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Abstract. Threshold signature schemes enable distribution of the signature issuing capability to
multiple users, to mitigate the threat of signing key compromise. Though a classic primitive, these
signatures have witnessed a surge of interest in recent times due to relevance to modern applications like
blockchains and cryptocurrencies. In this work, we study round-optimal threshold signatures in the post-
quantum regime and improve the only known lattice-based construction by Boneh et al [CRYPTO’18]
as follows:

• Efficiency. We reduce the amount of noise flooding used in the construction from 2Ω(λ) down to
√
Q,

where Q is the bound on the number of generated signatures and λ is the security parameter. By
using lattice hardness assumptions over polynomial rings, this allows to decrease the signature
bit-lengths from Õ(λ3) to Õ(λ), bringing them significantly closer to practice. Our improvement
relies on a careful analysis using Rényi divergence rather than statistical distance in the security
proof.

• Instantiation. The construction of Boneh et al requires a standard signature scheme to be evaluated
homomorphically. To instantiate this, we provide a homomorphism-friendly variant of Lyubashevsky’s
signature [EUROCRYPT ’12] which achieves low circuit depth by being “rejection-free” and uses an
optimal, moderate noise flooding of

√
Q, matching the above.

• Towards Adaptive Security. The construction of Boneh et al satisfies only selective security, where all
the corrupted parties must be announced before any signing query is made. We improve this in two
ways: in the Random Oracle Model, we obtain partial adaptivity where signing queries can be made
before the corrupted parties are announced but the set of corrupted parties must be announced all
at once. In the standard model, we obtain full adaptivity, where parties can be corrupted at any time
but this construction is in a weaker pre-processing model where signers must be provided correlated
randomness of length proportional to the number of signatures, in an offline preprocessing phase.

1 Introduction

A threshold signature [23] distributes the signature issuing capacity among several users, so that a signature
can be generated only if a sufficient number of users collaborate to sign a message. In more detail, each of N
parties holds a partial signing key, and any set of parties at least as large as a given threshold t ≤ N can
participate in a protocol to generate a signature. Security requires that a valid signature cannot be generated
if fewer than t parties cooperate.

A central motivation for constructing threshold signatures is to decentralize the trust placed in the
signing authority, thus reducing the risk of the signing key being compromised. While threshold signatures
have been studied for a long time [43, 24, 14, 32, 30, 44, 25, 20, 15, 13, 37, 21, 31, 6], they have received
renewed attention in recent years due to numerous applications in modern topics such as cryptocurrencies and
blockchains. Most prior work has focused on creating distributed versions of ECDSA or Schnorr signatures
[44, 30, 25, 14, 15] which are not quantum secure. From conjectured post-quantum assumptions such as those
related to Euclidean lattices, much less is known, especially with optimal round complexity.

1.1 Prior Work

The thresholdisation of lattice-based signatures from the NIST post-quantum cryptography project has been
investigated in [19] but the resulting candidates incur several rounds of communication. A threshold signature
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restricted to t = N was proposed in [22] but it also involves possibly many rounds, because of aborts. To the
best of our knowledge, the only lattice-based, round-optimal threshold signature construction is by Boneh
et al [8] (henceforth BGGJKRS), relying on the Learning With Errors problem (LWE). However, while this
construction provided the first feasibility result for a long-standing open problem, it suffers from the following
drawbacks:

1. Noise Flooding and Impact on Parameters. It makes use of the so-called “noise flooding” technique [33, 5, 36],
which aims to hide a noise term e ∈ Z that possibly contains sensitive information, by adding to it a
fresh noise term e′ whose distribution has a standard deviation that is much larger than an a priori upper
bound on |e|. To get security against attackers with success probability 2−o(λ) where λ is the security
parameter, the standard deviation of e′ must be a factor 2Ω(λ) larger than the upper bound on |e|.
Unfortunately, this precludes the use of an efficient LWE parametrisation. Concretely, one has to set
the LWE noise rate α as 2−Ω(λ) so that |e′| remains small compared to the working modulus q. As the
best known algorithms for attacking LWE with (typical) parameters n, q, α have run-times that grow
as exp(Õ(n log q/ log2 α)) (see, e.g., [38]) this leads to setting n log q = Ω̃(λ3). As the signature shares
have bit-sizes that grow as Ω(n log q), this leads to Ω̃(λ3)-bit signature sizes – prohibitively expensive in
practice.

2. Instantiating Underlying Signature. It requires a standard signature scheme to be evaluated homomorphi-
cally. BGGJKRS do not suggest a candidate and existing lattice based signatures are not suitable – the
GPV signature scheme [34] and its practical versions [27, 51, 28] seem ill-suited, as the signing algorithm
is very sequential, and the required 1-dimensional Gaussian samples are obtained via algorithms based on
rejection sampling (see, e.g., [39, 57]) that are costly to transform into circuits. The other candidate is
Lyubashevsky’s signature scheme [46, 47]. It has the advantage of being far less sequential, but it also
relies on rejection sampling: when some rejection test does not pass, then one needs to restart the signing
process.

3. Selective Security. It only achieves a very restricted notion of selective security, where all the corrupted
parties must be announced before any partial signing query is made. To obtain security in the more
realistic adaptive setting, one option is to invoke complexity leveraging, which consists in guessing at the
outset which parties will be corrupted. This is not only dissatisfying as a solution but also leads to a
further degradation of the parameters.

1.2 Our Contributions

In this work, we improve the construction from [8] as follows:

• Efficiency. We decrease the noise flooding ratio from 2Ω(λ) down to
√
Q, where Q is the bound on

the number of generated signatures. This gives a one-round threshold signature of bit-length growing
as Õ(λ log2Q), which is Õ(λ) for any polynomially bounded Q,1 in contrast with Õ(λ3) for the construction
from [8]. These bit-lengths are obtained when relying on the ring variants of SIS and LWE [48, 50, 55, 49].
Additionally, we show that the amount of noise flooding used in this construction is optimal, by exhibiting
an attack when a smaller noise flooding ratio is used.

• Instantiation. To instantiate the signature underlying BGGJKRS, we provide a homomorphism friendly
variant of Lyubashevsky’s signature [EUROCRYPT ’12] which achieves low circuit depth. We remove the
rejection sampling at the expense of adding moderate noise of size

√
Q, matching the above. Again, we

show that this amount of flooding is optimal by demonstrating an attack when smaller flooding is used.

1 For many applications, the bound Q is quite limited and can be considered to be a small polynomial in λ. For
example, for applications pertaining to cryptocurrencies, the bound Q may capture the total number of transactions
made with a user’s wallet during the lifetime of a signing key. According to statistics available at the URLs
below, one transaction per day and per user is a generous upper bound. This suggests that number of signing
queries in the lifecycle of the key will be quite limited. https://www.blockchain.com/charts/n-transactions,
https://www.statista.com/statistics/647374/worldwide-blockchain-wallet-users/
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• Selective versus Adaptive. As discussed above, the construction BGGJKRS satisfies only selective security.
We improve this in two ways: in the Random Oracle Model (ROM), in which a hash function is being
modeled as a uniformly sampled function with the same domain and range, we obtain a notion of partial
adaptivity where signing queries can be made before the corrupted parties are announced. However, the set
of corrupted parties must be announced all at once. In the standard model, we obtain a construction with
full adaptivity, where parties can be corrupted at any stage in the protocol. However, this construction
is in a weaker pre-processing model where signers must be provided correlated randomness of length
proportional to the number of signing queries. The informed reader may notice similarities with the “MPC
with Preprocessing” model, please see [29] and references therein 2.

1.3 Technical Overview

Recap of BGGJKRS Threshold Signatures. The round-optimal threshold signatures provided by [8] are
designed using a “universal thresholdizer” which enables the thresholdizing of a number of primitives. This
thresholdizer is itself instantiated using a threshold version of “special” fully homomorphic encryption (FHE),
which in turn can be constructed using the LWE assumption. In threshold fully homomorphic encryption
(TFHE), the setup algorithm takes as input a threshold t and produces a set of decryption key shares
sk1, . . . , skN for the parties such that every party can perform a partial decryption using its own decryption
key and any t out of N partial decryptions can be combined into a complete decryption of the ciphertext in a
single round.

In more detail, the TFHE construction of BGGJKRS leverages the fact that the decryption in LWE based
FHE schemes [12, 10, 35] requires to compute an inner product of the ciphertext ct with the secret key sk,
followed by a rounding operation. Since inner product is a linear operation, a natural approach to thresholdize
FHE decryption is by applying a Shamir t-out-of-N secret sharing to sk. This will yield N keys sk1, . . . , skN ,
which can be distributed to the N users. Now, to decrypt a ciphertext ct, each user can compute the inner
product with its individual secret key ski as its partial decryption mi. To combine any t partial decryptions
into the final decryption, the combiner chooses Lagrange coefficients γ1, . . . , γt so that

∑
i γiski = sk. Then,

she computes ∑
i

γimi =
∑
i

γi〈ct, ski〉 = 〈ct,
∑
i

γiski〉 = 〈ct, sk〉,

followed by rounding, as desired. However, this appealingly simple construction turns out to be insecure. This
is because each time a party computes a partial decryption, it leaks information about its secret share ski via
the inner product with (the public) value ct.

To get around this insecurity, a natural approach is to add noise to the partial decryption which quickly
transforms a simple computation to intractable. However, care must be taken to ensure that this added noise
does not affect correctness, since it is later multiplied by the Lagrange coefficients during reconstruction: the
previous

∑
i γimi will now become

∑
i γi(mi + ei) for some noise terms ei. BGGJKRS propose two solutions –

one to use a secret sharing scheme whose reconstruction coefficients are binary, and another, to “clear the
denominators” by observing that since the Lagrange coefficients are rational numbers, it is possible to scale
them to be integers. The exact details are irrelevant for the current discussion and hence omitted (please
refer to [8] for more details).

To use this technique to construct threshold signatures, the authors propose the following. Choose
a signature scheme Sig, compute an FHE encryption ctsk of its signing key Sig.sk and let each signer
homomorphically evaluate the signing algorithm for a message µ on this ciphertext. In more detail, given
ctsk = FHE.Enc(Sig.sk), each party first computes FHE.Eval(C, ctsk) where C is the circuit Sig.Sign(µ, ·). By
correctness of FHE, this yields an FHE encryption of the signature σ = Sig.Sign(Sig.sk, µ). To this ciphertext,
the thresholdization trick described above may now be applied.

2 Note that we can trade the offline sharing of correlated randomness with an additional communication round in the
signing protocol – however, this would destroy round optimality.
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Modeling the Adversary and Effect on Parameters. In their analysis, BGGJKRS consider the
complexity-theory security requirement of “no polynomial time attacks”, corresponding to assuming attacks
with advantage ε = λ−O(1) and run-time λO(1). However, for practically motivated primitives like threshold
signatures, it is more meaningful to consider attackers with advantage 2−o(λ) and run-time 2o(λ). We choose
our adversarial model so that all attacks should be exponential while all honest algorithms run in polynomial
time. Compared to the complexity-theory definition of security, this provides a much more significant (and
practically meaningful) hardness gap between honest and malicious parties.

For subexponentially strong attackers as described above, the noise flooding used in BGGJKRS is
exponential, severely damaging the practicality of the scheme, despite the exciting developments in practical
FHE [18, 58, 41, 17, 16, 26]. In more detail, the proof requires to make the statistical distance between some
noise terms e′ and e+ e′ small, so that knowing e+ e′ is essentially the same as knowing e′, which does not
carry sensitive information. To get security against attackers with advantage 2−o(λ), the statistical distance
must be set to 2−Ω(λ) and, as a result, the standard deviation of e′ must be a factor 2Ω(λ) larger than the
upper bound on |e|.

Tightening Analysis via Rényi divergence. In this work, we examine whether this flooding noise can
be improved so that the impact of flooding e by e′ on efficiency is minimised. To this end, we explore
using Rényi divergence rather than statistical distance to bound the distance between distributions in the
security proof. Rényi divergence has been used in prior work as a replacement to the statistical distance
in lattice based cryptography [42, 45, 7, 52, 40, 3, 9, 2, 4]. To understand why this may be beneficial, let
us first see how statistical distance is used in typical security proofs of cryptography. Let P and Q be two
non-vanishing probability distributions over a common measurable support X. Typical security proofs consider
a hard problem relying on some ideal distribution Q, and then replace this ideal distribution by a real world
distribution P. When the statistical distance ∆(Q,P) between the two distributions is small, the problem
remains hard, implying security. This is made rigorous by the so-called “probability preservation” property
which says that for any measurable event E ⊆ X, we have Q(E) ≥ P(E)−∆(Q,P).

Let us now define Rényi Divergence (RD). For a ∈ (1,∞), the RD of order a is defined by Ra(P||Q) =(∑
x∈X

P(x)a
Q(x)a−1

) 1
a−1

. It enjoys an analogous probability preservation property, though multiplicative as

against additive. For E ⊆ X, we have Q(E) ≥ P(E)
a

a−1 /Ra(P||Q). Thus, if an event E occurs with significant
probability under P , and if the SD or the RD is small, then the event E also occurs with significant probability
under Q. As discussed in [4], probability preservation in SD is meaningful when the distance is smaller than
any P(E) that the security proof is required to deal with – if P(E) ≥ ε for some ε, then we require that
∆(Q,P) < ε. The analogous requirement for RD is Ra(P||Q) ≤ poly(1/ε). Bai et al. [4] observed that RD is
often less demanding than SD in proofs. This is because RD between distributions may be small enough to
suffice for RD probability preservation while SD may be too large for the SD probability preservation to be
applicable. Thus, RD can often serve as a better tool for security analysis, especially in applications with
search-type security definitions, like signatures.

In this work, we study the applicability of RD analysis in the construction of threshold signatures. Building
upon the above approach, we show that a limited flooding growing as

√
Q suffices in BGGJKRS, where Q

is the number of signing queries made by the attacker. We note that this is a substantial improvement in
practice, since the number of sign queries is typically very different, and much smaller, than the run time
of the adversary. Note that signature queries require active participation by an honest user and there is no
reason for an honest user to keep replying after an overly high number of queries that clearly shows adversarial
behavior. As a concrete example, in the NIST post quantum project [1], adversarial runtimes can go up to
2256 in some security levels, but the number of signature queries is always bounded by 264 (which is itself an
overly conservative bound in many scenarios). Thus, dependence on the number of queries is significantly
better than exponential dependence on the security parameter, and this leads to a significant improvement in
the signature bit size.

Optimality of our Moderate Flooding. We also show that this magnitude of flooding is necessary for
this construction, by exhibiting a statistical attack when smaller noise is used. At a high level, our attack
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proceeds as follows. First we show that using legitimate information available to her, the adversary can
compute errM + e1,M where errM is the error that results from homomorphically evaluating the signing
algorithm for message M and e1,M is the flooding noise that is used in the partial signature of the first
party. As a warmup, consider the setting where the flooding noise is randomized. Now, since the signature
scheme is deterministic, the term errM depends only on M and remains fixed across multiple queries for the
same message. On the other hand, the term e1,M keeps changing. Using Hoeffding’s bound, it is possible to
estimate the average of e1,M across multiple queries and use this to recover errM , leading to an attack.

This attack may be avoided by making the flooding noise a deterministic function of the message, e.g.,
by using a pseudo-random function evaluated on the message to generate the noise. We show that this
modification is not sufficient to make the threshold signature construction secure. For this purpose, we design
a signature scheme which includes “useless” information in the signature: this information does not affect
correctness nor security of the signature itself, but allows us to recreate the attack described above on the
resulting threshold signature. We start with a secure signature scheme Sig = (Sig.KeyGen,Sig.Sign,Sig.Verify)
whose signing key is a uniform bit-string among those with the same number of 0’s and 1’s. Now, let us
consider a special signature scheme Sig′ = (Sig′.KeyGen, Sig′.Sign, Sig′.Verify) derived from Sig by modifying
the signing algorithm as follows: for i ∈ [|Sig.sk|], if Sig.ski = 0, then append a 0 to the signature. Since our
signing key has exactly half as many 0’s as 1’s, this leads to a string of |Sig.sk|/2 zeroes being appended
to every signature: this does not leak any information and does not affect correctness (it is simply ignored
during verification). Now, consider using Sig′ to instantiate our threshold signature scheme. Then, for any
message M , the FHE ciphertext CTσM

now additionally includes homomorphically evaluated encryptions of
{Sig.ski}i∈[|Sig.sk|]:Sig.ski=0. Note that these extra encryptions are designed to be a deterministic function of
the secret key so that across multiple messages, the corresponding error term (obtained via homomorphic
evaluation) will not change. On the other hand, the message-dependent error terms can be assumed to
change across messages. Due to this, the error term recovered by the adversary will be a sum of a fixed term
(dependent only on the secret key) plus a fresh term per signature, which allows it to recreate the first attack.
Please see Section 3 for more details.
Homomorphism-Friendly Signature. Next, we provide a variant of Lyubashevsky’s signature scheme [47]
which enjoys low circuit depth and is homomorphism friendly. As discussed above, Lyubashevsky’s signature
contains a rejection sampling step, whose purpose is to make the distribution of the resultant signature
canonical, but this step is cumbersome to implement homomorphically. We show that by using RD analysis
in place of statistical distance, analogously to the case of threshold signatures discussed above, the rejection
sampling step can be replaced by noise flooding of moderate magnitude

√
Q. Additionally, we show that this

flooding is optimal – please see Section 4 for details.

Towards Adaptive Security. Another limitation of the construction of BGGJKRS is that security is proved
in the weak “selective” model where the adversary must announce all corrupted users before receiving the
public parameters and verification key. In contrast, the more reasonable adaptive model allows the adversary
to corrupt users based on the public parameters, the verification key and previous user corruptions it may
have made. We briefly describe the difficulty in achieving adaptive security. At a high level, in the selective
game, the challenger proceeds by simulating the partial keys corresponding to the honest parties in a “special
way”. The challenge in the adaptive setting is that without knowing who are the honest/corrupted parties,
the challenger does not know which partial keys to program.

