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Abstract. Attribute-based proxy re-encryption (AB-PRE) is one of the essential variants for
proxy re-encryption. It allows a proxy with a re-encryption key to transform a ciphertext asso-
ciated with an access policy and decryptable by a delegator into another ciphertext associated
with a new access policy, thereafter other delegatees can decrypt. However, with AB-PRE, the
proxy is to switch the underlying policies of all ciphertexts indiscriminately. The delegator can-
not decide which ciphertext would be transformed, taking no flexibility in controlling it for real
use.
In this paper, we propose a notion of Conditional AB-PRE (CAB-PRE), supporting completely
fine-grained control for ciphertexts, in both decryption and delegation. In CAB-PRE, the proxy
can convert the underlying policy of a ciphertext only if this ciphertext satisfies a specific
condition set by the delegator in the re-encryption key. We formalize the security of this notion
in the honest re-encryption attacks (HRA) setting, and present a concrete construction secure
under adaptive corruptions in the standard model. As a building block, we design an adaptively
HRA-secure (ciphertext-policy) AB-PRE based on the learning with errors (LWE) problem,
which solves an open problem left by Susilo et al. in ESORICS ’21. Finally, we introduce a
well-matched conditional delegation tailored to inner-product predicates and integrate it into
this AB-PRE to derive our HRA-secure CAB-PRE scheme.

Keywords: Conditional AB-PRE · Honest re-encryption attacks · Learning with errors

1 Introduction

Proxy Re-Encryption (PRE) is a cryptographic primitive that enables the transfer of decryption
rights between parties with the help of a proxy in a secure and privacy-preserving manner [4]. Specif-
ically, a PRE scheme provides a proxy holding a re-encryption key with the ability to transform a
ciphertext encrypted under a delegator ’s key into the one under a delegatee’s key without revealing
any information of the original message to the proxy. It is widely used in scenarios such as encrypted
e-mail forwarding [30], online social networks [18], digital forensics evidence management [31], and
CloudIoT platform [35].

One of the most prominent variants of PRE is Attribute-Based PRE (AB-PRE) [12,21,24,27,36],
which can be derived from PRE and attribute-based encryption (ABE). This variant provides a
more flexible access control than traditional PRE by allowing a proxy to convert the underlying
policy of an ABE ciphertext. That is, a delegator’s ciphertext encrypted under an access policy can
be transformed into a delegatee’s counterpart encrypted under a new access policy. A motivating
scenario for AB-PRE applications is data sharing on the cloud. Suppose that a company’s financial
manager, Alice, is to travel for a while. Her incoming files are stored on the cloud and encrypted under
distinct access policies f1, f2, ..., fs. Alice has decryption rights for these files and wants to delegate
her assistants to process files while she leaves. With an AB-PRE system, Alice can give the cloud
server a re-encryption key involving a new access policy g, thereby enabling her assistants to decrypt
the transformed files. During the transformation process, the cloud server can convert all of Alice’s
ciphertexts under f1, f2, ..., fs to ones associated with the new policy g by re-encryption key without
any other restrictions. In other words, as long as the ABE ciphertexts can be decrypted by Alice, her
assistants with attributes satisfying g can read them. Furthermore, if Alice just wants her assistants
to handle a certain type of files, AB-PRE is obviously unable to fulfill such a requirement. Although
AB-PRE supports secure data sharing, it allows the proxy to indiscriminately convert ciphertexts
between different access policies and lacks fine-grained control in the ciphertext transformation.
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Fig. 1: Illustration of example for CAB-PRE.

1.1 Our Contributions

In this paper, we present a new notion called Conditional AB-PRE (CAB-PRE), with which Alice
has completely fine-grained control over ciphertexts, in both decryption and delegation. Compared
with the conventional AB-PRE schemes, we incorporate a conditional requirement, from the spirit of
Conditional PRE (C-PRE) [20,39], into the ciphertext and re-encryption key. Taking the data sharing
example above once again (see Fig. 1), with CAB-PRE, financial manager Alice’s incoming files ctwf are
not only encrypted under different access policies f ∈ {f1, f2, ..., fs}, but also attach some conditions
w ∈ {w1, w2, ..., ws}. These policies and conditions describe the characteristics of the decryptor and
the file, respectively. For simplicity, we consider keywords as conditions. Assume that Alice’s incoming
files are {ctw1

f1
, ctw2

f2
, ctw3

f3
}, encrypted under policies “f1 = financial ∧ (supervisor ∨ manager)”,

“f2 = financial∧manager”, “f3 = (financial∨product)∧(supervisor∨manager)” and keywords
“w1 = w3 = Urgent”, “w2 = General”. By passing to the cloud server a re-encryption key associated
with a policy “g = (financial ∧ assistant) ∧ (Bob ∨ Carol)” and a keyword “Urgent”, the cloud
server can only convert files ctw1

f1
and ctw3

f3
into ones encrypted under the policy g because these files

contain the keyword “Urgent”. Hence, the financial assistant Bob (or Carol) can read these two files,
while the confidentiality of other files associated with the keyword “General” is kept.

As for the security of CAB-PRE, we formalize it in the HRA security model and propose the
first adaptively secure construction based on the LWE problem [34]. Our approach is first to give
an AB-PRE scheme and then construct a CAB-PRE scheme. It is worth noting that constructing
an HRA-secure (ciphertext-policy) AB-PRE scheme is an open problem left by Susilo et al. [36]. At
a high level, we integrate the idea of key switching into a (ciphertext-policy) ABE to produce a re-
encryption key and sample a short vector to substitute the role of the secret key in the re-encryption
key, thereby capturing such an AB-PRE scheme. We refer to the details in Section 1.2. Based on this
AB-PRE, we obtain a CAB-PRE scheme by introducing an inner-product predicate to describe the
delegation conditions with expressive descriptions and hiding properties. That is, the cloud server is
unaware of any condition contained in the ciphertext during the ciphertext transformation process.

The underlying policy of our CAB-PRE scheme supports t-conjunctive normal form (t-CNF)
predicates [37], and the conditional delegation supports inner-product predicates. These predicates
imply bit-fixing and t-threshold policies, which have enough expressibility for real-world applications.
The main contributions of this paper are summarized as follows.

1. We introduce a new primitive called CAB-PRE, in which an ABE ciphertext can only be trans-
formed if the condition in the ciphertext matches the one in the re-encryption key. Then, we
formalize its HRA security model, which has been demonstrated to be stronger than CPA secu-
rity [9].

2. Designing as a building block, we construct the first adaptively HRA-secure AB-PRE scheme for
t-CNF based on the LWE problem. Different from the known solution shown in Susilo et al. [36]
in ESORICS ’21, our scheme is designed on ciphertext policy and achieves adaptive security.
Notably, it solves an open problem they left and thus is of independent interest.
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Table 1: Correspondences between honest and corrupt users

Relation y ∈ K ∧ g(y) = 0 y ∈ K ∧ g(y) = 1 y /∈ K ∧ g(y) = 0 y /∈ K ∧ g(y) = 1

x ∈ K ∧ f(x) = 0 H → H * H → H * H → H * H → H *

x ∈ K ∧ f(x) = 1 C → H * C → C C → H C → H * C → H *

x /∈ K ∧ f(x) = 0 H → H * H → H * H → H * H → H *

x /∈ K ∧ f(x) = 1 H → H * H → C H → H H → H * H → H *

x ∈ K: an adversary possesses a user’s secret key associated with an attribute x; x /∈ K: the
adversary has no such key; f(x) = 1 (resp., g(y) = 1): a user’s secret key associated with an
attribute x (resp., y) is capable of decrypting an original ciphertext (resp., a transformed ciphertext)
encrypted under an access policy f (resp., g); f(x) = 0 (resp., g(y) = 0): the user’s secret key cannot
decrypt such a ciphertext. H: honest party, a user can be regarded honest, either if an adversary
does not have the corresponding secret key or if this secret key cannot decrypt a ciphertext; C:
corrupt party, a user can be regarded corrupt, if the adversary has the corresponding secret key
and at the same time can decrypt a ciphertext; i → j, where i, j ∈ {H,C}: an adversary initiates
the queries from i to j; ∗: a relation is the same as the gray area to the left.

3. Finally, we introduce a well-matched conditional delegation tailored to inner-product predicates,
in which the predicate vector embedded in the ciphertext is hiding, and integrate it into our
AB-PRE scheme to obtain our final CAB-PRE construction.

1.2 Technical Overview

Below we explain the technical challenges encountered in formalizing CAB-PRE and designing our
construction, and give an overview of the way how to solve them.

HRA Security Model for CAB-PRE. The security notion of HRA is proposed by Cohen [9]
and defined under selective corruptions. The main challenge in defining an HRA security model for
CAB-PRE under adaptive corruptions is how to formalize honest and corrupt users in the system,
and in further, define the oracles that the adversary queries. Below we highlight some key ideas of
our solution.

Formulate Honest and Corrupt Users. In the PRE’s security under selective corruptions, an adversary
identifies a set of users that it wants to corrupt and captures their secret keys. Therefore, honest and
corrupt users have been defined at the beginning of the security game. However, the security model
of CAB-PRE cannot be formalized in selective corruptions, because the user’s secret key is associated
with multiple attributes, and a single attribute cannot uniquely identify a user. To implement the
division of users, we introduce a key list K as an additional state to record a pair of an attribute and
its corresponding secret key (x, skx) that the adversary has queried.

We summarize all possible cases in Table 1 to define the different states of users and their relations.
The gray columns indicate that a condition w in the ciphertext satisfies a matching relation with a
condition w′ in the re-encryption key, i.e., w |= w′, and the white columns indicate that they do not
satisfy, i.e., w ̸|= w′.

Re-encryption Key and Re-encryption Oracles. HRA security provides the adversary with a restricted
re-encryption oracle which only re-encrypts honestly generated ciphertexts. Identical to CPA security,
the adversary has no access to re-encryption key oracle for the users from honest to corrupt. However,
our model enables the adversary to make re-encryption key queries under the case of w ̸|= w′ at will.

For a re-encryption key query, the challenger would check three types of events, as shown in Table
1: (1) The status of the secret key possessed by the adversary for the original ciphertext, which depends
on whether x ∈ K and f(x) = 1; (2) The status of the secret key possessed by the adversary for the
transformed ciphertext, which depends on whether y ∈ K and g(y) = 1; (3) The transformable state
of the original ciphertext, which depends on the matching relation between w and w′. Combined with
the above determinations, we can conclude that if (x /∈ K∧ f(x) = 1)∧ (y ∈ K∧ g(y) = 1)∧ (w |= w′)
is true, the challenger outputs an error symbol ⊥; otherwise, it returns a re-encryption key generated
by a regular way.
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Similarly, we can define a re-encryption oracle. Compared with HRA security model for PRE
introduced in Cohen [9], our new primitive involves access policy and delegation condition; thus, the
re-encryption oracle terminates in two additional cases of w ̸|= w′ and f(x) = 0.

HRA-secure AB-PRE Construction. We present an HRA-secure AB-PRE 3 based on LWE
inspired by a (ciphertext-policy) ABE [37] and key switching technique [6]. Here, we recap this ABE
scheme first. Basically, Tsabary utilizes a conforming cPRF for the predicate class t-CNF (denoted
by F in this paper), and the policy circuits Uσ→x, Uσ→f , and Uf→x. The public parameters of this
scheme consist of two matrices A and B, a vector v, and the cPRF’s public parameters P.pp. The
master secret key comprises a trapdoor of matrix B and the cPRF’s master secret key σ. For any
policy f ∈ F , one obtains an efficient computable matrix Af using lattice evaluation. The ciphertext
(u0∥u1, u2) is a Dual-Regev encryption [14] with respect to a tuple (B∥[Af − sf ⊗G],v), where sf is
generated by the cPRF’s key simulation P.KeySim(P.pp, f), and G is a gadget matrix [28]. Similarly,
one can capture another efficient computable matrix Ax,r using lattice evaluation for each attribute
string x. The secret key is a short vector k sampled from the preimage sampling SamplePre and
satisfies (B∥Ax,r)k = v, where r is computed by the cPRF’s evaluation P.Eval(σ, x). The decryption
algorithm is the same as Dual-Regev decryption, namely computes u2 − (u0∥u′

1)k, in which u′
1 is an

output value of the circuits. The message can be successfully recovered iff f(x) = 1 ∧ r ̸= r′, where
r′ ← Uf→x(sf ).

