.Setup, WM.Gen, and WM.Eval, respectively. Thus, the domain and range of
WMPRF are the same as those of ELWMPRF. Also, we construct WM.Mark and Extract as follows.

WM.Mark(pp, prfk, m):

• Output C̃ ← Mark(pp, prfk, m∥0).

Extract(xk, C , τ, ϵ):

• Let ϵ′ = ϵ/4(ℓm + 1) and δ′ = 2−λ.
• Parse (q , U)← C .
• LetP be defined in the same way as that in Definition 3.6 and Dτ,i be the following distribution

for every i ∈ [ℓm + 1].

Dτ,i: Output (γ, x, y)← Sim(xk, τ, i).

• Compute p̃ℓm+1 ← API ϵ′,δ′
P ,Dτ,ℓm+1

(q). If p̃ℓm+1 < 1
2 + ϵ− 4ϵ′, return unmarked. Otherwise,

letting q0 be the post-measurement state, go to the next step.
• For all i ∈ [ℓm], do the following.

1. Compute p̃i ← API ϵ′,δ′
P ,Dτ,i

(qi−1). Let qi be the post-measurement state.

2. If p̃i > 1
2 + ϵ − 4(i + 1)ϵ′, set m′i = 0. If p̃i < 1

2 − ϵ + 4(i + 1)ϵ′, set m′i = 1.
Otherwise, exit the loop and output m′ = 0ℓm .

• Output m′ = m′1∥ · · · ∥m′ℓm
.

We have the following theorems.

Theorem 5.1. If ELWMPRF satisfies extended weak pseudorandomness against authority, then so does
WMPRF.

Theorem 5.2. If ELWMPRF is an extraction-less watermarking PRF that satisfies QSIM-MDD security,
WMPRF is a privately extractable watermarking PRF.

Theorem 5.3. If ELWMPRF is an extraction-less watermarking PRF that satisfies SIM-MDD security
with public simulation, WMPRF is a publicly extractable watermarking PRF.

It is clear that Theorem 5.1 holds since the evaluation algorithm of WMPRF is the same as that
of ELWMPRF and extended weak pseudorandomness is insensitive to how the marking and extraction
algorithms are defined. Thus, we omit a formal proof.

The proofs of Theorems 5.2 and 5.3 are almost the same. Thus, we only provide the proof for the
former, and omit the proof for the latter.

Proof of Theorem 5.2. Let ϵ > 0. Let A be a QPT adversary attacking the unremovability of WMPRF.
The description of Expturmv

A ,WMPRF(λ, ϵ) is as follows.

1. The challenger generates (pp, xk) ← Setup(1λ) and gives pp to the adversary A . A sends
m ∈ {0, 1}ℓm to the challenger. The challenger generates (prfk, τ) ← Gen(pp), computes
C̃ ← Mark(pp, prfk, m∥0), and sends C̃ to A .

2. A can access to the following oracle.
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Oext: On input τ′ and a quantum circuit C , it returns Extract(xk, C , τ′, ϵ).

3. Finally, the adversary outputs a quantum circuit CA = (q , U).

We define D, P , MD, and the three events Live, GoodExt, and BadExt in the same way as
Definition 3.6.

The proof of Pr[GoodExt] ≥ Pr[Live]− negl(λ). Extract outputs unmarked if and only if p̃ℓ+1 <
1
2 + ϵ− 4ϵ′, that is we have Pr[GoodExt] = Pr

[
p̃ℓ+1 ≥ 1

2 + ϵ− 4ϵ′
]
. Let p the probability obtained by

applying ProjImp(MD) to q . Then, we have Pr[Live] = Pr
[
p ≥ 1

2 + ϵ
]
. Let p̃ be the outcome obtained

if we apply API ϵ′,δ′
P ,D to q . From the property of API , we have

Pr[Live] = Pr
[

p ≥ 1
2
+ ϵ

]
≤ Pr

[
p̃ ≥ 1

2
+ ϵ− ϵ′

]
+ negl(λ).

D and Dτ,ℓm+1 are computationally indistinguishable from the QSIM-MDD security of ELWMPRF since
outputs of Sim(xk, τ, i) is indistinguishable from those of D if m[i] = 0. This indistinguishability holds
even under the existence of Oapi. Then, from Theorem 2.12, we have

Pr
[

p̃ ≥ 1
2
+ ϵ− ϵ′

]
≤ Pr

[
p̃ℓ+1 ≥

1
2
+ ϵ− 4ϵ′

]
+ negl(λ) = Pr[GoodExt] + negl(λ).

By combining the above two equations, we obtain Pr[GoodExt] ≥ Pr[Live]− negl(λ).
The reason D and Dτ,ℓ+1 need to be computationally indistinguishable under the existence of Oapi to

apply Theorem 2.12 is as follows. In this application of Theorem 2.12, the quantum state appeared in the
statement of it is set as q contained in the quantum circuit C output by A . Then, Theorem 2.12 (implicitly)
requires that D and Dτ,ℓ+1 be indistinguishable for distinguishers who can construct q . To construct q ,
we need to execute A who can access to Oext in which API is repeatedly executed. This is the reason D
and Dτ,ℓ+1 need to be indistinguishable under the existence of Oapi.

The proof of Pr[BadExt] ≤ negl(λ). We define the event BadExti as follows for every i ∈ [ℓm].

BadExti: When Running Extract(xk, CA, τ∗, ϵ), the following conditions hold.

• p̃ℓ+1 ≥ 1
2 + ϵ− 4ϵ′ holds.

• m′j = mj holds for every j ∈ [i− 1].

• Extract exits the i-th loop or m′i ̸= mi holds.

Then, we have Pr[BadExt] ≤ ∑i∈[ℓ] Pr[BadExti]. Below, we estimate Pr[BadExti].
We first consider the case of mi−1 = 0 and mi = 0. Assume m′i−1 = mi−1 = 0 holds. Then, we

have p̃i−1 > 1
2 + ϵ− 4iϵ′. Let p̃′i−1 ← API ϵ′,δ′

P ,Dτ,i−1
(qi−1). From, the almost-projective property of API ,

we have

Pr
[

p̃′i−1 >
1
2
+ ϵ− 4iϵ′ − ϵ′

]
≥ 1− δ′.

When mi−1 = 0 and mi = 0, Dτ,i−1 and Dτ,i are computationally indistinguishable since both of
them are computationally indistinguishable from D by the QSIM-MDD security of ELWMPRF. This
indistinguishability holds under the existence of Oapi. Thus, from Theorem 2.12, we have

1− δ′ ≤ Pr
[

p̃′i−1 >
1
2
+ ϵ− (4i + 1)ϵ′

]
≤ Pr

[
p̃i >

1
2
+ ϵ− 4(i + 1)ϵ′

]
+ negl(λ).
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This means that Pr[BadExti] = negl(λ) in this case. Note that the reason the indistinguishability of
Dτ,i−1 and Dτ,i needs to hold under Oapi is that Theorem 2.12 requires it hold for distinguishers who can
construct qi−1.

Next, we consider the case of mi−1 = 0 and mi = 1. Assume m′i−1 = mi−1 = 0 holds. Then, we
have p̃i−1 > 1

2 + ϵ− 4iϵ′. We then define an additional distribution Drev
τ,i as follows.

Drev
τ,i : Generate (γ, x, y)← Sim(xk, τ, i). Output (1⊕ γ, x, y).

That is, the first bit of the output is flipped from Dτ,i. Then, for any random coin r, we have
(PDrev

τ,i (r)
, QDrev

τ,i (r)
) = (QDτ,i(r), PDτ,i(r)). This is because we have Qb,x,y = I − Pb,x,y = P1⊕b,x,y

for any tuple (b, x, y). Therefore, API ϵ′,δ′
P ,Drev

τ,i−1
is exactly the same process as API ϵ′,δ′

Prev,Dτ,i−1
. Let

p̃′i−1 ← API ϵ′,δ′
P ,Drev

τ,i−1
(qi−1). From, the reverse-almost-projective property of API , we have

Pr
[

p̃′i−1 <
1
2
− ϵ + 4iϵ′ + ϵ′

]
≥ 1− δ′.

When mi−1 = 0 and mi = 1, Drev
τ,i−1 and Dτ,i are computationally indistinguishable since both of them

are computationally indistinguishable from the following distribution Drev by the QSIM-MDD security
of ELWMPRF.

Drev: Generate (γ, x, y)← D. Output (1⊕ γ, x, y).

This indistinguishability holds under the existence of Oapi. Thus, from Theorem 2.12, we have

1− δ′ ≤ Pr
[

p̃′i−1 <
1
2
− ϵ + (4i + 1)ϵ′

]
≤ Pr

[
p̃i <

1
2
− ϵ + 4(i + 1)ϵ′

]
+ negl(λ).

This means that Pr[BadExti] = negl(λ) also in this case. Note that the reason the indistinguishability of
Drev

τ,i−1 and Dτ,i needs to hold under Oapi is that Theorem 2.12 requires it hold for distinguishers who can
construct qi−1.

Similarly, we can prove that Pr[BadExti] = negl(λ) holds in the case of (mi−1, mi) = (1, 0) and
(mi−1, mi) = (1, 1).

Overall, we see that Pr[BadExt] = negl(λ) holds in all cases.

6 Extraction-Less Watermarking PRF from LWE

We present an extraction-less watermarking PRF, denoted by PRFcprf , whose message space is {0, 1}ℓm

with domain {0, 1}n and range {0, 1}m. We use the following tools, which can be instantiated with the
QLWE assumption (See Theorems 2.25, 2.28 and 2.31):

• Private CPRF CPRF = (CPRF.Setup, CPRF.Eval, CPRF.Constrain, CPRF.CEval). For ease of
notation, we denote CPRF evaluation circuit CPRF.Eval(msk, ·) and constrained evaluation circuits
CPRF.CEval(sk f , ·) by G : {0, 1}n → {0, 1}m and G/∈V : {0, 1}n → {0, 1}m, respectively, where
x ∈ V iff f (x) = 1.

• SKE scheme SKE = (SKE.Gen, SKE.Enc, SKE.Dec). The plaintext space and ciphertext space of
SKE are {0, 1}ℓske and {0, 1}n, respectively, where ℓske = log ℓm + 1.

• PKE scheme PKE = (Gen, Enc, Dec). The plaintext space of PKE is {0, 1}2λ.

Construction overview. We already explained the high-level idea for how to realize extraction-less
watermarking PRFs in Section 1.3. However, the construction of PRFcprf requires some additional efforts.
Thus, before providing the actual construction, we provide a high-level overview of PRFcprf .
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Recall that letting C̃ ← Mark(pp, prfk, m) and (γ∗, x∗, y∗)← Sim(xk, τ, i∗), we have to design Sim
and C̃ so that

• If γ = m[i∗], C̃(x∗) outputs a value different from y∗.

• If γ ̸= m[i∗], C̃(x∗) outputs y∗.

In the token-based construction idea, we achieve these conditions by setting x∗ as an encryption of
y∗∥i∗∥γ∗ and designing C̃ as a token such that it outputs y∗ if the input is decryptable and γ∗ ̸= m[i∗]
holds for the decrypted value y∗∥i∗∥γ∗, and otherwise behaves as the original evaluation circuit. However,
in PRFcprf , we use a constrained evaluation circuit of CPRF as C̃, and thus we cannot program output
values for specific inputs. Intuitively, it seems that Sim needs to use the original PRF key prfk to achieve
the above two conditions.

To solve the issue, we adopt the idea used by Quach et al. [QWZ18]. In PRFcprf , the setup algorithm
Setup generates (pk, sk) ← Gen(1λ) of PKE, and sets pp = pk and xk = sk. Then, the PRF key
generation algorithm is given pk, generates G← CPRF.Setup(1λ, 1κ) along with ske.k← SKE.Gen(1λ),
and sets the public tag τ as an encryption of (G, ske.k) under pk. The evaluation algorithm of PRFcprf is
simply that of CPRF.

Now, we explain how to design Sim and C̃ ← Mark(pp, prfk, m) to satisfy the above two conditions.
Given xk = sk, τ = Enc(pk, prfk) and i, Sim is able to extract prfk = (G, ske.k). Then, Sim generates
γ← {0, 1} and sets x ← SKE.Enc(ske.k, i∥γ) and y← G(x). We set C̃ as a constrained version of G
for a circuit D that outputs 1 if the input x is decryptable by ske.k and γ = m[i] holds for decrypted value
i∥γ, and otherwise outputs 0. For an input x, the constrained version of G outputs the correct output G(x)
if and only if D(x) = 0. We can check that PRFcprf satisfies the above two conditions.

The above construction does not satisfy extended weak pseudorandomness against authority since
the authority can extract the original CPRF key G by xk = sk. However, this problem can be fixed by
constraining G. We see that Sim needs to evaluate G for valid ciphertexts of SKE. Thus, to implement the
above mechanism, it is sufficient to set the public tag τ as an encryption of ske.k and a constrained version
of G for a circuit Dauth that output 0 if and only if the input is decryptable by ske.k. Then, the authority
can only extract such a constrained key. By requiring sparseness for SKE, the constrained key cannot be
used to break the pseudorandomness of PRFcprf for random inputs. This means that PRFcprf satisfies
extended weak pseudorandomness against an authority. Note that we only need a single-key CPRF for
PRFcprf since either a user or the authority (not both) is a malicious entity in security games.

The description of PRFcprf is as follows.

Setup(1λ):

• Generate (pk, sk)← Gen(1λ).
• Output (pp, xk) := (pk, sk).

Gen(pp):

• Parse pp = pk.
• Generate G← CPRF.Setup(1λ, 1κ). In our construction, κ is the size of circuit D[ske.k, m]

described in Figure 5, which depends on ℓm (and λ).
• Generate ske.k← SKE.Gen(1λ).
• Construct a circuit Dauth[ske.k] described in Figure 4.
• Compute G/∈Vauth := CPRF.Constrain(G, Dauth[ske.k]), where Vauth ⊂ {0, 1}n is a set such

that x ∈ Vauth iff Dauth[ske.k](x) = 1.
• Output prfk := (G, ske.k) and τ ← Enc(pk, (G/∈Vauth , ske.k)).

Eval(prfk, x ∈ {0, 1}n): Recall that G is a keyed CPRF evaluation circuit.
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Circuit Dauth[ske.k]
Constants: An SKE key ske.k, and a message m.
Input: A string x ∈ {0, 1}n.

1. Compute d← SKE.Dec(ske.k, x).
2. Output 0 if d ̸= ⊥ and 1 otherwise.

Figure 4: The description of Dauth

Circuit D[ske.k, m]

Constants: An SKE key ske.k, and a message m.
Input: A string x ∈ {0, 1}n.

1. Compute d← SKE.Dec(ske.k, x).
2. If d ̸= ⊥, do the following

(a) Parse d = i∥γ, where i ∈ [ℓm] and γ ∈ {0, 1}.
(b) If γ = m[i], output 1. Otherwise, output 0.

3. Otherwise output 0.

Figure 5: The description of D

• Parse prfk = (G, ske.k).
• Output y := G(x).

Mark(pp, prfk, m):

• Parse pp = pk and prfk = (G, ske.k).
• Construct a circuit D[ske.k, m] described in Figure 5.
• Compute G/∈V ← CPRF.Constrain(G, D[ske.k, m]), where V ⊂ {0, 1}n is a set such that

x ∈ V iff D[ske.k, m](x) = 1.
• Output C̃ = G/∈V .

