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Abstract. Proxy re-encryption (PRE) is a cryptographic primitive that allows a semi-trusted
proxy to transfer the decryption rights of ciphertexts in a secure and privacy-preserving manner.
This versatile primitive has been extended to several powerful variants, leading to numerous
applications, such as e-mail forwarding and content distribution. One such variant is attribute-
based PRE (AB-PRE), which provides an expressible access control mechanism by allowing
the proxy to switch the underlying policy of an attribute-based encryption (ABE) ciphertext.
However, the function of AB-PRE is to convert the underlying policies of all ciphertexts indis-
criminately, which lacks the flexibility of ciphertext transformation. Therefore, AB-PRE needs
to support the property of conditional delegation. Among the other variants of PRE, there is
a variant called conditional PRE (C-PRE), which allows fine-grained delegations by restricting
the proxy to performing valid re-encryption only for a limited set of ciphertexts. Unfortunately,
existing PRE schemes cannot simultaneously achieve expressible access control mechanisms and
fine-grained delegations. Specifically, we require a PRE scheme, via which the proxy can convert
the underlying policies of an ABE ciphertext only if this ciphertext is in the set of ciphertexts
allowing the proxy to perform valid transformations.
To address this problem, we formalize the notion of conditional attribute-based PRE (CAB-
PRE) in the honest re-encryption attacks (HRA) model, which is more robust and implies
chosen-plaintext attacks (CPA) security, and propose the first CAB-PRE scheme. To construct
such a scheme, we design as a building block, the first adaptively HRA-secure (ciphertext-
policy) AB-PRE based on the learning with errors (LWE) problem. This scheme solves the
open problem left by Susilo et al. [30] in ESORICS’21 about how to construct an HRA-secure
(ciphertext-policy) AB-PRE scheme, and it should be of independent interest. Then, we intro-
duce a well-matched conditional delegation mechanism for this AB-PRE scheme to derive our
adaptively HRA-secure CAB-PRE scheme.

Keywords: Conditional attribute-based PRE · Honest re-encryption attacks · Learning with
errors

1 Introduction

In 1998, Blaze, Bleumer, and Strauss introduced the notion of proxy re-encryption (PRE) [4] to enable
the transfer of decryption rights between parties with the help of a semi-trusted proxy in a secure and
privacy-preserving manner, is widely used in scenarios such as encrypted e-mail forwarding [25], online
social networks [16], digital forensics evidence management [26], and CloudIoT platform [29,33]. More
concretely, a PRE scheme provides a proxy holding a re-encryption key with the ability to transform
a ciphertext that Alice (the delegator) can decrypt into one that can be decrypted by Bob (the
delegatee). The proxy learns nothing about the plaintext and Alice’s secret key in this transformation.
In this paper, we restrict our attention to unidirectional, single-hop PRE 1.

Over the last two decades, PRE has been extended to several variants to support many practical
application scenarios. One prominent variant is attribute-based proxy re-encryption (AB-PRE) [11,
13,19,20,22,30], extended from attribute-based encryption (ABE). AB-PRE scheme provides a more
expressive access control mechanism than traditional PRE by allowing the proxy to switch the un-
derlying policy for ABE ciphertexts. We use encrypted file processing as an example to illustrate
the usage of AB-PRE. Imagine a company’s financial manager, Alice, is to travel for a while. She
delegates her assistants to process her regular files. The incoming files are encrypted under the policy

1 Constructing bidirectional PRE schemes (e.g., from Alice to Bob and vice versa) is straightforward, based
on ones (e.g., only from Alice to Bob). Single-hop PRE means that the delegatee Bob cannot delegate the
decryption rights to others.



“f =(financial ∧ (supervisor ∨ manager))”, and Alice has the decryption rights. Traditional ABE
schemes do not enable others to process Alice’s files, following the security norm that Alice’s secret
key should not be shared with others. With an AB-PRE system (see Fig. 1(a)), Alice can give the file
server (i.e., the proxy) a re-encryption key. For an encrypted incoming file, the file server transforms
it encrypted under the policy “f =(financial ∧ (supervisor ∨ manager))” into one encrypted under
the policy “g =((financial ∧ assistant) ∧ (Bob ∨ Carol))”, such that the attributes of assistants
satisfy g. Then Alice’s assistants could read this file using their secret keys.

Although AB-PRE enables effective data sharing, it indiscriminately converts the underlying poli-
cies of all ciphertexts and lacks the flexibility of ciphertext transformation. Therefore, AB-PRE needs
to support the property of conditional delegation. A notable PRE variant, called conditional PRE
(C-PRE) [18,32], achieves fine-grained delegation by allowing the proxy to perform valid transforma-
tions only for ciphertexts satisfying the condition specified in the re-encryption key, and thus only
a part of the ciphertexts can be transformed by the proxy. Again, let us take the above example of
encrypted file processing to illustrate the usage of C-PRE. The incoming files are encrypted under
Alice’s public key and attach conditions, such as “Urgent” and “General”. With a C-PRE system
(see Fig. 1(b)), Alice can delegate her assistant Bob to process files only when its subject contains
the keyword “Urgent” and then give a re-encryption key to the file server. For an encrypted incoming
file, the file server transforms it into an encryption for Bob. Then Bob can read this file using his
secret key.
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(a) For AB-PRE, the file server holding a re-encryption key with respect to Alice can
convert files encrypted under the policy f into ones encrypted under the policy g if
Alice has the decryption rights of the original files.
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(b) For C-PRE, the file server holding a re-encryption key with respect to Alice can
only transfer the decryption rights of “Urgent” files from Alice to Bob.

Fig. 1. Illustrations of examples for AB-PRE and C-PRE.

In many application scenarios like distributed file systems, expressible access control mechanisms
and fine-grained delegations are extremely important. As shown in Fig. 2, suppose that Alice is allowed
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to instruct her assistants to process files encrypted under the policy “f =(financial ∧ (supervisor ∨
manager))” only when their subject contains the keyword “Urgent”. For other files containing the
keyword “General”, Alice reads them by herself after returning to the company. However, no existing
PRE schemes satisfy such requirements. To show further motivation, we consider the case that assumes
Alice is a company’s general manager and is enabled to delegate her assistants for different functions
to handle different types of files when Alice is busy, e.g., the assistants for administrative matters
only handle files related to the keyword administrative and the assistants for business matters only
handle files related to the keyword business.

Informally, we need a more powerful AB-PRE scheme whereby Alice has a fine-grained control over
the delegation. In other words, using a proxy, Alice can flexibly assign her assistants the decryption
rights based on the conditions attached to the re-encryption key. This paper calls such a desirable PRE
scheme conditional attribute-based PRE (CAB-PRE) scheme. Fig. 2 illustrates the usage of CAB-
PRE. The incoming files are encrypted under the policy “f =(financial ∧ (supervisor ∨ manager))”
and attach conditions, such as “Urgent” and “General”, and Alice has the decryption rights. With a
CAB-PRE system, Alice can give the file server a re-encryption key. For an encrypted incoming file, the
file server converts it with the keyword “Urgent” into one encrypted under the policy “g =((financial
∧ assistant) ∧ (Bob ∨ Carol))”, such that the attributes of assistants satisfy g. Then Alice’s assistants
could read this file using their secret keys.
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Fig. 2. For CAB-PRE, the file server holding a re-encryption key with respect to Alice can only convert
“Urgent” files encrypted under the policy f into ones encrypted under the policy g if Alice has the decryption
rights of the original files.

In this paper, we aim to formalize the notion of CAB-PRE and propose a CAB-PRE scheme. For
the formalization and construction, we also consider the following additional factors.

Security Model It has been pointed out that chosen-plaintext attack (CPA) security is inadequate
to preserve the privacy of the delegator’s secret key from a single honestly re-encrypted ciphertext
for PRE schemes. The security notion under honest re-encryption attacks (HRA) can better
capture this security requirement of PRE (see [9, 12] for more). Hence, we focus on the HRA
security model to formalize and design our CAB-PRE scheme.

Hardness Assumption With the fast development of quantum computers, we now prefer to design
schemes that are also secure in the post-quantum world. Thus, we intend to design a CAB-PRE
scheme that is resistant to attack by quantum computers.

Predicate Expressibility An expressive class of predicates is desirable for the underlying AB-
PRE. Meanwhile, we also expect the delegation mechanism to be fine-grained, i.e., to support an
expressive class of predicates.
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1.1 Our Results

In this paper, we formalize the notion of CAB-PRE in the HRA security model and propose the first
adaptively HRA-secure CAB-PRE scheme based on the learning with errors (LWE) problem [28], a
well-known post-quantum cryptographic assumption. The underlying policy of our CAB-PRE scheme
supports t-conjunctive normal form (t-CNF) predicates, including NP-verification policies, bit-fixing
policies, and t-threshold policies. The delegation mechanism of the CAB-PRE scheme supports inner-
product predicates. The main contributions of this paper are summarized as follows.

1. Considering the need for expressible access control mechanisms and fine-grained delegations in
many scenarios, we formalize the notion of CAB-PRE in the HRA security model.

2. To construct our CAB-PRE scheme, we design as a building block, the first adaptively HRA-secure
AB-PRE scheme for t-CNF predicates based on the LWE problem. We note that this scheme
also serves as the solution to the open problem introduced by Susilo et al. [30] in ESORICS’21
about how to construct an HRA-secure (ciphertext-policy) AB-PRE scheme, and it should be of
independent interest. We further compare related lattice-based AB-PRE schemes and our scheme
in Table 1. The results show that our scheme achieves adaptive HRA security while maintaining
the same order of magnitude in parameters, keys, and ciphertext sizes as other relevant schemes
without incurring more computational overhead.

3. We introduce a well-matched conditional delegation mechanism tailored to inner-product predi-
cates and integrate it into our AB-PRE scheme to obtain the first CAB-PRE scheme, which is
adaptively HRA secure.

Table 1. Comparison between related lattice-based AB-PRE schemes and our scheme

Feature

Scheme
Li et al. [19] Luo et al. [22] Susilo et al. [30] Our scheme

Policy Ciphertext-Policy Key-Policy Key-Policy Ciphertext-Policy

Security Selective CPA Selective CPA Selective HRA Adaptive HRA

Public parameters size O(2l · n2 log2 q) O((l + 2) · n2 log2 q) O((l + 3) · n2 log2 q) O((λ+ 1) · n2 log2 q)

Master secret key size O(2l · n2 log3 q) O(n2 log3 q) O(n2 log3 q) O(n2 log3 q)

Secret key size O(l · n log2 q) O(4n2 log3 q) O(2n2 log3 q) O(4n2 log3 q)

Ciphertext size O(2l · n log2 q) O((l + 2) · n log2 q) O((l + 2) · n log2 q) O((lf + 1) · n log2 q)

Re-encryption key size O(2l · n2 log3 q) O(4n2 log3 q) O((l + 2) · n2 log4 q) O((lg + 1) · n2 log4 q)

Re-encryption ciphertext size O(2l · n log2 q) O(3n log2 q) O((l + 2) · n log2 q) O((lf + 1) · n log2 q)

l is the size of attribute vectors;
λ is security parameter;
lf and lg are the size of constrained key associated with functions f and g, respectively.

1.2 Organization

This paper is organized as follows. We provide an overview of related cryptographic techniques and
background on lattices in Section 2. Next, we define the syntax and security model for CAB-PRE
in Section 3. Our adaptively HRA-secure AB-PRE scheme and its security proof are introduced
in Section 4. Then we give an adaptively HRA-secure CAB-PRE based on the above AB-PRE in
Section 5. Finally, we conclude this paper with future work in Section 6.

2 Preliminaries

In this section, we introduce some cryptography preliminaries and background on lattices to help the
reader better capture the following chapters.
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2.1 Constrained PRF, Conforming cPRF and t-CNF Predicates

We review two key concepts: constrained pseudorandom function (cPRF) and conforming cPRF,
which are significant components in our constructions. To facilitate comprehension, we first introduce
the concept of cPRF and augment cPRF with the properties of gradual evaluation and key simulation
to obtain conforming cPRF.

