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Abstract. The celebrated result by Gentry and Wichs established a theoretical barrier for succinct
non-interactive arguments (SNARGs), showing that for (expressive enough) hard-on-average languages
we must assume non-falsifiable assumptions. We further investigate those barriers by showing new
negative and positive results related to extractability and to the preprocessing model.

1. We first ask the question “are there further barriers to SNARGs that are knowledge-sound (SNARKs)
and with a black-box extractor?”. We show it is impossible to have such SNARKs in the standard
model. This separates SNARKs in the random oracle model (which can have black-box extraction)
and those in the standard model.

2. We find positive results regarding the same question in the non-adaptive setting. Under the existence
of SNARGs (without extractability) and from standard assumptions, it is possible to build SNARKs
with black-box extractability for a non-trivial subset of NP.

3. On the other hand, we show that (under some mild assumptions) all NP languages cannot have
SNARKs with black-box extractability even in the non-adaptive setting.

4. The Gentry-Wichs result does not account for the preprocessing model, under which fall several
efficient constructions. We show that also in the preprocessing model it is impossible to construct
SNARGs that rely on falsifiable assumptions in a black-box way.

Along the way, we identify a class of non-trivial languages, which we dub “trapdoor languages”, that
bypass some of these impossibility results.

1 Introduction

Proof systems have been studied extensively both in cryptography and in theory of computation [34, 28, 8],
and are a fundamental building block in various cryptographic constructions today, including delegating
computation [10, 11, 23] and privacy-preserving cryptocurrencies [9] to name a few. In a succinct proof,
it is additionally required that the communication be sublinear (ideally polylogarithmic) in the size of the
non-deterministic witness used to verify the relation (proof succinctness). This requirement is often extended
to verification complexity (verification succinctness).

Statistically-sound proofs are unlikely to allow for significant improvements in proof size [33, 35, 61], that
is, for NP, statistical soundness requires the prover to communicate, roughly, as much information as the
size of the witness. If we restrict ourselves to argument systems [14] where soundness is computational, then,
proofs can be shorter than the length of the witness.

Succinct arguments. Succinct arguments were first studied by Kilian [47], who gave an interactive con-
struction based on probabilistically checkable proofs (PCP) and collision-resistant hash function. Kilian’s
construction was turned into a non-interactive argument in the random oracle model using the Fiat-Shamir
heuristic [27] by Micali [54]. In the standard model (i.e., without idealized primitives), non-interactivity is
achieved by generating a Common Reference String (CRS) during a setup phase. A Succinct Non-interactive
ARGument (SNARG) for a language L is a triple of algorithms (Setup,P,V) where Setup is a generator
algorithm that takes a security parameter and samples a common reference string crs and a verification



string td; the prover P(crs, x,w) outputs a proof π for x ∈ L; the verifier V(td, x, π) output 0/1 indicating the
validity of the proof. The notion of adaptive soundness requires soundness to hold even if a malicious prover
chooses x depending on crs.

In this work we are concerned with the theoretical limitations for building efficient succinct non-interactive
arguments in the standard model5. One of the best-known impossibility results on SNARGs is that of Gentry
andWichs [32] (we will occasionally refer to it as “GW”), which shows that in the standard model, adaptively-
sound6 SNARGs for (hard enough) NP languages cannot be proven secure via a black-box reduction to a
falsifiable assumption [55]. A falsifiable assumption is an assumption we can empirically falsify7.

A folklore way to interpret GW has been “we cannot escape non-falsifiable assumptions to build SNARGs
for NP”. While this is essentially true, there are several caveats to this interpretation (which we discuss
later in this work in section 6 and some of which have already been noticed in prior work). We formally
explore the boundaries of this simplifying interpretations, especially motivated by the focus on (composable)
extractability [49, 6] and the popular model of “preprocessing SNARGs” in recent works, e.g. [39]. We strive
to provide a modern view of these topics, for example by adopting the language of indexed relations from [19]
(we later argue why this is a meaningful switch).

(Black-box) knowledge soundness. A strengthening of the soundness property is knowledge soundness.
It requires that, whenever the verifier is convinced by an efficient prover, not only can we conclude that x ∈ L,
but also that a witness w can be extracted efficiently from the prover such that (x,w) ∈ RL. This useful
property is satisfied by many proof system constructions, and sometimes, necessary, in a lot of applications
of succinct arguments. A Succinct Non-interactive ARgument of Knowledge (SNARK) is a SNARG with the
knowledge soundness property.

Constructions of SNARKs for NP in the standard model all rely on a type of non-falsifiable assumptions
that are knowledge-type assumptions related to some algebraic problem (e.g., guaranteeing the existence
of an extractor algorithm that can output a discrete log “from” a specific adversary). This example also
hints to why these assumptions are non-falsifiable—they are non-black-box, that is they require knowledge
of the internal state of the adversary and an extractor aware of the concrete adversarial algorithm. This is
in contrast to the milder black-box extraction, namely the ability to extract a witness from an adversarial
prover only using its input/output interface.

Understanding whether we can build SNARKs with black-box extraction in the standard model is still
an elusive problem. In addition to being a theoretical curiosity, if answered in the positive, it would also
allow us to construct more robust cryptographic protocols using SNARKs. Black-box extraction is required
in strong notions of composition security, e.g. in universal composability (or UC-security [17]) where the
“ideal-world” simulator must extract a witness without knowledge of the environment’s algorithm. (See [46]
for an attempt to combine composability and knowledge-type assumptions.) If answered in the negative, it
would confirm the seeming incompatibility of SNARKs in the standard model and UC. In this work, we then
ask the question:

Is non-black-box extraction inherent to SNARKs?

Addressing this question is, we believe, even more pressing because prior works [18, 49, 5, 6] have used as
motivation the fact that succinctness must be sacrificed for black-box extraction, implying that the question
had been settled (see also section 1.2). However, to the best of our knowledge, there was no formal treatment
for this question prior to our work.

5 There exist efficient SNARKs (SNARGs of knowledge) in idealized models like ROM (random oracle model), GGM
(generic group model), or AGM (algebraic group model), including constructions like Groth16 [39], Bulletproofs [15].
We later discuss implications of our results for different models.

6 An adaptively-secure scheme is one where the adversary can “decide” on the false statement (the one for which
it will present a convincing proof) after seeing the reference string crs. A non-adaptively secure scheme will offer
guarantees only against adversaries presenting this input to the challenger before crs is sampled. This distinction
can be extended to knowledge-soundness.

7 For example, DLOG is a falsifiable assumption since the challenger can efficiently test if the adversary has found
the correct discrete logarithm.
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Our First Contribution: We formally confirm the folklore belief that black-box extraction is impossible
for adaptive knowledge soundness in the standard model if one requires proof-succinctness. As a consequence,
this result separates the standard model and other idealized models in terms of what is possible for black-
box extraction (for example, in the ROM and through the Fiat-Shamir transform, there exist black-box
extractable proof-succinct non-interactive arguments [15]).

Our Second Contribution: We explore whether the impossibility extends to the non-adaptive case.
We find out that non-adaptive black-box extractability is possible for a non-trivial subset of NP—which
encompasses distributionally hard problems such as knowledge of a discrete logarithm—through standard
assumptions (FHE and CRHF) under the existence of SNARGs for a slightly augmented subset of languages.
In particular, we show that a SNARG can be lifted to a SNARK with the features above for the class of
languages FewP (roughly, NP statements with at most a polynomial number of valid witnesses). If the
starting SNARG is based on falsifiable assumptions and in the standard model then so is the resulting
SNARK. Examples of SNARGs that plausibly satisfy this requirement are the recent work in [53] and the
NIZK construction based on iO in [59]. The latter is actually a proof-succinct NIZK since the proof consists
only of the output of a PRF. There is recent accumulation of evidence that iO may be based on falsifiable
assumptions [30, 62, 42].

Our Third Contribution: A natural question is whether the previous construction for FewP can be
extended to NP. We answer this in the negative under some mild assumptions. In particular, we show that
if the relation is y = f(w) where f is a L-continuous leakage-resilient one-way function (CLR-OWF, a one-
way function where L bits may leak multiple times given that preimage w is updated), then the proof size
must be more than L bits. There exist a CLR-OWF under the discrete logarithm assumption [1] where L is
linear in the size of w. Thus, the proof cannot be succinct.

Preprocessing and the Gentry-Wichs impossibility result. In many applications we want to look
beyond proof-succinctness and keep the verifier as efficient as possible. Ideally, we would like verification to
run sublinearly in the size/time of the computation. It may seem counterintuitive that this is even possible:
naturally, in circuit-based8 arguments for general computations the verifier should at least read the statement
being proven. The latter includes both the description of the computation (i.e., the circuit) and its input
(i.e., the deterministic input for an NP statement). There exists, however, a (commonly used) way around
this problem: a preprocessing phase. In a preprocessing SNARG, one generates a common reference string, or
CRS, usually depending on a specific circuit C, which is constructed once and for all and can later be used to
prove/verify an unbounded number of proofs for the computation of C. This CRS is actually structured as a
pair of CRS’s, the prover’s CRS and the verifier’s CRS, used by the each respective party. The verifier’s CRS
is morally a digest of the circuit; the prover’s CRS is paired to it. If the verifier’s CRS is “short enough”,
then the online verification stage can be fast, requiring to read only the SNARG proof and a partial input
description (the deterministic input to the circuit, without its description); thus the verifier can run in time
sublinear in |C| (and in the witness size).

This preprocessing model encompasses a rich line of work constructing efficient SNARGs [38, 51, 31, 13,
56, 52]. The fact that it is a practically interesting model, as it achieves verifier-succinct SNARGs, further
motivates a deeper theoretical understanding of it. A fundamental question is:

Can we construct preprocessing SNARGs based on falsifiable assumptions?

We argue this question has not been settled. First, none of the known preprocessing constructions rely
on falsifiable assumptions. Also, known impossibility results do not inform us on the matter either. The
Gentry-Wichs impossibility—which separates SNARGs and falsifiable assumptions—has long served as a
justification to SNARGs for NP on non-falsifiable assumptions, but it fails to shed light on the preprocessing
setting. The reason is that the GW results presumes a SNARG with a CRS with a specific pattern (we mean
“prover’s CRS” when we just say CRS from now on): their CRS cannot grow with the size of the instance,

8 There are other models of computation that have a succinct description, for instance, machine computations.
However, in general, the description of a computation could be as large as the computation itself.
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but should instead be bounded by a polynomial in the security parameter. In principle the question is then
still open, more so because all existing preprocessing constructions, do have a CRS with the opposite pattern:
it is usually as long as the instance9.

Besides GW, other existing works also fail to provide an answer. For example, the work of [12] shows how
to “bootstrap” a preprocessing SNARK into one without preprocessing to obtain a complexity-preserving
SNARK, i.e., one without expensive preprocessing. The transformation can be applied to known SNARKs
with expensive preprocessing to obtain a SNARK without the expensive preprocessing. This complexity-
preserving compilation, informally, establishes that preprocessing does not give any additional power; if
preprocessing SNARKs were possible from falsifiable assumptions, one could apply the bootstrapping trans-
formation and obtain short CRS SNARKs from falsifiable assumptions. Thus, any impossibility for SNARKs
holds even for SNARKs that rely on expensive preprocessing. However, this bootstrapping crucially requires
the knowledge soundness property and therefore only applies to SNARKs. The question of whether allowing
a preprocessing phase allows constructing SNARGs based on falsifiable assumptions still remains.

Our Fourth Contribution: We fill the gap left by the GW result and show that even preprocessing
SNARGs with a loosely-bounded CRS cannot be constructed from falsifiable assumptions in the standard
model.

The landscape of impossibilities for non-interactive arguments. In order for our work to be as self-
contained as possible, we complement the results above with an overarching view of impossibilities on non-
interactive arguments (section 6). This discussion strives to give a complete picture of existing impossibility
results, related key properties of positive results and gaps between positive and negative results. Motivated by
the observation that preprocessing SNARGs do not come under the GW impossibility (nor in our extension
for preprocessing), we articulate the assumptions behind the impossibilities, and identify settings that would
bypass them (in the spirit of recent works such as [53]). Along the way, we formalize a class of languages
that does not come under the Gentry-Wichs impossibility result. We dub them trapdoor languages (where
there exists a “trapdoor” that makes the problem feasible) and exemplify several application settings that
fall under the same category. Trapdoor languages can be thought as a generalization of witness-sampleable
(algebraic) languages in the work of [24].