For more details, let us consider the case of an N -out-of-N threshold signature. In the simulation, the
challenger knows which party is honest at the start of the game, e.g., player N . Now, the challenger can
sample FHE secret keys sk1, . . . , skN−1 randomly, implicitly setting the last share as sk−

∑
i∈[N−1] ski. To

invoke the unforgeability of the underlying signature scheme Sig, the challenger must “forget” the signing key
Sig.sk at some point in the proof, and rely on the Sig challenger to return signatures, which it then encrypts
using the (public key) FHE scheme. By correctness of FHE, this is the same as computing the signing circuit
for a given message on the ciphertext containing the secret key, which is what happens in the real world.
However, the FHE encryption of signing key Sig.sk is provided as part of the public parameters in the real
world, which in turn means that the FHE secret key must be “forgotten” so that the FHE ciphertext of Sig.sk is
indistinguishable from a dummy value. Yet the challenger must return legitimate partial signatures of queried
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messages mj in the security game, which in turn are (noisy) partial decryptions of the FHE ciphertexts σ̂j of
signatures σj . Knowing all the corrupt secret keys sk1, . . . , skN−1 from the outset enables the challenger to
walk this tightrope successfully – it obtains σj from the Sig challenger, computes an FHE encryption σ̂j of
this, computes partial decryptions using sk1, . . . , skN−1, floods these with appropriate noise and returns these
to the adversary.

In the adaptive game, the honest player is not known at the beginning of the game so the challenger
is unable to sample FHE secret key shares as described above. When requested for a partial signatures for
message mj , it can obtain the corresponding signature σj and can FHE encrypt it, but cannot decrypt it
using secret key shares which are unavailable. To preserve correctness and indistinguishability from the real
world, it is forced to return (noisy) random secret shares {σi,j}i∈[N ],j∈poly of σj as partial signatures, for
unbounded j. Later if user 1 is corrupted (say), the adversary receives the secret key share sk1. Now, to
preserve indistinguishability, the challenger must explain the partial signatures {σ1,j}j∈poly corresponding to
user 1 as 〈σ̂j , sk1〉 ≈ σ1,j , which seems impossible for unbounded j.

We overcome this hurdle in the ROM by having the challenger simulate all partial keys as though
corresponding to a corrupt user and when the list of corrupted parties becomes available, “program” the ROM
to “explain” the returned keys in a consistent way. This yields an intermediate notion of “partial adaptivity”,
in which the attacker can make signing queries before corruption, but must announce its corrupted users all
at once. In more detail, we modify the signing key to additionally contain a random secret share of 0, i.e.,
each party is provided a vector vi of length N , such that

∑
i∈[N ] vi = 0. In the scheme, to compute a partial

signature for a message mj , the partial signing algorithm first computes ri,j = H(j,K)T vi where H(j,K) is
a random vector of length N , and K is a secret value required for a technical reason that we will not discuss
here. It then returns 〈σ̂j , ski〉+noisei,j+ri,j . By linearity, it holds that

∑
i∈[N ]H(j,K)T vi = 0, so correctness

is not affected. But the unbounded programmability of the ROM helps us overcome the aforementioned
impasse in the proof. Now, the challenger answers partial signature queries by returning (noisy) random
secret shares {σi,j}i∈[N ],j∈poly of σj . When later, user 1 is corrupted, it can correctly explain the returned
signatures as follows: it samples sk1, computes d1,j = 〈σ̂j , sk1〉 + noise and sets r1,j = σ1,j − d1,j . Now we
may program H(j,K) so that ri,j = H(j,K)T vi for all j – it can be checked that there are enough degrees
of freedom to satisfy these equations. However, since all secrets of a user are revealed when it is corrupted,
the value H(j,K) is fixed when even a single user is corrupted. This is why we require that all corruptions be
made simultaneously and only achieve the restricted notion of “partial” adaptivity.

We also provide a construction in the standard model which achieves full adaptivity where users can
be corrupted at arbitrary points in the security game. But this construction is only secure in a weaker
pre-processing model where the signers must be provided correlated randomness of length proportional to the
number of signing queries, in an offline pre-processing phase. We emphasize that the correlated randomness is
independent of the messages to be signed later. This model is reminiscent of the “MPC with Preprocessing”
model (please see [29] and references therein). We refer the reader to Section 5 and 6 for more details.

2 Preliminaries

In this section, we define the notations and other preliminaries used in our work.
Notation. We write vectors with bold small letters and matrices with bold capital letters. For any vector v,
v[i] or vi denotes its ith element unless otherwise indicated. Similarly, for any matrix M, M[i][j] or Mij

represents the element in the jth column of ith row. Let S be any set, then |S| represents the cardinality of S,
while in case of any x ∈ R, |x| represents absolute value of x. For any n ∈ N, we let the set {1, 2, . . . , n} be
denoted by [n]. For any set S, we let P(S) denote the power set of S, i.e., the set of all subsets of S. DΛ,s,c
represents discrete Gaussian distribution over lattice Λ, with center c and standard deviation parameter s.
When c = 0, we omit it. Similarly, we omit Λ, if Λ = Z.
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2.1 Threshold Signatures

Definition 2.1 (Threshold Signatures). Let P = {P1, . . . , PN} be a set of N parties. A threshold signature
scheme for a class of efficient access structures S on P (see Def. 2.29) is a tuple of PPT algorithms denoted
by TS = (TS.KeyGen, TS.PartSign,TS.PartSignVerify, TS.Combine,TS.Verify) defined as follows:

• TS.KeyGen(1λ,A)→ (pp, vk, {ski}Ni=1): On input the security parameter λ and an access structure A, the
KeyGen algorithm outputs public parameters pp, verification key vk and a set of key shares {ski}Ni=1.

• TS.PartSign(pp, ski,m)→ σi: On input the public parameters pp, a partial signing key ski and a message
m ∈ {0, 1}∗ to be signed, the partial signing algorithm outputs a partial signature σi.

• TS.PartSignVerify(pp,m, σi)→ accept/reject: On input the public parameters pp, a message m ∈ {0, 1}∗
and a partial signature σi, the partial signature verification algorithm outputs accept or reject.

• TS.Combine(pp, {σi}i∈S)→ σm: On input the public parameters pp and the partial signatures {σi}i∈S for
S ∈ A, the combining algorithm outputs a full signature σm.

• TS.Verify(vk,m, σm)→ accept/reject: On input a verification key vk, a message m and a signature σm,
the verification algorithm outputs accept or reject.

A TS scheme should satisfy the following requirements.

Definition 2.2 (Compactness). A TS scheme for S satisfies compactness if there exist polynomials
poly1(·),poly2(·) such that for all λ, A ∈ S and S ∈ A, the following holds. For (pp, vk, {ski}Ni=1)←TS.KeyGen(1λ,A),
σi←TS.PartSign(pp, ski,m) for i ∈ S, and σm←TS.Combine(pp, {σi}i∈S), we have that |σm| ≤ poly1(λ) and
|vk| ≤ poly2(λ).

Definition 2.3 (Evaluation Correctness). A signature scheme TS for S satisfies evaluation correctness
if for all λ,A ∈ S and S ∈ A, the following holds. For (pp, vk, {ski}Ni=1) ← TS.KeyGen(1λ,A), σi ←
TS.PartSign(pp, ski,m) for i ∈ [N ] and σm ← TS.Combine(pp, {σi}i∈S), we have that Pr[TS.Verify(vk,m, σm) =
accept] ≥ 1− λ−ω(1).

Definition 2.4 (Partial Verification Correctness). A signature scheme TS for S satisfies partial
verification correctness if for all λ and A ∈ S, the following holds. For (pp, vk, {ski}Ni=1)← TS.KeyGen(1λ,A),

Pr[TS.PartSignVerify(pp,m,TS.PartSign(pp, ski,m)) = 1] = 1− λ−ω(1).

Definition 2.5 (Unforgeability). A TS scheme is unforgeable if for any adversary A with run-time 2o(λ),
the output of the following experiment ExptA,TS,uf (1λ) is 1 with probability 2−Ω(λ):

1. On input the security parameter λ, the adversary outputs an access structure A ∈ S.
2. Challenger runs the TS.KeyGen(1λ) algorithm and generates public parameters pp, verification key vk and

set of N key shares {ski}Ni=1. It sends pp and vk to A.
3. Adversary A then issues polynomial number of following two types of queries in any order

– Corruption queries: A outputs a party i ∈ [N ] which it wants to corrupt. In response, the challenger
returns the key share ski.

– Signature queries: A outputs a query of the form (m, i), where m is a message and i ∈ [N ], to get
partial signature σi for m. The challenger computes σi as TS.PartSign(pp, ski,m) and provides it to
A.

4. At the end of the experiment, adversary A outputs a message-signature pair (m∗, σ∗).
5. The experiment outputs 1 if both of the following conditions are met: (i) Let S ⊆ [N ] be the set of

corrupted parties, then S is a an invalid party set, i.e. S 6∈ A (ii) m∗ was not queried previously as a
signing query and TS.Verify(vk,m∗, σ∗) = accept.

We also consider following weaker notions of unforgeability.

Definition 2.6 (Partially Adaptive Unforgeability). Here, all the corruptions are done all at once.
That is, Step 3, is now changed as follows:
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– A issues polynomial number of signing queries of the form (m, i) adaptively and gets corresponding σi’s.
– A outputs a set S ⊆ [N ] such that S 6∈ A. The challenger returns {ski}i∈S.
– A continues to issue polynomial number of more signing queries of the form (m, i) adaptively, and gets
corresponding σi.

Rest of the steps remain the same.

Definition 2.7 (Selective Unforgeability). In this case, all the corruptions happen before any signing
query. That is, Step 3, is now further changed as follows:

– A outputs a set S ⊆ [N ] such that S 6∈ A. The challenger returns {ski}i∈S.
– A issues polynomial number of signing queries of the form (m, i) adaptively, and gets corresponding σi.

Rest of the steps remain the same.

Definition 2.8 (Robustness). A TS scheme for S satisfies robustness if for all λ, the following holds.
For any adversary A with run-time 2o(λ), the following experiment ExptA,TS,rb(1

λ) outputs 1 with
probability 2−Ω(λ):

– On input the security parameter 1λ, the adversary outputs an access structure A ∈ S.
– The challenger samples (pp, vk, sk1, . . . , skN )←TS.KeyGen(1λ,A) and provides

(pp, vk, sk1, . . . , skN ) to A.
– Adversary A outputs a partial signature forgery (m∗, σ∗i , i).
– The experiment outputs 1 if TS.PartSignVerify(pp,m∗, σ∗i ) = 1 and σ∗i 6= TS.PartSign(pp, ski,m∗).

2.2 Fully Homomorphic Encryption (FHE)

A fully homomorphic encryption scheme is an encryption scheme that allows computations on encrypted data.

Definition 2.9 (Fully Homomorphic Encryption). A fully homomorphic encryption scheme FHE is a
tuple of PPT algorithms FHE = (FHE.KeyGen,FHE.Enc, FHE.Eval,FHE.Dec) defined as follows:

• FHE.KeyGen(1λ, 1d)→(pk, sk): On input the security parameter λ and a depth bound d, the KeyGen
algorithm outputs a key pair (pk, sk).

• FHE.Enc(pk, µ)→ct: On input a public key pk and a message µ ∈ {0, 1}, the encryption algorithm outputs
a ciphertext ct.

• FHE.Eval(pk, C, ct1, . . . , ctk)→ĉt: On input a public key pk, a circuit C : {0, 1}k→{0, 1} of depth at most d,
and a tuple of ciphertexts ct1, . . . , ctk, the evaluation algorithm outputs an evaluated ciphertext ĉt.

• FHE.Dec(pk, sk, ĉt)→µ̂: On input a public key pk, a secret key sk and a ciphertext ĉt, the decryption
algorithm outputs a message µ̂ ∈ {0, 1,⊥}.

The definition above can be adapted to handle plaintexts over larger sets than {0, 1}. Note that the
evaluation algorithm takes as input a (deterministic) circuit rather than a possibly randomized algorithm. An
FHE should satisfy compactness, correctness and security properties defined below.

Definition 2.10 (Compactness). We say that an FHE scheme is compact if there exists a polynomial
function f(·, ·) such that for all λ, depth bound d, circuit C : {0, 1}k→{0, 1} of depth at most d, and
µi ∈ {0, 1} for i ∈ [k], the following holds: for (pk, sk)←FHE.KeyGen(1λ, 1d), cti←FHE.Enc(pk, µi) for i ∈ [k],
ĉt←FHE.Eval(pk, C, ct1, . . . , ctk), the bit-length of ĉt is at most f(λ, d).

Definition 2.11 (Correctness). We say that an FHE scheme is correct if for all λ, depth bound d,
circuit C : {0, 1}k→{0, 1} of depth at most d, and µi ∈ {0, 1} for i ∈ [k], the following holds: for
(pk, sk)←FHE.KeyGen(1λ, 1d), cti←FHE.Enc(pk, µi) for i ∈ [k], ĉt←FHE.Eval(pk, C, ct1, . . . , ctk), we have

Pr[FHE.Dec(pk, sk, ĉt) = C(µ1, . . . , µk)] = 1− λ−ω(1).
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Definition 2.12 (Security). We say that an FHE scheme is secure if for all λ and depth bound d,
the following holds: for any adversary A with run-time 2o(λ), the following experiment outputs 1 with
probability 2−Ω(λ):

1. On input the security parameter λ and a depth bound d, the challenger runs
(pk, sk)←FHE.KeyGen(1λ, 1d) and ct←FHE.Enc(pk, b) for b←{0, 1}. It provides (pk, ct) to A.

2. A outputs a guess b′. The experiment outputs 1 if b = b′.

In this work, our constructions use a special FHE having some additional properties as described in [8].
These properties are satisfied by direct adaptations of typical FHE schemes such as [12, 35] (see, e.g., [8,
Appendix B]).

Definition 2.13 (Special FHE). An FHE scheme is a special FHE scheme if it satisfies the following
properties:

1. On input (1λ, 1d), the key generation algorithm FHE.KeyGen outputs (pk, sk), where the public key contains
a prime q and the secret key is a vector sk ∈ Zmq for some m = poly(λ, d).

2. The decryption algorithm FHE.Dec consists of two functions (FHE.decode0, FHE.decode1) defined as
follows:
• FHE.decode0(sk, ct): On input an encryption of a message µ ∈ {0, 1} and a secret key vector sk, it
outputs p = µ bq/2e+ e ∈ Zq for e ∈ [−cB, cB] with B = B(λ, d, q) and e is an integer multiple of c.
This algorithm must be a linear operation over Zq in the secret key sk.

• FHE.decode1(p): On input p ∈ Zq, it outputs 1 if p ∈ [−bq/4e , bq/4e], and 0 otherwise.
The bound B = B(λ, d, q) is referred to as the associated noise bound parameter of the construction and c
as the associated multiplicative constant.

2.3 Threshold Fully Homomorphic Encryption

Definition 2.14 (Threshold Fully Homomorphic Encryption). A threshold fully homomorphic
encryption for a class of efficient access structures S, defined on a set P = {P1, P2, . . . , PN} of parties is defined
by a tuple of five algorithms TFHE = (TFHE.KeyGen,TFHE.Enc, TFHE.Eval, TFHE.PartDec, TFHE.FinDec)
with the following specifications:

• TFHE.KeyGen(1λ, 1d,A) → (pk, sk1, . . . , skN ): On input the security parameter λ, a depth bound d and
an access structure A ∈ S, the KeyGen algorithm outputs a public key pk and a set of secret key shares
{ski}Ni=1.

• TFHE.Enc(pk, µ) → ct: On input a public key pk and a single bit message µ ∈ {0, 1}, the encryption
algorithm outputs a ciphertext ct.

• TFHE.Eval(pk, C, ct1, ct2, . . . , ctk)→ ĉt: On input a public key pk, a circuit C : {0, 1}k → {0, 1} of depth
at most d and a set of ciphertexts ct1, . . . , ctk, the evaluation algorithm outputs an evaluated ciphertext ĉt.

• TFHE.PartDec(pk, ski, ct)→ pi: On input a public key pk, a secret key share ski and a ciphertext ct, the
partial decryption algorithm outputs a partial decryption pi corresponding to the party Pi.

• TFHE.FinDec(pk, {pi}i∈S)→ µ̂ : On input a public key pk and a set of partial decryptions corresponding
to parties in some set S ⊆ [N ], the final decryption algorithm outputs a message µ̂ ∈ {0, 1,⊥}.

Correctness. A TFHE scheme for S is said to satisfy evaluation correctness if for all λ, depth bound d,
access structure A ∈ S, circuit C : {0, 1}k → {0, 1} of depth at most d, S ∈ A, and µi ∈ {0, 1} for i ∈ [k], the
following condition holds. For (pp, sk1, . . . , skN )←TFHE.KeyGen(1λ, 1d,A), cti←TFHE.Enc(pk, µi) for i ∈ [k],
ĉt←TFHE.Eval(pk, C, ct1, . . . , ctk):

Pr[TFHE.FinDec(pk, {TFHE.PartDec(pk, ski, ĉt)}i∈S) = C({µi}i∈[k])] = 1− λ−ω(1).

Semantic security. A TFHE scheme is said to satisfy semantic security if for all λ and depth bound d, the
following holds. For any adversary A with run-time bounded as 2o(λ), the experiment below outputs 1 with
probability 2−Ω(λ):

9



1. On input the security parameter λ, and a circuit depth d, the adversary A outputs an access structure
A ∈ S.

2. The challenger runs (pk, sk1, . . . , skN )←TFHE.KeyGen(1λ, 1d,A) and provides pk to A.
3. A outputs a set S of participants, such that S /∈ A.
4. The challenger provides {ski}i∈S and TFHE.Enc(pk, b), where b←{0, 1} to A.
5. A outputs a guess bit b′. The experiment outputs 1 if b = b′.