Sim(xk, τ, i):

• Parse xk = sk.
• Compute (G/∈Vauth , ske.k)← Dec(sk, τ).
• Choose γ← {0, 1}.
• Compute x ← SKE.Enc(ske.k, i∥γ) and y← G/∈Vauth(x).
• Output (γ, x, y).

The evaluation correctness of PRFcprf follows from the sparseness of SKE and the correctness of
CPRF. For the security of PRFcprf , we have the following theorems.

Theorem 6.1. SKE is a secure SKE scheme with pseudorandom ciphertext, CPRF is a selectively single-key
private CPRF, PKE is a CCA secure PKE scheme, then PRFcprf is an extraction-less watermarking PRF
satisfying SIM-MDD security.

Theorem 6.2. If CPRF is a selective single-key private CPRF, PRFcprf satisfies extended weak pseudo-
randomness.
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SIM-MDD security. First, we prove the SIM-MDD security of PRFcprf .

Proof of Theorem 6.1. We define a sequence of hybrid games to prove the theorem.

Hyb0: This is the same as the case coin = 1 in Expsim-mdd
i∗,A ,PRFcprf

(λ). In this game, A is given τ ←
Enc(pk, (G/∈Vauth , ske.k)) and G/∈V ← CPRF.Constrain(G, D[ske.k, m]) as a public tag and a
marked circuit. After τ and G/∈V are given, A can access to Osim. Finally, after finishing the
access to Osim, A is given (γ∗, x∗, y∗)) as the challenge tuple and outputs coin′ ∈ {0, 1}, where
γ∗ ← {0, 1}, x∗ ← SKE.Enc(ske.k, i∗∥γ∗), and y∗ ← G/∈Vauth(x∗).

Hyb1: This is the same as Hyb0 except for the following two changes. First, G is used instead of G/∈Vauth

when generating the challenge tuple (γ∗, x∗, y∗). Second, we change the behavior of Osim as
follows. When A sends τ′ and i′ to Osim, if τ′ = τ, Osim performs the remaining procedures by
using (G, ske.k) (without decrypting τ′ = τ).

Hyb2: This is the same as Hyb1 except that we use τ ← Enc(pk, 02λ) instead of τ ← Enc(pk, (G/∈Vauth , ske.k)).

Hyb3: This is the same as Hyb2 except that if m[i∗] = γ∗, we use y∗ ← {0, 1}m instead of y∗ ← G(x∗).

Hyb4: This is the same as Hyb3 except that we use a simulated (stSim, Ĝ)← CPRF.Sim1(1κ, 1λ) instead
of G/∈V ← CPRF.Constrain(G, D[ske.k, m]) for the challenge marked circuit. Also, if m[i∗] ̸= γ∗,
the challenger computes y∗ ← Sim2(stSim, x∗, 0). In addition, we also change the behavior of
Osim as follows. Given τ′ and i′, if τ′ ̸= τ, Osim answers in the same way as Hyb3. Otherwise,
it returns (γ, x, y), where γ← {0, 1}, x ← SKE.Enc(ske.k, i′∥γ), and y← Sim2(stSim, x, 1) if
m[i′] = γ and y← Sim2(stSim, x, 0) otherwise.

Hyb5: This is the same as Hyb4 except that we use x∗ ← {0, 1}n instead of x∗ ← SKE.Enc(ske.k, i∗∥γ∗).
Hyb6: We undo the change at Hyb4.

Hyb7: We undo the change at Hyb2.

Hyb8: We undo the change at Hyb1. This is the same as the case coin = 0 in Expsim-mdd
i∗,A ,PRFcprf

(λ).

Proposition 6.3. If CPRF, SKE, and PKE are correct, it holds that |Pr[Hyb0 = 1]− Pr[Hyb1 = 1]| ≤
negl(λ).

Proof of Proposition 6.3. For the first change, x∗ /∈ Vauth holds since ⊥ ̸= SKE.Dec(ske.k, x∗) from
the correctness of SKE. Then, from the correctness of CPRF, we have G/∈Vauth(x∗) = G(x∗), and thus
the first change does not affect the view of A . For the second change, from the correctness of PKE,
(G/∈Vauth , ske.k)← Dec(sk, τ′) if τ′ = τ. Then, similarly to the first change, we can see that the second
change does not affect the view of A .

Proposition 6.4. If PKE is CCA secure, it holds that |Pr[Hyb1 = 1]− Pr[Hyb2 = 1]| ≤ negl(λ).

Proof of Proposition 6.4. We construct an algorithm B that breaks CCA security of PKE by using A .

B: B is given pk from the challenger. B generates ske.k← SKE.Gen(1λ), and G← CPRF.Setup(1λ),
and sets pp := pk. B sends pp to A and obtain m from A . B then generate G/∈Vauth :=
CPRF.Constrain(G, Dauth[ske.k]), sets (m0, m1) := ((G/∈Vauth , ske.k), 02λ) as the challenge plain-
text of the CCA game and receives τ from its challenger. B also constructs D[ske.k, m], generates
G/∈V ← CPRF.Constrain(G, D[ske.k, m]), and sends τ and G/∈V to A as the challenge public tag
and marked circuit.

Osim: When A sends τ′ and i′ to Osim, B simulates the answer by using G, ske.k, and the decryption
oracle Dec(sk, ·).
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After finishing A’s oracle access to Osim, B chooses γ∗ ← {0, 1}, generates x∗ ← SKE.Enc(ske.k, i∗∥γ∗)
and y∗ ← G/∈Vauth(x∗) = G(x∗), and sends (γ∗, x∗, y∗) to A . Note that G/∈Vauth(x∗) = G(x∗)
holds since ⊥ ̸= SKE.Dec(ske.k, x∗) and thus x∗ /∈ Vauth.
Finally, when A terminates with output coin′, B outputs coin′ and terminates.

B perfectly simulates if Hyb1 if τ ← Enc(pk, (G/∈Vauth , ske.k)), and Hyb2 if τ ← Enc(pk, 02λ). This
completes the proof.

Proposition 6.5. If CPRF satisfies selective pseudorandomness, it holds that

|Pr[Hyb2 = 1]− Pr[Hyb3 = 1]| ≤ negl(λ).

Proof of Proposition 6.5. We use selective single-key pseudorandomness of G. We construct an algorithm
B that breaks the selective single-key pseudorandomness of G by using A .

B: B generates (pk, sk) ← Gen(1λ), ske.k ← SKE.Gen(1λ), and τ ← Enc(pk, 02λ), sets and sends
pp := pk to A , and obtains m from A . B constructs D[ske.k, m], sends D[ske.k, m] to its challenger,
and receives G/∈V . B sends τ and G/∈V to A as the challenge public tag and marked circuit.

Osim: When A sends τ′ and i′ ∈ [ℓm] to Osim, if τ′ ̸= τ, B computes (G′, ske.k′)← Dec(sk, τ′),
and computes and returns the answer (γ, x, y) by using (G′, ske.k′). If τ′ = τ, B
returns (γ, x, y) computed as follows. B chooses γ ← {0, 1}, and generates x ←
SKE.Enc(ske.k, i′∥γ). B finally sends x to its PRF evaluation oracle and receives y← G(x).

After finishing A’s oracle access to Osim,B sends (γ∗, x∗, y∗) computed as follows to A . B first
chooses γ∗ ← {0, 1} and generates x∗ ← SKE.Enc(ske.k, i∗∥γ∗). If m[i∗] = γ∗, B sends x∗ to
its challenge oracle and receives y∗. If m[i∗] ̸= γ∗, B sends x∗ to its PRF evaluation oracle and
receives y∗.
Finally, when A terminates with output coin′, B outputs coin′ and terminates.

B perfectly simulates Hyb2 if the challenge oracle returns y∗ = G(x∗), and Hyb3 if it returns
y∗ ← {0, 1}m. Note that in these games, x∗ ← SKE.Enc(ske.k, i∗∥γ∗), and thus if m[i∗] = γ∗, we have
x∗ ∈ V (D[ske.k, m](x∗) = 1). This completes the proof.

Proposition 6.6. If CPRF satisfies selective single-key privacy, it holds that

|Pr[Hyb3 = 1]− Pr[Hyb4 = 1]| ≤ negl(λ).

Proof of Proposition 6.6. We use selective single-key privacy of G. We construct an algorithm B that
breaks the selective privacy of G by using A .

B: B generates (pk, sk) ← Gen(1λ), ske.k ← SKE.Gen(1λ), and τ ← Enc(pk, 02λ), sends pp := pk
to A , and obtains m from A . B constructs D[ske.k, m], sends D[ske.k, m] to its challenger, and
receives G∗. B sends τ and G∗ to A as the challenge public tag and marked circuit.

Osim: When A sends τ′ and i′ ∈ [ℓm] to Osim, if τ′ ̸= τ, B computes (G′, ske.k′)← Dec(sk, τ′)
and returns the answer (γ, x, y) computed by using (G′, ske.k′). If τ′ = τ, B returns
the answer (γ, x, y) computed as follows. B chooses γ ← {0, 1}, and generates x ←
SKE.Enc(ske.k, i′∥γ). B sends x to its oracle and receives y.

After finishing A’s oracle access to Osim, B sends (γ∗, x∗, y∗) computed as follows to A . B
chooses γ∗ ← {0, 1} and generates x∗ ← SKE.Enc(ske.k, i∗∥γ∗). If m[i∗] = γ∗, B chooses
y∗ ← {0, 1}m. If m[i∗] ̸= γ∗, B sends x∗ to its oracle and receives y∗.
Finally, when A terminates with output coin′, B outputs coin′ and terminates.
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B perfectly simulates Hyb3 if G∗ = CPRF.Constrain(G, D[ske.k, m]) and B has access to G(·),
and Hyb4 if G∗ = Sim1(1κ, 1λ) and B has access to Sim2(stSim, ·, D[ske.k, m](·)). This completes the
proof.

Proposition 6.7. If SKE satisfies ciphertext pseudorandomness, it holds that

|Pr[Hyb4 = 1]− Pr[Hyb5 = 1]| ≤ negl(λ).

Proof of Proposition 6.7. We construct an algorithm B that breaks the ciphertext pseudorandomness of
SKE by using A .

B: B generates (pk, sk)← Gen(1λ) and sends pp := pk to A , and obtains m from A . B then generates
τ ← Enc(pk, 02λ) and (stSim, Ĝ)← Sim1(1κ, 1λ), and sends τ and Ĝ to A as the challenge public
tag and marked circuit.

Osim: When A sends τ′ and i′ ∈ [ℓm] to Osim, if τ′ ̸= τ, B computes (G′, ske.k′) ← Dec(sk, τ) and
returns the answer (γ, x, y) computed by using (G′, ske.k′). If τ′ = τ, B returns the answer
(γ, x, y) computed as follows. B chooses γ ← {0, 1}, sends i′∥γ to its encryption oracle,
and receives x ← SKE.Enc(ske.k, i′∥γ). B computes y ← Sim2(stSim, x, 1) if γ = m[i′] and
y← Sim2(stSim, x, 0) otherwise.

After finishing A’s oracle access to Osim, B sends (γ∗, x∗, y∗) computed as follows to A . B chooses
γ∗ ← {0, 1}, sends i∗∥γ∗ to its challenger as the challenge plaintext, and receives x∗. B generates
y∗ ← {0, 1}m if m[i∗] = γ∗ and y∗ ← Sim2(stSim, x, 0) otherwise.

Finally, when A terminates with output coin′, B outputs coin′ and terminates.

B perfectly simulates Hyb4 if x∗ ← SKE.Enc(ske.k, i∗∥γ∗), and Hyb5 if x∗ ← {0, 1}n. This
completes the proof.

Proposition 6.8. If CPRF satisfies selective single-key privacy, it holds that

|Pr[Hyb5 = 1]− Pr[Hyb6 = 1]| ≤ negl(λ).

Proof of Proposition 6.8. This proof is almost the same as that of Proposition 6.6.

Proposition 6.9. If PKE is CCA secure, it holds that |Pr[Hyb6 = 1]− Pr[Hyb7 = 1]| ≤ negl(λ).

Proof of Proposition 6.9. This proof is almost the same as that of Proposition 6.4.

Proposition 6.10. If CPRF, SKE, and PKE are correct, it holds that |Pr[Hyb7 = 1]− Pr[Hyb8 = 1]| ≤
negl(λ).

Proof of Proposition 6.10. This proof is almost the same as that of Proposition 6.3.

By Propositions 6.3 to 6.10, we complete the proof of Theorem 6.1.

Extended weak pseudorandomness. Next, we prove the extended pseudorandomness of PRFcprf .

Proof of Theorem 6.2. Let A be an adversary attacking the extended weak pseudorandomness of PRFcprf .
We construct B that attacks the selective single-key pseudorandomness of CPRF.

B: Given pp from A , B first generates ske.k← SKE.Gen(1λ), sends Dauth[ske.k] to its challenger, and
obtains G∗. B sets pp := pk, generates τ ← Enc(pk, (G∗, ske.k)), and sends it to A . B answers
A’s queries as follows.
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Owprf: When this is invoked (no input), B generates a← {0, 1}n, sends it to its evaluation oracle,
and obtains b. Then, B returns (a, b) to A .

Ochall: When this is invoked (no input), B generates a∗ ← {0, 1}n, outputs a∗ as its challenge
input, and obtains b∗. B returns (a∗, b∗) to A . Note that this oracle is invoked only once.

When A terminates with output b′, B outputs b′ and terminates.

Due to the sparseness of SKE, without negligible probability, we have SKE.Dec(ske.k, a∗) = ⊥ thus
Dauth[ske.k](a∗) = 1, and a generated when answering to a query to Owprf is different from a∗. Therefore,
without negligible probability, B is a valid adversary against the selective single-key pseudorandomness
of CPRF. When B is valid, we see that the advantage of B is the same as that of A . This completes the
proof.

7 Extraction-Less Watermarking PRF with Public Simulation from IO

We construct an extraction-less watermarking PRF satisfying SIM-MDD security with public simulation.
We first introduce a tool.

7.1 Puncturable Encryption, Revisited

Cohen et al. [CHN+18] introduced the notion of puncturable encryption (PE). They used a PE scheme as
a crucial building block to construct a publicly extractable watermarking PRF against classical adversaries.
We also use a PE scheme to construct an extraction-less watermarking PRF with public simulation
(against quantum adversaries). However, we find that the original PE definition is not sufficient for
proving unremovability (and our purpose) since there is a subtle issue in the security proof by Cohen et
al. [CHN+18]. However, we can fix the issue since their PE scheme satisfies a stronger security notion
than what they proved. Thus, we introduce a stronger security notion for PE in this section.

The syntax of PE is almost the same as that of the original PE.

Definition 7.1 (Puncturable Encryption (Syntax)). A puncturable encryption (PE) scheme PE for a
plaintext space P = {0, 1}ℓp is a triple of PPT algorithms (Gen, Puncture, Enc) and a deterministic
algorithm Dec. The ciphertext space will be {0, 1}ℓct where ℓct = poly(λ, ℓp).

Gen(1λ)→ (ek, dk): The key generation algorithm takes as input the security parameter 1λ and outputs
an encryption key ek and a decryption key dk.

Puncture(dk, {c∗})→ dk ̸=c∗: The puncturing algorithm takes as input dk and a string c∗ ∈ {0, 1}ℓct ,
and outputs a “punctured” decryption key dk ̸=c∗ .

Enc(ek, m)→ c: The encryption algorithm takes as input ek and a plaintext m ∈ {0, 1}ℓp , and outputs
a ciphertext c in {0, 1}ℓct .

Dec(dk′, c′)→ m′ or ⊥: The decryption algorithm takes a possibly punctured decryption key dk′ and a
string c′ ∈ {0, 1}ℓct . It outputs a plaintext m′ or the special symbol ⊥.