1.1 Technical Overview

BB extraction is impossible for any hard language (adaptive case). We show impossibility of
black-box extraction for non-interactive succinct arguments following the intuition that if an argument is
too “small”, it cannot contain information about a “long” witness. This makes extraction impossible since
the extractor does not have any additional power, like access to the prover’s randomness (as in non-black-box
extractors for popular SNARKs) or the ability to rewind the prover (as in interactive arguments, for example,
in Kilian’s protocol). The high level idea behind our proof is to relate the hardness of the language with the
size of the proof. Since we are concerned with knowledge soundness and not just soundness, decision hardness
does not suffice and we formalize the hardness of the language in terms of the entropy of the witness. We
then show that if the witness-guessing hardness of the language is 2−ℓ and the extractor outputs a valid
witness, then the proof is of length at least ℓ bits. Roughly, for a hard language, a witness w cannot be
guessed with probability better than 2|w|, from which we conclude that ℓ must be at least |w|.

BB extraction is possible for FewP (non-adaptive case). We then ask if the impossibility holds if
we weaken the knowledge soundness requirement to be non-adaptive. Indeed, the non-adaptive case escapes
the GW impossibility [53] for SNARGs as we discuss in Section 6.1, and it is natural to hope for a positive
result for extraction as well. In the non-adaptive knowledge soundness definition, the adversary chooses the
statement before seeing the CRS, and then outputs a proof for the chosen statement. Intuitively, an extractor

9 For example, in pairing-based constructions such as [31] it consists of at least one group element per wire in the
circuit to be proven.
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for such an adversary does have additional power – the extractor can rewind the prover to the point after
the statement is chosen, sample different CRS’es and obtain multiple proofs for the same statement. Thus,
non-adaptivity makes the prover stateful allowing for rewinding to be useful for an extractor10. We give a
positive result in the non-adaptive case by showing a SNARK with black-box non-adaptive extraction (for a
subset of NP). In the construction, we take advantage of our observation that the extractor can obtain more
information by seeing multiple proofs corresponding to cleverly crafted CRS’es. At a high level, we ask the
prover to encrypt a bit of the witness as part of the proof, in addition to proving the underlying relation.
Given the secret key of the encryption scheme as the CRS trapdoor, the extractor can recover this witness
bit. Now, the crafted CRS’es are such that they ask for different bits of the witness to be encrypted so that
with every rewinding, the extractor learns a new bit until it can completely recover the witness.

While this works for valid statements with a unique witness, there are some subtleties that we need
to address in order to show extraction for languages that have polynomially many witnesses, that is, class
FewP. Here, the problem is that the adversary can choose to use a different witness each time, and there is
no guarantee that the extractor can collect enough bits for any one witness. We now provide an overview of
our construction. Let R be the relation for the language. We start with an existing SNARG for R and lift it
to a SNARK. We use a Fully Homomorphic Encryption (FHE) scheme in order to hide the index of the bit
the prover is asked to encrypt. Intuitively this is to hide the index so that the prover cannot adversarially
choose a different witness for different indices. We augment the relation the SNARG proves to include a
hash of the witness. Now the extractor keeps track of which witness it is extracting by using the hash to
fingerprint. The extractor still needs to collect all bits of one witness. Here, we rely on the semantic security
of the FHE scheme to show that the prover cannot consistently use witness w1 for index i, and witness
w2, for index j. Since there are only polynomially many witnesses, assuming collision resistance of the hash
function, the extractor succeeds in recovering all bits of some witness.

BB extraction is impossible for all NP (non-adaptive case). The previous result however cannot
be extended to all NP languages. We show this by relating the existence of an extractor to breaking the
leakage-resilience of the relation. A SNARK proof can be thought of as leakage on the witness. When
this leakage is small, no extractor can succeed if the NP relation is leakage resilient. This impossibility
as a consequence of leakage resilience is easy to see in the adaptive case. In non-adaptive extraction, an
extractor can potentially rewind the adversary and obtain multiple proofs; this is akin to a leakage resilience
adversary obtaining leakage multiple times. We formalize this connection using continuous leakage resilience.
In L-leakage-resilient OWF (LR-OWF), one-wayness holds even if L bits of the preimage are leaked. In L-
continuous LR-OWF (CLR-OWF), L bits can be leaked multiple times with the caveat that the preimage
has to be updated before each leakage. Moreover, if for an OWF f we have y = f(w) and w is updated to
w′ then also y = f(w′).

We connect this primitive to the impossibility of non-adaptive black-box knowledge soundness of SNARKs.
Suppose that we have a SNARK for the relation y = f(w) where f, y are public and w is the witness. We
view the proof as a leakage on the witness given to the adversary. If the proof is at most L bits long, then
with each rewinding the extractor can learn at most L bits of information about the witness. Now if the
adversary also updates its witness w between queries, L-CLR of f implies that the extractor is unable to
recover the witness. Thus, it follows that the SNARK proof is at least L bits long.

We can instantiate this result with (1− 2
n )|w|-CLR-OWF from [1] which is based on the discrete logarithm

assumption. The witness size |w| = n log q and q is the size of the discrete logarithm group. Thus, the proof
size will be asymptotically linear in |w|.

Extending GW to preprocessing SNARGs. The central idea in the GW proof is to show that every
SNARG for an NP language has a simulatable adversary. That is, an unbounded adversarial prover that
breaks soundness comes with an efficient simulator such that no efficient machine can tell whether it is
interacting with the prover or the simulator. A black-box reduction is an efficient oracle-access machine
which, when given access to a successful adversary, breaks some falsifiable assumption. But if the reduction

10 Contrast this with the adaptive case, where the prover is stateless and rewinding is not useful.
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given oracle access to the prover breaks the assumption, then the efficient machine with oracle access to the
efficient simulator also breaks it since the efficient challenger of the falsifiable assumption cannot distinguish
the prover from the simulator. Thus, assuming a simulatable adversary, the theorem follows.

Our proof extending the GW impossibility to preprocessing SNARGs follows the GW template. We
observe that the GW proof needs the CRS to be short in constructing a simulatable adversary: the reduction
that has oracle access to either the computationally unbounded prover or the efficient simulator can query
the oracle with 1m where m is different from the security parameter n. If m is small enough compared to the
actual security parameter n, then the reduction can distinguish the adversary from the simulator. Therefore,
the proof modifies the simulator to behave differently in answering queries with a sufficiently small m; this
is done by hardcoding a table of responses as non-uniform advice. The table has hardcoded entries (x, π) for
every m and every CRS. Therefore, the CRS size is bounded by a polynomial in the security parameter, and
cannot grow with the size of the instance.

When considering security-parameter preserving reductions, the reduction queries its oracle with the same
security parameter. Therefore, a hardcoded table is not needed, and we show how the proof goes through
when the size of the CRS depends on the instance as in indexed relations. We note that a BB reduction
from soundness of a preprocessing SNARG to a falsifiable assumption where the reduction is not restricted
to making parameter-preserving queries remains open.

1.2 Related Work

Succinctness vs black-box extraction. Here we discuss works that trade succinctness for black-box
extraction. Recent works (C∅C∅ [49] and Tiramisu [6]) aim at compiling a SNARK into a UC-secure scheme.
However, this transformation results in NIZK arguments whose proof size and verification time is (quasi-
)linear in the witness size. This degradation in succinctness is claimed to be unavoidable if one demands
black-box extraction. In [5], Baghery et al. add black-box extraction to [39] SNARK. Although the proof
size is again asymptotically linear in the witness size, so the authors’ goal is to strive for concrete efficiency.
In [18], Chase et al. construct controlled malleable proof systems that crucially require the stronger black-box
version of extractability. Therefore, even though their starting point is a SNARG, in order to obtain black-
box extraction of the controlled malleable proof, they give up succinctness and achieve controlled malleable
NIZKs.

What is common in all the aforementioned works as an idea is to perform a form of verifiable encryption
by encrypting the witness and then proving knowledge of the value inside the ciphertext in addition to
original relation. The black-box extractor simply works by decrypting. This is the reason why the black-box
extractor comes at the cost of succinctness: the proof now includes a ciphertext and a proof of encrypting
the correct value.

Other works. The work in [46] proposes an alternative composability model to the standard UC model,
which can (at least to some extent) use non-black-box extractability and knowledge-type assumptions. In this
case, one can still obtain succinct composable SNARKs (under some restrictions) without needing black-box
extraction.

2 Preliminaries

PPT stands for probabilistic polynomial time. We use λ to denote the security parameter. We write x←$ X
to denote that x is sampled from a distribution X. If X is a set, then x ←$ X denotes uniform sampling.
We write f(λ) = negl(λ) when f is negligible in λ and f(λ) = poly(λ) when f is polynomial in λ.

Indistinguishability of distributions. We say that two distributionsX1 andX2 are (s(λ), ϵ(λ))-indistinguishable
if for any circuit D of size s(λ), we have |Pr[D(X1) = 1]− Pr[D(X2) = 1]| ≤ ϵ(λ).
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Hard-on-average problems. We define a language L ∈ NP to be a hard-on-average problem if

– It has an efficient instance sampler SampL(1
λ) that outputs x ∈ L together with a NP witness w.

– There is an efficient sampler SampL̄(1
λ) that with an overwhelming probability outputs x ̸∈ L.

– It is computationally hard to distinguish outputs of SampL(1
λ) and SampL̄(1

λ).

We say that L is (s(λ), ϵ(λ))-hard if distributions of x from SampL(1
λ) and SampL̄(1

λ) are (s(λ), ϵ(λ))-
indistinguishable. It is sub-exponentially hard if there exits some constant δ > 0 such that previous distri-

butions are (s(λ), ϵ(λ))-indistinguishable for s(λ) = 2Ω(λδ) and ϵ(λ) = 1/2Ω(λδ). Lastly, L is exponentially
hard if the above holds and moreover |x|+ |w| = O(λδ) for (x,w)←$ SampL(1

λ).
Simple example is the DDH language where SampL outputs group elements ga, gb, gab, where a, b are

chosen uniformly at random and g is a group generator, and SampL̄ outputs 3 random group elements
ga, gb, gc. More generally, hard-on-average problem is implied by the existence of one-way-functions since it
is possible to construct a PRG from a one-way function [41].

2.1 Continuous Leakage-Resilient OWFs

A leakage-resilient OWF (LR-OWF) f is a function that is one-way even when the adversary is allowed to
learn arbitrary functions of f(x)’s preimage as long as this leakage is restricted to L bits. Continuous LR-
OWF (CLR-OWF) in the floppy model [3, 1] is a generalization of this where leakages can happen multiple
times. In short, it assumes a master secret key which is kept in a leakage free server (e.g., on a floppy disk)
and then can be used to securely update the preimage x. L bits of leakage on the preimage can occur after
each update. Importantly however, updates have to preserve the output of the OWF, that is f(x) = f(x′)
when x′ is an update of x.

More formally. a CLR-OWF consists of the following PPT algorithms: (1) KGen(1λ) that outputs a public
parameter pp and an update key uk. (2) Sample(pp) takes as input the parameter pp and outputs a random
OWF input x. (3) Eval(pp, x) is a deterministic algorithm that produces the OWF output y. (4) Update(uk, x)
takes in the update key uk and x, and outputs an updated OWF input x′.

We assume that a CLR-OWF satisfies the following properties.

Correctness. For any (pp, uk)← KGen(1λ) and x ∈ {0, 1}∗, we have

Eval(pp,Update(uk, x)) = Eval(pp, x).

L-Continuous leakage-resilience. Let L = L(λ). For any PPT A,

Pr

[
(pp, uk)← KGen(1λ), x← Sample(pp),

y ← Eval(pp, x), x′ ← AOL(·)(pp, y)
: y = Eval(pp, x′)

]
= negl(λ),

where OL(·) is an oracle that takes as an input a leakage function h : {0, 1}∗ → {0, 1}L, on which OL(h)
sets x← Update(uk, x) and then returns h(x).

It is shown in [1] that there exist a CLR-OWF which can leak almost the full key. We recall this result
in appendix A.

3 On Adaptively-Secure Black-Box Extraction

There is a folklore understanding that if an argument has black-box knowledge soundness (i.e., there is an
efficient algorithm Ext that can recover a witness from a proof by using a trapdoor and Ext is independent of
adversary’s code), then the proof has to be “as long as the witness”. It is easy to see that such a statement
is not entirely accurate. Consider an argument system for some relation RL where L is an NP-language.
The same argument system works for a modified relation R′

L = {(x,w∥0k) : (x,w) ∈ RL} where the witness
is padded with k zeroes for an arbitrary number k. An extractor Ext for R′

L needs to append 0k to the
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witness it extracts for RL. Importantly, the proof length for R′
L remains the same as for RL independently

of witness padding length. This section correctly formalizes the folklore result about proof size and witness
length by associating hardness of finding the witness to the size of the argument.