Definition 1 (Constrained PRF [10,31]). Let F be a family of functions with domain {0, 1}l and
range {0, 1}. A constrained pseudorandom function (cPRF) for F is defined by a tuple of probabilistic
polynomial-time (PPT) algorithms ΠcPRF = (Setup,Eval,Constrain,ConstrainEval) where:

– Setup(1λ)→ (pp,msk) : The setup algorithm takes as input the security parameter 1λ, outputs a
public parameter pp and a master secret key msk.

– Eval(msk, x) → y : The evaluation is a deterministic algorithm which takes as input the master
secret key msk and a bit-string x ∈ {0, 1}l, outputs y ∈ {0, 1}k.

– Constrain(msk, f) → skf : The constrained key generation takes as input the master secret key
msk and a function f ∈ F specifying the constraint, outputs a constrained key skf .

– ConstrainEval(skf , x) → y′ : The constrained evaluation is a deterministic algorithm which takes
as input a constrained key skf and a bit-string x ∈ {0, 1}l, outputs y′ ∈ {0, 1}k.

Correctness. We say a cPRF scheme ΠcPRF is correct if for all f ∈ F and x ∈ {0, 1}l such that
f(x) = 1, we have Eval(msk, x) = ConstrainEval(skf , x), where (pp,msk)← Setup(1λ) and skf ←
Constrain(msk, f).

Pseudorandomness. The single-key adaptive security of a cPRF is defined formally by the following
game between an adversary A and a challenger C:
– Setup : At the beginning of the game, the challenger C prepares (pp,msk) ← Setup(1λ) and

sends pp to A.
– Phase 1 : A can adaptively make two types of queries:
• Evaluation Queries: Upon a query x ∈ {0, 1}l, the challenger evaluates y ← Eval(msk, x)

and returns y to A.
• Constrained Key Queries: This oracle can only be queried once. Upon a query f ∈ F , the

challenger computes skf ← Constrain(msk, f) and returns skf to A.

– Challenge : A chooses a target bit-string x∗ ∈ {0, 1}l. The challenger flips a coin b
$← {0, 1}.

If b = 1, it evaluates y∗ ← Eval(msk, x∗). Otherwise, it samples y∗
$← {0, 1}k. Finally, C

returns y∗ to A.
– Phase 2 : A continues to make queries as same as Phase 1.
– Guess : Eventually, A outputs b′ as a guess for b.

The adversary A wins the game if (1) b′ = b, (2) x∗ cannot be queried in the evaluation oracle
and (3) all of the key queries for f satisfy f(x∗) = 0. The advantage that A wins in the security
game is at most 1/2 + negl(λ).

Definition 2 (Conforming cPRF [31]). We call a cPRF scheme is conforming, besides correctness
and pseudorandomness defined above, if the following properties hold.

Gradual Evaluation. Let Constrain (in addition to Eval,ConstrainEval) algorithm be deterministic.
Fixing pp from Setup(1λ), for any f ∈ F and x ∈ {0, 1}l such that f(x) = 1, define the following
circuits:
– Uσ→x : {0, 1}λ → {0, 1}k takes as input msk and computes Eval(msk, x).
– Uσ→f : {0, 1}λ → {0, 1}lf takes as input msk and computes Constrain(msk, f).
– Uf→x : {0, 1}lf → {0, 1}k takes as input skf and computes ConstrainEval(skf , x).

Note that the circuit Uσ→x is the same as the efficient sub-circuit of Uf→x ◦ Uσ→f .

Key Simulation. We require a PPT algorithm KeySim(pp, f) → skf such that any adversary A
has at most 1/2 + negl(λ) advantage of winning the following game against a challenger C.
– Setup : C generates (pp,msk)← Setup(1λ) and sends pp to A.
– Phase 1 : A makes evaluation queries for polynomial times. For a bit-string x ∈ {0, 1}l, C

returns y ← Eval(msk, x).

– Challenge : For a challenge constraint f∗ ∈ F , C samples b
$← {0, 1} and returns skf∗ ←

Constrain(msk, f∗) if b = 0, otherwise it returns skf∗ ← KeySim(pp, f∗).
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– Phase 2 : Same as the queries of Phase 1.
– Guess : A outputs a bit b′.
A wins the game if (1) b′ = b and (2) all of the evaluation queries for x satisfy f∗(x) = 0.

In this work, we utilize t-conjunctive normal form (t-CNF) predicates to specify the access policy,
i.e., the constraint f in cPRF, where each clause exhibits constant locality.

Definition 3 (t-CNF Predicates [10,31]). A t-CNF predicate f : {0, 1}l → {0, 1} such that t ≤ l
is a set of clauses f = {(Ti, fi)}i, where for all i, Ti ⊆ [l], |Ti| = t and fi : {0, 1}t → {0, 1}. For all
x ∈ {0, 1}l, a t-CNF predicate f(x) is computed as

f(x) =
∧
i

fi(xTi)

where xTi ∈ {0, 1}t is the bit string consisting of the bits of x in the indices of Ti. At last, a family of
t-CNF predicates F is the set of t-CNF predicates with input length l.

Tsabary [31] shows that the PRF [15] is a conforming cPRF for prefix policies. Moreover, he gives
a conforming cPRF construction for t-CNF policies, which is inspired by the [10] construction of
bit-fixing cPRF for a constant number of keys.

2.2 Lattices, Discrete Gaussian, Bounded Distributions

Notations. Bold symbols are used to represent matrices or vectors, while regular lowercase letters
are used for individual elements. Let (·‖·) (resp. (·; ·)) denote the horizontal concatenation (resp.

vertical concatenation) of vectors or matrices. For a distribution on set X, we use x
$←− X to denote a

random sample from X. The symbols ∧ and ∨ denote the “AND” gate and “OR” gate, respectively.
Let |= (resp. 6|=) denote the satisfied relation (resp. dissatisfied relation) between two conditions. We

use
c
≈ as the abbreviation for computationally indistinguishable.

Matrix Norm. For a vector u, let ‖u‖ denote its l2 norm. For a matrix R ∈ Zn×m, let R̃ be the
Gram-Schmidt orthogonalization of R. We define the following matrix norms:

– ‖R‖ denotes the l2 length of the longest column of R.
– ‖R‖∞ denotes the maximum element in R.

Note that ‖R‖∞ ≤ ‖R‖ ≤ nm‖R‖∞ and that ‖RS‖∞ ≤ m‖R‖∞‖S‖∞.

Lattices. In this work, two kinds of integer lattices are used. For a prime q, given A ∈ Zn×mq and
u ∈ Znq , denote:

Λ⊥q (A) = {v ∈ Zm : Av = 0 (mod q)},
Λu
q (A) = {v ∈ Zm : Av = u (mod q)}.

Observe that if t ∈ Λu
q (A) then Λu

q (A) = Λ⊥q (A) + t and hence Λu
q (A) is a shift of Λ⊥q (A).

Gadget Matrix. Let n, q ∈ Z, g = (1, 2, 4, · · · , 2dlog qe−1)T ∈ Zdlog qe
q and m = ndlog qe. The gadget

matrix is defined as G = gT ⊗ In ∈ Zn×mq , which denotes a tensor product of a vector g and an

identity matrix In such that the lattice Λ⊥q (G) has a public known basis TG with ‖T̃G‖ ≤
√

5.

Discrete Gaussian [1]. Let L be a subset of Zm. For any vector c ∈ Rm and any positive parameter
σ ∈ R, define:

ρσ,c(x) = exp(−π ‖x− c‖2

σ2
) and ρσ,c(L) =

∑
x∈L

ρσ,c(x).

A discrete Gaussian distribution on L with center c and parameter σ is

∀ y ∈ L,DL,σ,c(y) =
ρσ,c(y)

ρσ,c(L)
.

The distribution DL,σ (c = 0 when omitted) is most often defined over a lattice L = Λ⊥q (A) for a

matrix A ∈ Zn×mq or over a coset L = Λ⊥q (A) + t, where t ∈ Zm.
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Tailcut. The “tailcut” property of the discrete Gaussian is a crucial characteristic that enables the
bounding of parameters.

Definition 4 ( [1,24]). Let q ≥ 2, m > n and A be a matrix in Zn×mq . Let TA be a basis for Λ⊥q (A)

and τ ≥ ‖T̃A‖ · ω(
√

logm). For all u ∈ Znq , we have

Pr[x
$←− DΛu

q (A),τ : ‖x‖ > τ
√
m] 6 negl(λ).

Bounded Distributions. The following properties can help us set the parameters appropriately.

Definition 5 ( [7,31]). A distribution χ supported over Z is (B, ε)-bounded, if we have Pr[x
$← χ :

|x| > B] < ε.

Definition 6 ( [7, 31]). A distribution χ̃ supported over Z is (B, ε)-swallowing if for all y ∈
[−B,B] ∩ Z, we have that χ̃ and y + χ̃ are within ε statistical distance.

2.3 Lattice Algorithms, Lattice Evaluation and LWE

Lattice Algorithms. In this paper, we will use several lattice algorithms, which are enumerated in
the following lemmas:

Lemma 1 (TrapGen [23]). Let n,m, q > 0 be integers with m ≥ O(n log q). A PPT algorithm
TrapGen(1n,m, q) outputs a matrix A ∈ Zn×mq and a full-rank matrix TA ∈ Zm×m, where TA is a

basis for Λ⊥q (A) and ‖T̃A‖ = O(
√
n log q). The distribution of A is 2−Ω(n)-close to uniform.

Lemma 2 (SamplePre [14]). Let q ≥ 2, m > n. A PPT algorithm SamplePre(A,TA,u, τ) that,
given a matrix A ∈ Zn×mq , a basis TA for Λ⊥q (A), a vector u ∈ Znq and a Gaussian parameter

τ ≥ ‖T̃A‖·ω(
√

logm), outputs a vector e ∈ Zm sampled from a distribution 2−Ω(n)-close to DΛu
q (A),τ .

Lemma 3 (SampleLeft [1]). Let q > 2, m > n,m1 > 0. A PPT algorithm SampleLeft(A,TA,B,u, τ)
that, given matrices A ∈ Zn×mq ,B ∈ Zn×m1

q , a basis TA for Λ⊥q (A), a vector u ∈ Znq and a Gaus-

sian parameter τ , where τ ≥ ‖T̃A‖ · ω(
√

log(m+m1)), outputs a vector e ∈ Zm+m1 sampled from a
distribution 2−Ω(n)-close to DΛu

q (A‖B),τ .

Lemma 4 (SampleRight [1]). Let q > 2, m > n. A PPT algorithm SampleRight(A,G,R,TG,u,
τ) that, given matrices A ∈ Zn×kq ,G ∈ Zn×mq ,R ∈ Zk×m, a basis TG for Λ⊥q (G), a vector u ∈ Znq
and a Gaussian parameter τ ≥ ‖T̃G‖ · sR ·ω(

√
logm) (where sR := ‖R‖), outputs a vector e ∈ Zm+k

sampled from a distribution 2−Ω(n)-close to DΛu
q (A‖AR+G),τ .

Lemma 5 (ExtendRight [5, 8]). Let n,m1,m2, q > 0 be integers with q prime. A PPT algorithm
ExtendRight(A,TA,B) that, given matrices A ∈ Zn×m1

q ,B ∈ Zn×m2
q and a basis TA for Λ⊥q (A),

outputs a basis T(A‖B) for Λ⊥q (A‖B) such that ‖T̃A‖ = ‖T̃(A‖B)‖.

Lemma 6 (ExtendLeft [5,8]). Let n,m, q > 0 be integers with q prime. A PPT algorithm ExtendLeft
(A,G,TG,R) that, given matrices A ∈ Zn×kq ,G ∈ Zn×mq ,R ∈ Zk×m, a basis TG for Λ⊥q (G), outputs

a basis TH for Λ⊥q (H), where H = (A‖AR + G), such that ‖T̃H‖ ≤ ‖T̃G‖(1 + ‖R‖).

