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Abstract. In attribute-based proxy re-encryption (AB-PRE) and attribute-
based conditional proxy re-encryption (AB-CPRE) systems, the proxy
transforms a ciphertext associated with policy f to a ciphertext associ-
ated with policy g or transforms a ciphertext for delegator satisfying a
fine-grained condition to a ciphertext for delegatee. However, such PRE
schemes have found many practical applications requiring fine-grained
access control while keeping flexible delegation. Unfortunately, the ex-
isting PRE schemes are impossible to handle simultaneously with the
above scenarios. In this work, we introduce the notion of conditional
attribute-based proxy re-encryption (CAB-PRE), which enables a proxy
only to transform a ciphertext associated with policy f meeting the spe-
cial delegation requirements by delegator to a ciphertext associated with
policy g. We formalize its honestly re-encryption attacks (HRA) secu-
rity model that implies CPA-secure, giving a concrete CAB-PRE scheme
based on learning with errors (LWE) assumption. Finally, we show that
CAB-PRE implies AB-PRE and AB-CPRE notions, and propose their
constructions.

Keywords: conditional attribute-based proxy re-encryption, honestly
re-encryption attacks, learning with errors

1 Introduction

As for everyone familiar with public-key cryptography, certainly don’t be unfa-
miliar with proxy re-encryption [4], a cryptographic primitive proposed by Blaze,
Bleumer, and Strauss. It is an efficient and essential technique to reach secure
communication with others. Recall a regular scene in the company: Alice is a
manager who may handle several files every day. Suddenly, one day she fell ill
and was unable to work. She called her assistant Bob to complete some busi-
nesses. Without loss of generality, we make some reasonable assumptions about
Alice. First, these files that Alice received are ciphertext forms encrypted from
her public key. Second, Alice doesn’t want to give out her secret key. Naturally,
these waiting files should be re-encrypted to Bob via a re-encryption key, so that
he can handle them, in which transformation proceeds by a semi-trust proxy.
Briefly speaking, proxy re-encryption (PRE) enables a proxy to transform a ci-
phertext under one’s public key to a ciphertext under the other’s public key
while remains message unaltered.
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If the public key is considered an explicit and public identity for every user,
PRE seems to point in a kind of deterministic direction. However, it is unneces-
sary that require intended recipients in many scenarios. Attribute-based proxy
re-encryption (AB-PRE) [13, 17, 24] has such functionality, which is adapted
from attribute-based encryption (ABE) and could update access policy by re-
encryption procedure. Turn to the above case, applying AB-PRE, Alice could
convert her jobs under an access policy to new jobs under another access policy,
enabling more assistants to complete instead of point-to-point transformation.

As we all know, the shortcoming of PRE (or AB-PRE) is the lack of flexible
delegation, which means Alice’s all ciphertexts will be transformed without dis-
crepancy once generating a re-encryption key. It is impractical and insecure to
start with common sense. Fortunately, there exists a notion of conditional proxy
re-encryption (CPRE) [27], which is an elegant solution: one makes a ”decision”
on ciphertext whether it to be or not to be re-encrypted through appending con-
ditions. A trivial condition in the ciphertext is an equivalent match, for which
a ciphertext could be re-encrypted if and only if (i.e., iff) w′ = w, where w
and w′ are conditions related to the ciphertext and the re-encryption key, re-
spectively. This condition for increased expressiveness can be improved, such as
attribute-based conditional proxy re-encryption (AB-CPRE) [16,28] for different
predicates like puncturing, bit-fixing, and inner-product.

Although the AB-PRE and AB-CPRE schemes focus on different goals, the
underlying syntax has much in common, and a synergistic effect when construct-
ing both primitives could arise. From a functional and security perspective, the
desirable properties of that fine-grained access policy and flexible delegation can
be realized both once in a single scheme. By applying ABE as underlying con-
struction and increasing conditions to control ciphertext transformation, it may
well happen that a part of ciphertexts associated with policy f is re-encrypted to
the ciphertexts associated with policy g whenever the conditions are satisfied. For
the sake of security, it is sufficient to prove secure under honestly re-encryption
attacks (HRA) [9] (implies CPA-secure). Note that we restrict our attention to
unidirectional, single-hop proxy re-encryption.

1.1 Related Work

At present, there have been many results about AB-PRE [13, 15] and AB-
CPRE [18, 28] with various functionalities based on classical number-theoretic
assumptions. In this section, we mainly review the related development of lattice-
based constructions.

Based on the KP-ABE scheme introduced by Boneh et al. [5], there are two
selectively CPA-secure PRE schemes. Luo et al. [17] proposed a first multi-hop
LWE-based (KP)AB-PRE scheme. Their transformation approach is intuitive,
sampling Rf→g ← SamplePre(A∥Bf ,TA∥Bf

,A∥Bg, σ), which could further ex-
tend to multi-hop settings under the secret key TA∥Bg

. Liang et al. [16] proposed
two LWE-based unidirectional (KP)AB-CPRE schemes consisting of single-hop
and multi-hop by applying the key switching technique, which enables an access
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policy as a condition to realize fine-grained delegation control. In addition to
CPA security, the scheme also proved key privacy property.

However, Cohen [9] demonstrated that CPA-secure in PRE is inadequate to
protect the delegator’s secret key from a single honestly re-encrypted ciphertext.
Their work introduced a new security definition: HRA, a strengthening of CPA
security. They showed that if a CPA-secure scheme has re-encryption simulata-
bility, then it is also HRA-secure. Subsequently, Fuchsbauer et al. [12] studied
CPA and HRA in adaptive settings and gave requirements for their satisfac-
tion. Döttling et al. [11] presented the concept of universal proxy re-encryption
(UPRE) and defined HRA security for it. Recently, Susilo et al. [24] formalized
a notion of HRA-secure (KP)AB-PRE. They constructed a single-hop unidirec-
tional (KP)AB-PRE scheme and proved selectively secure in the standard model
based on the LWE problem. Concretely, it was also inspired by [5] and adopted
the key switching technique [6] to design that scheme. From its security proof,
we observe that it always needs to generate the secret key when answering re-
encryption queries of which the distinction just is applying different trapdoors.

1.2 Our Contributions

We are motivated by the concept of combined scheme [21,26], which incorporates
the public-key encryption scheme and the signature scheme via a single keypair,
enabling them to enjoy both privacy and authenticity. Although it looks nothing
to do with PRE, reminiscent of two primitives of AB-PRE and AB-CPRE. The
former has a fine-grained access policy, and the latter has flexible delegation, so

Why don’t we merge their functionalities to achieve a more expressive PRE
scheme?

We give an affirmative answer to the question above by providing a notion of
CAB-PRE and its instantiation over lattices. On a high level, our contribution
is as follows:

– We propose a concept of conditional attribute-based proxy re-encryption
(CAB-PRE) and its HRA-secure model. It is worth noting that we strengthen
the original definition of HRA-secure for PRE [9]. In particular, the previous
one only permits an adversary to query the re-encryption oracle from a
corrupt user to an honest user under the honestly generated ciphertexts.
We give a slightly stronger definition that allows an adversary to query the
re-encryption key oracle in a meaningful way in a case that the conditions
are unsatisfaction.

– We give a construction of CAB-PRE satisfying adaptively HRA-secure, based
on the hardness of learning with errors (LWE) problem, for which we in-
spired from a ciphertext-policy ABE (CP-ABE) scheme [25], key switching
technique [6], and constrained pseudorandom function (cPRF) [10]. We fo-
cus on inner-product predicates that are constraint conditions in encryption
procedure. We weakened the relationship between the secret key and the re-
encryption key by changing the random matrix, which means it is possible
to generate a re-encryption key without the related secret key.
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– We show that CAB-PRE implies the AB-PRE and AB-CPRE schemes are
also HRA-secure. The construction of AB-PRE is almost identical to CAB-
PRE since their underlying structure is the same except for the delegation
condition, which can be a solution for [24]’s open problem. From CAB-PRE
to AB-CPRE, we adapt from ”dual” public-key encryption [14] and use an
access policy for t−CNF in place of inner-product predicates. Unfortunately,
to answer the re-encryption queries, the proof of AB-CPRE remains has a
problem generating the re-encryption key via secret key.

1.3 Technical Review

To instantiate our proposed notion, we adopt the CP-ABE scheme [25] and com-
bine key switching technology [6] and cPRF for inner-product predicates [10] to
construct a unidirectional, single-hop CAB-PRE scheme. By definition 3.1, CAB-
PRE consists of seven algorithms: Setup,KeyGen,Enc1,Enc2,Dec,ReKeyGen,ReEnc,
in which Enc1 denotes first-level ciphertext or re-encrypted ciphertext that trans-
formed from the original ciphertext, and Enc2 denotes second-level ciphertext or
original ciphertext that directly encrypted from the encryption algorithm. In
this work, the second-level ciphertext could be converted to first-level cipher-
text when access policy and condition are satisfied. In particular, the decryption
operation essentially has no difference for two types of ciphertexts other than
the restrictions of noise bound. Observe that cPRF for inner-product predicates
that expressibility is between that of t−CNF and NC1 has a similar logic to the
transformation condition in our construction. There is the perfect incorporation
of key switching and inner-product predicates at the expense of the dimension
expanding when generating a re-encryption key. However, it does not affect the
final ciphertext size, which is still constant.