We begin by recalling the definition of black-box knowledge soundness.
Black-box knowledge soundness. An argument system is black-box εks(λ)-knowledge sound for a

relation R if there exists a PPT extractor Ext, such that for any PPT adversary A,

Pr

[
(crs, td)← Setup(1λ), (x, π)← A(crs)

w← Ext(crs, td, x, π)
:
V(crs, x, π) = 1 ∧

(x,w) ̸∈ R

]
≤ εks(λ)

We say the argument system is black-box knowledge sound if εks(λ) = negl(λ).
We prove that if a witness of the language can be guessed with probability ε, then the proof size must

be at least − log ε bits long (plus an additional term related to knowledge soundness error, as we see in
theorem 1). For example, if ε = 1/2k, then the proof size must be at least k. We start by formalizing the
witness guessing probability.

Definition 1. Let L be an NP language and RL a corresponding relation. We say that an efficiently sam-
pleable distribution DL over L is ε(λ)-witness-hard for a relation RL if for any PPT guesser M, and any
security parameter λ ∈ N,

Pr[x← D(1λ),w←M(1λ, x) : (x,w) ∈ RL] ≤ ε(1λ).

Theorem 1. Suppose an efficiently sampleable distribution DL over some NP language is ε(λ)-witness-hard
for a relation RL. Let Π be an argument system that has (perfect) completeness and black-box εks(λ)-
knowledge soundness. Then the argument size of Π is at least − log(ε(λ) + εks(λ)) bits.

Proof. Suppose that Π is an argument system with black-box extractor Ext and the argument size is bounded
by p(λ) bits. We construct a witness-guesserM∗ (see fig. 1), which picks a crs and an extraction key td and
guesses a uniformly randomly a proof π of size p(λ) bits. It then returns the output of the black-box witness
extractor Ext(crs, td, x, π).

Let us analyze the success probability εM∗ of M∗ in the witness-hardness game against DL. Let E be
the distribution (x,w, crs, π) obtained by running x ← D(1λ) and w ← M∗(1λ, x) (crs and π are generated
insideM∗). Then,

εM∗ = Pr[(x,w, crs, π)← E(1λ) : (x,w) ∈ RL]
≥ Pr[(x,w, crs, π)← E(1λ) : (x,w) ∈ RL ∧ V(crs, x, π) = 1]
= Pr[(x,w, crs, π)← E(1λ) : (x,w) ∈ RL | V(crs, x, π) = 1]
·Pr[(x,w, crs, π)← E(1λ) : V(crs, x, π) = 1].

Let us now look separately at probabilities ε1 := Pr[(x,w, crs, π) ← E : V(crs, x, π) = 1] and ε2 :=
Pr[(x,w, crs, π) ← E : (x,w) ∈ RL | V(crs, x, π) = 1]. Starting with ε1, (x,w) ∈ RL obviously implies
that x ∈ L and by perfect completeness there exists at least one proof of size at most p(λ) bits that
is accepted by the verifier. Thus, ε1 ≥ 1/2p(λ). In order to lowerbound ε2, we construct an adversary
B against black-box knowledge soundness. The adversary B, described in fig. 1, outputs x ← DL and a
randomly sampled proof π ← {0, 1}p(λ). By inlining B into the black-box knowledge soundness game, we get
Pr[(x,w, crs, π)← E(1λ) : V(crs, x, π) = 1 ∧ (x,w) ̸∈ RL] ≤ εks(λ). That is

Pr[(x,w, crs, π)← E(1λ) : V(crs, x, π) = 1 ∧ (x,w) ̸∈ RL]
= Pr[(x,w, crs, π)← E(1λ) : (x,w) ̸∈ RL | V(crs, x, π) = 1]
·Pr[(x,w, crs, π)← E(1λ) : V(crs, x, π) = 1]
≥ Pr[(x,w, crs, π)← E(1λ) : (x,w) ̸∈ RL | V(crs, x, π) = 1] · 1

2p(λ) .

Thus, Pr[(x,w, crs, π) ← E(1λ) : (x,w) ̸∈ RL | V(crs, x, π) = 1] ≤ εks(λ) · 2p(λ), which means that ε2 >
1− εks(λ) · 2p(λ).

By combining those results, we get that ε(λ) ≥ εM∗ > 1
2p(λ) · (1− εks(λ) · 2p(λ)) = 1

2p(λ) − εks. It follows

that ε(λ) + εks >
1

2p(λ) , which we can rewrite as p(λ) > − log(ε(λ) + εks(λ)). ⊓⊔
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M∗(1λ, x)

(crs, td)← Setup(1λ);π ←$ {0, 1}p(λ);
return w← Ext(crs, td, x, π);

B(crs)
x← D(1λ);π ←$ {0, 1}p(λ);
return (x, π);

Fig. 1: A witness guessing algorithmM∗ for RL and a knowledge soundness adversary B

To understand this claim better, let us consider for simplicity that εks(λ) = 0. Then if ε = 1
2k(λ) , we

obtain the lower bound p(λ) ≥ − log( 1
2k(λ) + 0) = k(λ). In one extreme case, we can imagine that the best

PPT witness guesser is no better than an algorithm that guesses witness at random, i.e., ε(λ) = 1/|w|. Then
we would get the folklore result that p(λ) = |π| ≥ |w|. In the other extreme, suppose that the language
is in P, in which case ε(λ) = 1. Then we get that − log(ε) = 0, which fits the intuition that there is no
need to communicate a proof for languages in P. However, in a typical situation (where we have some hard
language), the lower bound falls somewhere between those extremes.

The above impossibility can be interpreted as a consequence of leakage-resilience (LR). A SNARK proof is
leakage on the witness; for an NP relation that is leakage resilient, recovering the entire witness is impossible
for an extractor even given the leakage, if this leakage is small. We show the proof of this impossibility using
LR-OWFs in appendix B.

4 Non-Adaptive Black-Box Knowledge Soundness

In this section we define non-adaptive black-box knowledge soundness, show our positive results for FewP
and our negative result for NP.
Below we define non-adaptive black-box knowledge-soundness. To the best of our knowledge it has not
appeared in prior literature.

Definition 2 (Non-adaptive Black-box Knowledge Soundness.). An argument system is non-adaptive
black-box εks(λ)-knowledge sound for a relation R if there exists a PPT extractor Ext, such that for any PPT
adversary A = (Ainp,Aprf),

Pr

(x, st)← Ainp(1
λ), (crs, td)← Setup(1λ)

π ← Aprf(st, crs)

w← ExtAprf(st,·)(crs, td, x, π)

:
V(crs, x, π) = 1

∧(x,w) ̸∈ R

 ≤ εks(λ).

We say that the argument system is (non-adaptively) black-box knowledge sound if εks(λ) = negl(λ).

Remark 1. The adversary in definition 2 is stateful only between the input-challenge stage and the proof-
challenge stage (through st), but not otherwise. We also assume that on each query Aprf (st, ·) gets fresh
random coins.

4.1 A Construction for FewP

In this section we show that, under the existence of fully homomorphic encryption, collision-resistant hash
functions and SNARGs (not necessarily of knowledge) for a certain complexity class K, there exists a non-
adaptively secure SNARK with black-box extraction for K11. We are able to obtain non-adaptive black-box
knowledge soundness for a non-trivial subset of NP called FewP. The class FewP can be described as
the class of languages admitting at most a polynomial number of witnesses. We remark that if one-way

11 This class should include FHE encryption and CRHF and should be closed under conjunction. In our theorem
statement we simply require a SNARG for NP.
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Setup(1λ)

(ĉrs, t̂d)← Π∃.Setup(1
λ)

i∗ ←$ [Nw]

(pkFHE, skFHE)← FHE.KG(1λ)

cti∗ ← FHE.Enc(pk, i∗)

hk←$ KCRHF

return (crs := (ĉrs, cti∗ , hk, pkFHE), td := (skFHE, t̂d))

P(crs,R, x,w)

h← Hhk(w)

ctbit ← FHE.Eval(pkFHE, fproj, cti∗ ,w)

where fproj(i, w) := wi

π ← Π∃.P(ĉrs,R
′, (x, hk, pkFHE, h, cti∗ , ctbit) ,w)

where R′(x, hk, pkFHE, h, cti∗ , ctbit;w) ⇐⇒
R(x,w) ∧ h = Hhk(w) ∧ ctbit = FHE.Eval(pkFHE, fproj, cti∗ ,w)

return π∗ := (π, h, ctbit)

V(crs,R, x, π∗)

Parse π∗ as (π, h, ctbit)

return Π∃.V
(
ĉrs,R′, (x, hk, pkFHE, h, cti∗ , ctbit)

)
where R′ is defined like above

Fig. 2: Non-adaptively secure black-box extractable construction for FewP. Nw is a bound on the witness
size. Π∃ is the SNARG scheme.

permutations exist then P ̸= FewP12. One example of a natural application of a SNARK for FewP is
proving knowledge of w such that R(w) is satisfied (for arbitrary relation R) and w opens a perfectly binding
commitment.

Further preliminaries for this section can be found in appendix A where we define non-adaptive soundness
of SNARG (which simply adapts definition 2 to the non-extractable case) and the standard definitions of
fully homomorphic encryption (FHE) and collision-resistant hash-functions (CRHF) which will be tools in
our construction.

We present our extractable construction in fig. 213. As discussed in the introduction, its main intuition
is that the prover provides a (ciphertext containing a) bit of the witness together with the proof. The index
for which it is providing such bit must be somehow hidden. This is intuitively to prevent the adversary to
act differently for different bits (e.g., using different valid witnesses). This allows us to extract because by
repeatedly asking the prover for a proof referring to a different index. To achieve the latter, we use an FHE
scheme (see also remark 3). When extracting, we will need to keep track of what witness we are extracting
for (since there could be several). We do this using a fingerprint through a collision-resistant hash function.

In the construction, we denote encryptions of a message x (with an implicit public-key that should be
clear from the context) through double brackets JxK.

12 More generally, if poly-to-one one-way functions exist then P ̸= FewP [2]
13 A slightly simpler construction for the case of UP (NP statements with a unique witness) is in appendix D.
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E(crs, td, x, π)
Initialize empty table W

Retrieve (ĉrs, pkFHE, skFHE, hk) from crs, td

for j∗ = 1, . . . , Nw

Run QIdx(x, j∗)

endfor

Let h∗ s.t. W [h∗][j] ̸= ⊥ for all j

return W [h∗][1] . . .W [h∗][Nw]

QIdx(x, j)

JjK← FHE.Enc(pk, j)

Let crsj := (ĉrs, JjK, hk, pkFHE)

for k = 1, . . . , Nq = poly(λ)

Query Aprf on (crsj , x)

obtaining π∗ = (h, π, ctbit)

If proof π accepts then

b← FHE.Dec(skFHE, ctbit);

else b← ⊥
Set W [h][j]← b

endfor

Fig. 3: Extractor for the case for FewP

Remark 2 (On Zero-Knowledge of Our Construction). We observe that the construction in fig. 2 is zero-
knowledge if the underlying SNARG is zero-knowledge. We do not prove since our main focus is on the
knowledge soundness of the (succinct) proof system.

The extractor for FewP. The extractor is presented in fig. 3. It works by collecting different bits of the
witness by decrypting ctb (the ciphertext returned by the prover) and storing it in some table indexed by the
corresponding hash. The crucial point is that there is only a polynomial number of witnesses and thus the
extractor can (in the worst-case) “fingerprint” them all. Hashing the witness (through a collision-resistant
hash function) keeps the proof succinct.

Theorem 2. If Π∃ is a non-adaptively sound SNARG scheme for NP, FHE is a semantically secure FHE
scheme and H is a family of CRHFs, then the construction in fig. 2 is a SNARK for FewP satisfying
definition 2.

The proof of the theorem above is in appendix C.1.

Remark 3 (On replacing FHE with PIR). While we express our construction through the language of FHE,
we observe that the assumption of FHE can easily be replaced by the milder existence of Private Information
Retrieval (or PIR) [20].

4.2 Impossibility for All NP

We now ask if the result from above could be extended to all NP. We answer this in the negative under
mild assumptions. Our proof relies on the LR view of impossibility of BB extraction in the adaptive case
(appendix B). For the non-adaptive case, we can no longer view the SNARK proof as a one-time leakage
since the extractor (LR adversary) has the ability to rewind the prover and obtain multiple proofs (leakages).
Using continuous leakage resilience, we extend the impossibility to non-adaptive extraction.

Consider a L-CLR-OWF Σ = (KGen,Sample,Eval,Update). We define a relation RΣ = {((pp, y), w) :
pp ∈ KGen(1λ), w ∈ Sample(pp),Eval(pp, w) = y}. Suppose there is a non-adaptive black-box extractable
SNARK for RΣ . Let us further assume that the proof size of this SNARK is less than L bits.