Simulation security. A TFHE scheme for S is said to satisfy simulation security if for all λ, depth bound d
and access structure A, the following holds: there exists a stateful PPT algorithm S = (S1,S2) such that for
any adversary A with run-time bounded as 2o(λ), the following two experiments are indistinguishable.

ExptA,Real(1
λ,1d) :

1. On input the security parameter λ and a circuit depth d, the adversary A outputs an access structure
A ∈ S.

2. The challenger runs (pk, sk1, . . . , skN )←TFHE.KeyGen(1λ, 1d,A) and provides pk to A.
3. Adversary A outputs a maximal invalid party set S∗ ⊆ [N ] and a set of message bits, µ1, µ2, . . . , µk ∈
{0, 1}.

4. The challenger provides {ski}i∈S∗ and {cti = TFHE.Enc(pk, µi)}i∈[k] to A.
5. Adversary A issues a polynomial number of adaptive queries of the form (S ⊆ {P1, . . . , PN}, C) for circuits
C : {0, 1}k → {0, 1} of depth at most d.

6. For each query, the challenger computes ĉt←TFHE.Eval(pk, C, ct1, . . . , ctk) and sends {TFHE.PartDec
(pk, ski, ĉt)}i∈S to A.

7. At the end of the experiment, adversary A outputs a bit b.

ExptA,Ideal(1
λ,1d) :

1. On input the security parameter λ and circuit depth d, the adversary A outputs an access structure A ∈ S.
2. The challenger runs (pk, sk1, . . . , skN , st)←S1(1λ, 1d,A) and provides pk to A.
3. Adversary A outputs a maximal invalid party set S∗ ⊆ P and a set of message bits, µ1, µ2, . . . , µk ∈ {0, 1}.
4. The challenger provides {ski}i∈S∗ and {cti = TFHE.Enc(pk, µi)}i∈[k] to A.
5. Adversary A issues a polynomial number of adaptive queries of the form (S ⊆ [N ], C) for circuits
C : {0, 1}k → {0, 1} of depth at most d.

6. For each query, the challenger runs the simulator S2 to compute partial decryptions as
{pi}i∈S←S2(C, ct1, . . . , ctk, C(µ1, . . . , µk), S, st) and sends {pi}i∈S to A.

7. At the end of the experiment, adversary A outputs a bit b.

2.4 Multi-data Homomorphic Signature

A homomorphic signature scheme is a signature scheme that allows computations on authenticated data. In a
multi-data homomorphic signature scheme, the signer can sign many different datasets of arbitrary size. Each
dataset is tied to some label τ (e.g., the name of the dataset) and the verifier is assumed to know the label of
the dataset over which it wishes to verify computations.

Definition 2.15 (Multi-data Homomorphic Signature). A multi-data homomorphic signature for
messages over a set X is a tuple of PPT algorithms (PrmsGen,KeyGen,Sign,SignEval, Process, Verify) with
the following syntax.

• PrmsGen(1λ, 1N )→prms: Gets the security parameter λ and a data-size bound N and generates public
parameters prms.

• KeyGen(1λ, prms)→(pk, sk): Produces a public verification key pk and a secret signing key sk.
• Sign(sk, (x1, . . . , xN ), τ)→(στ , σ1, . . . , σN ): Signs some data (x1, . . . , xN ) ∈ X ∗ under a label τ ∈ {0, 1}∗.
• SignEval(prms, g, στ , (x1, σ1), (x`, σ`))→σ∗: Homomorphically computes a signature σ∗ for g(x1, . . . , xN ).
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• Process(prms, g)→αg: Produces a “public-key” αg for the function g.
• Verify(pk, αg, y, τ, (στ , σ

∗))→accept/reject: Verifies that y ∈ X is indeed the output of the function g over
the data signed with label τ . We can define the “combined verification procedure” Verify∗(pk, g, y, τ, στ , σ

∗)
as: Compute αg←Process(prms, g) and output Verify(pk, αg, y, τ, (στ , σ

∗)).

A homomorphic signature should satisfy the correctness and security properties defined below.

Definition 2.16 (Correctness).
Correctness of Signing. Let idi : XN → X be a canonical description of the function idi(x1, ..., xN ) =
xi (i.e., a circuit consisting of a single wire taking the i’th input to the output). We require that for
any prms←PrmsGen(1λ, 1N ), (pk, sk)←KeyGen(1λ, prms), (x1, . . . , xN ) ∈ XN , any τ ∈ {0, 1}∗, and any
(στ , σ1, . . . , σN )←
Sign(sk, (x1, . . . , xN ), τ) following must satisfy:
Verify∗(pk, idi, xi, τ, (στ , σi)) = accept. In other words, the pair (στ , σi) certifies xi as the ith data item of the
data with label τ .
Correctness of Evaluation. For any functions h1, . . . , h` with hi : XN→X for i ∈ [`], any function g : X `→X ,
any (x1, . . . , x`) ∈ X `, any τ ∈ {0, 1}∗ and any (στ , σ1, . . . , σ`):

{{Verify(pk, hi, xi, τ, (στ , σi)) = accept}i∈[`],
σ∗←SignEval(prms, g, στ , (x1, σ1), (x`, σ`))}

⇒ Verify∗(pk, (g ◦ h̄), g(x1, . . . , x`), τ, (στ , σ
∗)) = accept.

In other words, if the signatures (στ , σi) certify xi as the outputs of function hi over the data labeled
with τ for all i ∈ [`], then (στ , σ

∗) certifies g(x1, . . . , x`) as the output of g ◦ h̄ over the data labeled with τ .

Definition 2.17 (Security). The security is defined via the following game between an attacker A and a
challenger:

• The challenger runs prms←PrmsGen(1λ, 1N ) and (pk, sk)←KeyGen(prms, 1λ), and gives prms, pk to the
attacker A.

• Signing queries: The attacker A can ask an arbitrary number of signing queries. In each query j, the
attacker chooses a fresh tag τj which was never queried previously and a message (xj1, . . . , xjNj ) ∈ X ∗.
The challenger responds with

(στj , σj1, . . . , σjNj )←Sign(sk, (xj1, . . . , xjNj ), τj).

• The attacker A outputs a function g : XN ′→X and values τ, y′, (σ′τ , σ
′). The attacker wins if

Verify∗(pk, g, y′, τ, (σ′τ , σ
′)) = accept and either:

– Type 1 forgery: τ /∈ {τj}j or τ = τj for some j but N ′ 6= Nj, i.e., the signing query with label τ was
never made or there is a mismatch between the size of the data signed under label τ and the arity of
the function g.

– Type 2 forgery: τ = τj for some j with corresponding message xj,1, . . . , xj,N ′ such that (a) g is
admissible on xj,1, . . . , xj,N ′ and (b) y′ 6= g(xj,1, . . . , xj,N ′).

We require that for all A with run-time 2o(λ), we have Pr[A wins] ≤ 2−Ω(λ) in the above game.

We now give a simulation-based notion of context-hiding security, requiring that a context hiding signature
σ̃ can be simulated given the knowledge of only the computation g and output y, but without any other
knowledge of underlying data. The simulation remains indistinguishable even given the underlying data, the
underlying signatures, and even the public/secret key of the scheme. In other words, the derived signature
does not reveal anything beyond the output of the computation even to an attacker that may have some
partial information on the underlying values.
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Definition 2.18 (Context Hiding). A multi-data homomorphic signature supports context hiding if there
exist additional PPT procedures σ̃←Hide(pk, y, σ), HVerify(pk, g,Process(g), y, τ , (στ , σ̃)) such that:

• Correctness: For any prms←PrmsGen(1λ, 1N ), any (pk, sk)←KeyGen(1λ, prms) and any α, y, τ, στ , σ such
that Verify(pk, α, y, τ, (στ , σ)) = accept, for any σ̃←Hide(pk, y, σ) we have

HVerify(pk, α, y, τ, (στ , σ̃)) = accept.

• Unforgeability: Multi-data signature security holds when we replace the Verify procedure by HVerify in the
security game.

• Context hiding security: Firstly, in the procedure (στ , {σi}i∈[N ])←Sign(sk, {xi}i∈[N ], τ), we require
that στ can only depend on (sk, N, τ) but not on the data {xi}. Secondly, we require that there is a
simulator Sim such that for any fixed (worst-case) choice of prms, (pk, sk) and any α, y, τ, στ , σ such that
Verify(pk, α, y, τ, (στ , σ)) = accept, we have that the distributions Hide(pk, y, σ) and Sim(sk, α, y, τ, στ ) are
indistinguishable, where the randomness is only over the random coins of the simulator and the Hide
procedure. We say that such schemes are statistically context hiding if the above indistinguishability holds
statistically.

2.5 Lattices and Discrete Gaussians

In this section we provide definitions of lattices and discrete Gaussian distributions.

Definition 2.19 (Lattice). An n-dimensional lattice Λ is a discrete additive subgroup of Rn. For an integer
k < n and a rank k matrix B ∈ Rn×k, Λ(B) = {Bx : x ∈ Zk} is the lattice generated by integer linear
combinations of columns of matrix B. The matrix B is called a basis of the lattice.

Definition 2.20 (Gaussian distribution). For any vector c ∈ Rn and any real s > 0, the (spherical)
Gaussian function with standard deviation parameter s and center c is defined as:

∀x ∈ Rn, ρs,c(x) = exp

(
−π‖x− c‖2

s2

)
.

The Gaussian distribution is Ds,c(x) = ρs,c(x)/sn.
The (spherical) discrete Gaussian distribution over a lattice Λ ⊆ Rn, with standard deviation parameter

s > 0 and center c is defined as:

∀x ∈ Λ,DΛ,s,c =
ρs,c(x)

ρs,c(Λ)
,

where ρs,c(Λ) =
∑

x∈Λ ρs,c(x). When c = 0, we omit the subscript c.

Definition 2.21 (Smoothing parameter). The smoothing parameter of an n-dimensional lattice Λ with
respect to ε > 0, denoted by ηε(Λ), is the smallest s > 0, such that ρ1/s(Λ∗ \ {0}) ≤ ε.

2.6 Hardness Assumptions

We will need the Learning With Errors (LWE) problem, which is known to be at least as hard as certain
standard lattice problems in the worst case [53, 11].

Definition 2.22 (Learning With Errors (LWE)). Let q, α,m be functions of a parameter n. For a
secret s ∈ Znq , the distribution Aq,α,s over Znq × Zq is obtained by sampling a←Znq and an e←DZ,αq, and
returning (a, 〈a, s〉+ e) ∈ Zn+1

q . The Learning With Errors problem LWEq,α,m is as follows: For s←Znq , the
goal is to distinguish between the distributions:

D0(s) := U(Zm×(n+1)
q ) and D1(s) := (Aq,α,s)

m.

We say that a PPT algorithm A solves LWEq,α,m if it distinguishes D0(s) and D1(s) with non-negligible
advantage (over the random coins of A and the randomness of the samples), with non-negligible probability
over the randomness of s.
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Definition 2.23 (Short Integer Solution (SISq,n,m,d) problem). Let A←Zn×mq , s←{−d, . . ., 0, . . . , d}m
and t = As. Then given A, t, the task is to find s′ ∈ {−d, . . . , 0, . . . , d}m such that As′ = t.

The problem can be defined with respect to different norms as well. Below we give the definition for `2-SIS.

Definition 2.24 (Short Integer Solution (`2-SISq,n,m,β)). Given a random matrix A ← Zn×mq , find a
vector v ∈ Zm \ {0} such that Av = 0 and ‖v‖ ≤ β.

In order for the above problem to not be vacuously hard, we need to have β ≥
√
mqn/m. This ensures that

there exists a solution v.

2.6.1 Other Useful Lemmas

Lemma 2.25 (Adapted from [47, Lemma 4.4]).

1. For any k > 0, Pr[|z| > kσ; z←DZ,σ] ≤ 2 exp(−πk2).
2. For any σ ≥ 3, H∞(DZm,σ) ≥ m.
3. For any k > 1/

√
2π, Pr[‖z‖ > kσ

√
2πm; z←DZm,σ] < (k

√
2π)m exp(m2 (1− 2πk2)).

2.7 Rényi Divergence

The Rényi Divergence (RD) is a measure of closeness of any two probability distributions. In certain cases,
especially in proving the security of cryptographic primitives where the adversary is required to solve a
search-based problem, the RD can be used as an alternative to the statistical distance [4], which may help
obtain security proofs for smaller scheme parameters and may sometimes lead to simpler proofs.

Definition 2.26 (Rényi Divergence). Let P and Q be any two discrete probability distributions such that
Supp(P ) ⊆ Supp(Q). Then for a ∈ (1,∞), the Rényi Divergence of order a is defined by

Ra(P ||Q) =

 ∑
x∈Supp(P )

P (x)a

Q(x)a−1

 1
a−1

.

For a = 1 and a =∞, the RD is defined as

R1(P ||Q) = exp

 ∑
x∈Supp(P )

P (x) log
P (x)

Q(x)

 and R∞(P ||Q) = max
x∈Supp(P )

P (x)

Q(x)
.

For any fixed distributions P and Q, the function f(a) = Ra(P‖Q) is non decreasing, continuous over
(1,∞) and tends to R∞(P‖Q) as a goes to infinity. Further, if Ra(P‖Q) is finite for some a, then it tends to
R1(P‖Q) as a tends to 1.

The following lemma is borrowed from [4, Lemma 2.9], with the exception of the multiplicativity property
for non-independent variables, which is borrowed from [54, Proposition 2].

Lemma 2.27. Let a ∈ [1,∞]. Let P and Q denote distributions with Supp(P ) ⊆ Supp(Q). Then the following
properties hold

• Log Positivity: Ra(P ||Q) ≥ Ra(P ||P ) = 1.
• Data Processing Inequality: Ra(P f ||Qf ) ≤ Ra(P ||Q) for any function f , where P f (resp. Qf ) denotes
the distribution of f(y) induced by sampling y←P (resp. y←Q).

• Probability preservation: Let E ⊆ Supp(Q) be an arbitrary event. If a ∈ (1,∞), then

Q(E) ≥ P (E)
a

a−1 /Ra(P‖Q).

13



For a =∞,
Q(E) ≥ P (E)/R∞(P‖Q).

For a = 1, Pinsker’s inequality gives the following analogue property:

Q(E) ≥ P (E)−
√

lnR1(P ||Q)/2.

• Multiplicativity: Assume that P and Q are two distributions of a pair of random variables (Y1, Y2). For
i ∈ {1, 2}, let Pi (resp. Qi) denote the marginal distribution of Yi under P (resp. Q), and let P2|1(·|y1)
(resp. Q2|1(·|y1)) denote the conditional distribution of Y2 given that Y1 = y1. Then we have:

• Ra(P ||Q) = Ra(P1||Q1) ·Ra(P2||Q2) if Y1 and Y2 are independent for a ∈ [1,∞].
• Ra(P ||Q) ≤ Ra(P1||Q1) ·maxy1∈Y1 Ra(P2|1(·|y1)||Q2|1(·|y1)).

• Weak Triangle Inequality: Let P1, P2, P3 be three distributions with Supp(P1) ⊆ Supp(P2) ⊆ Supp(P3).
Then we have

Ra(P1||P3) ≤

{
Ra(P1||P2) ·R∞(P2||P3),

R∞(P1||P2)
a

a−1 ·Ra(P2||P3) if a ∈ (1,+∞).
(2.1)

We will use the following RD bounds. Note that proof tightness can often be improved by optimizing over a,
as suggested in [56].

Lemma 2.28 ([4]). For any n-dimensional lattice, Λ ⊆ Rn and s > 0, let P be the distribution DΛ,s,c and
Q be the distribution DΛ,s,c′ for some fixed c, c′ ∈ Rn. If c, c′ ∈ Λ, let ε = 0. Otherwise fix ε ∈ (0, 1) and
assume that s > ηε(Λ). Then for any a ∈ (1,+∞)

Ra(P ||Q) ∈

[(
1− ε
1 + ε

) 2
a−1

,

(
1 + ε

1− ε

) 2
a−1

]
· exp

(
aπ
||c− c′||2

s2

)
.

2.8 Secret Sharing

We now recall some standard definitions related to secret sharing.

Definition 2.29 (Monotone Access Structure). Let P = {Pi}i∈[N ] be a set of parties. A collection
A ⊆ P(P ) is monotone if for any two sets B,C ⊆ P , if B ∈ A and B ⊆ C, then C ∈ A. A monotone access
structure on P is a monotone collection A ⊆ P(P ) \ ∅. The sets in A are called valid sets and the sets in
P(P ) \ A are called invalid sets.

Let S ⊆ P be a subset of parties in P . S is called maximal invalid party set if S 6∈ A, but for any Pi ∈ P \S,
we have S ∪ {Pi} ∈ A. S is called minimal valid party set if S ∈ A, but for any S′ ( S, we have S′ 6∈ A.

In this work, since we only use monotone access structures, we sometimes drop the word monotone. When
it is clear from the context, we use either i or Pi to represent party Pi.

Definition 2.30 (Threshold Access Structure). Let P = {Pi}i∈[N ] be a set of N parties. An access
structure At is called a threshold access structure, if for all S ⊆ P , we have S ∈ A iff |S| ≥ t. We let TAS
denote the class of all access structures At for all t ∈ N.

For any set of parties S ⊆ P , we define xS = (x1, . . . , xN ) ∈ {0, 1}N with xi = 1 iff Pi ∈ S.