First Attempt. We adopt the idea of key switching technique in [6] to produce a re-encryption key

Z =

(
R1H+R2 R1v + r3 − P2(k)
01×(m′+mlg) 1

)
, (1)

where (H,v) = (B∥[Ag − sg ⊗G],v) is an encryption tuple related to a policy g ∈ F , and R1,R2, r3
denote error terms. Then, a re-encrypted ciphertext is computed as (BD(u0∥u′

1)∥u2) · Z. The vector
decomposition functions P2(·) and BD(·) are some subroutines of key switching and are used to
prevent noise explosions in our construction.

Notably, the above construction can be proven to satisfy CPA security. However, it fails to provide
HRA security. That is because the secret key k is embedded in re-encryption keys, the challenger is
unable to answer the re-encryption queries from honest user to corrupt user, in the absence of secret
keys.

Second Attempt. To address this issue, we make some changes that for Z. Concretely, we choose a
small value δ from a discrete Gaussian distribution and sample a short vector d by invoking SamplePre
such that (B∥Ax,r)d = v · δ, in which d is not a derivation of k 4. Then, we generate a modified
re-encryption key by replacing the second column (R1v + r3 − P2(k); 1) with (R1v + r3 − P2(d); δ)
in Equation 1.

HRA-secure CAB-PRE Construction. To incorporate a fine-grained condition on AB-PRE
scheme, we find that the introduced condition needs to satisfy two requirements: (1) The condi-
tion embedded in the ciphertext should be compatible with other ciphertexts; (2) The embedding of
the condition cannot affect the correctness of the re-encrypted ciphertext.

To achieve these requirements, we add an additional ciphertext component, namely u3, and design
it as an LWE sample. Inspired by a cPRF for inner-product predicates [10], we embed a predicate
vector into u3, because the condition in the ciphertext is eliminated when the inner product of two
vectors is zero. Given s,D,h are chosen at random, α is a predicate vector, and e3 is an error vector,
u3 is computed as sT (D+h⊗P2(α)T )+eT3 . Accordingly, we modify the structure of the re-encryption
key. Let Cβ be an inner product predicate, we insert β into the re-encryption key

Z =

(
R1H+R2 R1V +R3 − P2(d)⊗ γ

0l⌈log q⌉×(m′+mlg) BD(β)⊗ γ

)
,

3 The syntax and HRA security model of AB-PRE are provided in the Appendix A.
4 Our proposed scheme relies on a crucial requirement that the norm of the vectors k and d should be bounded
by τ

√
m′ +m since they are generated from a Gaussian sampling with parameter τ . If d is a derivative

of k, i.e., d = k · δ, then we can bound its infinity norm as ∥d∥∞ ≤ τ
√
m′ +m · B. This inequality

τ
√
m′ +m < ∥d∥∞ ≤ τ

√
m′ +m ·B holds with a non-negligible probability, where τ ∈ O(λ, n, k, (2m)d+3)

and B = B(n).
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Table 2: Comparisons of properties between related AB-PRE schemes and ours

Schemes Type Policy Security Assumption

Liang et al. [24] CP AND-gate sCPA ADBDH

Liang et al. [22] CP LSSS aCCA GSD, TPDH, q-PBDHE

Ge et al. [12] KP LSSS aCCA SD

Li et al. [21] CP AND-gate sCPA LWE

Luo et al. [27] KP Boolean circuit sCPA LWE

Susilo et al. [36] KP Boolean circuit sHRA LWE

Ours CP t-CNF aHRA LWE

CP: ciphertext policy; KP: key policy; AND-gate: an access structure consisting of “AND” gates;
LSSS: an access structure can be represented by a linear secret-sharing scheme; sCPA and aCCA:
security notions, i.e., selective security under chosen-plaintext attacks and adaptive security
under chosen-ciphertext attacks. HRA security is stronger than CPA and weaker than CCA, and
we refer interested readers to [9] for more details about their differences. ADBDH, GSD, TPDH,
q-PBDHE and SD: classical number-theoretic assumptions, i.e., augment decisional bilinear
Diffie-Hellman, general subgroup decision, three party Diffie–Hellman, q-parallel bilinear Diffie-
Hellman exponent, and subgroup decision.

where (H,V) is a Dual-Regev encryption tuple, d is sampled from a discrete Gaussian distribution

s.t., (B∥Ax,r)d = (V +D) · BD(β), and γ
$←− {0, 1}l⌈log q⌉. We may note that only if ⟨α,β⟩ = 0, the

ciphertexts can be re-encrypted. Since the ciphertext components used for decryption do not change
before or after re-encryption, except that their error boundaries are different, our scheme maintains
only one decryption algorithm.

1.3 Related Work

Many efforts have been made to AB-PRE and C-PRE based on classical number-theoretic and post-
quantum assumptions. Let us recall existing works on them.

AB-PRE. Liang et al. [24] were the first to introduce the primitive of AB-PRE and realize fine-
grained decryptions of the users. They proposed a concrete construction based on a bilinear map
and proved it is CPA secure in the standard model. Following their work, Liang et al. [22] and Ge
et al. [12] strengthen their scheme to be CCA secure, built in the composite order bilinear group. In
addition, many AB-PRE schemes with various functionalities are proposed for practical application
scenarios, such as collusion resistance [32], verifiable [11], and revocable [13] AB-PRE schemes. To
resist the attack of quantum computers, Li et al. [21] presented a (ciphertext-policy) AB-PRE scheme
under the LWE problem, which supports AND-gates on positive and negative attributes. Based on
the ABE scheme introduced by Boneh et al. [5], Luo et al. [27] were the first to propose multi-hop
(key-policy) AB-PRE scheme based on LWE, which is proven to be CPA secure. Subsequently, Susilo
et al. [36] presented an HRA-secure (key-policy) AB-PRE scheme under selective corruptions and left
an open problem to construct an HRA-secure (ciphertext-policy) AB-PRE, which is addressed in our
work.

C-PRE. Weng et al. [39, 40] proposed the notion of C-PRE and empowered users with fine-grained
delegations. They gave a CCA-secure construction using bilinear pairings in the random oracle model.
To extend the expressiveness of the condition, many variants of C-PRE are proposed. Liang et al.
[23] introduced the concept of identity-based C-PRE and presented a CCA-secure scheme in the
standard model. Yang et al. [41] formalized the notion of (ciphertext-policy) attribute-based C-PRE
and proposed a concrete scheme that supports an access tree and satisfies CPA security in the generic
group model. In addition to that, there are conditional proxy broadcast re-encryption [26], universal
C-PRE [17], and threshold-based C-PRE [16]. Aiming at a hierarchical user management system,
Wang et al. [38] presented a lattice-based hierarchical identity-based C-PRE scheme by combining a
hierarchical identity-based encryption and proxy re-encryption. After that, Li et al. [20] constructed
the first lattice-based fuzzy C-PRE scheme that does not require the conditions in ciphertexts and re-
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Table 3: Comparisons of storage costs between related AB-PRE schemes and ours

Param. Li et al. [21] Luo et al. [27] Susilo et al. [36] Ours

PP O(2l · n2 log2 q) O((l + 2) · n2 log2 q) O((l + 3) · n2 log2 q) O((λ+ 1) · n2 log2 q)

MSK O(2l · n2 log3 q) O(n2 log3 q) O(n2 log3 q) O(n2 log3 q)

SK O(l · n log2 q) O(4n2 log3 q) O(2n2 log3 q) O(4n2 log3 q)

CT O(2l · n log2 q) O((l + 2) · n log2 q) O((l + 2) · n log2 q) O((lf + 1) · n log2 q)

RK O(2l · n2 log3 q) O(4n2 log3 q) O((l + 2) · n2 log4 q) O((lg + 1) · n2 log4 q)

CT’ O(2l · n log2 q) O(3n log2 q) O((l + 2) · n log2 q) O((lf + 1) · n log2 q)

n: the dimension of LWE samples; l: the length of attribute vectors; λ: security parameter; lf and lg:
the length of constrained key in conforming cPRF, associated with functions f and g, respectively.

encryption keys to match precisely. Liang et al. [25] proposed two LWE-based (key-policy) attribute-
based C-PRE schemes consisting of single-hop and multi-hop by applying key switching.

To have a better understanding of our scheme, we compare our proposed AB-PRE scheme with
counterparts in terms of properties and storage costs in Table 2 and Table 3, respectively. Table 2
shows that the predicate expressivity supported by our scheme is weaker than Liang et al. [22], Ge et
al. [12], Luo et al. [27] and Susilo et al. [36]. Nevertheless, our construction achieves a higher security
level than Luo et al. [27], and Susilo et al. [36] and has the feature of quantum-resistance compared
with Liang et al. [22] and Ge et al. [12]. Table 3 gives a storage comparison with three LWE-based
AB-PRE schemes (i.e., Li et al. [21], Ge et al. [27] and Susilo et al. [36]), regarding the size of public
parameters (PP), mater secret key (MSK), secret key (SK), original ciphertext (CT), re-encryption
key (RK) and re-encrypted ciphertext (CT’). The results show that our scheme maintains the same
order of magnitude in parameter, key, and ciphertext sizes as these schemes without incurring more
computational overhead.

1.4 Organization

This paper is organized as follows. We provide an overview of cryptography knowledge and lattice
background in Section 2. Then, we define the syntax and security model for CAB-PRE in Section 3.
An adaptively HRA-secure AB-PRE scheme and its security proof are introduced in Section 4. In
Section 5, We give an adaptively HRA-secure CAB-PRE based on the above AB-PRE. Finally, we
conclude this paper with future work in Section 6.

2 Preliminaries

In this section, we introduce some cryptography knowledge and lattice background to help the reader
better capture the following chapters.

2.1 Constrained PRF, Conforming cPRF and t-CNF Predicates

We review two key concepts: constrained pseudorandom function (cPRF) and conforming cPRF,
which are significant components in our constructions. To facilitate comprehension, we first introduce
the concept of cPRF and augment cPRF with the properties of gradual evaluation and key simulation
to obtain conforming cPRF.

Definition 1 (cPRF [10,37]). Let F be a family of functions with domain {0, 1}l and range {0, 1}.
A cPRF for F is defined by a tuple of probabilistic polynomial-time (PPT) algorithms ΠcPRF =
(Setup,Eval,Constrain,ConstrainEval) where:

– Setup(1λ)→ (pp,msk) : The setup algorithm takes as input the security parameter 1λ, outputs a
public parameter pp and a master secret key msk.

– Eval(msk, x) → y : The evaluation is a deterministic algorithm which takes as input the master
secret key msk and a bit-string x ∈ {0, 1}l, outputs y ∈ {0, 1}k.
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– Constrain(msk, f) → skf : The constrained key generation takes as input the master secret key
msk and a function f ∈ F specifying the constraint, outputs a constrained key skf .

– ConstrainEval(skf , x) → y′ : The constrained evaluation is a deterministic algorithm which takes
as input a constrained key skf and a bit-string x ∈ {0, 1}l, outputs y′ ∈ {0, 1}k.

Correctness. We say a cPRF scheme ΠcPRF is correct if for all f ∈ F and x ∈ {0, 1}l such that
f(x) = 1, we have Eval(msk, x) = ConstrainEval(skf , x), where (pp,msk)← Setup(1λ) and skf ←
Constrain(msk, f).

