
Self-Timed Masking
Implementing First-Order Masked S-Boxes Without Registers

Mateus Simoes1,2, Lilian Bossuet1, Nicolas Bruneau2, Vincent Grosso1 and
Patrick Haddad2

1 Laboratoire Hubert Curien, Saint-Etienne, France
{mateus.simoes,lilian.bossuet,vincent.grosso}@univ-st-etienne.fr

2 STMicroelectronics, Rousset, France {nicolas.bruneau,patrick.haddad}@st.com

Abstract. Passive physical attacks represent a threat to microelectronics systems
by exploiting leakages through side-channels, such as power consumption and elec-
tromagnetic radiation. In this context, masking is a sound countermeasure against
side-channel attacks, which splits the secret data into several randomly uniform data,
achieving independence between the data processing and the secret variable. However,
a secure masking scheme requires additional implementation costs. Furthermore,
glitches and early evaluation can temporally weaken a masked implementation in
hardware, creating a potential source of exploitable leakages.
This work shows how to create register-free masking schemes that avoid the early
evaluation effect with the help of the dual-rail logic. Moreover, we employ monotonic
functions with the purpose of eliminating the occurrence of glitches in combina-
tional circuits. Finally, we evaluate different 2-share masked implementations of
the PRESENT and AES S-boxes in a noiseless scenario in order to detect potential
first-order leakages and to determine data propagation profiles correlated to the secret
variables.
Keywords: masking · hardware security · self-timed circuits

1 Introduction
Physical attacks represent a threat to electronic systems. They allow an adversary to
discover sensitive information — e.g. a private key — from a targeted device. Some physical
attacks exploit side-channel leakages, such as power consumption and electromagnetic
emanation, in order to create a statistical model of the system’s behavior, granting to the
adversary a robust way to rank secret variable hypothesis [KJJ99].

Several techniques exist to counter side-channel attacks; one of the most studied is the
Boolean masking, introduced by Goubin and Patarin [GP99]. This countermeasure makes
the data computation independent of the secret data itself by splitting the n-bit sensitive
variable into uniformly distributed shares over Fn

2 . In other words, a secret x is dth order
masked with d + 1 shares as shown in equation (1), with (x0, x1, . . . , dd−1) the random
shares and xd the masked value.

xd = x0 ⊕ x1 ⊕ . . .⊕ xd−1 ⊕ x (1)

Thus, a masked circuit uses the shares to compute a given secret instead of the
secret itself, rendering the correlation between the side-channel leakages and the sensitive
variable more complex. At the appropriate moment, the shares are linearly recombined to
uncover the secret, that is, x =

⊕d
i=0 xi. Note that security comes at the cost of higher

implementation complexity, raising the transistor count in the circuit.

mailto:{mateus.simoes, lilian.bossuet, vincent.grosso}@univ-st-etienne.fr
mailto:{nicolas.bruneau, patrick.haddad}@st.com


2 Self-Timed Masking

Furthermore, a function f : {0, 1}n 7→ {0, 1} can be masked by grouping its shared
terms among k component functions fi in a way that a masked function is thus represented
as f(x) =

⊕k
i=0 fi(Si), with Si a proper subset of S = (x0, x1, . . . , xd) the sharing of x.

Securely masking a linear function is trivial, since each input share can be manipulated
independently and in parallel. For instance, let z = f(x, y) be a linear Boolean operation
over Fn

2 with its dth order masking expressed as shown in the equation (2).

z =
d⊕

i=0
zi =

d⊕
i=0

fi(xi, yi) = f

(
d⊕

i=0
xi,

d⊕
i=0

yi

)
= f(x, y) (2)

However, masking non-linear functions, such as inversion in F2n , manipulates the
sharing in such a way that its intermediate terms require the recombination of several
shares of a variable. Consequently, equation (2) does not stand for non-linear masking. In
addition, when designing a masked circuit, sharing recombination may be the source of
exploitable side-channel leakages, rendering non-linear masking a critical task for security
engineers. In this context, techniques such as threshold implementations (TI) [NRR06]
and domain-oriented masking (DOM) [GMK16] were proposed, upon which we can rely to
mask non-linear functions up to a certain order [MMSS19].

In both examples, DOM and TI, glitches were an important factor to take account
when building the masking schemes. In fact, this physical hazard represents a threat to
masked circuits, since a glitchy function consumes an unnecessary power consumption that
may be correlated to the unshared variable [MPG05, MPO05]. In order to guarantee the
security of non-linear functions in the presence of glitches, register barriers are employed
to cease the spurious propagation [RBN+15]. Reciprocally, the component functions can
group the shares in a non-complete way, that is, avoiding masked functions that manipulate
all shares at once, so that a glitchy behavior does not correlate to the unshared sensitive
variable [NRR06].

A popular method to determine the local security of a masked gadget is the probing
model of Ishai et al. [ISW03], a leakage analysis on which the adversary can place up to d
probes on different wires of the circuit in order to obtain their current logic states. Then,
one can compute the logic state distribution of the probed wires based on different sharing
inputs, providing us with clues about a potential dependence between the unshared value
and the internal signals. This model was enhanced in order to take into account physical
defaults such as glitches [FGP+18], highlighting the importance of register layers in order
to synchronize the data flow.

Other methods determine the composability security of a masked gadget, introducing
the notions of Non-Interference (NI) and Strong Non-Interference (SNI) [BBD+16]. In
order to satisfy these theoretical models, enabling the secure inter-connection of different
masked blocks, many solutions employ random bits to refresh the masks during the
computation. In consequence, masking a circuit is expensive, since the latency is increased
as well as the gate counting. Moreover, the need to refresh the masks is an additional
overhead in masked solutions, requiring random number generators.

Therefore, reducing the masking costs is a pertinent branch of research within side-
channel analysis and the main topic of relevant techniques published recently. For ex-
ample, Sugawara proposed a 3-share AES S-box implementation without random refresh
bits [Sug19] using the changing of the guards [Dae17]. In parallel, Gross et al. proposed
a low-latency masking at the cost of increasing both the gate counting and the random-
ness [GIB18]. Indeed, many recent solutions try to balance those costs in order to propose
a secure masking that may fit different constraints.

In the same manner, this work explores an atypical circuit design approach with the
purpose of balancing the masking costs. We aim at reducing the number clock cycles
needed to compute the whole masked function. For that, we present a self-timed masking
scheme built upon the Muller c-element [MB59]. Additionally, we employ the dual-rail



Mateus Simoes, Lilian Bossuet, Nicolas Bruneau, Vincent Grosso and Patrick Haddad 3

protocol to create glitch-free combinational circuits with the help of monotonic gates in a
pre-charge / evaluate logic.

Our contribution Aiming at studying the behavior of a single cycle masked solution, we
show how to replace registers by self-timed latches built upon Muller c-elements, assuring
data synchronization among different combinational layers. Also, we detail the operation
of monotonic functions relying on the dual-rail protocol, allowing us to create glitch-free
masked circuits. Furthermore, we present our locally asynchronous globally synchronous
designs, showing the implementation results of 2-share self-timed masked PRESENT
and AES S-boxes. Finally, we evaluate the side-channel leakages based on experimental
measurements and, based on the results, we consider the main drawbacks of our self-timed
solutions and how to mitigate them.

Paper organization Section 2 introduces the notation used along this paper. Next, in the
section 3, we briefly describe the dual-rail encoding and some features that it unlocks in
digital circuit design. These features are employed on a self-timed masked implementation
of the PRESENT and AES S-boxes, sections 4.1 and 4.2 respectively. For both designs,
the implementation results are detailed in the section 5. Finally, in section 6, we evaluate
the robustness of our countermeasure against side-channel attacks using the test vector
leakage assessment methodology.

2 Notations
We denote binary random variables in F2 with lower-case letters, e.g. x, binary words in
Fn>1

2 with upper-case letters, whose jth element of X with superscript xj and the ith share
of a variable with subscript xi. The lower-case letter r refers, exclusively, to a uniformly
distributed bit used for mask refreshing.

A random variable x is Boolean masked with d+ 1 shares xi, whose sharing is denoted
with calligraphic fonts — e.g., S = (x0, x1, . . . , xd) — in such a manner that x =

⊕d
i=0 xi.

Similarly, a Boolean function f : {0, 1}n 7→ {0, 1} can be dth order masked, resulting in a
set of k masked functions fi(Si) denoted with lower-case letters, with k the cardinality of
this set of functions and Si a proper subset of S, so that f(x) =

⊕k
i=0 fi(Si).

We use typewriter fonts to denote binary random variables x, vectors X and signals
encoded in the dual-rail protocol with a pair of wires (x.t,x.f). The wire x.t is used for
signalling x.t = x while x.f signalizes the complement x.f = x. A dual-rail token is then
referred as ∗x = (x.t,x.f).