Lemma 7 (RandBasis [5, 8]). Let m, q ≥ 2 be integers with q prime. A PPT algorithm RandBasis
(A,TA, τ) that, given a matrix A ∈ Zn×mq , a basis TA ∈ Zm×m for Λ⊥q (A) and a Gaussian parameter

τ = ‖T̃A‖ ·ω(
√

logm), outputs a basis T′A for Λ⊥q (A) sampled from a distribution that is statistically

close to DmΛ⊥q (A),σ. Note that ‖T̃′A‖ < τ
√
m with all but negligible probability.

Next, we introduce the abstraction form of lattice evaluation as extracted in [31].
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Theorem 1 (Lattice Evaluation [31]). Let n, q, l, k ∈ N and m = ndlog qe, there exist two de-
terministic algorithms called EvalF and EvalFX, respectively. For any depth d boolean circuit f :
{0, 1}l → {0, 1}k, for every x ∈ {0, 1}l and for any matrix A ∈ Zn×mlq , the outputs H← EvalF(f,A)

and Ĥ← EvalFX(f, x,A) are both in Zml×mk and it holds that ‖H‖∞, ‖Ĥ‖∞ 6 (2m)d and

[A− x⊗G]Ĥ = AH− f(x)⊗G (mod q).

Moreover, for any pair of circuits f : {0, 1}l → {0, 1}k, g: {0, 1}k → {0, 1}t and for any matrix
A ∈ Zn×mlq , the outputs Hf ← EvalF(f,A), Hg ← EvalF(g,AHf ) and Hg◦f ← EvalF(g ◦ f,A)
satisfy HfHg = Hg◦f .

Learning With Errors. For the learning with errors (LWE) problem [28], we will use its decisional
version, Hermite normal form (HNF) and lossy mode, in this work.

Definition 7 (Decisional LWE (DLWE) and Its HNF [2,28]). Let λ be the security parameter,
n = n(λ) and q = q(λ) be integers and let χ = χ(λ) be a probability distribution over Z. The

DLWEn,q,χ problem states that for all m = poly(n), A
$←− Zn×mq , s

$←− Znq , e
$←− χm, and u

$←− Zmq , it
holds that

(A,AT s + e) and (A,u)

are computationally indistinguishable. The form of HNF-LWE is identical to the above except for

s
$←− χn.

Corollary 1 ( [27, 28, 31]). For all ε > 0, there exist functions q = q(n) ≤ 2n, χ = χ(n) such that
χ is B-bounded for some B = B(n), q/B ≤ 2n

ε

and such that DLWEn,q,χ is at least as hard as the
classical hardness of GapSVPγ and the quantum hardness of SIVPγ for γ = 2Ω(nε).

Definition 8 (Lossy Mode for LWE [17]). The LWE instance (A,AT s + e) ∈ Zn×mq × Zmq
uniquely determines a secret vector s ∈ Znq , provided the matrix A is drawn uniformly from Zn×mq with
sufficiently large m. However, suppose sample A from a specialized distribution that is computationally
indistinguishable from the uniform distribution over Zn×mq . In that case, the information leakage

regarding the secret s by the pair (A,AT s + e) is negligible. Consequently, this variant of the LWE
problem, which does not reveal significant information about the secret vector, is commonly referred
to as the “lossy mode”.

2.4 Vector Decomposition and Generalized Leftover Hash Lemma

Key Switching. We describe some subroutines of the key switching procedure proposed in [6] to
control error growth in our scheme.

Definition 9 (Vector Decomposition). We define the vector decomposition functions mapping
vectors to a higher dimension as below:

– BD(v) : A deterministic function that given a vector v ∈ Znq , let vTi ∈ {0, 1}n 2 be such that

v =
∑dlog qe−1
i=0 2ivi, outputs a vector ṽT ∈ {0, 1}ndlog qe, where ṽ = (v0; · · · ; vdlog qe−1). If there

is a row vector v ∈ Z1×n
q , we compute BD(v) as : let vT ∈ Znq , evaluate BD(vT ), then we have

BD(v) = (BD(vT ))T .

– P2(x) : A deterministic function that given a vector x ∈ Znq , outputs a vector x̄ ∈ Zndlog qe
q , where

x̄ = (x; 2x; · · · ; 2dlog qe−1x).

– For vectors v ∈ Z1×n
q and x ∈ Znq , it holds that BD(v) · P2(x) = v · x mod q.

2 By default, a bit string is considered as a row vector.
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Randomness Extraction. We introduce a generalization version of the leftover hash lemma from [1].

Definition 10 (Generalized Leftover Hash Lemma [1]). Suppose that m > (n + 1) log q +

ω(log n) and that q > 2 is prime. Let S
$←− {1,−1}m×k, where k = k(n). Choose matrices A

$←− Zn×mq

and B
$←− Zn×kq . Then, for all vectors e ∈ Zmq , the distribution (A,AS,STe) is statistically close to

the distribution (A,B,STe).

Obviously, the two distributions (A,AS) and (A,B) are still statistically close in the case of
without revealing some small amount of information of S (i.e., STe).

3 Definition of Conditional Attribute-Based Proxy Re-encryption

We formally define conditional attribute-based proxy re-encryption (CAB-PRE) in the HRA security
model. Specifically, we describe the syntax of unidirectional, single-hop CAB-PRE for ciphertext
policy.

3.1 Conditional Attribute-Based Proxy Re-encryption

We note that combining C-PRE and AB-PRE constructions cannot directly yield a viable CAB-PRE
scheme because their underlying encryption and re-encryption have different structures, making it
hard to guarantee correct decryptions for transformed ciphertexts.

We formalize CAB-PRE with the identical syntax as the general AB-PRE. Differently, we furnish
two levels of encryption algorithms to distinguish between pre- and post-delegation ciphertexts to
improve their comprehensibility, in which the second level with specified conditions. When performing
a re-encryption operation, the proxy converts the delegator’s ciphertext generated by the second-level
encryption algorithm into the delegatee’s ciphertext produced by the first-level ones. Both encryption
algorithms use the same decryption procedure to minimize the users’ local computational burden.
Therefore, the CAB-PRE scheme consists of seven algorithms in the following way.

Definition 11 (Conditional Attribute-Based Proxy Re-Encryption for Ciphertext Poli-
cy). Let F : {0, 1}l → {0, 1} be a function class. A conditional attribute-based proxy re-encryption
scheme CAB-PRE for policies in F is a tuple of PPT algorithms ΠCAB−PRE = (Setup,KeyGen,Enc1,
Enc2,Dec,ReKeyGen,ReEnc).

Setup(1λ)→ (pp,msk). On input the security parameter 1λ, the setup algorithm outputs the public
parameters pp along with a master secret key msk.

KeyGen(msk, x)→ skx. On input a master secret key msk and an attribute string x ∈ {0, 1}l, the
key generation algorithm outputs a secret key skx.

Enc1(f, µ)→ ct1f . On input a policy f ∈ F and a plaintext µ ∈ {0, 1}, the first-level encryption

algorithm outputs a first-level ciphertext ct1f associated with policy f .

Enc2(f, w, µ)→ ct2f . On input a policy f ∈ F , a condition w and a plaintext µ ∈ {0, 1}, the second-

level encryption algorithm outputs a second-level ciphertext ct2f associated with policy f . Note that
in single-hop, one could distinguish first-level ciphertexts from second-level ciphertexts.

Dec(skx, ctf ∈ {ct1f , ct2f})→ µ/⊥. On input a secret key skx and a ciphertext ctf ∈ {ct1f , ct2f}, the

decryption algorithm outputs a bit µ ∈ {0, 1} if f(x) = 1 3, else outputs an error symbol ⊥.
ReKeyGen(skx, g, w

′)→ rkw
′

x→g. Given a secret key skx, a policy g ∈ F , and a condition w′, this

algorithm outputs a re-encryption key rkw
′

x→g.

ReEnc(rkw
′

x→g, ct
2
f )→ ct1g/⊥. Given a re-encryption key rkw

′

x→g and a second-level ciphertext ct2f , this

algorithm outputs a first-level ciphertext ct1g associated with policy g if f(x) = 1 and w′ |= w, else
outputs an error symbol ⊥.

Definition 12 (CAB-PRE: Correctness). A CAB-PRE scheme is correct if:

3 In this paper, f(x) = 1 implies that the attribute x is accepted by the access policy f , while f(x) = 0
indicates that it is not accepted.
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– For all x ∈ {0, 1}l and f ∈ F for which f(x) = 1, and for any condition w and all µ ∈ {0, 1}, it
holds that

Pr[Dec(skx, ctf ∈ {ct1f , ct2f}) 6= µ] = negl(λ),

where skx ← KeyGen(msk, x), ct1f ← Enc1(f, µ) and ct2f ← Enc2(f, w, µ).

– For any w′ and rkw
′

x→g ← ReKeyGen(skx, g, w
′), it holds that

Pr[Dec(sky, ct
1
g) 6= µ] = negl(λ),

if g(y) = 1 and w′ |= w for y ∈ {0, 1}l and g ∈ F , where ct1g ← ReEnc(rkw
′

x→g, ct
2
f ).

3.2 Security Model

In the CPA security model for PRE, an adversary can call the oracles of the re-encryption key and
re-encryption between pairs of users in honest or in corrupt, or from corrupt to honest, but not from
honest to corrupt. The purpose of the HRA security model is that even if the adversary obtains the
correctly generated re-encrypted ciphertext, it cannot obtain information about the delegator’s secret
key. Thus, the adversary in the HRA security definition can query the re-encryption oracle from the
honest user to the corrupt user, with the restriction that the original ciphertext must be honestly
generated.

The security model of our CAB-PRE scheme primarily concerns HRA. The difficulty of defining
the HRA security model for our cryptosystem is how to describe honest and corrupt users and the
case where the re-encryption key and the re-encryption oracles terminate, because honest and corrupt
users in CPA are defined before the adversary queries the oracle, this setting can be seen as static.
However, CAB-PRE uses fine-grained access control, which cannot be set in this way. Moreover,
we also would like to achieve adaptive security. How to solve this problem depends on the relation
between the attribute and the access policy and whether the adversary could ask for a secret key
associated with an attribute. We, therefore, focus on the adversary’s queries about the oracles of the
re-encryption key and re-encryption. For a re-encryption key query, consider the following relations
between the attributes x and y with access policies f and g:

Table 2. Relation between the attributes with access policies in HRA security model

Relation x ∈ K ∧ y ∈ K x ∈ K ∧ y /∈ K x /∈ K ∧ y ∈ K x /∈ K ∧ y /∈ K

f(x) = 0 ∧ g(y) = 0 H→ H H→ H H→ H H→ H

f(x) = 0 ∧ g(y) = 1 H→ C H→ H H→ C H→ H

f(x) = 1 ∧ g(y) = 0 C→ H C→ H H→ H H→ H

f(x) = 1 ∧ g(y) = 1 C→ C C→ H H→ C H→ H

H→ H denotes the pairs of users in honest;
H→ C denotes the pairs of users from honest to corrupt;
C→ H denotes the pairs of users from corrupt to honest;
C→ C denotes the pairs of users in corrupt.

In Table 2, K is a key list to record the attributes and secret keys the adversary has queried; then
x ∈ K means x has been queried in key generation oracle, and x /∈ K denotes have not. Let’s take an
example of what this table means. If the the relation f(x) = 0 ∧ g(y) = 0 and x ∈ K ∧ y ∈ K holds,
the pairs of users are honest (i.e., H → H) since attributes x and y are not satisfy policies f and g,
respectively. In other words, even if the adversary queries the secret keys of attributes x and y, it has
no decryption rights to the ciphertexts associated with f or g. Observed that the adversary cannot
query the re-encryption key from the honest user to the corrupt user (i.e., H→ C, boxed part of the
table) in three cases, namely

(f(x) = 0 ∧ g(y) = 1) ∧ (x ∈ K ∧ y ∈ K),
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(f(x) = 0 ∧ g(y) = 1) ∧ (x /∈ K ∧ y ∈ K),

(f(x) = 1 ∧ g(y) = 1) ∧ (x /∈ K ∧ y ∈ K).