Pseudorandomness. The single-key adaptive security of a cPRF is defined formally by the following
game between an adversary A and a challenger C:
– Setup : At the beginning of the game, the challenger C prepares (pp,msk) ← Setup(1λ) and

sends pp to A.
– Phase 1 : A can adaptively make two types of queries:
• Evaluation Queries: Upon a query x ∈ {0, 1}l, the challenger evaluates y ← Eval(msk, x)
and returns y to A.

• Constrained Key Queries: This oracle can only be queried once. Upon a query f ∈ F , the
challenger computes skf ← Constrain(msk, f) and returns skf to A.

– Challenge : A chooses a target bit-string x∗ ∈ {0, 1}l. The challenger flips a coin b
$← {0, 1}.

If b = 1, it evaluates y∗ ← Eval(msk, x∗). Otherwise, it samples y∗
$← {0, 1}k. Finally, C

returns y∗ to A.
– Phase 2 : A continues to make queries as the same as Phase 1.
– Guess : Eventually, A outputs b′ as a guess for b.

The adversary A wins the game if (1) b′ = b, (2) x∗ cannot be queried in the evaluation oracle
and (3) all of the key queries for f satisfy f(x∗) = 0. The advantage that A wins in the security
game is at most 1/2 + negl(λ).

Definition 2 (Conforming cPRF [37]). We call a cPRF scheme conforming, besides correctness
and pseudorandomness defined above, if the following properties hold.

Gradual Evaluation. Let Constrain (in addition to Eval,ConstrainEval) algorithm be deterministic.
Fixing pp from Setup(1λ), for any f ∈ F and x ∈ {0, 1}l such that f(x) = 1, define the following
circuits:
– Uσ→x : {0, 1}λ → {0, 1}k takes as input msk and computes Eval(msk, x).
– Uσ→f : {0, 1}λ → {0, 1}lf takes as input msk and computes Constrain(msk, f).
– Uf→x : {0, 1}lf → {0, 1}k takes as input skf and computes ConstrainEval(skf , x).

Note that the circuit Uσ→x is the same as the efficient sub-circuit of Uf→x ◦ Uσ→f .

Key Simulation. We require a PPT algorithm KeySim(pp, f) → skf such that any adversary A
has at most 1/2 + negl(λ) advantage of winning the following game against a challenger C.
– Setup : C generates (pp,msk)← Setup(1λ) and sends pp to A.
– Phase 1 : A makes evaluation queries for polynomial times. For a bit-string x ∈ {0, 1}l, C

returns y ← Eval(msk, x).

– Challenge : For a challenge constraint f∗ ∈ F , C samples b
$← {0, 1} and returns skf∗ ←

Constrain(msk, f∗) if b = 0, otherwise it returns skf∗ ← KeySim(pp, f∗).
– Phase 2 : Same as the queries of Phase 1.
– Guess : A outputs a bit b′.
A wins the game if (1) b′ = b and (2) all of the evaluation queries for x satisfy f∗(x) = 0.

In this work, we utilize t-conjunctive normal form (t-CNF) predicates to specify the access policy,
i.e., the constraint f in cPRF, where each clause exhibits constant locality.

Definition 3 (t-CNF Predicates [10,37]). A t-CNF predicate f : {0, 1}l → {0, 1} such that t ≤ l
is a set of clauses f = {(Ti, fi)}i, where for all i, Ti ⊆ [l], |Ti| = t and fi : {0, 1}t → {0, 1}. For all
x ∈ {0, 1}l, a t-CNF predicate f(x) is computed as

f(x) =
∧
i

fi(xTi)

where xTi
∈ {0, 1}t is the bit string consisting of the bits of x in the indices of Ti. At last, a family of

t-CNF predicates F is the set of t-CNF predicates with input length l.
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Tsabary [37] shows that the PRF [15] is a conforming cPRF for prefix policies. Moreover, he gives
a conforming cPRF construction for t-CNF policies, which is inspired by the construction of bit-fixing
cPRF for a constant number of keys [10].

2.2 Lattices, Discrete Gaussian, Bounded Distributions

Notations. Bold symbols are used to represent matrices or vectors, while regular lowercase letters
are used for individual elements. Let (· ∥ ·) (resp., (· ; ·)) denote the horizontal concatenation (resp.,

vertical concatenation) of vectors or matrices. For a distribution on set X, we use x
$←− X to denote a

random sample from X. The symbols ∧ and ∨ denote the “AND” gate and “OR” gate, respectively.
Let |= (resp., ̸|=) denote a matching relation (resp., mismatching relation) between two conditions.

We use
c
≈ to indicate that the two distributions are computationally indistinguishable.

Matrix Norm. For a vector u, let ∥u∥ denote its l2 norm. For a matrix R ∈ Zn×m, let R̃ be the
Gram-Schmidt orthogonalization of R. We define the following matrix norms:

– ∥R∥ denotes the l2 length of the longest column of R.
– ∥R∥∞ denotes the maximum element in R.

Note that ∥R∥∞ ≤ ∥R∥ ≤ nm∥R∥∞ and that ∥RS∥∞ ≤ m∥R∥∞∥S∥∞.

Lattices. In this work, two kinds of integer lattices are used. For a prime q, given A ∈ Zn×m
q and

u ∈ Zn
q , denote:

Λ⊥
q (A) = {v ∈ Zm : Av = 0 (mod q)},

Λu
q (A) = {v ∈ Zm : Av = u (mod q)}.

Observe that if t ∈ Λu
q (A) then Λu

q (A) = Λ⊥
q (A) + t and hence Λu

q (A) is a shift of Λ⊥
q (A).

Gadget Matrix. Let n, q ∈ Z, g = (1, 2, 4, · · · , 2⌈log q⌉−1)T ∈ Z⌈log q⌉
q and m = n⌈log q⌉. The gadget

matrix is defined as G = gT ⊗ In ∈ Zn×m
q , which denotes a tensor product of a vector g and an

identity matrix In such that the lattice Λ⊥
q (G) has a public known basis TG with ∥T̃G∥ ≤

√
5.

Discrete Gaussian [1]. Let L be a subset of Zm. For any vector c ∈ Rm and any positive parameter

σ ∈ R, define: ρσ,c(x) = exp(−π ∥x−c∥2

σ2 ) and ρσ,c(L) =
∑

x∈L ρσ,c(x).A discrete Gaussian distribution

on L with center c and parameter σ is ∀ y ∈ L,DL,σ,c(y) =
ρσ,c(y)
ρσ,c(L) . The distribution DL,σ (c = 0

when omitted) is most often defined over a lattice L = Λ⊥
q (A) for a matrix A ∈ Zn×m

q or over a coset

L = Λ⊥
q (A) + t, where t ∈ Zm.

Tailcut. The “tailcut” property of the discrete Gaussian is a crucial characteristic that enables the
bounding of parameters.

Definition 4 ( [1,29]). Let q ≥ 2, m > n and A be a matrix in Zn×m
q . Let TA be a basis for Λ⊥

q (A)

and τ ≥ ∥T̃A∥ · ω(
√
logm). For all u ∈ Zn

q , we have Pr[x
$←− DΛu

q (A),τ : ∥x∥ > τ
√
m] ⩽ negl(λ).

Bounded Distributions. The following properties can help us set the parameters appropriately.

Definition 5 ( [7,37]). A distribution χ supported over Z is (B, ϵ)-bounded, if we have Pr[x
$← χ :

|x| > B] < ϵ.

Definition 6 ( [7, 37]). A distribution χ̃ supported over Z is (B, ϵ)-swallowing if for all y ∈
[−B,B] ∩ Z, we have that χ̃ and y + χ̃ are within ϵ statistical distance.
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2.3 Lattice Algorithms, Lattice Evaluation and LWE

Lattice Algorithms. In this paper, we will use several lattice algorithms, which are enumerated in
the following lemmas:

Lemma 1 (TrapGen [28]). Let n,m, q > 0 be integers with m ≥ O(n log q). A PPT algorithm
TrapGen(1n,m, q) outputs a matrix A ∈ Zn×m

q and a full-rank matrix TA ∈ Zm×m, where TA is a

basis for Λ⊥
q (A) and ∥T̃A∥ = O(

√
n log q). The distribution of A is 2−Ω(n)-close to uniform.

Lemma 2 (SamplePre [14]). Let q ≥ 2, m > n. A PPT algorithm SamplePre(A,TA,u, τ) that,
given a matrix A ∈ Zn×m

q , a basis TA for Λ⊥
q (A), a vector u ∈ Zn

q and a Gaussian parameter

τ ≥ ∥T̃A∥·ω(
√
logm), outputs a vector e ∈ Zm sampled from a distribution 2−Ω(n)-close to DΛu

q (A),τ .

Lemma 3 (SampleLeft [1]). Let q > 2, m > n,m1 > 0. A PPT algorithm SampleLeft(A,TA,B,u, τ)
that, given matrices A ∈ Zn×m

q ,B ∈ Zn×m1
q , a basis TA for Λ⊥

q (A), a vector u ∈ Zn
q and a Gaus-

sian parameter τ , where τ ≥ ∥T̃A∥ · ω(
√
log(m+m1)), outputs a vector e ∈ Zm+m1 sampled from a

distribution 2−Ω(n)-close to DΛu
q (A∥B),τ .

Lemma 4 (SampleRight [1]). Let q > 2, m > n. A PPT algorithm SampleRight(A,G,R,TG,u,
τ) that, given matrices A ∈ Zn×k

q ,G ∈ Zn×m
q ,R ∈ Zk×m, a basis TG for Λ⊥

q (G), a vector u ∈ Zn
q

and a Gaussian parameter τ ≥ ∥T̃G∥ · sR ·ω(
√
logm) (where sR := ∥R∥), outputs a vector e ∈ Zm+k

sampled from a distribution 2−Ω(n)-close to DΛu
q (A∥AR+G),τ .

Lemma 5 (ExtendRight [5, 8]). Let n,m1,m2, q > 0 be integers with q prime. A PPT algorithm
ExtendRight(A,TA,B) that, given matrices A ∈ Zn×m1

q ,B ∈ Zn×m2
q and a basis TA for Λ⊥

q (A),

outputs a basis T(A∥B) for Λ⊥
q (A∥B) such that ∥T̃A∥ = ∥T̃(A∥B)∥.

Lemma 6 (ExtendLeft [5,8]). Let n,m, q > 0 be integers with q prime. A PPT algorithm ExtendLeft
(A,G,TG,R) that, given matrices A ∈ Zn×k

q ,G ∈ Zn×m
q ,R ∈ Zk×m, a basis TG for Λ⊥

q (G), outputs

a basis TH for Λ⊥
q (H), where H = (A∥AR+G), such that ∥T̃H∥ ≤ ∥T̃G∥(1 + ∥R∥).

Lemma 7 (RandBasis [5, 8]). Let m, q ≥ 2 be integers with q prime. A PPT algorithm RandBasis
(A,TA, τ) that, given a matrix A ∈ Zn×m

q , a basis TA ∈ Zm×m for Λ⊥
q (A) and a Gaussian parameter

τ = ∥T̃A∥ ·ω(
√
logm), outputs a basis T′

A for Λ⊥
q (A) sampled from a distribution that is statistically

close to Dm
Λ⊥

q (A),σ. Note that ∥T̃′
A∥ < τ

√
m with all but negligible probability.

We introduce the abstraction form of lattice evaluation as extracted in [37].

Theorem 1 (Lattice Evaluation [37]). Let n, q, l, k ∈ N and m = n⌈log q⌉, there exist two de-
terministic algorithms called EvalF and EvalFX, respectively. For any depth d boolean circuit f :
{0, 1}l → {0, 1}k, for every x ∈ {0, 1}l and for any matrix A ∈ Zn×ml

q , the outputs H← EvalF(f,A)

and Ĥ← EvalFX(f, x,A) are both in Zml×mk and it holds that ∥H∥∞, ∥Ĥ∥∞ ⩽ (2m)d and

[A− x⊗G]Ĥ = AH− f(x)⊗G (mod q).