We construct the following adversary A. First, A samples (pp, uk)← KGen(1λ), a random w, and outputs
((pp, y = Eval(pp, w)), st = (pp, uk, w)). Next, the extractor can query A(st, ·) with different CRSs and get
proofs for the statement (pp, y) ∈ LRleak

. Here we define A’s behavior as follows: on each query, A updates w,
that is it computes w′ ← Update(uk, w). Then it creates a proof with w′, π ← P(crs, (pp, y), w′), and returns
π. This proof is at most size L, thus at most L bits of information about w′ gets leaked. By L-CLR property
it is not possible to recover a witness for (pp, y) from this amount of information. Hence, the extractor cannot
extract the witness and such a SNARK cannot exist. Below, we prove this formally.
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Theorem 3. Let Σ = (KGen,Sample,Eval,Update) be an L-CLR-OWF and let Π be a non-adaptive black-
box εks(λ)-knowledge sound argument for RΣ as defined above. If the proof size is less than L(λ) bits, then
L-CLR-OWF can be broken with probability 1− εks(λ).

By combining theorem 3 and theorem 7, we obtain the following result.

Theorem 4. There exists an NP-language L such that any non-adaptive black-box knowledge sound argu-
ment system for RL has a proof size Ω(|w|) where |w| is the witness size.

5 GW Impossibility for Preprocessing SNARGs

Careful observation of [32] reveals that the CRS generation algorithm of a SNARG in their definition depends
only on the security parameter. In other words, the proof separating SNARGs from falsifiable assumptions
assumes that the SNARG is CRS succinct and they do not allow preprocessing. Many modern SNARGs
however have a relatively large CRS which depends on the size of the index i (e.g., a circuit description) in
some way [31, 39, 29, 19, 16, 58]. This makes it questionable if the original impossibility result of Gentry
and Wichs extends to such SNARGs.

5.1 Additional Preliminaries For This Section

Succinct non-interactive arguments. Here we recall the notion of non-interactive arguments for indexed
relations.

Definition 3 (Indexed relation [19]). An indexed relation R is a set of triples (i, x,w) where i is the
index, x is the instance, and w is the NP-witness; the corresponding indexed language L(R) is the set of
pairs (i, x) for which there exists a witness w such that (i, x,w) ∈ R. Indexed relation is associated with an
efficient index sampling algorithm I that outputs an index i on input 1λ.

For example, i can be an arithmetic circuit, x a public input to the circuit and w a private input to the
circuit such that the circuit outputs 1. We say that an indexed language is hard-on-average problem if it is
defined like in section 2, but additionally SampL and SampL̄ take i← I(1λ) as an input.

A succinct non-interactive argument (SNARG) for an indexed relation R is a tuple of PPT algorithms
Π = (Setup,P,V). The setup algorithm Setup(1λ, i) produces a common reference string crs. The prover
algorithm P(crs, x,w) produces a proof π for the statement (i, x) ∈ L. The verifier algorithm V(crs, x, π)
decides if π is a valid proof for a statement (i, x) by outputting either 0 or 1. Notice that P and V are not
directly given i as an input and instead get a crs which depends on i. This allows to potentially compress the
index description by preprocessing.

We require that Π satisfies the following 3 properties.

Completeness. For all (i, x,w) ∈ R, Pr[crs← Setup(1λ, i), π ← P(crs, x,w) : V(crs, x, π) = 1] = 1.
Soundness. For all non-uniform PPT adversaries A,

Pr

[
i← I(1λ), crs← Setup(1λ, i)

(x, π)← A(1λ, i, crs)
:
V(crs, x, π) = 1∧

(i, x) ̸∈ L

]
= negl(λ).

Proof succinctness. Exists a constant c < 1 such that the length of the proof π is bounded by succ(λ, |x|, |w|) :=
poly(λ) · (|x|+ |w|)c.

We note that this is the original definition of (proof) succinctness from [32] and various other definitions
can be found from the literature. Moreover, we occasionally discuss two other forms of succinctness.

Verifier succinctness. Exists a constant c < 1 such that the verifier’s running time is bounded by poly(|x|+
succ(λ, |x|, |w|)).

CRS succinctness. CRS size is poly(λ). Importantly, CRS size is independent of |i|.

For example, [56, 39, 19, 16, 58] are proof and verifier succinct but not CRS succinct.
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Falsifiable assumptions. Below we recall the notion of falsifiable assumptions.

Definition 4 ([32]). A falsifiable cryptographic assumption (C, c) consists of a PPT challenger C and a
constant c ∈ [0, 1). We say that A wins (C, c) if A(1λ) and C(1λ) interact and finally C outputs 1. The
assumption (C, c) holds if for all efficient non-uniform A, Pr[A wins (C, c)] ≤ c+ negl(λ). Otherwise we say
that (C, c) is false.

Definition 4 captures most used cryptographic assumptions in the literature. For example, many search
assumptions such as discrete-logarithm (DL), computational Diffie-Hellman (CDH), etc can be captured by
this definition with c = 0. Moreover, the definition captures many decisional assumptions such as decisional
Diffie-Hellman (DDH), decisional Learning with Errors (LWE), etc as (C, c = 1/2) assumptions since the
adversary in this case can win with probability 1/2 by random guessing. An example of assumptions that
are not falsifiable are “Knowledge” assumptions [25, 40] that assume the existence of some non-black-box
extractor.

black-box reductions. We recall the definition of black-box reduction from [32] adapted to the indexed
relations. Similarly to [32], the definition is for the concrete case of showing soundness of some SNARG proof
system Π = (Setup,P,V) based on some falsifiable assumption (C, c).

Definition 5. We say that a (possibly inefficient) machine P is a Π-adversary if there exists a polynomial
p(·) and infinitely many λ ∈ N such that

Pr[crs← Setup(1λ, i), (x, π)← P(crs, i) : (i, x) ̸∈ L ∧ V(crs, x, π) = 1] ≥ 1/p(n)

Definition 6. A black-box reduction that shows the soundness of Π based on a falsifiable assumption (C, c)
is an efficient oracle machine R(·) such that, for every (possibly inefficient) Π-adversary P, the machine RP

breaks the assumption.

Definition 7 ([57]). We say that an oracle machine RO(·) is a security-parameter preserving black-box
reduction if there exist a polynomial q such that RO(·)(1λ) queries O(·) with inputs of the form (1λ, x ∈ {0, 1}∗)
and at most q(λ) times.

5.2 Our Result

We reprove the impossibility theorem for SNARGs that are not necessarily CRS-succinct.
Firstly, let us recall the leakage lemma from [32]. We say that a distribution A over tuples (x, π) is an

augmented distribution of X if x is distributed according to X and π is some arbitrary information, possibly
correlated to x. More formally, we may write A is the distribution over (x, π) such that x←$ X and π ← f(x)
where f is some (randomized and possibly inefficiently computable) function.

Lemma 1 (Leakage lemma [32]). There exists a polynomial p for which the following holds. Let Xλ

and X̄λ be two distributions that are (s(λ), ε(λ))-indistinguishable. Let Aλ over (x, π) be an augmented
distribution of Xλ where |π| = ℓ(λ). Then there exist an augmented distribution Āλ of X̄λ such that Aλ and
Āλ are (s∗(λ), ε∗(λ))-indistinguishable where s∗(λ) = s(λ)p(ε(λ)/2ℓ(λ)) and ε∗(λ) = 2ε(λ).

We also present some definitions which help to prove the main result.

Definition 8 (Breaking Adaptive Soundness [57]). We say that an algorithm A breaks adaptive sound-
ness of a SNARG Π for a relation R with probability ε(·) if there exists an index i ∈ I such that for every
λ ∈ N,

Pr[crs← Setup(1λ, i), (x, π)← A(1λ, crs) : (i, x) ̸∈ L ∧ Verify(crs, x, π) = 1] ≥ ε(λ).

Note that if ε(λ) is non-negligible, then adaptive soundness cannot be satisfied.
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Definition 9 (Soundness Reduction [57]). We say that a PPT machine R is a black-box reduction for
adaptive soundness of an argument Π based on a falsifiable assumption (C, c) if R is a security-parameter
preserving black-box reduction and there exists a polynomial p(·, ·) such that for every A that breaks adaptive
soundness with probability ε(·), for every λ ∈ N, RA(1λ) wins (C, c) with a probability at least p(ε(λ), 1/λ).

We start by stating two technical lemmas, which we prove in appendix C.

Lemma 2. If an indexed languages L ∈ NP has a sub-exponentially hard-on-average problem, then for any

d > 0, L also has a hard-on-average problem with (2λ
d

, 2λ
d

)-indistinguishability.

Lemma 3. Let Xλ and X̄λ be (2λ
d

, 1/2λ
d

)-indistinguishable distributions for some integer d ≥ 2. Let Aλ

over (x, π) be an augmented distribution of Xλ, where |π| = ℓ(λ) = o
(
λd

)
. Then there exists an augmented

distribution Āλ of X̄λ such that Aλ and Āλ are (poly(λ), negl(λ))-indistinguishable.

Remark 4. Note that (s(λ), ε(λ)) = (poly(λ), negl(λ))-indistinguishability is not enough in the previous
lemma because

s∗(λ) =s(λ)p(ε(λ)/2poly(λ)) = poly(λ)p(negl(λ)/2poly(λ))

=poly(λ)p(2−ω(poly(λ))) = 2−ω(poly(λ)),

given that p is not a constant polynomial.

Now we are ready to restate the Gentry-Wich’s impossibility result respect to preprocessing SNARGs
from section 5.1.

Theorem 5. Assume that,
– L is an indexed language with a sub-exponentially hard-on-average problem (see section 2).
– Π is a SNARG for L, i.e., it is complete, sound, and proof-succinct (but not necessarily verifier-succinct

or CRS-succinct).
Then, for any falsifiable assumption (C, c) either:
– (C, c) is false or,
– there is no black-box reduction for adaptive soundness of Π based on (C, c).

Proof. Suppose there exists a PPT black-box reduction R for adaptive soundness of Π based on a falsifiable
assumption (C, c) and that R makes at most q(1λ) queries to its oracle, where q is some polynomial. The
proof idea is that we construct a computationally unbounded adversary A∗ that is able to break adaptive
soundness. Then we show using lemma 1 that there is an efficient emulator Emul that gives outputs which
are indistinguishable from outputs of A∗. Thus, if RA∗

(1λ) is able to break the assumption (C, c), then so is
REmul(1λ) and it follows that (C, c) must be false.

Since Π is proof-succinct there exists some n such that the proof size ℓ is bounded by λn · (|x|+ |w|)o(1).
Moreover by lemma 2, since we assume that some sub-exponentially hard-on-average problem exist for L,
there also exist a sub-exponentially hard-on-average problem with (2λ

n+2

, 2λ
n+2

)-indistinguishability. Let it
be defined by an index sampler I and instance samplers SampL and SampL̄. It is more convenient to start
from describing the emulator Emul before we describe A∗. The emulator (see also fig. 4) on input (1λ, crs, i)
checks that i is well-formed, samples (x,w) ← SampL(1

λ, i), creates a proof π ← P(crs, x,w) and returns
(x, π).

Notice that since SampL runs in polynomial time in λ, then |x| = poly(λ) and |w| = poly(λ). Therefore,

the proof size is ℓ(λ) = λo(nd+2).
Let us fix some arbitrary oracle input (1λ, crs, i). Let Xλ,i be the distribution of x that we get from

sampling (x,w) ← SampL(1
λ, i) and X̄λ,i the distribution of x̄ we get by sampling x̄ ← SampL̄(1

λ, i). As we

established, these distributions are (2λ
n+2

, 2λ
n+2

)-indistinguishable. Let Aλ,i,crs be the augmented distribution
of Xλ,i defined as (x, π) ← Emul(1λ, crs, i). By lemma 3, there exists an augmented distribution Āλ,i,crs of
X̄λ,i such that Aλ,i,crs and Āλ,i,crs are (poly(λ), negl(λ))-indistinguishable.
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A∗(1λ, crs, i)

if i ̸∈ I(1λ)
return ⊥;

(x̄, π̄)← Āλ,i,crs;

return (x̄, π̄);

Emul(1λ, crs, i)

if i ̸∈ I(1λ)
return ⊥;

(x,w)← SampL(1
λ, i);

π ← P(crs, x,w);

return (x, π);

Oi(1
λ, crs, i)//Initially j = 1

if j ≤ i

(x, π)← Emul(1λ, crs, i);

else

(x, π)← A∗(1λ, crs, i);

j ← j + 1;

return (x, π);

Fig. 4: Soundness adversary A∗, its efficient emulator Emul, and hybrid adversaries Oi

Now we can describe the adversary A∗. On the query input (1λ, crs, i) it simply returns (x̄, π̄)←$ Āλ,i,crs.
Since Āλ,i,crs is not necessarily efficiently sampleable, A∗ may be inefficient.