The details of CAB-PRE scheme and security proof are in Section 4. Roughly
speaking, assume that P is a conforming cPRF for t−CNF predicates achieves
single-key adaptively secure, has properties of gradual evaluation and key sim-
ulation which play an important role in construction and security proof. In
[25] scheme, the decryption succeeds conditioned on f(x) = 1 ∧ r ̸= r′ where
r ← P.Eval(σ, x), and r′ ← P.ConstrainEval(sf , x) with sf ← P.KeySim(P.pp, f).
Let Cβ be an inner-product predicate, and use vector decomposition (Definition
2.8) to process the predicate vector prevents noise explosion. We add inner-
product vectors in Enc1 and ReKeyGen phases such that the ciphertexts meet
requirements and can be re-encrypted whenever performing re-encryption oper-
ations. Note that we provide a weak form of anonymity, namely attribute hiding,
vector α embedded in sT (D+W⊗P2(α)T ) + eT3 remains hidden since s, e3 are
secrets and D,W are uniformly random. In re-encryption key generation, we
select a function g ∈ F and let H = B∥(Ag − sg ⊗ G). We then reconstruct
V′ = (V +D)·BD(β) as a random matrix. By using the key switching technique,
we capture the re-encryption key.

To prove the adaptive HRA security, we introduce two randomized algo-
rithms: Semi− KeyGen1 and Semi− KeyGen2 are crucial points for answering
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re-encryption queries so that we can always simulate a re-encryption key with-
out the help of the secret key. However, we also need the master secret key when
the adversary has decryption capability. Concretely, we first sample a short vec-
tor k (i.e., (B∥Ax,r)k = V) and output an extended trapdoor in the KeyGen
algorithm. We further sample a short vector d (i.e., (B∥Ax,r)d = V′) based on
the extended trapdoor to generate a re-encryption key. Due to d ̸= k, we can
circumvent the secret key and simulate a re-encryption key straightway derived
from the master secret key. There is a trick that applies some algorithms with
”symmetric” properties, such as SamlpleLeft and SamlpleRight. Finally, we insert
LWE instance (B∥V,u0∥u′2) into challenge ciphertext (u0,u2 = u′2+µb(0∥gT ))
enabling the adversary cannot to distinguish.

1.4 Organization

In section 2, we introduce some related cryptographic primitives and lattice
background. In section 3, we give the definitions and security model of CAB-
PRE. In section 4, we present an instantiation scheme based on lattices and prove
its HRA-secure. In section 5, we propose AB-PRE and AB-CPRE constructions
via CAB-PRE. At last, we conclude our paper in section 6.

2 Preliminaries

2.1 Constrained PRF, Conforming cPRF and t−CNF Predicates

Definition 2.1 (Constrained PRF [10, 25]). let F be a family of functions
with domain {0, 1}l and range {0, 1}. A constrained pseudorandom function
(cPRF) for F is defined by a tuple of probabilistic polynomial-time (PPT) al-
gorithms ΠCPRF = (Setup,Eval,Constrain,ConstrainEval) where:

– Setup(1λ) → (pp,msk) : The setup algorithm takes as input the security
parameter 1λ, outputs a public parameter pp and a master secret key msk.

– Eval(msk, x) → y : The evaluation is a deterministic algorithm which takes
as input the master secret key msk and a bit-string x ∈ {0, 1}l, outputs
y ∈ {0, 1}k.

– Constrain(msk, f) → skf : The constrained key generation takes as input
the master secret key msk and a function f ∈ F specifying the constraint,
outputs a constrained key skf .

– ConstrainEval(skf , x) → y′ : The constrained evaluation is a deterministic
algorithm which takes as input a constrained key skf and a bit-string x ∈
{0, 1}l, outputs y′ ∈ {0, 1}k.

Correctness. We say a cPRF scheme ΠCPRF is correct if for all f ∈ F and
x ∈ {0, 1}l such that f(x) = 1, we have Eval(msk, x) = ConstrainEval(skf , x)
where (pp,msk)← Setup(1λ) and skf ← Constrain(msk, f).

Pseudorandomness. The single-key adaptive security of a cPRF is defined
formally by the following game between an adversary A and a challenger C:
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– Setup: At the beginning of the game, the challenger C prepares (pp,msk)←
Setup(1λ) and sends pp to A.

– Phase 1: A can adaptively make two types of queries:

• Evaluation Queries: Upon a query x ∈ {0, 1}l, the challenger evaluates
y ← Eval(msk, x) and returns y to A.

• Constrained Key Queries: This oracle can only be queried once. Upon
a query f ∈ F , the challenger computes skf ← Constrain(msk, f) and
returns skf to A.

– Challenge: A chooses a target bit-string x∗ ∈ {0, 1}l. The challenger flips

a coin b
$← {0, 1}. If b = 1, it evaluates y∗ ← Eval(msk, x∗). Otherwise, it

samples y∗
$← {0, 1}k. Finally, C returns y∗ to A.

– Phase 2: A continues to make queries as same as Phase 1 with the restric-
tions that cannot query x∗ in evaluation oracle and cannot query any circuit
f enables f(x∗) = 1 in constrained key oracle.

– Guess: Eventually, A outputs b′ as a guess for b.

The adversary A wins the game if b′ = b, which advantage is at most 1/2 +
negl(λ).

Definition 2.2 (Conforming cPRF [25]). We call a cPRF scheme is
conforming, except for correctness and pseudorandomness defined above, if the
following properties hold.

Gradual Evaluation. Let Constrain (in addition to Eval,ConstrainEval) al-
gorithm is deterministic. Fixing pp from Setup(1λ), for any f ∈ F and x ∈ {0, 1}l
such that f(x) = 1, define the following circuits:

– Uσ→x : {0, 1}λ → {0, 1}k takes as input msk and computes Eval(msk, x).
– Uσ→f : {0, 1}λ → {0, 1}lf takes as inputmsk and computes Constrain(msk, f).
– Uf→x : {0, 1}lf → {0, 1}k takes as input skf and computes ConstrainEval(skf , x).

Key Simulation. We require a PPT algorithm KeySim(pp, f) → skf such
that any adversary A has at most 1/2 + negl(λ) probability of winning the
following game against a challenger C.

– Setup: C generates (pp,msk)← Setup(1λ) and sends pp to A.
– Phase 1: A makes (polynomial times) evaluation queries. For a bit-string

x ∈ {0, 1}l, C returns y ← Eval(msk, x).

– Challenge: For a challenge constraint f∗ ∈ F , C samples b
$← {0, 1} and

returns skf∗ ← Constrain(msk, f∗) if b = 0, otherwise it returns skf∗ ←
KeySim(pp, f∗).

– Phase 2: Same as Phase 1 except that cannot query x in evaluation oracle
so that f∗(x) = 0.

– Guess: A outputs a bit b′. A wins the game if b′ = b.

In this work, we will use a class of predicates: t− conjunctive normal form
(t-CNF), where each clause is of constant locality. We give a definition as below.
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Definition 2.3 (t−CNF Predicates [10, 25]). A t−CNF predicate f :
{0, 1}l → {0, 1} such that t ≤ l is a set of clauses f = {(Ti, fi)}i, where for all i,
Ti ⊆ [l], |Ti| = t and fi : {0, 1}t → {0, 1}. For all x ∈ {0, 1}l, a t−CNF predicate
f(x) is computed as

f(x) =
∧
i

fi(xTi
)

where xTi ∈ {0, 1}t is the bit string consisting of the bits of x in the indices of
Ti. At last, a family of t−CNF predicates F is the set of t−CNF predicates with
input length l.

2.2 Lattices, Discrete Gaussian, Bounded Distributions

Notations. We use bold symbols denote matrices or vectors and regular
lowercase letters denote single elements. Let (·∥·) (resp. (·; ·)) denote the hori-
zontal concatenation (resp. vertical concatenation) of vectors or matrices. For

a distribution or set X, we write x
$←− X to denote the operations of sampling

uniformly and randomly x according to X. Let |= (resp. ̸|=) denote the satisfied
relationship (resp. dissatisfied relationship) between two conditions.

Matrix Norm. For a vector u, let ∥u∥ denote its l2 norm. For a matrix

R ∈ Zn×m, let R̃ be the Gram-Schmidt orthogonalization of R. we define the
following matrix norms:

– ∥R∥ denote the l2 length of the longest column of R.
– ∥R∥∞ denote the maximum element in R.

Note that ∥R∥∞ ≤ ∥R∥ ≤ nm∥R∥∞ and that ∥RS∥∞ ≤ m∥R∥∞∥S∥∞.
Lattice. In this work, we will be using two kinds of integer lattices. For q

prime, given A ∈ Zn×m
q and u ∈ Zn

q , denote:

Λ⊥q (A) = {v ∈ Zm : Av = 0 (mod q)},

Λu
q (A) = {v ∈ Zm : Av = u (mod q)}.

Observe that if t ∈ Λu
q (A) then Λu

q (A) = Λ⊥q (A) + t and hence Λu
q (A) is a shift

of Λ⊥q (A).

Gadget Matrix. Let n, q ∈ Z, g = (1, 2, 4, · · · , 2⌈log q⌉−1) ∈ Z⌈log q⌉
q and

m = n⌈log q⌉. The gadget matrix is defined as G = g ⊗ In ∈ Zn×m
q denotes a

tensor product of the vector g and the matrix In, such that the lattice Λ⊥q (G)

has a public known basis TG with ∥T̃G∥ ≤
√
5.

Discrete Gaussian [1]. Let L be a subset of Zm. For any vector c ∈ Rm

and any positive parameter σ ∈ R, define:

ρσ,c(x) = exp(−π ∥x− c∥2

σ2
) and ρσ,c(L) =

∑
x∈L

ρσ,c(x).
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A discrete Gaussian distribution on L with center c and parameter σ is

∀y ∈ L,DL,σ,c(y) =
ρσ,c(y)

ρσ,c(L)
.