Definition 2.31 (Efficient Access Structure). An access structure A on set P as defined above is called
an efficient access structure if there exists a polynomial size circuit fA : {0, 1}N→{0, 1}, such that for all
S ⊆ P , fA(xS) = 1 iff S ∈ A.

Definition 2.32 (Secret sharing). Let P = {P1, . . . , PN} be a set of parties and S be a class of efficient
access structures on P . A secret sharing scheme SS for a secret space K is a tuple of PPT algorithms
SS = (SS.Share,SS.Combine) defined as follows:
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• SS.Share(k,A)→(s1, . . . , sN ): On input a secret k ∈ K and an access structure A, the sharing algorithm
returns shares s1, . . . , sN for all parties.

• SS.Combine(B)→k: On input a set of shares B = {si}i∈S, where S ⊆ [N ], the combining algorithm
outputs a secret k ∈ K.

A secret sharing algorithm must satisfy the following correctness and privacy properties.

Definition 2.33 (Correctness). For all S ∈ A and k ∈ K, if (s1, . . . , sN )←SS.Share(k,A), then

SS.Combine({si}i∈S) = k.

Definition 2.34 (Privacy). For all S 6∈ A and k0, k1 ∈ K, if (sb,1, . . . , sb,N )←SS.Share(kb,A) for b ∈ {0, 1},
then the distributions {s0,i}i∈S and {s1,i}i∈S are identical.

Definition 2.35 (Linear Secret Sharing (LSSS)). Let P = {Pi}i∈[N ] be a set of parties and S be a class
of efficient access structures. A secret sharing scheme SS with secret space K = Zp for some prime p is called
a linear secret sharing scheme if it satisfies the following properties:

• SS.Share(k,A): There exists a matrix M ∈ Z`×Np called the share matrix, and each party Pi is associated
with a partition Ti ⊆ [`]. To create the shares on a secret k, the sharing algorithm first samples uniform
values r2, . . . , rN←Zp and defines a vector w = M · (k, r2, . . . , rN )T . The share for Pi consists of the
entries {wj}j∈Ti .

• SS.Combine(B): For any valid set S ∈ A, we have

(1, 0, . . . , 0) ∈ span({M[j]}j∈⋃i∈S Ti
).

over Zp where M [j] denotes the jth row of M . Any valid set of parties S ∈ A can efficiently find the
coefficients {cj}j∈⋃i∈S Ti

satisfying ∑
j∈

⋃
i∈S Ti

cj ·M[j] = (1, 0, . . . , 0)

and recover the secret by computing k =
∑
j∈

⋃
i∈S Ti

cj · wj. The coefficients {cj} are called recovery
coefficients.

Definition 2.36. Let P = {P1, . . . , PN} be a set of parties, S a class of efficient structures on P , and SS
a linear secret sharing scheme with share matrix M ∈ Z`×Nq . For a set of indices T ⊆ [`], T is said to be a
valid share set if (1, 0, . . . , 0) ∈ span({M[j]}j∈T ), and an invalid share set otherwise. We also use following
definitions:

• A set of indices T ⊆ [`] is a maximal invalid share set if T is an invalid share set, but for any i ∈ [`] \ T ,
the set T ∪ {i} is a valid share set.

• A set of indices T ⊆ [`] is a minimal valid share set if T is a valid share set, but for any T ′ ( T , T ′ is
an invalid share set.

The class of access structures that can be supported by a linear secret sharing scheme on N parties is
represented by LSSSN . When the context is clear LSSSN is simply written as LSSS. We let {0,1}-LSSS
denote the class of access structures that can be supported by a LSSS where the recovery coefficients are
binary: for a set P of N parties, let k be the shared secret and {wj}j∈Ti be the share of party Pi for i ∈ [N ];
then for every set S ∈ A, there exists a subset T ⊆

⋃
i∈S Ti such that k =

∑
j∈T wj . It was shown in [8] that

such a set T ⊆
⋃
i∈S Ti can be computed efficiently, and that TAS belongs to {0, 1}-LSSS. Hence, we can use

{0, 1}-LSSS for secret sharing in TAS.
To secret-share a vector s = {s1, . . . , sn} ∈ Znp , we can simply secret-share each entry si using fresh

randomness. This gives secret share vectors s1, . . . , s` ∈ Znp . Using these secret shares, the secret vector s can
be recovered using the same coefficients as that for a single field element.
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3 More Efficient Threshold Signatures from Lattices

In this section, we show how to drastically decrease the exponential flooding used in the scheme by Boneh et
al [8]. We also show that the limited flooding that we use is in fact optimal, and smaller noise would lead to
an attack. For ease of exposition, the construction below is for the special case of N out of N threshold and
restricted to selective security. We extend it to to adaptive security in Section 5 and Section 6 and t out of N
threshold in Section 7. In Section 4, we show how to instantiate the underlying signature scheme using a
variant of Lyubashevsky’s signature [47] with matching moderate flooding.

3.1 Optimizing the Boneh et al scheme using the Rényi Divergence

Our scheme is similar to the one in [8]. The construction uses the following building blocks:

• A PRF F : K × {0, 1}∗→{0, 1}r, where K is the PRF key space and r is the bit-length of randomness
used in sampling from discrete Gaussian Ds.

• A fully homomorphic encryption scheme FHE = (FHE.KeyGen,FHE.Enc,FHE.Dec, FHE.Eval). As in [8],
we also assume that the FHE.Dec can be divided into two sub-algorithms: FHE.decode0 and FHE.decode1
as defined in Section 2.2.

• A UF-CMA signature scheme Sig = (Sig.KeyGen,Sig.Sign,Sig.Verify).
• A context hiding homomorphic signature scheme HS = (HS.PrmsGen, HS.KeyGen, HS.Sign, HS.SignEval,
HS.Process, HS.Verify, HS.Hide, HS.HVerify) to provide robustness.

• An N out of N secret sharing scheme Share.

The construction is provided in Figure 1.

3.1.1 Correctness From the correctness of FHE.Eval algorithm, CTσ is an encryption of CM (Sig.sk) =
Sig.Sign(Sig.sk,M) = σM , which decrypts with the FHE secret key FHE.sk.
So, FHE.decode0(FHE.sk,CTσ) = σM bq/2e+ e. The signature computed by the TS.Combine algorithm is

FHE.decode1(

N∑
i=1

σi) = FHE.decode1(
∑N
i=1 FHE.decode0(ski,CTσ) +

∑N
i=1 e

′
i)

= FHE.decode1(FHE.decode0(
∑N
i=1 ski,CTσ) +

∑N
i=1 e

′
i)

= FHE.decode1(FHE.decode0(FHE.sk,CTσ) +
∑N
i=1 e

′
i)

= FHE.decode1(σM bq/2e+ e+
∑N
i=1 e

′
i) = σM .

3.1.2 Unforgeability For security, we prove the following theorem.

Theorem 3.1. Assume F is a secure PRF, Sig is a UF-CMA secure signature scheme, FHE is a secure fully
homomorphic encryption scheme (Definition 2.12), Share is a secret sharing scheme that satisfies privacy
(Definition 2.34) and HS is a context hiding secure homomorphic signature scheme (Definitions 2.18). Then
the construction of threshold signatures in Figure 1 satisfies selective unforgeablity (Definition 2.7) if the
flooding noise is of the size poly(λ) ·

√
Q, where Q is the number of the signing queries.

The security of the construction can be argued using a sequence of hybrids. We assume w.l.o.g. that the
adversary A queries for all but the first key share, i.e., S = [N ] \ {1}.

Hybrid0: This is the real world.
Hybrid1: Same as Hybrid0, except that π̃1 in PartSign is now generated using HS simulator as π̃1 =

HS.Sim(HS.sk, α, σ1, τ1, πτ1), where α = HS.Process(HS.pp, CPS).
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TS.KeyGen(1λ): Upon input the security parameter λ, do the following.
1. For each party Pi, sample a PRF key sprfi←K.
2. Generate the signature scheme’s keys (Sig.vk, Sig.sk)←Sig.KeyGen(1λ).
3. Generate the FHE keys (FHE.pk,FHE.sk)←FHE.KeyGen(1λ) and compute an FHE encryption of Sig.sk as

CTSig.sk←FHE.Enc(FHE.pk, Sig.sk).
4. Generate the HS public parameters HS.pp←HS.PrmsGen(1λ, 1n) and the public and the signing keys

(HS.pk,HS.sk)←HS.KeyGen(1λ,HS.pp). Here n is the bit-length of (FHE.sk, sprfi).
5. Share FHE.sk as {ski}Ni=1←Share(FHE.sk) such that

∑N
i=1 ski = FHE.sk.

6. For each party Pi, randomly choose a tag τi ∈ {0, 1}∗ and compute
(πτi , πi)←HS.Sign(HS.sk, (ski, sprfi), τi).

7. Output TSig.pp = {FHE.pk,CTSig.sk,HS.pp,HS.pk, {τi, πτi}Ni=1}, TSig.vk = Sig.vk, TSig.sk = {TSig.ski =
(ski, sprfi, πi)}Ni=1.

TS.PartSign(TSig.pp,TSig.ski,M): Upon input the public parameters TSig.pp, a partial signing key TSig.ski and
a message M , parse TSig.pp as (FHE.pk,CTSig.sk,HS.pp,HS.pk, {τi, πτi}Ni=1}) and TSig.ski as (ski, sprfi, πi) and
do the following.
1. Compute u = F (sprfi,M) and sample e′i←Ds(u), where Ds(u) represents sampling from Ds using u as the

randomness.
2. Let CM be the signing circuit, with message M being hardwired. Compute CTσ =

FHE.Eval(FHE.pk, CM ,CTSig.sk).
3. Compute σi = FHE.decode0(ski,CTσ) + e′i.
4. This step computes a homomorphic signature π̃i on partial signature σi to provide robustness (Definition

2.8).
Let CPS be the circuit to compute FHE.decode0(ski,CTσ) + e′i in which CTσ is hardcoded and the FHE key
share ski and the PRF key sprfi are given as inputs.

• Compute π∗i = HS.SignEval(HS.pp, CPS, πτi , (ski, sprfi), πi).
• Compute π̃i = HS.Hide(HS.pk, σi, π

∗
i ).

5. Output yi = (σi, π̃i).

TS.Combine(TSig.pp, {yi}i∈[N ]): Upon input the public parameters TSig.pp and a set of partial signatures {yi}i∈[N ],
parse yi as (σi, π̃i) and output σM = FHE.decode1(

∑N
i=1 σi).

TS.PartSignVerify(TSig.pp,M, yi): Upon input the public parameters TSig.pp, message M , and a partial signature
yi, parse yi as (σi, π̃i) and do the following.
1. Compute CTσ = FHE.Eval(FHE.pk, CM ,CTSig.sk).
2. Compute α = HS.Process(HS.pp, CPS), where CPS is as described above.
3. Parse yi as (σi, π̃i) and output HS.HVerify(HS.pk, α, σi, τi, (πτi , π̃i)).

TS.Verify(TSig.vk,M, σM ): Upon input the verification key TSig.vk, a message M and a signature σM , output
Sig.Verify(TSig.vk,M, σM ).

In the above, we set s = Beval ·
√
Qλ, where Beval ≤ poly(λ) is a bound on the FHE decryption noise after

homomorphic evaluation of the signing circuit CM , and Q is the bound on the number of signatures.

Fig. 1. Optimization of Boneh et al Threshold Signature Scheme.

Hybrid2: Same as Hybrid1 except that to compute σ1 = FHE.decode0(sk1,CTσ) + e′1, the randomness u used
to sample e′1←Ds(u) is chosen uniformly randomly instead of computing it using the PRF.

Hybrid3: Same as Hybrid2, except that now, for signing query for (M, 1), the challenger simulates σ1 as
follows:
1. Computes CTσ = FHE.Eval(FHE.pk, CM ,CTSig.sk) and
{σ′i = FHE.decode0(ski,CTσ)}i∈[2,N ].

2. Computes σM = Sig.Sign(Sig.sk,M) and set σ1 = σM
⌊
q
2

⌉
−
∑N
i=2 σ

′
i + e′1, where e′1 ← Ds.

Hybrid4: Same as Hybrid3 except that instead of sharing FHE.sk, now the challenger generates the FHE key
shares as {ski}Ni=1←Share(0).
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Hybrid5: Same as Hybrid4, except that CTSig.sk in TSig.pp is replaced by CT0 = FHE.Enc(FHE.pk,0).

Indistinguishability of Hybrids: Now, we show that consecutive hybrids are indistinguishable.

Claim 3.2 Assume HS is a context hiding homomorphic signature scheme. Then, Hybrid0 and Hybrid1 are
indistinguishable.

Proof. The two hybrids differ only in the way π̃1 is computed. In Hybrid0, π̃1 = HS.Hide(HS.pk, σ1, π
∗
1),

where π∗1 = HS.SignEval(HS.pp, CPS, πτ1 , (sk1, sprf1), π1). In Hybrid1, π̃1 = HS.Sim(HS.sk, α, σ1, τ1, πτ1), where
α = HS.Process(HS.pp, CPS). Hence, the two hybrids are indistinguishable because of the context hiding
property of HS which ensures that HS.Hide(HS.pk, σ1, π∗1) ≈ HS.Sim(HS.sk, α, σ1, τ1, πτ1).

Claim 3.3 Assume F is a secure PRF. Then Hybrid1 and Hybrid2 are indistinguishable.

The proof follows via a standard reduction to PRF security and is omitted.

Claim 3.4 If there is an adversary that can win the unforgeability game in Hybrid2 with probability ε, then
its probability of winning the game in Hybrid3 is at least ε2/2.

Proof. Let the number of signing queries that the adversary makes be Q. The two hybrids differ only in
the error term in σ1, as shown below. In Hybrid2, we have σ1 = FHE.decode0(sk1,CTσ) + e′1, for e′1 ← Ds.
In Hybrid3, we have:

σ1 = σM . bq/2e −
∑N

i=2
FHE.decode0(ski,CTσ) + e′1

= σM . bq/2e −
∑N

i=1
FHE.decode0(ski,CTσ) + FHE.decode0(sk1,CTσ) + e′1

= σM . bq/2e − FHE.decode0(
∑N

i=1
ski,CTσ) + FHE.decode0(sk1,CTσ) + e′1

= σM . bq/2e − FHE.decode0(sk,CTσ) + FHE.decode0(sk1,CTσ) + e′1

= σM . bq/2e − σM . bq/2e+ e+ FHE.decode0(sk1,CTσ) + e′1

= FHE.decode0(sk1,CTσ) + (e′1 + e),

for some e satisfying |e| ≤ Beval. Thus, in Hybrid2, the error term in σ1 is e′1, while in Hybrid3, it is e′1 + e,
where, e′1 ← Ds, and e is the error in FHE ciphertext CTσ.

Recall the distribution seen by the adversary – the public parameters TSig.pp, the verification key TSig.vk,
the corrupted secret key shares TSig.ski, the messages Mj and corresponding partial signatures (σj , π̃j). Note
that since messages are chosen adaptively, their distribution depends on previous signature queries and
responses, and in particular on the differently generated error terms in both hybrids. On the other hand
TSig.pp, TSig.vk, {TSig.ski}, {π̃j} are constructed identically in both hybrids and independently from the
rest (in particular these error terms): we implicitly assume that they are fixed and known, and exclude them
from the analysis. We refer to the distribution to be considered in Hybrid2 as D2 and in Hybrid3 as D3.

Let Ej be the random variables corresponding to the error term in CTσj
in the j-th response and E(2)j

and E(3)j be their distributions in Hybrids 2 and 3, respectively. Similarly, let Mj be the random variable
corresponding to the queried message in j-th query andM(2)

j andM(3)
j be their distributions in Hybrids

2 and 3, respectively. Then, from the discussion above, we have E(2)j = Ds and E(3)j = Ds,ej for all j ∈ [Q],
where ej is the error in CTσj and can depend upon previous queries and responses.

Overall, we have Dk = (E(k)Q ,M(k)
Q , E(k)Q−1,M

(k)
Q−1, . . . , E

(k)
1 ,M(k)

1 ) for k ∈ {2, 3} and

Ra(D2‖D3) = Ra(E(2)Q ,M(2)
Q , . . . , E(2)1 ,M(2)

1 ‖ E(3)Q ,M(3)
Q , . . . , E(3)1 ,M(3)

1 ). (3.1)

Applying the multiplicativity property of the Rényi divergence (Lemma 2.27), we obtain that Ra(D2‖D3)
is bounded from above by

max
x∈X

Ra(E(2)Q |X = x ‖ E(3)Q |X = x) ·Ra(M(2)
Q , . . . , E(2)1 ,M(2)

1 ‖ M(3)
Q , . . . , E(3)1 ,M(3)

1 )

= max
x∈X

Ra(Ds|X = x ‖ Ds,eQ |X = x) ·Ra(M(2)
Q , . . . , E(2)1 ,M(2)

1 ‖ M(3)
Q , . . . , E(3)1 ,M(3)

1 ), (3.2)
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whereX = (MQ, EQ−1, . . . , E1) and eQ is the error term in CTσQ
; note that eQ may depend on the sample from

X (which differs in Hybrids 2 and 3) and is bounded by Beval. Then applying Lemma 2.28 in Equation (3.2),
we get

Ra(D2‖D3) ≤ exp(aπ‖eQ‖2/s2) ·Ra(M(2)
Q , . . . , E(2)1 ,M(2)

1 ‖ M(3)
Q , . . . , E(3)1 ,M(3)

1 )

≤ exp(aπB2
eval/s

2) ·Ra(M(2)
Q , . . . , E(2)1 ,M(2)

1 ‖ M(3)
Q , . . . , E(3)1 ,M(3)

1 ).