Our goal is to show that the assumption (C, c) is false if R exists, i.e.,

Pr[REmul(1λ) wins (C, c)] > c+ negl(λ).

We show this in two parts.
1) RA∗

wins (C, c).
Firstly, let εA∗(1λ) be the probability that A∗ breaks adaptive soundness of Π,

εA∗(λ) := Pr

[
i← I(1λ), crs← Setup(1λ, i)

(x, π)← A∗(1λ, crs, i)
: (i, x) ̸∈ L ∧ V(crs, x, π) = 1

]
.

Let us first only consider the probability of the verifier accepting a proof,

εVf=1(λ) := Pr

[
i← I(1λ), crs← Setup(1λ, i),

(x, π)← A∗(1λ, crs, i)
: V(crs, x, π) = 1

]
.

Due to completeness, we know that εEmul(λ) = 1, where

εEmul(λ) := Pr[i← I(1λ), crs← Setup(1λ, i), (x, π)← Emul(1λ, crs, i) : V(crs, x, π) = 1].

Since V can be seen as a polynomial size distinguisher for Aλ,i,crs and Āλ,i,crs, we get from before that
|εEmul(λ)−εVf=1(λ)| ≤ negl(λ). Therefore, 1−negl(λ) ≤ εVf=1. Since Pr[i← I(1λ), crs← Setup(1λ, i), (x, π)←
A∗(crs, i) : (i, x) ̸∈ L] = 1, εA∗ = εVf=1 ≥ 1 − negl(λ). Thus, A∗ breaks adaptive soundness with an
overwhelming probability. Since we assumed a black-box reduction R, there must exist a polynomial p(·, ·)
such that RA∗

(1λ) breaks (C, c) with probability at least p(1− negl(λ), 1/λ).
2) RA∗

is indistinguishable from REmul.
Let q be the number of queries that R makes to its oracle. Let Oi for i ∈ {0, . . . , q(λ)} denote a stateful

algorithm that we describe in the following. The machine Oi for the first i queries responds as Emul and
for the rest of the queries (1λ, crs, i) responds as A∗ (see fig. 4). In particular O0 = A∗ and Oq(λ) = Emul.

We denote εi := Pr[ROi(1λ) wins (C, c)]. We can again use indistinguishability of Aλ,i,crs and Āλ,i,crs to show
that |εi − εi+1| ≤ negl(λ). Therefore, by triangle inequality |ε0 − εq(λ)| ≤ q(λ)negl(λ) = negl(λ).

Since ε0 = εA, we get that Pr[R
Emul(1λ) wins (C, c)] = εq(λ) ≥ ϵA−negl(λ) = p(1−negl(λ), 1/λ)−negl(λ).

Thus, REmul(1λ) can break the assumption (C, c) with an overwhelming probability. ⊓⊔

6 Understanding SNARG Impossibilities

In this section, we provide a view of known impossibilities in literature for non-interactive arguments in an
attempt to provide a complete picture. This illustrates the precise assumptions behind these impossibilities
in order to identify avenues for further research. The following are some of the major impossibility results.
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1. Gentry-Wichs [32]: Adaptive soundness of a SNARG cannot be proven via a black-box reduction to a
falsifiable assumption.

2. Pass [57]: Adaptive soundness of a statistical NIZK argument cannot be proven via a black-box reduction
to a falsifiable assumption.

3. Groth [39]: Any pairing-based SNARK obtained from a NILP (a non-interactive linear proof) must
contain at least 2 group elements, one in each of the pairing source groups.
Since [39] is relevant only in a very specific setting, and [57] is about general NIZKs, we will not focus

on it in the rest of the paper. We recall the proof idea of [57] in appendix F and the proof idea of [32] in
appendix E. In the following, we discuss the impossibility result of [32] and then outline the landscape of
positive and negative results in Table 1.

6.1 Impossibility of Gentry-Wichs

We recall the main result of [32].

Theorem 6. Let L be a sub-exponentially hard NP language and let Π be a SNARG for L, satisfying
completeness and succinctness properties. Then, for any falsifiable assumption (C, c), either (C, c) is false,
or there is no black-box reduction showing the (adaptive) soundness of Π based on (C, c).

Understanding Gentry-Wichs impossibility. We now look closely at the assumptions behind the
Gentry-Wichs impossibility and enumerate the scenarios to which it does not apply. While some of these are
known results, they are all scattered in literature. Here, we provide a comprehensive view of the applicability
of Gentry-Wichs.

– Non-adaptive soundness: The impossibility holds only for adaptive soundness. The proof technique
used in GW to rule out a black-box reduction uses a stateless adversary that outputs an instance proof
pair (x, π) in input a CRS. In particular, this does not rule our reductions that can rewind the prover and
obtain different proofs for the same x and CRS, which is possible in the case of non-adaptive soundness.
Recent work shows that this impossibility is indeed tight by giving a positive result [53]: a non-adaptive
SNARG for hard languages based on a new, albeit, falsifiable assumption.

– Low-space non-deterministic computation: The high-level idea of the GW impossibility result is a
“leakage lemma” that says the following: assuming the underlying NP language is 2ℓ-hard, a reduction
that breaks the assumption, cannot distinguish between pairs (x, π) generated by a (possibly inefficient)
cheating prover, where x ̸∈ L and π is a proof of length ℓ, and a pair (x̃, π̃) where x̃ ∈ L and π̃ is an
efficiently generated proof. Therefore, for computations in NTISP (poly(n), S(n)), the GW result does
not rule out the possibility of a SNARG with proofs of length poly(λ)(S(n)), since a computation in
NTISP (poly(n), S(n)) is in DTIME(poly(n) · 2S(n)) which is not poly(n) · 2O(S(n))-hard. The work of [4]
construct a delegation scheme for non-deterministic computations with proof length that grows only with
the space of the computation.

– Preprocessing SNARGs: The GW separation result holds for SNARGs that have a “short” CRS. More
precisely, the impossibility proof requires that the size of the CRS depends only on the security parameter,
and not grow with the size of the instance. Preprocessing SNARGs do not satisfy this condition: the
preprocessing phase depends on the instance (the circuit) and produces a CRS that is as long as the size
of the circuit14. In Section 5, we extend the original GW result to the preprocessing setting.

– Trapdoor languages: Groth-Sahai techniques have been used to construct NIZKs for algebraic relations.
For a subset of the languages supported by Groth-Sahai, there are efficient proofs [43, 50] in the quasi-
adaptive setting (QA-NIZK). These proofs have a constant number group elements – regardless of the
number of equations or the number of variables. The construction of [48] for languages consisting of linear
subspaces of a vector space, have constant sized proofs, achieve adaptive soundness (based on a falsifiable
assumption) and perfect zero-knowledge. This is seemingly contradicting the GW impossibility result (as

14 The verifier does not need this long CRS, a short verification CRS suffices.
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DL[M]1
(M, [x⃗]1)

r ← rank(M);

for A = (M ′ | x⃗′) ∈ Z(r+1)×(r+1)
p submatrix of (M | x⃗)

[det(A)]1 ←
d∑

i=1

(−1)i+d[x′
i]1Di,d;

if [det(A)]1 ̸= [0]1 : return false;

return true;

Fig. 5: Efficient decision algorithm for L[M ]1 , given access to trapdoor M

well as the impossibility on perfect zero-knowledge in [57])15. We note that these results in the quasi-
adaptive setting do not contradict the GW impossibility because the CRS hides a trapdoor that allows
deciding membership in the language. The proof of GW rules out reductions that cannot efficiently detect
when the soundness property is broken. We formalize this notion of trapdoor languages for which the
impossibility results in [32] and [57] do not apply.

6.2 Bypassing GW: Trapdoor Languages

At a high level, a trapdoor language allows verifying membership in the language if one knows a certain
trapdoor, and the impossibility proof of GW will not go through if the reduction can check membership
efficiently. Towards formalizing such languages, we illustrate this by taking the linear subspace language as
an example. We begin by recalling the language of linear subspaces from [48]. We have a distribution D that
outputs a language parameter lpar = [M ]1 ∈ Gn×m

1 and the respective linear subspace language is defined as

L[M ]1 = {[x⃗]1 ∈ Gn
1 | ∃w⃗ ∈ Zm

p : x⃗ = M · w⃗}.

It is essential in the proof of [32] that the reduction algorithm R that picks the CRS, (and in case of the
linear subspace language, also picks the language parameter lpar), cannot efficiently distinguish elements
x ∈ L from x ∈ L. The latter condition, however, does not hold for linear subspace languages. In particular,
we now argue that it is possible to efficiently decide if [x⃗]1 ∈ L[M ]1 by knowing M .

Observe that given both M and x⃗ as integers, by Kronecker–Capelli theorem there exists w⃗ ∈ Zm
p such

that x⃗ = Mw⃗ (i.e., [x⃗]1 ∈ L[M ]1) if and only if rank(M) = rank(M | x⃗). Turns out a similar test can be used
even when given only [x]1 and M , but some extra care needs to be taken to compute rank(M | x⃗). Firstly,
consider a submatrix A = (M ′ | x′) ∈ Zd×d

p of (M | x⃗) which includes the last column x⃗. By using Laplace

expansion, we are able to compute [det(A)]1 =
∑d

i=1(−1)i+d[x′
i]1Di,d where Di,d is a determinant of the

submatrix that we get by removing i-th row and d-th column from A. We still do not know det(A), but by
comparing [det(A)]1 to [0]1, we can tell if A is a singular or a non-singular matrix. Considering that rank
of a matrix is the largest order of any of its non-zero minors, we obtain the algorithm in fig. 5 for deciding
elements of L[M ]1 .

In more detail, we first compute rank r of M , which can be done efficiently. The rank of (M | x⃗) can be
at most r + 1 since it includes only one extra column. To test this, we iterate over all the (r + 1)× (r + 1)
submatrices A of (M | x⃗) that contain the x⃗ column and compute [det(A)]1. If one of the determinants is
non-zero, then rank(M | x⃗) = r + 1 and it follows that [x⃗]1 ̸∈ L[M ]1 . Otherwise, rank(M | x⃗) = r = rank(M)
and [x⃗]1 ∈ L[M ]1 . In order for DL[M]1

to be efficient, we assume that n and m are small constants.
As we saw above, the linear subspace language has a trapdoor M which allows to efficiently recognize

language elements and this sufficient to avoid the [32] impossibility. We now generalize this observation by
defining a trapdoor language.

15 The proof of [48] contains 1 group element and bypasses the [39] impossibility as well. This is not contradictory
because the [39] impossibility only applies to pairing-based NIZKs that are compiled from NILPs
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Definition 10. Let D(1λ) be an efficiently sampleable distribution that outputs (lpar, td) and each lpar is
associated with a language Llpar. We say that {Llpar}(lpar,td)∈D(1λ),λ∈N is a family of trapdoor languages if

there exists a PPT deciderM such that for all λ ∈ N and all (lpar, td) ∈ D(1λ),

x ∈ L ⇔M(1λ, lpar, td, x) = 1.

The security definitions from section 5.1 for non-interactive arguments slightly change in that the Setup
additionally takes the language parameter as input and outputs a CRS.

The soundness definition in general is not efficiently falsifiable because checking x ̸∈ L is usually not
efficient. However, with trapdoor languages it is falsifiable sinceM is efficient. In particular, this means that
even a tautological assumption “Π is sound” becomes a falsifiable assumption.

Examples of useful trapdoor languages. In general, we are interested in “hard” trapdoor languages,
that is, trapdoor languages that are hard to decide without knowledge of td. We illustrate a few examples
below.
– Linear subspace language. Firstly, let us observe that the linear subspace languages fits into the trapdoor

language definition. We let D(1λ) pick a pairing description bp and sample a matrix M according to
some distribution. D(1λ) outputs lpar = (bp, [M ]1) and td = M . Deciding if x ∈ L[M ]1 can be decided
efficiently given td as we argued before. For many distributions of M , L[M ]1 is considered to be a hard

language on average. For example, if M = (1, x)⊤ and x,w ←$ Zp, then [Mw]1 = (w,wx), which is
indistinguishable from a random tuple [u, v]⊤1 ←$ G2

1 under the decisional Diffie-Hellman assumption.
More generally, hardness of such distributions is characterized by the matrix decisional Diffie-Hellman
(MDDH) assumption [26].