3 Background
Aiming at the study of masking schemes without registers, we show in this work the design
of self-timed S-boxes. In fact, we are aware of the importance of synchronization layers to
isolate different combinational blocks in masked solutions, avoiding glitches and satisfying
non-completeness [RBN+15]. Therefore, our goal here is to provide the analysis of masked
circuits in which the register layers are replaced by self-timed synchronization gadgets
while preserving relevant security properties. To achieve such self-timed feature, we make
use of the dual-rail encoding.

Indeed, several works have already addressed the use of the dual-rail encoding in
cryptographic applications [TV04, PM05, CZ06, LMW14, SBHM20]. Similarly, we also
employ the dual-rail protocol in a pre-charge / evaluate logic style with the purpose of
creating monotonic functions that are free of glitches. Moreover, our monotonic circuits is
resistant against the early propagation phenomenon.



4 Self-Timed Masking

3.1 Secure masking implementations
This work relies on known secure masked implementations. In fact, it has already been
shown that an effective dth order masking in hardware can be achieved using d + 1
input shares [RBN+15, GMK16, FGP+18]. However, in order to satisfy d-glitch-extended
probing security, a masked gadget can be divided into two register-isolated steps, which
we identify, in this work, as processing and compression.

For example, let us take the first order DOM-indep gadget that computes the function
z = f(a, b) = a ∧ b with A = (a0, a1) and B = (b0, b1) the input shares and Z = (z0, z1)
the output sharing [GMK16]. In short, assuming that the input sharings are uniform, we
want to find a secure way to compute (z0 ⊕ z1) = (a0 ⊕ a1) ∧ (b0 ⊕ b1). Hence, the process
step computes the product terms a0b0, a0b1, a1b0, a1b1 and adds a fresh share r to the
cross-domain ones, that is, a0b1 and a1b0. Then, to assure non-completeness, registers
(−→) store the resulting shares (x′0, x′1, x′2, x′3), as we can see in the equation (3).

f0(a0, b0) = a0b0 −→ x′0

f1(a0, b1) = a0b1 ⊕ r −→ x′1

f2(a1, b0) = a1b0 ⊕ r −→ x′2

f3(a1, b1) = a1b1 −→ x′3

(3)

The process step produces four shares, albeit the DOM AND gate has only two shares
at the output. In order to reduce the number of output shares, there exists a compression
step, as shown in the equation (4). Thanks to the register barrier between both steps, this
DOM gadget satisfies first-order glitch-extended security evaluation [FGP+18].

z0 = x′0 ⊕ x′1
z1 = x′2 ⊕ x′3

(4)

The process step uses a random bit r to mask cross-domain multiplications in F2.
Nonetheless, Shahmirzadi and Moradi have shown how to find a set of glitch-extended
component functions without fresh randomness [SM21]. Even without fresh randomness,
their solution has a uniform distribution of all intermediate signals, preventing sensitive
data dependence on ISW-based probing models. For instance, the process step for the
function f(a, b) = a∧ b can be built without mask refreshing, as shown in the equation (5).

f0(a0, b0) = a0b0 ⊕ b0 −→ x′0

f1(a0, b1) = a0b1 −→ x′1

f2(a1, b0) = a1b0 −→ x′2

f3(a1, b1) = a1b1 ⊕ b1 −→ x′3

(5)

Our work relies on both implementations [GMK16, SM21] to construct our self-timed
designs. We do not aim at comparing both works, but at studying the behavior of self-timed
masked circuits with and without random mask refreshing.

3.2 The dual-rail encoding
The dual-rail protocol encodes a bit using two signal wires [DN95]. To illustrate, let us
take the dual-rail encoding of a variable x; a wire x.t carries its current logic value while
a second wire x.f transports its complement. The piece of information x is then dual-rail
encoded as a token ∗x = (x.t, x.f) = (x, x) containing both signals. In this configuration,
a valid bit is obtained when one, and only one, signal wire is active (i.e. in a high logic
state), although a null information ∅ is encoded when both wires are deactivated, that is,
∅ = (0, 0). Finally, the encoding (1, 1) is never used because it does not represent neither



Mateus Simoes, Lilian Bossuet, Nicolas Bruneau, Vincent Grosso and Patrick Haddad 5

a valid neither a null token in our constructions. Moreover, the behavior of our designs
after the injection of this invalid token is out of scope of this work.

The data computation in our asynchronous designs is done in two times. First, the
circuit is pre-charged, setting all intermediate wires to the null state. Then, a valid token
is processed in the evaluate phase, toggling the intermediate signals in order to obtain a
valid 0 or a valid 1. Table 1 summarizes the dual-rail logic encoding.

Table 1: The dual-rail tokens.

token x.t x.f
null 0 0
x = 0 0 1
x = 1 1 0
illegal 1 1

With this architecture, the dual-rail (DR) NOT gate comes for “free” in terms of
transistors, since it is computed by swapping the dual-rail wires. However, building other
logic gates is slightly more complex. See equations (6), (7) and (8) for the dual-rail
implementation of the NOT, AND and OR functions, respectively.

z = ¬a⇐⇒ z.t = a.f

z.f = a.t
(6)

z = a ∧ b⇐⇒ z.t = a.t ∧ b.t

z.f = a.f ∨ b.f
(7)

z = a ∨ b⇐⇒ z.t = a.t ∨ b.t

z.f = a.f ∧ b.f
(8)

In the same manner, the DR-XOR can be obtained as shown in the equation (9).
Despite requiring more logic gates than the other basic Boolean functions, the dual-rail
XOR has, approximately, twice the surface of its single-rail equivalent.

z = a⊕ b⇐⇒ z.t = (a.t ∧ b.f) ∨ (a.f ∧ b.t)
z.f = (a.f ∧ b.f) ∨ (a.t ∧ b.t)

(9)

Note that only regular AND and OR gates are used to construct these Boolean functions
in dual-rail logic. Indeed, the dual-rail gates are expressed in their disjunctive normal form
(DNF). The motivation behind this choice of design is to obtain a monotonic behavior,
allowing us to construct a glitch-free hardware architecture [Juk21].

At first glance, the dual-rail functions may look disadvantageous when compared to
their single-rail form. Truly, the gate count is increased by a factor of two, approximately,
which brings an unfavorable outcome for limited area and speed applications. Nevertheless,
the dual-rail encoding is an interesting design alternative when avoiding glitches is necessary
or there exists latency constraints to implement secure masking schemes, as we will show
in this work.

3.3 Eliminating glitches with monotonic logic
Glitches are critical in hardware security implementations [MPG05, MPO05]. For instance,
let us take the DOM gadget introduced in the subsection 3.1. For the sake of simplicity,
we ignore the random refresh bits. If we remove the registers and the refresh bit we obtain
the combinational function shown in equation (10).



6 Self-Timed Masking

z0 = f0(a0, b0, b1) = a0b0 ⊕ a0b1

z1 = f1(a1, b0, b1) = a1b0 ⊕ a1b1
(10)

Due to physical aspects, such as wiring or gate delay, the correct sharing of b can arrive
earlier than the correct sharing a at the AND gates. This scenario may produce spurious
intermediate signal transitions, leading to an unexpected behavior during a small period of
time ∆t. In this context, let us observe the output share z0 = f0(a0, b0, b1) when the input
changes from f0(1, 0, 0) to f0(0, 1, 0), for example. In this case, f0 behaves as a glitchy
function fE = b0⊕ b1 = b whose output produces a hazard z0 = bE → 0, revealing the secret
variable b during a short moment. In consequence, this glitch produces an unnecessary
power consumption correlated to the variable b that may be exploited by an adversary to
discover this sensitive information. Indeed, one can easily infer from equation (10) that
the output shares reveal the secret b. Figure 1 illustrates this scenario in a gate-level
abstraction.

a0 = 1 → 0

b0 = 0 → 1

b1 = 0 → 0

0 → 1E → 0

0

z0 = bE → 0

Figure 1: A glitchy circuit.

One can use the dual-rail encoding with the aim of avoiding glitches in the combinational
circuits, but the protocol alone does not eliminate the hazard nevertheless. Table 2 shows
several glitchy scenarios for the dual-rail AND, OR and XOR gates, the digits denote their
equivalent dual-rail token and the subscripts I and F indicate the initial and final instants
of both a and b input signal transitions. Here, we assume that both dual-rail wires toggles
at the same instant, that is, the (x.t, x.f) = (0, 0) and (x.t, x.f) = (1, 1) cases do not
happen. However, in this abstract case, the signal

∗
b arrives earlier than ∗a.

Table 2: Examples of occurrence of glitches for different Boolean functions z = f(a, b) in
their dual-rail form.