The distribution DL,σ (c = 0 when ommitted) will most often be defined over
lattice L = Λ⊥q (A) for a matrix A ∈ Zn×m

q or over a coset L = Λ⊥q (A)+ t where
t ∈ Zm.

Definition 2.4 (Tailcut [1, 20]). Let q ≥ 2, m > n and A be a matrix in

Zn×m
q . Let TA be a basis for Λ⊥q (A) and τ ≥ ∥T̃A∥ω(

√
logm). For u ∈ Zn

q , we
have

Pr[x
$←− DΛu

q (A),τ : ∥x∥ > τ
√
m] ⩽ negl(λ).

Bounded Distributions. The following properties below can help us set
the parameters appropriately.

Definition 2.5( [7,25]). A distribution χ supported over Z is (B, ϵ)-bounded,
if we have Pr

x
$←χ

[|x| > B] < ϵ.

Definition 2.6 ( [7,25]). A distribution χ̃ supported over Z is (B, ϵ)-swallowing
if for all y ∈ [−B,B]∩Z, we have that χ̃ and y+χ̃ are within ϵ statistical distance.

2.3 Lattice Algorithms, Lattice Evaluation and LWE

Lattice Algorithms. Throughout the paper we will use the following lattice
algorithms:

Lemma 2.1 (TrapGen [19]). Let n,m, q > 0 be integers with m ≥
O(n log q). A PPT algorithm TrapGen(1n,m, q) that outputs a matrixA ∈ Zn×m

q

and a full-rank matrix TA ∈ Zm×m, where TA is a basis for Λ⊥q (A), the distri-

bution of A is 2−Ω(n)-close to uniform and ∥T̃A∥ = O(
√
n log q).

Lemma 2.2 (SamplePre [14]) Let q ≥ 2, m > n. A PPT algorithm
SamplePre(A,TA,u, τ) that, given a matrix A ∈ Zn×m

q , a basis TA for Λ⊥q (A),

a vector u ∈ Zn
q and a Gaussian parameter τ ≥ ∥T̃A∥ω(

√
logm), outputs a

vector e ∈ Zm sampled from a distribution 2−Ω(n)-close to DΛu
q (A),τ .

Lemma 2.3 (SampleLeft [1]). Let q > 2, m > n. A PPT algorithm
SampleLeft(A,TA,B,u, τ) that, given matrices A ∈ Zn×m

q ,B ∈ Zn×m1
q , a basis

TA for Λ⊥q (A), a vector u ∈ Zn
q and a Gaussian parameter τ ≥ ∥T̃A∥ω(

√
log(m+m1)),

outputs a vector e ∈ Zm+m1 sampled from a distribution 2−Ω(n)-close toDΛu
q (A∥B),τ .

Lemma 2.4 (SampleRight [1]). Let q > 2, m > n. A PPT algorithm
SampleRight(A,G,R,TG,u, τ) that, given matrices A ∈ Zn×k

q ,G ∈ Zn×m
q ,R ∈

Zk×m, a basis TG for Λ⊥q (G), a vector u ∈ Zn
q and a Gaussian parameter

τ ≥ ∥T̃G∥ · sR · ω(
√
logm) (where sR := ∥R∥), outputs a vector e ∈ Zm+k

sampled from a distribution 2−Ω(n)-close to DΛu
q (A∥AR+G),τ .

Lemma 2.5 (ExtendRight. [5,8]) Let n,m, q > 0 be integers with q prime.
A PPT algorithm ExtendRight(A,TA,B) that, given matrices A ∈ Zn×m1

q ,B ∈
Zn×m2
q and a basis TA for Λ⊥q (A), outputs a basis T(A∥B) for Λ⊥q (A∥B) such

that ∥T̃A∥ = ∥T̃(A∥B)∥.
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Lemma 2.6 (ExtendLeft [5, 8]) Let n,m, q > 0 be integers with q prime.
A PPT algorithm ExtendLeft(A,G,TG,R) that, given matrices A ∈ Zn×k

q ,G ∈
Zn×m
q ,R ∈ Zk×m, a basis TG for Λ⊥q (G), outputs a basis TH for Λ⊥q (H) where

H = (A∥AR+G), such that ∥T̃H∥ ≤ ∥T̃G∥(1 + ∥R∥).
Lemma 2.7 (RandBasis [5, 8]). Let m, q ≥ 2 be integers with q prime.

A PPT algorithm RandBasis(A,TA, τ) that, given a matrix A ∈ Zn×m
q , a basis

TA ∈ Zm×m for Λ⊥q (A) and a Gaussian parameter τ = ∥T̃A∥ω(
√
logm), out-

puts a basis T′A for Λ⊥q (A) sampled from a distribution that is statistically close

to Dm
Λ⊥

q (A)),σ. Note that ∥T̃′A∥ < τ
√
m with all but negligible probability.

We use the abstraction form of lattice evaluation as extracted in [25].
Theorem 2.1 (Lattice Evaluation [25]). Let n, q, l ∈ N and m = n⌈log q⌉,

there exist two deterministic algorithms called EvalF and EvalFX respec-
tively. For any depth d boolean circuit f : {0, 1}l → {0, 1}k and for every
x ∈ {0, 1}l, for any matrix A ∈ Zn×ml

q , the outputs H ← EvalF(f,A) and

Ĥ ← EvalFX(f, x,A) are both in Zml×mk and it holds that ∥H∥∞, ∥Ĥ∥∞ ⩽
(2m)d and

[A− x⊗G]Ĥ = AH− f(x)G(mod q).

Moreover, for any pair of circuits f : {0, 1}l → {0, 1}k, g : {0, 1}k → {0, 1}t
and for any matrix A ∈ Zn×ml

q , the outputs Hf ← EvalF(f,A) and Hg ←
EvalF(g,AHf ) and Hg◦f ← EvalF(g ◦ f,A) satisfy HfHg = Hg◦f .

Learning with errors. The learning with errors (LWE) problem was intro-
duced by Regev [23]. In this work we will use its decisional version and Hermite
normal form (HNF).

Definition 2.7 (Decisional LWE (DLWE) and Its HNF [2,23]). Let λ
be the security parameter, n = n(λ) and q = q(λ) be integers and let χ = χ(λ)
be a probability distribution over Z. The DLWEn,q,χ problem states that for all

m = poly(n), A
$←− Zn×m

q , e
$←− χm, and u

$←− Zm
q , it holds that

(A,AT s+ e) and (A,u)

are computationally indistinguishable regardless of s
$←− Zn

q or s
$←− χn.

Corollary 2.1( [22,23,25]). For all ϵ > 0 there exist functions q = q(n) ≤ 2n,
χ = χ(n) such that χ is B-bounded for some B = B(n), q/B ≤ 2n

ϵ

and such
that DLWEn,q,χ is at least as hard as the classical hardness of GapSVPγ and the

quantum hardness of SIVPγ for γ = 2Ω(nϵ).

2.4 Vector Decomposition and Generalized Leftover Hash Lemma

Key Switching. We show some subroutines of the key switching procedure
as proposed in [6].

Definition 2.8 (Vector Decomposition). We define the functions map-
ping vectors to a higher dimension as below:
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– BD(v): A deterministic function that given a vector v ∈ Zn
q , let vi ∈ {0, 1}n

be such that v =
∑⌈log q⌉−1

i=1 2ivi, outputs a vector ṽ ∈ {0, 1}n⌈log q⌉, where
ṽ = (v0; · · · ;v⌈log q⌉−1).

– P2(x): A deterministic function that given a vector x ∈ Zn
q , outputs a vector

x̄ ∈ Zn⌈log q⌉
q , where x̄ = [x; 2x; · · · ; 2⌈log q⌉−1x].

– For vectors v,x ∈ Zn
q , it holds that ⟨BD(v),P2(x)⟩ = ⟨v,x⟩ mod q.

Randomness Extraction. We introduce a generalization version of the
leftover hash lemma from [1].

Definition 2.9 (Generalized Leftover Hash Lemma [1]). Suppose that

m > (n+1) log q+ω(log n) and that q > 2 is prime. Let S
$←− {−1, 0, 1}m×k where

k = k(n). Choose matrices A
$←− Zn×m

q and B
$←− Zn×k

q . Then, for all vectors

e ∈ Zm
q , the distribution (A,AS,STe) is statistically close to the distribution

(A,B,STe).
Note that even without revealing some small amount of information of S

(i.e., STe), the distributions (A,AS) and (A,B) are statistically close.

3 Definition of Conditional Attribute-Based Proxy
Re-encryption

In this section, we give the definitions of conditional attribute-based proxy re-
encryption (CAB-PRE). Specifically, we present the syntax of unidirectional,
single-hop CAB-PRE for ciphertext policy and its HRA security notions. A
CAB-PRE scheme enables a proxy to convert ciphertexts of a policy f into
ciphertexts of a policy g under certain constraints. It uses additional conditions
to control which ciphertexts can be chosen instead of all.

3.1 Unidirectional, Single-Hop CAB-PRE

Definition 3.1 (Conditional Attribute-Based Proxy Re-Encryption for
Ciphertext Policy). Let F : {0, 1}l → {0, 1} be a function class. A conditional
attribute-based proxy re-encryption scheme CAB-PRE for policies in F is a tuple
of PPT algorithms ΠCAB−PRE = (Setup,KeyGen,Enc1,Enc2,Dec,ReKeyGen,ReEnc).

– Setup(1λ) → (pp,msk). On input the security parameter 1λ, the setup al-
gorithm outputs the public parameters pp along with a master secret key
msk.