– Statements about encrypted values. Many statements about ciphertexts can be naturally formalized as
a trapdoor language by using the public key as lpar and the secret key as td. Consider the following
example.
Let (KGen,Enc,Dec) be a public key cryptosystem for encrypting ℓ-bit messages and let C : {0, 1}ℓ →
{0, 1} be an efficiently computable boolean circuit. We set D(1λ) = KGen(1λ), that is lpar = pk is the
public key and td = sk is the corresponding secret. We define the language as LC

pk = {c | C(Dec(sk, c)) =

1}. In other words, LC
pk contains ciphertexts that encrypt a message m which satisfy some property

characterized by the circuit C. For example, in range proofs we would have C which checks that k1 ≤
m ≤ k2 for some constants k1 and k2. Clearly, LC

pk is a trapdoor language since given sk it is possible to
decrypt c and efficiently check that the plaintext satisfies C.

– Shuffle. Another popular ciphertext-based language that fits into the trapdoor language mould is the
ciphertext shuffle. We set D = KGen. Let Σn be the set of permutations on n elements. The shuffle
language for n ciphertexts is

Ln-shuf
pk ={

(
(c1, . . . , cn), (c

′
1, . . . , c

′
n)
)
|

∃σ ∈ Σn ∀i ∈ {1, . . . , n} : Dec(sk, ci) = Dec(sk, c′σ(i))}

With the secret key as the trapdoor, statements are easy to verify since one can decrypt both ciphertext
vectors, sort the resulting plaintext vectors, and then check their equality.
Shuffle proofs are often used to prove correct behaviour of mix-networks, which have for instance found
application in e-voting systems to anonymize ciphertexts of voters [60].

– Set membership. Let us consider a public set S and a public key cryptosystem. A set membership
language for S is defined as LS

pk = {c : Dec(sk, c) ∈ S}. This is clearly a trapdoor language where again
sk plays the role of a trapdoor. González and Ráfols [36] show that an argument for this language (and
its aggregated version for multiple ciphertexts) can be used to obtain, for example, shuffle arguments
and range arguments. Of course, there are also more direct application like showing that c encrypts a
valid candidate in an e-voting system, where S is the set of all candidates.
We note that trapdoor languages are interesting, arise frequently in practice and GW impossibility does

not apply. Can we construct SNARGs from falsifiable assumptions for trapdoor languages? We leave resolving
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Table 1: (Im)possibility results for non-interactive arguments under falsifiable assumptions. BB stands for
black-box.

adaptive
sound-
ness

public
verifier

succinct
argument

language class statistical
ZK

notes/citation

+ +/− + NP +/− No BB reduction [32]

+ +/− +/− NP + No BB reduction [57]

− + + NP + [53] and [59]

+ + + P trivial [44, 37, 22]

+
(quasi-

adaptive)

+ + linear subspace + [48]

− + + batch NP − [21]

+ + + non-deterministic
bounded space

− [45]

this as an interesting open question, and believe that our formalization is a first step in identifying the middle
ground where GW does not apply but the language remains interesting.

6.3 A Complete Picture

In table 1, we give an overview of the impossibility results for non-interactive arguments, and positive results
known under various relaxations. As already highlighted above, there are two major impossibility results.
Firstly, there is no adaptively sound succinct argument for all non-deterministic computations with a black-
box reduction to a falsifiable assumption [32]. This holds even with a designated verifier (a verifier that holds
a private verification key). Secondly, there is no statistical zero-knowledge argument (succinct or not) for
all non-deterministic computations with a black-box reduction to a falsifiable assumption [57]. Although not
mentioned in the original paper, this impossibility result also extends to the designated verifier. 16

On the other hand, by relaxing some of the requirements, it is possible to achieve succinct arguments and
also statistical zero-knowledge arguments. Delegation schemes are adaptively sound succinct arguments for
deterministic computation and they are achievable under falsifiable pairing-based and lattice-based assump-
tions as was shown by [44, 37, 22]. Recently Lipmaa and Pavlyk [53] showed that non-adaptivity is another
possible relaxation. They construct a non-adaptively sound SNARG for non-deterministic computation that
has perfect zero-knowledge based on a new, but falsifiable assumption. A non-adaptively sound SNARG
under a falsifiable assumption was known even prior to [53]. Namely, Sahai and Waters [59] constructed
a succinct perfect NIZK argument with non-adaptive soundness from iO. Subsequent to their work, con-
structions of iO have been proposed which are secure under falsifiable assumption, e.g. [63]. We give a brief
overview of this SNARG construction in appendix G.

Acknowledgement. We thank the reviewers of CRYPTO 2022 for constructive feedback, in particular, for
pointing out the connection between blackbox extractability and leakage-resilient cryptography.
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A Further Preliminaries

A.1 Non-Adaptive Soundness

We say an argument system satisfies non-adaptive soundness for a relation R if for any PPT adversary
A = (Ainp,Aprf),

Pr

 (x, st)← Ainp(1
λ)

(crs, td)← Setup(1λ)

π ← Aprf(st, crs)

:
V(crs, x, π) = 1

∧ ∀w(x,w) ̸∈ R

 = negl(λ).

A.2 Fully Homomorphic Encryption (FHE)

An FHE scheme consists of a tuple of algorithms (KG,Enc,Dec,Eval) with the following syntax:

KG(1λ)→ (pk, sk): generates a key pair (the algorithm is randomized).

Enc(pk,m)→ ct: produces a ciphertext corresponding to a message m through the public key (the algorithm
is randomized).

Dec(sk, ct)→ m: decrypts a ciphertext through the secret key (the algorithm is deterministic).

Eval(pk, ctm, F )→ ctF : produces an encryption of F (m) from an encryption of m through the public key.
Occasionally we will overload this notation for functions with arity higher than 1 or that take as input
plaintexts, which can be seen as dummy ciphertexts (the algorithm is deterministic).

An FHE scheme should satisfy correctness and semantic security.

Correctness. For any λ, plaintext m and function F

Pr [Dec(sk, ct) = m] = 1

and

Pr [Dec(sk,Eval(pk, ct, F )) = F (m)] = 1

where (pk, sk)← KG(1λ) and ct← Enc(pk,m).

Semantic security. For all λ, for any PPT adversary A = (A1,A2)

Pr



(pk, sk)← KG(1λ)

(st,m0,m1)← A1(pk)

b←$ {0, 1}
ct← Enc(mb)

b′ ← A2(st, ct)

: b = b′

 = negl(λ)
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A.3 Collision-Resistant Hash Functions (CRHF)

We say that a family of function H is collision-resistant if for all λ, for all PPT adversary A

Pr

[
hk←$ Kλ

(x, y)← A(hk)
:
Hhk(x) = Hhk(y)

∧ x ̸= y

]
= negl(λ)

where Kλ is the key space corresponding to parameter λ.
We also require the hash function to be computable in polynomial time and to satisfy a shrinkage property,

that is, for every input x ∈ {0, 1}∗ the output size is bounded by a fixed polynomial in λ.

A.4 Construction of CLR-OWF

Agrawal et al. [1] propose and prove the security of the following CLR-OWF. KGen(1λ) picks a discrete
logarithm secure group G of order p with a generator g. It samples α⃗ = (α1, . . . , αn) ←$ Zn

p and sets
gi ← gαi for i = 1, . . . , n. The public parameter is pp = (G, g, g1, . . . , gn) and the update key is uk = α⃗. The
sampling algorithm Sample(pp) outputs x⃗←$ Zn

p . Eval(pp, x⃗) returns y ←
∏n

i=1 g
xi
i . Update(uk, x⃗) chooses a

random vector β⃗ that is orthogonal to α⃗ and returns x⃗′ ← x⃗+ β⃗.

The correctness holds since
∏n

i=1 g
x′
i

i = g
∑n

i=1 αixi+
∑n

i=1 αiβi = g
∑n

i=1 αixi =
∏n

i=1 g
xi
i .

Theorem 7 ([1]). If the discrete logarithm assumption holds in group G, then there exists a L-CLR-OWF
in the floppy model, with L(λ) < (n− 2) log p− ω(log λ).

B Impossibility of Adaptive BB Extraction Using LR-OWF

The impossibility shown in theorem 1 can be interpreted as a consequence of leakage-resilience; a SNARK
proof is leakage on the witness. For an NP relation that is leakage resilient, recovering the entire witness is
impossible for an extractor even given the leakage, if this leakage is small.

Definition 11 ((ℓ, ε)-LR-OWF). A function family F = {fi : Di → Ri} is (ℓ, ε)-LR one way if:

– There exists efficient algorithms (i) KGen(1λ) to sample an index i (ii) Sample(i) for sampling an input
x← Di (iii) Eval(i, x) for computing y = fi(x).

– For any PPT A,

Pr

[
i← KGen(1λ), x← Sample(i),

y ← Eval(i, x), x′ ← AOℓ(·)(i, y)
: y = Eval(i, x′)

]
≤ ε

where Oℓ(·) is an oracle that takes as an input a leakage function h : {0, 1}∗ → {0, 1}ℓ, on which Oℓ(h)
returns h(x).

Let F be a family of (ℓ, ε)-LR OWFs. For f ∈ F , consider the relation Rf := {(x,w) | x = f(w)}.

Theorem 8. A non-interactive argument system Π for Rf with argument size at most ℓ, has black-box
knowledge soundness error εks ≥ 1− ε.

Proof. By LR one-wayness of f , we have

Pr[x← D,w← AOℓ(·)(1λ, x) : (x,w) ∈ Rf ] ≤ ε.

Consider an argument system Π for Rf with argument size bounded by ℓ bits. Let Ext be the black-box
extractor guaranteed by Π. We construct an adversary AOℓ(·) that breaks the ℓ-leakage resilience of f . A
receives as challenge x, picks a crs together with an extraction key td, sets h(w) := P(crs, x,w), and receives
π ← Oℓ(h). It then invokes the black-box witness extractor Ext(crs, td, x, π) to receive w, and returns w as
preimage. Assuming perfect correctness, we have that A succeeds in breaking one-wayness of f with the
probability that the extractor succeeds. Pr[A succeeds ] ≥ 1− εks(λ). Thus, εks ≥ 1− ε. ⊓⊔
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Since an adversary can always guess the correct leakage with probability 1/2ℓ, all OWFs are LR with ℓ =
O(log |w|). We therefore obtain as a corollary, the impossibility of BB SNARKs with logarithmic argument
size.

Corollary 1. Assuming the existence of OWFs, a SNARK with negligible black-box knowledge soundness
error must have argument size at least Ω(log |w|).

C Additional Proofs

C.1 Proof of Theorem 2

Theorem 9 (Restatement of theorem 2). If Π∃ is a non-adaptively sound SNARG scheme for NP,
FHE is a semantically secure FHE scheme and H is a family of CRHFs, then the construction in fig. 2 is a
SNARK for FewP satisfying definition 2.

Proof. We use the extractor in fig. 3. The extractor can have embedded Nw, a bound on the number of
witnesses, since it is non-uniform. In the remainder, we define S(j), for index j, as the set of strings h for
which W [h][j] ̸= ⊥ after running QIdx(x, j). That is

S(j) :=
{
h :W [h][j] ̸= ⊥ after running QIdx(x, j) ∧

}
Later in lemma 4 we show that for j ∈ S(h) there exists w such that R(x,w) ∧ H(w) = h (with high
probability). Therefore h ∈ S(j) intuitively means “the extractor holds the bit j of an actual witness w and
H(w) = h”.

In order to argue black-box knowledge soundness, we should be able to successfully extract from an
adversary with noticeable probability of returning an accepting proof17. We show that for this type of
adversary it holds with noticeable probability that ∃h ∈

⋂Nw

j=1 S(j) (this is key for extraction; see last line
in extractor definition). We argue this is the case by combining two facts:

– S(j) = S(j′) with overwhelming probability for all j, j′ (lemma 6);

– If Pr [adversary returns an accepting proof] is non-negligible then Pr [S(j) ̸= ∅] is non-negligible (lemma 7);

If ∃h ∈
⋂Nw

j=1 S(j), then the string returned by the extractor is a witness with overwhelming probability
because W [h][j] is a bit of a witness for the relation with overwhelming probability (by lemma 4) and
because, except with negligible probability, there exists a unique w such that Hhk(w) = h (by lemma 8). This
concludes the proof. ⊓⊔

The following auxiliary lemma shows that an element in the table constructed by the extractor actually
captures a bit of the witness with high probability.