Transition Function
∗aI → ∗aF

∗
bI →

∗
bF

∗z = ∗a ∧
∗
b ∗z = ∗a ∨

∗
b ∗z = ∗a⊕

∗
b

0→ 1 0→ 1

z.t

0→ 1 0→ 1 0→ 1E → 0
0→ 1 1→ 0 0 1→ 0E → 1 1→ 0E → 1
1→ 0 0→ 1 0→ 1E → 0 1 1→ 0E → 1
1→ 0 1→ 0 1→ 0 1→ 0 0→ 1E → 0
0→ 1 0→ 1

z.f

1→ 0 1→ 0 1→ 0E → 1
0→ 1 1→ 0 1 0→ 1E → 0 0→ 1E → 0
1→ 0 0→ 1 1→ 0E → 1 0 0→ 1E → 0
1→ 0 1→ 0 0→ 1 0→ 1 1→ 0E → 1

Nonetheless, one can completely eliminate the occurrence of glitches in a digital circuit
by employing monotonic gates in a pre-charge logic [PM05]. In other words, a null
information is propagated before a valid token in order to assure a uniform and known



Mateus Simoes, Lilian Bossuet, Nicolas Bruneau, Vincent Grosso and Patrick Haddad 7

transition polarity in the circuit. Thus, a gate switches at most once within an evaluation
phase after being pre-charged. This functioning, however, requires a full monotonic circuit.

A Boolean function f : {0, 1}n 7→ {0, 1} is called monotonic, or more specifically,
monotonically increasing if:

∀ X,Y ∈ {0, 1}n x1 ≤ y1, x2 ≤ y2, . . . , xn ≤ yn ⇒ f(X) ≤ f(Y )

If we consider X = (0, 0, . . . , 0) (i.e., the minimum element of Fn
2 ) the pre-charge input,

evaluating a monotonic function, whose initial state is determined by f(X), triggers a
toggling activity from 0 to 1, never the inverse. In other words, let us say that the data
processing starts with a pre-charge, in which both dual-rail wires are set to a low logic
level. Then, in a second phase, a valid token is propagated in the evaluate phase, thus a
(x.t, x.f) = (1, 0) or (x.t, x.f) = (0, 1) dual-rail composition is set. Since the pre-charge
phase sets a known logic level, the circuit’s switching activity occurs in only one direction
when the valid token arrives, because only one wire per bit has to be set, excluding the
occurrence of glitches.

Traditional AND and OR gates are examples of monotonically increasing functions. For
this reason, we rely on both gates only to build a full monotonic circuits. Table 3 shows
switching activities in both pre-charge and evaluate phases. The ∅ symbol represents the
null data state, i.e. ∅ = (x.t, x.f) = (0, 0), and the digits denote their equivalent dual-rail
tokens.

Table 3: Eliminating glitches with monotonic functions in a pre-charge / evaluate logic.

Stage Transition Function

Pre-charge

∗aeval → ∗aprch
∗
beval →

∗
bprch

∗a ∧
∗
b ∗a ∨

∗
b ∗a⊕

∗
b

0→ ∅ 0→ ∅ 0→ ∅ 0→ ∅ 0→ ∅
0→ ∅ 1→ ∅ 0→ ∅ 1→ ∅ 1→ ∅
1→ ∅ 0→ ∅ 0→ ∅ 1→ ∅ 1→ ∅
1→ ∅ 1→ ∅ 1→ ∅ 1→ ∅ 0→ ∅

Evaluate

∗aprch → ∗aeval
∗
bprch →

∗
beval

∗a ∧
∗
b ∗a ∨

∗
b ∗a⊕

∗
b

∅→ 0 ∅→ 0 ∅→ 0 ∅→ 0 ∅→ 0
∅→ 0 ∅→ 1 ∅→ 0 ∅→ 1 ∅→ 1
∅→ 1 ∅→ 0 ∅→ 0 ∅→ 1 ∅→ 1
∅→ 1 ∅→ 1 ∅→ 1 ∅→ 1 ∅→ 0

Certainly, the pre-charge / evaluation logic is not limited to self-timed systems, as it has
already been exploited by different works within masking applications [LMW14, SBHM20].
For this reason, associating the dual-rail protocol with monotonic functions represents a
straight forward solution to completely avoid the occurrence of glitches in a combinational
circuit. In consequence, the power consumption leakages are mitigated due to this glitch-
free characteristic. Moreover, despite having more logic gates, a dual-rail circuit may fit
low-power applications due to its lower logic toggling probability.

3.4 Avoiding the early propagation effect
The early propagation happens when the correct output of a logic function is determined
and stabilizes without necessarily knowing all input signals. This behavior is critical to
dual-rail solutions since a signal propagation tied to a given input may determine the
signal toggling profile within a time sample. In fact, it has already been shown that this
hazard may be the origin of exploitable side-channel leakages [KKT06, SS06].



8 Self-Timed Masking

To illustrate this phenomenon, consider the simple circuit shown in figure 2, representing
a gate-level implementation of a perfectly balanced dual-rail design of the Boolean function
∗z = ∗a ∨ (

∗
b ∧ ∗c). Suppose that the inputs are synchronized and the logic gates have a

constant propagation delay of 1 ns. Considering also that the circuit is pre-charged, we
obtain the signal propagation profile shown in table 4. From this result, one can observe
the dependence between the instant a gate transitions and the inputs. Indeed, when
a.t = 1 the function produces its correct output earlier, configuring a power consumption
dependence with ∗a.

c.t

b.t

c.f

b.f

a.t

a.f

z.t

z.f

Figure 2: A simple circuit suscepti-
ble to data-dependent propagation.

∗a
∗
b ∗c 1 ns 2 ns

0 0 0 1 1
0 0 1 1 1
0 1 0 1 1
0 1 1 1 1
1 0 0 2 0
1 1 1 2 0
1 1 0 2 0
1 1 1 2 0

Table 4: Number of logic gate tran-
sitions for different inputs.

Futhermore, if the inputs are not synchronized, the ∗a signal may arrive first, depending
on physical aspects such as aging and gate delay, producing the final output without having
the knowledge of the inputs

∗
b and ∗c when a.t = 1.

∗a ∨ (
∗
b ∧ ∗c) =

{
∗z = (1, 0), if a.t = 1
∗z = (

∗
b ∧ ∗c), otherwise

Different works have already addressed this hazard, proposing solutions to avoid
security flaws [CZ06, PKZM07]. In this work, recognizing that logic gates do not have a
homogeneous propagation delay, we observe the fact that the dual-rail XOR, equation (9),
does not propagate early, since both inputs have to be valid to produce a valid output token,
considering a pre-charged gadget. Based on this observation, we modify the DR-AND,
equation (7), in order to obtain the same behavior. Now, we build the dual-rail gates
mapping from the sum-of-minterms expressions of both wires, as well as the DR-XOR.
Hence, the gadget waits for all it inputs to become valid before propagating a valid output.
Equation (11) shows the resulting expressions for the DR-AND gate.

z = a ∧ b⇐⇒ z.t = (a.t ∧ b.t)
z.f = (a.f ∧ b.f) ∨ (a.f ∧ b.t) ∨ (a.t ∧ b.f)

(11)

The reasoning for the DR-OR is equivalent:

z = a ∨ b⇐⇒ z.t = (a.t ∧ b.t) ∨ (a.t ∧ b.f) ∨ (a.f ∧ b.t)
z.f = (a.f ∧ b.f)

(12)

Therefore, the dual-rail gates requires the knowledge of all valid inputs in order to
produce their non-null outputs. Table 5 illustrates this behavior, in a generic way, in order
to mitigate the early propagation phenomenon.



Mateus Simoes, Lilian Bossuet, Nicolas Bruneau, Vincent Grosso and Patrick Haddad 9

Table 5: A generic truth table for the dual-rail logic gates.

∗a
∗
b ∗z

∅ ∅ ∅
∅ valid ∅

valid ∅ ∅
valid valid valid

Moreover, an additional OR gate can be used to balance the z.t and z.f wires in the
DR-AND and DR-OR cases, respectively, achieving an equivalent gate-depth for every
input combination. The figure 3 shows the balanced function ∗z = ∗a ∨ (

∗
b ∧ ∗c) that avoids

the early propagation.
We perform the previous wire toggling analysis of the improved gate-level implementa-

tion, whose results is shown in table 6 containing the propagation profile for the pre-charged
circuit. Once again, suppose a constant propagation delay of 1 ns.

c.t

b.t

c.t

b.f

c.f

b.t

c.f

b.f

a.t

a.f

a.t

a.f

z.t

z.f

Figure 3: A balanced circuit non-susceptible to
data-dependent propagation.

∗a
∗
b ∗c 1 ns 2 ns 3 ns 4 ns

0 0 0 1 1 1 1
0 0 1 1 1 1 1
0 1 0 1 1 1 1
0 1 1 1 1 1 1
1 0 0 1 1 1 1
1 1 1 1 1 1 1
1 1 0 1 1 1 1
1 1 1 1 1 1 1

Table 6: Number of logic gate transi-
tions for different inputs.

As expected, the circuit is slower due to its higher logic depth, as we can observe
from table 6. Therefore, avoiding the early propagation effect using this solution imposes
additional gate count and lower throughput. Nevertheless, avoiding the early propagation
brings a constant number of gate transitions, regardless of the input, mitigating hazardous
side-channel leakages due to the power consumption.