Similarly, the re-encryption oracle terminates under the following cases: 1) the conditions in the
re-encryption key and the ciphertext do not match; 2) the ciphertext does not contain the condition;
3) f(x) = 0, i.e., anyone has a secret key associated with x cannot decrypt the original ciphertext
encrypted under f correctly, and 4) the ciphertext submitted by the adversary is a challenge ci-
phertext, while g(x) = 1. Note that excluding the termination condition, the adversary can call the
re-encryption oracle. When f(x) = 1, the attributes x and y have relations to the access policies f
and g, the same as the last two rows of Table 2. Especially under the case of f(x) = 1∧ g(y) = 1 and
x /∈ K ∧ y ∈ K, the re-encryption oracle must also make a response to the adversary.

Furthermore, Cohen demonstrated in [9] that the HRA-secure PRE scheme also guarantees CPA
security. We have the same result for our CAB-PRE scheme, as evidenced in Remark 1.

Now we formally give the HRA security model for our CAB-PRE as follows.

Definition 13 (CAB-PRE: Security Game for HRA). The adaptive HRA security game of a
unidirectional, single-hop CAB-PRE scheme between an adversary A and a challenger C. The game
consists of three phases as follows.

Phase 1 (Setup): This is the setup phase. The challenger generates (pp,msk) by running Setup(1λ)
algorithm and gives the public parameters pp to A. Then, the challenger initializes a counter
numCt := 0, a policy-value store C := ∅, a key list K := ∅ and a set Deriv := ∅.

Phase 2 (Oracle Query): This is the oracle query phase.
– OKeyGen(x) : For a key query x, the challenger generates skx ← KeyGen(msk, x) and adds

(x, skx) in K. It gives skx to A.

– OEnc(f, w, µ) : For an encryption query (f, w, µ), the challenger computes

ctf ←

{
Enc1(f, µ), if w = Null

Enc2(f, w, µ), otherwise

sets numCt := numCt+1, adds ctf in C with policy tuple (f, w, numCt), and gives (numCt, ctf )
to A.

– OReKey(x, g, w
′) : For a re-encryption key query (x, g, w′), we assume that there exists an

attribute string y. If y /∈ K, the challenger records y such that it cannot be queried in OKeyGen.
There exist two cases:

1) g(y) = 0, the challenger generates rkw
′

x→g ← ReKeyGen(skx, g, w
′).

2) g(y) = 1, return ⊥ if for any queried f in the store C such that i) f(x) = 0 and x ∈
K ∧ y ∈ K, or ii) f(x) = 0 and x /∈ K ∧ y ∈ K, or iii) f(x) = 1 and x /∈ K ∧ y ∈ K.
Otherwise, the challenger produces rkw

′

x→g ← ReKeyGen(skx, g, w
′).

After that, C gives rkw
′

x→g to A.

– OCha(f
∗, w∗, (µ0, µ1)): This oracle can only be invoked once. For a challenge query (f∗, w∗, (µ0, µ1)),

it requires f∗(x) = 0, where x ∈ K. The challenger flips a bit b ∈ {0, 1}, generates

ctf∗ ←

{
Enc1(f

∗, µb), if w∗ = Null

Enc2(f
∗, w∗, µb), otherwise

sets numCt := numCt + 1 and Deriv := Deriv ∪ {numCt}. It adds ctf∗ in C with policy tuple
(f∗, w∗, numCt) and gives (numCt, ctf∗) to A.

– OReEnc((x, g, w
′), (f, w, k)): For a re-encryption query ((x, g, w′), (f, w, k)), where k ≤ numCt.

Assume that there exist an attribute string y. If y /∈ K, the challenger records y such that it
cannot be queried in OKeyGen. Then the challenger does the following operations.
1) If w′ 6|= w, return ⊥.
2) If there is no value in C with policy tuple (f, w 6= Null, k), return ⊥.
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3) If f(x) = 0, return ⊥.
4) If g(y) = 1 ∧ y ∈ K ∧ k ∈ Deriv, return ⊥.
5) Otherwise, let ctf be that value in the store C. The challenger produces ctg ← ReEnc(rkw

′

x→g,

ctf ), where rkw
′

x→g ← ReKeyGen(skx, g, w
′), sets numCt := numCt + 1, adds ctg in C with

policy tuple (g,Null, numCt). If k ∈ Deriv, set Deriv := Deriv ∪ {numCt}. Finally, it gives
(numCt, ctg) to A.

Phase 3 (Decision): This is the decision phase. A outputs a bit b′ for b.

The advantage of A winning the adaptive HRA security game is defined as

AdvHRAA,ΠCAB−PRE
= |Pr[b′ = b]− 1/2|.

Definition 14 (CAB-PRE: Adaptive HRA Security). Given a security parameter λ, we say
the scheme ΠCAB−PRE for ciphertext policy is unidirectional, single-hop adaptively HRA-secure if for
all PPT adversaries A, there is a negligible function negl(λ) such that

AdvHRAA,ΠCAB−PRE
≤ negl(λ).

Remark 1. The HRA security implies CPA security that pointed in [9] for PRE schemes. We have the
same conclusion for our CAB-PRE schemes. Based on the above security model, the CPA security
model can be captured by performing several modifications that (1) remove the encryption oracleOEnc,
namely, the adversary cannot make any encryption queries and (2) return ⊥ if f(x) = 1 ∧ g(y) = 1
and x /∈ K ∧ y ∈ K, in OReEnc.

4 Adaptively HRA-Secure AB-PRE from LWE

Our method integrates the (ciphertext-policy) ABE scheme [31] with the key switching technique [6].
The resulting scheme is an adaptively HRA-secure (ciphertext-policy) AB-PRE scheme, which resolves
the open problem introduced by Susilo et al. [30] in ESORICS’21 about constructing an HRA-secure
(ciphertext-policy) AB-PRE scheme. Appendix A provides AB-PRE’s syntax and HRA security def-
inition for clarity and completeness. Note that for a ciphertext encrypted under an access policy f ,
the ciphertext can be converted to the one encrypted under a policy g, where f is arbitrary, as long
as the attributes in the re-encryption key satisfy that policy f .

4.1 Technique Overview

The scheme [31] utilizes a conforming constrained pseudorandom function (cPRF) for the predicate
class t-CNF (denoted by F in this paper) and employs circuits Uσ→x, Uσ→f , and Uf→x. The public
parameters of the scheme consist of two matrices A and B, a vector v, and the cPRF’s public
parameters P.pp. The master secret key comprises a trapdoor of matrix B and the cPRF’s master
secret key σ. For any policy f ∈ F , one obtains an efficient computable matrix Af using lattice
evaluation. The ciphertext is a Dual-Regev encryption with respect to the tuple (B‖[Af−sf⊗G],v),
where sf ← P.KeySim(P.pp, f). Similarly, one can capture an efficient computable matrix Ax,r using
lattice evaluation for each attribute string x. The secret key is a short vector k sampled from the
SamplePre algorithm and satisfies (B‖Ax,r)k = v, where r ← P.Eval(σ, x). The decryption algorithm
computes r′ ← Uf→x(sf ) and successfully recovers the message by the secret key k if and only if (i.e.,
iff) f(x) = 1 ∧ r 6= r′.

We employ a key switching technique that generates a re-encryption key

Z =

(
R1H + R2 R1v + r3 − P2(k)
01×(m′+mlg) 1

)
to construct an AB-PRE scheme. The encryption tuple (H,v) = (B‖[Ag − sg ⊗ G],v) relates to
the policy g ∈ F , and R1,R2, r3 denote error terms. It is noteworthy that secret keys produce re-
encryption keys. However, in the HRA security proof, the challenger must respond to re-encryption

queries made by the adversary, even in the absence of secret keys. Choose a small value δ
$←− χ,
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and a short vector d is sampled such that (B‖Ax,r)d = v · δ. This results in creating a modified
re-encryption key, denoted as

Z′ =

(
R1H + R2 R1v + r3 − P2(d)
01×(m′+mlg) δ

)
.

By using this modified re-encryption key, a re-encrypted ciphertext can be obtained. However, it is
essential to note that this approach impacts the noise bound of the transformed ciphertext during
decryption.

To prove the adaptive HRA security of the AB-PRE scheme, we introduce two randomized al-
gorithms, KeyGen1 and KeyGen2, which play a crucial role in handling re-encryption queries. These
algorithms enable us to simulate re-encryption keys without requiring access to secret keys. However,
if the adversary has decryption capabilities, the master secret key must be utilized. Specifically, we
employ the SamplePre algorithm to generate a small vector k (s.t., (B‖Ax,r)k = v) and produce an
extended trapdoor in the key generation algorithm. We subsequently sample a short vector d (s.t.,
(B‖Ax,r)d = v · δ) based on the extended trapdoor to generate a re-encryption key. Since d is not a
derivative of k 4, it is possible to simulate a re-encryption key directly derived from the master secret
key without relying on the secret key. One can satisfy the above requirement using algorithms with
“symmetric” properties, such as SampleLeft and SampleRight. To ensure the security of our scheme, we
reduce it to the hardness of the LWE problem. Specifically, we embed an LWE instance (B‖v,u0‖u′2)
into the challenge ciphertext (u0, u2 = u′2 + µb bq/2e), making it indistinguishable from the uniform
distribution for any potential adversary.

4.2 Construction

Let P = (P.Setup,P.Eval,P.Constrain,P.ConstrainEval) be a conforming cPRF for a class family F of
t-CNF predicates with input length l and output length k. Assume that the master secret key length
of P is λ. For all f ∈ F , let lf denote the size of constrained key which can be computed efficiently
given the function f and P.Constrain algorithm. Note that Uσ→x, Uσ→f and Uf→x are circuits defined
as Definition 2. Define an adaptively HRA-secure (ciphertext-policy) AB-PRE as follows.

Setup(1λ) : Run (P.pp, P.msk)← P.Setup(1λ), set σ = P.msk. n, q,m′, τ, χ, χ̃ are parameters and let

m = n dlog qe. Invoke (B,TB)← TrapGen(1n,m′, q). Sample a matrix A
$←− Zn×mλq and a vector

v
$←− Znq . Output pp = (B,A,v, P.pp) and msk = (σ,TB).

KeyGen(msk, x) : Compute Hσ→x ← EvalF(Uσ→x,A), let Ax = AHσ→x. Evaluate r ← P.Eval(σ, x)
and Hr ← EvalF(Ir,Ax), where Ir : {0, 1}k → {0, 1} is a function that on input r′ returns 0 iff
r 6= r′. Set Ax,r = AxHr. Capture TB‖Ax,r

← RandBasis(B‖Ax,r,ExtendRight(B,TB, Ax,r), τ)

and sample a short k ← SamplePre(B‖Ax,r,TB‖Ax,r,v, τ) such that (B||Ax,r)k = v. Output

skx = (r,TB‖Ax,r,k).

Enc(f, µ): Compute sf ← P.KeySim(P.pp, f). Choose randomly s
$←− Znq , e0

$←− χm
′
, e1

$←− χ̃mlf ,

e2
$←− χ, set

u0 = sTB + eT0 ,

u1 = sT [Af − sf ⊗G] + eT1 ,

u2 = sTv + e2 + µ bq/2e ,

where Af = AHσ→f and Hσ→f ← EvalF(Uσ→f ,A). Output ctf = (sf ,u0,u1, u2).

4 Our proposed scheme relies on a crucial requirement that the norms of the vectors k and d should be
bounded by τ

√
m′ +m since they are generated from the Gaussian sampling with parameter τ . If d is a

derivative of k, i.e., d = k ·δ, then we can bound its infinity norm as ‖d‖∞ ≤ τ
√
m′ +m ·B. This inequality

τ
√
m′ +m < ‖d‖∞ ≤ τ

√
m′ +m ·B holds with a non-negligible probability, where τ ∈ O(λ, n, k, (2m)d+3)

and B = B(n).
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Dec(skx, ctf ): Parse skx = (r,TB‖Ax,r,k) and ctf = (sf ,u0,u1, u2). Compute r′ ← Uf→x(sf ), then

abort if r′ = r. Otherwise, capture Ax and Af are the same as in KeyGen and Enc, respectively.
Evaluate

Ĥr,r′ ← EvalFX(Ir, r
′,Ax),

Ĥsf→r′ ← EvalFX(Uf→x, sf ,Af ).