Lemma 4. For any PPT adversary A, for each j ∈ Nw, for each h ∈ S(j) (where S is defined in the proof
of theorem 9) the following probability p is overwhelming:

p := Pr

∃w :

R(x,w) ∧
Hhk(w) = h ∧
W [h][j] = wj


Proof. Consider h ∈ S(j). Notice that the event above is implied by the event R(x,w) ∧ h = Hhk(w) ∧ ctbit =
FHE.Eval(pkFHE, fproj, cti∗ ,w) (this is because the extractor in fig. 3 sets W [h][j] to the decryption of ctbit).
We can argue that the probability of such event is overwhelming because by definition of the extractor if
h ∈ S(j) then the adversary provided a corresponding SNARG proof for the relation R′ (which is equivalent
to the event). Invoking soundness of the SNARG concludes the proof. ⊓⊔
17 This simplifies the proof, but we can argue with minor modifications the case for an adversary returning an

accepting proof with only non-negligible probability
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Setupi∗(1
λ)

(ĉrs, t̂d)← Π∃.Setup(1
λ)

(pkFHE, skFHE)← FHE.KG(1λ)

cti∗ ← FHE.Enc(pk, i∗)

hk←$ KCRHF

return (crs := (ĉrs, cti∗ , hk, pkFHE), td := (skFHE, t̂d))

Fig. 6: Modified setup with fixed index in lemma 5.

The following auxiliary lemma observes that the probability of an adversary returning a valid proof with
good probability for a CRS containing a randomly sampled index i∗ should also hold when we provide them
with a CRS “referring to” an arbitrary index i∗. This is useful to ensure that we can apply our extraction
strategy. Otherwise we could for example conceive an adversary returning a valid proof for all indices except
a few. Such an adversary would return a valid proof with high probability for a honestly generated CRS but
we would not be able to extract from it.

Lemma 5. For any PPT adversary A, if Pr [A returns an accepting proof] in the black-box knowledge-
soundness experiment (definition 2) is non-negligible then for any i∗ ∈ [Nw] the following probability is
non-negligible:

p(i
∗)

acc := Pr
[
(crs, td)← Setupi∗(1

λ), (x, π)← A(crs) : V(crs, x, π) = 1
]

where Setupi∗ is defined in fig. 6.

Proof. First observe that for any adversary A, for any j, j′ ∈ [Nw]. The probabilities p
(j)
acc and p

(j′)
acc must

be negligibly close. If they were not then we could build an adversary breaking IND-CPA of the FHE since
intuitively we could distinguish ciphertexts of j from those of j′ (a formal description of this adversary would
be a simpler variant of the one we build in the proof of lemma 6).

Next, we observe that we can write p
(avg)
acc Pr [A returns an accepting proof] in the black-box knowledge-

soundness experiment (definition 2) as a function of p
(i∗)
acc for i∗ = 1, . . . , Nw through a simple marginalization

and bound it as follows

p(avg)acc =
1

|Nw|
∑

i∗∈|Nw|

p(i
∗)

acc ≤ min
i∗∈|Nw|

p(i
∗)

acc + ϵ

where ϵ is a negligible. We can argue the bound by simple algebra and by applying our previous observation.

As a consequence of the above, it is easy to see that, if p
(avg)
acc is non-negligible, so must be each p

(i∗)
acc . ⊓⊔

Lemma 6. For any PPT adversary Aksnd = (Ainp,Aprf), for all j ̸= j′ the sets S(j), S(j′) are equal except
with negligible probability (where S is defined in the proof of theorem 9).

Proof. Assume by contradiction that it is not the case. We show we can break semantic security of FHE
(appendix A.2) with the adversary ACPA in fig. 7.

Intuitively the adversary ACPA does the following. After receiving a public key pkFHE from the FHE
challenger, it uses it to “emulate” the extractor invoking a variant of QIdx in fig. 3 (QIdx in fig. 7). That is,
ACPA constructs set S(j) exactly as the extractor (implicitly) does, but without storing the decrypted bits
in W [h][j] (which it cannot do not having the secret key). More precisely, after receiving a valid proof for
index j which includes hash h∗, ACPA will simply set W [h∗][j] to a dummy “check” value (✓ in fig. 7). This
is enough to define the sets S(j) which are our concern below. By hypothesis there exist with non-negligible
probability indices j0, j1 such that S(j0) ̸= S(j1). Adversary A1

CPA finds such indices and returns j0 and j1
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to the FHE challenger as challenge plaintexts. Once received a ciphertext ct? A2
CPA will query polynomially

many times Aprf with a CRS that uses ct? as encrypted index. Call the set of response hash ciphertexts from
these queries S?.

By setting Nq—the number of queries—to an appropriately high value in QIdx and QIdx
′
we can claim

the following fact. By invoking lemma 918, except with non negligible probability, the set S? is equal to either
S(j0) or S(j1). ACPA compares S? to them and outputs the bit corresponding to which one it is equal to.
From this we can conclude that the advantage of ACPA in breaking semantic security is negligibly close to
Pr[∃j, j′ : S(j) ̸= S(j′)]. If the latter is non-negligible so is the advantage of ACPA. Absurd. ⊓⊔

Lemma 7. For any PPT adversary A, if Pr [A returns an accepting proof] in the black-box knowledge-
soundness experiment (definition 2) is non-negligible then j ∈ [Nw] Pr [S(j) ̸= ∅] is non-negligible.

Proof. This follows easily by the definition of set S and how QIdx works (fig. 3). In fact, by inspecting the
last two lines in the loop of QIdx and the definition of S (see proof of theorem 9) we can see that S(j)
becomes is non empty set as long as the adversary returns at least one accepting proof referring to index j.

This can be bounded by the probability p
(j)
acc as defined in lemma 5. Applying that same lemma concludes

the proof. ⊓⊔

The following fact is useful in the proofs of the lemmas above. It states that we should not expect hash
collisions among witnesses.

Lemma 8. For any PPT adversary, for all witnesses w,w′ such that R(x,w) and R(x,w′) it holds that
Pr [Hhk(w) = Hhk(w

′)] is negligible, where the probability is over the randomness of the adversary and the
sampling of hk.

Proof. The statement follows directly from the collision-resistance of the hash function (appendix A.3) and
from the fact that the instance x is selected independently of the hash key (this is implied by non-adaptive
security, i.e. definition 2). ⊓⊔

The following lemma essentially states that the set S(j) “converges” after sufficiently many queries Nq =
poly(λ).

Lemma 9. For any PPT adversary, for each index j, there exists constant c such that for all constants

c′ > c the sets S(λc)(j) = S(λc′ )(j) except with negligible probability, where S(t)(j) denotes the set S(j) after
t queries to QIdx(x, j).

Proof. For an adversary returning a valid proof with negligible probability, the result follows immediately.
Let us then consider the case of an adversary returning a valid proof with non-negligible probability. We
proceed by contradiction: assume that for any polynomial number of invocations t to QIdx(x, j), the size
of the set S(j) increases with non-negligible probability after a polynomial number of steps. Call N the
number of witnesses of x and recall that N = poly(|x|) = poly(λ) since the language is in FewP. Denote by
t∗ the number of steps after which |S(t∗)(j)| = N with non-negligible probability. By our hypothesis, after a
polynomial number of steps, at least one hash image will be added to S(j) with non-negligible probability.
However, this implies either there is a hash collision among the set of witnesses with non-negligible proba-
bility (contradicting lemma 8), or that the number of witnesses is greater than N . Absurd. ⊓⊔

C.2 Proof of Theorem 3

Theorem 10. Let Σ = (KGen,Sample,Eval,Update) be an L-CLR-OWF and let Π be a non-adaptive black-
box εks(λ)-knowledge sound argument for RΣ as defined above. If the proof size is less than L(λ) bits, then
L-CLR-OWF can be broken with probability 1− εks(λ).
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A1
CPA(pkFHE)

Initialize empty table W

(ĉrs, t̂d)← Π∃.Setup(1
λ)

Run Ainp to obtain input x

hk←$ KCRHF

for j∗ ∈ [|Nw|]

Run QIdx(x, j∗)

endfor

For each j let S(j) :=
{
h : W [h][j] ̸= ⊥}

Find j0, j1 ∈ [|Nw|] such that S(j0) ̸= S(j1) (o.w. abort)

Save all computed values in state st

return (st,m0 = j0,m1 = j1)

A2
CPA(st, ctj?)

Initialize empty table W ′

Run QIdx
′
(x, ctj?)

Let S? :=
{
h : W ′[h] ̸= ⊥}

Let b = 1 if S? = S(1); o.w. let b = 0

return b

QIdx(x, j)

JjK← FHE.Enc(pk, j)

Let crsj := (ĉrs, JjK, hk, pkFHE)

for k = 1, . . . , Nq

query Aprf on (crsj , x) obtaining π∗ = (h, π, ctbit)

If proof π accepts, then set W [h][j]← ✓

endfor

QIdx
′
(x, ctj?)

Let crs? := (ĉrs, ctj? , hk, pkFHE)

for k = 1, . . . , Nq

query Aprf on (crs?, x) obtaining π∗ = (h, π, ctbit)

If proof π accepts, then set W ′[h]← ✓

endfor

Fig. 7: IND-CPA adversary and auxiliary algorithms for proof in lemma 6.

Proof. Assume that the proof size of Π is upper bounded by L(λ). We show that in this case it is possible to
break L-continuous leakage-resilient one-wayness of Σ. Firstly, we describe an adversary A = (Ainp,Aprf )
for non-adaptive black-box knowledge soundness in fig. 8. This exactly follows the intuition we discussed
above.

18 Which guarantees that Nq = poly(λ) is sufficient.
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Ainp(1
λ)

(pp, uk)← KGen(1λ);

w ←$ Sample(pp);

y ←$ Eval(pp, w);

return (x = (pp, y), st = (pp, uk, y, w));

Aprf (st, crs)

Parse st = (pp, uk, y, w);

w′ ← Update(uk, w);

π ← P(crs, (pp, y), w′);

return π;

Fig. 8: Non-adaptive black-box knowledge soundness adversary

BOL(·)(pp, y)

(crs, td)← KGen(1λ);

π ← SimOL(·)
pp,y (crs);

Run ExtSim
OL(·)
pp,y (·)(crs, td, (pp, y), π);

SimOL(·)
pp,y (crs)

Define hcrs,y,pp(X) := P(crs, (pp, y), X);

Query π ← OL(hcrs,y,pp);

return π;

Fig. 9: Continuous leakage-resilience adversary B

Game1(1
λ)

(pp, uk)← KGen(1λ);

w ← Sample(pp);

y ← Eval(pp, w);

(crs, td)← KGen(1λ);

π ← SimOL(·)
pp,y (crs);

x′ ← ExtSim
OL(·)
pp,y (·)(crs, td, (pp, y), π);

return y = Eval(pp, x′);

Game2(1
λ)

(x = (pp, y), st = (pp, uk, y, w))← Ainp(1
λ);

(crs, td)← KGen(1λ);

π ← Aprf (st, crs);

x′ ← ExtAprf (st,crs)(crs, td, (pp, y), π);

return y = Eval(pp, x′);

Fig. 10: Security games for theorem 3

Next, we construct an adversary B against CLR in fig. 9. Idea is that we want to use the extractor Ext of
Π to recover the OWF preimage. To do so, B must provide Ext with proofs which are created by crs chosen
by Ext. Since proofs depend on the OWF preimage w, B can use the leakage query oracle OL with a function
hcrs,y,pp(X) := P(crs, (pp, y), X). This is possible only because the proof size is ≤ L(λ) bits. In fig. 9, B runs

a subroutine SimOL(·)
pp,y (crs) for creating proofs.

In the following, we will analyze the success probability of B. Essentially, we show that if Ext succeeds
in extracting with high probability, then also B will succeed in breaking L-continuous leakage-resilience of
OWF with high probability.

Game0. This is the original L-CLR game with the adversary B from section 2.1.
Game1. This is the same game with B being in-lined. See fig. 10. Obviously the probability that y =

Eval(pp, x′) is the same in both games.
Game2. This game is again just a slight rewrite of the previous Game1. Note that the first three lines of

Game1 in fig. 10 are equivalent to Ainp(1
λ). So we instead write (x = (pp, y), st = (pp, uk, y, w))← Ainp(1

λ)

in Game2. Moreover, SimOL(·)
pp,y (crs) and Aprf (st, crs) produce the exact same proof π. We change SimOL(·)

pp,y (crs)
to Aprf (st, crs) in Game2. Clearly again the probability of y = Eval(pp, x′) is the same as before.