– KeyGen(msk, x)→ skx. On input a master secret key msk and an attribute
string x ∈ {0, 1}l, the key generation algorithm outputs a secret key skx.

– Enc1(f, µ) → ct1. On input a policy f ∈ F and a plaintext µ ∈ {0, 1}, the
first-level encryption algorithm outputs a first-level ciphertext ct1.

– Enc2(f, µ, w) → ct2. On input a policy f ∈ F , a plaintext µ ∈ {0, 1} and
a condition w, the second-level encryption algorithm outputs a second-level
ciphertext ct2. Note that in the setting of single-hop, it could distinguish
first-level ciphertexts and second-level ciphertexts.
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– Dec(skx, ct ∈ {ct1, ct2})→ µ/⊥. On input a secret key skx and a ciphertext
ct ∈ {ct1, ct2}, the decryption algorithm outputs a bit µ ∈ {0, 1} if f(x) = 1
or the error symbol ⊥.

– ReKeyGen(skx, g, w
′)→ rkw

′

x→g. Given a secret key skx, a policy g ∈ F , and
a condition w′, this algorithm outputs a re-encryption key rkw

′

x→g.

– ReEnc(rkw
′

x→g, ct2)→ ct1/⊥. Given a re-encryption key rkw
′

x→g and a second-
level ciphertext ct2, this algorithm outputs a first-level ciphertext ct1 if
f(x) = 1 and w′ |= w, or the error symbol ⊥.

Definition 3.2 (CAB-PRE: Correctness). A unidirectional, single-hop
CAB-PRE is correct if:

– For all x ∈ {0, 1}l and f ∈ F for which f(x) = 1, and for any condition w
and all µ ∈ {0, 1}, it holds that

Pr[Dec(skx, ct ∈ {ct1, ct2}) ̸= µ] = negl(λ),

where ct1 ← Enc1(f, µ) and ct2 ← Enc2(f, µ, w).
– For any condition w′ and rkw

′

x→g ← ReKeyGen(skx, g, w
′), it holds that

Pr[Dec(sky, ct1) ̸= µ] = negl(λ),

if g(y) = 1 and w′ |= w for y ∈ {0, 1}l and g ∈ F , where ct1 ← ReEnc(rkw
′

x→g, ct2).

Definition 3.3 (CAB-PRE: Security Game for HRA). The adaptive
HRA security game of an unidirectional, single-hop CAB-PRE scheme between
an adversary A and a challenger C. The game consists of three phases as below.

Phase 1 (Setup): This is the setup phase. The challenger generates (pp,msk)
by running Setup(1λ) algorithm and gives the public parameter pp to A. Then,
the challenger initializes a counter numCt := 0, a policy-value store C := ∅ and
a set Deriv := ∅.

Phase 2 (Oracle query): This is the oracle query phase.

– OKeyGen(x): For a key query x, the challenger generates skx ← KeyGen(msk, x)
and gives it to A.

– OEnc(f, w, µ): For an encryption query (f, w, µ), the challenger computes

ct←

{
Enc1(f, µ), if w = Null

Enc2(f, w, µ), otherwise

sets numCt := numCt+ 1, adds ct in C with policy (f, w, numCt), and gives
(numCt, ct) to A.

– OReKey(x, (g, y), w
′): For a re-encryption key query (x, (g, y), w′) where y de-

notes an attribute string, there exist two cases:
1. g(y) = 0, the challenger generates rkw

′

x→g ← ReKeyGen(skx, g, w
′); If

the re-encryption key distribution is statistically close to the uniform
(i.e., key privacy [3]), the challenger could choose a random value that is
identically and independently distributed according to its distribution.
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2. g(y) = 1, return ⊥ if x was not queried in OKeyGen and w′ |= w of
that queried in OEnc when w ̸= Null. Otherwise, the challenger produces
rkw

′

x→g ← ReKeyGen(skx, g, w
′).

After that, C gives rkw
′

x→g to A.
– OCha(f

∗, w∗, (µ∗0, µ
∗
1)): This oracle can only be invoked once. For a challenge

query (f∗, w∗, (µ∗0, µ
∗
1)), it requires f∗(x) = 0 (where x has been queried in

OKeyGen and OReKey). The challenger flips a bit b ∈ {0, 1}, generates

ct∗ ←

{
Enc1(f

∗, µ∗b), if w∗ = Null

Enc2(f
∗, w∗, µ∗b), otherwise

sets numCt := numCt+ 1 and Deriv := Deriv ∪ numCt. It adds ct∗ in C with
policy (f∗, w∗, numCt) and gives (numCt, ct∗) to A.

– OReEnc(x, (g, y), w
′, (f, w, k)): For a re-encryption query (x, (g, y), w′, (f, w, k))

where k ≤ numCt, the challenger does the following operations.
1. If w′ ̸|= w, return ⊥.
2. If there is no value in C with policy (f, w ̸= Null, k), return ⊥.
3. If f(x) = 0, return ⊥.
4. If g(y) = 1 ∩ k ∈ Deriv, return ⊥.
5. Otherwise, let ct be that value in C. The challenger produces ct′ ←

ReEnc(rkw
′

x→g, ct) where rkw
′

x→g ← ReKeyGen(skx, g, w
′), sets numCt :=

numCt + 1, adds ct′ in C with policy (f,Null, numCt). If k ∈ Deriv, set
Deriv := Deriv ∪ numCt. Finally, it gives (numCt, ct′) to A.

Phase 3 (Decision): This is the decision phase. A outputs a bit b′ for b.
The adaptive HRA advantage of A wins the game is defined as

AdvHRAA,ΠCAB−PRE
= |Pr[b′ = b]− 1/2|.

Definition 3.4 (CAB-PRE: Adaptive HRA Security). Given a secu-
rity parameter 1λ, we say the scheme ΠCAB−PRE for ciphertext policy is unidi-
rectional, single-hop adaptively HRA-secure if for all PPT adversaries A, there
has a negligible function negl(λ) such that

AdvHRAA,ΠCAB−PRE
≤ negl(λ).

4 Single-Hop Construction Based on Lattices

In this section, we present a CAB-PRE scheme for inner-product predicate
based on DLWE assumption. Our construction is derived from the CP-ABE
scheme [25], and also suppose that the underlying cPRF keeps single-key adap-
tive security.

Let P = (P.Setup,P.Eval,P.Constrain,P.ConstrainEval) be a conforming cPRF
for a class family F of t−CNF predicates with input length l and output length
k. Assume that the master secret key length of P is λ. For all f ∈ F let lf denote
the size of constrained key which can be computed efficiently giving function f
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and descriptions of P.Constrain algorithm. Let Cβ be an inner-product predicate
with dimension l that on input α ∈ Zl

q, then Cβ(α) = 1 iff ⟨β, α⟩ = 0. Note that
Uσ→x, Uσ→f , Uf→x are circuits defined as Definition 2.2. Define an adaptive-
secure CAB-PRE for inner-product as follows.

– Setup(1λ) : Run (P.pp, P.msk)← P.Setup(1λ), set σ = P.msk. n, q,m′, τ, χ, χ̃
are parameters and let m = n ⌈log q⌉. Invoke (B,TB)← TrapGen(1n,m′, q).

Sample matricesA
$←− Zn×mλ

q andV,D
$←− Zn×l⌈log q⌉

q . Output pp = (B,A,V,
D, P.pp) and msk = (σ,TB).

– KeyGen(msk, x) : Compute Hσ→x ← EvalF(Uσ→x,A), let Ax = AHσ→x.
Evaluate r ← P.Eval(σ, x) and Hr ← EvalF(Ir,Ax) where Ir : {0, 1}k →
{0, 1} is a function that on input r′ returns 0 iff r ̸= r′, set Ax,r = AxHr.
Compute TB∥Ax,r

← RandBasis(B∥Ax,r,ExtendRight(B,TB,Ax,r), τ) and

sample k ← SamplePre(B∥Ax,r,TB∥Ax,r
,V, τ) such that (B||Ax,r)k = V.

Output skx = (r,TB∥Ax,r
,k).

– Enc1(f, µ): Compute sf ← P.KeySim(P.pp, f). Choose randomly s
$←− Zn

q ,e0
$←−

χm′
,e1

$←− χ̃mlf ,e2
$←− χl⌈log q⌉, compute

u0 = sTB+ eT0 ,

u1 = sT (Af − sf ⊗G) + eT1 ,

u2 = sTV + eT2 + µ(0∥gT
),

the zero vector has dimension (l−1) ⌈log q⌉, where Af = AHσ→f , Hσ→f ←
EvalF(Uσ→f ,A). Output ct1 = (sf ,u0,u1,u2).

– Enc2(f, µ, α): Choose vectors W
$←− Zn

q , α ∈ Zl
q and an error e3

$←− χl⌈log q⌉.
Identical to Enc1 except that adding

u3 = sT (D+W ⊗ P2(α)T ) + eT3 .

Output ct2 = (sf ,u0,u1,u2,u3).
– Dec(skx, ct): Parse skx = (r,TB∥Ax,r

,k) and ct ∈ {ct1, ct2}. Compute r′ ←
Uf→x(sf ), abort if r′ = r. Otherwise, capture Ax and Af as the same as
KeyGen and Enc1, respectively. Evaluate

Ĥr,r′ ← EvalFX(Ir, r
′,Ax),

Ĥsf→r′ ← EvalFX(Uf→x, sf ,Af ).