Moreover, for any pair of circuits f : {0, 1}l → {0, 1}k, g: {0, 1}k → {0, 1}t and for any matrix
A ∈ Zn×ml

q , the outputs Hf ← EvalF(f,A), Hg ← EvalF(g,AHf ) and Hg◦f ← EvalF(g ◦f,A) satisfy
HfHg = Hg◦f .

Learning With Errors. For the learning with errors (LWE) problem [34], we will use its decisional
version, Hermite normal form (HNF) and lossy mode, in this work.

Definition 7 (Decisional LWE (DLWE) and Its HNF [2,34]). Let λ be the security parameter,
n = n(λ) and q = q(λ) be integers and let χ = χ(λ) be a probability distribution over Z. The

DLWEn,q,χ problem states that for all m = poly(n), A
$←− Zn×m

q , s
$←− Zn

q , e
$←− χm, and u

$←− Zm
q , it

holds that (A,AT s+ e) and (A,u) are computationally indistinguishable. The form of HNF-LWE is

identical to the above except for s
$←− χn.
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Corollary 1 ( [33, 34, 37]). For all ϵ > 0, there exist functions q = q(n) ≤ 2n, χ = χ(n) such that
χ is B-bounded for some B = B(n), q/B ≤ 2n

ϵ

and such that DLWEn,q,χ is at least as hard as the
classical hardness of GapSVPγ and the quantum hardness of SIVPγ for γ = 2Ω(nϵ).

Definition 8 (Lossy Mode for LWE [19]). The LWE instance (A,AT s + e) ∈ Zn×m
q × Zm

q

uniquely determines a secret vector s ∈ Zn
q , provided the matrix A is drawn uniformly from Zn×m

q with
sufficiently large m. However, suppose sample A from a specialized distribution that is computationally
indistinguishable from the uniform distribution over Zn×m

q . In that case, the information leakage

regarding the secret s by the pair (A,AT s + e) is negligible. Consequently, this variant of the LWE
problem, which does not reveal significant information about the secret vector, is commonly referred
to as the “lossy mode”.

2.4 Vector Decomposition and Generalized Leftover Hash Lemma

Key Switching. We describe some subroutines of the key switching procedure proposed in [6] to
control error growth in our scheme.

Definition 9 (Vector Decomposition [6]). There are two deterministic functions defined as below:

– BD(v) : Given a vector v ∈ Zn
q , let vTi ∈ {0, 1}n 5 be such that v =

∑⌈log q⌉−1
i=0 2ivi, outputs a

vector ṽT ∈ {0, 1}n⌈log q⌉, where ṽ = (v0; · · · ; v⌈log q⌉−1). If there is a row vector v ∈ Z1×n
q , we

compute BD(v) as : let vT ∈ Zn
q , evaluate BD(vT ), then we have BD(v) = (BD(vT ))T .

– P2(x) : Given a vector x ∈ Zn
q , outputs a vector x̄ ∈ Zn⌈log q⌉

q , where x̄ = (x; 2x; · · · ; 2⌈log q⌉−1x).
– For vectors v ∈ Z1×n

q and x ∈ Zn
q , it holds that BD(v) · P2(x) = v · x mod q.

Randomness Extraction. We introduce a generalization version of the leftover hash lemma from [1].

Definition 10 (Generalized Leftover Hash Lemma [1]). Suppose that m > (n + 1) log q +

ω(log n) and that q > 2 is prime. Let S
$←− {1,−1}m×k, where k = k(n). Choose matrices A

$←− Zn×m
q

and B
$←− Zn×k

q . Then, for all vectors e ∈ Zm
q , the distribution (A,AS,STe) is statistically close to

the distribution (A,B,STe).

Obviously, the two distributions (A,AS) and (A,B) are still statistically close in the case of
without revealing some small amount of information of S (i.e., STe).

3 Definition of Conditional Attribute-Based Proxy Re-encryption

In this paper, we restrict our attention to unidirectional, single-hop PRE 6. We subsequently formally
define the syntax of unidirectional, single-hop CAB-PRE for ciphertext policy and its HRA security
model under adaptive corruptions.

3.1 Conditional Attribute-Based Proxy Re-encryption

In this section, we propose a new primitive called CAB-PRE by extending the notion of AB-PRE
to one with fine-grained delegations. The single-hop PRE scheme usually implies that the ciphertext
structure is different before and after transformation, and it can be achieved by furnishing two levels
of encryption algorithms. In our syntax of CAB-PRE, the first-level ciphertext is generated by an
access policy and a message, and it cannot be re-encrypted anymore. The second-level ciphertext
contains some specified conditions and can be re-encrypted to the first-level ciphertext only if a re-
encryption key corresponds to the same conditions. Accordingly, we define two decryption algorithms
for distinct ciphertexts.

5 By default, a bit string is considered as a row vector.
6 Constructing bidirectional PRE schemes (e.g., from Alice to Bob and vice versa) is straightforward, based
on ones (e.g., only from Alice to Bob). Single-hop PRE means that the delegatee Bob cannot delegate the
decryption rights to others.
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Definition 11 (CAB-PRE for Ciphertext Policy). Let F : {0, 1}l → {0, 1} be a function class.
A CAB-PRE scheme for policies in F is a tuple of PPT algorithms ΠCAB−PRE = (Setup,KeyGen,Enc1,
Enc2,Dec1,Dec2,ReKeyGen,ReEnc).

Setup(1λ)→ (pp,msk). On input a security parameter 1λ, the setup algorithm outputs the public
parameters pp along with a master secret key msk.

KeyGen(msk, x)→ skx. On input a master secret key msk and an attribute string x ∈ {0, 1}l, the
key generation algorithm outputs a secret key skx.

Enc1(f, µ)→ ct1f . On input a policy f ∈ F and a message µ ∈ {0, 1}, the first-level encryption

algorithm outputs a first-level ciphertext ct1f associated with the policy f , which cannot be re-
encrypted anymore.

Enc2(f, w, µ)→ ct2f . On input a policy f ∈ F , a condition w and a message µ ∈ {0, 1}, the second-

level encryption algorithm outputs a second-level ciphertext ct2f associated with the policy f and
condition w, which can be further re-encryptd to a first-level ciphertext.

Dec1(skx, ct
1
f )→ µ/⊥. On input a secret key skx and a first-level ciphertext ct1f , the first-level de-

cryption algorithm outputs a bit µ ∈ {0, 1} if f(x) = 1 7, else outputs an error symbol ⊥.
Dec2(skx, ct

2
f )→ µ/⊥. On input a secret key skx and a second-level ciphertext ct2f , the second-level

decryption algorithm outputs a bit µ ∈ {0, 1} if f(x) = 1, else outputs an error symbol ⊥.
ReKeyGen(skx, g, w

′)→ rkw
′

x→g. Given a secret key skx, a policy g ∈ F , and a condition w′, this

algorithm outputs a re-encryption key rkw
′

x→g.

ReEnc(rkw
′

x→g, ct
2
f )→ ct1g/⊥. Given a re-encryption key rkw

′

x→g and a second-level ciphertext ct2f , this

algorithm outputs a first-level ciphertext ct1g associated with the policy g if f(x) = 1 and w |= w′,
else outputs an error symbol ⊥.

Definition 12 (CAB-PRE: Correctness). A CAB-PRE scheme is correct if:

– For all x ∈ {0, 1}l and f ∈ F for which f(x) = 1, and for any condition w and all µ ∈ {0, 1}, it
holds that

Pr[Dec1(skx, ct
1
f ) ̸= µ] = negl(λ),Pr[Dec2(skx, ct

2
f ) ̸= µ] = negl(λ),

where skx ← KeyGen(msk, x), ct1f ← Enc1(f, µ) and ct2f ← Enc2(f, w, µ).

– For all g ∈ F , and any condition w′ and rkw
′

x→g ← ReKeyGen(skx, g, w
′), it holds that

Pr[Dec1(sky, ct
1
g) ̸= µ] = negl(λ),

if g(y) = 1 and w |= w′ for y ∈ {0, 1}l, where ct1g ← ReEnc(rkw
′

x→g, ct
2
f ).

3.2 Security Model

Now we formally give the HRA security model under the adaptive corruptions for our CAB-PRE as
follows.

Definition 13 (CAB-PRE: Security Game for HRA). The adaptive HRA security game of a
unidirectional, single-hop CAB-PRE scheme between an adversary A and a challenger C. The game
consists of three phases as below.

Phase 1 (Setup): This is the setup phase. The challenger generates (pp,msk) by running Setup(1λ)
algorithm and gives the public parameters pp to A. Then, the challenger initializes a counter
numCt := 0, a policy-value store C := ∅, a key list K := ∅ and a set Deriv := ∅.

Phase 2 (Oracle Query): This is the oracle query phase.
– OKeyGen(x) : For a key query x, the challenger generates skx ← KeyGen(msk, x) and adds

(x, skx) in K. It gives skx to A.
– OEnc2(f, w, µ) : For a second-level encryption query (f, w, µ), the challenger computes ct2f ←

Enc2(f, w, µ), sets numCt := numCt + 1, adds ct2f in C with policy tuple (f, w, numCt), and

gives (numCt, ct2f ) to A.
7 In this paper, f(x) = 1 implies that an attribute x is accepted by an access policy f , while f(x) = 0
indicates that it is not accepted.



12 L. Yao et al.

– OReKey(x, g, w
′) : For a re-encryption key query (x, g, w′), if exist y ∈ K and (f, w, ·) ∈ C s.t.,

(x /∈ K ∧ f(x) = 1) ∧ (y ∈ K ∧ g(y) = 1) ∧ (w |= w′) holds, then the challenger returns ⊥;
otherwise, it generates rkw

′

x→g ← ReKeyGen(skx, g, w
′) and gives it to A.

– OCha(f
∗, w∗, (µ0, µ1)) : This oracle can only be invoked once. For a challenge query (f∗, w∗, (µ0,

µ1)), it requires f∗(x) = 0, where x ∈ K. The challenger flips a bit b ∈ {0, 1}, generates
ct2f∗ ← Enc2(f

∗, w∗, µb), sets numCt := numCt+1 and Deriv := Deriv∪{numCt}. It adds ct2f∗

in C with policy tuple (f∗, w∗, numCt) and gives (numCt, ct2f∗) to A.
– OReEnc((x, g, w

′), (f, w, k)) : For a re-encryption query ((x, g, w′), (f, w, k)), where k ≤ numCt.
The challenger does the following operations.
1) If w ̸|= w′, return ⊥.
2) If there is no value in C with policy tuple (f, w, k), return ⊥.
3) If f(x) = 0, return ⊥.
4) If exists y ∈ K s.t., (y ∈ K ∧ g(y) = 1) ∧ (k ∈ Deriv) holds, return ⊥.
5) Otherwise, let ct2f be that value in the store C. The challenger produces ct1g ← ReEnc(rkw

′

x→g,

ct2f ), where rkw
′

x→g ← ReKeyGen(skx, g, w
′), sets numCt := numCt+ 1, adds ct1g in C with

policy tuple (g,Null, numCt). If k ∈ Deriv, set Deriv := Deriv ∪ {numCt}. Finally, it gives
(numCt, ct1g) to A.

Phase 3 (Decision): This is the decision phase. A outputs a bit b′ for b.

The advantage of A winning the adaptive HRA security game is defined as

AdvHRAA,ΠCAB−PRE
= |Pr[b′ = b]− 1/2|.

Definition 14 (CAB-PRE: Adaptive HRA Security). Given a security parameter 1λ, we say
the scheme ΠCAB−PRE for ciphertext policy is unidirectional, single-hop adaptively HRA-secure if for
all PPT adversaries A, there is a negligible function negl(λ) s.t.,

AdvHRAA,ΠCAB−PRE
≤ negl(λ).