Lastly, compute

u = u2 − (u0‖u1Ĥsf→r′Ĥr,r′)k.

Output 1 iff |u| > q/4, otherwise output 0. It is worth noting that the decryption of a transformed
ciphertext involves a coefficient factor δ, and the correct recovery of the message µ is contingent
upon the appropriate tailoring of the noise bound.

ReKeyGen(skx, g): Parse skx = (r,TB‖Ax,r,k). Select a function g ∈ F that conforms to gradual

evaluation (as specified in Definition 2) and where the size of the constrained key is lg. Sam-
ple sg ← P.KeySim(P.pp, g). Let H = B‖[Ag − sg ⊗ G], where Ag = AHσ→g and Hσ→g ←

EvalF(Uσ→g,A). Compute Ax,r the same as in KeyGen. Set v′ = v · δ, where δ
$←− χ, sample

a short d by running SamplePre(B‖Ax,r,TB‖Ax,r,v
′, τ) algorithm such that (B‖Ax,r)d = v′.

Select randomly R1 ∈ χ(m′+m)dlog qe×n,R2 ∈ χ(m′+m)dlog qe×(m′+mlg) and r3 ∈ χ(m′+m)dlog qe,
compute

Z =

(
R1H + R2 R1v + r3 − P2(d)
01×(m′+mlg) δ

)
.

Output rkx→g = (sg, r, δ,Z).

ReEnc(rkx→g, ctf ): Parse rkx→g = (sg, r, δ,Z) and ctf = (sf ,u0,u1, u2). Compute r′ ← Uf→x(sf ),

then abort if r′ = r. Otherwise, capture Ax, Af , Ĥr,r′ and Ĥsf→r′ the same as in KeyGen,Enc

and Dec, respectively. Finally, let u′1 = u1Ĥsf→r′Ĥr,r′ , evaluate

ctf→g = (BD(u0‖u′1)‖u2) · Z.

Output ctg = (sg, δ, ctf→g).

4.3 Correctness and Choice of Parameters

Theorem 2. The AB-PRE scheme is correct with respect to f under proper parameters as below.

Proof. First, we direct our focus towards the correct decryption of the original ciphertext. For the
security parameter λ, consider functions f ∈ F and Ir, two strings x ∈ {0, 1}l and r′ ∈ {0, 1}k such
that f(x) = 1∧Ir(r′) = 0, if (pp,msk)← Setup(1λ), skx ← KeyGen(msk, x) and ctf ← Enc(f, µ), then
we have µ← Dec(skx, ctf ). As demonstrated by [31], the probability of r = r′ is almost negligible, as
evidenced by a reduction to the pseudorandomness game of the conforming cPRF P. Specifically, we
have r ← P.Eval(P.msk, x) and r′ ← Uf→x(sf ) (i.e., r′ is computed as P.ConstrainEval(sf , x), where
sf ← P.KeySim(P.pp, f)). Given the function Ir, the existence of Ir(r

′) = 0 can be established with
overwhelming advantage.

When f(x) = 1, the property of gradual evaluation of P (see Definition 2) shows that the ef-
fective sub-circuit of Uf→x ◦ Uσ→f is equivalent to the circuit Uσ→x. By Theorem 1, it follows
that Hσ→x = Hσ→fHf→x. Hence we have Ax = AHσ→x = AHσ→fHf→x = AfHf→x, where
Hf→x ← EvalF(Uf→x,A) and Hσ→f ← EvalF(Uσ→f ,A).

Based on Theorem 1, we capture (Hr, Ĥr,r′) and (Hf→x, Ĥsf→r′). Precisely,

Hr ← EvalF(Ir,Ax),

Ĥr,r′ ← EvalFX(Ir, r
′,Ax),

Ĥsf→r′ ← EvalFX(Uf→x, sf ,Af ).
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Then, we compute

[Af − sf ⊗G]Ĥsf→r′Ĥr,r′ = [AfHf→x − Uf→x(sf )⊗G]Ĥr,r′

= [Ax − r′ ⊗G]Ĥr,r′

= AxHr − Ir(r′)⊗G

= Ax,r.

Thus,

u2 − (u0‖u1Ĥsf→r′Ĥr,r′)k = u2 − (u0‖sTAx,r + eT1 Ĥsf→r′Ĥr,r′)k

= u2 − sT (B‖Ax,r)k− (eT0 ‖eT1 Ĥsf→r′Ĥr,r′)k

= µ bq/2e+ e2 − (eT0 ‖e′1)k,

where e′1 = eT1 Ĥsf→r′Ĥr,r′ .
The depths of Uσ→f and Uf→x are denoted by dCon and dConEval, respectively. These depths are

limited by the depth d = poly(λ) of Uσ→x, as P serves as the gradual depth of Uσ→f and Uf→x. Note
that

‖e′1‖∞ ≤ m2lfk‖eT1 ‖∞‖Ĥsf→r′‖∞‖Ĥr,r′‖∞
≤ m2lfkB̃(2m)dConEval+1

and
‖k‖∞ ≤ τ

√
m′ +m,

due to e1 ∈ χ̃mlf , Ĥsf→r′ ∈ Zmlf×mk, Ĥr,r′ ∈ Zmk×m and the tailcut inequality (see Definition 4) of
the discrete Gaussian.

Therefore, if m′, lf , k ∈ O(n, dlog qe), B̃ ∈ O(B,n) and τ ∈ O(λ, k, (2m)d+3), then

|e2 − (eT0 ‖e′1)k| ≤ |e2|+ (m′‖eT0 ‖∞ +m‖e′1‖∞)‖k‖∞
≤ B + (m′B +m3lfkB̃(2m)dConEval+1)τ

√
m′ +m

≤ B · poly(n, dlog qe) · (2m)dConEval+d+4.

To capture correct decryption, the magnitude should be less than q/4, i.e., |e2− (eT0 ‖e′1)k| < q/4.
Choosing the parameters

– q, χ,B as Corollary 1 and note that q ≤ 2n and q/B ≥ 2n
ε

.

– n ≥ λ such that (2n2)(2d+4) ≤ 2n
ε

, where ε ∈ (0, 1) and n ≤ dO(1/ε).

– m′ = (n+ 1)dlog qe+ 2λ, B′ = m′mλB(2m)dCon , E′ ≤ 2n
ε

.

Let
E = B · poly(n, dlog qe) · (2m)dConEval+d+4

and
E′ = 4E/B = 4 · poly(n, dlog qe) · (2m)dConEval+d+4.

Since E′ < q/B, then E = BE′/4 < q/4. Therefore,

|e2 − (eT0 ‖e′1)k| ≤ B · poly(n, dlog qe) · (2m)dConEval+d+4 < q/4

is overwhelming, and the decryption of the original ciphertext is correct.

Next, we show the correctness of the re-encrypted ciphertext. Given an original ciphertext as-
sociated with function f , it can be efficiently re-encrypted to another one associated with function
g using a re-encryption key. Specifically, parse the original ciphertext ctf = (sf ,u0,u1, u2) and the
re-encryption key rkx→g = (sg, r, σ,Z), the re-encryption process in the following way:

If f(x) = 1 ∧ Ir(r′) = 0 holds, where r′ ← Uf→x(sf ), we compute

u′1 = u1Ĥsf→r′Ĥr,r′ = sTAx,r + eT1 Ĥsf→r′Ĥr,r′ ,
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then

ctf→g = (BD(u0‖u′1)‖u2) · Z
= (c0‖c1 c2).

Let s̄ = (BD(u0‖u′1)R1)T , we have

c0‖c1 = s̄T (B‖[Ag − sg ⊗G]) + BD(u0‖u′1)R2

= s̄T (B‖[Ag − sg ⊗G]) + (ēT0 ‖ēT1 )

and

c2 = s̄Tv + ē2 + µ bq/2e · δ,

where ē2 = BD(u0‖u′1)r3 − (eT0 ‖e′1)d + e2 · δ and |ē2| ≤ B · poly(n, dlog qe) · (2m)dConEval+d+4.

Without loss of generality, let sky = (r̄,TB‖Ay,r̄, k̄) denote a secret key for an attribute string

y that satisfies g(y) = 1 and Ir̄(r̄
′) = 0, where r̄′ ← Ug→y(sg). To capture correct decryption, we

compute

u = c2 − (c0‖c1Ĥsg→r̄′Ĥr̄,r̄′)k̄.

Based on our parameter settings and analysis, the norm of error term is bounded by

|ēT2 − (ēT0 ‖ē′1)k̄| ≤ 2B · poly(ndlog qe) · (2m)dConEval+d+4 < q/4 · δ

in which ē′1 = ēT1 Ĥsg→r̄′Ĥr̄,r̄′ with an overwhelming probability, and the decryption of the re-
encrypted ciphertext is correct. ut

4.4 Security Proof

For now, we will construct two efficient randomized algorithms KeyGen1 and KeyGen2 that are the
heart of the HRA security proof.

– KeyGen1(msk, x)→ ŝkx : Taking as input msk = (σ,TB) and x ∈ {0, 1}l, the algorithm computes

Ax,r the same as in KeyGen, and captures ŝkx by calling SampleLeft(B,Ax,r,TB,v
′, τ), for some

terms B and v′.

– KeyGen2(msk, x)→ ŝkx : Taking as input msk = σ (without TB) and x ∈ {0, 1}l, the algorithm

computes Ax,r the same as in KeyGen, and captures ŝkx by calling SampleRight(B,G,R,TG,v
′, τ)

if Ax,r = BR + G, for some terms R and v′.

Note that by Lemma 3 and Lemma 4, the outputs of SampleLeft and SampleRight are distributed
statistically close to DΛv′

q (B‖Ax,r),τ . Thus, sampling ŝkx from KeyGen1 or KeyGen2 are statistically

indistinguishable.

Theorem 3. For a class family F , if P is a conforming cPRF, then AB-PRE is a unidirectional,
single-hop, adaptively HRA-secure scheme under the hardness of DLWEn,q,χ problem.

Proof. The adaptive HRA security model of AB-PRE is identical to Definition 13 except for canceling
some condition requirements (i.e., all conditions are matched by default). Let A be a PPT adversary
that breaks the adaptive HRA security of AB-PRE. We show that the proof proceeds in a sequence
of games. In each game, we define Si to be the event that A wins in Gamei.

Game0 : This is the original security game, in which most operations are identical to the real scheme
for the adversary’s queries. Nonetheless, special attention is directed towards the responses to the
re-encryption key queries, given the stringent constraints and subtle transformations involved,
which may differ from the real scheme but retain an equivalent relation. The handling of these
queries is expounded as follows:
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– When A makes a re-encryption key query on (x, g), there exist an attribute string y such

that g(y) = 0. The challenger chooses a matrix Z1
$←− χ(m′+m)dlog qe×(m′+mlg) and a vector

z2
$←− χ(m′+m)dlog qe, simulates the fourth entries of the re-encryption key as

Z =

(
Z1 z2

01×(m′+mlg) δ

)
,

where δ
$←− χ. It returns rkx→g to A.

– When A makes a re-encryption key query on (x, g), there exist an attribute string y such that
g(y) = 1. In addition to the termination conditions described in Definition 13, the challenger

first invokes KeyGen1(msk, x) algorithm (here msk = (σ,TB)) to obtain ŝkx(= d) without

generating the secret key skx. It then computes rkx→g ← ReKeyGen(ŝkx, g) and gives rkx→g
to A.

By Definition 13 and Definition 14, we have |Pr[S0]− 1/2| ≤ negl(λ).