Lastly, compute

µ =
⌈
u2 − (u0∥u1Ĥsf→r′Ĥr,r′)k

⌋
2
,

in which ⌈·⌋2 : Zq → {0, 1} indicates its penultimate is closer modulo q to
0 or to 2⌈log q⌉−2. Noting it has the same decryption algorithm regardless
of which level ciphertexts (first or second). However, there is a coefficient
factor associated with the predicate vector β when decrypting a transformed
ciphertext ct′. In this case, we will recover the message µ by tailoring its noise
bound.
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– ReKeyGen(skx, g, β): Parse skx = (r,TB∥Ax,r
,k). Choose a function g ∈

F that has the property of gradual evaluation (Definition 2.2) of that the
size of constrained key is lg, and a predicate vector β ∈ Zl

q. Sample sg ←
P.KeySim(P.pp, g), let H = B∥(Ag−sg⊗G) where Ag = AHσ→g, Hσ→g ←
EvalF(Uσ→g,A). Compute Ax,r as in KeyGen, let V′ = (V +D) ·BD(β) and
sample d← SamplePre(B∥Ax,r,TB∥Ax,r

,V′, τ) such that (B∥Ax,r)d = V′.

Select randomly r1 ∈ χ(m′+m)⌈log q⌉×n, r2 ∈ χ(m′+m)⌈log q⌉×(m′+mlg), r3 ∈
χ(m′+m)⌈log q⌉×l⌈log q⌉, γ ∈ {0, 1}l⌈log q⌉, set

Z =

(
r1H+ r2 r1V + r3 − P2(d)⊗ γ

0l⌈log q⌉×(m′+mlg) BD(β)⊗ γ

)
.

Output rkβx→g = (sg, r, β, γ,Z).

– ReEnc(rkβx→g, ct2): Parse rk
β
x→g = (sg, r, β, γ,Z) and ct2 = (sf ,u0,u1,u2,u3).

Compute r′ ← Uf→x(sf ), abort if r
′ = r. Otherwise, compute Ax, Af , Ĥr,r′

and Ĥsf→r′ as in KeyGen,Enc and Dec. Finally, let u′1 = u1Ĥsf→r′Ĥr,r′ and
u′2 = u2 + u3, evaluate

ctf→g = (BD(u0∥u′1)∥u′2) · Z.

Output ct′ = (sg, β, γ, ctf→g).

4.1 Correctness and Choice of Parameters

Theorem 4.1. The CAB-PRE scheme is correct with respect to f and Cβ under
proper parameters as below.

Proof. To succinctly, we consider correct decryption into two parts. One is the
plain ciphertexts of first-level or second-level since they have the same operations
during decrypting. The other is re-encrypted ciphertext.

First, for the security parameter λ, a function f ∈ F , and an attribute
string x ∈ {0, 1}l such that f(x) = 1 ∧ Ir(r

′) = 0, if (pp,msk) ← Setup(1λ),
skx ← KeyGen(msk, x), ct1 ← Enc(f, µ) and ct2 ← Enc(f, µ, α), then we have
µ ← Dec(skx, ct ∈ {ct1, ct2}). Recall [25] shows that r ̸= r′ with all but negli-
gible probability via a reduction to the pseudorandomness game of P, because
r ← P.Eval(P.msk, x), and r′ ← Uf→x(sf ) is computed as P.ConstrainEval(sf , x)
where sf ← P.KeySim(P.pp, f). Hence given the function Ir, there exist Ir(r

′) =
0 with a non-negligible advantage.

We compute Ax = AHσ→x = AHσ→fHf→x = AfHf→x where Hf→x ←
EvalF(Uf→x,A) and Af = AHσ→f , Hσ→f ← EvalF(Uσ→f ,A). Since the prop-
erty of gradual evaluation of P when f(x) = 1 is that the effective sub-circuit
of Uf→x ◦ Uσ→f is equivalent to the circuit Uσ→x, then we know Hσ→x =
Hσ→fHf→x.

Based on Theorem 2.1, we capture (Hr, Ĥr,r′) and (Hf→x, Ĥsf→r′). Pre-
cisely,

Hr ← EvalF(Ir,Ax),
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Ĥr,r′ ← EvalFX(Ir, r
′,Ax),

Ĥsf→r′ ← EvalFX(Uf→x, sf ,Af ).

Then, computing

(Af − sf ⊗G)Ĥsf→r′Ĥr,r′ = [AfHf→x − Uf→x(sf )⊗G]Ĥr,r′

= [Ax − r′ ⊗G]Ĥr,r′

= AxHr − Ir(r
′)⊗G

= Ax,r.

Thus,

u2 − (u0∥u1Ĥsf→r′Ĥr,r′)k = u2 − (u0∥sTAx,r + eT1 Ĥsf→r′Ĥr,r′)k

= u2 − sT (B∥Ax,r)k− (eT0 ∥eT1 Ĥsf→r′Ĥr,r′)k

= µ(0∥gT
) + eT2 − (eT0 ∥e′1)k,

where e′1 = eT1 Ĥsf→r′Ĥr,r′ .

Let dCon and dConEval denote the depth of Uσ→f and Uf→x, respectively, which
are bounded by the depth d = poly(λ) of Uσ→x since P is the gradual depth of
Uσ→f and Uf→x. Note that

∥e′1∥∞ ≤ m2lfk∥eT1 ∥∞∥Ĥsf→r′∥∞∥Ĥr,r′∥∞
≤ m2lfkB̃(2m)dConEval+1

and

∥k∥∞ ≤ τ
√
m′ +m,

due to e1 ∈ χ̃mlf , Ĥsf→r′ ∈ Zmlf×mk, Ĥr,r′ ∈ Zmk×m and the tailcut inequation
(Definition 2.4) of discrete Gaussian.

Therefore, if l ∈ O(n), m′, lf , k ∈ O(n⌈log q⌉), B̃ ∈ O(B,n) and τ ∈
O(λk(2m)d+3), then

∥eT2 − (eT0 ∥e′1)k∥∞ ≤ ∥eT2 ∥∞ + (m′∥eT0 ∥∞ +m∥e′1∥∞)∥k∥∞
≤ l ⌈log q⌉B + (m′B +m3lfkB̃(2m)dConEval+1)τ

√
m′ +m

≤ B · poly(n⌈log q⌉) · (2m)dConEval+d+4.

To capture correct decryption, the magnitude of penultimate coordinate
should be less than q/8, i.e., ∥eT2 − (eT0 ∥e′1)k∥∞ < q/8. Now, by choosing the
parameters

– q, χ,B as Corollary 2.1 and note that q ≤ 2n and q/B ≥ 2n
ϵ

,

– n ≥ λ such that (2n2)(2d+4) ≤ 2n
ϵ

where ϵ ∈ (0, 1) and n ≤ dO(1/ϵ)

– m′ = (n+ 1)⌈log q⌉+ 2λ, B′ = m′mλB(2m)dCon , E′ ≤ 2n
ϵ
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Let
E = B · poly(n⌈log q⌉) · (2m)dConEval+d+4

and
E′ = 8E/B = 8 · poly(n⌈log q⌉) · (2m)dConEval+d+4.

Since E′ < q/B, then E = BE′/8 < q/8. Therefore,

∥eT2 − (eT0 ∥e′1)k∥∞ ≤ B · poly(n⌈log q⌉) · (2m)dConEval+d+4 < q/8

is overwhelming, and the decryption of plain ciphertext is correct. That com-
pletes the correctness of part 1.

Now it remains to show how to guarantee the correctness of re-encrypted ci-
phertext. Given a re-encryption key and a second-level ciphertext associated with
function f , which can be efficiently re-encrypted to the first-level ciphertext as-
sociated with function g, under certain constraints with inner-product predicates
between two vectors α and β over Zl

q. Specifically, parse the re-encryption key

rkβx→g = (sg, r, β, γ,Z) and the second-level ciphertext ct2 = (sf ,u0,u1,u2,u3),
the re-encryption process in the following way:

Assume that r′ ̸= r where r′ ← Uf→x(sf ), let

u′1 = u1Ĥsf→r′Ĥr,r′ = sTAx,r + eT1 Ĥsf→r′Ĥr,r′

and
u′2 = u2 + u3 = sT (V +D+W ⊗ P2(α)

T ) + ēT + µ(0∥gT ).

where ē = e2 + e3. If l = (lg + 1)n+ λ+ 1 and Cβ(α) = 1, we have

ctf→g = (BD(u0∥u′1)∥u′2) · Z
= (c0∥c1 c2).

Let s̄ = [BD(u0∥u′1)r1]T , then

c0∥c1 = s̄T (B∥(Ag − sg ⊗G)) + BD(u0∥u′1)r2
= s̄T (B∥(Ag − sg ⊗G)) + (ēT0 ∥ēT1 )

and
c2 = s̄TV + ē2 + µ(0∥gT ) · BD(β)⊗ γ,

where ē2 = BD(u0∥u′1)r3 − [(eT0 ∥e′1)d − ēT · BD(β)] ⊗ γ and ∥ē2∥∞ ≤ B ·
poly(n⌈log q⌉) · (2m)dConEval+d+4.

Since β = (β1, ..., βl) ∈ Zl
q, it holds that (0∥gT )·BD(β) ̸= 0 (i.e., let βl = q−1)

with a significant probability. Thus, let

(0∥gT ) · BD(β)⊗ γ = (

⌈log q⌉−1∑
i=0

βl,i · 2i)⊗ γ,

where βl,i ∈ {0, 1} denotes the binary decomposition of βl. Without loss of
generality, let sky = (r̄,TB∥Ay,r̄

, k̄) be the secret key for attribute string y,
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which satisfies g(y) = 1. Suppose that the penultimate bit of γ is 1, to capture
correct decryption, compute

µ =
⌈
c2 − (c0∥c1Ĥsg→r̄′Ĥr̄,r̄′)k̄

⌋
2
,

here ⌈·⌋2 denotes whether its penultimate is closer modulo q to 0 or to
⌈log q⌉−1∑

i=0

βl,i · 2i.