3.5 Data synchronization with the Muller c-elements
Registers are very important components in masked circuits due to their role in synchro-
nizing the boundaries of different combinational blocks. For instance, synchronization
is a necessary aspect in order to satisfy non-completeness in threshold implementations,
mitigating side-channel leakages due to the presence of glitches [RBN+15]. Indeed, registers
are of primordial necessity in secure masking schemes in general [MMSS19].

However, although limiting the combinational data path, registers increase latency by
requiring additional clock cycles to process the whole circuit. In this work, we study an
alternative state-holding element, commonly used in asynchronous designs, in order to
create single cycle S-boxes while preserving the non-completeness property.

Despite avoiding glitches with the help of monotonic functions, we maintain the
synchronization layers in order to satisfy robust probing security constraints [FGP+18].
In fact, in this work we highlight the importance of data synchronization layers even in a



10 Self-Timed Masking

glitch-free design. We demonstrate, based on empirical results in further sections, that
synchronizing is also a relevant aspect in long combinational data paths.

The memory element used in this work is built upon the Muller c-element [MB59],
whose symbol is shown in figure 4 alongside with a summary of its logical behavior, table 7.

a

b

C z

Figure 4: A Muller c-element sym-
bol.

a b z
0 0 0
0 1 no change
1 0 no change
1 1 1

Table 7: The Muller c-element truth
table.

From table 7, the c-element can be modelled as z = (a∧ b)∨ (z∧a)∨ (z∧ b). It outputs
0 when all inputs have a low logic level, and when all inputs have a high logic level it
outputs 1. In contrast, the c-element maintains its current steady state if the inputs are
different. The gate-level implementation of the 2-input c-element used in this work is
shown in figure 5.

a

b

z

Figure 5: Gate-level implementation of the 2-input c-element.

The c-element is the base component of our self-timed designs. We use the term
“self-timed” due to the handshake logic within the data storage unit that is managed by
the data itself, excluding the need of a synchronous clock signal to pace the token flow. In
this context, the data streams like a wave, with the intermediate states oscillating between
a valid and a null token, configuring what is known as pre-charge / evaluate logic.

Based on c-elements, one can build dual-rail latches to operate as memory devices in a
self-timed pipeline. Figures 6 and 7 show a 2-bit wide implementation. The dual-rail latches
can be characterized as either strongly indicating or weakly indicating, depending on how
their acknowledgement signal is computed. A strongly indicating latch, figure 6, waits for
all of its inputs to become valid, or null, before sending the respective acknowledgement.
In contrast, a weakly indicating latch, figure 7, waits for only one specific input token to
become valid or null before authenticating its current state [Spa20].

In both cases, weakly or strongly indicating, n pairs of c-elements stores a n-bit token
∗x and a regular 2-input NOR gate configures completion detection device for each pair
— or a single pair for the weakly indicating version — managing the acknowledgement
signal logic. Note that, for a n-bit wide latch, a n-input c-element is needed to store
the acknowledgement output in the strongly indicating latch case, which represents an
important area overhead.



Mateus Simoes, Lilian Bossuet, Nicolas Bruneau, Vincent Grosso and Patrick Haddad11

D[0].f

D[0].t

D[1].f

D[1].t

C

C

C

C

Q[0].f

Q[0].t

Q[1].f

Q[1].t

ack o

req i

C

Figure 6: A 2-bit wide strongly indicating
asynchronous latch.

D[0].f

D[0].t

D[1].f

D[1].t

C

C

C

C

Q[0].f

Q[0].t

Q[1].f

Q[1].t

ack o

req i

Figure 7: A 2-bit wide weakly indicating
asynchronous latch.

The handshake logic contains two signals: a require input, denoted req_i, and an
acknowledgement output, expressed as ack_o. In fact, the acknowledgement signal indicates
when the latch stores a valid (ack_o = 0) or a null (ack_o = 1) token. Similarly, the
request signal — which can be the ack_o signal from the following latch in the pipeline
or an external signal — switches the data flow. In order to operate as a switch, req_i
is connected to one of the c-elements inputs. Thus, req_i = 0 requires the storage of an
empty token (i.e., the pre-charge), while req_i = 1 means that the combinational block
following the latch is ready to evaluate a new valid token. Figure 8 shows the functioning
of the handshake logic.

pre-charge evaluate pre-charge

req i

ack o

Figure 8: Self-timed handshake in a pre-charge / evaluate logic.

To illustrate the operation of a self-timed circuit, consider the following two-stage
pipeline, figure 9, in which C denotes a combinational increasing monotonic circuit. For
ease of visualization, F represents a random valid data and ∅ denotes the null token.
There are two latches (A) and (B) in this example, whose initial states are, respectively,
∅ and F. The req_i of the (A) is connected to the ack_o of (B), identified as the wire
ack_s.

There is a valid token at the input, representing the information to be computed.
Considering that CA was pre-charged, this valid token was processed as soon as its arrival
at the pipeline input. The latch (A) keeps its logic state since its ack_s = 0.



12 Self-Timed Masking

F CA ∅

(A)

CB F

(B)

F

req i = 11 = ack o
ack s = 0

Figure 9: A two-stage pipeline example: initial state.

When req_i switches to 0, (B) absorbs the ∅ token from (A) and sets ack_s = 1;
The pre-charge phase of CB is complete, which is signalized by (B) setting ack_s = 1. In
consequence, (A) absorbs the valid token CA(F), which is them computed by CB .

F CA F

(A)

CB ∅

(B)

∅

req i = 00 = ack o
ack s = 1

Figure 10: A two-stage pipeline example: req_i switches to 0.

The external circuit issues a null token, pre-charging the combinational circuit CA; the
latches (A) and (B) stand by, since its logic state is stable at req_i = 0.

∅ CA F

(A)

CB ∅

(B)

∅

req i = 00 = ack o
ack s = 1

Figure 11: A two-stage pipeline example: the external circuit issues a null token.

Next, the req_i switches to 1, triggering the absorption of the output valid token
CB(CA(F)), completing one self-timed processing cycle. This absorption sets the ack_s = 0,
completing the pre-charge phase of CA.

∅ CA ∅

(A)

CB F

(B)

F

req i = 11 = ack o
ack s = 0

Figure 12: A two-stage pipeline example: req_i switches to 1.

Finally, The external circuit issues a new valid token F. With this new token, the
system is back to its initial state, similar to the configuration shown in figure 9.



Mateus Simoes, Lilian Bossuet, Nicolas Bruneau, Vincent Grosso and Patrick Haddad13

F CA ∅

(A)

CB F

(B)

F

req i = 11 = ack o
ack s = 0

Figure 13: A two-stage pipeline example: the external circuit issues a new valid token.

Whatever is pipeline length, in our designs the latches are initialized with null tokens,
similar to configuration shown in figure 9, and need to be loaded before operating in
a normal mode. In other words, the latches operate in a normal mode when they are
arranged in a manner that there is always null state latch neighboring a valid state one,
enabling the pre-charge / evaluate stream. Loading the pipeline can be achieved by setting
the req_i input active until the moment in which the pipeline is fully ordered, that is,
with valid tokens interleaving null state latches. In the following descriptions, we assume
that pipeline is already loaded.

In our designs, we favour the weakly indicating version based on three aspects.

1. Area: compared to the strongly indication version, a tree of c-elements in the token
state detection device is replaced by a single traditional 2-input NOR gate, reducing
the total silicon area and the acknowledgement logic depth.

2. Speed: since a single bit triggers the acknowledgement signal, the latch does not
have to wait all valid, or null, signals to recognize its current token. Also, the
weakly version has a lower completion detection logic depth, thus it provides its
acknowledgement faster. We assume that the ∆t among the input signals is small
enough to permit the absorption of all tokens before the arrival of the next one.

3. Security: by using a single bit instead of the whole vector to trigger the latch state
detector, we render the system less susceptible to data dependent evaluation time.
Indeed, with this last aspect, we want to avoid an intermediate signal timing profile
correlated with the sensitive variable. Since the latch only needs to know whenever
a valid or a null token is available, a single pair of wires is sufficient to administer
the acknowledgement signal.

4 Register-free implementations
In order to evaluate the robustness of our self-timed solutions, this section describes the
designs used in this work. Due to its criticality, we focus on the design of the S-box. We
start from single-rail implementations, whose performance has been already assured by
existing papers, to base our approach and to study the resulting overheads when enabling
self-timed features. Finally, since one of our goals is to reduce the latency of this non-linear
function to a single clock cycle, the global cipher context is still synchronous. Therefore,
no descriptions or implementation results for the full cipher are given in this work, only
for their S-boxes.