4 Adaptively HRA-Secure AB-PRE from LWE

In this section, we present a construction of AB-PRE scheme for the family of t-CNF predicates as a
building block, by integrating a (ciphertext-policy) ABE scheme [37] with key switching technique [6].
Then based on the LWE problem, we prove the HRA security under adaptive corruptions for our AB-
PRE scheme. Notably, this scheme resolves the open problem introduced by Susilo et al. [36] in
ESORICS ’21 about constructing an HRA-secure (ciphertext-policy) AB-PRE scheme. Appendix A
provides AB-PRE’s syntax and HRA security definition for clarity and completeness.

4.1 Construction

Let P = (P.Setup,P.Eval,P.Constrain,P.ConstrainEval) be a conforming cPRF for a class family F of
t-CNF predicates with input length l and output length k. Assume that the length of P’s master secret
key is λ. For all f ∈ F , let lf denote the size of constrained key which can be computed efficiently
given the function f and P.Constrain algorithm. Note that Uσ→x, Uσ→f and Uf→x are circuits defined
as Definition 2. Define an adaptively HRA-secure (ciphertext-policy) AB-PRE as follows.

Setup(1λ) : Run (P.pp, P.msk)← P.Setup(1λ), set σ = P.msk. n, q,m,m′, τ, χ, χ̃ are parameters. In-

voke (B,TB)← TrapGen(1n,m′, q). Sample a matrix A
$←− Zn×mλ

q and a vector v
$←− Zn

q . Output
pp = (B,A,v, P.pp) and msk = (σ,TB).

KeyGen(msk, x) : Compute Hσ→x ← EvalF(Uσ→x,A), let Ax = AHσ→x. Evaluate r ← P.Eval(σ, x)
and Hr ← EvalF(Ir,Ax), where Ir : {0, 1}k → {0, 1} is a function that on input r′ returns 0 iff
r ̸= r′. Set Ax,r = AxHr. Capture TB∥Ax,r

← RandBasis(B∥Ax,r,ExtendRight(B,TB, Ax,r), τ)

and sample a short k ← SamplePre(B∥Ax,r,TB∥Ax,r
,v, τ) such that (B||Ax,r)k = v. Output

skx = (r,TB∥Ax,r
,k).
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Enc(f, µ): Compute sf ← P.KeySim(P.pp, f). Choose randomly s
$←− Zn

q , e0
$←− χm′

, e1
$←− χ̃mlf ,

e2
$←− χ, set u0 = sTB + eT0 ,u1 = sT [Af − sf ⊗ G] + eT1 , u2 = sTv + e2 + µ ⌊q/2⌉ , where

Af = AHσ→f and Hσ→f ← EvalF(Uσ→f ,A). Output ctf = (sf ,u0,u1, u2).

Dec(skx, ctf ): Parse skx = (r,TB∥Ax,r
,k) and ctf = (sf ,u0,u1, u2). Compute r′ ← Uf→x(sf ),

then abort if r = r′. Otherwise, capture Ax and Af the same as KeyGen and Enc, respec-

tively. Evaluate Ĥr,r′ ← EvalFX(Ir, r
′,Ax), Ĥsf→r′ ← EvalFX(Uf→x, sf ,Af ). Lastly, compute

u = u2 − (u0∥u1Ĥsf→r′Ĥr,r′)k. Output 1 iff |u| > q/4, otherwise output 0. It is worth noting
that the decryption of the transformed ciphertext involves a coefficient factor δ, and the correct
recovery of the message µ is contingent upon the appropriate tailoring of the error bound.

ReKeyGen(skx, g): Parse skx = (r,TB∥Ax,r
,k). Select a function g ∈ F that conforms to gradual

evaluation (as specified in Definition 2) and where the size of the constrained key is lg. Sam-
ple sg ← P.KeySim(P.pp, g). Let H = B∥[Ag − sg ⊗ G], where Ag = AHσ→g and Hσ→g ←

EvalF(Uσ→g,A). Compute Ax,r the same as KeyGen. Set v′ = v · δ, where δ
$←− χ, sample a short

d by running SamplePre(B∥Ax,r,TB∥Ax,r
,v′, τ) algorithm such that (B∥Ax,r)d = v′. Select

randomly R1 ∈ χ(m′+m)⌈log q⌉×n,R2 ∈ χ(m′+m)⌈log q⌉×(m′+mlg) and r3 ∈ χ(m′+m)⌈log q⌉, compute

Z =

(
R1H+R2 R1v + r3 − P2(d)
01×(m′+mlg) δ

)
.

Output rkx→g = (sg, r, δ,Z).

ReEnc(rkx→g, ctf ): Parse rkx→g = (sg, r, δ,Z) and ctf = (sf ,u0,u1, u2). Compute r′ ← Uf→x(sf ),

then abort if r = r′. Otherwise, capture Ax, Af , Ĥr,r′ and Ĥsf→r′ the same as KeyGen,Enc

and Dec. Finally, let u′
1 = u1Ĥsf→r′Ĥr,r′ , evaluate ctf→g = (BD(u0∥u′

1)∥u2) · Z. Output ctg =
(sg, δ, ctf→g).

4.2 Correctness and Choice of Parameters

Theorem 2. The AB-PRE scheme is correct with respect to f ∈ F under proper parameters as
below.

Proof. First, we direct our focus towards the correctness of the original ciphertext. For the security
parameter λ, consider functions f ∈ F and Ir, two strings x ∈ {0, 1}l and r′ ∈ {0, 1}k such that
f(x) = 1 ∧ Ir(r

′) = 0, if (pp,msk) ← Setup(1λ), skx ← KeyGen(msk, x) and ctf ← Enc(f, µ), then
we have µ← Dec(skx, ctf ). As demonstrated by [37], the probability of r = r′ is almost negligible, as
evidenced by a reduction to the pseudorandomness game of the conforming cPRF P. Specifically, we
have r ← P.Eval(P.msk, x) and r′ ← Uf→x(sf ) (i.e., r

′ is computed as P.ConstrainEval(sf , x), where
sf ← P.KeySim(P.pp, f)). Given the function Ir, the existence of Ir(r

′) = 0 can be established with
overwhelming advantage.

When f(x) = 1, the property of gradual evaluation of P (see Definition 2) shows that the ef-
fective sub-circuit of Uf→x ◦ Uσ→f is equivalent to the circuit Uσ→x. By Theorem 1, it follows
that Hσ→x = Hσ→fHf→x. Hence we have Ax = AHσ→x = AHσ→fHf→x = AfHf→x, where
Hf→x ← EvalF(Uf→x,A) and Hσ→f ← EvalF(Uσ→f ,A).

Based on Theorem 1, we capture (Hr, Ĥr,r′) and (Hf→x, Ĥsf→r′). Precisely,

Hr ← EvalF(Ir,Ax),

Ĥr,r′ ← EvalFX(Ir, r
′,Ax),

Ĥsf→r′ ← EvalFX(Uf→x, sf ,Af ).

Then, we compute

[Af − sf ⊗G]Ĥsf→r′Ĥr,r′ = [AfHf→x − Uf→x(sf )⊗G]Ĥr,r′

= [Ax − r′ ⊗G]Ĥr,r′

= AxHr − Ir(r
′)⊗G

= Ax,r.
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Thus,

u2 − (u0∥u1Ĥsf→r′Ĥr,r′)k = u2 − (u0∥sTAx,r + eT1 Ĥsf→r′Ĥr,r′)k

= u2 − sT (B∥Ax,r)k− (eT0 ∥eT1 Ĥsf→r′Ĥr,r′)k

= µ ⌊q/2⌉+ e2 − (eT0 ∥e′1)k,

where e′1 = eT1 Ĥsf→r′Ĥr,r′ .
The depths of Uσ→f and Uf→x are denoted by dCon and dConEval, respectively. These depths are

limited by the depth d = poly(λ) of Uσ→x, as P serves as the gradual depth of Uσ→f and Uf→x. Note
that

∥e′1∥∞ ≤ m2lfk∥eT1 ∥∞∥Ĥsf→r′∥∞∥Ĥr,r′∥∞
≤ m2lfkB̃(2m)dConEval+1

and

∥k∥∞ ≤ τ
√
m′ +m,

due to e1 ∈ χ̃mlf , Ĥsf→r′ ∈ Zmlf×mk, Ĥr,r′ ∈ Zmk×m and the tailcut inequality (see Definition 4) of
the discrete Gaussian.

Therefore, if m′, lf , k ∈ O(n, ⌈log q⌉), B̃ ∈ O(B,n) and τ ∈ O(λ, k, (2m)d+3), then

|e2 − (eT0 ∥e′1)k| ≤ |e2|+ (m′∥eT0 ∥∞ +m∥e′1∥∞)∥k∥∞
≤ B + (m′B +m3lfkB̃(2m)dConEval+1)τ

√
m′ +m

≤ B · poly(n, ⌈log q⌉) · (2m)dConEval+d+4.

To capture correct decryption, the magnitude should be less than q/4, i.e., |e2− (eT0 ∥e′1)k| < q/4.
Choosing the parameters

– q, χ,B as Corollary 1 and note that q ≤ 2n and q/B ≥ 2n
ϵ

.

– n ≥ λ such that (2n2)(2d+4) ≤ 2n
ϵ

, where ϵ ∈ (0, 1) and n ≤ dO(1/ϵ).

– m′ = (n+ 1)⌈log q⌉+ 2λ, B′ = m′mλB(2m)dCon , E′ ≤ 2n
ϵ

.

Let

E = B · poly(n, ⌈log q⌉) · (2m)dConEval+d+4

and

E′ = 4E/B = 4 · poly(n, ⌈log q⌉) · (2m)dConEval+d+4.

Since E′ < q/B, then E = BE′/4 < q/4. Therefore,

|e2 − (eT0 ∥e′1)k| ≤ B · poly(n, ⌈log q⌉) · (2m)dConEval+d+4 < q/4

is overwhelming, and the decryption of the original ciphertext is correct.
Subsequently, we show the correctness of the re-encrypted ciphertext. Given an original ciphertext

associated with a function f , it can be efficiently re-encrypted to another ciphertext associated with
a function g using a re-encryption key. Specifically, parse the original ciphertext ctf = (sf ,u0,u1, u2)
and the re-encryption key rkx→g = (sg, r, σ,Z), the re-encryption process in the following way:

If f(x) = 1 ∧ Ir(r
′) = 0 holds, where r′ ← Uf→x(sf ), we compute

u′
1 = u1Ĥsf→r′Ĥr,r′ = sTAx,r + eT1 Ĥsf→r′Ĥr,r′ ,

then

ctf→g = (BD(u0∥u′
1)∥u2) · Z

= (c0∥c1 c2).
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Let s̄ = (BD(u0∥u′
1)R1)

T , we have

c0∥c1 = s̄T (B∥[Ag − sg ⊗G]) + BD(u0∥u′
1)R2

= s̄T (B∥[Ag − sg ⊗G]) + (ēT0 ∥ēT1 )

and
c2 = s̄Tv + ē2 + µ ⌊q/2⌉ · δ,

where ē2 = BD(u0∥u′
1)r3 − (eT0 ∥e′1)d+ e2 · δ and |ē2| ≤ B · poly(n, ⌈log q⌉) · (2m)dConEval+d+4.

Without loss of generality, let sky = (r̄,TB∥Ay,r̄
, k̄) denote a secret key for an attribute string

y that satisfies g(y) = 1 and Ir̄(r̄
′) = 0, where r̄′ ← Ug→y(sg). To capture correct decryption, we

compute
u = c2 − (c0∥c1Ĥsg→r̄′Ĥr̄,r̄′)k̄ = µ ⌊q/2⌉ · δ + ē2 − (ēT0 ∥ē′1)k̄.