Further, since MQ is a function of EQ−1,MQ−1, . . . , E1,M1, the data processing inequality (Lemma 2.27)
gives

Ra(M(2)
Q , E(2)Q−1, . . . , E

(2)
1 ,M(2)

1 ‖ M(3)
Q , E(3)Q−1, . . . , E

(3)
1 ,M(3)

1 )

≤ Ra(E(2)Q−1, . . . , E
(2)
1 ,M(2)

1 ‖ E(3)Q−1, . . . , E
(3)
1 ,M(3)

1 ),

Hence, we get

Ra(D2‖D3) ≤ exp(aπB2
eval/s

2) ·Ra(E(2)Q−1, . . . , E
(2)
1 ,M(2)

1 ‖ E(3)Q−1, . . . , E
(3)
1 ,M(3)

1 )

≤ exp(aπB2
evalQ/s

2),

where the last inequality follows from induction.
As s = Beval ·

√
Qλ, we get Ra(D2‖D3) ≤ exp(aπ/λ). Therefore, from the probability preservation

property of the Rényi divergence (Lemma 2.27), we have D3(E) ≥ D2(E)
a

a−1

Ra(D2‖D3)
≥ D2(E)

a
a−1 exp(−aπλ ). The

result is obtained by setting a = 2.

Claim 3.5 Assume that Share is a secret sharing scheme that satisfies privacy (Definition 2.34). Then,
Hybrid3 and Hybrid4 are indistinguishable.

Proof. The only difference between Hybrid3 and Hybrid4 is in the way the key shares sk1, sk2, . . . , skN
are generated. In Hybrid3 (sk1, sk2, . . . , skN )←Share(FHE.sk), while in Hybrid4, (sk1, sk2, . . . , skN )←Share(0).
Since, the adversary is given secret shares for an invalid set of parties, distribution in the two hybrids are
identical.

Claim 3.6 Assume FHE is a fully homomorphic encryption that satisfies security (Definition 2.12). Then
Hybrid4 and Hybrid5 are indistinguishable.

Proof. Let A be an adversary who can distinguish Hybrid4 and Hybrid5. Then we construct an adversary B
against the FHE scheme as follows.

1. After receiving FHE.pk from the FHE challenger, B generates
(Sig.sk,Sig.vk)←Sig.KeyGen(1λ) and the HS keys.

2. It generates secret shares of 0 as (sk1, sk2, . . . , skN )←Share(0).
3. It sends the challenge messages m0 = Sig.sk and m1 = 0 to the FHE challenger.
4. After receiving the challenge ciphertext CTb from the FHE challenger, B constructs TSig.pp using CTb. It

also generates TSig.vk and TSig.sk as defined for the hybrid. In particular, note that in both the hybrids,
the key shares {ski}Ni=1 are generated as random secret shares of 0 in place of FHE.sk and hence B does
not need FHE.sk to answer key queries.

5. To answer a PartSign query for a messageM issued by adversary A, B computes σ1 as follows. It computes
σ = Sig.Sign(Sig.sk,M), samples e′1←Ds and returns σ1 = σ −

∑N
i=2 TS.decode0(TSig.ski,CTb) + e′1.

6. Finally, A outputs a guess bit b′. B returns the same to the FHE challenger.

Clearly, if b = 0, then B simulates Hybrid4, else Hybrid5 with A. Hence if A wins with non-negligible probability
in distinguishing the two hybrids then so does B against the FHE challenger.
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Finally the proof of Theorem 3.1 completes with the following claim.

Claim 3.7 If the underlying signature scheme Sig is unforgeable, then the advantage of the adversary in the
unforgeability game of Definition 2.7 is negligible in Hybrid5.

Proof. Let A be an adversary who wins the unforgeability game in Hybrid5. Then we can construct an
adversary B against the signature scheme Sig as follows:

1. On receiving a verification key Sig.vk from Sig challenger, B generates (FHE.sk,FHE.pk), HS.pp,
(HS.pk,HS.sk) and all the other values required to define TSig.pp,TSig.vk and TSig.sk on its own. In
particular, since in Hybrid5, TSig.pp contains CT0 instead of CTSig.sk, B does not require Sig.sk to generate
a valid TSig.pp.

2. B then sends TSig.vk = Sig.vk,TSig.pp, {TSig.ski}Ni=2 to A.
3. To simulate PartSign query σ1 for any message M , B needs σM . For this, it issues a signing query on

message M to the Sig challenger and receives σM .
4. In the end, let (M∗, σ∗) be the forgery returned by A. Then B returns the same to the Sig challenger.

Since B issues signing queries on only those messages for which A also issues signing queries to B, if (M∗, σ∗)
is a valid forgery for A, then it is a valid forgery for B as well.

3.2 Robustness

Claim 3.8 If HS is multi data secure (Definition 2.17) homomorphic signature, then the construction of TS
in Figure 1 satisfies robustness.

Proof. In the robustness security experiment ExptA,TS,rb(1
λ), the adversary wins if A outputs a partial

signature forgery (M∗, y∗i , i) such that

1. TS.PartSignVerify(TSig.pp,M∗, y∗i ) = 1
2. y∗i = (σ∗i , π̃

∗
i ) 6= TS.PartSign(TSig.pp,TSig.ski,M

∗).

TS.PartSignVerify(TSig.pp,M∗, y∗i ) first computes CTσ←FHE.Eval(FHE.pk, CM∗ ,CTSig.sk)
and outputs 1 iff
HS.HVerify(HS.pk, α, σ∗i , τi, (πτi , π̃

∗
i )) = 1, where α = HS.Process(HS.pp, CPS). Thus, A wins the experiment

iff both the following two conditions are true.

1. For α = HS.Process(HS.pp, CPS)

HS.HVerify(HS.pk, α, σ∗i , τi, (πτi , π̃
∗
i )) = 1,

2. y∗i = (σ∗i , π̃
∗
i ) 6= TS.PartSign(TSig.pp,TSig.ski,M

∗), which implies
σ∗i 6= FHE.decode0(ski,CTσ) + e′i, which in turn is same as

σ∗i 6= CPS(ski, sprfi).

But this is a case for valid forgery of type 2 (Definition 2.17) against HS scheme, which can happen only with
negligible probability. Note that since (τi, πτi) are part of HS.pp, case of type 2 in HS security definition is
inherently applied.

3.3 On the Optimality of Our Flooding

We show that the flooding amount that we achieved is optimal for our threshold signature scheme. To
argue this, we show how to attack it if the flooding amount is below Ω(

√
Q). For simplicity, we restrict

to the case of N = 2. Recall that in our construction, TS.PartSign(TSig.pp,TSig.ski,M) outputs σi,M =
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FHE.decode0(ski,CTσM
) + e′i,M , where TSig.ski = (ski, sprfi).3 W.l.o.g, assume that the adversary gets the

partial signing key TSig.sk2 and the response for any signing query is a partial signature corresponding to
party P1. For any message M of its choice, the adversary receives σ1,M = FHE.decode0(sk1,CTσM

) + e′1,M .
From this the adversary can compute:

σ1,M + FHE.decode0(sk2,CTσM ) = FHE.decode0(FHE.sk,CTσM ) + e′1,M

= σM + errM + e′1,M ,

where errM is the error in CTσM
. Note that if the adversary succeeds in computing errM for polynomially

many M ’s, then it can compute FHE.sk.
As a warm-up, we show that if the error e′1,M is randomized, small and of center 0, then the adversary

can indeed compute errM . Later, we will show that even for deterministic flooding e′1,M , there exist secure
signature schemes for which the attack can be extended. Since the adversary knows the key share sk2, it
can compute σ2,M on its own and hence can compute σM = TS.Combine(TSig.pp, σ1,M , σ2,M ). Hence, from
σM + errM + e′1,M , the adversary can compute errM + e′1,M . Since, the signature scheme is deterministic, errM
depends only on M . Thus, if the same message is queried for signature multiple times, then each time the
term errM remains the same, but since flooding is randomized, the term e′1,M is different.

To compute errM , the adversary issues all Q signing queries for the same message M and receives
σ
(1)
1,M , . . . , σ

(Q)
1,M , where σ(i)

1,M denotes the partial signature returned for message M in the ith query. From
these responses the adversary gets Q different values of the form

wi = errM + e′i1,M (3.3)

Since errM is same, taking average on both sides of Equation (3.3) over all the Q samples, we get
∑

i∈[Q] w
i

Q =

errM +
∑

i∈[Q] e
′i
1,M

Q . If | 1Q
∑
i∈[Q] e

′i
1,M | < 1/2, then the adversary can recover errM as errM =

⌊
1
Q

∑
i∈[Q] w

i
⌉
.

As e′11,M , . . . , e
′Q
1,M are independently and identically distributed with mean 0, by Hoeffding’s inequality, we

have

Pr
[∣∣∣∑i∈[Q] e

′i
1,M

Q

∣∣∣ < 1/2
]
≥ 1− 2exp

(
− Q

2s2

)
.

If Q ≥ Ω(s2 log λ), then 1− 2exp(−Q/(2s2)) ≥ 1− λ−Ω(1), in which case the adversary can recover errM
with probability sufficiently close to 1 to recover sufficiently many errM ’s to compute FHE.SK. To prevent
this, we do need s to grow at least proportionally to

√
Q.

3.3.1 Attack for Deterministic Error In the argument for randomized error, the fact that e′i1,M is
randomized is crucial. However, as discussed in Section 1, we can extend the attack for the case of deterministic
flooding as well, by exhibiting a secure signature scheme (with deterministic flooding) for which a variant of
the attack can apply.

Consider a special (contrived) signature scheme Sig′ = (Sig′.KeyGen, Sig′.Sign,Sig′.Verify) derived from a
secure signature scheme Sig = (Sig.KeyGen, Sig.Sign,Sig.Verify) as follows:

1. Sig′.KeyGen is identical to Sig.KeyGen. Let (Sig.sk,Sig.vk) be the signing and verification keys, respectively,
and Sig.ski denote the ith bit of Sig.sk for i ∈ [`], where ` is the bit-length of Sig.sk.

2. Sig′.Sign(Sig.sk,M) is modified as follows:
• Compute σM = Sig.Sign(Sig.sk,M). Set σ′M := σM .
• For i from 1 to `: if Sig.ski = 0, then set σ′M := σ′M‖Sig.ski.
• Output σ′M .

3. Sig′.Verify(Sig.vk,M, σ′M ) is defined as Sig.Verify(Sig.vk,M, σM ), where σM is obtained from σ′M by
removing all the bits after the kth bit, where k is the bit-length of signatures in Sig.

3 We focus only on the σi,M component of PartSign’s output since the second component, the HS signature of σi,M ,
is not relevant here.
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Above, we assume that the signing key of Sig is a uniform bit-string among those with the same number of
0’s and 1’s. Since Sig.sk has always `/2 bits equal to 0, the number of zeroes appended to the signature will
be `/2 and hence does not leak any extra information to the adversary. Hence, it follows easily that if Sig is a
secure signature scheme, then so is Sig′. However, as discussed in Section 1, our attack can be generalized to
work for this setting.

The Attack Now, consider using Sig′ to instantiate our threshold signature scheme. Then, for any
message M , the FHE ciphertext CTσM

now additionally includes homomorphically evaluated encryptions
of {Sig.ski}i∈[`]:Sig.ski=0. Let CTσM

, errM , e
′
M respectively denote the encryption of σM , the error in CTσM

and the flooding noise added to partial decryption of CTσM
. Let CT∗, err∗ and e∗M denote the components

corresponding to {Sig.ski}i∈[`]:Sig.ski=0.
For any message M , the adversary can compute errM + e′M as described previously, from which the

adversary gets err∗ + e∗M . If the adversary manages to compute err∗ (for sufficiently many instances), then it
can also recover FHE.sk.

Note that err∗ is independent of any message and hence is constant across different messages, while e∗M
does depend on M and is different for different messages. This gives an attack strategy. To compute err∗, the
adversary issues Q signing queries on different messages {Mj}j∈[Q], and from the received partial signatures,
derives the values for w∗j = err∗ + e∗Mj

for j ∈ [Q].

Observe that the above equation is of the same form as Equation (3.3). Heuristically, one would expect the
e∗Mj

to behave as independent and identically distributed random variables with centre 0. Hence, we can argue
in similar way that if Q ≥ Ω(s2 log λ) then the adversary can recover err∗ with probability 1− 1/ poly(λ).
This implies that for hiding err∗, the standard deviation parameter s must grow at least proportionally to

√
Q.

4 Instantiating Threshold Signatures: Rejection-Free Lyubashevsky

Here, we provide an FHE friendly variant of Lyubashevsky’s signature scheme from [47]. Our construction uses
a hash function H : {0, 1}∗→DH := {v : v ∈ {−1, 0, 1}k; ‖v‖1 ≤ α}, modeled as a random oracle. Here α is
a parameter, typically much smaller than k. The signature scheme is described in Figure 2.

KeyGen(1λ): Upon input the security parameter λ, set q, n,m, β, k, d, σ such that n = Ω(λ) and the scheme is
secure (see Theorem 4.1); then do the following:
1. Sample A←Zn×mq and S←{−d, . . . , 0, . . . , d}m×k.
2. Set T = AS.
3. Output vk = (A,T), sk = S.

Sign(sk, µ): Upon input the signing key sk and a message µ, do the following:
1. Sample y←DZm,σ.
2. Set c = H(Ay, µ).
3. Set z = y + Sc.
4. Output (z, c).

Verify(vk, µ, (z, c)): Upon input the verification key vk, a message µ, and a signature (z, c), do the following:
1. Check if ‖z‖ ≤ γ, where γ = (2σ + αd)

√
m.

2. Check if H(Az−Tc, µ) = c.
3. If both checks pass, then accept, else reject.

Fig. 2. Lyubashevsky’s Signature Without Aborts

Correctness. Since z = y +Sc, where y←DZm,σ, we have ‖z‖ ≤ 2σ
√
m+ ‖Sc‖ with probability 1− 2−Ω(λ),

using standard Gaussian tail bounds (see, e.g., Lemma 2.25). Since ‖S‖∞ ≤ d and ‖c‖1 ≤ α, we have
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‖Sc‖ ≤ dα
√
m. This gives us ‖z‖ ≤ (2σ + dα)

√
m with overwhelming probability. Finally, note that

H(Az−Tc, µ) = H(A(y + Sc)−ASc, µ) = H(Ay, µ) = c.

Security. We establish security via the following theorem.

Theorem 4.1. Assume that m > λ+ (n log q)/ log(2d+ 1), σ ≥ αd
√
mQ where Q is the maximum number

of signing queries an attacker can make and |DH | ≥ 2λ. Assume further that SISq,n,m,β is hard for β =
2γ + 2dα

√
m. Then the construction in Figure 2 satisfies UF-CMA in the random oracle model.

Proof. We prove the security via the following hybrids:

Hybrid0: This is the genuine security game, i.e., with honest executions of the Sign algorithm on signing
queries by the adversary.

Hybrid1: In this hybrid the challenger responds to the signing query for any message µ as follows.
1. Sample y←DZm,σ as in the previous hybrid.
2. Sample c←{v : v ∈ {−1, 0, 1}k, ‖v‖1 ≤ α}.
3. Set z = y + Sc.
4. Set H(Az−Tc, µ) = c.
5. Output (z, c).

Hybrid2: In this hybrid the challenger responds to the signing query for any message µ as follows.
1. Sample c←{v : v ∈ {−1, 0, 1}k, ‖v‖1 ≤ α}.
2. Sample z←DZm,σ.
3. Set H(Az−Tc, µ) = c.
4. Output (z, c).

The only difference between Hybrid0 and Hybrid1 is that in Hybrid1, the output value for H is chosen at
random, and then programmed as the answer to H(Ay, µ), without checking whether the value for (Ay, µ) is
already set, when a signing query for µ is made. By the definition of the random oracle, the two hybrids are
identical if the same input (Ay, µ) is not programmed twice throughout hash and sign queries, and forgery.
The distinguishing advantage is therefore bounded as Q(Q+QH + 1) · 2−h, where h is the min-entropy of
Ay for y←DZm,σ. Standard arguments show that this is negligible.

The result now follows from the two claims below.

Claim 4.2 If there is an adversary that makes at most Q signing queries and can win the game in Hybrid1
with probability δ, then its probability of winning in Hybrid2 is polynomial in δ, if σ ≥ αd

√
mQ.

Proof. Wlog, we assume that the adversary makes exactly Q queries. The only difference between the two
hybrids is in the value of z. Let us refer to the joint distribution of all (z, c)’s in Hybrid1 as D1 and that in
Hybrid2 as D2. Note that the ci’s are sampled identically in both hybrids, and independently from all the rest.
For i ∈ [Q], the vector zi is from distribution Z1i := DZm,σ,Sci in Hybrid1 and from distribution Z2i = DZm,σ

in Hybrid2. By Lemma 2.28, we have

Ra[Z1i‖Z2i] = exp

(
aπ
‖Sci‖2

σ2

)
for any a ∈ (1,∞).

Recall from the correctness proof that we have ‖Sci‖ ≤ dα
√
m.

Let D1i (resp. D2i) be the distribution of (zi, ci)’s in Hybrid1 (resp. Hybrid2). As ci is identically distributed
in both games, we have, by using the multiplicativity property of Rényi divergence (Lemma 2.27):

Ra[D1i‖D2i] ≤ 1 ·max
ci

Ra[Z1i‖Z2i] ≤ exp

(
aπ

(dα
√
m)2

σ2

)
.
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As D1 = (D1i)i and D2 = (D2i)i, by using the multiplicativity property of the Rényi divergence once more,
we get:

Ra(D1‖D2) ≤ exp

(
aπ
Q(dα

√
m)2

σ2

)
≤ exp(aπ), for any a ∈ (1,∞). (4.1)

Now, the view of the adversary in both hybrids includes the verification key vk, the queried messages Mi

and the signature replies (zi, ci) for i ∈ [Q]. As the distribution of vk is identical in both games and vk
is sampled independently from all the rest, we may implicitly assume that it is fixed. As they are chosen
adaptively, the µi’s may depend on the previous queries and replies. But the dependence of the responses
on the messages is broken by the random oracle (unlike in the proof of Claim 3.4). Hence, the (ci, zi)’s are
independent of the µi’s in both the hybrids. As the µi’s are functions of the (ci, zi)’s, by the data processing
inequality of the Rényi divergence (Lemma 2.27), we have

Ra(V1‖V2) ≤ Ra(D1‖D2), (4.2)

where V1 (resp. V2) is the adversary’s view in Hybrid1 (resp. Hybrid2).
Let E denote the event that the adversary wins the game. Then by our assumption, we have D1(E) = δ.