Based on our parameter settings and analysis, the norm of error term is
bounded by

∥ēT2 − (ēT0 ∥ē′1)k̄∥∞ ≤ B · poly(n⌈log q⌉) · (2m)dConEval+d+4 <

⌈log q⌉−1∑
i=0

βl,i · 2i+1

in which ē′1 = ēT1 Ĥsg→r̄′Ĥr̄,r̄′ with an overwhelming probability, and the de-
cryption of transformed ciphertext is correct. That completes the correctness of
part 2.

4.2 Security Proof

For now, we will construct two efficient randomized algorithms Semi− KeyGen1
and Semi− KeyGen2 that are the heart of the HRA security proof.

– Semi− KeyGen1(msk, x) → ŝkx : Here msk = (σ,TB), x ∈ {0, 1}l, compute

Ax,r as in KeyGen algorithm. Capture ŝkx by calling SampleLeft(B,Ax,r,
TB,V

′, τ).
– Semi− KeyGen2(msk, x) → ŝkx : Here msk = σ, x ∈ {0, 1}l, compute Ax,r

as in KeyGen algorithm. Capture ŝkx by calling SampleRight(B,G,R,TG,
V′, τ) if Ax,r = BR+G, where R and V′ are fixed matrices.

Note that by Lemma 2.3 and Lemma 2.4, the output of SampleLeft and
SampleRight algorithms are distributed statistically close toDΛV′

q (B∥Ax,r),τ
. Thus,

sampling ŝkx from Semi− KeyGen1 or Semi− KeyGen2 are statistically indistin-
guishable.

Theorem 4.2. For a class family F , if P is a conforming cPRF, then CAB-
PRE above is a unidirectional, single-hop, adaptively HRA-secure scheme under
the hardness of DLWEn,q,χ problem.

Proof. Let A be a PPT adversary that attacks the adaptive HRA security
of CAB-PRE. We show that the proof proceeds in a sequence of games. In each
game, we define Si to be the event that A wins in Gamei.

Game0 : This is the original security game from Definition 3.3. Note that
most operations are identical to the real scheme, for the adversary’s queries. How-
ever, we pay attention to responses of the re-encryption key and re-encryption
queries since there are some rigorous restrictions and subtle transformations,
which may be different but equivalent to the real scheme. These queries are
handled as follows:
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– When A makes a re-encryption key query on (x, (g, y), β) such that g(y) =

0. The challenger chooses two matrices Z1
$←− χ(m′+m)⌈log q⌉×(m′+mlg) and

Z2
$←− χ(m′+m)⌈log q⌉×l⌈log q⌉, simulates the third entries of the re-encryption

key as

Z =

(
Z1 Z2

0l⌈log q⌉×(m′+mlg) BD(β)⊗ γ

)
.

It returns rkβx→g to A.
– When A makes a re-encryption query on (x, (g, y), β, (f, α, k) such that

g(y) = 1 and k /∈ Deriv. The challenger first invokes Semi− KeyGen1(msk, x)

algorithm (since there is msk = (σ,TB)) to obtain ˆskx(= d) without gen-
erating secret key skx. It then computes ct′ ← ReEnc(rkβx→g, ct2) where

rkβx→g ← ReKeyGen( ˆskx, g, β) and gives ct′ to A.

By Definition 3.3 and Definition 3.4, we have |Pr[S0]− 1/2| ≤ negl(λ).

Remark 1. Recall in the real scheme, the challenger creates

Z =

(
r1H+ r2 r1V + r3 − P2(d)⊗ γ

0l⌈log q⌉×(m′+mlg) BD(β)⊗ γ

)
,

where r1, r2, r3 are sampled from discrete Gaussian distributions. Observed that
it is indistinguishable with uniform distribution (i.e., Z1 and Z2) based on the
hardness of HNF-LWE problem (Definition 2.7, more proof details please refer
to [16]).

Game1 : In this game, we change r
$←− {0, 1}k instead of r ← P.Eval(σ, x)

when generating skx, if the challenge ciphertext or its derivatives (i.e., k ∈ Deriv)
are queried in OReEnc. Based on the pseudorandomness game of P, we have
|Pr[S0]− Pr[S1]| ≤ negl(λ).

Game2 : In this game, we change the way sf∗ for a target function f∗ is cre-
ated. Concretely, instead of computing sf∗ ← P.KeySim(P.pp, f∗), it generates
sf∗ ← P.Constrain(σ, f∗). We show |Pr[S1] − Pr[S2]| = ϵKeySim, where ϵKeySim is
the advantage of breaking key simulation game of P and this is negligible. Sup-
pose there exist an adversary A0 such that |Pr[S1] − Pr[S2]| is non-negligible,
we build an algorithm C that wins the key simulation game of P with an over-
whelming advantage.

1. At the beginning, C receives P.pp. Then, it generates pp and msk as in the
previous game.

2. Upon input a bit string x ∈ {0, 1}l for OKeyGen(x), C captures rx by sending
x to the evaluation oracle of the key simulation game. Let r = rx, it answers
skx as in the previous game.

3. Receive a challenge tuple (f∗, α∗, (µ∗0, µ
∗
1)). C sends f∗ to the challenge oracle

of the key simulation game.
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4. Receive skf∗ and let sf∗ = skf∗ . C computes ct∗ as same as the previous
game and returns it to A0.

5. Answer the subsequent queries as in Step 2.

6. A0 guesses it is operating with a Game0 or Game1 challenger. At last, C
outputs A0’s guess as the answer to the key simulation game challenge it is
trying to distinguish.

If the challenger chooses b = 1 in the key simulation game, C provides a
view of Game0 to A0. Otherwise, C provides a view of Game1 to A0. In other
words, any advantage of A0 distinguishes between these two games translates
to identical advantage in key simulation game. Therefore, if |Pr[S1] − Pr[S2]|
is non-negligible, then C could break key simulation game with a non-negligible
advantage.

Remark 2. We know that the challenge ciphertext or its derivatives can be
re-encrypted when they satisfy the restrictions of re-encryption operations, espe-
cially f∗(x) = 1 and g(y) = 0. However, there is a contradiction since we require
f∗(x) = 0 in challenge oracle, which means x cannot be queried in OKeyGen and
OReKey. InGame0, to answer these queries, the challenger could instead generate
the corresponding skx (note that f∗(x) = 1) and rkβx→g, in which r ̸= r′ with a
non-negligible probability. When r′ is computed by P.ConstrainEval(sf∗ , x) where
sf∗ ← P.Constrain(σ, f∗), however, we have r = r′ in a significant probability
since r ← P.Eval(σ, x), which conflicts with the security proof. To ensure that
the challenge ciphertext or its derivatives could be re-encrypted in Game2, we
change the sources of r as shown in Game1.

Game3 : In this game, we change the way the matrix A is generated. Re-

call in the previous game, the challenger chooses A
$←− Zn×mλ

q . Now it first

samples a matrix R
$←− {0, 1}m′×mλ and sets A = BR + σ ⊗ G. Since m′ ≥

(n+1)⌈log q⌉+2λ and the generalized leftover hash lemma (Definition 2.9), the
distribution (B,BR) is statistically indistinguishable to the distribution (B,A)
whereA is a uniform matrix in Zn×mλ

q . Thus, we have |Pr[S2]−Pr[S3]| ≤ negl(λ).

Game4 : In this game, we change again the way challenge query f∗ is an-
swered and the way of generating u∗1. Concretely, when A makes a challenge
query for (f∗, w∗, (µ∗0, µ

∗
1)), the challenger computes

Af∗ − sf∗ ⊗G = AHσ→f∗ − Uσ→f∗(σ)⊗G

= (A− σ ⊗G)Ĥmsk→sf∗

= BRĤmsk→sf∗ ,

where Ĥmsk→sf∗ ← EvalFX(Uσ→f∗ , σ,A).

The way it generates u∗0, u
∗
2 (and u∗3 if w ̸= Null), remains unaltered. Recall

in the previous game, by sampling s
$←− Zn

q and e1
$←− χ̃mlf , it computes u∗1 =
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sT (Af∗ − sf∗ ⊗G) + eT1 . Now, u∗1 will be substituted as

u∗1 = u∗0RĤmsk→sf∗ + eT1

= (sTB+ eT0 )RĤmsk→sf∗ + eT1

= sT (Af∗ − sf∗ ⊗G) + eT0 RĤmsk→sf∗ + eT1 ,

where e0
$←− χm′

. Note that

B′ = ∥eT0 RĤmsk→sf ∥∞ ≤ m′mλ∥eT0 ∥∞∥R∥∞∥Ĥmsk→sf∗∥∞ ≤ m′mλB(2m)dCon ,

in which dCon denotes the depth of Uσ→f∗ . By Definition 2.6, let χ̃ be B′-
swallowing, it holds that u∗1 generated by two methods are within a negligible
statistical distance. Therefore, we have |Pr[S3]− Pr[S4]| ≤ negl(λ).

Game5 : In this game, we change the way key queries are answered. When
A queries on x, the challenger evaluates r ← P.Eval(σ, x) and Ĥmsk→r ←
EvalFX(Uσ→x, σ,A), and computes

(A− σ ⊗G)Ĥmsk→r = AHσ→x − Uσ→x(σ)⊗G

= AHσ→x − r ⊗G

= Ax − r ⊗G.