Based on our parameter settings and analysis, the norm of error term is bounded by

|ēT2 − (ēT0 ∥ē′1)k̄| ≤ 2B · poly(n⌈log q⌉) · (2m)dConEval+d+4 < q/4 · δ

in which ē′1 = ēT1 Ĥsg→r̄′Ĥr̄,r̄′ with an overwhelming probability, and the decryption of the re-
encrypted ciphertext is correct. ⊓⊔

4.3 Security Proof

For now, we will construct two efficient randomized algorithms KeyGen1 and KeyGen2 that are the
heart of the HRA security proof.

– KeyGen1(msk, x)→ ŝkx : Taking as input msk = (σ,TB) and x ∈ {0, 1}l, the algorithm computes

Ax,r the same as KeyGen, and captures ŝkx by calling SampleLeft(B,TB,Ax,r,v
′, τ), for some

terms B and v′.
– KeyGen2(msk, x)→ ŝkx : Taking as input msk = σ (without TB) and x ∈ {0, 1}l, the algorithm

computes Ax,r the same as KeyGen, and captures ŝkx by calling SampleRight(B,G,R,TG,v′, τ)
if Ax,r = BR+G, for some terms R and v′.

Remark 1. Note that by Lemma 3 and Lemma 4, the outputs of SampleLeft and SampleRight are
distributed statistically close to DΛv′

q (B∥Ax,r),τ
. Thus, sampling ŝkx from KeyGen1 or KeyGen2 are

statistically indistinguishable. In fact, ŝkx can be regarded a substitute for real secret key and is used
to generate a re-encryption key. However, it cannot used to decryption.

Theorem 3. For a class of functions F , if P is a conforming cPRF, then AB-PRE is a unidirectional,
single-hop, adaptively HRA-secure scheme under the hardness of DLWEn,q,χ problem.

Proof. The adaptive HRA security model of AB-PRE is given in Appendix A. Let A be a PPT
adversary that breaks the adaptive HRA security of AB-PRE. We show that the proof proceeds in a
sequence of games. In each game, we define Si to be the event that A wins in Gamei.

Game0 : This is the original security game.
Game1 : In this game, we change the way the matrix Z is created, except in the case of (x ∈ K∧f(x) =

1)∧(y ∈ K∧g(y) = 1). The challenger chooses Z1
$←− χ(m′+m)⌈log q⌉×(m′+mlg), z2

$←− χ(m′+m)⌈log q⌉

and δ
$←− χ, generates a component of re-encryption key as

Z =

(
Z1 z2

01×(m′+mlg) δ

)
.

Recall this component in the real scheme is

Z =

(
R1H+R2 R1v + r3 − P2(d)
01×(m′+mlg) δ

)
,

where R1,R2, r3 are sampled from discrete Gaussian distributions. Observe that Z is indistin-
guishable with uniform distribution (i.e., satisfying key privacy [3]) based on the hardness of
HNF-LWE problem (see Definition 7, more proof details please refer to [25]). Therefore, we have
|Pr[S0]− Pr[S1]| ≤ negl(λ).
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Game2 : In this game, we change the way the matrix Z is generated, in the case of (x ∈ K∧f(x) = 1)∧
(y ∈ K∧g(y) = 1). When A makes a query on (x, g), the challenger invokes KeyGen1(msk, x) algo-

rithm (here msk = (σ,TB)) to obtain ŝkx(= d), and then computes rkx→g ← ReKeyGen(ŝkx, g).
Recall in the previous game, d is sampled by ExtendRight,RandBasis and SamplePre algorithms.
According to Lemma 2,Lemma 5 and Lemma 7, the distribution of d is 2−Ω(n)-closeDΛv′

q (B∥Ax,r),τ
.

Therefore, we have |Pr[S1]− Pr[S2]| ≤ negl(λ).
Game3 : In this game, we change the way sf∗ for a target function f∗ is created. Concretely, instead

of computing sf∗ ← P.KeySim(P.pp, f∗), the challenger generates sf∗ ← P.Constrain(σ, f∗). We
show |Pr[S1]− Pr[S2]| = ϵKeySim, where ϵKeySim is the advantage of breaking key simulation game
of P and this is negligible. Suppose there exists an adversary A0 such that |Pr[S2] − Pr[S3]| is
non-negligible, we can build an algorithm C that wins the key simulation game of P with an
overwhelming advantage.

1) At the beginning, C receives P.pp. Then, it generates pp and msk as in the previous game.
2) Upon input a bit string x ∈ {0, 1}l for OKeyGen(x), C captures rx by sending x to the evaluation

oracle of the key simulation game. Let r = rx, it answers skx as in the previous game.
3) Receive a challenge tuple (f∗, (µ0, µ1)). C sends f∗ to the challenge oracle of the key simulation

game.
4) Receive skf∗ and set sf∗ = skf∗ . C computes ctf∗ the same as the previous game and returns

it to A0.
5) Answer the subsequent queries as in Step 2).
6) A0 guesses it is communicating with a Game2 or Game3 challenger. At last, C outputs A0’s

guess as the answer to the key simulation game challenge it is trying to distinguish.

If the challenger chooses b = 1 in the key simulation game, C provides a view of Game2 to
A0. Otherwise, C provides a view of Game3 to A0. In other words, any advantage that A0

distinguishes between these two games translates to an identical advantage in the key simulation
game. Therefore, if |Pr[S2]−Pr[S3]| is non-negligible, then C could break the key simulation game
with a non-negligible advantage.

Game4 : In this game, we change the way the matrix A is generated. Recall in the previous game,

the challenger chooses A
$←− Zn×mλ

q . Now it first samples a matrix R
$←− {1,−1}m′×mλ and sets

A = BR + σ ⊗ G. Since m′ ≥ (n + 1)⌈log q⌉ + 2λ and the generalized leftover hash lemma
(see Definition 10), the distribution (B,BR) is statistically indistinguishable to the distribution
(B,U), where U is a random matrix in Zn×mλ

q . Thus, we have |Pr[S3]− Pr[S4]| ≤ negl(λ).
Game5 : In this game, we change again the way challenge query f∗ is answered and the way of

generating u∗
1. Concretely, when A makes a challenge query for (f∗, (µ0, µ1)), the challenger

computes

Af∗ − sf∗ ⊗G = AHσ→f∗ − Uσ→f∗(σ)⊗G

= [A− σ ⊗G]Ĥmsk→sf∗

= BRĤmsk→sf∗ ,

where Ĥmsk→sf∗ ← EvalFX(Uσ→f∗ , σ,A). The way it generates u∗
0 and u∗

2 remains unaltered.

Recall in the previous game, by sampling s
$←− Zn

q and e1
$←− χ̃mlf , the challenger computes

u∗
1 = sT [Af∗ − sf∗ ⊗G] + eT1 . Now, u∗

1 will be substituted as

u∗
1 = u∗

0RĤmsk→sf∗ + eT1

= (sTB+ eT0 )RĤmsk→sf∗ + eT1

= sT [Af∗ − sf∗ ⊗G] + eT0 +RĤmsk→sf∗ + eT1 ,

where e0
$←− χm′

. Note that

B′ = ∥eT0 +RĤmsk→sf ∥∞ ≤ m′mλ∥eT0 ∥∞∥R∥∞∥Ĥmsk→sf∗ ∥∞ ≤ m′mλB(2m)dCon ,

in which dCon denotes the depth of Uσ→f∗ . By Definition 6, let χ̃ be B′-swallowing, it holds
that u∗

1 generated by two methods are within a negligible statistical distance. Therefore, we have
|Pr[S4]− Pr[S5]| ≤ negl(λ).
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Game6 : In this game, we change the way key queries are answered. When A queries on x, the chal-
lenger evaluates r ← P.Eval(σ, x), Ĥmsk→r ← EvalFX(Uσ→x, σ,A) and Ĥr,r ← EvalFX(Ir, r,Ax),
and computes

[A− σ ⊗G]Ĥmsk→r = AHσ→x − Uσ→x(σ)⊗G

= AHσ→x − r ⊗G

= Ax − r ⊗G.

Then, we have

[Ax − r ⊗G]Ĥr,r = AxHr − Ir(r)⊗G = Ax,r −G

since Ir(r) = 1 and Ĥr,r ← EvalFX(Ir, r,Ax). Therefore, it holds that BRĤmsk→rĤr,r = Ax,r −
G due to A− σ ⊗G = BR. Note that

B∥Ax,r = B∥(BRĤmsk→rĤr,r +G)

and

∥RĤmsk→rĤr,r∥∞ ≤ m2λk∥R∥∞∥Ĥmsk→r∥∞∥Ĥr,r∥∞ ≤ m2λk(2m)d+1.

Lemma 6 and Lemma 7 show that when τ = O(∥RĤmsk→rĤr,r∥∞) = O(λ, k, (2m)d+3), it is
efficient to compute

TB∥Ax,r
← RandBasis(B∥Ax,r,ExtendLeft(B,G,TG,RĤmsk→rĤr,r), τ).

The responses to key queries are statistically close to those in the previous game, the adver-
sary’s advantage is at most negligibly different from its advantage in Game5. Therefore, we have
|Pr[S5]− Pr[S6]| ≤ negl(λ).

Game7 : In this game, we change again the way of generating Z under the case of (x ∈ K ∧ f(x) =

1) ∧ (y ∈ K ∧ g(y) = 1). The challenger runs KeyGen2(msk, x) algorithm to compute ŝkx(= d),

thereby captures rkx→g ← ReKeyGen(ŝkx, g). Therefore, we have |Pr[S6]− Pr[S7]| ≤ negl(λ).
Game8 : In this game, we change the way the matrix B is generated. Concretely, the challenger

chooses B
$←− Zn×m′

q without producing the corresponding trapdoor TB. By Lemma 1, this makes

only 2−Ω(n)-statistical distance with uniform distribution. Therefore, we have |Pr[S7]−Pr[S8]| ≤
negl(λ).

Game9 : In this game, we change the way the challenge ciphertext is created. The challenger chooses

(u∗
0,u

∗
1, u

∗
2) ∈ Z1×(m′+mlf+1)

q at random. Since the challenge ciphertext completely hides b, thus A
has no advantage in this game. We claim that |Pr[S8]−Pr[S9]| is negligible for a PPT adversary
assuming the hardness of DLWE problem. We show this by giving a reduction from DLWE
problem.

Reduction from LWE. Suppose A1 has a non-negligible advantage in distinguish Game8 and
Game9. We use A1 to construct an LWE adversary B as follows:

LWE Instance. B receives an LWE instance as (B∥v,u0∥u′
2) ∈ Zn×(m′+1)

q × Z1×(m′+1)
q . The task

of B is to distinguish whether u0∥u′
2 = sT (B∥v) + ē for some s ∈ Zn

q and ē ∈ χm′+1 or u0∥u′
2

$←−
Z1×(m′+1)
q .

Phase 1 (Setup): B sets B and v to be LWE terms. It assembles public parameters pp: compute

(P.pp, P.msk)← P.Setup(1λ), set σ = P.msk and A = BR+ σ ⊗G, where R
$←− {1,−1}m′×mλ.

B gives pp = (B,A,v, P.pp) to A1. The master secret key contains only σ. Then, B initializes a
counter numCt := 0, a policy-value store C := ∅, a key list K := ∅ and a set Deriv := ∅.

Phase 2 (Oracle Query): B answersA1’s key queries, encryption queries, re-encryption key queries
and re-encryption queries as in Game9, except for challenge query.

– OCha(f
∗, (µ0, µ1)): To generate a challenge ciphertext, B first picks a random bit b ∈ {0, 1},

computes sf∗ ,u∗
1 as in Game9 and outputs ctf∗ = (sf∗ ,u∗

0 = u0,u
∗
1,u

∗
2 = u′

2 + µb ⌊q/2⌉)).
Then it sets numCt := numCt+1 and Deriv := Deriv∪ {numCt}. B adds ctf∗ in C with policy
tuple (f∗, numCt) and gives (numCt, ctf∗) to A1.
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Phase 3 (Decision): At the end of the game, A1 guesses if it is interacting with the challenger of
Game8 or Game9. B outputs A1’s guess as the answer to the LWE challenge it is trying to
distinguish.