From the probability preservation property (Lemma 2.27) of the Rényi divergence, we get:

V2(E) ≥ δ
a

a−1

Ra(V1‖V2)
, for any a ∈ (1,∞). (4.3)

Using Equations (4.1), (4.2) and (4.3), we obtain that V2(E) ≥ δ
a

a−1 exp(−aπ). Taking any value of a > 1
provides the result.

Claim 4.3 Let DH be the range of the random oracle H. If there is a forger F that makes at most Q signing
queries and QH random oracle queries, and succeeds in forging a valid signature with probability δ in Hybrid2,
then we can define an algorithm B which given A←Zn×mq , finds a non-zero v such that ‖v‖ ≤ (2γ + 2dα

√
m)

and Av = 0, with probability at least(
1

2
− ε

2

)(
δ − 1

|DH |

)(
δ − 1/|DH |
QH +Q

− 1

|DH |

)
.

This claim and its proof are identical to [47, Lemma 5.4]. Note that under the conditions of Theorem 4.1, the
latter probability lower bound is ≥ δ2/(2(QH +Q))− 2−Ω(λ).

Note that the condition σ ≥ αd
√
mQ from Theorem 4.1 forces to set a modulus q and a SIS bound β that

grow linearly with
√
Q. To ensure λ bits of security, one may choose n growing linearly with

√
Q. Overall, if

using a Ring-SIS or Module-SIS instantiation, then the bit-length of the signature grows linearly with n log q
and hence with log2Q.

Next, we show that the flooding noise used in the above construction is essentially optimal by exhibiting
an attack when the flooding noise is smaller.

4.1 Optimality of Flooding

In this section, we show that the flooding amount used in the construction in Figure 2 is essentially optimal,
and in particular that the dependence on

√
Q is necessary. In more detail, we show that if the flooding noise

is smaller than this, then an adversary can recover the signing key. Note that this attack is folklore, we recall
it for the sake of completeness.

4.1.1 Statistical Attack Recall that the signature for message Mi is of the form (zi, ci), where zi =
Sci + yi, ci ∈ {−1, 0, 1}k, ‖ci‖1 ≤ α, and S is the signing key. The adversary can obtain many such pairs
corresponding to different messages. Let Q be the maximum number of signing queries that the adversary
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can make. Let Si represents the ith row of matrix S. Let cij , yij and Sij represent the jth entry in vectors
ci, yi and Si respectively. Consider such tuples (zi, ci) where ci1 = 1. Let B ⊆ [Q] be the set of such indices.
The adversary gets approximately Q/3 such tuples corresponding to i ∈ B. For each i, using the first row of
S, we may write:

S11 +

k∑
j=2

S1jcij + yi1 = zi1 (4.4)

We denote the average of
∑k
j=2 S1jcij + yi1 over i ∈ B as avg. We show that unless yi1 is O(

√
Q), we can

recover S11. To conduct the attack, we bound each summand of avg separately.

Claim 4.4 Let t1 < 1/2 be a positive constant and Q, k, d, α be as above. Then,

Pr
[∣∣∣∑i∈B

∑k
j=2 S1jcij

|B|

∣∣∣ < t1

]
≥ 1− 2 exp(

−Qt21
6(α− 1)2d2

)

Proof. Note that
∑k
j=2 S1jcij takes values in the range [−(α− 1)d, (α− 1)d], with mean at 0. In more detail,

let X be a random variable, with mean 0 and support [−(α− 1)d, (α− 1)d], then for some positive constant
t1 < 1/2, we have from Hoeffding’s bound

Pr[|X̄ − E[X]| ≥ t1] ≤ 2 exp(
−(Q/3)t21

2(α− 1)2d2
)

=⇒ Pr[|X̄| ≥ t1] ≤ 2 exp(
−Qt21

6(α− 1)2d2
)

=⇒ Pr[|X̄| < t1] ≥ 1− 2 exp(
−Qt21

6(α− 1)2d2
)

Since d is small, in particular if (6(α− 1)2d2 < Qt21), then 1− 2 exp(
−Qt21

6(α−1)2d2 ) is non-negligible.

Let us assume that the average of yi1 is also smaller than 1/2− t1 with non negligible probability. Then,
avg < 1/2 with non negligible probability. Summing both sides of Equation 4.4 over the set B, we get
S11 + avg =

∑
i∈B zi1

|B| . In this case the adversary can successfully recover S11 as

S11 =

⌊∑
i∈B zi1

|B|

⌉
We now examine how large yi1 must be to avoid this attack. Let Y←Dσ be the random variable representing
the distribution of yi1 values. Then from Hoeffding’s bound, for some constant c′ and t2 < (1/2− t1),

Pr[|Ȳ − E[Y ]| ≥ t2] ≤ 2 exp(−c′Qt22/3σ2)

=⇒ Pr[|Ȳ | ≥ t2] ≤ 2 exp(−c′Qt22/3σ2)

=⇒ Pr[ |Ȳ | < t2] ≥ 1− 2 exp(−c′Qt22/3σ2)

Thus, if 3σ2 < c′Qt22, then 1−2 exp(−c′Qt22/3σ2) is non-negligible. Hence, for the average of yi1 to be greater
than t2, we need that σ must grow proportional to

√
Q.

5 Adaptive Security for Threshold Signatures

As discussed in Section 1, we provide two constructions to improve the selective security achieved by [8]. Below,
we describe our construction in the ROM, which satisfies partially adaptive unforgeability (Definition 2.6). We
provide our construction in the standard model with pre-processing that satisfies fully adaptive unforgeability
(Definition 2.5) in Section 6.
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5.1 Partially Adaptive Unforgeability

We use the same building blocks for construction as those used for the non-adaptive construction. We also
use two keyed hash function modelled as random oracles: H : {0, 1}λ × {0, 1}∗→ZNq and H1 : {0, 1}λ ×
{0, 1}∗→{0, 1}r. The construction is provided in Figure 3.

TS.KeyGen(1λ): Upon input the security parameter λ, do the following:
1. Randomly choose K ← {0, 1}λ and N vectors v1,v2, . . . ,vN ∈ ZNq such that

∑N
i=1 vi = 0.

2. Generate (Sig.vk, Sig.sk)←Sig.KeyGen(1λ) and (FHE.pk,FHE.sk)←FHE.KeyGen(1λ) and share FHE.sk into
N shares as (sk1, sk2, . . . , skN )← Share(FHE.sk) such that

∑N
i=1 ski = FHE.sk.

3. Compute an FHE encryption of the signing key as CTSig.sk = FHE.Enc(FHE.pk, Sig.sk).
4. For each party Pi, randomly choose a tag τi ∈ {0, 1}∗, a hash key hkeyi←{0, 1}λ and

generate HS public parameters HS.pp←HS.PrmsGen(1λ, 1n) and HS public and signing keys as
(HS.pk,HS.sk)←HS.KeyGen(1λ,HS.pp). Here, n is the length of input to PartSign circuit which depends on
(FHE.sk,K,vi, hkeyi).

5. Compute (πτi , πi) = HS.Sign(HS.sk, (ski,K,vi, hkeyi), τi).
6. Output TSig.pp = (FHE.pk,HS.pp,HS.pk,CTSig.sk, {τi, πτi}Ni=1), TSig.vk = Sig.vk, TSig.sk = {TSig.ski =

(ski,K,vi, hkeyi, πi)}Ni=1.

TS.PartSign(TSig.pp,TSig.ski,M): Upon input the public parameters TSig.pp, the key share TSig.ski =
(ski,K,vi, hkeyi, πi) and a message M , do the following:
1. Compute ui = H1(hkeyi,M) and sample e′i←Ds(ui).
2. Let CM be the signing circuit, with message M being hardcoded. Compute an FHE encryption of signature

σM as CTσM = FHE.Eval(FHE.pk, CM ,CTSig.sk).
3. Compute ri,M = H(K,M)Tvi and σi,M = FHE.decode0(ski,CTσM ) + ri,M + e′i.
4. This step computes a homomorphic signature π̃i,M on partial signature σi,M to provide robustness (Definition

2.8).
Let CPS be the circuit to compute FHE.decode0(ski,CTσM ) + H(K,M)Tvi + e′i in which
CTσM is hardcoded and the key share TSig.ski is given as the input. Compute π∗i,M =
HS.SignEval(HS.pp, CPS, πτi , (ski,K,vi, hkeyi), πi) and π̃i,M = HS.Hide(HS.pk, σi,M , π

∗
i,M ).

5. Output yi,M = (σi,M , π̃i,M ).

The algorithms TS.PartSignVerify, TS.Combine and TS.Verify are identical to those in section 3.1.

Fig. 3. Partially Adaptive Threshold Signature Scheme.

5.2 Proof of Correctness

The correctness can be argued in the same way as that in Section 3.1. The TS.Combine algorithm outputs
FHE.decode1(

∑N
i=1 σi,M ), where σi,M = FHE.decode0(ski,CTσM

) + e′i + ri,M . First observe that
∑N
i=1 ri,M =∑N

i=1H(K,M)Tvi = H(K,M)T
∑N
i=1 vi = 0, because

∑N
i=1 vi = 0. Hence, FHE.decode1(

∑N
i=1 σi,M ) =

FHE.decode1((
∑N
i=1 FHE.decode0(ski,CTσM

)+e′i)+
∑N
i=1 ri,M ) = FHE.decode1(

∑N
i=1(FHE.decode0(ski,CTσM

)+
e′i) + 0) = σM , where the last equality can be derived in the same way as in Section 3.1.

5.3 Unforgeability

We prove that the construction in Figure 3 satisfy partially adaptive unforgeability via the following theorem.

Theorem 5.1. Assume the signature scheme Sig satisfies unforgeability, FHE is a semantically secure fully
homomorphic encryption scheme (Definition 2.12), HS is context hiding homomorphic signature scheme
(Definition 2.18) and Share satisfies privacy (Definition 2.34). Then the TS construction in Figure 3 satisfies

26



partially adaptive unforgeability (Definition 2.6) in ROM if the flooding error is of size poly(λ)
√
Q, where Q

is the upper bound on the number of signing queries.

Proof. The theorem can be proved using the following hybrids:

Hybrid0 and Hybrid1 are the same as that in the proof of Theorem 3.1.

Hybrid2: Same as Hybrid1, except that the randomness ui used in sampling e′i in σi,M is chosen uniformly
randomly from {0, 1}r and then H1 is programmed as H1(hkeyi,M) = ui. For random oracle queries for
hash H1 by the adversary A on an input x, the challenger first checks if H1(x) is already set. If so, then
returns that value else chooses a value uniformly randomly from {0, 1}r and saves and returns it.

Hybrid3: Same as Hybrid2 except that the value of H(K,M) for each M in pre corruption signing query is
set in the reverse order, i.e., firstly partial signatures are computed and then H(K,M) is set accordingly
as follows:
1. The challenger computes CTσM

= FHE.Eval(FHE.pk, CM ,CTSig.sk).
2. It then computes FHE.decode0(FHE.sk,CTσM

) and generates N shares as
{si,M}Ni=1 ← Share(FHE.decode0(FHE.sk,CTσM

)).
3. Returns partial signatures as {σi,M = si,M + e′i}Ni=1. Also, if a message M is repeated for signing

query, then the challenger uses same {si,M}Ni=1 shares of FHE.decode0(FHE.sk,CTσM
) again.

4. When the adversary A outputs the set S of corrupted parties, the challenger first programs the value
of H(K,M) for each M in pre corruption signing queries as described next, and then provides key
shares for i ∈ S to A.

• Programming H(K,M): ∀i ∈ [N ], compute ri,M = si,M − FHE.decode0(ski,CTσM
) and solve for

vector bM ∈ ZNq such that ∀ i ∈ [N ],bTMvi = ri,M . Set H(K,M) = bM . Note that since there
are N − 1 independent equations in N unknowns, such a bM exists and can be computed.

5. To answer a random oracle query for hash function H on input x, the challenger first checks if the
value is already set, if so then returns that value, else randomly samples a fresh vector rx and sets
and returns H(x) = rx.

Hybrid4: Same as Hybrid3, except that now the signing queries are answered differently. For each pre-corruption
signing query for a message M , the challenger computes σi,M as follows:
1. Computes σM = Sig.Sign(Sig.sk,M) and generates random shares of σM bq/2e as {si,M}Ni=1 ←

Share(σM bq/2e) such that
∑N
i=1 si,M = σM bq/2e.

2. Returns σi,M = si,M + e′i, where e′i ← Ds

When A outputs the set S of corrupted parties, the challenger does the following:
1. Let PreQ be the set of messages for which signing queries were made before. Then for eachM ∈ PreQ

it does the following. For each i ∈ S, computes ri,M = si,M − FHE.decode0(ski,CTσM
). Computes

bM such that ∀ i ∈ S, bTMvi = ri,M . Sets H(K,M) = bM . Such a bM exists and can be computed
since there are only N − 1 equations to satisfy in N unknowns.

2. Returns the secret key shares {TSig.ski}i∈S .

For each post corruption signing query on message M , the challenger does the following. Let the honest
party be Pa, i.e. S = [N ] \ {a}.
1. Computes CTσM

= FHE.Eval(FHE.pk, CM ,CTSig.sk) and σM = Sig.Sign(Sig.sk,M).
2. For each i ∈ S, computes σ′i,M = FHE.decode0(ski,CTσM

) + H(K,M)Tvi and σi,M = σ′i,M + e′i,
where e′i←Ds.

3. Returns σa,M = σM bq/2e −
∑
i∈S σ

′
i,M + e′a, where e′a←Ds.

Hybrid5 and Hybrid6: are the same as Hybrid4 and Hybrid5, respectively, defined in the proof of Theorem 3.1.
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Indistinguishability of Hybrids Now we show that the consecutive hybrids are indistinguishable.

Claim 5.2 If the underlying homomorphic signature scheme HS is context hiding then Hybrid0 and Hybrid1
are indistinguishable.

Proof. The two hybrids differ only in the way π̃i,M is computed. In Hybrid0 it is computed using HS.SignEval
while in Hybrid1 it is generated by HS simulator. Hence, from the context hiding property of HS, the two
hybrids are indistinguishable.

Claim 5.3 If H1 is modeled as random oracle then Hybrid1 and Hybrid2 are indistinguishable.

Proof. The two hybrids differ only in the way uis are computed while computing partial signatures. In
Hybrid1, ui = H1(hkeyi,M), while in Hybrid2, it is chosen uniformly randomly and then H1 is programmed
accordingly. Since H1 is modeled as a random oracle the two hybrids are indistinguishable in adversary’s
view.

Claim 5.4 Hybrid2 and Hybrid3 are statistically indistinguishable.

Proof. The two hybrids differ only in the order in which H(K,M) and ri,M = H(K,M)Tvi are computed
in pre-corruption queries. In Hybrid2, H(K,M) is set first and then ri,M is computed accordingly. In Hybrid3,
ri,M is fixed first and then H(K,M) is programmed after the adversary reveals the set S of corrupted
parties such that H(K,M)Tvi = ri,M is satisfied for each i ∈ S. Next we show that this change in order of
computation does not change adversary’s view.

Let Pa be the honest party. Then, observe that the adversary receives the following values: H(K,M),
{ski}i∈[N ]\{a}, {vi}Ni=1 and {σi,M}Ni=1 in the two hybrids. We show that their joint distribution in the two
hybrids is indistinguishable.

Firstly, consider σ(2)
i,M and σ(3)

i,M , where superscripts indicate the respective hybrids. Recall that σ(2)
i,M = s

(2)
i,M+

e′i,M and σ(3)
i,M = s

(3)
i,M + e′i,M where the added noise is sampled from the same distribution in both the hybrids.

Hence we focus on s(2)i,M and s(3)i,M . s(2)i,M = FHE.decode0(ski,CTσM
) +H(K,M)Tvi. Recall that {ski}i∈[N ] are

random secret shares of FHE.sk and {vi}i∈[N ] are random secret shares of 0. Hence, by linearity property of
Share, {FHE.decode0(ski,CTσM

)}i∈[N ] are secret shares of FHE.decode0(FHE.sk,CTσM
), {H(K,M)Tvi}i∈[N ]

are secret shares of 0 and hence {s(2)i,M}i∈[N ] are secret shares of FHE.decode0(FHE.sk,CTσM
). Moreover, since

H is modeled as a random oracle, we have that {H(K,M)Tvi}i∈[N ] is a random secret sharing of 0, due to
which s(2)i,M are a random secret sharing of FHE.decode0(FHE.sk,CTσM

).

On the other hand, {s(3)i,M}i∈[N ] are also random secret shares of FHE.decode0(FHE.sk,CTσM
), by design.

Hence, they have the same distribution.
Next, observe that the adversary has ski for i ∈ [N ] \ {a} and hence it can compute ri,M =

si,M − FHE.decode0(ski,CTσM
) which is supposed to be equal to H(K,M)Tvi for i ∈ [N ] \ {a}. Thus,

given vi, ski, si,M for i ∈ [N ] \ {a}, H(K,M) is a random vector from the set {b : bTvi =
si,M − FHE.decode0(ski,CTσM

) ∀ i ∈ [N ] \ {a}}. Again, the same is true for H(K,M) in Hybrid3 by design.
Hence, the joint distribution of adversary’s view in the two hybrids is indistinguishable.