Remark 2. Recall in the real scheme, the challenger creates

Z =

(
R1H + R2 R1v + r3 − P2(d)
01×(m′+mlg) δ

)
,

where R1,R2, r3 are sampled from discrete Gaussian distributions. Observe that Z is indistin-
guishable with uniform distribution (i.e., satisfying key privacy [3]) based on the hardness of
HNF-LWE problem (see Definition 7, more proof details please refer to [21]). Consequently, the
challenger could return a random matrix that is identically and independently distributed to the
real re-encryption key distribution.

Game1 : In this game, we change r
$←− {0, 1}k instead of r ← P.Eval(σ, x) when generating skx, if

the challenge ciphertext or its derivatives (i.e., k ∈ Deriv) are queried in OReEnc. Based on the
pseudorandomness game of P, we have |Pr[S0]− Pr[S1]| ≤ negl(λ).

Game2 : In this game, we change the way sf∗ for a target function f∗ is created. Concretely, instead
of computing sf∗ ← P.KeySim(P.pp, f∗), the challenger generates sf∗ ← P.Constrain(σ, f∗). We
show |Pr[S1]− Pr[S2]| = εKeySim, where εKeySim is the advantage of breaking key simulation game
of P and this is negligible. Suppose there exist an adversary A0 such that |Pr[S1] − Pr[S2]| is
non-negligible, we can build an algorithm C that wins the key simulation game of P with an
overwhelming advantage.

1) At the beginning, C receives P.pp. Then, it generates pp and msk as in the previous game.
2) Upon input a bit string x ∈ {0, 1}l for OKeyGen(x), C captures rx by sending x to the evaluation

oracle of the key simulation game. Let r = rx, it answers skx as in the previous game.
3) Receive a challenge tuple (f∗, (µ0, µ1)). C sends f∗ to the challenge oracle of the key simulation

game.
4) Receive skf∗ and set sf∗ = skf∗ . C computes ctf∗ the same as in the previous game and

returns it to A0.
5) Answer the subsequent queries as in Step 2).
6) A0 guesses it is communicating with a Game1 or Game2 challenger. At last, C outputs A0’s

guess as the answer to the key simulation game challenge it is trying to distinguish.

If the challenger chooses b = 1 in the key simulation game, C provides a view of Game1 to
A0. Otherwise, C provides a view of Game2 to A0. In other words, any advantage that A0

distinguishes between these two games translates to an identical advantage in the key simulation
game. Therefore, if |Pr[S1]−Pr[S2]| is non-negligible, then C could break the key simulation game
with a non-negligible advantage.

Remark 3. The re-encryption of challenge ciphertext or its derivatives can be achieved under
certain constraints, specifically f∗(x) = 1 and at least one of g(y) = 0 and y /∈ K holds, where y
is an attribute string. However, a contradiction arises as f∗(x) = 0 is required in the challenge
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oracle, which prohibits the querying of x in OKeyGen. In Game0, the challenger implicitly generates
the corresponding re-encryption key rkx→g under f∗(x) = 1, just unknown to the adversary.
The probability of r 6= r′ is non-negligible in Game0, but the conflict arises as r = r′ in a
significant probability when r′ ← P.ConstrainEval(sf∗ , x) and r ← P.Eval(σ, x), where sf∗ ←
P.Constrain(σ, f∗) (i.e., the change we made in Game2). To address this issue and enable the
re-encryption of challenge ciphertext or its derivatives in Game2, we modify the sources of r as
demonstrated in Game1.

Game3 : In this game, we change the way the matrix A is generated. Recall in the previous game,

the challenger chooses A
$←− Zn×mλq . Now it first samples a matrix R

$←− {1,−1}m′×mλ and sets
A = BR + σ ⊗ G. Since m′ ≥ (n + 1)dlog qe + 2λ and the generalized leftover hash lemma
(see Definition 10), the distribution (B,BR) is statistically indistinguishable to the distribution
(B,U), where U is a random matrix in Zn×mλq . Thus, we have |Pr[S2]− Pr[S3]| ≤ negl(λ).

Game4 : In this game, we change again the way challenge query f∗ is answered and the way of
generating u∗1. Concretely, when A makes a challenge query for (f∗, (µ0, µ1)), the challenger
computes

Af∗ − sf∗ ⊗G = AHσ→f∗ − Uσ→f∗(σ)⊗G

= [A− σ ⊗G]Ĥmsk→sf∗

= BRĤmsk→sf∗ ,

where Ĥmsk→sf∗ ← EvalFX(Uσ→f∗ , σ,A). The way it generates u∗0 and u∗2 remains unaltered.

Recall in the previous game, by sampling s
$←− Znq and e1

$←− χ̃mlf , the challenger computes

u∗1 = sT [Af∗ − sf∗ ⊗G] + eT1 . Now, u∗1 will be substituted as

u∗1 = u∗0RĤmsk→sf∗ + eT1

= (sTB + eT0 )RĤmsk→sf∗ + eT1

= sT [Af∗ − sf∗ ⊗G] + eT0 + RĤmsk→sf∗ + eT1 ,

where e0
$←− χm′ . Note that

B′ = ‖eT0 + RĤmsk→sf ‖∞ ≤ m′mλ‖eT0 ‖∞‖R‖∞‖Ĥmsk→sf∗‖∞ ≤ m
′mλB(2m)dCon ,

in which dCon denotes the depth of Uσ→f∗ . By Definition 6, let χ̃ be B′-swallowing, it holds
that u∗1 generated by two methods are within a negligible statistical distance. Therefore, we have
|Pr[S3]− Pr[S4]| ≤ negl(λ).

Game5 : In this game, we change the way key queries are answered. When A queries on x, the
challenger evaluates r ← P.Eval(σ, x) and Ĥmsk→r ← EvalFX(Uσ→x, σ,A), and computes

[A− σ ⊗G]Ĥmsk→r = AHσ→x − Uσ→x(σ)⊗G

= AHσ→x − r ⊗G

= Ax − r ⊗G.

Then, we have

[Ax − r ⊗G]Ĥr,r = AxHr − Ir(r)⊗G = Ax,r −G

since Ir(r) = 1 and Ĥr,r ← EvalFX(Ir, r,Ax). Therefore, it holds that BRĤmsk→rĤr,r = Ax,r −
G due to A− σ ⊗G = BR. Note that

B‖Ax,r = B‖(BRĤmsk→rĤr,r + G)

and

‖RĤmsk→rĤr,r‖∞ ≤ m2λk‖R‖∞‖Ĥmsk→r‖∞‖Ĥr,r‖∞ ≤ m2λk(2m)d+1.
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Lemma 6 and Lemma 7 show that when

τ = O(‖RĤmsk→rĤr,r‖∞) = O(λ, k, (2m)d+3),

it is efficient to compute

TB‖Ax,r
← RandBasis(B‖Ax,r,ExtendLeft(B,G,TG,RĤmsk→rĤr,r), τ).

Then the challenger runs SamplePre algorithm as in Game4. Besides, the challenger calls KeyGen2

(msk, x) algorithm when A makes a re-encryption query on ((x, g), (f, k)) such that k /∈ Deriv.
Since the responses to key queries and re-encryption queries are statistically close to those in the
previous game, the adversary’s advantage is at most negligibly different from its advantage in
Game4. Therefore, we have |Pr[S4]− Pr[S5]| ≤ negl(λ).

Game6 : In this game, we change the way the matrix B is generated. Concretely, the challenger choos-

es B
$←− Zn×m′q without producing the corresponding trapdoor TB. By Lemma 1, this makes only

2−Ω(n)-statistical distance with uniform distribution. The challenger could answer all key queries
without the trapdoor because of the change we made in Game5, the view of A is altered only
negligibly. Therefore, we have |Pr[S5]− Pr[S6]| ≤ negl(λ).

Game7 : In this game, we change the way the challenge ciphertext is created. The challenger chooses

(u∗0,u
∗
1, u
∗
2) ∈ Z1×(m′+mlf+1)

q at random. Since the challenge ciphertext completely hides b, thus A
has no advantage in this game. We claim that |Pr[S6]−Pr[S7]| is negligible for a PPT adversary
assuming the hardness of DLWE problem. We show this by giving a reduction from DLWE
problem.

Reduction from LWE. Suppose A1 has a non-negligible advantage in distinguish Game6 and
Game7. We use A1 to construct an LWE adversary B as follows:

LWE Instance. B receives an LWE instance as (B‖v,u0‖u′2) ∈ Zn×(m′+1)
q × Z1×(m′+1)

q . The task

of B is to distinguish whether u0‖u′2 = sT (B‖v) + ē for some s ∈ Znq and ē ∈ χm′+1 or u0‖u′2
$←−

Z1×(m′+1)
q .

Phase 1 (Setup): B sets B and v to be LWE terms. Unlike the real scheme, B does not require to
generate the trapdoor TB of the matrix B (i.e., the change we made in Game6). It assembles
public parameters pp as in the previous game: compute (P.pp, P.msk) ← P.Setup(1λ), set σ =

P.msk and A = BR + σ ⊗G, where R
$←− {1,−1}m′×mλ. B gives A1 the public parameters

pp = (B,A,v, P.pp).

The master secret key contains only σ. Then, it initializes a counter numCt := 0, a policy-value
store C := ∅, a key list K := ∅ and a set Deriv := ∅.

Phase 2 (Oracle Query): B answersA1’s key queries, encryption queries, re-encryption key queries
and re-encryption queries as in Game7, except for challenge query.

– OCha(f
∗, (µ0, µ1)): To generate the challenge ciphertext, B first picks a random bit b ∈ {0, 1},

computes sf∗ ,u
∗
1 as in Game7 and outputs ctf∗ = (sf∗ ,u

∗
0 = u0,u

∗
1,u
∗
2 = u′2 + µb bq/2e)).

Then it sets numCt := numCt+ 1 and Deriv := Deriv∪ {numCt}. B adds ctf∗ in C with policy
tuple (f∗, numCt) and gives (numCt, ctf∗) to A1.

Phase 3 (Decision): At the end of the game, A1 guesses if it is interacting with the challenger of
Game6 or Game7. B outputs A1’s guess as the answer to the LWE challenge it is trying to
distinguish.

It can be seen that if (B‖v,u0‖u′2) is a valid LWE instance (i.e., (u0‖u′2) = sT (B‖v) + ē), the

view of the adversary corresponds to Game6. Otherwise (i.e., (u0‖u′2)
$←− Z1×(m′+1)

q ), it corresponds

to Game7. Besides, observe that u∗1 = u0RĤmsk→sf∗ + ēT1 is uniform and independent in Z1×mlf
q

by a standard application of the leftover hash lemma (see Definition 10). We therefore conclude that
supposing the hardness of DLWE problem, we have |Pr[S6]− Pr[S7]| ≤ negl(λ).

Therefore, combing the above conclusions together, the theorem is proven. ut
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5 Adaptively HRA-Secure CAB-PRE from LWE

In this section, we present an adaptively HRA-secure CAB-PRE scheme based on the AB-PRE
construction outlined above, in which the condition supports inner-product predicates.

5.1 Technique Overview

We augment the AB-PRE mentioned above by utilizing a delegation condition constructed from a
cPRF for inner-product predicates [10] to yield a unidirectional, single-hop CAB-PRE scheme. In this
scheme, the decryption procedure remains virtually unchanged between the two levels of ciphertexts,
with only minor restrictions on the noise bound. Notably, the cPRF for inner-product predicates [10]
possesses expressibility between t-CNF and NC1 and shares a similar intuition with the delegation
mechanism we aim to construct. While it is feasible to integrate inner-product predicates and key
switching techniques into the scheme, it may require an expansion of dimensionality in generating
re-encryption keys.