Note that Game2 with the winning condition V(crs, (pp, y), π) = 1 ∧ y ̸= Eval(pp, x′) is the non-adaptive
black-box knowledge soundness game. We know that this probability is bounded by εks(λ). Thus, V(crs, (pp, y), π) ̸=
1 ∨ y = Eval(pp, x′) happens with a probability > 1 − εks(λ). However, V(crs, (pp, y), π) ̸= 1 is not possible
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given the construction of Aprf . Thus, V(crs, (pp, y), π) ̸= 1∨y = Eval(pp, x′) is equivalent to y = Eval(pp, x′),
which is the Game2 winning condition. It follows that B can break L-CLR with the probability 1−εks(λ). ⊓⊔

C.3 Proofs of Lemmas 2 and 3

The following is a restatement of lemma 2.

Lemma 10. If an indexed languages L ∈ NP has a sub-exponentially hard-on-average problem, then for

any d > 0, L also has a hard-on-average problem with (2λ
d

, 2λ
d

)-indistinguishability.

Proof. Let us recall that Xλ and X̄λ are said to be sub-exponentially indistinguishable if there exists a

δ > 0 such that Xλ and X̄λ are (2Ω(λ
δ), 1/2Ω(λ

δ))-indistinguishable. Let us define n(λ) = ⌈λd/δ⌉. Then
Yλ := Xn(λ) and Ȳλ := X̄n(λ) are (s(λ), ε(λ))-indistinguishable, where s(λ) = 2Ω(n

δ) = 2Ω(⌈λ
d/δ⌉δ) and

ε(λ) = 1/2Ω(n
δ) = 1/2Ω(⌈λ

d/δ⌉δ). Firstly, since the circuit of size s(λ) = 2Ω(⌈λ
d/δ⌉δ) grows faster than the

circuit of size 2λ
d

, then, for a sufficiently large λ, Yλ and Ȳλ are also (2λ
d

, ε(λ))-indistinguishable. Conversely,

Yλ and Ȳλ are(2λ
d

, ε′(λ))-indistinguishable if ε′(λ) ≥ ε(λ). This is the case for ε′(λ) = 1/2λ
d

if λ is again

sufficiently large. It follows that for a large enough λ, exists Yλ and Ȳλ that are (2λ
d

, 2λ
d

)-indistinguishable.
Let i be the index sampler and (SampL,SampL̄) instance samplers for sub-exponentially hard-on-average

problem. Then we can always define I ′(1λ) as I(1n(λ)), Samp′L(1
λ, i) as Samp′L(1

n(λ), i), and SampL̄(1
λ, i) as

SampL̄(1
n(λ), i), which gives the desired hard-on-average problem with (2λ

d

, 2λ
d

)-indistinguishability. ⊓⊔

The following is a restatement of lemma 3.

Lemma 11. Let Xλ and X̄λ be (2λ
d

, 1/2λ
d

)-indistinguishable distributions for some integer d ≥ 2. Let Aλ

over (x, π) be an augmented distribution of Xλ, where |π| = ℓ(λ) = o
(
λd

)
. Then there exists an augmented

distribution Āλ of X̄λ such that Aλ and Āλ are (poly(λ), negl(λ))-indistinguishable.

Proof. Let Xλ and X̄λ be (s(λ), ε(λ))-indistinguishable, where s(λ) = 2λ
d

and ε(λ) = 1/2λ
d

. Then Xλ and

X̄λ are (s(λ), ε′(λ))-indistinguishable for any ε′(λ) ≥ 1/2λ
d

. Let us take ε′(λ) = 1/2λ
d−1

. According to the
leakage lemma, there exists a polynomial p and an augmented distribution Āλ of X̄λ such that Aλ and Āλ

are (s∗(λ), ε∗(λ))-indistinguishable where s∗(λ) = s(λ)p(ε′(λ)/2ℓ(λ)) and ε∗(λ) = 2ε′(λ).

Clearly ε∗(λ) is negligible since ε∗(λ) = 2ε′(λ) = 2/2λ
d−1

= 1/2λ
d−1−1 = negl(λ). The distinguisher

circuit size s∗(λ) is s∗(λ) = s(λ)p(ε′(λ)/2ℓ(λ)) = 2λ
d

p(2−λd−1−o(λd)). Here, p(2−λd−1−o(λd)) = 2−o(λd−1) and

therefore s∗(λ) = 2λ
d−o(λd−1) = 2Ω(λ

d). This means that indistinguishability holds also for all polynomial
size circuits, as s∗(λ) grows faster than any polynomial. ⊓⊔

D Non-Adaptive BB Extractable SNARK for UP

In fig. 11 we show a slightly simpler version of the construction in fig. 2. The following constructs a SNARK
for a language in UP (restriction of NP where a statement in the language has exactly one accepting
witness). In this variant we do not need hashing to fingerprint the witnesses. Our SNARK works as follows.
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Setup(1λ)

(ĉrs, t̂d)← Π∃.Setup(1
λ)

i∗ ←$ [Nw]

(pkFHE, skFHE)← FHE.KG(1λ)

cti∗ ← FHE.Enc(pk, i∗)

return (crs := (ĉrs, cti∗ , pkFHE), td := (skFHE, t̂d))

P(crs,R, x,w)

ctbit ← FHE.Eval(pkFHE, fproj, cti∗ ,w)

where fproj(i, w) := wi

π ← Π∃.P(ĉrs,R
′, (x, pkFHE, cti∗ , ctbit) ,w)

where R′(x, pkFHE, cti∗ , ctbit;w) ⇐⇒
R(x,w) ∧ ctbit = FHE.Eval(pkFHE, fproj, cti∗ ,w)

return π∗ := (π, ctbit)

V(crs,R, x, π∗)

Parse π∗ as (π, ctbit)

return Π∃.V
(
ĉrs,R′, (x, pkFHE, cti∗ , ctbit)

)
where R′ is defined like above

Fig. 11: Non-adaptively secure black-box extractable construction for UP. Nw is a bound on the witness
size. Π∃ is the SNARG scheme.
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Aslow(crs)

if crs ∈ img(Setup)

Find td for crs;

x← SampL̄;

π ← S(crs, td, x);
else

(x,w)← SampL;

π ← P(crs, x, π);

return (x, π)

Afast(crs)

(x,w)← SampL;

π ← P(crs, x,w);

return (x, π);

Fig. 12: Inefficient adversary Aslow against adaptive soundness and its efficient emulator Afast

E A Summary of the GW Impossibility Proof [32]

The main technique used in the proof is showing the existence of a simulatable adversary P for any SNARG
for an NP complete language. A simulatable adversary is an inefficient adversary that, given a CRS, outputs
a false statement x ̸∈ L with a valid proof π for it. While the existence of such adversary is trivial for any
SNARG, a simulatable adversary also comes with an efficient simulator S such that no efficient distinguisher
can distinguish them. To show the existence of a simulatable adversary, a lemma in [32] shows that for any two
computationally indistinguishable distributions respectively over a set L and its complement L = {0, 1}∗\L,
and for any leakage information π on x ∈ L, there exists some leakage information π on x ∈ L such that (x, π)
and (x, π) are also computationally indistinguishable. What is important in this lemma is that the security
degrades exponentially with the size of the leakage π and this is the reason why the underlying SNARG Π
should have succinctness property.

Now, given this simulatable adversary, the result can be concluded as follows. Assume there exists a
black-box reduction R that shows the soundness of π based on (C, c). This means that the efficient reduction

RP, given black-box access to successful adversary P can break (C, c). But if (inefficient) RP can break (C, c),
then (efficient) RS can also break it since no efficient distinguisher (including the challenger of (C, c)) can
distinguish P from S. Thus, if this black-box reduction exists, then the assumption (C, c) should be false.

F A Summary of the Pass Impossibility Proof [57]

We briefly summarize the impossibility result of [57]. Let L be a hard-on-average language as defined in sec-
tion 2. Now we can give an informal statement for the result in [57].

Theorem 11. Let Π be an adaptively sound and perfectly zero-knowledge non-interactive argument for an
hard-on-average problem L. Suppose that there exists an efficient black-box reduction R that can reduce
adaptive soundness of Π to some falsifiable assumption C. Then C can be broken in polynomial time.

The intuition behind the result is as follows. First, we construct an inefficient adversary Aslow (the first
algorithm in fig. 12) that can break adaptive soundness. If Aslow gets a valid CRS as an input (crs is in
the image of Setup), then it brute-force computes a trapdoor td, samples a false statement x, and runs the
simulator with td to produce a proof π. If the CRS is invalid (outside of the image of Setup), then it just
tries to compute a proof for an honest statement x. Note that in the adaptive soundness game the CRS
will always be valid and thus only the first branch will matter. Since L is a hard-on-average language, then
false and true statements are indistinguishable, and therefore S will produce a proof which is accepted by a
verifier with an overwhelming probability. So indeed Aslow does break adaptive soundness.

Let us suppose that there exists an efficient reduction R that given black-box access to any adaptive
soundness adversary A, can break some falsifiable assumption C. The problem is that although Aslow does
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P′

Constants: PRF key K

Input: (x,w)

if (x,w) ∈ R
return PRFK(x)

else

return ⊥

V′

Constants: PRF key K

Input: (x, π)

if f(π) = f(PRFK(x))

return 1

else

return 0

Fig. 13: Programs P′ and V′

break adaptive soundness, it is not efficient. Therefore also the reduction RAslow will be inefficient. We solve
this issue be constructing an efficient emulator Afast (the second algorithm in fig. 12) for Aslow.

The emulator Afast simply samples an honest (x,w) and generates an honest proof π. Now let us compare
Afast and Aslow. If CRS is invalid, then Aslow and Afast are identical. However, if the CRS is valid, then it
needs a bit more work to show that outputs are indistinguishable. Intuitively, x is indistinguishable due to the
hard-on-average property and π is indistinguishable due to zero-knowledge. However, here it is important that
zero-knowledge property holds even with respect to a fixed CRS since we do not know how the distinguishing
adversary may pick the valid CRS. Moreover, with computational zero-knowledge it may be even possible
to extract the witness from a proof π which would make distinguishing Aslow and Afast trivial. This is the
reason why zero-knowledge has to be perfect (or statistical). It follows now that outputs of Afast and Aslow

are computationally indistinguishable.
Since RAslow can break the assumption C, then so does RAfast which means that the assumption C is

insecure. Hence, it is impossible to base adaptively sound perfect zero-knowledge argument on a falsifiable
assumption using a black-box reduction.

G Non-Adaptive SNARGs With Perfect ZK Based on iO

We show how for the non-adaptive case, none of [57] and [32] results hold. We do so by the following
observation: assuming that indistinguishability obfuscation (iO) can be build from falsifiable assumptions
(see [63]), the perfect NIZK arguments of Sahai and Waters [59], instantiated with a puncturable PRF
(PPRF) that satisfies succinctness property, is a non-adaptive SNARG with perfect ZK for all NP languages
in the CRS model. While this can be seen as a feasibility result, proposing a construction with more standard
assumptions (i.e., without iO) is still an interesting open question.

We now recall the NIZK arguments of Sahai and Waters [59].
NIZK arguments of Sahai and Waters. The idea is very simple: the proof system consists of two

obfuscated programs put in the CRS. The first program is the proving algorithm that inputs a statement
x and witness w and outputs a signature on x if (x,w) ∈ R. The signature is realized by a PRF in the
construction. The second program is the verification algorithm that is just the signature verification and
verifies the proof by checking the validity of the signature on x.

Let PRF be a puncturable PRF that inputs ℓ-bit long strings and outputs λ bits (where λ is the security
parameter). Let f(·) be a one way function. The NIZK argument Π = (Setup,P,V) for language L with
relation R is as follows:

– Setup(1λ) first selects a puncturable PRF key K for PRF. Next, it creates an obfuscation of programs P′

and V′ as depicted in Figure 13. The CRS crs consists of the two obfuscated programs.

– P(crs, x,w) runs the obfuscated program P′ on input (x,w) and returns the proof π if (x,w) ∈ R.
– V(crs, x, π) runs the obfuscated program V′ on input (x, π) and returns a bit indicating accept or reject.
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Theorem 12. [59] The argument system Π is perfectly zero-knowledge. Moreover, if the obfuscation scheme
is indistingishuably secure, PRF is a secure punctured PRF with succinctness property, and f(·) is an injective
one way function, then Π is a non-adaptive SNARG.

Remark 5. While SNARGs with non-adaptive security can be seen as interactive two-message arguments
by thinking of the CRS as the verifier’s message, the type of non-adaptivity in the resulting argument is
still “strong” in the sense that the verifier’s message does not depend on the prover’s (fixed) statement.
One can also define a weaker notion of non-adaptivity for two-message arguments where the first message is
statement-dependent (See [7] for example). We note that while the above iO-based construction satisfies the
stronger notion, giving a construction for the weaker notion of non-adaptivity based on seemingly weaker
tools is not a hard task. Namely, the verifier can use a witness encryption scheme to encrypt a succinct
random value r under the prover’s statement and ask the prover to return r .
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