4.1 PRESENT S-box implementation
Our dual-rail 4-bit PRESENT S-box [BKL+07] is based on the first-order masked with
two shares implementation by Shahmirzadi and Moradi [SM21]. Since we are interested in
determining potential side-channel leakages due to the time of evaluation profiles when
employing self-timed gadgets, we chose this design because no online refresh bits are



14 Self-Timed Masking

used and the single-rail implementation security is already assured by the authors. In
the original design, there are two register barriers: one to isolate the processing and the
compression, and a second barrier at the output. We replace both synchronization layers
by weakly indicating asynchronous latches, see figure 7.

Figure 14 shows the steady state of the 2-share self-timed PRESENT S-box used in
our work. Besides the latches, there are two combinational blocks P and C, denoting the
process and the compress steps, as well as in the original version. The first combinational
circuit, the processing, receives four 2-share masked inputs, one for each input bit, and
computes four 8-share outputs. Then, the compression reduces the number of output
shares from eight down to a pair of shared bits.

∅ P ∅ C F F

req i = 1ack o

Figure 14: Steady state of the self-timed PRESENT S-box pipeline.

Our scope is a globally synchronous hardware architecture, although the S-box is a
self-timed circuit. Thus, we use the rising clock edge to trigger the asynchronous pipeline,
shifting the system from an idle state to an operation state and setting the request input
of the S-box to req_i = 0. When the positive clock edge happens, the valid token to be
computed is already available in the S-box input. With the request signal set to 0, the null
token replaces the valid token in the last latch, pre-charging the compression circuit. With
the pre-charge complete, the latch sends the signal that enables the valid token absorption
by the first latch.

Meanwhile, the finite state machine (FSM) awaits for the acknowledgement output
of the S-box to bet set to 0, indicating that the valid token has been absorbed, and sets
the request signal to 1, starting the compression for the current valid token. In parallel,
the null token is set at the S-box input, with the purpose of pre-charging the process
step. Hence, ack_o = 0 means that the first stage is ready to be pre-charged. When
the acknowledgement toggles, the eight shares have been compressed, and the first step
is already pre-charged. The described steps are then repeated for the subsequent valid
tokens. If the clock period is adequate, the correct S-box output is already available at
the end of the current cycle. The asynchronous FSM described in this paragraph is shown
in figure 15. Table 8 shows the S-box input for each FSM state.

IDLEstart PROCESS COMPRESS

!clk

↑ clk

ack

!ack

!ack

ack

Figure 15: FSM for the PRESENT S-box.

State S-box inputs
token request

IDLE ∅ 1
PROCESS F 0
COMPRESS ∅ 1

Table 8: PRESENT S-box FSM con-
trols.

One of our goals with this work, is to study the impact of refreshing the masks in
self-timed circuits. Therefore, relying on the PRESENT S-box implementation without
random refresh masks [SM21], we designed the same masked S-box whose component
functions are simplified, neglecting their security properties in a first moment. Then,



Mateus Simoes, Lilian Bossuet, Nicolas Bruneau, Vincent Grosso and Patrick Haddad15

in order to obtain a uniform distributed output, we added two refresh bits per shared
function.

4.2 AES S-box implementation
Due to its importance, the Advanced Encryption Standard (AES) S-box [DR00] is a typical
benchmark for evaluating countermeasures against side-channel attacks. Thus, this section
presents the design of two first order masked self-timed AES S-boxes: one without online
refresh bits, whose original version can be found in [SM21], and the simple variant of the
domain-oriented masked (DOM) AES S-box proposed by Gross et al. in [GMK16], which
requires 18 random refresh bits per clock cycle.

As previously announced, we do not aim at comparing both works. In truth, we
present our implementation results and contrast with different solutions with the purpose
of weighing the overheads. Futhermore, we want to study the security performance of
self-timed masking with and without randomness. Thus, we rely on both works whose
performance figures are already known.

4.2.1 Self-timed DOM AND

In order to evaluate the masked AES S-box scheme with online mask refresh, instead
of simply adding random refresh bits to the design without randomness, we favor the
implementation of the 2-share DOM-simple S-box. Their first order AND gadget has
four registers, which will be replaced by dual-rail latches with the purpose to enable the
aforementioned self-timed features. For the same reasons summarized in the section 3.5,
we employ the weakly indicating latch, see figure 7. The resulting DOM gadget used in
our implementation is shown in figure 16, in which all logic gate symbols express their
dual-rail variant.

dual-rail latches

∗
a0

∗
b0

∗
b1

∗
a1

∗
r

DR

DR

DR

DR

DR

DR

L00

L01

L10

L11

2
DR

DR

∗
z0

∗
z1

Figure 16: Dual-rail DOM AND.

Since the system is pre-charged before evaluating, the dual-rail XOR gates do not
propagate earlier. Therefore, even if the random refresh bit reaches the gates first, the
DR-XOR functions do not produce their output before the arrival of the cross-domain
products (i.e. ∗a0 ∧

∗
b1 and ∗a1 ∧

∗
b0). Hence, considering a monotonic behavior, the DR-XOR

gate maintains its pre-charged state until the arrival of both valid inputs, toggling its state
only once within the evaluate phase. The same reasoning is not true for the pre-charge,
since a single null state input is necessary to produce a null output, see table 5. For this
reason, although updating the refresh bits after every evaluation, the random input is
always valid, since the input sharing is enough to propagate the null tokens among the
dual-rail functions.



16 Self-Timed Masking

Moreover, the blocks Lij represent the pair of c-elements storing the product ∗ai ∧
∗

bj.
We emphasize that the four pairs of c-elements form a weakly indicating latch. The
handshake signals are implicit in figure 16, albeit the logic is the same: there is an output
acknowledgement signal that indicates the latch state and a request signal, whose logic
level controls the token flow.

4.2.2 The token flow in the self-timed AES S-box

Both S-box designs are based on the Canright’s implementation [Can05] and have eight
combinational stages, which are summarized in table 9. For further descriptions of each
AES S-box stage, the reader may refer to the the original works [GMK16, SM21].

Table 9: Combinational stages in both AES S-boxes.

Shahmirzadi and Moradi [SM21] Gross et al. [GMK16]
STAGE 1 GF (28) −→ GF (((22)2)2) GF (28) −→ GF (((22)2)2)
STAGE 2 GF (24) square-scale-multipliersa GF (24) square-scale-multiplier
STAGE 3 compression GF (24) addition
STAGE 4 GF (24) inverter GF (22) square-scale-multiplier
STAGE 5 compression GF (22) inverter
STAGE 6 GF (24) multipliers GF (22) multipliers
STAGE 7 compression GF (24) multipliers
STAGE 8 GF (((22)2)2) −→ GF (28) GF (((22)2)2) −→ GF (28)

aThis version uses two jointly-uniform square-scale-multipliers [SM21]

Since the two self-timed AES S-box architectures have eight combinational stages and
eight latches, the handshake logic is identical for both. A high-level representation of the
self-timed system is shown in figure 17 in which the combinational circuits C refer to the
the eight S-box stages from table 9. The figure shows the pipeline steady state when the
system is ready to compute a new byte.

∅ C1 ∅ C2 F C3 ∅ C4 F

C5 ∅ C6 F C7 ∅ C8 F F

req i = 1

ack o = 1

Figure 17: Steady state of the self-timed AES S-box pipeline.

As stated before, our scope is globally synchronous and locally asynchronous. In
this context, a positive clock edge triggers the domino logic, allowing us to synchronize
the computation of the correct token. If the clock period is adequate, the correct S-box
output is ready before the next positive edge, achieving a single cycle masked AES S-box
operation.

As well as the PRESENT S-box implementation case, the FSM has three states —
IDLE, COMPRESS and PROCESS — with similar conditions for the state transition diagram.



Mateus Simoes, Lilian Bossuet, Nicolas Bruneau, Vincent Grosso and Patrick Haddad17

However, since the AES pipeline has more stages, we count the number of occurrences
of the positive acknowledgement edge in order to track the desired token progression in
the pipeline. Within a full AES S-box computation the system issues four null tokens for
the pre-charge. Hence, the FSM counts to four before it can return to the idle state. The
counter is update once when reaching the PROCESS state.

Figure 18 shows the FSM for the self-timed AES S-boxes with the signal done = 1
if the counter is equal to 4 and deactivated otherwise. The S-box inputs are shown in
table 10 and the IDLE state resets the counter.

IDLEstart

NULL VALID

![↑ clk]

↑ clk

ack

!ack

!ack

ack · !done

ack · done

Figure 18: FSM for the AES S-box.

State Counter S-box inputs
token request

IDLE reset ∅ 1
NULL ++ F 0
VALID keep ∅ 1

Table 10: AES S-box FSM controls.

5 Implementation results

This section summarizes the area and performance results of our hardware implementations.
All designs were described using the hardware description language (HDL) Verilog and
we use Synopsys Design Compiler S-2021.06-SP1 with a target frequency of 100MHz to
synthesize the netlists. The standard cell library used in the synthesis flow was STMicro-
electronics CMOSM40. The area results are normalized in terms of gate equivalents (GE)
with a two-input NAND gate from the selected library as reference. No compile_ultra
scripts were used in this work.