There are four security requirements on PE. Three of those are the same as those in the original PE
security. The difference is ciphertext pseudorandomness.

Definition 7.2 (Puncturable Encryption Security). A PE scheme PE = (Gen, Puncture, Enc, Dec) with
plaintext space P = {0, 1}ℓp and ciphertext space C = {0, 1}ℓct is required to satisfy the following
properties.

Correctness: We require that for all plaintext m ∈ P and (ek, dk) ← Gen(1λ), it holds that
Dec(dk, Enc(ek, m)) = m.
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Punctured Correctness: We require the same to hold for punctured keys. For all possible keys
(ek, dk)← Gen(1λ), all string c∗ ∈ C, all punctured keys dk ̸=c∗ ← Puncture(dk, {c∗}), and all
potential ciphertexts c ∈ C \ {c∗}:

Dec(dk, c) = Dec(dk ̸=c∗ , c).

Sparseness: We also require that most strings are not valid ciphertexts:

Pr
[
Dec(dk, c) ̸= ⊥

∣∣∣ (ek, dk)← Gen(1λ), c← {0, 1}ℓct
]
≤ negl(λ).

Ciphertext Pseudorandomness: We require that PE has strong ciphertext pseudorandomness defined
in Definition 7.3.

Definition 7.3 (Strong Ciphertext Pseudorandomness). We define the following experiment Exps-cpr
A (λ).

1. A sends a message m∗ ∈ P = {0, 1}ℓp to the challenger.

2. The challenger does the following:

• Generate (ek, dk)← Gen(1λ)

• Compute a ciphertext c∗ ← Enc(ek, m∗).
• Choose r∗ ← C = {0, 1}ℓct .
• Choose coin← {0, 1} and set x0 := c∗ and x1 := r∗.
• Generate a punctured key dk ̸=xcoin ← Puncture(dk, {xcoin})
• Send (xcoin, ek, dk ̸=xcoin) to A:

3. A outputs coin∗ and the experiment outputs 1 if coin = coin∗; otherwise 0.

We say that PE has strong ciphertext pseudorandomness if for every QPT adversary A , it holds that

Advs-cpr
A (λ) := 2

∣∣∣∣Pr
[
Exps-cpr

A (λ) = 1
]
− 1

2

∣∣∣∣ ≤ negl(λ).

Remark 7.4 (Difference from the original PE). In the original PE definition, Puncture takes two strings
{c0, c1} ⊂ {0, 1}ℓct and outputs a punctured decryption key dk/∈{c0,c1} and punctured correctness is
accordingly defined.

In the original ciphertext pseudorandomness (described in Appendix B.4), a punctured decryption key
is punctured at both c∗ and r∗. That is, the information about m∗ remains in dk/∈{c∗,r∗} for coin ∈ {0, 1}.
This is an issue for our purpose (and the proof by Cohen et al. [CHN+18]). Thus, we introduce the strong
ciphertext pseudorandomness, where the information about m∗ disappears in the case coin = 1 since the
punctured decryption key is dk ̸=r∗ when coin = 1.

In fact, the PE scheme PE by Cohen et al. [CHN+18] satisfies strong ciphertext pseudorandomness
(and thus, we can also fix the issue in the proof by Cohen et al.13).

Theorem 7.5. If there exists secure IO for circuits and the QLWE assumption holds, there exists secure
PE that satisfies strong ciphertext pseudorandomness.

We prove this theorem in Appendix B.

13See Appendix B.4 for the detail of the issue.
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7.2 Construction of Extraction-less Watermarking PRF with Public Simulation

We describe our extraction-less watermarking PRF PRFio for message space {0, 1}ℓm with domain
{0, 1}ℓin and range {0, 1}ℓout below. We use the following tools:

• PPRF PRF = PRF.(Gen, Eval, Puncture). We denote a PRF evaluation circuit PRF.Evalprfk(·) by
F : {0, 1}ℓin → {0, 1}ℓout , a PRF evaluation circuit with punctured key PRF.Evalprfk ̸=x(·) by F ̸=x
(that is, we omit prfk and simply write F(·) instead of Fprfk(·)) for ease of notations.

• PE scheme PE = PE.(Gen, Puncture, Enc, Dec). The plaintext and ciphertext space of PE
are {0, 1}ℓpt and {0, 1}ℓct , respectively, where ℓpt = ℓ + log ℓm + 1 and ℓin := ℓct (ℓct =
poly(ℓ, log ℓm)).

• Indistinguishability obfuscator iO.

• PRG PRG : {0, 1}ℓ → {0, 1}ℓout .

Setup(1λ):

• Output (pp, xk) := (⊥,⊥).

Gen(pp):

• Parse pp = ⊥.
• Compute F← PRF.Gen(1λ).
• Generate (pe.ek, pe.dk)← PE.Gen(1λ).
• Output prfk := (F, pe.dk) and τ := pe.ek.

Eval(prfk, x ∈ {0, 1}ℓin):

• Parse prfk = (F, pe.dk).
• Compute and output y← F(x).

Mark(pp, prfk, m ∈ {0, 1}ℓm):

• Parse pp = ⊥ and prfk = (F, pe.dk).
• Construct a circuit D[F, pe.dk, m] described in Figure 6.
• Compute and output C̃ := iO(D[F, pe.dk, m]).

Sim(xk, τ, i):

• Parse xk = ⊥ and τ = pe.ek.
• Choose γ← {0, 1} and s← {0, 1}ℓ.
• Compute y := PRG(s).
• Compute x ← PE.Enc(pe.ek, s∥i∥γ).
• Output (γ, x, y)

The size of the circuit D is appropriately padded to be the maximum size of all modified circuits, which
will appear in the security proof.

The evaluation correctness of PRFio immediately follows from the sparseness of PE and the
functionality of iO.14 PRFio trivially satisfies pseudorandomness (against an authority) since Setup

14In fact, PRFio satisfies a stronger evaluation correctness than one written in Definition 4.1. The evaluation correctness
holds even for any PRF key prfk and input x ∈ Dom like the statistical correctness by Cohen et al. [CHN+18].
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Circuit D[F, pe.dk, m]

Constants: A PRF F, a PE decryption key pe.dk, and a message m.
Input: A string x ∈ {0, 1}ℓin .

1. Compute d← PE.Dec(pe.dk, x).
2. If d ̸= ⊥, do the following

(a) Parse d = s∥i∥γ, where s ∈ {0, 1}ℓ, i ∈ [ℓm], and γ ∈ {0, 1}.
(b) If m[i] ̸= γ, output PRG(s). Otherwise, output F(x).

3. Otherwise, output F(x).

Figure 6: The description of D

outputs nothing, τ is a public key pe.ek, and Eval is independent of (pe.ek, pe.dk) (pe.dk is not used in
Eval). Moreover, we have the following theorem.

Theorem 7.6. If PRF is a secure PPRF, PRG is a secure PRG, PE is a secure PE with strong ciphertext
pseudorandomness, and iO is a secure IO, then PRFio is an extraction-less watermarking PRF satisfying
SIM-MDD security with public simulation.

Proof of Theorem 7.6. We define a sequence of hybrid games. We sometimes omit hard-coded values
when we write some circuits. For example, we simply write D instead of D[F, pe.dk, m] when hard-coded
values (F, pe.dk, m) are not important in arguments or clear from the context.

Hyb0: This is the same as the case b = 1 in Exppub-sim-mdd
i∗,A ,PRFio

(λ). In this game, A is given τ = pe.ek and
C̃ = iO(D[F, pe.dk, m]) as a public tag and a marked circuit, where (pe.ek, pe.dk)← PE.Gen(1λ),
(F, pe.dk) is the target PRF key, and m is the target message from A . Also, A is given (γ∗, x∗, y∗) =
(γ1, x1, y1) as the challenge tuple, where γ1 ← {0, 1}, x1 ← PE.Enc(pe.ek, s∗∥i∗∥γ1), y1 :=
PRG(s∗), and s∗ ← {0, 1}ℓ.

Case γ∗ = m[i∗]: We consider two cases separately hereafter. First, we consider the case where
γ∗ = m[i∗]. We denote these hybrid games by Hyb=k . Note that we can choose γ∗ at any time and
hard-code it into D̃ in the proof since it is a uniformly random bit in all hybrid games.

Hyb=1 : This is the same as Hyb0 except that if γ1 = m[i∗], we use D̃ ← iO(D$
̸=x1

[F, pe.dk ̸=x1
, m, γ1, x1, y]),

where D$
̸=x∗ is described in Figure 7 and y := F(x1). We use a punctured decryption key pe.dk ̸=x1

instead of pe.dk. However, we do not use a punctured key for F.

Hyb=2 : This is the same as Hyb=1 except that we generate

• x0 ← {0, 1}ℓin ,
• D̃ ← iO(D$

̸=x0
[F, pe.dk ̸=x0

, m, γ1, x0, y]).

That is, we replace x∗ = x1 and pe.dk′ = pe.dk ̸=x1
with x∗ = x0 and pe.dk′ = pe.dk ̸=x0

,
respectively.

We also rename γ1 ← {0, 1} into γ0 ← {0, 1} (these distributions are the same).

Hyb=3 : This is the same as Hyb=2 except that we use y0 ← {0, 1}ℓout instead of y1 := PRG(s∗).
We describe the high-level overview of hybrid games for γ∗ = m[i∗] in Figures 9 and 10.

Case γ∗ ̸= m[i∗]: Next, we consider the case where γ∗ ̸= m[i∗]. We denote these hybrid games by
Hyb ̸=k .
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Circuit D$
̸=x∗ [F, pe.dk′, m, γ∗, x∗, y]

Constants: A PRF key F, a (possibly punctured) PE decryption key pe.dk′, a message m, a bit γ∗, and strings
x∗ ∈ {0, 1}ℓin , y ∈ {0, 1}ℓout .

Input: A string x ∈ {0, 1}ℓin .

1. If x = x∗, output y.

2. Compute d← PE.Dec(pe.dk′, x).
3. If d ̸= ⊥, do the following

(a) Parse d = s∥i∥γ, where s ∈ {0, 1}ℓ, i ∈ [ℓm], and γ ∈ {0, 1}.
(b) If m[i] ̸= γ, output PRG(s). Otherwise, output F(x).

4. Otherwise, output F(x).

Figure 7: The description of D$
̸=x∗ (for γ∗ = m[i∗])

Circuit Dreal
̸=x∗ [F

′, pe.dk′, m, γ∗, x∗, y∗]

Constants: A (possibly punctured) PRF key F′, a (possibly punctured) PE decryption key pe.dk′, a message m, a bit
γ∗, and strings x∗ ∈ {0, 1}ℓin , y∗ ∈ {0, 1}ℓout .

Input: A string x ∈ {0, 1}ℓin .

1. If x = x∗, output y∗.

2. Compute d← PE.Dec(pe.dk′, x).
3. If d ̸= ⊥, do the following

(a) Parse d = s∥i∥γ, where s ∈ {0, 1}ℓ, i ∈ [ℓm], and γ ∈ {0, 1}.
(b) If m[i] ̸= γ, output PRG(s). Otherwise, output F′(x).

4. Otherwise, output F′(x).

Figure 8: The description of Dreal
̸=x∗ (for γ∗ = 1−m[i∗])

Hyb ̸=1 : This is the same as Hyb0 except that if γ1 ̸= m[i∗], we generate D̃ ← iO(Dreal
̸=x1

[F, pe.dk ̸=x1
, m, γ1, x1, y1]),

where Dreal
̸=x∗ is described in Figure 8 and y1 := PRG(s∗). We use a punctured decryption key

pe.dk ̸=x1
instead of pe.dk. However, we do not use a puncture key for F at this point.

Hyb ̸=2 : This is the same as Hyb ̸=1 except that

• x0 ← {0, 1}ℓin ,
• D̃ ← iO(Dreal

̸=x0
[F, pe.dk ̸=x0

, m, γ1, x0, y1]).

That is, we replace x∗ = x1 and pe.dk′ = pe.dk ̸=x1
with x∗ = x0 and pe.dk′ = pe.dk ̸=x0

,
respectively. We also rename γ1 ← {0, 1} into γ0 ← {0, 1} (these distributions are the same).

Hyb ̸=3 : This is the same as Hyb ̸=2 except that we use y0 ← {0, 1}ℓout instead of y1 := PRG(s∗).

Hyb ̸=4 : This is the same as Hyb ̸=3 except that we use F ̸=x0 instead of F.

Hyb ̸=5 : This is the same as Hyb ̸=4 except that we use y0 := F(x0) instead of y0 ← {0, 1}ℓout .

Hyb ̸=6 : This is the same as Hyb ̸=5 except that we use F instead of F ̸=x0 .

We describe the high-level overview of hybrid games for γ∗ ̸= m[i∗] in Figures 9 and 11.
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End of case analysis: The two case analyses end. Remaining transitions are the reverse of transitions
from Hyb0 to Hyb=1 or Hyb ̸=1 .

Hyb=4 and Hyb ̸=7 : These are the same as Hyb=3 and Hyb ̸=6 , respectively except that

• if γ0 = m[i∗], we use D̃ ← iO(D[F, pe.dk, m]) instead of D̃ ← iO(D$
̸=x0

[F, pe.dk ̸=x0
, m, γ0, x0, y]),

where D$
̸=x∗ is described in Figure 7 and y := F(x0).

• if γ0 ̸= m[i∗], we use D̃ ← iO(D[F, pe.dk, m]) instead of D̃ ← iO(Dreal
̸=x0

[F, pe.dk ̸=x0
, m, γ0, x0, y0]),

where Dreal
̸=x∗ is described in Figure 8 and y0 := F(x0).

The each last hybrid is the same as the case b = 0 in Exppub-sim-mdd
i∗,A ,PRFio

(λ). That is, A is given
C̃ = iO(D[F, pe.dk, m]) and (γ0, x0, y0)← Dreal,i∗ . Recall that x0 ← {0, 1}ℓin and

• y0 ← {0, 1}ℓout if γ0 = m[i∗] (see Hyb=3 ),

• y0 := F(x0) if γ0 ̸= m[i∗] (see Hyb ̸=5 ).

prfk Ochall security

γ1 = m[i∗] γ1 ̸= m[i∗]

Hyb0 (F, pe.dk) iO(D) iO(D)

Hyb=1 (F, pe.dk ̸=x1
) iO(D$

̸=x1
) N/A IO & PE p-Cor.

Hyb ̸=1 (F, pe.dk ̸=x1
) N/A iO(Dreal

̸=x1
) IO & PE p-Cor.

Figure 9: High-level overview of hybrid games from Hyb0 to Hyb=1 and Hyb ̸=1 . Note that in these hybrid games,
(γ1, x1, y1) ← Sim(xk, τ, i∗) and x∗ = x1. We use pe.dk ̸=x1

in D$
̸=x1

and Dreal
̸=x1

, but F is not punctured yet. In
“security” column, PE p-Cor. means PE punctured correctness.

γ∗ = m[i]

x∗ (x1/x0) y∗ (y1/y0) y Ochall prfk security

Hyb=1 PE.Enc(pi∗) PRG(s∗) F(x1) iO(D$
̸=x1

[x1 7→ ȳ]) (F, pe.dk ̸=x1
)

Hyb=2 x0 ← $ PRG(s∗) F(x0) iO(D$
̸=x0

[x0 7→ ȳ]) (F, pe.dk ̸=x0
) S-CPR

Hyb=3 $ y0 ← $ F(x0) iO(D$
̸=x0

[x0 7→ ȳ]) (F, pe.dk ̸=x0
) PRG

Hyb=4 $ $ F(x0) iO(D) (F, pe.dk) IO & PE p-Cor.