We employ the inner-product predicate Cβ in our CAB-PRE scheme and process the predi-
cate vector using vector decomposition defined in Definition 9. The usage of vector decomposi-
tion helps prevent noise explosions. We insert inner-product vectors in the second-level encryption
and re-encryption key phases to ensure that only ciphertexts satisfying a specific condition can be
re-encrypted by the proxy. Moreover, the second-level encryption algorithm provides a weak for-
m of anonymity, i.e., attribute hiding, by embedding the vector α into the ciphertext component
u3 = sT (D + h ⊗ P2(α)T ) + eT3 . It should note that α remains hidden even with knowledge of the
ciphertext, as s and e3 are confidential, D and h are uniformly random. Then, we use the SamplePre
algorithm to sample a short vector d such that (B‖Ax,r)d = v′, where v′ = (V + D) · BD(β). The
re-encryption key, denoted as

Z =

(
R1H + R2 R1V + R3 − P2(d)⊗ γ

0ldlog qe×(m′+mlg) BD(β)⊗ γ

)
,

is captured, with γ
$←− {0, 1}ldlog qe.

The proof idea of HRA security for CAB-PRE is the same as AB-PRE; ultimately, it is all reducible
to the decisional LWE problem. However, the CAB-PRE scheme adds a ciphertext component u3, so
we need to perform additional analysis. For this challenge ciphertext component in the proof, we use
the lossy model for LWE to show that it is indistinguishable from the uniform distribution.

5.2 Construction

Let Cβ : Zlq → {0, 1} be an inner-product predicate 5 with dimension l, which evaluates Cβ(α) = 1

when given an input α ∈ Zlq such that 〈β,α〉 = 0. We define an adaptively HRA-secure CAB-PRE
for inner-product as follows.

Setup(1λ) : Identical to AB-PRE except that: replace v
$←− Znq with V

$←− Zn×ldlog qe
q and sample

additionally a matrix D
$←− Zn×ldlog qe

q . Output pp = (B,A,V,D, P.pp) and msk = (σ,TB).

KeyGen(msk, x) : Identical to AB-PRE except that: sample K← SamplePre(B‖Ax,r,TB‖Ax,r,V, τ)

such that (B||Ax,r)K = V. Output skx = (r,TB‖Ax,r,K).

Enc1(f, µ): The way to generate sf , u0 and u1 is identical to AB-PRE except that: choose randomly

an error e2
$←− χldlog qe, compute

u2 = sTV + eT2 + µ(0‖gT ),

where the zero vector has dimension (l − 1) dlog qe. Output ct1f = (sf ,u0,u1,u2).

5 We require that the predicate vector β = (β1, ..., βl) ∈ Zl
q satisfies a special requirement, i.e., βl 6= 0, to

better define the noise bound and ensure the decryption correct. Without loss of generality, we assume that
of βl = q − 1 in decryption phase.
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Enc2(f,α, µ): Choose a vector h
$←− Znq and an error e3

$←− χldlog qe. Identical to Enc1 except that
adding a component

u3 = sT (D + h⊗ P2(α)T ) + eT3 .

Output ct2f = (sf ,u0,u1,u2,u3).

Dec(skx, ctf ): Parse skx = (r,TB‖Ax,r,K) and ctf ∈ {ct1f , ct2f}. Evaluate Ĥr,r′ and Ĥsf→r′ identical

to AB-PRE. Then compute

µ =
⌈
u2 − (u0‖u1Ĥsf→r′Ĥr,r′)K

⌋
2
,

in which d·c2 : Zq → {0, 1} indicates its penultimate is closer modulo q to 0 or to a certain upper
bound. It is noteworthy that the decryption algorithm remains constant regardless of the level of
ciphertexts, i.e., first or second. Decrypting the original ciphertext is subject to an upper limit of
2dlog qe−2. However, when decrypting a transformed ciphertext, a coefficient factor linked to the
predicate vector β is involved. In such cases, adjusting the noise bound appropriately ensures the
accurate retrieval of the message µ.

ReKeyGen(skx, g,β): Parse skx = (r,TB‖Ax,r,K). Identical to AB-PRE except that: for a predicate

vector β ∈ Zlq, let v′ = (V + D) · BD(β). Sample d ← SamplePre(B‖Ax,r,TB‖Ax,r,v
′, τ) such

that (B‖Ax,r)d = v′. Select randomly R1 ∈ χ(m′+m)dlog qe×n,R2 ∈ χ(m′+m)dlog qe×(m′+mlg),R3 ∈
χ(m′+m)dlog qe×ldlog qe, and γ ∈ {0, 1}ldlog qe, set

Z =

(
R1H + R2 R1V + R3 − P2(d)⊗ γ

0ldlog qe×(m′+mlg) BD(β)⊗ γ

)
.

Output rkβx→g = (sg, r,β, γ,Z).

ReEnc(rkβx→g, ct
2
f ): Parse rkβx→g = (sg, r,β, γ,Z) and ct2f = (sf ,u0,u1,u2,u3). Identical to AB-PRE

except that: let u′1 = u1Ĥsf→r′Ĥr,r′ and u′2 = u2 + u3, evaluate

ctf→g = (BD(u0‖u′1)‖u′2) · Z.

Output ct1g = (sg,β, γ, ctf→g).

5.3 Correctness and Choice of Parameters

Theorem 4. The CAB-PRE scheme is correct with respect to f and Cβ under proper parameters.

Proof. The correct decryption can be bifurcated into two components: the original ciphertext of either
the first-level or second-level, as they undergo similar decryption operations, and the re-encrypted
ciphertext.

First, for the security parameter λ, given functions f ∈ F and Ir, two strings x ∈ {0, 1}l and
r′ ∈ {0, 1}k such that f(x) = 1 ∧ Ir(r′) = 0, if (pp,msk) ← Setup(1λ), skx ← KeyGen(msk, x),
ct1f ← Enc1(f, µ) and ct2f ← Enc2(f,α, µ), then we have µ ← Dec(skx, ctf ∈ {ct1f , ct2f}) with a
non-negligible probability. The detailed decryption and choice of parameters are similar to AB-PRE:
computing Ax,Af , (Hr, Ĥr,r′) and (Hf→x, Ĥsf→r′), we have

[Af − sf ⊗G]Ĥsf→r′Ĥr,r′ = Ax,r

and
u2 − (u0‖u1Ĥsf→r′Ĥr,r′)K = µ(0‖gT ) + eT2 − (eT0 ‖e′1)K,

where e′1 = eT1 Ĥsf→r′Ĥr,r′ and ‖e′1‖∞ ≤ m2lfkB̃(2m)dConEval+1.
By applying the property of tailcut inequality (see Definition 4) on matrices, we get

‖K‖∞ ≤ τ
√

(m′ +m) · l dlog qe.
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Therefore, if l ∈ O(n), m′, lf , k ∈ O(n, dlog qe), B̃ ∈ O(B,n) and τ ∈ O(λ, k, (2m)d+3), then

‖eT2 − (eT0 ‖e′1)K‖∞ ≤ ‖eT2 ‖∞ + (m′‖eT0 ‖∞ +m‖e′1‖∞)‖K‖∞
≤ l dlog qeB + (m′B +m3lfkB̃(2m)dConEval+1)τ

√
(m′ +m) · l dlog qe

≤ B · poly(n, dlog qe) · (2m)dConEval+d+4.

To capture the correct decryption, the magnitude of penultimate coordinate should be less than
q/8, namely

‖eT2 − (eT0 ‖e′1)k‖∞ ≤ B · poly(ndlog qe) · (2m)dConEval+d+4 < q/8,

which is overwhelming. The decryption of the original ciphertext is correct.

Now it remains to show how to guarantee the correctness of the re-encrypted ciphertext. Given a
re-encryption key, a second-level ciphertext associated with function f can be efficiently re-encrypted
to a first-level ciphertext associated with function g, where the delegation condition is described
as the inner-product predicates between two vectors α and β over Zlq. Specifically, parse the re-

encryption key rkβx→g = (sg, r,β, γ,Z) and the second-level ciphertext ct2f = (sf ,u0,u1,u2,u3), the
re-encryption process in the following way:

If f(x) = 1 ∧ Ir(r′) = 0 holds, where r′ ← Uf→x(sf ), we compute

u′1 = u1Ĥsf→r′Ĥr,r′ = sTAx,r + eT1 Ĥsf→r′Ĥr,r′

and
u′2 = u2 + u3 = sT (V + D + h⊗ P2(α)T ) + ēT + µ(0‖gT ),

where ē = e2 + e3. If l = (lg + 1)n+ λ+ 1 and Cβ(α) = 1, we have

ctf→g = (BD(u0‖u′1)‖u′2) · Z
= (c0‖c1 c2).

Let s̄ = (BD(u0‖u′1)R1)T , then

c0‖c1 = s̄T (B‖[Ag − sg ⊗G]) + BD(u0‖u′1)R2

= s̄T (B‖[Ag − sg ⊗G]) + (ēT0 ‖ēT1 )

and
c2 = s̄TV + ē2 + µ(0‖gT ) · BD(β)⊗ γ,

where ē2 = BD(u0‖u′1)R3−((eT0 ‖e′1)d−ēT ·BD(β))⊗γ and ‖ē2‖∞ ≤ B·poly(n, dlog qe)·(2m)dConEval+d+4.
Let β = (β1, ..., βl) ∈ Zlq, it holds that (0‖gT ) · BD(β) 6= 0 (where βl = q − 1) with a significant

probability. Thus, we get

(0‖gT ) · BD(β)⊗ γ = (

dlog qe−1∑
i=0

βl,i · 2i)⊗ γ,

where βl,i ∈ {0, 1} denotes the binary decomposition of βl. Without loss of generality, let sky =
(r̄,TB‖Ay,r̄, K̄) denote a secret key for an attribute string y that satisfies g(y) = 1 and Ir̄(r̄

′) = 0,

where r̄′ ← Ug→y(sg). Suppose that the penultimate bit of γ is 1, to capture the correct decryption,
we compute

µ =
⌈
c2 − (c0‖c1Ĥsg→r̄′Ĥr̄,r̄′)K̄

⌋
2
,

here d·c2 denotes whether its penultimate is closer modulo q to 0 or to
dlog qe−1∑
i=0

βl,i · 2i.

Based on our parameter setting (that is identical to Section 4.3) and analysis, the norm of error
term is bounded by

‖ēT2 − (ēT0 ‖ē′1)K̄‖∞ ≤ 2B · poly(n, dlog qe) · (2m)dConEval+d+4 <

dlog qe−1∑
i=0

βl,i · 2i+1

in which ē′1 = ēT1 Ĥsg→r̄′Ĥr̄,r̄′ with an overwhelming probability. The decryption of the re-encrypted
ciphertext is correct. ut
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5.4 Security Proof

Now we give the security proof of CAB-PRE scheme, which involves two algorithms KeyGen1 and
KeyGen2 defined in Section 4.4.

Theorem 5. For a class family F and an inner-product predicate Cβ, if P is a conforming cPRF,
then CAB-PRE is a unidirectional, single-hop, adaptively HRA-secure scheme under the hardness of
DLWEn,q,χ problem.

Proof. Let A be a PPT adversary that breaks the adaptive HRA security of CAB-PRE. We show
that the proof proceeds in a sequence of games. In each game, we define Si to be the event that A
wins in Gamei.

Game0 : This is the original security game from Definition 13. Similar to Game0 in Section 4.4, we
modify the answers of re-encryption key queries as follows:
– When A makes a re-encryption key query on (x, g,β), there exist an attribute string y such

that g(y) = 0. The challenger chooses two matrices Z1
$←− χ(m′+m)dlog qe×(m′+mlg) and Z2

$←−
χ(m′+m)dlog qe×ldlog qe, simulates the fifth entries of the re-encryption key as

Z =

(
Z1 Z2

0ldlog qe×(m′+mlg) BD(β)⊗ γ

)
,

where γ
$←− {0, 1}ldlog qe. It returns rkβx→g to A.

– When A makes a re-encryption key query on (x, g,β), there exist an attribute string y such
that g(y) = 1. In addition to the termination conditions described in Definition 13, the chal-

lenger first invokes KeyGen1(msk, x) algorithm (here msk = (σ,TB)) to obtain ŝkx(= d)

without generating the secret key skx. It then computes rkβx→g ← ReKeyGen(ŝkx, g,β) and

gives rkβx→g to A.