Then, we have

(Ax − r ⊗G)Ĥr,r = AxHr − Ir(r)⊗G = Ax,r −G

since Ir(r) = 1 and Ĥr,r ← EvalFX(Ir, r,Ax). Therefore, it holds that BR

Ĥmsk→rĤr,r = Ax,r −G due to A− σ ⊗G = BR. Note that

B∥Ax,r = B∥(BRĤmsk→rĤr,r +G)

and

∥RĤmsk→rĤr,r∥∞ ≤ m2λk∥R∥∞∥Ĥmsk→r∥∞∥Ĥr,r∥∞ ≤ m2λk(2m)d+1.

Lemma 2.6 and Lemma 2.7 show that when

τ = O(
√
m′ +m∥RĤmsk→rĤr,r∥∞) = O(λk(2m)d+3),

it is efficient to compute TB∥A by

TB∥Ax,r
← RandBasis(B∥Ax,r,ExtendLeft(B,G,TG,RĤmsk→rĤr,r), τ).

Then it runs SamplePre algorithm as in Game4. Besides, the challenger calls
Semi− KeyGen2(msk, x) algorithm when A makes a re-encryption query on
(x, (g, y), β, (f, α, k)) such that g(y) = 1 and k /∈ Deriv. Since the responses
to key queries and re-encryption queries are statistically close to those in the
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previous game, the adversary’s advantage is at most negligibly different from its
advantage in Game4. Therefore, we have |Pr[S4]− Pr[S5]| ≤ negl(λ).

Game6 : In this game, we change the way the matrix B is generated. Con-

cretely, the challenger chooses B
$←− Zn×m′

q without producing the corresponding

trapdoor TB. By Lemma 2.1, this makes only 2−Ω(n)-statistical distance with
uniform. The challenger could answer all the key queries without the trapdoor
because of the change we made in the Game5, the view of A is altered only
negligibly. Therefore, we have |Pr[S5]− Pr[S6]| ≤ negl(λ).

Game7 : In this game, we change the way the challenge ciphertext is created.

The challenger chooses (u∗0,u
∗
1,u
∗
2,u
∗
3) ∈ Z1×(m′+mlf+2l⌈log q⌉)

q (if α∗ ̸= Null) at
random. Since the challenge ciphertext completely hides b, thus A has no ad-
vantage in this game. We claim that |Pr[S6] − Pr[S7]| is negligible for a PPT
adversary assuming the hardness of DLWE problem. To show that, we do by
giving a reduction from DLWE problem.

Reduction from LWE. Suppose A has a non-negligible advantage in dis-
tinguish Game6 and Game7. We use A to construct an LWE algorithm B.

LWE Instance. B receives an LWE instance as (B∥V,u0∥u′2) ∈ Zn×(m′+l⌈log q⌉)
q ×

Z1×(m′+l⌈log q⌉)
q . The task of B is to distinguish whether u0∥u′2 = sT (B∥V) + ē

for some s ∈ Zn
q and ē ∈ χm′+l⌈log q⌉ or u0∥u′2

$←− Z1×(m′+l⌈log q⌉)
q .

Phase 1 (Setup): B sets matrices B and V to be the LWE matrices. Note
that unlike the real scheme since B does not require the trapdoor TB of matrix
B (i.e., the change we made in Game6). It assembles public parameters pp and
master secret key as in the previous game: run (P.pp, P.msk) ← P.Setup(1λ),

set σ = P.msk and sample matrices A
$←− Zn×mλ

q and D
$←− Zn×l⌈log q⌉

q . It gives
A the public parameters

pp = (B,A,V,D, P.pp).

Then, B initializes a counter numCt := 0, a policy-value store C := ∅ and a set
Deriv := ∅.

Phase 2 (Oracle query): B answers A’s key queries, encryption queries,
re-encryption key queries and re-encryption queries as in Game7, except that
challenge query.

– OCha(f
∗, α∗, (µ∗0, µ

∗
1)): To generate the challenge ciphertext, B first picks

b ∈ {0, 1}. It computes sf∗ ,u∗1,u
∗
3 as in Game7 and ct∗ = (sf∗ ,u∗0 =

u0,u
∗
1,u
∗
2 = u′2 + µb(0∥gT ),u∗3) (if α∗ ̸= Null), sets numCt := numCt + 1

and Deriv := Deriv∪ numCt. B adds ct∗ in C with policy (f∗, α∗, numCt) and
gives (numCt, ct∗) to A.

Phase 3 (Decision): At the end of the game, A outputs if it is operating
with a Game6 or Game7 challenger. B outputs A’s guess as the answer to the
LWE challenge it is trying to distinguish.
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It can be seen that if (B∥V,u0∥u′2) is a valid LWE instance (i.e., (u0∥u′2) =
sT (B∥V) + ē), the view of the adversary corresponds to Game6. Otherwise

(i.e., (u0∥u′2)
$←− Z1×(m′+l⌈log q⌉)

q ), it corresponds to Game7. First, observe that

u∗1 = u0RĤmsk→sf∗ + ēT1 is uniform and independent in Z1×mlf
q by a stan-

dard application of the leftover hash lemma (Definition 2.9). Moreover, for any
condition vector α∗ ∈ Zl

q, we have u∗3 = sT (D+W ⊗ P2(α∗)T ) + ēT3 where the

distribution of D+W⊗P2(α∗)T is statistically close to the uniform distribution

over Zn×l⌈log q⌉
q . We therefore conclude that supposing the hardness of DLWE

problem we have |Pr[S6]− Pr[S7]| ≤ negl(λ).
Therefore, combing the above conclusions together, the theorem is proven.

■

5 AB-PRE and AB-CPRE

Recently, Susilo et al. [24] and Liang et al. [16] proposed AB-PRE and AB-CPRE
constructions, respectively, which are based on (KP)ABE [5]. In this section, we
show that our CAB-PRE notion implies these two primitives while remaining at
the same level of HRA security.

AB-PRE. Recall that the definition of KP-ABPRE in [24], CP-ABPRE can
be directly derived from our CAB-PRE scheme by removing the condition while
canceling some condition requirements in corresponding security game (i.e., all
conditions are matched by default), which is a solution to the open problem
proposed in [24]. We build a CP-ABPRE scheme as follows. Note that these
algorithms are identical to Section 4 except that remove Enc2 algorithm and
make some modifications.

– Setup(1λ) : Choose v
$←− Zn

q . Output pp = (B,A,v, P.pp) and msk =
(σ,TB).

– KeyGen(msk, x) : Sample a short k such that (B||Ax,r)k = v. Output skx =
(r,TB||Ax,r

,k).

– Enc(f, µ) : Compute u2 = sTv + e2 + µ ⌊q/2⌉ where e2
$←− χ. Output ct =

(sf ,u0,u1, u2).

– Dec(skx, ct) : Output 1 if |u2 − (u0∥u1Ĥsf→r′Ĥr,r′)k| > q/4. Similar to
CAB-PRE, the noise bound will be changed as q/4 · δ for the transformed
ciphertext where δ is a coefficient factor.

– ReKeyGen(skx, g) : Let v
′ = v·δ, sample a short d such that (B||Ax,r)d = v′

and set

Z =

(
r1H+ r2 r1v + r3 − P2(d)

01×(m′+mlg) δ

)
,

in which r1 ∈ χ(m′+m)⌈log q⌉×n, r2 ∈ χ(m′+m)⌈log q⌉×(m′+mlg), r3 ∈ χ(m′+m)⌈log q⌉,
δ ∈ χ. Output rkx→g = (sg, r, δ,Z)

– ReEnc(rkx→g, ct) : Evaluate ctf→g = (BD(u0∥u′1)∥u2) · Z. Output ct′ =
(sg, δ, ctf→g).
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Correctness. When operating the decryption algorithm, we have

u2 − (u0∥u1Ĥsf→r′Ĥr,r′)k = µ ⌊q/2⌉+ e2 − (eT0 ∥e′1)k.

By our parameter choices in Section 4.1, the norm of error term is bounded by

|e2 − (eT0 ∥e′1)k| ≤ B · poly(n⌈log q⌉) · (2m)dConEval+d+4 < q/4.

The proof of security remains mostly unaltered compared with CAB-PRE, ex-
cept that in the reduction to LWE problem B receives an LWE instance as

(B∥v,u0∥u′2) ∈ Zn×(m′+1)
q × Z1×(m′+1)

q , enabling B to generate a challenge ci-
phertext (u∗0,u

∗
1, u
∗
2) = (u0,u0RĤmsk→sf∗ + ēT1 , u

′
2 + µb ⌊q/2⌉).

AB-CPRE. Recall that the definition of (KP)AB-CPRE in [16], our CAB-
PRE primitive could also be constructed as (CP)AB-CPRE. Concretely, since
the underlying structure of AB-CPRE is public-key encryption where the access
policy is used to control conditions in the re-encryption phase, thus we comply
with [16]’s definition and give a concrete (CP)AB-CPRE scheme as follows:

– Setup(1λ) : Suppose there are n users in the system. For i ∈ [n], sample

matrices Ai
$←− Zn×mλ

q as public parameters, namely pp = {Ai}i∈[n].
– KeyGen(pp, α) : Run (P.ppα, P.msk) ← P.Setup(1λ) and set σα = P.msk.

Invoke (Bα,TBα
) ← TrapGen(1n,m′, q). Sample a vector vα

$←− Zn
q and

compute kα ← SamplePre(Bα,TBα
,vα, τ) such that Bαkα = vα. Output

pkα = (Bα,vα, P.ppα) and skα = (TBα ,kα, σα).