Finally, since the adversary gets to know the secret K only after revealing the set S of corrupted parties,
there is only negligible probability that the adversary makes a random oracle query for input (K,M) before
revealing the set S (which could lead to inconsistent values for H(K,M)). Hence, setting H(K,M) for
pre-corruption queries in the two hybrids in the above described ways, does not change adversary’s view.

Claim 5.5 Assume that the flooding error is of the order poly(λ) ·
√
Q. Then if there is an adversary that

can win the unforgeability game in Hybrid3 with probability ε, then its probability of winning the game in
Hybrid4 is at least ε2/2.

Proof. Let the adversary makes Q signing queries and let thePa be the honest party. Then in the adversary’s
view the two hybrids differ only in the error term in σa,M , as shown below.
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Let e′a ← Ds. In Hybrid3, for pre-corruption queries, the partial signature σa,M is computed as follows:

σa,M = sa,M + e′a

=

N∑
i=1

si,M −
∑

i∈[N ]\{a}

si,M + e′a

= FHE.decode0(FHE.sk,CTσM
)−

∑
i∈[N ]\{a}

si,M + e′a

= FHE.decode0(FHE.sk,CTσM
)−

∑
i∈[N ]\{a}

(FHE.decode0(ski,CTσM
) +H(K,M)Tvi) + e′a

= FHE.decode0(FHE.sk,CTσM
)−

N∑
i=1

FHE.decode0(ski,CTσM
)

+FHE.decode0(ska,CTσM
)−

N∑
i=1

H(K,M)Tvi +H(K,M)Tva + e′a

= FHE.decode0(FHE.sk,CTσM
)− FHE.decode0(

N∑
i=1

ski,CTσM
)

+FHE.decode0(ska,CTσM
)−

N∑
i=1

H(K,M)Tvi +H(K,M)Tva + e′a

= FHE.decode0(ska,CTσM
) +H(K,M)Tva + e′a (∵

N∑
i=1

vi = 0;

N∑
i=1

ski = FHE.sk)

In Hybrid3, for any post-corruption signing query on message M , the partial signature σa,M is computed as:

FHE.decode0(ska,CTσM
) +H(K,M)Tva + e′a

In Hybrid4, for pre-corruption queries, we have

σa,M = sa,M + e′a

= σM bq/2e −
∑

i∈[N ]\{a}

si,M + e′a

= σM bq/2e −
∑

i∈[N ]\{a}

(FHE.decode0(ski,CTσM
) +H(K,M)Tvi) + e′a

= σM bq/2e −
N∑
i=1

FHE.decode0(ski,CTσM
)−

N∑
i=1

H(K,M)Tvi

+ FHE.decode0(ska,CTσM
) +H(K,M)Tva + e′a

= σM bq/2e − FHE.decode0(

N∑
i=1

ski,CTσM
)−H(K,M)T

N∑
i=1

vi

+ FHE.decode0(ska,CTσM
) +H(K,M)Tva + e′a

= σM bq/2e − FHE.decode0(FHE.sk,CTσM
) + FHE.decode0(ska,CTσM

)

+H(K,M)Tva + e′a

= FHE.decode0(ska,CTσ) +H(K,M)Tva + e+ e′a
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In Hybrid4, for any post-corruption query for a message M , we have

σa,M = sa,M + e′a

= σM . bq/2e −
∑

i∈[N ]\{a}

(FHE.decode0(ski,CTσM
) +H(K,M)Tvi) + e′a

= σM . bq/2e −
N∑
i=1

(FHE.decode0(ski,CTσM
) +H(K,M)Tvi)

+FHE.decode0(ska,CTσM
) +H(K,M)Tva + e′a

= σM . bq/2e − FHE.decode0(

N∑
i=1

ski,CTσM
) +H(K,M)T

N∑
i=1

vi

+FHE.decode0(ska,CTσM
) +H(K,M)Tva + e′a

= σM . bq/2e − FHE.decode0(FHE.sk,CTσM
) + FHE.decode0(ska,CTσM

)

+H(K,M)Tva + e′a

= FHE.decode0(ska,CTσM
) +H(K,M)Tva + (e′a + e).

Thus, the difference in the two hybrids is in the error terms in σa,M . In Hybrid3, the error is e′a, while in
Hybrid4, it is e′a + e. This is the same case as in Claim 3.4 in Section 3. Hence we can use exactly the same
analysis using Rényi Divergence as in the proof of Claim 3.4, to complete the proof.

Claim 5.6 Assuming the privacy property of secret sharing scheme Share, Hybrid4 and Hybrid5 are
indistinguishable.

Proof. The only difference between Hybrid4 and Hybrid5 is in the way the key shares sk1, . . . , skN are
generated. In Hybrid4, {ski}i∈[N ]←Share(FHE.sk), while in Hybrid5, {ski}i∈[N ]←Share(0). Since the adversary
is given the key shares only for an invalid set of parties, the two distributions are identical due to the privacy
property of secret sharing scheme Share.

Claim 5.7 Assume that FHE is semantically secure. Then Hybrid5 and Hybrid6 are computationally
indistinguishable.

Proof. The proof is via standard reduction to FHE security and is similar to the proof of Claim 3.6.

Finally the proof for Theorem 5.1 completes with the following claim.

Claim 5.8 If the underlying signature scheme Sig is unforgeable, then the advantage of the adversary in the
unforgeability game of Definition 2.6 is negligible in Hybrid6.

Proof. The proof is via standard reduction to Sig security and is similar to the proof of Claim 3.7.

5.4 Robustness

It can be seen that if HS is a multi data secure homomorphic signature, then the construction of TS satisfies
robustness. The proof is the same as that for Claim 3.8.

6 Fully Adaptive Unforgeability in the Preprocessing Model

In this section we provide our construction for fully adaptive threshold signatures in the standard model but
with pre-processing, where signers must be provided correlated randomness of length proportional to the
number of signing queries. We emphasize that this correlated randomness is independent of messages, and
that this processing can be done in an offline phase before any messages are made available. The informed
reader may notice similarities with the “MPC with Preprocessing” model (please see [29] and references
therein).
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6.1 Construction

The construction in standard model differs from the one in ROM in the way the random values ri,j are
chosen. In this construction, ri,j is sampled directly for all possible signing query j in such a way that for
each j,

∑N
i=1 ri,j = 0. This helps to achieve full adaptivity because when key shares of one or more parties in

S′ ⊆ [N ] are revealed to the adversary, it does not fix ri,j values for i ∈ [N ] \ S′. This gives the challenger
the flexibility to simulate partial signature for uncorrupted parties and adjust their randomness ri,j later.
Let Q be the maximum number of signing queries. For a stateless scheme, we use a collision resistant hash
function H{0, 1}∗→[Q], which maps a message to an index in [Q]. We also use H1 : {0, 1}λ ×{0, 1}∗→{0, 1}r
modelled as random oracle as also used in the partially adaptive construction. The construction is provided
in Figure 4.

TS.KeyGen(1λ): Upon input the security parameter λ, do the following:
1. For j = 1 to Q, generate random values {rij}Ni=1 ← Share(0), such that

∑N
i=1 rij = 0.

2. Generate (Sig.vk,Sig.sk)←Sig.KeyGen(1λ), (FHE.pk,FHE.sk)←FHE.KeyGen(1λ) and N shares of FHE.sk as
(sk1, sk2, . . . , skN )← Share(FHE.sk) such that

∑N
i=1 ski = FHE.sk.

3. Compute an FHE encryption of Sig.sk as CTSig.sk←FHE.Enc(FHE.pk, Sig.sk).
4. For each Pi, sample a tag τi ← {0, 1}∗ and a hash key hkeyi←{0, 1}λ. Generate HS public parameters

HS.pp←HS.PrmsGen(1λ, 1n), and the public and the signing keys as (HS.pk,HS.sk)←HS.KeyGen(1λ,HS.pp).
Here, n is the bit length of input to PartSign circuit which depends on (FHE.sk, rij , hkeyi).

5. Compute (πτi , πi) = HS.Sign(HS.sk, (ski, {rij}j∈[Q], hkeyi), τi) for each i ∈ [N ].
6. Output TSig.pp = (FHE.pk,HS.pp,HS.pk,CTSig.sk, {τi, πτi}Ni=1), TSig.vk = Sig.vk, TSig.sk = {TSig.ski =

(ski, {rij}j∈[Q], hkeyi, πi)}Ni=1.

TS.PartSign(TSig.pp,TSig.ski,M): Upon input the public parameters TSig.pp, a partial signing key TSig.ski =
(ski, {rij}j∈[Q], hkeyi, πi) and a message M , do the following:
1. Compute j = H(M), ui = H1(hkeyi,M) and sample e′i←Ds(ui).
2. Let CM be the Sig.Sign circuit with message M being hardcoded. Compute FHE encryption of signature

σM as CTσM←FHE.Eval(FHE.pk, CM ,CTSig.sk).
3. Compute σi,M = FHE.decode0(ski,CTσM ) + rij + e′i.
4. This step computes a homomorphic signature π̃i,M on partial signature σi,M to provide robustness (Definition

2.8).
Let CPS be a circuit with CTσM being hardcoded and which takes as input the key share TSig.ski to compute
FHE.decode0(ski,CTσM ) + rij + e′i.

• Compute π∗i,M = HS.SignEval(HS.pp, CPS, πτi , (ski, rij , hkeyi), πi).
• Compute π̃i,M = HS.Hide(HS.pk, σi,M , π

∗
i,M ).

5. Output yi,M = (σi,M , π̃i,M ).

TS.PartSignVerify(TSig.pp,M, yi,M ): Upon input the public parameters TSig.pp, messageM , and a partial signature
yi,M , the verifier does the following.
1. Computes CTσM = FHE.Eval(FHE.pk, CM ,CTSig.sk).
2. Defines circuit CPS as described before and computes α = HS.Process(HS.pp, CPS).
3. Parses yi,M as (σi,M , π̃i,M ) and outputs

HS.HVerify(HS.pp, α, σi,M , τi, (πτi , π̃i,M )).

TS.Combine(TSig.pp, {yi,M}i∈[N ]): Upon input the public parameters TSig.pp and a set of partial signatures
{yi,M}i∈[N ], parse yi,M as (σi,M , π̃i,M ) and output σM = FHE.decode1(

∑N
i=1 σi,M ).

TS.Verify(TSig.vk,M, σM ): Upon input a verification key TSig.vk, a message M and signature σM , output
Sig.Verify(TSig.vk,M, σM ).

Fig. 4. Fully Adaptive Threshold Signature Scheme.
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6.1.1 Correctness From the correctness of FHE.Eval, CTσM
= FHE.Eval(FHE.pk, CM ,CTSig.sk) is the

encryption of CM (Sig.sk) = Sig.Sign(Sig.sk,M) = σM , which decrypts with the FHE secret key FHE.sk. So,
FHE.decode0(FHE.sk,CTσM

) = σM bq/2e+ e. The signature computed by the TS.Combine algorithm is

FHE.decode1(

N∑
i=1

σi,M ) = FHE.decode1(

N∑
i=1

FHE.decode0(ski,CTσM ) +

N∑
i=1

rij +

N∑
i=1

e′i)

= FHE.decode1(FHE.decode0(

N∑
i=1

ski,CTσM ) + 0 +

N∑
i=1

e′i)

= FHE.decode1(FHE.decode0(FHE.sk,CTσM ) +

N∑
i=1

e′i)

= FHE.decode1(σM bq/2e+ e+

N∑
i=1

e′i) = σM .

6.2 Unforgeability

Theorem 6.1. Assume the signature scheme Sig satisfies unforgeability, FHE is a CPA secure fully
homomorphic encryption scheme (Definition 2.12), HS is context hiding homomorphic signature scheme
(Definition 2.18) and Share satisfies privacy (Definition 2.34). Then the construction in Figure 4 satisfies
adaptive unforgeability (Definition 2.5) if the flooding error is of the size poly(λ)

√
Q, where Q is the number

of signing queries.

Proof. The security of the construction can be argued using the following hybrids:

Hybrid0: The real world.
Hybrid1 : Same as Hybrid0, except that now instead of using HS.SigEval algorithm to compute the homo-

morphic signature π̃i,M on σi,M , the challenger simulates π̃i,M as π̃i,M = HS.Sim(HS.sk, α, σi,M , τi, πτi),
where α = HS.Process(HS.pp, CPS).

Hybrid2: Same as Hybrid1, except that now the randomness ui used in sampling flooding noise in PartSign
algorithm is chosen uniformly randomly from {0, 1}r and then H1 is programmed as H1(hkeyi,M) = ui.
For random oracle queries by the adversary on an input x, the challenger first checks if H1(x) is already
set. If so, then returns it else chooses a value uniformly randomly from {0, 1}r and saves and returns it.

Hybrid3: Same as Hybrid2 except that now the rij values are set in a different order. In particular, for each
i ∈ [N ], let PreQi be the set of messages for which partial signatures are computed before corrupting Pi.
Then, for each j ∈ {H(M) : M ∈ PreQi}, rij is set in reverse order, i.e the challenger first computes
the partial signature σi,M and then sets the value for ri,H(M) as defined below. For any signing query on
message M , let SM ⊆ [N ] be the set of parties corrupted by the adversary so far. Then to compute σi,M ,
the challenger does the following.
1. If M was queried before then returns σ′iM + e′i for each i ∈ [N ] \ SM , where σ′i,M is the same value as

in the earlier response, but e′i is sampled afresh.
2. Else, computes CTσM

= FHE.Eval(FHE.pk, CM ,Sig.sk) and does the following:
– For each i ∈ SM , computes σ′i,M = FHE.decode0(ski,CTσM

) + ri,H(M) and sets σi,M = σ′i,M + e′i.
– For i ∈ [N ] \ SM ,

• Divide FHE.decode0(FHE.sk,CTσM
)−
∑
k∈SM

σ′k,M intoN−|SM | random shares, {si,M}i∈[N ]\SM
.

• Set σ′i,M = si,M and σi,M = σ′i,M + e′i.
3. Return {σi,M}i∈[N ]\SM

to the adversary.

When the adversary makes a key query for some i ∈ [N ], the challenger does the following.
1. For each M ∈ PreQi, computes ri,H(M) = si,M − FHE.decode0(ski,CTσM

).
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2. For j ∈ [Q] \ {H(M) : M ∈ PreQi} chooses ri,j randomly.

Hybrid4: Same as Hybrid3, except the following changes:
To answer signing query on any message M , for each i ∈ SM , the challenger computes the signatures
as in Hybrid3, but for i ∈ [N ] \ SM the challenger simulates the signatures as follows: instead of sharing
FHE.decode0(FHE.sk,CTσM

)−
∑
i∈SM

σ′i,M , the challenger now shares σM bq/2e −
∑
i∈SM

σ′i,M between
the uncorrupted parties as described below.
1. Compute CTσM

= FHE.Eval(FHE.pk, CM ,CTSig.sk) and σM = Sig.Sign(Sig.sk,M).
2. For each i ∈ SM , compute σ′i,M = FHE.decode0(ski,CTσM

) + ri,H(M) and σi,M = σ′i,M + e′i, where
e′i←Ds.

3. For uncorrupted parties do the following: divide σM bq/2e −
∑
k∈SM

σ′k,M into N − |SM | random
shares, {si,M}i∈[N ]\SM

. Set σi,M = si,M + e′i for i ∈ [N ] \ SM .
4. Return σi,M for i ∈ [N ] \ SM .

Key queries are answered in the same way as in the previous hybrid.

Hybrid5: Same as Hybrid4, except that now the challenger shares zero vector as
{ski}Ni=1←Share(0) instead of FHE.sk to generate the key share ski in TSig.ski.

Hybrid6: Same as Hybrid5, except that now CTSig.sk in TSig.pp is replaced by CT0 = FHE.Enc(FHE.pk,0).

6.2.1 Indistinguishability of Hybrids Next, we show that consecutive hybrids are indistinguishable.
Proof for indistinguishability between Hybrid0, Hybrid1 and Hybrid2 is the same as that in the proof of

Theorem 5.1 in Section 5.

Claim 6.2 Hybrid2 and Hybrid3 are statistically indistinguishable

Proof. Observe that the two hybrids differ only in the way the {ri,j} shares are set. For any message M ,
in Hybrid2, {ri,j}i∈[N ] ← Share(0), where j = H(M). In Hybrid3, {ri,j}i∈SM

are randomly chosen and for
i ∈ [N ] \ SM , ri,j = si,j − FHE.decode0(ski,CTσM

), where {si,j}i∈[N ]\SM
are obtained by randomly sharing

FHE.decode0(FHE.sk,CTσM
)−

∑
k∈SM

(FHE.decode0(skk,CTσM
) + rk,j) into N − |SM | shares. Thus,

FHE.decode0(FHE.sk,CTσM ) =
∑
k∈SM

FHE.decode0(skk,CTσM ) +
∑
k∈SM

rk,j +
∑

i∈[N ]\SM

si,j

=
∑
k∈SM

FHE.decode0(skk,CTσM ) +
∑
k∈SM

rk,j

+
∑

i∈[N ]\SM

FHE.decode0(ski,CTσM ) +
∑

i∈[N ]\SM

ri,j

=
∑
i∈[N ]

FHE.decode0(ski,CTσM ) +
∑
i∈[N ]

ri,j

= FHE.decode0(FHE.sk,CTσM ) +
∑
i∈[N ]

ri,j

This implies
∑
i∈[N ] ri,j = 0, and since {si,j}i∈[N ]\SM

are random shares, we can conclude that {ri,j}i∈[N ]

are random shares of 0, which is same as Hybrid2.