Table 11: Performance figures for the self-timed masked S-box implementations using
Synopsis Design Compiler and ST CMOSM40 standard cell library. No compile_ultra.

S-box Version Area Refresh Latency Delay
[kGE] [bits] [cycles] [ns]

PRESENT no refresh 0.99 0 1 ≈ 12
PRESENT with refresh 1.02 8 1 ≈ 12
AES no refresh 7.79 0 1 ≈ 220
AES domain oriented 6.07 18 1 ≈ 208

5.1 Comparison with related works

We refer to table 12, which reports the performance figures of our implementations
compared to the state of the art.



18 Self-Timed Masking

Table 12: Performance figures of different masked S-box implementations.

Design Shares Area Refresh Latency Standard Cell
[kGE] [bits] [cycles] Library

PRESENT [PMK+11] 3 0.36 0 1 UCM 180 nm
PRESENT [this work] 2 0.99 0 1 STM 40 nm
PRESENT [this work] 2 1.02 8 1 STM 40 nm
AES [UHA17] 2 1.4 64 5 TSMC 65-nm
AES [WM18] 4 4.2 0 16 UCM 180 nm
AES [Sug19] 3 3.5 0 4 NanGate 45-nm
AES [GMK16] 2 2.8 28 5 UCM 180 nm
AES [GMK16] 2 2.6 18 8 UCM 180 nm
AES [this work] 2 7.79 0 1 STM 40 nm
AES [this work] 2 6.07 18 1 STM 40 nm

As previously stated, synchronizing the intermediate shares at the boundaries of
combinational blocks is of high importance to obtain a secure masking implementation.
Thus, this work presented a generic solution, that may be applied to different S-box
designs, permitting the designer to obtain single-cycle implementations while assuring
secure masking properties. Indeed, the main asset of our work is the reduction of the S-box
latency to a single clock cycle, a feature achieved when replacing the register layers by
self-timed latches. Nevertheless, the dual-rail logic adds a significant gate-count overhead
to the final implementation, limiting its application in low area scenarios.

6 Side-Channel Analysis
In order to evaluate the robustness of our masked implementations against practical
side-channel analysis, we apply the test vector leakage assessment (TVLA) methodology
proposed by Goodwill et al. [GJJR11]. It uses the Welch’s t-test to determine whether the
difference of two dataset means provides sufficient evidence to reject the null hypothesis.

We use simulated traces in order to evaluate the side-channel vulnerability of our
designs due to data-dependent time of evaluation. Our goal is to model the system’s power
consumption in a noiseless manner with a timing resolution of 1 ρs. For that purpose,
power traces were simulated from value change dump (VCD) files generated by netlist
simulation on Mentor Graphics ModelSim. This method allows us to model the power
consumption by counting the toggling activity of all wires in the device under test (DUT).

Logic
Simulator

HDL

netlist

TXT

vectors
VCD Parser PWR

traces

Figure 19: Simulating power traces from VCD files.

The resulting traces will differ depending on the standard cell library. Nevertheless, the
following analysis gives us clues about potential pitfalls, and how to locate them in order
to improve the final design. Hence, when the timing behavior is a critical aspect when
dealing with side-channel leakages, which is potentially the case in a self-timed circuit,



Mateus Simoes, Lilian Bossuet, Nicolas Bruneau, Vincent Grosso and Patrick Haddad19

a noiseless high resolution power analysis is very pertinent. Figures 20 and 21 show the
TVLA analysis for one million simulated traces for the self-timed PRESENT and AES
S-boxes without mask refreshing.

0 0.5 1 ·104−20

−10

0

10

20

Samples

1s
t
or
d
er

t-
st
at
is
ti
cs

Figure 20: TVLA results based on one mil-
lion simulated traces for our self-timed 2-
shares PRESENT S-box without mask re-
freshing.

0 0.5 1 1.5 2 ·105−20

−10

0

10

20

Samples

1s
t
or
d
er

t-
st
at
is
ti
cs

Figure 21: TVLA results based on one mil-
lion simulated traces for our self-timed 2-
shares AES S-box without mask refreshing.

In this noiseless scenario, when no random refresh bits are employed, potential ex-
ploitable leakages were identified for both self-timed PRESENT and AES S-boxes. We
believe this security flaw is due to an intermediate signal evaluation time profile tied to
the sensitive variable. Indeed, since we are observing a noiseless power consumption model
based on wire toggling, the switching activity may behave as a signature of the circuit’s
internal state for a given sharing. As no random mask refreshing is used, a specific pair
of input shares produces a particular pair of output shares, causing a consistent internal
activity.

Presumably, the larger the combinational data path, the more detectable this data
signature may be in the circuit. Thus, in this case, a cryptographic application would be
more susceptible to a multivariate analysis, when the univariate leakage assessment is not
enough to detect potential flaws. We reiterate the fact that our first order masked S-box
implementations without fresh randomness failed in a univariate analysis using simulated
traces.

Based on the last argumentation, we must highlight the importance of the clock in
defining the cadence of the data flow, which reduces the aforementioned time dependence.
Even if timing leakages tied to the data propagation may not be spotted in real digital
circuits, in which the signal to noise ration is lower, a constant period synchronization
layer limits the combinational critical path, restraining its exploitation by the attacker.
Nevertheless, timing leakages exist, as argued from the noiseless results obtained from
toggle count modeling.

In parallel, online refresh bits is also a solution for mitigating the data dependence time
of evaluation through the combinational path. Not unreasonably, we show in this work
two similar masked S-box schemes: one with random refresh bits and another whose online
randomness cost is cancelled. The intermediate variables are consistent for a given pair of
shares when no refresh bits is present, hence there is an unique toggle count behavior for
this same pair. However, the same cannot be said when online refresh bits are present,
since the correctness depends on a set of external random information.

Figures 22 and 23 show the TVLA results using one million simulated traces for the
self-timed PRESENT S-box with random refresh bits and the simple DOM implementation
of the AES S-box, respectively. We believe that the discrepancy between this analysis and



20 Self-Timed Masking

the previous results is due to mask refreshing, a randomly distributed information that
shuffles the internal signal logic while maintaining their correctness.

0 0.5 1 ·104−20

−10

0

10

20

Samples

1s
t
or
d
er

t-
st
at
is
ti
cs

Figure 22: TVLA results based on one mil-
lion simulated traces for our self-timed 2-
shares PRESENT S-box with mask refresh-
ing.

0 0.5 1 1.5 2 ·105−20

−10

0

10

20

Samples

1s
t
or
d
er

t-
st
at
is
ti
cs

Figure 23: TVLA results based on one mil-
lion simulated traces for our self-timed 2-
shares AES S-box with mask refreshing.

We do not deny the possibility of, with enough high resolution and noiseless traces,
observing exploitable side-channel leakages using the current analysis again. In fact, one
could say that, mask refreshing makes the circuit noisier, which makes the data dependent
time of evaluation assessment more complex. However, we perform a noiseless side-channel
analysis. Despite not presenting real side-channel measurements, the presence of noise in
an FPGA or ASIC application may mitigate such leakages.

7 Conclusion

In this work, we have shown how to construct self-timed masking schemes based on the
Muller c-elements. Although most examples on which we rely to build our designs are
already resistant against glitches, based on the glitch-extended probing model analysis, we
detail a method to eliminate glitches in combinatorial circuits using monotonic logic. This
method can be easily applied in different implementations when glitch-extended cannot be
achieved. Also, we show how to avoid early propagation in dual-rail functions.

In order to evaluate our designs, we describe the implementation of self-timed PRESENT
and AES S-boxes and provide leakage assessment results based on noiseless side-channel
analysis. The motivation to perform a noiseless leakage assessment is to observe potential
timing leakages due to the self-timed behavior of our S-boxes. Based on TVLA results, we
stress the importance of fresh randomness in our register-free implementations. Indeed, if
the signal to noise is high enough, data-dependent evaluation time is a potential pitfall,
leading to first-order leakages. Hence, shuffling the intermediate signals with fresh masks
has shown to be an efficient way to mitigate this flaw.

Finally, despite the area and throughput overheads, our designs may be an interesting
solution when latency is a critical aspect. In truth, the main asset of our work is a generic
way to reduce the latency of masked S-boxes to a single clock cycle, while preserving secure
masking properties.



Mateus Simoes, Lilian Bossuet, Nicolas Bruneau, Vincent Grosso and Patrick Haddad21

References
[BBD+16] Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, Ben-

jamin Grégoire, Pierre-Yves Strub, and Rébecca Zucchini. Strong non-
interference and type-directed higher-order masking. In Edgar R. Weippl,
Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai Halevi,
editors, Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, Vienna, Austria, October 24-28, 2016, pages 116–
129. ACM, 2016.

[BKL+07] Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel
Poschmann, Matthew J. B. Robshaw, Yannick Seurin, and C. Vikkelsoe.
PRESENT: an ultra-lightweight block cipher. In Paillier and Verbauwhede
[PV07], pages 450–466.