Figure 10: High-level overview of hybrid games from Hyb=1 to Hyb=4 . Here, pi∗ := (s∗∥i∗∥γ1) and x1 ←
PE.Enc(pe.ek, pi∗). Note that y is an output of D$

̸=x∗ for input x∗ for γ1 = m[i∗] case. D$
̸=x∗ [x

∗ 7→ y]

means D$
̸=x∗(x∗) outputs the hard-coded value y. In “security” column, S-CPR means the Strong Ciphertext

PseudoRandomness of PE.

We prove the lemma by proving the following propositions.

The case γ∗ = m[i]. We first prove propositions for the case γ∗ = m[i].

Proposition 7.7. If iO is a secure IO and PE satisfies punctured correctness, it holds that

|Pr[Hyb0 = 1]− Pr[Hyb=1 = 1]| ≤ negl(λ).
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γ∗ ̸= m[i]

x∗ (x1/x0) y∗ (y1/y0) Ochall prfk security

Hyb ̸=1 PE.Enc(pi∗) PRG(s∗) iO(Dreal
̸=x1

[x1 7→ y1]) (F, pe.dk ̸=x1
)

Hyb ̸=2 x0 ← $ PRG(s∗) iO(Dreal
̸=x0

[x0 7→ y1]) (F, pe.dk ̸=x0
) S-CPR

Hyb ̸=3 $ y0 ← $ iO(Dreal
̸=x0

[x0 7→ y0]) (F, pe.dk ̸=x0
) PRG

Hyb ̸=4 $ $ iO(Dreal
̸=x0

[x0 7→ y0]) (F ̸=x0 , pe.dk ̸=x0
) IO & PPRF p-Cor.

Hyb ̸=5 $ F(x0) iO(Dreal
̸=x0

[x0 7→ y0]) (F ̸=x0 , pe.dk ̸=x0
) PPRF

Hyb ̸=6 $ F(x0) iO(Dreal
̸=x0

[x0 7→ y0]) (F, pe.dk ̸=x0
) IO & PPRF p-Cor.

Hyb ̸=7 $ F(x0) iO(D) (F, pe.dk) IO & PE p-Cor.

Figure 11: High-level overview of hybrid games from Hyb ̸=1 to Hyb ̸=7 . Here, pi∗ := (s∗∥i∗∥γ1) and x1 ←
PE.Enc(pe.ek, pi∗). Dreal

̸=x∗ [x
∗ 7→ y∗] means Dreal

̸=x∗(x∗) outputs the hard-coded value y∗. In “security” column,
S-CPR and PPRF p-Cor. mean the Strong Ciphertext PseudoRandomness of PE and punctured correctness of PPRF,
respectively.

Proof of Proposition 7.7. The difference between the two games is that D$
̸=x1

[F, pe.dk ̸=x1
, m, γ, x1, y] is

used for Ochall instead of D[F, pe.dk, m] in the case where γ1 = m[i∗]. These two circuits are the same
except that

• for input x1, D$
̸=x1

directly outputs y,

due to the punctured correctness of PE. Thus, if the following hold, D$
̸=x1

and D are functionally
equivalent:

• D(x1) outputs y = F(x1) when γ1 = m[i∗].

This holds since x1 ← PE.Enc(pe.ek, s∗∥i∗∥γ1) and D(x1) runs the item (b) in Figure 6, but γ1 ̸= m[i∗]
does not hold in this case.

Thus, D$
̸=x1

and D are functionally equivalent and the proposition holds due to IO security.

Proposition 7.8. If PE satisfies strong ciphertext pseudorandomness, it holds that

|Pr[Hyb=1 = 1]− Pr[Hyb=2 = 1]| ≤ negl(λ).

Proof of Proposition 7.8. We construct an algorithm B for strong ciphertext pseudorandomness by using
A . B generates F← PRF.Gen(1λ), and chooses s∗ ← {0, 1}ℓ and γ1 ← {0, 1}. B sends s∗∥i∗∥γ1 to
the challenger. The challenger returns (x∗, pe.ek, pe.dk ̸=x∗) to B.

Then, B passes pp := ⊥ and xk := ⊥ to A . B also computes y := F(x∗).

Challenge: When A sends a challenge query m, B does the following

• Construct D$
̸=x∗ [F, pe.dk ̸=x∗ , m, γ1, x∗, y] as described in Figure 7.

• Return C̃ := iO(D$
̸=x∗ [F, pe.dk ̸=x∗ , m, γ1, x∗, y]) and τ := pe.ek to A .

After finishing A’s challenge query, B computes y∗ := PRG(s∗) and sends (γ1, x∗, y∗) to A . Finally,
when A terminates with output coin′, B outputs coin′ and terminates. B perfectly simulates

• Hyb=1 if x∗ ← PE.Enc(pe.ek, s∗∥i∗∥γ1),

• Hyb=2 if x∗ ← {0, 1}ℓin .
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Thus, we see that the proposition holds.

Proposition 7.9. If PRG is a secure PRG, it holds that |Pr[Hyb=2 = 1]− Pr[Hyb=3 = 1]| ≤ negl(λ).

Proof of Proposition 7.9. The difference between the two games is that y∗ in the target triple (γ0, x0, y∗)
is PRG(s∗) or random in the case where γ0 = m[i]. Recall that we rename γ1 ← {0, 1} to γ0 ← {0, 1}.
Note that we randomly choose x0 ← {0, 1}ℓin and use F and pe.dk ̸=x0

in these games. Thus, we can
apply pseudorandomness of PRG since the value s∗ is never used anywhere else.

The case where γ∗ ̸= m[i]. Next, we prove propositions for the case where γ∗ ̸= m[i].

Proposition 7.10. If iO is a secure IO and PE satisfies punctured correctness, it holds that∣∣∣Pr[Hyb0 = 1]− Pr
[
Hyb ̸=1 = 1

]∣∣∣ ≤ negl(λ).

Proof of Proposition 7.10. The difference between the two games is that Dreal
̸=x1

[F, pe.dk ̸=x1
, m, γ, x1, y1]

is used for the challenge query instead of D[F, pe.dk, m] in the case where γ1 ̸= m[i∗]. These two circuits
are the same except that

• for input x1, Dreal
̸=x1

directly outputs the hard-wired value y1 = PRG(s∗),

due to the punctured correctness of PE. Thus, if the following hold, Dreal
̸=x1

and D are functionally
equivalent:

• D(x1) outputs y1 = PRG(s∗) when γ1 ̸= m[i∗],

This holds since x1 ← PE.Enc(pe.ek, s∗∥i∗∥γ1), D(x1) runs the item (b) in Figure 6, and γ1 ̸= m[i∗]
holds in this case. Thus, Dreal

̸=x1
and D are functionally equivalent and the proposition holds due to IO

security.

Proposition 7.11. If PE satisfies strong pseudorandom ciphertext, it holds that∣∣∣Pr
[
Hyb ̸=1 = 1

]
− Pr

[
Hyb ̸=2 = 1

]∣∣∣ ≤ negl(λ).

Proof of Proposition 7.11. We construct an algorithm B for strong ciphertext pseudorandomness by using
a distinguisher A . B generates F← PRF.Gen(1λ) and chooses s∗ ← {0, 1}ℓ and γ1 ← {0, 1}. B sends
s∗∥i∗∥γ1 to the challenger. The challenger returns (x∗, pe.ek, pe.dk ̸=x∗) to B.

Then, B passes pp := ⊥ and xk := ⊥ to A . B also computes y∗ := PRG(s∗).

Challenge: When A sends a challenge query m, B does the following

• Construct Dreal
̸=x∗ [F, pe.dk ̸=x∗ , m, γ1, x∗, y∗] where y∗ := PRG(s∗) as described in Figure 8.

• Return C̃ := iO(Dreal
̸=x∗) and τ := pe.ek to A .

After finishing A’s challenge, B sends (γ1, x∗, y∗) to A . Finally, when A terminates with output coin′,
B outputs coin′ and terminates.

B perfectly simulates

• Hyb ̸=1 if x∗ ← PE.Enc(pe.ek, s∗∥i∗∥γ1),

• Hyb ̸=2 if x∗ ← {0, 1}ℓin .

Thus, we see that the proposition holds.

Proposition 7.12. If PRG is a secure PRG, it holds that
∣∣∣Pr

[
Hyb ̸=2 = 1

]
− Pr

[
Hyb ̸=3 = 1

]∣∣∣ ≤ negl(λ).
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Proof of Proposition 7.12. The difference between the two games is that y∗ in the target triple (γ0, x0, y∗)
is PRG(s∗) or random in the case where γ0 ̸= m[i]. Recall that we rename γ1 ← {0, 1} to γ0 ← {0, 1}.
Note that we randomly choose x0 ← {0, 1}ℓin and use F and pe.dk ̸=x0

in these games. Thus, we can
apply pseudorandomness of PRG since the value s∗ is never used anywhere else.

Proposition 7.13. If iO is a secure IO and F satisfies punctured correctness, it holds that∣∣∣Pr
[
Hyb ̸=3 = 1

]
− Pr

[
Hyb ̸=4 = 1

]∣∣∣ ≤ negl(λ).

Proof of Proposition 7.13. The difference between the two games is that Dreal
̸=x0

[F ̸=x0 , pe.dk ̸=x0
, m, γ0, x0, y0]

is used for the challenge query instead of Dreal
̸=x0

[F, pe.dk ̸=x0
, m, γ0, x0, y0] in the case where γ0 ̸= m[i∗].

These two circuits are the same except that we use F ̸=x0 instead of F. Those two circuits above
are functionally equivalent since F ̸=x0(·) is functionally equivalent to F except for x0 and both
Dreal
̸=x0

[F ̸=x0 , pe.dk ̸=x0
, m, γ0, x0, y0](x0) and Dreal

̸=x0
[F, pe.dk ̸=x0

, m, γ0, x0, y0](x0) directly outputs y0

by the description of Dreal
̸=x0

. Note that Dreal
̸=x0

does not have any “if branch” condition that uses F or F ̸=x0 .
Thus, the proposition holds due to IO security.

Proposition 7.14. If F satisfies punctured pseudorandomness, it holds that∣∣∣Pr
[
Hyb ̸=4 = 1

]
− Pr

[
Hyb ̸=5 = 1

]∣∣∣ ≤ negl(λ).

Proof of Proposition 7.14. We construct an algorithm B that breaks the pseudorandomness at punctured
points of F by using A .

B generates (pe.ek, pe.dk) ← PE.Gen(1λ), chooses x0 ← {0, 1}ℓin and γ0 ← {0, 1}, sends x0
as the challenge to its challenger of F, and receives F ̸=x0 and y∗. Here x0 does not rely on m, so
we can generate x0 before m is fixed. B sends pp := ⊥ and xk := ⊥ to A . B also computes
pe.dk ̸=x0

← PE.Puncture(pe.dk, x0).

Challenge: For query m, B can simulate the target marked circuit C̃ = iO(Dreal
̸=x0

[F ̸=x0 , pe.dk ̸=x0
, m, γ0, x0, y∗])

by using pe.dk ̸=x0
, F ̸=x0 , y∗, and the public tag τ = pe.ek.

After finishing A’s challenge query, B sends (γ0, x0, y∗) to A . Finally, when A terminates with output
coin′, B outputs coin′ and terminates.
B perfectly simulates

• Hyb ̸=4 if y∗ ← {0, 1}ℓout ,

• Hyb ̸=5 if y∗ := F(x0).

The punctured pseudorandomness of F immediately implies this proposition.

Proposition 7.15. If iO is a secure IO and F satisfies punctured correctness, it holds that∣∣∣Pr
[
Hyb ̸=5 = 1

]
− Pr

[
Hyb ̸=6 = 1

]∣∣∣ ≤ negl(λ).

Proof of Proposition 7.15. The difference between the two games is that Dreal
̸=x0

[F, pe.dk ̸=x0
, m, γ0, x0, y0]

is used for the challegne query instead of Dreal
̸=x0

[F ̸=x0 , pe.dk ̸=x0
, m, γ0, x0, y0] in the case where γ0 ̸= m[i∗].

These two circuits are the same except that we use F instead of F ̸=x0 . This proof is the same as that
of Proposition 7.14 (in a reverse manner). Thus, we omit it.
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End of case analyses. We complete the two case analyses.

Proposition 7.16. If iO is a secure IO, F satisfies punctured correctness, and PE satisfies punctured correct-
ness, it holds that |Pr[Hyb=3 = 1]− Pr[Hyb=4 = 1]| ≤ negl(λ) and

∣∣∣Pr
[
Hyb ̸=6 = 1

]
− Pr

[
Hyb ̸=7 = 1

]∣∣∣ ≤
negl(λ).

Proof. This proof is the same as that of Proposition 7.7 and Proposition 7.10, respectively (in a reverse
manner). Thus, we omit them.

We complete the proof of Theorem 7.6.

8 Putting Pieces Altogether for PRFs

Privately extractable watermarking PRF. We summarize how to obtain our privately extractable
watermarking PRF.

By Theorems 2.25, 2.28, 2.31, 6.1 and 6.2, we obtain an extraction-less watermarking with private
simulation from the QLWE assumption. By combining this with Theorems 4.6 and 5.2, we obtain the
following theorem.

Theorem 8.1. If the QLWE assumption holds, there exists a privately extractable watermarking PRF.

Publicly extractable watermarking PRF. We summarize how to obtain our publicly extractable
watermarking PRF.

By Theorems 2.18, 2.22, 7.5 and 7.6, we obtain an extraction-less watermarking with public simulation
from IO and the QLWE assumption since OWFs can be instantiated with the QLWE assumption. By
combining this with Theorem 5.3, we obtain a publicly extractable watermarking PRF from IO and the
QLWE assumption. Thus, we obtain the following theorem.

Theorem 8.2. If there exists a secure IO and the QLWE assumption holds, there exists a publicly
extractable watermarking PRF.

9 Watermarking PKE against Quantum Adversaries

We can apply our framework using extraction-less watermarking to the PKE setting.

9.1 Syntax and Security Notions

We introduce definitions for watermarking PKE against quantum adversaries in this section.

Definition 9.1 (Watermarking PKE). A watermarking PKE WMPKE for the message15 spaceM :=
{0, 1}ℓm and plaintext space PT := {0, 1}ℓpt is a tuple of five algorithms (Gen, Enc, Dec, Mark, Extract).

Gen(1λ)→ (pk, sk): The key generation algorithm takes as input the security parameter 1λ and outputs
a public key pk and a secret key sk.

Enc(pk, x)→ ct: The encryption algorithm takes as input a public key pk and a plaintext x and outputs
a ciphertext ct.

Dec(sk, ct)→ x: The decryption algorithm takes as input a secret key sk and a ciphertext ct and outputs
a plaintext x.

15We use the term “message” for watermarking messages and “plaintext” for encryption messages in this work.
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Mark(sk, m)→ C̃: The mark algorithm takes as input the public key pk and a message m ∈ {0, 1}ℓm ,
and outputs a marked evaluation circuit C̃.

Extract(pk, x0, x1, C ′, ϵ)→ m′: The extraction algorithm takes as input a public key pk, a pair of
plaintexts (x0, x1), a quantum circuit with classical inputs and outputs C ′ = (q , U), and a
parameter ϵ, and outputs m′ where m′ ∈ {0, 1}ℓm ∪ {unmarked}.