– Enc(pkα, f, µ): Compute sf ← P.KeySim(P.ppα, f). Choose s
$←− Zn

q ,e0
$←−

χm′
,e1

$←− χ̃mlf ,e2
$←− χ, and evaluate

u0 = sTBα + eT0 ,

u1 = sT (Af − sf ⊗G) + eT1 ,

u2 = sTvα + e2 + µ ⌊q/2⌉ ,

where Af = AαHσα→f , Hσα→f ← EvalF(Uσα→f ,Aα). In particularly, u1

denotes a transition condition and does not participate in decryption. Output
ctα = (sf ,u0,u1, u2).

– Dec(skα, ctα) : Parse skα = (TBα
,kα, σα) and ctα = (sf ,u0,u1, u2), com-

pute

u = u2 − u0kα.

Output 1 iff |u| > q/4, otherwise output 0.
– ReKeyGen(skα, pkβ , x) : Parse skα = (TBα

,kα, σα) and pkβ = (Bβ ,vβ , P.ppβ).
Compute Hσα→x ← EvalF(Uσα→x,Aα), let Ax = AαHσα→x. Evaluate
r ← P.Eval(σα, x) and Hr ← EvalF(Ir,Ax), set Ax,r = AxHr. Sample
d← SampleLeft(Bα,Ax,r,TBα ,vα, τ) such that (Bα∥Ax,r)d = vα. Choose
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randomly r1 ∈ χ(m′+m)⌈log q⌉×n, r2 ∈ χ(m′+m)⌈log q⌉×m′
, r3 ∈ χ(m′+m)⌈log q⌉,

set

Z =

(
r1Bβ + r2 r1vβ + r3 − P2(d)
01×m′ 1

)
.

Output rkxα→β = (r,Z).
– ReEnc(rkxα→β , ctα): Parse rkxα→β = (r,Z) and ctα = (sf ,u0,u1, u2). Com-

pute r′ ← Uf→x(sf ), abort if r′ = r. Otherwise, compute Ax,Af as in
ReKeyGen,Enc algorithms and

Ĥr,r′ ← EvalFX(Ir, r
′,Ax),

Ĥsf→r′ ← EvalFX(Uf→x, sf ,Af ).

Let u′1 = u1Ĥsf→r′Ĥr,r′ , evaluate

ctα→β = (BD(u0∥u′1)∥u2) · Z.

Output ctα→β .

Correctness. When the decryption algorithm operates as specified, we have

u2 − u0kα = µ ⌊q/2⌉+ e2 − eT0 kα.

Based on our parameter choices in Section 4.1, the norm of error term is bounded
by

|e2 − eT0 kα| ≤ B +m′B · τ
√
m′ < q/4.

The following theorem proves the HRA security of (CP)AB-CPRE.
Theorem 5.1. For a class family F , if P be a conforming cPRF, then the

above unidirectional, single-hop (CP)AB-CPRE is a HRA-secure scheme under
the hardness of DLWEn,q,χ problem.

Proof. This security proof is a sequence of interactive games between an ad-
versary A and a challenger C. In each game, we define Si to be the event that
A wins in Gamei.

Game0 : This is the original security game.
Phase 1 (Setup): At the beginning of the game, the challenger chooses

Ai
$←− Zn×mλ

q (i ∈ [n]) as public parameters and give them to A. Besides
numCt,C,Deriv, it initializes two empty sets ΦH := ∅ and ΦC := ∅.

Phase 2 (Oracle query): These queries are handled as follows.

– OH
KeyGen(pp, η): For an honest key query η, the challenger generates (pkη, skη)←

KeyGen(pp, η) and adds it to ΦH . C gives pkη to A.
– OC

KeyGen(pp, η): For a corrupt key query η, the challenger generates (pkη, skη)←
KeyGen(pp, η) and adds it to ΦC . C gives the keypair to A.

– OEnc(pkα, f, µ): For an encryption query (pkα, f, µ) if f ̸= Null, the challenger
computes ct = Enc(pkα, f, µ), sets numCt := numCt + 1, adds ct in C with
(pkα, f, numCt), and gives (numCt, ct) to A.
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– OReKey(α, β, x): For a re-encryption key query (α, β, x), there are two cases:

1. pkβ ∈ ΦH , the challenger chooses a random Z.
2. pkβ ∈ ΦC , return ⊥ if pkα ∈ ΦH and f(x) = 1 where f ∈ OEnc. Other-

wise, the challenger produces rkxα→β ← ReKeyGen(skα, pkβ , x).

After that, C gives rkxα→β to A.
– OCha(θ, f

∗, (µ∗0, µ
∗
1)): This oracle can only be invoked once. For a challenge

query (θ, f∗, (µ∗0, µ
∗
1)) (if f∗ ̸= Null), it requires pkθ ∈ ΦH . The challenger

flips a bit b ∈ {0, 1}, generates ct∗ ← Enc(pkθ, f
∗, µ∗b), sets numCt :=

numCt+1 and Deriv := Deriv∪numCt. It adds ct∗ in C with (pkθ, f
∗, numCt)

and gives (numCt, ct∗) to A.
– OReEnc(α, β, x, (pkα, f, k)): For a re-encryption query (α, β, x, (pkα, f, k)) where

k ≤ numCt, the challenger does the following operations.

1. If there is no value in C with policy (pkα, f ̸= Null, k), return ⊥.
2. If f(x) = 0, return ⊥.
3. If pkβ ∈ ΦC ∩ k ∈ Deriv, return ⊥.
4. Otherwise, let ctα be that value in C. The challenger first captures

skα by checking ΦH or ΦC , which depends on pkα ∈ ΦH or pkα ∈
ΦC . Then, it computes ctα→β ← ReEnc(rkxα→β , ctα) where rkxα→β ←
ReKeyGen(skα, pkβ , x), sets numCt := numCt+ 1, adds ctα→β in C with
(pkβ ,Null, numCt). If k ∈ Deriv, set Deriv := Deriv ∪ numCt. Finally, it
gives (numCt, ctα→β) to A.

Phase 3 (Decision): This is the decision phase. A outputs a bit b′ for b.
By definition, we have |Pr[S0]− 1/2| ≤ negl(λ).

Game1 : In this game, we change r
$←− {0, 1}k to replace r ← P.Eval(σα, x)

when generating rkxα→β , if it happens to the case of k ∈ Deriv in re-encryption
queries, which is identical to Game1 in Section 4.2. Since the pseudorandomness
security of P, we have |Pr[S0]− Pr[S1]| ≤ negl(λ).

Game2 : In this game, we change the way sf∗ for a target function is created,
which is identical to Game2 in Section 4.2 if f∗ ̸= Null. Since P has a property
of key simulation, we have |Pr[S1]− Pr[S2]| = ϵKeySim ≤ negl(λ).

Game3 : In this game, we change the way the matrices Ai are generated,
which are identical to Game3 in Section 4.2. Precisely, the challenger first runs
(P.ppi, P.mski) ← P.Setup(1λ) for system users and sets σi = P.mski. It then

samples matrices Ri
$←− {0, 1}m′×mλ and let Ai = BiRi + σi ⊗G for i ∈ [n].

Since m′ ≥ (n+ 1)⌈log q⌉+ 2λ and the generalized leftover hash lemma (Defini-
tion 2.9), we have |Pr[S2]− Pr[S3]| ≤ negl(λ).

Game4 : In this game, we change the way challenge query f∗ is answered and
the way of generating u∗1, which is identical toGame4 in Section 4.2 if f∗ ̸= Null.
By parameter settings and Definition 2.6, we have |Pr[S3]− Pr[S4]| ≤ negl(λ).
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Game5 : In this game, we change the way re-encryption key queries are
answered if pkβ ∈ ΦC , which is similar to Game5 in Section 4.2. Based on the
computations of Game5 in Section 4.2, we have

Bα∥Ax,r = Bα∥(BαRαĤσα→rĤr,r +G).

Let R = RαĤσα→rĤr,r, the challenger samples

d← SampleRight(Bα,G,R,TG,vα, τ).

In the meanwhile, the challenger could answer re-encryption queries on the case
of pkβ ∈ ΦC and k /∈ Deriv, instead of obtaining TBα . By Lemma 2.3 and Lemma
2.4, we conclude that |Pr[S4]− Pr[S5]| ≤ negl(λ).

Game6 : In this game, we change the way the matrix Bi are generated,
which are identical to Game6 in Section 4.2. Note that for all key queries of

honest users, the challenger chooses Bη
$←− Zn×m′

q and kη
$←− χm′

, computes
Bηkη = vη. Due to the properties of TrapGen and SamplePre algorithms (Lemma
2.1 and Lemma 2.2), it is statistically close to the previous game. Thus, we have
|Pr[S5]− Pr[S6]| ≤ negl(λ).

Game7 : In this game, we change the way the challenge ciphertext is cre-
ated, which is identical to Game7 in Section 4.2. Since the challenge cipher-
text completely hides b, thus A has no advantage in this game. We claim that
|Pr[S6]−Pr[S7]| is negligible for a PPT adversary assuming the hardness of the
DLWE problem. This reduction proceeds as same as the above AB-PRE scheme.

Therefore, by integrating the conclusions above, the theorem is proven. ■

6 Conclusion

In this work, we addressed the problem of how to simultaneously realize the un-
derlying construction and the delegation in PRE at a fine-grained level. We pre-
sented the concept of conditional attribute-based proxy encryption (CAB-PRE).
We formalized its definition and adaptive HRA security model and proposed a
lattice-based CAB-PRE scheme. Besides, we further show that CAB-PRE im-
plies AB-PRE and AB-CPRE and gave their HRA-secure constructions. The
downside is that the dimension will expand in re-encryption key generation due
to the key switching technique. Therefore, it remains an open problem how to
control it and construct CCA-secure CAB-PRE over lattices.
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