[Can05] David Canright. A very compact S-box for AES. In Rao and Sunar [RS05],
pages 441–455.

[CZ06] Zhimin Chen and Yujie Zhou. Dual-rail random switching logic: A counter-
measure to reduce side channel leakage. In Goubin and Matsui [GM06], pages
242–254.

[Dae17] Joan Daemen. Changing of the guards: A simple and efficient method for
achieving uniformity in threshold sharing. In Wieland Fischer and Naofumi
Homma, editors, Cryptographic Hardware and Embedded Systems - CHES
2017 - 19th International Conference, Taipei, Taiwan, September 25-28, 2017,
Proceedings, volume 10529 of Lecture Notes in Computer Science, pages 137–153.
Springer, 2017.

[DN95] Al Davis and Steven M Nowick. Asynchronous circuit design: Motivation,
background, & methods. In Asynchronous Digital Circuit Design, pages 1–49.
Springer, 1995.

[DR00] Joan Daemen and Vincent Rijmen. Rijndael for AES. In The Third Advanced
Encryption Standard Candidate Conference, April 13-14, 2000, New York, New
York, USA, pages 343–348. National Institute of Standards and Technology„
2000.

[FGP+18] Sebastian Faust, Vincent Grosso, Santos Merino Del Pozo, Clara Paglialonga,
and François-Xavier Standaert. Composable masking schemes in the presence
of physical defaults & the robust probing model. IACR Trans. Cryptogr. Hardw.
Embed. Syst., 2018(3):89–120, 2018.

[GIB18] Hannes Groß, Rinat Iusupov, and Roderick Bloem. Generic low-latency masking
in hardware. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2018(2):1–21, 2018.

[GJJR11] Gilbert Goodwill, Benjamin Jun, Joshua Jaffe, and Pankaj Rohatgi. A testing
methodology for side-channel resistance validation. In NIST non-invasive
attack testing (NIAT) workshop, volume 7, pages 115–136, 2011.

[GM06] Louis Goubin and Mitsuru Matsui, editors. Cryptographic Hardware and
Embedded Systems - CHES 2006, 8th International Workshop, Yokohama,
Japan, October 10-13, 2006, Proceedings, volume 4249 of Lecture Notes in
Computer Science. Springer, 2006.



22 Self-Timed Masking

[GMK16] Hannes Groß, Stefan Mangard, and Thomas Korak. Domain-oriented masking:
Compact masked hardware implementations with arbitrary protection order.
In Begül Bilgin, Svetla Nikova, and Vincent Rijmen, editors, Proceedings of
the ACM Workshop on Theory of Implementation Security, TIS@CCS 2016
Vienna, Austria, October, 2016, page 3. ACM, 2016.

[GP99] Louis Goubin and Jacques Patarin. DES and differential power analysis
(the “duplication” method). In Çetin Kaya Koç and Christof Paar, editors,
Cryptographic Hardware and Embedded Systems, First International Workshop,
CHES’99, Worcester, MA, USA, August 12-13, 1999, Proceedings, volume 1717
of Lecture Notes in Computer Science, pages 158–172. Springer, 1999.

[ISW03] Yuval Ishai, Amit Sahai, and David A. Wagner. Private circuits: Securing
hardware against probing attacks. In Dan Boneh, editor, Advances in Cryptol-
ogy - CRYPTO 2003, 23rd Annual International Cryptology Conference, Santa
Barbara, California, USA, August 17-21, 2003, Proceedings, volume 2729 of
Lecture Notes in Computer Science, pages 463–481. Springer, 2003.

[Juk21] Stasys Jukna. Notes on hazard-free circuits. SIAM J. Discret. Math., 35(2):770–
787, 2021.

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis.
In Michael J. Wiener, editor, Advances in Cryptology - CRYPTO ’99, 19th
Annual International Cryptology Conference, Santa Barbara, California, USA,
August 15-19, 1999, Proceedings, volume 1666 of Lecture Notes in Computer
Science, pages 388–397. Springer, 1999.

[KKT06] Konrad J. Kulikowski, Mark G. Karpovsky, and Alexander Taubin. Power
attacks on secure hardware based on early propagation of data. In 12th IEEE
International On-Line Testing Symposium (IOLTS 2006), 10-12 July 2006,
Como, Italy, pages 131–138. IEEE Computer Society, 2006.

[LMW14] Andrew J. Leiserson, Mark E. Marson, and Megan A. Wachs. Gate-level
masking under a path-based leakage metric. In Lejla Batina and Matthew
Robshaw, editors, Cryptographic Hardware and Embedded Systems - CHES
2014 - 16th International Workshop, Busan, South Korea, September 23-26,
2014. Proceedings, volume 8731 of Lecture Notes in Computer Science, pages
580–597. Springer, 2014.

[MB59] David E. Muller and W. S. Bartky. A theory of asynchronous circuits. In
Proceedings of an International Symposium on the Theory of Switchinge, April
1957, Part I, volume XXIX of the annals of the computation laboratory of
Harvard University, pages 204–243, Cambridge, MA, USA, 1959. Cambridge
University Press.

[MMSS19] Thorben Moos, Amir Moradi, Tobias Schneider, and François-Xavier Standaert.
Glitch-resistant masking revisited or why proofs in the robust probing model
are needed. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2019(2):256–292,
2019.

[MPG05] Stefan Mangard, Thomas Popp, and Berndt M. Gammel. Side-channel leakage
of masked CMOS gates. In Alfred Menezes, editor, Topics in Cryptology
- CT-RSA 2005, The Cryptographers’ Track at the RSA Conference 2005,
San Francisco, CA, USA, February 14-18, 2005, Proceedings, volume 3376 of
Lecture Notes in Computer Science, pages 351–365. Springer, 2005.



Mateus Simoes, Lilian Bossuet, Nicolas Bruneau, Vincent Grosso and Patrick Haddad23

[MPO05] Stefan Mangard, Norbert Pramstaller, and Elisabeth Oswald. Successfully
attacking masked AES hardware implementations. In Rao and Sunar [RS05],
pages 157–171.

[NRR06] Svetla Nikova, Christian Rechberger, and Vincent Rijmen. Threshold imple-
mentations against side-channel attacks and glitches. In Peng Ning, Sihan
Qing, and Ninghui Li, editors, Information and Communications Security,
8th International Conference, ICICS 2006, Raleigh, NC, USA, December 4-7,
2006, Proceedings, volume 4307 of Lecture Notes in Computer Science, pages
529–545. Springer, 2006.

[PKZM07] Thomas Popp, Mario Kirschbaum, Thomas Zefferer, and Stefan Mangard.
Evaluation of the masked logic style MDPL on a prototype chip. In Paillier
and Verbauwhede [PV07], pages 81–94.

[PM05] Thomas Popp and Stefan Mangard. Masked dual-rail pre-charge logic: DPA-
resistance without routing constraints. In Rao and Sunar [RS05], pages 172–186.

[PMK+11] Axel Poschmann, Amir Moradi, Khoongming Khoo, Chu-Wee Lim, Huaxiong
Wang, and San Ling. Side-channel resistant crypto for less than 2, 300 GE. J.
Cryptol., 24(2):322–345, 2011.

[PV07] Pascal Paillier and Ingrid Verbauwhede, editors. Cryptographic Hardware and
Embedded Systems - CHES 2007, 9th International Workshop, Vienna, Austria,
September 10-13, 2007, Proceedings, volume 4727 of Lecture Notes in Computer
Science. Springer, 2007.

[RBN+15] Oscar Reparaz, Begül Bilgin, Svetla Nikova, Benedikt Gierlichs, and Ingrid
Verbauwhede. Consolidating masking schemes. In Rosario Gennaro and
Matthew Robshaw, editors, Advances in Cryptology - CRYPTO 2015 - 35th
Annual Cryptology Conference, Santa Barbara, CA, USA, August 16-20, 2015,
Proceedings, Part I, volume 9215 of Lecture Notes in Computer Science, pages
764–783. Springer, 2015.

[RS05] Josyula R. Rao and Berk Sunar, editors. Cryptographic Hardware and Embedded
Systems - CHES 2005, 7th International Workshop, Edinburgh, UK, August 29
- September 1, 2005, Proceedings, volume 3659 of Lecture Notes in Computer
Science. Springer, 2005.

[SBHM20] Pascal Sasdrich, Begül Bilgin, Michael Hutter, and Mark E. Marson. Low-
latency hardware masking with application to AES. IACR Trans. Cryptogr.
Hardw. Embed. Syst., 2020(2):300–326, 2020.

[SM21] Aein Rezaei Shahmirzadi and Amir Moradi. Re-consolidating first-order mask-
ing schemes nullifying fresh randomness. IACR Trans. Cryptogr. Hardw. Embed.
Syst., 2021(1):305–342, 2021.