Decryption Correctness: For any plaintext x ∈ PT , it holds that

Pr

C̃(ct) = Dec(sk, ct) = x

∣∣∣∣∣∣
(pk, sk)← Gen(1λ)

C̃ ← Mark(sk, m)
ct← Enc(pk, x)

 ≥ 1− negl(λ).

Semantic Security: For any two plaintexts x0, x1 ∈ PT ,

(pk, Enc(pk, x0)) and (pk, Enc(pk, x1))

are computationally indistinguishable, where (pk, sk)← Gen(1λ).

We define unremovability for watermarking PKEs against quantum adversaries.

Definition 9.2 (Unremovability). Let ϵ ≥ 0. We define the game Expturmv
A ,WMPRF(λ, ϵ) as follows.

1. The challenger generates (pk, sk) ← Gen(1λ) and gives pk to the adversary A . A send m ∈
{0, 1}ℓm to the challenger. The challenger generates C̃ ← Mark(sk, m), and sends C̃ to A .

2. The adversary outputs two plaintexts (x0, x1) and a “pirate” quantum circuit CA = (q , U), where
CA is a quantum program with classical inputs and outputs whose first register (i.e., output register)
is C2 and U is a compact classical description of {Uct}ct.

Let D be the following distribution.

D: Generate b and ct← Enc(pk, xb). Output (b, ct).

We also let P = (Pb,ct, Qb,ct)b,ct be a collection of binary outcome projective measurements, where

Pb,ct = U†
ct |b⟩ ⟨b|Uct and Qb,ct = I − Pb,ct.

Moreover, we letMD = (PD, QD) be binary outcome POVMs, where

PD = ∑
r∈R

1
|R|PD(r) and QD = I − PD.

We consider the following events.

Live: When applying the measurement ProjImp(MD) to q , we obtain a value p such that p ≥ 1
2 + ϵ.

GoodExt: When Computing m′ ← Extract(pk, CA, ϵ), it holds that m′ ̸= unmarked.

BadExt: When Computing m′ ← Extract(pk, CA, ϵ), it holds that m′ /∈ {m, unmarked}.

We say that WMPKE satisfies unremovability if for every ϵ > 0 and QPT A , we have

Pr[BadExt] ≤ negl(λ) and Pr[GoodExt] ≥ Pr[Live]− negl(λ).

Intuitively, (Pb,ct, Qb,ct) is a projective measurement that feeds ct to CA and checks whether the
outcome is b or not (and then uncomputes). Then,MD can be seen as POVMs that results in 0 with the
probability that CA can correctly guess b from ct = Enc(pk, xb) for (b, ct) generated randomly from D.
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9.2 Definition of Extraction-Less Watermarking PKE

We introduce the notion of extraction-less watermarking PKE as an intermediate primitive towards
watermarking PKE secure against quantum adversaries. It is a natural PKE version of extraction-less
watermarking PRFs in Section 4.

Definition 9.3 (Extraction-Less Watermarking PKE). An extraction-less watermarking PKE WMPKE
for the message space {0, 1}ℓm and the plaintext spacePT is a tuple of five algorithms (Gen, Enc, Dec, Mark, Sim),
where the first four algorithms have the same input/output behavior as those defined in Definition 9.1 and
Sim has the following input/output behavior.

Sim(pk, i, x0, x1)→ (γ, ct): The simulation algorithm Sim takes as input the public key pk, an index i,
and two plaintexts x0 and x1, and outputs a tuple (γ, ct).

Decryption Correctness and Semantic Security: These are defined in exactly the same way the corre-
sponding notions for watermarking PKE defined in Definition 9.1.

Simulatability for mark-dependent distributions (SIM-MDD Ssecurity). We introduce the security
notion for extraction-less watermarking PKE that we call simulatability for mark-dependent distributions.
Let D and Drev be the following distributions, where x0 and x1 are some fixed plaintexts.

D: Generate b← {0, 1} and ct← Enc(pk, xb). Output (b, ct).

Drev: Generate (b, ct)← D. Output (1⊕ b, ct).

SIM-MDD security is a security notion that guarantees that an adversary given C̃ ← Mark(pk, m) cannot
distinguish an output of Sim(pk, i) from that of D if m[i] = 0 and from that of Drev if m[i] = 1.

Definition 9.4 (SIM-MDD Security). To define SIM-MDD security, we define the game Exptsim-mdd
i∗,A ,WMPKE(λ)

as follows, where i∗ ∈ [ℓm].

1. The challenger generates (pk, sk) ← Gen(1λ) and sends pk to A . A sends m ∈ {0, 1}ℓm to the
challenger.

2. The challenger generates C̃ ← Mark(sk, m) and sends it to A . A sends (x0, x1) to the challenger.

3. Let Dreal,i∗ be the following distribution. Note that Dreal,i∗ is identical with D if m[i∗] = 0 and
with Drev if m[i∗] = 1.

Dreal,i∗: Generate γ← {0, 1} and x ← Dom. Then, generate ct← Enc(pk, xγ⊕m[i∗]). Output
(γ, ct).

The challenger generates coin← {0, 1}. If coin = 0, the challenger samples (γ, ct)← Dreal,i∗ .
If coin = 1, the challenger generates (γ, ct)← Sim(pk, i∗, x0, x1). The challenger sends (γ, ct)
to A .

4. When A terminates with output coin′, the challenger outputs 1 if coin = coin′ and 0 otherwise.

We say that WMPKE is SIM-MDD secure if for every i∗ ∈ [ℓm] and QPT A , we have

Advsim-mdd
i∗,A ,WMPKE(λ) = 2

∣∣∣∣Pr
[
Exptsim-mdd

i∗,A ,WMPKE(λ) = 1
]
− 1

2

∣∣∣∣ = negl(λ).

9.3 Extraction-Less Watermarking PKE from CPFE

We present an extraction-less watermarking PKE ELWMPKE = (Gen, Enc, Dec, Mark, Sim) whose mes-
sage space is {0, 1}ℓm . We use a CPFE scheme CPFE = (CPFE.Setup, CPFE.KG, CPFE.Enc, CPFE.Dec)
as a building block (See Definition 2.32).
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Gen(1λ):

• Generate (MPK, MSK)← CPFE.Setup(1λ).
• Output pk := MPK and sk := MSK.

Enc(pk, x):

• Parse pk = MPK.
• Let C[x] be a constant circuit that outputs x on any input. C is padded so that it has the same

size as the circuit C∗ appeared in the security proof.
• Output ct← CPFE.Enc(MPK, C[x]).

Dec(sk, ct):

• Parse sk = MSK.
• Generate sk0ℓm ← CPFE.KG(MSK, 0ℓm).
• Output x ← CPFE.Dec(sk0ℓm , ct).

Mark(sk, m):

• Parse sk = MSK.
• Output skm ← CPFE.KG(MSK, m).

Sim(pk, i, x0, x1):

• Parse pk = MPK.
• Choose γ← {0, 1}.
• Let C∗[γ, i, x0, x1] be the circuit that takes m ∈ {0, 1}ℓm as an input and outputs xγ⊕m[i].
• Compute ct← CPFE.Enc(MPK, C∗[γ, i, x0, x1]).
• Output (γ, ct).

The decryption correctness of ELWMPKE follows from that of CPFE. We also have the following
theorems.

Theorem 9.5. If CPFE is 1-bounded secure has decryption correctness, then ELWMPKE is an extraction-
less watermarking PKE satisfying semantic security and decryption correctness.

Proof of Theorem 9.5. It is easy to see that ELWMPKE has satisfies decryption correctness by the
decryption correctness of CPFE and the definition of circuit C[x].

Let A be an adversary that attacks the semantic security of ELWMPKE. We construct B that attacks
the 1-bounded security of CPFE using A .

1. Given MPK, B sends it to A and obtains (x0, x1) such that |x0| = |x1| from A . B does not send
any key query to its challenger.

2. B outputs C[x0] and C[x1] as the tuple of challenge circuits. This is a valid tuple since B does not
send any key query and |C[x0]| = |C[x1]|. B obtains ct from the challenger and forwards it to A .

3. When A terminates with output coin′, B outputs coin′.

B simulates Enc(pk, xcoin) where coin is B’s challenge bit. Clearly, we have that Adv1-bounded
B,CPFE (λ) is

the same as the advantage of A .
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Theorem 9.6. If CPFE is 1-bounded secure, then ELWMPKE is an extraction-less watermarking PKE
satisfying SIM-MDD security.

Proof of Theorem 9.6. Let A be an adversary that attacks the SIM-MDD security of ELWMPKE. We
construct B that attacks the 1-bounded security of CPFE using A .

1. Given MPK, B sends it to A and obtains m from A . B sends m to its challenger and obtains skm,
and forwards it to A . A outputs (x0, x1).

2. B generates γ ← {0, 1} and outputs C[xγ⊕m[i∗]] and C∗[γ, i∗, x0, x1] as the tuple of challenge
circuits. B obtains ct from the challenger and forwards it to A .

3. When A terminates with output coin′, B outputs coin′.

B simulates Exptsim-mdd
i∗,A ,ELWMPKE(λ) where A’s challenge bit is B’s challenge bit. Clearly, we have

Advsim-mdd
i∗,A ,WMPKE(λ) = Adv1-bounded

A ,CPFE (λ) = negl(λ).

9.4 Watermarking PKE from Extraction-Less Watermarking PKE

We show how to construct watermarking PKE secure against quantum adversaries from extraction-less
watermarking PKE.

Let ELWMPKE = (Gen, Enc, Dec, Mark, Sim) be an extraction-less watermarking PKE scheme
whose message space is {0, 1}ℓm+1. We construct a watermarking PKE scheme WMPKE = (WM.Gen, WM.Enc,
WM.Dec, WM.Mark, Extract) whose message space is {0, 1}ℓm as follows. We use Gen, Enc, and Dec
as WM.Gen, WM.Enc, and WM.Dec, respectively. Also, we construct WM.Mark and Extract as follows.

WM.Mark(sk, m):

• Output C̃ ← Mark(sk, m∥0).

Extract(pk, x0, x1, C , ϵ):

• Let ϵ′ = ϵ/4(ℓm + 1) and δ′ = 2−λ.
• Parse (q , U)← C .
• Let P be defined in the same way as that in Definition 9.2 and Di be the following distribution

for every i ∈ [ℓm + 1].

Di: Output (γ, ct)← Sim(pk, i, x0, x1).

• Compute p̃ℓm+1 ← API ϵ′,δ′
P ,Dℓm+1

(q). If p̃ℓm+1 < 1
2 + ϵ− 4ϵ′, return unmarked. Otherwise,

letting q0 be the post-measurement state, go to the next step.
• For all i ∈ [ℓm], do the following.

1. Compute p̃i ← API ϵ′,δ′
P ,Di

(qi−1). Let qi be the post-measurement state.
2. If p̃i > 1

2 + ϵ − 4(i + 1)ϵ′, set m′i = 0. If p̃i < 1
2 − ϵ + 4(i + 1)ϵ′, set m′i = 1.

Otherwise, exit the loop and output m′ = 0ℓm .

• Output m′ = m′1∥ · · · ∥m′ℓm
.

The correctness and the semantic security of WMPKE immediately follows from those of ELWMPKE.
We also have the following theorems.

Theorem 9.7. If ELWMPKE is an extraction-less watermarking PKE that satisfies SIM-MDD security,
then WMPKE is a watermarking PKE.
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Proof of Theorem 9.7. Let ϵ > 0. Let A be a QPT adversary attacking the unremovability of WMPKE.
The description of Expturmv

A ,WMPKE(λ, ϵ) is as follows.

1. The challenger generates (pk, sk) ← Gen(1λ) and gives pk to the adversary A . A sends m ∈
{0, 1}ℓm to the challenger. The challenger generates C̃ ← Mark(sk, m∥0), and sends C̃ to A .

2. A outputs a quantum circuit CA = (q , U).

We define D, P , MD, and the three events Live, GoodExt, and BadExt in the same way as
Definition 9.2.

The proof of Pr[GoodExt] ≥ Pr[Live]− negl(λ). Extract outputs unmarked if and only if p̃ℓ+1 <
1
2 + ϵ− 4ϵ′, that is we have Pr[GoodExt] = Pr

[
p̃ℓ+1 ≥ 1

2 + ϵ− 4ϵ′
]
. Let p the probability obtained by

applying ProjImp(MD) to q . Then, we have Pr[Live] = Pr
[
p ≥ 1

2 + ϵ
]
. Let p̃ be the outcome obtained

if we apply API ϵ′,δ′
P ,D to q . From the property of API , we have

Pr[Live] = Pr
[

p ≥ 1
2
+ ϵ

]
≤ Pr

[
p̃ ≥ 1

2
+ ϵ− ϵ′

]
+ negl(λ).

D and Dℓm+1 are computationally indistinguishable from the SIM-MDD security of ELWMPKE since
outputs of Sim(pk, i, x0, x1) is indistinguishable from those of D if m[i] = 0. Then, from Theorem 2.12,
we have

Pr
[

p̃ ≥ 1
2
+ ϵ− ϵ′

]
≤ Pr

[
p̃ℓ+1 ≥

1
2
+ ϵ− 4ϵ′

]
+ negl(λ) = Pr[GoodExt] + negl(λ).

By combining the above two equations, we obtain Pr[GoodExt] ≥ Pr[Live]− negl(λ).

The proof of Pr[BadExt] ≤ negl(λ). We define the event BadExti as follows for every i ∈ [ℓm].

BadExti: When Running Extract(pk, x0, x1, CA, ϵ), the following conditions hold.

• p̃ℓ+1 ≥ 1
2 + ϵ− 4ϵ′ holds.

• m′j = mj holds for every j ∈ [i− 1].

• Extract exits the i-th loop or m′i ̸= mi holds.

Then, we have Pr[BadExt] ≤ ∑i∈[ℓ] Pr[BadExti]. Below, we estimate Pr[BadExti].
We first consider the case of mi−1 = 0 and mi = 0. Assume m′i−1 = mi−1 = 0 holds. Then, we

have p̃i−1 > 1
2 + ϵ− 4iϵ′. Let p̃′i−1 ← API ϵ′,δ′

P ,Di−1
(qi−1). From, the almost-projective property of API ,

we have

Pr
[

p̃′i−1 >
1
2
+ ϵ− 4iϵ′ − ϵ′

]
≥ 1− δ′.

When mi−1 = 0 and mi = 0, Di−1 and Di are computationally indistinguishable since both of them
are computationally indistinguishable from D by the SIM-MDD security of ELWMPKE. Thus, from
Theorem 2.12, we have

1− δ′ ≤ Pr
[

p̃′i−1 >
1
2
+ ϵ− (4i + 1)ϵ′

]
≤ Pr

[
p̃i >

1
2
+ ϵ− 4(i + 1)ϵ′

]
+ negl(λ).

This means that Pr[BadExti] = negl(λ) in this case.
Next, we consider the case of mi−1 = 0 and mi = 1. Assume m′i−1 = mi−1 = 0 holds. Then, we

have p̃i−1 > 1
2 + ϵ− 4iϵ′. We then define an additional distribution Drev

i−1 as follows.
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Drev
i−1: Generate (γ, ct)← Sim(pk, i− 1, x0, x1). Output (1⊕ γ, ct).

That is, the first bit of the output is flipped from Di−1. Then, for any random coin r, we have
(PDrev

i−1(r)
, QDrev

i−1(r)
) = (QDi−1(r), PDi−1(r)). This is because we have Qb,ct = I − Pb,ct = P1⊕b,ct for

any tuple (b, ct). Therefore, API ϵ′,δ′
P ,Drev

i−1
is exactly the same process as API ϵ′,δ′

Prev,Di−1
, where Prev =

(Qb,ct, Pb,ct)b,ct. Let p̃′i−1 ← API ϵ′,δ′
P ,Drev

i−1
(qi−1). From, the reverse-almost-projective property of API , we

have

Pr
[

p̃′i−1 <
1
2
− ϵ + 4iϵ′ + ϵ′

]
≥ 1− δ′.