It can be seen that if (B∥v,u0∥u′
2) is a valid LWE instance (i.e., (u0∥u′

2) = sT (B∥v) + ē), the

view of the adversary corresponds to Game8. Otherwise (i.e., (u0∥u′
2)

$←− Z1×(m′+1)
q ), it corresponds

to Game9. Besides, observe that u∗
1 = u0RĤmsk→sf∗ + ēT1 is uniform and independent in Z1×mlf

q

by a standard application of the leftover hash lemma (see Definition 10). We therefore conclude that
supposing the hardness of DLWE problem, we have |Pr[S8]− Pr[S9]| ≤ negl(λ).

Therefore, combing the above conclusions together, the theorem is proven. ⊓⊔

5 Adaptively HRA-Secure CAB-PRE from LWE

In this section, We augment the AB-PRE mentioned above by utilizing a delegation condition con-
structed from a cPRF for inner-product predicates [10] to yield a unidirectional, single-hop CAB-PRE
scheme.

5.1 Construction

Let Cβ : Zl
q → {0, 1} be an inner-product predicate 8 with dimension l, which evaluates Cβ(α) = 1

when given an input α ∈ Zl
q such that ⟨α,β⟩ = 0. We define an adaptively HRA-secure CAB-PRE

for inner-product as follows.

Setup(1λ) : Identical to AB-PRE except that: replace v
$←− Zn

q with V
$←− Zn×l⌈log q⌉

q and sample

additionally a matrix D
$←− Zn×l⌈log q⌉

q . Output pp = (B,A,V,D, P.pp) and msk = (σ,TB).

KeyGen(msk, x) : Identical to AB-PRE except that: sample K← SamplePre(B∥Ax,r,TB∥Ax,r
,V, τ)

such that (B||Ax,r)K = V. Output skx = (r,TB∥Ax,r
,K).

Enc1(f, µ): The way to generate sf , u0 and u1 is identical to AB-PRE except that: choose randomly

an error e2
$←− χl⌈log q⌉, compute u2 = sTV+ eT2 + µ(0∥gT

), where the zero vector has dimension
(l − 1) ⌈log q⌉. Output ct1f = (sf ,u0,u1,u2).

Enc2(f,α, µ): Choose a vector h
$←− Zn

q and an error e3
$←− χl⌈log q⌉. Identical to Enc1 except that

adding a component u3 = sT (D+ h⊗ P2(α)T ) + eT3 . Output ct2f = (sf ,u0,u1,u2,u3).

Dec(skx, ctf ): Parse skx = (r,TB∥Ax,r
,K), ctf = (sf ,u0,u1,u2) (if ctf is a first-level ciphertext) or

ctf = (sf ,u0,u1,u2,u3) (if ctf is a second-level ciphertext). Evaluate Ĥr,r′ and Ĥsf→r′ identical

to AB-PRE. Then compute µ =
⌈
u2 − (u0∥u1Ĥsf→r′Ĥr,r′)K

⌋
2
, in which ⌈·⌋2 : Zq → {0, 1} in-

dicates its penultimate is closer modulo q to 0 or to a certain upper bound. It is noteworthy that
the decryption operation remains constant regardless of the first-level or second-level ciphertexts.
Decrypting the original ciphertext is subject to an upper limit of q/4. However, when decrypting
a transformed ciphertext, a coefficient factor linked to the predicate vector β is involved. In such
cases, adjusting the error bound appropriately ensures the accurate retrieval of the message µ.

ReKeyGen(skx, g,β): Parse skx = (r,TB∥Ax,r
,K). Identical to AB-PRE except that: for a predicate

vector β ∈ Zl
q, let v′ = (V +D) · BD(β). Sample d ← SamplePre(B∥Ax,r,TB∥Ax,r

,v′, τ) such

that (B∥Ax,r)d = v′. Select randomly R1 ∈ χ(m′+m)⌈log q⌉×n,R2 ∈ χ(m′+m)⌈log q⌉×(m′+mlg),R3 ∈
χ(m′+m)⌈log q⌉×l⌈log q⌉, and γ ∈ {0, 1}l⌈log q⌉, set

Z =

(
R1H+R2 R1V +R3 − P2(d)⊗ γ

0l⌈log q⌉×(m′+mlg) BD(β)⊗ γ

)
.

8 We require that the predicate vector β = (β1, ..., βl) ∈ Zl
q satisfies a special requirement, i.e., βl ̸= 0, to

better define the error bound and ensure the decryption correct. Without loss of generality, we assume that
of βl = q − 1 in decryption phase.
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Output rkβx→g = (sg, r,β, γ,Z).

ReEnc(rkβx→g, ct
2
f ): Parse rkβx→g = (sg, r,β, γ,Z) and ct2f = (sf ,u0,u1,u2,u3). Identical to AB-PRE

except that: let u′
1 = u1Ĥsf→r′Ĥr,r′ and u′

2 = u2 + u3, evaluate ctf→g = (BD(u0∥u′
1)∥u′

2) · Z.
Output ct1g = (sg,β, γ, ctf→g).

5.2 Correctness and Choice of Parameters

Theorem 4. The CAB-PRE scheme is correct with respect to f ∈ F and Cβ under proper parame-
ters.

Proof. The original ciphertext contains either the first-level ciphertext or the second-level ciphertext,
as they have same decryption operations. According to the parameters given in Section 4.2, the
correctness is as follows.

First, for the security parameter λ, given functions f ∈ F and Ir, two strings x ∈ {0, 1}l and
r′ ∈ {0, 1}k such that f(x) = 1 ∧ Ir(r

′) = 0, if (pp,msk) ← Setup(1λ), skx ← KeyGen(msk, x),
ct1f ← Enc1(f, µ) and ct2f ← Enc2(f,α, µ), then we have µ ← Dec(skx, ctf ∈ {ct1f , ct2f}) with a
non-negligible probability. The detailed decryption and choice of parameters are similar to AB-PRE:
computing Ax,Af , (Hr, Ĥr,r′) and (Hf→x, Ĥsf→r′), we have

[Af − sf ⊗G]Ĥsf→r′Ĥr,r′ = Ax,r

and
u2 − (u0∥u1Ĥsf→r′Ĥr,r′)K = µ(0∥gT

) + eT2 − (eT0 ∥e′1)K,

where e′1 = eT1 Ĥsf→r′Ĥr,r′ and ∥e′1∥∞ ≤ m2lfkB̃(2m)dConEval+1.
By applying the property of tailcut inequality (see Definition 4) on matrices, we get

∥K∥∞ ≤ τ
√
(m′ +m) · l ⌈log q⌉.

Therefore, if l,m′, lf , k ∈ O(n, ⌈log q⌉), B̃ ∈ O(B,n) and τ ∈ O(λ, k, (2m)d+3), then

∥eT2 − (eT0 ∥e′1)K∥∞ ≤ ∥eT2 ∥∞ + (m′∥eT0 ∥∞ +m∥e′1∥∞)∥K∥∞
≤ l ⌈log q⌉B + (m′B +m3lfkB̃(2m)dConEval+1)τ

√
(m′ +m) · l ⌈log q⌉

≤ B · poly(n, ⌈log q⌉) · (2m)dConEval+d+4.

To capture the correct decryption, the magnitude of penultimate coordinate should be less than
q/8, namely

∥eT2 − (eT0 ∥e′1)k∥∞ ≤ B · poly(n⌈log q⌉) · (2m)dConEval+d+4 < q/8,

which is overwhelming. The decryption of the original ciphertext is correct.
Now it remains to show how to guarantee the correctness of the re-encrypted ciphertext. Given a

re-encryption key, a second-level ciphertext associated with a function f can be efficiently re-encrypted
to a first-level ciphertext associated with a function g, where the delegation condition is described
as the inner-product predicates between two vectors α and β over Zl

q. Specifically, parse the re-

encryption key rkβx→g = (sg, r,β, γ,Z) and the second-level ciphertext ct2f = (sf ,u0,u1,u2,u3), the
re-encryption process in the following way:

If f(x) = 1 ∧ Ir(r
′) = 0 holds, where r′ ← Uf→x(sf ), we compute

u′
1 = u1Ĥsf→r′Ĥr,r′ = sTAx,r + eT1 Ĥsf→r′Ĥr,r′

and
u′
2 = u2 + u3 = sT (V +D+ h⊗ P2(α)T ) + ēT + µ(0∥gT ),

where ē = e2 + e3. If l = (lg + 1)n+ λ+ 1 and Cβ(α) = 1, we have

ctf→g = (BD(u0∥u′
1)∥u′

2) · Z
= (c0∥c1 c2).
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Let s̄ = (BD(u0∥u′
1)R1)

T , then

c0∥c1 = s̄T (B∥[Ag − sg ⊗G]) + BD(u0∥u′
1)R2

= s̄T (B∥[Ag − sg ⊗G]) + (ēT0 ∥ēT1 )

and
c2 = s̄TV + ē2 + µ(0∥gT ) · BD(β)⊗ γ,

where ē2 = BD(u0∥u′
1)R3−((eT0 ∥e′1)d−ēT ·BD(β))⊗γ and ∥ē2∥∞ ≤ B·poly(n, ⌈log q⌉)·(2m)dConEval+d+4.

Let β = (β1, ..., βl) ∈ Zl
q, it holds that (0∥gT ) · BD(β) ̸= 0 (where βl = q − 1) with a significant

probability. Thus, we get

(0∥gT ) · BD(β)⊗ γ = (

⌈log q⌉−1∑
i=0

βl,i · 2i)⊗ γ,

where βl,i ∈ {0, 1} denotes the binary decomposition of βl. Without loss of generality, let sky =
(r̄,TB∥Ay,r̄

, K̄) denote a secret key for an attribute string y that satisfies g(y) = 1 and Ir̄(r̄
′) = 0,

where r̄′ ← Ug→y(sg). Suppose that the penultimate bit of γ is 1, to capture the correct decryption,
we compute

µ =
⌈
c2 − (c0∥c1Ĥsg→r̄′Ĥr̄,r̄′)K̄

⌋
2
=

⌈
µ(0∥gT ) · BD(β)⊗ γ + ēT2 − (ēT0 ∥ē′1)K̄

⌋
2
,

here ⌈·⌋2 denotes whether its penultimate is closer modulo q to 0 or to
⌈log q⌉−1∑

i=0

βl,i · 2i.

Therefore, the norm of error term is bounded by

∥ēT2 − (ēT0 ∥ē′1)K̄∥∞ ≤ 2B · poly(n, ⌈log q⌉) · (2m)dConEval+d+4 <

⌈log q⌉−1∑
i=0

βl,i · 2i+1

in which ē′1 = ēT1 Ĥsg→r̄′Ĥr̄,r̄′ with an overwhelming probability. The decryption of the re-encrypted
ciphertext is correct. ⊓⊔

5.3 Security Proof

Now we give the security proof of CAB-PRE scheme, which involves two algorithms KeyGen1 and
KeyGen2 defined in Section 4.3.

Theorem 5. For a class of functions F and an inner-product predicate Cβ, if P is a conforming
cPRF, then CAB-PRE is a unidirectional, single-hop, adaptively HRA-secure scheme under the hard-
ness of DLWEn,q,χ problem and its lossy mode.

Proof. Let A be a PPT adversary that breaks the adaptive HRA security of CAB-PRE. We show
that the proof proceeds in a sequence of games. In each game, we define Si to be the event that A
wins in Gamei.