By Definition 13 and Definition 14, we have |Pr[S0]− 1/2| ≤ negl(λ).

Remark 4. Recall in the real scheme, the challenger creates

Z =

(
R1H + R2 R1V + R3 − P2(d)⊗ γ

0ldlog qe×(m′+mlg) BD(β)⊗ γ

)
,

where R1,R2,R3 are sampled from discrete Gaussian distributions. Observed that Z is indistin-
guishable with uniform distribution based on the hardness of HNF-LWE problem.

Game1 : Identical to Game1 in Section 4.4.

Game2 : Identical to Game2 in Section 4.4 except that the adversary submits a challenge tuple
(f∗,α∗, (µ0, µ1)) in challenge phase.

Game3 : Identical to Game3 in Section 4.4.

Game4 : Identical to Game4 in Section 4.4, except that: the way the challenger generates u∗3 (if
α∗ 6= Null) is also unaltered, for the challenge query (f∗,α∗, (µ0, µ1)) that the adversary makes.

Game5 : Identical to Game5 in Section 4.4, except that: the challenger calls KeyGen2(msk, x) algo-
rithm when A makes a re-encryption query on ((x, g,β), (f,α, k)) such that k /∈ Deriv.

Game6 : Identical to Game6 in Section 4.4.

Game7 : In this game, we change the way the challenge ciphertext is generated. The challenger

chooses (u∗0,u
∗
1,u
∗
2,u
∗
3) ∈ Z1×(m′+mlf+2ldlog qe)

q (if α∗ 6= Null) at random. Since the challenge
ciphertext completely hides b, thus A has no advantage in this game. We claim that |Pr[S6] −
Pr[S7]| is negligible for a PPT adversary assuming the hardness of DLWE problem. To show that,
we do by giving a reduction from DLWE problem.
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Reduction from LWE. Suppose A2 has a non-negligible advantage in distinguish Game6 and
Game7. We use A2 to construct an LWE adversary B as follows:

LWE Instance. B receives an LWE instance as (B‖V,u0‖u′2) ∈ Zn×(m′+ldlog qe)
q × Z1×(m′+ldlog qe)

q .
The task of B is to distinguish whether u0‖u′2 = sT (B‖V)+ē for some s ∈ Znq and ē ∈ χm′+ldlog qe

or u0‖u′2
$←− Z1×(m′+ldlog qe)

q .
Phase 1 (Setup): B sets B and V to be LWE matrices. It computes (P.pp, P.msk)← P.Setup(1λ),

sets σ = P.msk and A = BR + σ ⊗ G, where R
$←− {1,−1}m′×mλ. B gives A2 the public

parameters
pp = (B,A,V,D, P.pp),

where D
$←− Zn×ldlog qe

q . The master secret key contains only σ. Then, B initializes a counter
numCt := 0, a policy-value store C := ∅, a key list K := ∅ and a set Deriv := ∅.

Phase 2 (Oracle Query): B answersA2’s key queries, encryption queries, re-encryption key queries
and re-encryption queries as in Game7, except that the challenge query.

– OCha(f
∗,α∗, (µ0, µ1)): To generate the challenge ciphertext, B first picks a random bit b ∈

{0, 1}, computes sf∗ ,u
∗
1,u
∗
3 as in Game7 and outputs ctf∗ = (sf∗ ,u

∗
0 = u0,u

∗
1,u
∗
2 = u′2 +

µb(0‖gT ),u∗3) (if α∗ 6= Null). Then it sets numCt := numCt+ 1 and Deriv := Deriv∪{numCt}.
B adds ctf∗ in C with policy tuple (f∗,α∗, numCt) and gives (numCt, ctf∗) to A2.

Phase 3 (Decision): Finally,A2 guesses if it is interacting with the challenger of Game6 or Game7.
B outputs A2’s guess as the answer to the LWE challenge it is trying to distinguish.

It is obvious that if (B‖V,u0‖u′2) is a valid LWE instance (i.e., (u0‖u′2) = sT (B‖V)+ ē), the view

of the adversary corresponds to Game6. Otherwise (i.e., (u0‖u′2)
$←− Z1×(m′+ldlog qe)

q ), it corresponds

to Game7. Besides, observe that u∗1 = u0RĤmsk→sf∗ + ēT1 is uniform and independent in Z1×mlf
q

by a standard application of the leftover hash lemma (see Definition 10). Moreover, for any condition
vector α∗ ∈ Zlq, we have u∗3 = sT (D + h⊗ P2(α∗)T ) + ēT3 which can be regarded as the lossy mode
for LWE (see Definition 8) and is close to uniformly random. We use SampleLossy to describe the
procedure that sample a matrix in the lossy mode. Let n, l be positive integers, and α be a vector
over Zlq.

SampleLossy(n, l,α): It samples D
$←− Zn×ldlog qe

q and h
$←− Znq , outputs A1 = D + h⊗ P2(α)T .

It is easy to see that A1 in the lossy mode is within a negligible statistical distance from uniform

distribution. Choosing A0
$←− Zn×ldlog qe

q and A1 ← SampleLossy(n, l,α), we know that A0 and A1

are computationally indistinguishable, denoted by A0
c
≈ A1. Then for s

$←− Znq , e
$←− χldlog qe and

u
$←− Zldlog qe

q , it holds that

(A0, s
TA0 + eT )

c
≈ (A1, s

TA1 + eT ).

On the other hand, we claim that

(A0, s
TA0 + eT )

c
≈ (A0,u

T )

under the DLWE problem. Finally, we have

(A1, s
TA1 + eT )

c
≈ (A1,u

T ).

In other words, the ciphertext component u∗3 is computationally indistinguishable from the uniform

distribution over Zldlog qe
q . We therefore conclude that supposing the hardness of DLWE problem, we

have |Pr[S6]− Pr[S7]| ≤ negl(λ).
Therefore, combing the above conclusions together, the theorem is proven. ut

6 Conclusion

In this work, we formalize the notion of CAB-PRE and propose the first adaptively HRA-secure
CAB-PRE scheme to enrich the PRE application scenarios.
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We design the first adaptively HRA-secure (ciphertext-policy) AB-PRE scheme as a building block
to construct the CAB-PRE scheme. We highlight that this AB-PRE scheme solves the open problem
left by Susilo et al. [30] in ESORICS’21 about constructing an HRA-secure (ciphertext-policy) AB-
PRE scheme. Then, we introduce a well-matched conditional delegation mechanism for inner-product
predicates based on this AB-PRE scheme to derive our adaptively HRA-secure CAB-PRE scheme.
Meanwhile, we provide security proof of these two schemes to confirm their security.

We note that the key-switching technique will incur dimension expansion of the re-encryption key
in our construction. Therefore, exploring how to control this dimension expansion will be interesting.
In addition, we may require a more robust CAB-PRE scheme in the post-quantum world in some
applications, such as a CCA-secure CAB-PRE scheme over lattices. We leave these two directions as
future work.
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A Attribute-Based Proxy Re-Encryption

Syntax. A unidirectional, single-hop attribute-based proxy re-encryption (AB-PRE) for policies F :
{0, 1}l → {0, 1} consists of the following PPT algorithms:

Setup(1λ)→ (pp,msk). On input the security parameter 1λ, the setup algorithm outputs the public
parameters pp along with a master secret key msk.

KeyGen(msk, x)→ skx. On input a master secret key msk and an attribute string x ∈ {0, 1}l, the
key generation algorithm outputs a secret key skx.

Enc(f, µ)→ ctf . On input a policy f ∈ F and a plaintext µ ∈ {0, 1}, the encryption algorithm
outputs a ciphertext ctf associated with f .
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Dec(skx, ctf )→ µ/⊥. On input a secret key skx and a ciphertext ctf , the decryption algorithm
outputs a bit µ ∈ {0, 1} if f(x) = 1, else outputs the error symbol ⊥.

ReKeyGen(skx, g)→ rkx→g. Given a secret key skx and a policy g ∈ F , this algorithm outputs a
re-encryption key rkx→g.

ReEnc(rkx→g, ctf )→ ctg/⊥. Given a re-encryption key rkx→g and an original ciphertext ctf , this
algorithm outputs a new ciphertext ctg associated with policy g if f(x) = 1, else outputs an error
symbol ⊥.

Correctness. A unidirectional, single-hop AB-PRE is correct if:

– For all x ∈ {0, 1}l and f ∈ F for which f(x) = 1, and all µ ∈ {0, 1}, it holds that

Pr[Dec(skx, ctf ) 6= µ] = negl(λ),

where skx ← KeyGen(msk, x) and ctf ← Enc(f, µ).

– For any g ∈ F and rkx→g ← ReKeyGen(skx, g), it holds that

Pr[Dec(sky, ctg) 6= µ] = negl(λ),

if g(y) = 1 for y ∈ {0, 1}l, where ctg ← ReEnc(rkx→g, ctf ).

Security Game for HRA. The adaptive HRA security game of a unidirectional, single-hop AB-
PRE scheme between an adversary A and a challenger C as below.

Phase 1 (Setup): This is the setup phase. The challenger generates (pp,msk) by running Setup(1λ)
algorithm and gives the public parameters pp to A. Then, the challenger initializes a counter
numCt := 0, a policy-value store C := ∅, a key list K := ∅ and a set Deriv := ∅.

Phase 2 (Oracle Query): This is the oracle query phase.

– OKeyGen(x): For a key query x, the challenger generates skx ← KeyGen(msk, x) and adds
(x, skx) in K. It gives skx to A.

– OEnc(f, µ): For an encryption query (f, µ), the challenger computes ctf ← Enc(f, µ), sets
numCt := numCt+ 1, adds ctf in C with policy tuple (f, numCt), and gives (numCt, ctf ) to A.

– OReKey(x, g): For a re-encryption key query (x, g), we assume that there exists an attribute
string y. If y /∈ K, the challenger records y such that it cannot be queried in OKeyGen. There
exist two cases:
1) g(y) = 0, the challenger generates rkx→g ← ReKeyGen(skx, g).
2) g(y) = 1, return⊥ if for any queried f in the store C such that i) f(x) = 0 and x ∈ K∧y ∈ K

or ii) f(x) = 0 and x /∈ K ∧ y ∈ K, or iii) f(x) = 1 and x /∈ K ∧ y ∈ K. Otherwise, the
challenger produces rkx→g ← ReKeyGen(skx, g).

After that, C gives rkx→g to A.

– OCha(f
∗, (µ0, µ1)): This oracle can only be invoked once. For a challenge query (f∗, (µ0, µ1)),

it requires f∗(x) = 0, where x ∈ K. The challenger flips a bit b ∈ {0, 1}, generates ctf∗ ←
Enc(f∗, µb), sets numCt := numCt + 1 and Deriv := Deriv ∪ {numCt}. It adds ctf∗ in C with
policy tuple (f∗, numCt) and gives (numCt, ctf∗) to A.

– OReEnc((x, g), (f, k)): For a re-encryption query ((x, g), (f, k)), where k ≤ numCt. Suppose
that there exist an attribute string y. If y /∈ K, the challenger records y such that it cannot
be queried in OKeyGen. Then the challenger does the following operations.
1) If there is no value in C with policy tuple (f, k), return ⊥.
2) If f(x) = 0, return ⊥.
3) If g(y) = 1 ∧ y ∈ K ∧ k ∈ Deriv, return ⊥.
4) Otherwise, let ctf be that value in the store C. The challenger produces ctg ← ReEnc(rkx→g,

ctf ) where rkx→g ← ReKeyGen(skx, g), sets numCt := numCt+1, adds ctg in C with policy
tuple (g, numCt). If k ∈ Deriv, set Deriv := Deriv ∪ {numCt}. Finally, it gives (numCt, ctg)
to A.
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Phase 3 (Decision): This is the decision phase. A outputs a bit b′ for b.

A wins the game if b′ = b. We say that the AB-PRE is HRA-secure if for all PPT adversaries A,
the advantage of A winning in the game is negligible.
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