When mi−1 = 0 and mi = 1, Drev
i−1 and Di are computationally indistinguishable since both of them are

computationally indistinguishable from the following distribution Drev by the SIM-MDD security of
ELWMPKE.

Drev: Generate (γ, ct)← D. Output (1⊕ γ, ct).

Thus, from Theorem 2.12, we have

1− δ′ ≤ Pr
[

p̃′i−1 <
1
2
− ϵ + (4i + 1)ϵ′

]
≤ Pr

[
p̃i <

1
2
− ϵ + 4(i + 1)ϵ′

]
+ negl(λ).

This means that Pr[BadExti] = negl(λ) also in this case.
Similarly, we can prove that Pr[BadExti] = negl(λ) holds in the case of (mi−1, mi) = (1, 0) and

(mi−1, mi) = (1, 1).
Overall, we see that Pr[BadExt] = negl(λ) holds in all cases.
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A Achieving QSIM-MDD from SIM-MDD

We prove Theorem 4.6, that is, we show that we can transform extraction-less watermarking PRF
satisfying SIM-MDD security with private simulation into one satisfying QSIM-MDD security with
private simulation, by using a QPRF. Before the proof, we introduce semi-classical one-way to hiding
(O2H) lemma.

A.1 Semi-Classical One-Way to Hiding (O2H) Lemma

We recall a few lemmas.

Definition A.1 (Punctured oracle). Let F : X → Y be any function, and S ⊂ X be a set. The oracle
F \ S (“F punctured by S”) takes as input a value x ∈ X. It first computes whether x ∈ S into an
auxiliary register and measures it. Then it computes F(x) and returns the result. Let Find be the event
that any of the measurements returns 1.

Lemma A.2 (Semi-classical O2H [AHU19, Theorem 1]). Let G, H : X → Y be random functions, z
be a random value, and S ⊆ X be a random set such that G(x) = H(x) for every x /∈ S. The tuple
(G, H, S, z) may have arbitrary joint distribution. Furthermore, let A be a quantum oracle algorithm.
Let Ev be any classical event. Then we have∣∣∣Pr

[
Ev : A |H⟩(z)

]
− Pr

[
Ev : A |G⟩(z)

]∣∣∣ ≤ 2
√
(q + 1) · Pr

[
Find : A |H\S⟩(z)

]
.

Lemma A.3 (Search in semi-classical oracle [AHU19, Theorem 2]). Let H : X → Y be a random
function, let z be a random value, and let S ⊂ X be a random set. (H, S, z) may have arbitrary joint
distribution. Let A be a quantum oracle algorithm. If for each x ∈ X, Pr[x ∈ S] ≤ ϵ (conditioned on H
and z), then we have

Pr
[
Find : A |H\S⟩(z)

]
≤ 4qϵ ,

where q is the number of queries to H by A .
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Note that the above lemma is originally introduced in [AHU19], but we use a variant that is closer to
Lemma 4 in [BHH+19].

A.2 Proof

Construction. We start with the construction. Let ELWMPRF = (Setup, Gen, Eval, Mark, Sim) be
an extraction-less watermarking PRF scheme satisfying SIM-MDD security with private simulation.
We also let the message space of ELWMPRF is {0, 1}ℓm . Let PRF be a QPRF with domain {0, 1}λ

and rangeRSim, which is the randomness space of Sim. We construct an extraction-less watermarking
PRF scheme QELWMPRF = (QEL.Setup, QEL.Gen, QEL.Eval, QEL.Mark, QEL.Sim) satisfying QSIM-
MDD security with private simulation as follows. We use Gen, Eval, and Mark as QEL.Gen, QEL.Eval,
and QEL.Mark, respectively. The domain and range of QELWMPRF are the same as those of ELWMPRF.
The mark space of QELWMPRF is {0, 1}ℓm . Also, we construct QEL.Setup and QEL.Sim as follows.

QEL.Setup(1λ):

• Generate (pp, xk)← Setup(1λ).
• Genrate K ← {0, 1}λ.
• Outputs (pp, qxk := (xk, K)).

QEL.Sim(qxk, τ, i; r):

• Parse (xk, K)← qxk.
• Output (γ, x, y)← Sim(xk, τ, i; PRFK(r)).

Security analysis. Let i∗ ∈ [ℓm] and A be any QPT adversary for QSIM-MDD security with private
simulation making total q queries to Osim and Oapi. We prove that for any polynomial w, it holds that
Advq-sim-mdd

i∗,A ,QELWMPRF(λ) ≤ 1/w. We prove it using hybrid games. Let SUCX be the event that the final
output is 1 in Game X. We define a distribution Dτ′,i′ as

Dτ′,i′: Output (γ, x, y)← Sim(xk, τ′, i′).

Game 1: This is Exptq-sim-mdd
i∗,A ,QELWMPRF(λ). Thus, Advq-sim-mdd

i∗,A ,QELWMPRF(λ) = 2|Pr[SUC1]− 1/2|.

1. The challenger generates (pp, xk)← Setup(1λ) and K ← {0, 1}λ, and gives pp to A . A send
m ∈ {0, 1}ℓm to the challenger. The challenger generates (τ, prfk) ← Gen(pp), computes
C̃ ← Mark(pp, prfk, m), and sends C̃ to A .

2. A can access to the following oracles.

Osim: On input τ′ and i′, it returns Sim(xk, τ′, i′; PRFK(r)), where r ← {0, 1}λ.
Oapi: On input (ϵ, δ, τ′, i′) and a quantum state q , it returns the result of API ϵ,δ

P ,DPRF
τ′ ,i′

(q) and

the post measurement state, where DPRF
τ′,i′ = Dτ′,i′(PRFK(·)).

3. The challenger generates coin ← {0, 1}. If coin = 0, the challenger samples (γ, x, y) ←
Dreal,i∗ . If coin = 1, the challenger generates (γ, x, y)← Sim(xk, τ, i∗; PRFK(r∗)), where,
r∗ ← {0, 1}λ. The challenger sends (γ, x, y) to A .

4. When A terminates with output coin′, the challenger outputs 1 if coin = coin′ and 0 otherwise.

Game 2: This game is the same as Game 1 except that PRFK is replaced with a quantum-accessible
random function R.
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We have |Pr[SUC1]− Pr[SUC2]| = negl(λ) from the the security of PRF.

Game 3: This game is the same as Game 2 except that R is replaced with

V(r) =

{
v∗ (if r = r∗)
R(r) (otherwise),

where v∗ ← RSim.

We have |Pr[SUC2]− Pr[SUC3]| = 0.

Game 4: This game is the same as Game 3 except the followings. When A makes a query τ′

and i′ to Osim, Sim(xk, τ′, i′; R(r)) is returned instead of Sim(xk, τ′, i′; V(r)). Also, when
A makes a query (ϵ, δ, τ′, i′) to Oapi, API ϵ,δ

P ,DR
τ′ ,i′

(q) is performed instead of API ϵ,δ
P ,DV

τ′ ,i′
(q), where

DR
τ′,i′ = Dτ′,i′(R(·)) and DV

τ′,i′ = Dτ′,i′(V(·)).
By this change, V is now used only for generating the challenge tuple (γ, x, y)← Sim(xk, τ, i∗; V(r∗)) =
Sim(xk, τ, i∗; v∗).

We have |Pr[SUC3]− Pr[SUC4]| = O(
√

q2

2λ ) from Lemma A.2 and Lemma A.3.

Game 5: This game is the same as Game 4 except that R is replaced with G ◦ F, where F : {0, 1}λ → [s]
and G : [s]→ RSim are random functions and s is a polynomial of λ specified later.

Theorem A.4 (Small Range Distribution [Zha12a]). For any QPT adversary B making q quantum
queries to R or G ◦ F, we have

∣∣∣Pr
[

B |R⟩(1λ) = 1
]
− Pr

[
B |G◦F⟩(1λ) = 1

]∣∣∣ ≤ O(q3/s).

By the above theorem, we have |Pr[SUC4]− Pr[SUC5]| = O(q3/s).
We can simulate F using a 2q-wise independent function E by the following theorem.

Theorem A.5 ([Zha12b]). For any QPT adversary B making q quantum queries to F or E, we have
Pr

[
B |F⟩(1λ) = 1

]
= Pr

[
B |E⟩(1λ) = 1

]
.

We can efficiently simulate API ϵ,δ
P ,DG◦E

τ′ ,i′
in Game 5 using s samples from Dτ′,i′ since Dτ′,i′(G(·))

can be interpreted as a mapping for s samples from Dτ′,i′ . Then, from the SIM-MDD security with
private simulation of ELWMPRF, we have |Pr[SUC5]− 1/2| = negl(λ). From the above, we also have
Advq-sim-mdd

i∗,A ,QELWMPRF(λ) ≤ O(q3/s) + 2γ for some negligible function γ. Thus, by setting s = O(q3 ·w2),
we obtain Advq-sim-mdd

i∗,A ,QELWMPRF(λ) ≤ 1/w.
Since w is any polynomial, this means that Advq-sim-mdd

i∗,A ,QELWMPRF(λ) = negl(λ).

Remark A.6. It is easy to see that the extended weak pseudorandomness of ELWMPRF is preserved after
we apply the transformation above since the evaluation algorithm is the same as that of ELWMPRF and
extended weak pseudorandomness holds against adversaries that generate pp. Thus, we omit a formal
proof.

B Puncturable Encryption with Strong Ciphertext Pseudorandomness

We prove Theorem 7.5 in this section.
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B.1 Tools for PE

Definition B.1 (Statistically Injective PPRF). If a PPRF family F = {FK : {0, 1}ℓ1(λ) → {0, 1}ℓ2(λ) |
K ∈ {0, 1}λ} satisfies the following, we call it a statistically injective PPRF family with failure probability
ϵ(·). With probability 1− ϵ(λ) over the random choice of K ← PRF.Gen(1λ), for all x, x′ ∈ {0, 1}ℓ1(λ),
if x ̸= x′, then FK(x) ̸= FK(x′). If ϵ(·) is not specified, it is a negligile function.

Sahai and Waters show that we can convert any PPRF into a statistically injective PPRF [SW21].

Theorem B.2 ([SW21]). If OWFs exist, then for all efficiently computable functions n(λ), m(λ), and
e(λ) such that m(λ) ≥ 2n(λ) + e(λ), there exists a statistically injective PPRF family with failure
probability 2−e(λ) that maps n(λ) bits to m(λ) bits.

Definition B.3. An injective bit-commitment with setup consists of PPT algorithms (Gen, Com).

Gen(1λ): The key generation algorithm takes as input the security parameter 1λ and outputs a commitment
key ck.

Comck(b): The commitment algorithm takes as input ck and a bit b and outputs a commitment com.

These satisfy the following properties.

Computationally Hiding: For any QPT A , it holds that∣∣∣Pr
[

A(Comck(0)) = 1 | ck← Gen(1λ)
]
− Pr

[
A(Comck(1)) = 1 | ck← Gen(1λ)

]∣∣∣ ≤ negl(λ).

Statistically Binding: It holds that

Pr

com0 = com1

∣∣∣∣∣∣
ck← Gen(1λ)
com0 ← Comck(0)
com1 ← Comck(1)

 ≤ negl(λ).

Injective: For every security parameter λ, there is a bound ℓr on the number of random bits used by
Com such that if ck← Gen(1λ), Comck(· ; ·) is an injective function on {0, 1} × {0, 1}ℓr except
negligible probability.

Theorem B.4. If the QLWE assumption holds, there exists a secure injective bit-commitment with setup.

This theorem follows from the following theorems.

Theorem B.5 ([Nao91]). If there exists (injective) OWFs, there exists (injective) bit-commitment.

Theorem B.6 ([PW11, AKPW13, Adapted]). If the QLWE assumption holds, there exists a secure
injective OWF with evaluation key generation algorithms.

Remark B.7. The injective OWFs achieved in Theorem B.6 needs evaluation key generation algorithms
unlike the standard definition of OWFs. However, OWFs with evaluation key generation algorithms
are sufficient for proving Theorem B.4 by using Theorem B.5 since we use commitment key generation
algorithm Gen (i.e., setup) in Definition B.3. Note that there is no post-quantum secure injective OWF
without evaluation key generation algorithm so far.
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Circuit E[F, G]

Constants : Injective PPRF F : {0, 1}3ℓ → {0, 1}9ℓ, PPRF G : {0, 1}9ℓ → {0, 1}ℓ

Inputs: m ∈ {0, 1}ℓ, s ∈ {0, 1}ℓ

1. Compute α = PRG(s).
2. Compute β = F(α∥m).
3. Compute γ = G(β)⊕m.
4. Output (α, β, γ).

Figure 12: Description of encryption circuit E

Circuit D[F, G]

Constants : Injective PPRF F : {0, 1}3ℓ → {0, 1}9ℓ, PPRF G : {0, 1}9ℓ → {0, 1}ℓ

Inputs: c = (α∥β∥γ), where α ∈ {0, 1}2ℓ, β ∈ {0, 1}9ℓ, and γ ∈ {0, 1}ℓ.

1. Compute m = G(β)⊕ γ.
2. If β = F(α∥m), output m.
3. Else output ⊥.

Figure 13: Description of decryption circuit D

B.2 PE Scheme Description

We review the puncturable encryption scheme by Cohen et al. [CHN+18]. We can see Theorem 7.5
holds by inspecting their PE scheme. The scheme utilizes the following ingredients and the length n of
ciphertexts is 12 times the length ℓ of plaintexts:

• A length-doubling PRG : {0, 1}ℓ → {0, 1}2ℓ

• An injective PPRFs (See Definition B.1) F : {0, 1}3ℓ → {0, 1}9ℓ.
• A PPRF G : {0, 1}9ℓ → {0, 1}ℓ.
• An injective bit-commitment with setup (Com.Gen, Com) using randomness in {0, 1}9ℓ. We only

use this in our security proof.

Scheme. The scheme PE by Cohen et al. [CHN+18] is as follows.

Gen(1λ): Sample functions F and G, generates pe.ek as the obfuscated circuit iO(E)where E is described
in Figure 12, and returns (pe.ek, pe.dk) := (iO(E), D), where pe.dk is the (un-obfuscated) program
D in Figure 13.

Puncture(pe.dk, c∗): Output pe.dk ̸=c∗ , where pe.dk ̸=c∗ is the obfuscated circuits iO(D ̸=c∗) where D ̸=c∗

is described in Figure 14, that is, pe.dk ̸=c∗ := iO(D ̸=c∗).

Enc(pe.ek, m): Take m ∈ {0, 1}ℓ, sample s← {0, 1}ℓ, and outputs c← pe.ek(m, s).

Dec(pe.dk, c): Take c ∈ {0, 1}12ℓ and returns m := pe.dk(c).

The size of the circuits is appropriately padded to be the maximum size of all modified circuits, which
will appear in the security proof.
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Circuit D ̸=c∗ [F, G, c∗]

Constants : Point c∗ ∈ {0, 1}12ℓ, injective PPRF F : {0, 1}3ℓ → {0, 1}9ℓ, and PPRF G : {0, 1}9ℓ → {0, 1}ℓ

Inputs: c = (α∥β∥γ), where α ∈ {0, 1}2ℓ, β ∈ {0, 1}9ℓ, and γ ∈ {0, 1}ℓ.