Game0 : This is the original security game from Definition 13.
Game1 : Identical to Game1 in Section 4.3, except that: the way of generating the matrix Z is

changed by introducing random elements except in the case of (x ∈ K ∧ f(x) = 1) ∧ (y ∈
K ∧ g(y) = 1) ∧ (Cβ(α) = 1).

Game2 : Identical to Game2 in Section 4.3, except that: the way of generating the matrix Z is
changed by adopting KeyGen1(msk, x) algorithm in the case of (x ∈ K ∧ f(x) = 1) ∧ (y ∈
K ∧ g(y) = 1) ∧ (Cβ(α) = 1).

Game3,Game4 : Identical to Game3 and Game4 in Section 4.3, respectively.
Game5 : Identical to Game4 in Section 4.3, and the way that generates u∗

3 is also unaltered.
Game6 : Identical to Game6 in Section 4.3.
Game7 : Identical to Game7 in Section 4.3, except that: the way of generating the matrix Z is

changed by adopting KeyGen2(msk, x) algorithm in the case of (x ∈ K ∧ f(x) = 1) ∧ (y ∈
K ∧ g(y) = 1) ∧ (Cβ(α) = 1).
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Game8 : Identical to Game8 in Section 4.3.

Game9 : Identical to Game9 in Section 4.3, except that: the challenger chooses (u∗
0,u

∗
1,u

∗
2,u

∗
3) ∈

Z1×(m′+mlf+2l⌈log q⌉)
q at random. We claim that |Pr[S8]−Pr[S9]| is negligible for a PPT adversary

assuming the hardness of DLWE problem and its lossy mode.

Reduction from LWE. Suppose A2 has a non-negligible advantage in distinguish Game8 and
Game9. We use A2 to construct an LWE adversary B as follows:

LWE Instance. B receives an LWE instance as (B∥V,u0∥u′
2) ∈ Zn×(m′+l⌈log q⌉)

q × Z1×(m′+l⌈log q⌉)
q .

The task of B is to distinguish whether u0∥u′
2 = sT (B∥V)+ē for some s ∈ Zn

q and ē ∈ χm′+l⌈log q⌉

or u0∥u′
2

$←− Z1×(m′+l⌈log q⌉)
q .

Phase 1 (Setup): B sets B and V to be LWE matrices. It gives A2 the public parameters pp =
(B,A,V,D, P.pp). The master secret key contains only σ. Then, B initializes a counter numCt :=
0, a policy-value store C := ∅, a key list K := ∅ and a set Deriv := ∅.

Phase 2 (Oracle Query): B answers A2’s queries as in Game9, except that the challenge query.

– OCha(f
∗,α∗, (µ0, µ1)): To generate a challenge ciphertext, B first picks a random bit b ∈

{0, 1}, computes sf∗ ,u∗
1,u

∗
3 as in Game9 and outputs ct2f∗ = (sf∗ ,u∗

0 = u0,u
∗
1,u

∗
2 = u′

2 +

µb(0∥gT ),u∗
3). Then it sets numCt := numCt+ 1 and Deriv := Deriv ∪ {numCt}. B adds ct2f∗

in C with policy tuple (f∗,α∗, numCt) and gives (numCt, ct2f∗) to A2.

Phase 3 (Decision): Finally,A2 guesses if it is interacting with the challenger ofGame8 orGame9.
B outputs A2’s guess as the answer to the LWE challenge it is trying to distinguish.

It is obvious that if (B∥V,u0∥u′
2) is a valid LWE instance (i.e., (u0∥u′

2) = sT (B∥V)+ ē), the view

of the adversary corresponds to Game8. Otherwise (i.e., (u0∥u′
2)

$←− Z1×(m′+l⌈log q⌉)
q ), it corresponds

to Game9. Besides, u
∗
1 = u0RĤmsk→sf∗ + ēT1 is uniform and independent in Z1×mlf

q based on a
standard application of leftover hash lemma (see Definition 10).

Moreover, for any condition vector α∗ ∈ Zl
q, we have u∗

3 = sT (D+ h⊗ P2(α∗)T ) + ēT3 which can
be regarded as the lossy mode for LWE (see Definition 8) and is close to uniformly random. We use
SampleLossy to describe the procedure that sample a matrix in the lossy mode. Let n, l be positive
integers, and α be a vector over Zl

q.

SampleLossy(n, l,α) : It samples D
$←− Zn×l⌈log q⌉

q and h
$←− Zn

q , outputs A1 = D+ h⊗ P2(α)T .

It is easy to see that A1 in the lossy mode is within a negligible statistical distance from uniform

distribution. Choosing A0
$←− Zn×l⌈log q⌉

q and A1 ← SampleLossy(n, l,α), we know that A0 and A1

are computationally indistinguishable, denoted by A0
c
≈ A1. Then for s

$←− Zn
q , e

$←− χl⌈log q⌉ and

u
$←− Zl⌈log q⌉

q , it holds that

(A0, s
TA0 + eT )

c
≈ (A1, s

TA1 + eT ).

On the other hand, we claim that

(A0, s
TA0 + eT )

c
≈ (A0,u

T )

under the DLWE problem. Finally, we have

(A1, s
TA1 + eT )

c
≈ (A1,u

T ).

In other words, the ciphertext component u∗
3 is computationally indistinguishable from the uniform

distribution over Zl⌈log q⌉
q . We therefore conclude that supposing the hardness of DLWE problem and

its lossy mode, we have |Pr[S8]− Pr[S9]| ≤ negl(λ).

Therefore, combing the above conclusions together, the theorem is proven. ⊓⊔
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6 Conclusion

In this work, we formalized the notion of CAB-PRE and proposed an adaptively HRA-secure CAB-
PRE scheme to enrich the PRE application scenarios. We designed the first adaptively HRA-secure
(ciphertext-policy) AB-PRE scheme as a building block. We highlight that this AB-PRE scheme
solves the open problem left by Susilo et al. [36] in ESORICS ’21 about constructing an HRA-secure
(ciphertext-policy) AB-PRE scheme. Then, we introduced a well-matched conditional delegation for
inner-product predicates based on this AB-PRE scheme to derive our CAB-PRE scheme. Meanwhile,
we provided security proof of these two schemes to confirm their security.

We note that key switching will incur dimension expansion of the re-encryption key in our construc-
tion. Therefore, exploring how to control this dimension expansion will be interesting. In addition,
we may require a more robust CAB-PRE scheme in the post-quantum world in some applications,
such as a CCA-secure CAB-PRE scheme over lattices. We leave these two problems as an avenue for
future work.
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A Attribute-Based Proxy Re-Encryption

Syntax. A unidirectional, single-hop AB-PRE for policies F : {0, 1}l → {0, 1} consists of the following
PPT algorithms:

Setup(1λ)→ (pp,msk). On input a security parameter 1λ, the setup algorithm outputs the public
parameters pp along with a master secret key msk.

KeyGen(msk, x)→ skx. On input a master secret key msk and an attribute string x ∈ {0, 1}l, the
key generation algorithm outputs a secret key skx.

Enc(f, µ)→ ctf . On input a policy f ∈ F and a message µ ∈ {0, 1}, the encryption algorithm outputs
a ciphertext ctf associated with the policy f .

Dec(skx, ctf )→ µ/⊥. On input a secret key skx and a ciphertext ctf , the decryption algorithm
outputs a bit µ ∈ {0, 1} if f(x) = 1, else outputs an error symbol ⊥.

ReKeyGen(skx, g)→ rkx→g. Given a secret key skx and a policy g ∈ F , this algorithm outputs a
re-encryption key rkx→g.

ReEnc(rkx→g, ctf )→ ctg/⊥. Given a re-encryption key rkx→g and a ciphertext ctf , this algorithm
outputs a new ciphertext ctg associated with the policy g if f(x) = 1, else outputs an error symbol
⊥.
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Correctness. A unidirectional, single-hop AB-PRE is correct if:

– For all x ∈ {0, 1}l and f ∈ F for which f(x) = 1, and all µ ∈ {0, 1}, it holds that Pr[Dec(skx, ctf ) ̸=
µ] = negl(λ), where skx ← KeyGen(msk, x) and ctf ← Enc(f, µ).

– For any g ∈ F and rkx→g ← ReKeyGen(skx, g), it holds that Pr[Dec(sky, ctg) ̸= µ] = negl(λ), if
g(y) = 1 for y ∈ {0, 1}l, where ctg ← ReEnc(rkx→g, ctf ).

Similar to the HRA security definition of CAB-PRE, Table 4 contains all possible cases of the
users’ states and their relations in AB-PRE.

Table 4: Correspondences between honest and corrupt users in AB-PRE

Relation y ∈ K ∧ g(y) = 0 y ∈ K ∧ g(y) = 1 y /∈ K ∧ g(y) = 0 y /∈ K ∧ g(y) = 1

x ∈ K ∧ f(x) = 0 H → H H → C H → H H → H

x ∈ K ∧ f(x) = 1 C → H C → C C → H C → H

x /∈ K ∧ f(x) = 0 H → H H → C H → H H → H

x /∈ K ∧ f(x) = 1 H → H H → C H → H H → H

Security Game for HRA. The adaptive HRA security game of a unidirectional, single-hop AB-PRE
scheme between an adversary A and a challenger C as below.

Phase 1 (Setup): This is the setup phase. The challenger generates (pp,msk) by running Setup(1λ)
algorithm and gives the public parameters pp to A. Then, the challenger initializes a counter
numCt := 0, a policy-value store C := ∅, a key list K := ∅ and a set Deriv := ∅.

Phase 2 (Oracle Query): This is the oracle query phase.

– OKeyGen(x): For a key query x, the challenger generates skx ← KeyGen(msk, x) and adds
(x, skx) in K. It gives skx to A.

– OEnc(f, µ): For an encryption query (f, µ), the challenger computes ctf ← Enc(f, µ), sets
numCt := numCt+1, adds ctf in C with policy tuple (f, numCt), and gives (numCt, ctf ) to A.

– OReKey(x, g): For a re-encryption key query (x, g), if exist y ∈ K and (f, ·) ∈ C such that 1)
(x ∈ K ∧ f(x) = 0) ∧ (y ∈ K ∧ g(y) = 1), or 2) (x /∈ K ∧ f(x) = 0) ∧ (y ∈ K ∧ g(y) = 1), or
(x /∈ K∧f(x) = 1)∧(y ∈ K∧g(y) = 1) holds, the challenger returns ⊥; otherwise, it generates
rkx→g ← ReKeyGen(skx, g) and gives it to A.

– OCha(f
∗, (µ0, µ1)): This oracle can only be invoked once. For a challenge query (f∗, (µ0, µ1)),

it requires f∗(x) = 0, where x ∈ K. The challenger flips a bit b ∈ {0, 1}, generates ctf∗ ←
Enc(f∗, µb), sets numCt := numCt + 1 and Deriv := Deriv ∪ {numCt}. It adds ctf∗ in C with
policy tuple (f∗, numCt) and gives (numCt, ctf∗) to A.

– OReEnc((x, g), (f, k)): For a re-encryption query ((x, g), (f, k)), where k ≤ numCt. The chal-
lenger does the following operations.
1) If there is no value in C with policy tuple (f, k), return ⊥.
2) If f(x) = 0, return ⊥.
3) If exists y ∈ K such that (y ∈ K ∧ g(y) = 1) ∧ k ∈ Deriv holds, return ⊥.
4) Otherwise, let ctf be that value in the store C. The challenger produces ctg ← ReEnc(rkx→g,

ctf ) where rkx→g ← ReKeyGen(skx, g), sets numCt := numCt+1, adds ctg in C with policy
tuple (g, numCt). If k ∈ Deriv, set Deriv := Deriv ∪ {numCt}. Finally, it gives (numCt, ctg)
to A.

Phase 3 (Decision): This is the decision phase. A outputs a bit b′ for b.

A wins the game if b′ = b. We say that the AB-PRE is adaptively HRA-secure if for all PPT
adversaries A, the advantage of A winning in the game is negligible.
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