Claim 6.3 Assume that the flooding error is of the order poly(λ) ·
√
Q. If there is an adversary who can win

the unforgeability game as per Definition 2.5 in Hybrid3 with probability ε, then its probability of winning the
game in Hybrid4 is at least ε2/2.

Proof. Let the adversary issues Q signing queries. Let Pa be the honest party for some a ∈ [N ]. Then the
two hybrids differ only in the error term in σa,M , as shown below.
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Consider any signing query for a message M . Let SM be the set of corrupted parties so far and let
H(M) = j and e′a ← Ds. Then,

In Hybrid4, we have:

σa,M = sa,M + e′a

= σM bq/2e −
∑
i∈SM

σ′i,M −
∑

i∈[N ]\SM
i 6=a

si,M + e′a

= σM bq/2e −
∑
i∈SM

(FHE.decode0(ski,CTσM ) + rij)

−
∑

i∈[N ]\SM
i 6=a

(FHE.decode0(ski,CTσM ) + rij) + e′a

= σM bq/2e −
∑
i∈[N ]

FHE.decode0(ski,CTσM )−
∑

i∈[N ]\{a}

rij + FHE.decode0(ska,CTσM ) + e′a

= σM bq/2e − FHE.decode0(
∑
i∈[N ]

ski,CTσM )−
∑

i∈[N ]\{a}

rij + FHE.decode0(ska,CTσM ) + e′a

= σM bq/2e − FHE.decode0(FHE.sk,CTσM )−
∑
i∈[N ]

rij + ra,j + FHE.decode0(ska,CTσM ) + e′a

= FHE.decode0(ska,CTσM ) + raj + e+ e′a

On the other hand in Hybrid3,

σa,M = sa,M + e′a

= FHE.decode0(FHE.sk,CTσM )−
∑
i∈SM

σ′i,M −
∑

i∈[N ]\SM
i 6=a

si,M + e′a

= FHE.decode0(FHE.sk,CTσM )−
∑
i∈SM

(FHE.decode0(ski,CTσM ) + rij)

−
∑

i∈[N ]\SM
i 6=a

(FHE.decode0(ski,CTσM ) + rij) + e′a

= FHE.decode0(FHE.sk,CTσM )−
∑
i∈[N ]

FHE.decode0(ski,CTσM )−
∑

i∈[N ]\{a}

rij

+FHE.decode0(ska,CTσM ) + e′a

= FHE.decode0(FHE.sk,CTσM )− FHE.decode0(
∑
i∈[N ]

ski,CTσM )−
∑

i∈[N ]\{a}

rij

+FHE.decode0(ska,CTσM ) + e′a

= FHE.decode0(ska,CTσM ) + e′a −
∑

i∈[N ]\{1}

rij

= FHE.decode0(ska,CTσM ) + raj + e′a

In the third step, σ′i,M is computed as FHE.decode0(ski,CTσM
) + rij , while si,M is replaced with

FHE.decode0(ski,CTσM
) + rij because of the way ri,j is set. In the last step we replace −

∑
i∈[N ]\{a} rij

by raj because
∑
i∈[N ] rij = 0. However note that raj is never actually set since TSig.ska is never queried for.
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Thus, the difference in the two hybrids is in the error terms in σa. In Hybrid3, the error is e′a, while in
Hybrid4, it is e′a + e. This is the same case as in Claim 3.4 in Section 3. Hence we can use exactly the same
analysis using Rényi Divergence as in the proof of Claim 3.4, to complete the proof.

Indistinguishability between Hybrid4,Hybrid5 and Hybrid6 has the same argument as that for indistinguishability
between Hybrid4,Hybrid5 and Hybrid6 in the proof of Theorem 5.1.

Finally the proof of Theorem 6.1 completes with the following claim.

Claim 6.4 If the underlying signature scheme Sig is unforgeable, then the advantage of the adversary in the
unforgeability game of Definition 2.5 is negligible in Hybrid6.

Proof. The proof is via standard reduction to Sig security and is similar to the proof of Claim 3.7.

6.3 Robustness

Claim 6.5 If HS is multi data secure homomorphic signature, then the above construction of TS satisfies
robustness.

Proof. The proof is same as the proof for Claim 3.8.

7 Threshold Signatures for t-out-of-N access structures

In this section we give a general construction for t-out-of -N access structure using {0, 1}-LSSS.

7.1 Construction

The construction uses following building blocks:

1. A special fully homomorphic encryption scheme FHE = (FHE.KeyGen, FHE.Enc, FHE.Dec,FHE.Eval). Let
B be the error bound of the FHE scheme.

2. A UF-CMA signature scheme Sig = (Sig.KeyGen,Sig.Sign,Sig.Verify).
3. A t out of N {0, 1}-LSSS, Share.

To keep the construction simple, we have omitted the steps required for robustness. The robustness can be
achieved using homomorphic signatures in the same way as in the previous constructions. The construction is
provided in Figure 5.

7.2 Correctness

From the correctness of FHE.Eval algorithm, CTσ = FHE.Eval(FHE.pk, CM ,CTSig.sk) is the encryption
of CM (Sig.sk) = Sig.Sign(Sig.sk,M) = σM , which decrypts with the FHE secret key FHE.sk. So,
FHE.decode0(FHE.sk,CTσ) = σM bq/2e + e, where e is the error in CTσ. The signature computed by the
TS.Combine algorithm is

FHE.decode1(
∑
j∈T

σ̂j) = FHE.decode1(
∑
j∈T

FHE.decode0(skj ,CTσ) +
∑
j∈T

e′j)

= FHE.decode1(FHE.decode0(
∑
j∈T

skj ,CTσ) +
∑
j∈T

e′j)

= FHE.decode1(FHE.decode0(FHE.sk,CTσ) +
∑
j∈T

e′j)

(from the correctness of Share algorithm.)

= FHE.decode1(σM bq/2e+ e+
∑
j∈T

e′j) = σM .
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TS.KeyGen(1λ, t): Upon input the security parameter λ and the threshold t do the following:
1. Generate the verification and signing keys for the signature scheme (Sig.vk, Sig.sk)← Sig.KeyGen(1λ).
2. Generate the keys for the FHE scheme (FHE.pk,FHE.sk)←FHE.KeyGen(1λ) and compute CTSig.sk =

FHE.Enc(FHE.pk, Sig.sk).
3. Share the FHE secret key as: {TSig.ski}Ni=1←Share(FHE.sk, t). Note that for {0, 1}-LSSS, each TSig.ski can

be a set of more than one secret shares.
Notation: Let M be the share matrix (Def. 2.35) of dimension ` ×N . Then for i ∈ [N ], Ti refers to the
partition of [`] corresponding to party Pi and TSig.ski = {skj}j∈Ti , where skj , is the jth (out of ` shares)
share of FHE.sk.

4. Output TSig.pp = {FHE.pk,CTSig.sk}, TSig.vk = Sig.vk, TSig.sk = {TSig.ski}Ni=1.
TS.PartSign(TSig.pp,TSig.ski,M): Upon input the public parameters TSig.pp, the partial signing key TSig.ski and

a message M , do the following:
1. Let CM be the signing circuit, with message M being hardcoded. Compute CTσ =

FHE.Eval(FHE.pk, CM ,CTSig.sk).
2. Output σi = {σ̂j}j∈Ti , where σ̂j = FHE.decode0(skj ,CTσ) + e′j , where, e′j ← Ds.

TS.Combine(TSig.pp, {σi}i∈S): Upon input the public parameters TSig.pp and a set of partial signatures {σi}i∈S ,
where σi = {σ̂j}j∈Ti and S ⊆ [N ], the Combine algorithm first checks if |S| ≥ t. If not, then outputs ⊥, else
computes a minimum valid share set (Def. 2.36) T ⊆

⋃
i∈S Ti and outputs

σM = FHE.decode1(
∑
j∈T

σ̂j).

TS.Verify(TSig.vk,M, σM ): Upon input the verification key TSig.vk, a message M and signature σM , output
Sig.Verify(TSig.vk,M, σM ).

Fig. 5. t-out-ofN Threshold Signature Scheme.

7.3 Unforgeability

Theorem 7.1. Assume FHE is a secure fully homomorphic encryption as per Definition 2.12, Share is a
{0, 1}-LSSS t-out-of-N secret sharing scheme that satisfies Definition 2.34 and Sig is a signature scheme that
satisfies (UF-CMA) unforgeability. Then the construction of threshold signature in Figure 5 satisfies selective
unforgeability (Definition 2.7).

Proof. We prove the theorem using following hybrids.

Hybrid0 : Same as the real world.
Hybrid1: Same as Hybrid0 except that now the signing queries are answered differently.

1. Upon receiving the (invalid) party set S∗ from A, the challenger commits to a maximal invalid share
set T ∗ which contains

⋃
i∈S∗ Ti.

2. To answer any partial signing query (M, i) for message M and party Pi (i ∈ [N ] \ S∗), the challenger
computes σ̂j for j ∈ Ti as follows:

• If j ∈ Ti ∩ T ∗, then computes σ̂j = FHE.decode0(skj ,CTσ) + e′j , i.e. as in the real world.
• If j 6∈ Ti ∩ T ∗, then the challenger does the following: computes a minimal valid share set
T ⊆ T ∗ ∪ {j} (Note that such a set always exists and contains j because T ∗ is a maximal invalid
share set and j 6∈ T ∗, hence T ∗ ∪ {j} is a valid share set.) and σM = Sig.Sign(Sig.sk,M). Then it
computes σ̂j as

σ̂j = bq/2e · σM −
∑

j′∈T\{j}

FHE.decode0(skj′ ,CTσ) + e′j .

Hybrid2: Same as Hybrid1, except that instead of sharing FHE.sk the challenger now shares 0 to compute key
shares as (TSig.sk1, . . . ,TSig.skN )←Share(0, t).

Hybrid3: Same as Hybrid2, except that CTSig.sk in TSig.pp is replaced by CT0 = FHE.Enc(FHE.pk,0).
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7.3.1 Indistinguishability of Hybrids Next, we show that consecutive hybrids are indistinguishable.

Claim 7.2 If the flooding error is of the size poly(λ)
√
Q, then if there is an adversary who can win the

unforgeability game in Hybrid0 with probability ε, then its probability of winning the game in Hybrid1 is at
least ε2/2.

Proof. Let the number of signing queries that an adversary can make be bounded by Q.
The two hybrids differ only in the error term in partial signatures returned by the challenger. Let the

adversary issues partial signing query for (M, i). Let Ti, S∗ and T ∗ be as defined in Hybrid1. Then for
j ∈ Ti ∩ T ∗, σ̂j is computed in the same way in both the hybrids. The difference is in the error term in σ̂j for
j ∈ Ti \ T ∗.

Let us focus on one such j. Let e′j ← Ds and T be a minimal valid share set contained in T ∗ ∪ {j}.
In Hybrid0, we have:

σ̂j = FHE.decode0(skj ,CTσ) + e′j .

In Hybrid1, we have:

σ̂j = σM . bq/2e −
∑

j′∈T\{j}

FHE.decode0(skj′ ,CTσ) + e′j

= σM . bq/2e −
∑
j′∈T

FHE.decode0(skj′ ,CTσ) + FHE.decode0(skj ,CTσ) + e′j

= σM . bq/2e − FHE.decode0(
∑
j′∈T

skj′ ,CTσ) + FHE.decode0(skj ,CTσ) + e′j

= σM . bq/2e − FHE.decode0(FHE.sk,CTσ) + FHE.decode0(skj ,CTσ) + e′j

= σM . bq/2e − σM . bq/2e+ e+ FHE.decode0(skj ,CTσ) + e′j

= FHE.decode0(skj ,CTσ) + (e′j + e)

Thus, the difference in the two hybrids is in the error terms in σ̂j for j ∈ Ti \ T ∗. In Hybrid0, the error is e′j ,
while in Hybrid1, it is e′j + e. The proof uses Rényi Divergence and is similar to the proof given for Claim 3.4.
We refer to the distribution to be considered in Hybrid1 and Hybrid2 by D1 and D2, respectively. Let Ek be
the random variable for error vector corresponding to the error terms in ciphertexts returned in response
to the k-th query. Let Yk be the random variable for k-th query which is of the form (Mk, ik). Then as we
discussed in proof of Claim 3.4, Dt = (E(t)Q ,M(t)

Q , E(t)Q−1,M
(t)
Q−1, . . . , E

(t)
1 ,M(t)

1 ) for t ∈ {1, 2}, where E(t)k is

the distribution of Ek in Hybridt andM
(t)
k is the distribution of Yk in Hybridt. From the above analysis, we

have that for any given query (Mk, ik), E(1)k = DZnk ,s,0 and E(2)k = DZnk ,s,ek
, where ek = (ek, . . . , ek) is a

vector of length nk = |Tik \ T ∗| and |ek| ≤ Beval and nk ≤ `, where ` is the number of rows in the share
matrix (see Definition 2.35) and is bounded by poly(N). Then,

Ra(D1‖D2) = Ra(E(1)Q ,M(1)
Q , . . . , E(1)1 ,M(1)

1 ‖ E(2)Q ,M(2)
Q , . . . , E(2)1 ,M(2)

1 ). (7.1)

Applying the multiplicativity property of the Rényi divergence (Lemma 2.27), we obtain that Ra(D1‖D1)
is bounded from above by

max
x∈X

Ra(E(1)Q |X = x ‖ E(2)Q |X = x) ·Ra(M(1)
Q , . . . , E(1)1 ,M(1)

1 ‖ M(2)
Q , . . . , E(2)1 ,M(2)

1 )

= max
x∈X

Ra(DZnQ ,s,0|X = x ‖ DZnQ ,s,eQ
|X = x) ·Ra(M(1)

Q , . . . , E(1)1 ,M(1)
1 ‖ M(2)

Q , . . . , E(2)1 ,M(2)
1 ), (7.2)

where X = (YQ, EQ−1, . . . , E1).
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Then applying Lemma 2.28 in Equation (7.2), we get

Ra(D1‖D2) ≤ max
x∈X

exp(aπ‖eQ‖2/s2) ·Ra(M(1)
Q , . . . , E(1)1 ,M(1)

1 ‖ M(2)
Q , . . . , E(2)1 ,M(2)

1 )

= max
x∈X

exp(aπnQe
2
Q/s

2) ·Ra(M(1)
Q , . . . , E(1)1 ,M(1)

1 ‖ M(2)
Q , . . . , E(2)1 ,M(2)

1 )

≤ exp(aπ`B2
eval/s

2) ·Ra(M(1)
Q , . . . , E(1)1 ,M(1)

1 ‖ M(2)
Q , . . . , E(2)1 ,M(2)

1 ).

Further, from the data processing inequality (Lemma 2.27),

Ra(M(1)
Q , E(1)Q−1, . . . , E

(1)
1 ,M(1)

1 ‖ M(2)
Q , E(2)Q−1, . . . , E

(2)
1 ,M(2)

1 )

≤ Ra(E(1)Q−1, . . . , E
(1)
1 ,M(1)

1 ‖ E(2)Q−1, . . . , E
(2)
1 ,M(2)

1 ),

Hence, we get

Ra(D1‖D2) ≤ exp(aπ`B2
eval/s

2) ·Ra(E(2)Q−1, . . . , E
(2)
1 ,M(2)

1 ‖ E(3)Q−1, . . . , E
(3)
1 ,M(3)

1 )

≤ exp(
aπQ`B2

eval

s2
),

where the second inequality follows from induction.
Setting s = Beval ·

√
` ·Qλ, we get

Ra(D0‖D1) ≤ exp
(aπ
λ

)
Therefore,

D1(E) ≥ D0(E)
a

a−1

Ra(D0‖D1)

≥ D0(E)
a

a−1 exp
(
−aπ
λ

)
The claim is proved by taking a = 2. Thus, if the probability of success in Hybrid0 is non-negligible then it is
non-negligible in Hybrid1 as well.

Claim 7.3 Assume that Share is secure sharing scheme, then Hybrid1 and Hybrid2 are indistinguishable.

Proof. The two hybrids differ only in the generation of key shares. In Hybrid1, {TSig.ski}i∈[N ] =
Share(FHE.sk, t), while in Hybrid2 {TSig.ski}i∈[N ] is computed as Share(0, t). Hence by the privacy property
(Definition 2.34) of Share the two hybrids are identical in the adversary’s view since it receives the key shares
only for an invalid set of participants.

Claim 7.4 Assume the FHE scheme is secure (Definition 2.12). Then Hybrid2 and Hybrid3 are indistinguish-
able.

Proof. The proof is similar to the proof of Claim 3.6.

Finally the proof of Theorem 7.1 completes with the following claim. The proof of the claim is similar to the
proof of Claim 3.7 and is omitted.

Claim 7.5 If the underlying signature scheme Sig is unforgeable, then the the adversary cannot win the
unforgeability game in Hybrid3 with non-negligible advantage.
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7.4 Robustness

To add robustness in the above scheme, we can use context hiding secure homomorphic signature in the same
way as in Section 3. In particular, the KeyGen algorithm also includes in TSig.ski a HS signature of party
Pi’s key shares. To prove the honest evaluation of PartSign algorithm, the signer homomorphically computes
a signature on σi,M and gives it to the verifier. The unforgeability property of HS provides robustness and its
context hiding property ensures that unforgeability of TS is maintained.

7.5 Construction for adaptive unforgeability

The above construction of t-out-of-N threshold signatures can be made partially adaptive unforgeable in the
same way as in Section 5. In particular, for t-out-of-N access structure, the random shares of 0, i.e. vector vi
in TSig.ski for i ∈ [N ] are now computed as {vi}i∈[N ] ← Share(0, t). Similarly for fully adaptive unforgeablity
the construction can be modified in the same way as in Section 6. In particular, for t-out-of-N adaptation,
the random shares of 0 in TSig.ski are now generated as: ∀ j ∈ [Q], {ri,j}i∈[N ] ← Share(0, t).
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