1. If c = c∗, output ⊥.
2. Compute m = G(β)⊕ γ.
3. If β = F(α∥m), output m.
4. Else output ⊥.

Figure 14: Description of punctured decryption circuit D ̸=c∗ at c∗

B.3 PE Security Proof

Cohen et al. [CHN+18] proved correctness, punctured correctness, and sparseness of PE above by using
secure PRG PRG, secure injective PPRF F, secure PPRF G, and secure IO iO. Thus, we complete the
proof of Theorem 7.5 by combining Theorems B.2 and B.4, and Theorem B.8 below, which we prove in
this section.

Theorem B.8. If PRG is a secure PRG, F is a secure injective PPRF, G is a secure PPRF, Com is a secure
injective bit-commitment with setup, and iO is a secure IO, then PE is a secure PE that satisifes strong
ciphertext pseudorandomness.

Proof of Theorem B.8. To prove x0 := c∗ ← Enc(pe.ek, m∗) is indistinguishable from x1 := r∗ ←
{0, 1}ℓ, we define a sequence hybrid games.

Real: This is the same as the real game with b = 0. That is, for queried m∗ the challenger does the
following.

1. Choose an injective PPRF F : {0, 1}3ℓ → {0, 1}9ℓ and PPRF G : {0, 1}9ℓ → {0, 1}ℓ.
2. Choose s← {0, 1}ℓ and compute α0 := PRG(s), β0 := F(α0∥m∗), and γ0 := G(β0)⊕m∗.
3. Set x0 := α0∥β0∥γ0 and computes pe.ek := iO(E) and pe.dk ̸=x0

:= iO(D ̸=x0).
4. Send (x0, pe.ek, pe.dk ̸=x0

) to the adversary.

Hyb1: This is the same as Hyb0(0) except that α0 is uniformly random.

Hyb2: This is the same as Hyb1 except that we use punctured F̸=α0∥m∗ and modified circuits E̸=α0∥m∗ and
D2
̸=α0∥m∗ described in Figures 16 and 17. Intuitively, these modified circuits are punctured at input

α0∥m∗ and use exceptional handling for this input.

Hyb3: This is the same as Hyb2 except that β0 ← {0, 1}9ℓ.

Hyb4: This is the same as Hyb3 except that we use punctured G̸=β0 and modified circuits E̸=α0∥m∗, ̸=β0

and D4
̸=α0∥m∗, ̸=β0

described in Figures 18 and 19. Intuitively, these modified circuits are punctured
at input β0 and use F̸=α0∥m∗ and exceptional handling for β0.

Hyb5 = Rand2: This is the same as Hyb4 except that γ0 is uniformly random. Now, α0, β0, γ0 are
uniformly random and we rewrite them into α1, β1, γ1, respectively. For ease of notation, we also
denote this game by Rand2.

Rand1: This is the same as Hyb5 = Rand2 except that we use un-punctured G, circuit E̸=α0∥m∗, ̸=β0
reverts

to E̸=α1∥m∗ described in Figure 16, and we change circuit D4
̸=α1∥m∗, ̸=β1

into Dr
̸=α1∥m∗ described

in Figure 21.
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Rand: This is the same as the real game with b = 1. That is, for queried m∗ the challenger does the
following.

1. Choose an injective PPRF F : {0, 1}3ℓ → {0, 1}9ℓ and PPRF G : {0, 1}9ℓ → {0, 1}ℓ.
2. Choose α1 ← {0, 1}2ℓ, β1 ← {0, 1}9ℓ, and γ1 ← {0, 1}ℓ.
3. Set x1 := α1∥β1∥γ1 and computes pe.ek := iO(E) and pe.dk ̸=x1

:= iO(D ̸=x1).
4. Send (x1, pe.ek, pe.dk ̸=x1

) to the adversary.

We described the overview of these hybrid games in Figure 15. If we prove these hybrid games are

α∗ β∗ γ∗ pe.ek := iO(·) pe.dk := iO(·)
Real PRG(s) F(α0∥m∗) G(β0)⊕m∗ E D ̸=x0

Hyb1 $ F(α0∥m∗) G(β0)⊕m∗ E D ̸=x0

Hyb2 $ F(α0∥m∗) G(β0)⊕m∗ E̸=α0∥m∗ D2
̸=α0∥m∗ [F̸=α0∥m∗ ]

Hyb3 $ $ G(β0)⊕m∗ E̸=α0∥m∗ D2
̸=α0∥m∗ [F̸=α0∥m∗ ]

Hyb4 $ $ G(β0)⊕m∗ E̸=α0∥m∗, ̸=β0
D4
̸=α0∥m∗, ̸=β0

[F̸=α0∥m∗ , G̸=β0 ]

Hyb5 $ $ $ E̸=α1∥m∗, ̸=β1
D4
̸=α1∥m∗, ̸=β1

[F̸=α1∥m∗ , G̸=β1 ]

Rand1 $ $ $ E̸=α1∥m∗ Dr
̸=α1∥m∗ [F̸=α1∥m∗ ]

Rand $ $ $ E D ̸=x1

Figure 15: High-level overview of hybrid games from Real to Rand. Recall that Hyb5 = Rand2. Transitions from
Rand2 to Rand are baiscally the reverse transitions from Hyb0 to Hyb4, but there are subtle differences.

indistinguishable, we complete the proof of Theorem B.8.

We prove that those hybrid games in Figure 15 are indistinguishable by Lemmata B.9, B.10, B.14,
B.15, B.19, B.20 and B.25.

From Real to Hyb5. We first move from Real to Hyb5.

Lemma B.9. If PRG is a secure PRG, it holds that |Pr[Hyb0(0) = 1]− Pr[Hyb1 = 1]| ≤ negl(λ).

Proof of Lemma B.9. The randomness s for encryption is never used anywhere except α0 := PRG(s).
We can apply the PRG security and immediately obtain the lemma.

Lemma B.10. If iO is a secure IO and F is a secure injective PPRF, it holds that

|Pr[Hyb1 = 1]− Pr[Hyb2 = 1]| ≤ negl(λ).

Proof of Lemma B.10. We change E and D ̸=x0 into E̸=α0∥m∗ and D2
̸=α0∥m∗ , respectively.

We define a sequence of sub-hybrid games.

Hyb1
1: This is the same as Hyb1 except that we generate F̸=α0∥m∗ and set F′ := F̸=α0∥m∗ and pe.ek :=

iO(E̸=α0∥m∗) described in Figure 16.

Hyb2
1: This is the same as Hyb1

1 except that we set pe.dk ̸=x0
:= iO(D2

̸=α0∥m∗ [F, G, α0, β0, γ0, m∗])
described in Figure 17. That is, we still use F, but modify the circuit.

Proposition B.11. If iO is a secure IO, it holds that
∣∣∣Pr[Hyb1 = 1]− Pr

[
Hyb1

1 = 1
]∣∣∣ ≤ negl(λ).
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Circuit E̸=α∗∥m∗ [F
′, G]

Constants : Injective PPRF F′, PPRF G

Inputs: m ∈ {0, 1}ℓ, s ∈ {0, 1}ℓ

1. Compute α = PRG(s).
2. Compute β = F′(α∥m).
3. Compute γ = G(β)⊕m.
4. Output (α, β, γ).

Figure 16: Description of encryption circuit E̸=α∗∥m∗

Circuit D2
̸=α∗∥m∗ [F

′, G, α∗, β∗, γ∗, m∗]

Constants : Point x∗ = α∗∥β∗∥γ∗ ∈ {0, 1}12ℓ, injective PPRF F′, PPRF G, m∗.
Inputs: c = (α∥β∥γ), where α ∈ {0, 1}2ℓ, β ∈ {0, 1}9ℓ, and γ ∈ {0, 1}ℓ.

1. If c = x∗, output ⊥.
2. Compute m = G(β)⊕ γ.
3. If (α, m) = (α∗, m∗), output ⊥.

4. If β = F′(α∥m), output m.
5. Else output ⊥.

Figure 17: Description of punctured decryption circuit D2
̸=α∗∥m∗

Proof of Proposition B.11. In these games, value α0 ← {0, 1}2ℓ is not in the image of PRG except with
negligible probability. The only difference between the two games is that F̸=α0∥m∗ is used in Hyb1

1. Thus, E
and E̸=α0∥m∗ are functionally equivalent except with negligible probability. We can obtain the proposition
by applying the IO security.

Proposition B.12. If iO is a secure IO and F is injective, it holds that
∣∣∣Pr

[
Hyb1

1 = 1
]
− Pr

[
Hyb2

1 = 1
]∣∣∣ ≤

negl(λ).

Proof of Proposition B.12. We analyze the case where (α, m) = (α0, m∗) since it is the only difference
between D ̸=x0 and D2

̸=α0∥m∗ .

• If c = x0, D2
̸=α0∥m∗ outputs ⊥ by the first line of the description. Thus, the output of D2

̸=α0∥m∗(x0)

is the same as that of D ̸=x0(x0).

• If c ̸= x0, it holds (β0, γ0) ̸= (β, γ) in this case. However, it should be β0 = β due to the
injectivity of F and β0 = F(α0∥m∗). Thus, both D ̸=x0(c) and D2

̸=α0∥m∗(c) output ⊥ in this case
(D ̸=x0(c) outputs ⊥ at the first line).

Therefore, D ̸=x0 and D2
̸=α0∥m∗ are functionally equivalent. We can obtain the proposition by applying the

IO security.

Proposition B.13. If iO is a secure IO, it holds that
∣∣Pr

[
Hyb2

1 = 1
]
− Pr[Hyb2 = 1]

∣∣ ≤ negl(λ).

Proof of Proposition B.13. Due to the exceptional handling in the third item of D2
̸=α0∥m∗ , F(α∥m) is

never computed for input (α0, m∗). Thus, even if we use F̸=α0∥m∗ instead of F, D2
̸=α0∥m∗ [F] and

D2
̸=α0∥m∗ [F̸=α0∥m∗ ] are functionally equivalent. We can obtain the proposition by the IO security.
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Circuit E̸=α∗∥m∗ , ̸=β∗ [F
′, G′]

Constants : Injective PPRF F′, PPRF G′

Inputs: m ∈ {0, 1}ℓ, s ∈ {0, 1}ℓ

1. Compute α = PRG(s).
2. Compute β = F′(α∥m).
3. Compute γ = G′(β)⊕m.
4. Output (α, β, γ).

Figure 18: Description of encryption circuit E̸=α∗∥m∗ , ̸=β∗

Circuit D4
̸=α∗∥m∗ , ̸=β∗

[F′, G′, α∗, β∗, γ∗, m∗]

Constants : Point x∗ := α∗∥β∗∥γ∗ ∈ {0, 1}12ℓ, injective PPRF F′, PPRF G′, m∗.
Inputs: c = (α∥β∥γ), where α ∈ {0, 1}2ℓ, β ∈ {0, 1}9ℓ, and γ ∈ {0, 1}ℓ.

1. If β = β∗, output ⊥.

2. Compute m = G′(β)⊕ γ.
3. If (α, m) = (α∗, m∗), output ⊥.
4. If β = F′(α∥m), output m.
5. Else output ⊥.

Figure 19: Description of punctured decryption circuit D4
̸=α∗∥m∗ , ̸=β∗

We complete the proof of Lemma B.10.

Lemma B.14. If F is a secure injective PPRF, it holds that |Pr[Hyb2 = 1]− Pr[Hyb3 = 1]| ≤ negl(λ).

Proof of Lemma B.14. The difference between these two games is that β0 is F(α0∥m∗) or random. We
can immediately obtain the lemma by applying punctured pseudorandomness of F since we use F̸=α0∥m∗
in these games.

Lemma B.15. If iO is a secure IO and F is a secure injective PPRF, it holds that

|Pr[Hyb3 = 1]− Pr[Hyb4 = 1]| ≤ negl(λ).

Proof of Lemma B.15. We change E̸=α∗∥m∗ and D2
̸=α∗∥m∗ into E̸=α∗∥m∗, ̸=β∗ and D4

̸=α∗∥m∗, ̸=β∗ , respectively.

We define a sequence of sub-hybrid games.

Hyb1
3: This is the same as Hyb3 except that we use punctured G̸=β0 and set pe.ek := iO(E̸=α0∥m∗, ̸=β0

[F̸=α0∥m∗ , G̸=β0 ]).

Hyb2
3: This is the same as Hyb1

3 except that we still use G but set pe.dk ̸=c0
:= iO(D4

̸=α0∥m∗, ̸=β0
[F̸=α0∥m∗ , G]).

Proposition B.16. If iO is a secure IO, it holds that
∣∣∣Pr[Hyb3 = 1]− Pr

[
Hyb1

3 = 1
]∣∣∣ ≤ negl(λ).

Proof of Proposition B.16. In these games β0 ← {0, 1}9ℓ is uniformly random. By the sparsity of F, β0
is not in the image of F except with negligible probability. Thus, E̸=α0∥m∗ and E̸=α0∥m∗, ̸=β0

are functionally
equivalent except with negligible probability. We obtain the proposition by the IO security.

Proposition B.17. If iO is a secure IO, it holds that
∣∣∣Pr

[
Hyb1

3 = 1
]
− Pr

[
Hyb2

3 = 1
]∣∣∣ ≤ negl(λ).
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Proof of Proposition B.17. The difference between D2
̸=α0∥m∗ and D4

̸=α0∥m∗, ̸=β0
is that we replace “If

c = x0, outputs ⊥.” with “If β = β0, outputs ⊥.”. In these games, β0 ← {0, 1}9ℓ is not in the image of
F except with negligible probability. Recall that c = x0 means c = α0∥β0∥γ0. Thus, those two circuits
may differ when β = β0 but (α, γ) ̸= (α0, γ0). However, it does not happen β = F′(α∥(G(β)⊕ γ)) in
this case due to the injectivity of F. Thus, D2

̸=α0∥m∗ and D4
̸=α0∥m∗, ̸=β0

are functionally equivalent and we
obtain the proposition by applying the IO security.

Proposition B.18. If iO is a secure IO, it holds that
∣∣Pr

[
Hyb2

3 = 1
]
− Pr[Hyb4 = 1]

∣∣ ≤ negl(λ).

Proof of Proposition B.18. The difference between these two games that we use D4
̸=α0∥m∗, ̸=β0

[F̸=α0∥m∗ , G̸=β0 ]

instead of D4
̸=α0∥m∗, ̸=β0

[F̸=α0∥m∗ , G]. However, G̸=β0(β0) is never computed by the first item of
D4
̸=α0∥m∗, ̸=β0

. We obtain the proposition by the IO security.

We complete the proof of Lemma B.15.

Lemma B.19. If G is a secure PPRF, it holds that |Pr[Hyb4 = 1]− Pr[Hyb5 = 1]| ≤ negl(λ).

Proof of Lemma B.19. The difference between these two games is that γ0 is G(β0) or random. We can
immediately obtain the lemma by applying punctured pseudorandomness of G since we use G̸=β0 in these
games.

In Hyb5, α0, β0, and γ0 are uniformly random strings as α1, β1, and γ1.

From Rand to Hyb5. We leap to Rand and move from Rand to Rand2 = Hyb5 instead of directly
moving from Hyb5 = Rand2 to Rand since Real ≈ Hyb5 and Rand2 ≈ Rand is almost symmetric (but
not perfectly symmetric).

Lemma B.20. If iO is a secure IO and F is a secure injective PPRF, it holds that

|Pr[Rand = 1]− Pr[Rand1 = 1]| ≤ negl(λ).

Proof of Lemma B.20. We change E and D ̸=x1 into E̸=α1∥m∗ and Dr
̸=α1∥m∗ , respectively.

We define a sequence of sub-hybrid games.

rHyb1: This is the same as Rand except that we generate F̸=α1∥m∗ and set F′ := F̸=α1∥m∗ and pe.ek :=
iO(E̸=α1∥m∗) described in Figure 16.

rHyb2: This is the same as rHyb1 except that we set pe.dk ̸=x1
:= iO(Dr-2

̸=α1∥m∗ [F, G]) described
in Figure 20. That is, we still use F, but the modified circuit that outputs m∗ for input α1∥β̂∥γ̂,
where β̂ := F(α1∥m∗) and γ̂ := G(β̂)⊕m∗.

rHyb3: This is the same as rHyb2 except that we set pe.dk ̸=x1
:= iO(Dr

̸=α1∥m∗ [F, G]) described
in Figure 21. That is, we still use F, but the modified circuit outputs ⊥ for an input such that
(α, m) = (α1, m∗).

Proposition B.21. If iO is a secure IO, it holds that
∣∣∣Pr[Rand = 1]− Pr

[
rHyb1 = 1

]∣∣∣ ≤ negl(λ).

Proof of Proposition B.21. In these games, value α1 ← {0, 1}2ℓ is not in the image of PRG except with
negligible probability. Thus, E and E̸=α1∥m∗ are functionally equivalent except with negligible probability.
We can obtain the proposition by applying the IO security.

Proposition B.22. If iO is a secure IO and F is injective, it holds that
∣∣∣Pr

[
rHyb1 = 1

]
− Pr

[
rHyb2 = 1

]∣∣∣ ≤
negl(λ).
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Circuit Dr-2
̸=α∗∥m∗ [F

′, G, α∗, β∗, γ∗, β̂, γ̂, m∗]

Constants : Point x∗ = α∗∥β∗∥γ∗ ∈ {0, 1}12ℓ, injective PPRF F′, PPRF G, β̂, γ̂, m∗.

Inputs: c = (α∥β∥γ), where α ∈ {0, 1}2ℓ, β ∈ {0, 1}9ℓ, and γ ∈ {0, 1}ℓ.

1. If α = α∗ and β = β̂ and γ = γ̂, output m∗.
2. If c = x∗, output ⊥.
3. Compute m = G(β)⊕ γ.
4. If β = F′(α∥m), output m.
5. Else output ⊥.

Figure 20: Description of punctured decryption circuit Dr-2
̸=α∗∥m∗

Circuit Dr
̸=α∗∥m∗ [F

′, G, α∗, β∗, γ∗, β̂, γ̂, m∗]

Constants : Point x∗ = α∗∥β∗∥γ∗ ∈ {0, 1}12ℓ, injective PPRF F′, PPRF G, β̂, γ̂, m∗.

Inputs: c = (α∥β∥γ), where α ∈ {0, 1}2ℓ, β ∈ {0, 1}9ℓ, and γ ∈ {0, 1}ℓ.

1. If α = α∗ and β = β̂ and γ = γ̂, output m∗.
2. If c = x∗, output ⊥.
3. Compute m = G(β)⊕ γ.
4. If (α, m) = (α∗, m∗), output ⊥.

5. If β = F′(α∥m), output m.
6. Else output ⊥.

Figure 21: Description of punctured decryption circuit Dr
̸=α∗∥m∗

Proof of Proposition B.22. The difference between D ̸=x1 and Dr-2
̸=α1∥m∗ is “If α = α∗ and β = β̂ and

γ = γ̂, output m∗.”. Although α1∥β̂∥γ̂ is a valid encryption, β̂ = F(α1∥m∗) is not equal to β1 except
with negligible probability since β1 is uniformly random. Similarly, γ̂ is not equal to γ1 except with
negligible probability. Thus, D ̸=x1(α1∥β̂∥γ̂) outputs m∗. That is, D ̸=x1 and Dr-2

̸=α1∥m∗ are functionally
equivalent. We can obtain the proposition by applying the IO security.

Proposition B.23. If iO is a secure IO and F is injective, it holds that
∣∣Pr

[
rHyb2 = 1

]
− Pr

[
rHyb3 = 1

]∣∣ ≤
negl(λ).

Proof of Proposition B.23. We analyze the case where (α, m) = (α1, m∗). We can reach the forth line
of Dr

̸=α1∥m∗ if c ̸= x1. If c ̸= x1 and (α, m) = (α1, m∗), it holds that (β, γ) ̸= (β1, γ1). However, it
should be β1 = β in this case due to the injectivity of F. That is, if Dr

̸=α1∥m∗(c) outputs ⊥ at the fourth
line, Dr-2

̸=α1∥m∗(c) also outputs ⊥ at the second line. Therefore, Dr-2
̸=α1∥m∗ and Dr

̸=α1∥m∗ are functionally
equivalent. We can obtain the proposition by applying the IO security.

Proposition B.24. If iO is a secure IO, it holds that
∣∣Pr

[
rHyb3 = 1

]
− Pr[Rand1 = 1]

∣∣ ≤ negl(λ).

Proof of Proposition B.24. Due to the exceptional handling in the fourth line of Dr
̸=α1∥m∗ , F(α∥m)

is never computed for input (α1, m∗). Thus, even if we use F̸=α1∥m∗ instead of F, Dr
̸=α1∥m∗ [F] and

Dr
̸=α1∥m∗ [F̸=α1∥m∗ ] are functionally equivalent. We can obtain the proposition by the IO security.

We complete the proof of Lemma B.20.
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Circuit Dcom
̸=α∗∥m∗ [F

′, G, α∗, β∗, γ∗, ẑ, ck, γ̂, m∗]

Constants : Point x∗ = α∗∥β∗∥γ∗ ∈ {0, 1}12ℓ, injective PPRF F′, PPRF G, m∗, ẑ, ck, γ̂.

Inputs: c = (α∥β∥γ), where α ∈ {0, 1}2ℓ, β ∈ {0, 1}9ℓ, and γ ∈ {0, 1}ℓ.

1. If α = α∗ and Comck(0; β) = ẑ and γ = γ̂, output m∗.
2. If c = x∗, output ⊥.
3. Compute m = G(β)⊕ γ.
4. If (α, m) = (α∗, m∗), output ⊥.
5. If β = F′(α∥m), output m.
6. Else output ⊥.

Figure 22: Description of punctured decryption circuit Dcom
̸=α∗∥m∗

Circuit DF
̸=α∗∥m∗ [F

′, G, α∗, β∗, γ∗, m∗, ẑ, γ̂]

Constants : Point x∗ = α∗∥β∗∥γ∗ ∈ {0, 1}12ℓ, injective PPRF F′, PPRF G, m∗, ẑ, γ̂.
Inputs: c = (α∥β∥γ), where α ∈ {0, 1}2ℓ, β ∈ {0, 1}9ℓ, and γ ∈ {0, 1}ℓ.

1. If α = α∗ and False and γ = γ̂, output m∗. // Never triggered
2. If c = x∗, output ⊥.
3. Compute m = G(β)⊕ γ.
4. If (α, m) = (α∗, m∗), output ⊥.
5. If β = F′(α∥m), output m.
6. Else output ⊥.

Figure 23: Description of punctured decryption circuit DF
̸=α∗∥m∗

Lemma B.25. If iO is a secure IO, F is a secure injective PPRF, and (Com.Gen, Com) is a secure
injective bit-commitment with setup, it holds that |Pr[Rand1 = 1]− Pr[Rand2 = 1]| ≤ negl(λ).

Proof of Lemma B.25. We change E̸=α∗∥m∗ and Dr
̸=α∗∥m∗ into E̸=α∗∥m∗, ̸=β∗ and D4

̸=α∗∥m∗, ̸=β∗ , respectively.
We define a sequence of sub-hybrid games.

rHyb1
1: This is the same as Rand1 except that we use β̂← {0, 1}9ℓ instead of F(α1∥m∗).

rHyb2
1: This is the same as rHyb1

1 except that we use Dcom
̸=α1∥m∗ described in Figure 22, where ck ←

Com.Gen(1λ) and ẑ = Comck(0; β̂) are hardwired, instead of Dr
̸=α1∥m∗ .

rHyb3
1: This is the same as rHyb2

1 except that we hard-code ẑ = Comck(1; β̂) into Dcom
̸=α1∥m∗ instead of

Comck(0; β̂).

rHyb4
1: This is the same as rHyb3

1 except that we use DF
̸=α1∥m∗ described in Figure 23

rHyb5
1: This is the same as rHyb4

1 except that we use punctured G̸=β1 and set pe.ek := iO(E̸=α1∥m∗, ̸=β1
[F̸=α1∥m∗ , G̸=β1 ]).

rHyb6
1: This is the same as rHyb5

1 except that we still use G but set pe.dk ̸=c1
:= iO(D4

̸=α1∥m∗, ̸=β1
[F̸=α1∥m∗ , G]).

Proposition B.26. If F is a secure PPRF, it holds that
∣∣∣Pr[Rand1 = 1]− Pr

[
rHyb1

1 = 1
]∣∣∣ ≤ negl(λ).

Proof of Proposition B.26. In these games, we use F̸=α1∥m∗ in E̸=α1∥m∗ and Dr
̸=α1∥m∗ . Thus, we can apply

the punctured pseudorandomness and immediately obtain the proposition.
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Proposition B.27. If iO is a secure IO and Comck is injective, it holds that∣∣∣Pr
[
rHyb1

1 = 1
]
− Pr

[
rHyb2

1 = 1
]∣∣∣ ≤ negl(λ).

Proof of Proposition B.27. The difference between Dcom
̸=α1∥m∗ and Dr

̸=α1∥m∗ is whether we use “Comck(0; β) =

ẑ” or “β = β̂”, where ẑ = Comck(0; β̂) and ck ← Com.Gen(1λ). Since Com is injective, these two
conditions are equivalent. Therefore, those two circuits are functionally equivalent. We obtain the
proposition by applying the IO security.

Proposition B.28. If (Com.Gen, Com) is computationally hiding, it holds that∣∣Pr
[
rHyb2

1 = 1
]
− Pr

[
rHyb3

1 = 1
]∣∣ ≤ negl(λ).

Proof of Proposition B.28. The only difference between these two games is that ẑ = Comck(0; β̂) or
ẑ = Comck(1; β̂). Note that β̂ is never used anywhere else. We can obtain the proposition by the hiding
property of Com.

Proposition B.29. If iO is a secure IO and (Com.Gen, Com) is statistically binding, it holds that∣∣∣Pr
[
rHyb3

1 = 1
]
− Pr

[
rHyb4

1 = 1
]∣∣∣ ≤ negl(λ).

Proof of Proposition B.29. The difference between DF
̸=α1∥m∗ and Dcom

̸=α1∥m∗ is that the first line of DF
̸=α1∥m∗

is never executed. However, ẑ = Comck(1; β̂) is hardwired in Dcom
̸=α1∥m∗ . Thus, the first line of Dcom

̸=α1∥m∗ , in
particular, condition “Comck(0; β) = ẑ = Comck(1; β̂)” is also never true except negligible probability
due to the statistical binding property of Com. That is, these two circuits are functionally equivalent
except negligible probability. We obtain the proposition by applying the IO security.

Proposition B.30. If iO is a secure IO, it holds that
∣∣∣Pr

[
rHyb4

1 = 1
]
− Pr

[
rHyb5

1 = 1
]∣∣∣ ≤ negl(λ).

Proof of Proposition B.30. In these games β1 ← {0, 1}9ℓ is uniformly random. By the sparsity of F, β1
is not in the image of F except with negligible probability. Thus, E̸=α1∥m∗ and E̸=α1∥m∗, ̸=β1

are functionally
equivalent except with negligible probability. We obtain the proposition by the IO security.

Proposition B.31. If iO is a secure IO, it holds that
∣∣Pr

[
rHyb5

1 = 1
]
− Pr

[
rHyb6

1 = 1
]∣∣ ≤ negl(λ).

Proof of Proposition B.31. The difference between DF
̸=α1∥m∗ in Figure 23 and D4

̸=α1∥m∗, ̸=β1
in Figure 19

is that we replace “If c = x1, outputs ⊥.” with “If β = β1, outputs ⊥.” since the first line of DF
̸=α1∥m∗ is

never triggered. In these games, β1 ← {0, 1}9ℓ is not in the image of F except with negligible probability.
Recall that c = x1 means c = α1∥β1∥γ1. Thus, those two circuits may differ when β = β1 but
(α, γ) ̸= (α1, γ1). However, it does not happen β = F′(α∥(G(β)⊕ γ)) in this case due to the injectivity
of F. Thus, DF

̸=α1∥m∗ and D4
̸=α1∥m∗, ̸=β1

are functionally equivalent and we obtain the proposition by
applying the IO security.

Proposition B.32. If iO is a secure IO, it holds that
∣∣Pr

[
rHyb6

1 = 1
]
− Pr[Rand2 = 1]

∣∣ ≤ negl(λ).

Proof of Proposition B.32. The difference between these two games that we use D4
̸=α1∥m∗, ̸=β1

[F̸=α1∥m∗ , G̸=β1 ]

instead of D4
̸=α1∥m∗, ̸=β1

[F̸=α1∥m∗ , G]. However, G̸=β1(β1) is never computed by the first line of
D4
̸=α1∥m∗, ̸=β1

. We obtain the proposition by the IO security.

We complete the proof of Lemma B.25.
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B.4 Original Ciphertext Pseudorandomness of PE

We describe the original ciphertext pseudorandomness of PE defined by Cohen et al. [CHN+18] in this
section for reference.

Definition B.33 (Ciphertext Pseudorandomness). We define the following experiment Exptcpr
A (λ) for

PE.

1. A sends a message m∗ ∈ {0, 1}ℓp to the challenger.

2. The challenger does the following:

• Generate (ek, dk)← Gen(1λ)

• Compute encryption c∗ ← Enc(ek, m∗).
• Choose r∗ ← {0, 1}ℓct .
• Generate the punctured key dk/∈{c∗,r∗} ← Puncture(dk, {c∗, r∗})
• Choose coin← {0, 1} and sends the following to A:

(c∗, r∗, ek, dk/∈{c∗,r∗}) if coin = 0

(r∗, c∗, ek, dk/∈{c∗,r∗}) if coin = 1

3. A outputs coin∗ and the experiment outputs 1 if coin = coin∗; otherwise 0.

We say that PE has ciphertext pseudorandomness if for every QPT adversary A, it holds that

Advcpr
A (λ) := 2 · Pr

[
Exptcpr

A (λ) = 1
]
− 1 ≤ negl(λ).

Issue in the proof by Cohen et al. In the watermarking PRF by Cohen et al. [CHN+18], we use x0 ←
PE.Enc(pe.ek, a∥b∥c∥i) to extract an embedded message. They replace x0 ← PE.Enc(pe.ek, a∥b∥c∥i)
with x1 ← {0, 1}ℓct in their proof of unremovability [CHN+18, Lemma 6.7]. Then, they use PRG
security [CHN+18, Lemma 6.8] to replace PRG(c) with a uniformly random string since the information
about c disappears from the PE ciphertext. However, there is a subtle issue here. The information
about c remains in the punctured decryption key dk/∈{x0,x1} ← Puncture(pe.dk, {x0, x1}), which is
punctured both at x0 and x1, since they use ciphertext pseudorandomness in Definition B.33 and need
to use the punctured decryption key. Thus, we cannot apply PRG security even after we apply the
ciphertext pseudorandomness in Definition B.33. This is the reason why we introduce the strong ciphertext
pseudorandomness in Definition 7.3.
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