[Spa20] Jens Sparsø. Introduction to Asynchronous Circuit Design. DTU Compute,
Technical University of Denmark, 2020. Paperback edition available here:
https://www.amazon.com/dp/B08BF2PFLN.

[SS06] Daisuke Suzuki and Minoru Saeki. Security evaluation of DPA countermeasures
using dual-rail pre-charge logic style. In Goubin and Matsui [GM06], pages
255–269.

[Sug19] Takeshi Sugawara. 3-share threshold implementation of AES S-box without
fresh randomness. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2019(1):123–
145, 2019.



24 Self-Timed Masking

[TV04] Kris Tiri and Ingrid Verbauwhede. A logic level design methodology for a secure
DPA resistant ASIC or FPGA implementation. In 2004 Design, Automation
and Test in Europe Conference and Exposition (DATE 2004), 16-20 February
2004, Paris, France, pages 246–251. IEEE Computer Society, 2004.

[UHA17] Rei Ueno, Naofumi Homma, and Takafumi Aoki. A systematic design of tamper-
resistant galois-field arithmetic circuits based on threshold implementation
with (d + 1) input shares. In 47th IEEE International Symposium on Multiple-
Valued Logic, ISMVL 2017, Novi Sad, Serbia, May 22-24, 2017, pages 136–141.
IEEE Computer Society, 2017.

[WM18] Felix Wegener and Amir Moradi. A first-order SCA resistant AES without fresh
randomness. In Junfeng Fan and Benedikt Gierlichs, editors, Constructive Side-
Channel Analysis and Secure Design - 9th International Workshop, COSADE
2018, Singapore, April 23-24, 2018, Proceedings, volume 10815 of Lecture Notes
in Computer Science, pages 245–262. Springer, 2018.



Mateus Simoes, Lilian Bossuet, Nicolas Bruneau, Vincent Grosso and Patrick Haddad25

A PRESENT s-box without fresh masks [SM21]
F (a, b, c, d) : C56B90AD3EF84712
w = f0(a, b, c, d) = a⊕ c⊕ d⊕ bc
x = f1(a, b, c, d) = b⊕ d⊕ bd⊕ cd⊕ abc⊕ abd⊕ acd
y = f2(a, b, c, d) = 1⊕ c⊕ d⊕ ab⊕ ad⊕ bd⊕ abd⊕ acd
z = f3(a, b, c, d) = 1⊕ a⊕ b⊕ d⊕ bc⊕ abc⊕ abd⊕ acd

Process Step
f0

0 (a1, b0, c0, d0) = b0c0 ⊕ d0 ⊕ c0 ⊕ a1 → w′0
f0

1 (a1, b0, c1, d1) = b0c1 ⊕ c1 ⊕ a1 → w′1

f0
2 (a1, b1, c0, d0) = b1c0 ⊕ a1 → w′2
f0

3 (a0, b1, c1, d1) = b1c1 ⊕ d1 ⊕ a0 → w′3

f1
0 (a1, b0, c0, d0) = a1c0d0 ⊕ a1b0d0 ⊕ a1b0c0 ⊕ a1b0 → x′0
f1

1 (a0, b0, c0, d1) = a0c0d1 ⊕ a0b0d1 ⊕ a0b0c0 ⊕ a0d1 → x′1
f1

2 (a0, b0, c1, d0) = a0c1d0 ⊕ a0b0d0 ⊕ a0b0c1 ⊕ a0c1 ⊕ c1d0 ⊕ b0d0 ⊕ b0c1 ⊕ c1 → x′2
f1

3 (a1, b0, c1, d1) = a1c1d1 ⊕ a1b0d1 ⊕ a1b0c1 ⊕ b0c1⊕
⊕ b0d1 ⊕ c1d1 ⊕ a1b0 ⊕ a1c1 ⊕ a1d1 ⊕ b0 ⊕ c1 → x′3

f1
4 (a0, b1, c0, d0) = a0c0d0 ⊕ a0b1d0 ⊕ a0b1c0 ⊕ b1c0⊕

⊕ b1d0 ⊕ c0d0 ⊕ a0b1 ⊕ b1 ⊕ d0 ⊕ a0 → x′4
f1

5 (a1, b1, c0, d1) = a1c0d1 ⊕ a1b1d1 ⊕ a1b1c0 ⊕ b1c0 ⊕ b1d1 ⊕ c0d1 ⊕ a1d1 ⊕ d1 → x′5
f1

6 (a1, b1, c1, d0) = a1c1d0 ⊕ a1b1d0 ⊕ a1b1c1 ⊕ a1c1 → x′6
f1

7 (a0, b1, c1, d1) = a0c1d1 ⊕ a0b1d1 ⊕ a0b1c1 ⊕ a0b1 ⊕ a0c1 ⊕ a0d1 ⊕ a0 → x′7

f2
0 (a1, b0, c0, d0) = a1c0d0 ⊕ a1b0d0 ⊕ a1b0 ⊕ a1c0 → y′0
f2

1 (a0, b0, c0, d1) = a0c0d1 ⊕ a0b0d1 ⊕ a0b0 ⊕ a0c0 ⊕ a0d1 ⊕ a0 → y′1
f2

2 (a0, b0, c1, d0) = a0c1d0 ⊕ a0b0d0 ⊕ b0d0 ⊕ c1d0 → y′2
f2

3 (a1, b0, c1, d1) = a1c1d1 ⊕ a1b0d1 ⊕ b0d1 ⊕ c1d1 ⊕ a1d1 ⊕ c1 ⊕ a1 → y′3

f2
4 (a0, b1, c0, d0) = a0c0d0 ⊕ a0b1d0 ⊕ a0b1 ⊕ a0c0 ⊕ a0d0 ⊕ a0 → y′4
f2

5 (a1, b1, c0, d1) = a1c0d1 ⊕ a1b1d1 ⊕ a1b1 ⊕ a1c0 ⊕ c0 ⊕ d1 ⊕ a1 → y′5
f2

6 (a1, b1, c1, d0) = a1c1d0 ⊕ a1b1d0 ⊕ b1d0 ⊕ c1d0 ⊕ a1d0 ⊕ d0 → y′6
f2

7 (a0, b1, c1, d1) = a0c1d1 ⊕ a0b1d1 ⊕ b1d1 ⊕ c1d1 → y′7

f3
0 (a1, b0, c0, d0) = a1c0d0 ⊕ a1b0d0 ⊕ a1b0 → z′0
f3

1 (a0, b0, c0, d1) = a0c0d1 ⊕ a0b0d1 ⊕ b0c0 ⊕ b0d1 ⊕ c0d1 ⊕ a0d1 ⊕ d1 → z′1
f3

2 (a0, b0, c1, d0) = a0c1d0 ⊕ a0b0d0 ⊕ a0c1 → z′2
f3

3 (a1, b0, c1, d1) = a1c1d1 ⊕ a1b0d1 ⊕ b0c1 ⊕ b0d1⊕
⊕ c1d1 ⊕ a1b0 ⊕ a1c1 ⊕ a1d1 ⊕ b0 ⊕ c1 ⊕ a1 → z′3

f3
4 (a0, b1, c0, d0) = a0c0d0 ⊕ a0b1d0 ⊕ a0b1 ⊕ d0 → z′4
f3

5 (a1, b1, c0, d1) = a1c0d1 ⊕ a1b1d1 ⊕ b1c0 ⊕ b1d1 ⊕ c0d1 ⊕ a1d1 ⊕ d1 → z′5
f3

6 (a1, b1, c1, d0) = a1c1d0 ⊕ a1b1d0 ⊕ a1c1 → z′6
f3

7 (a0, b1, c1, d1) = a0c1d1 ⊕ a0b1d1 ⊕ b1c1 ⊕ b1d1⊕
⊕ c1d1 ⊕ a0b1 ⊕ a0c1 ⊕ a0d1 ⊕ b1 ⊕ c1 ⊕ d1 ⊕ a0 → z′7

Compress Step
w0 = w′0 ⊕ w′1 w1 = w′2 ⊕ w′3
x0 = x′0 ⊕ x′1 ⊕ x′2 ⊕ x′3 x1 = x′4 ⊕ x′5 ⊕ x′6 ⊕ x′7
y0 = y′0 ⊕ y′1 ⊕ y′2 ⊕ y′3 y1 = y′4 ⊕ y′5 ⊕ y′6 ⊕ y′7
z0 = z′0 ⊕ z′1 ⊕ z′2 ⊕ z′3 z1 = z′4 ⊕ z′5 ⊕ z′6 ⊕ z′7



26 Self-Timed Masking

B 2-share masked PRESENT s-box with fresh masks
F (a, b, c, d) : C56B90AD3EF84712
w = f0(a, b, c, d) = a⊕ c⊕ d⊕ bc
x = f1(a, b, c, d) = b⊕ d⊕ bd⊕ cd⊕ abc⊕ abd⊕ acd
y = f2(a, b, c, d) = 1⊕ c⊕ d⊕ ab⊕ ad⊕ bd⊕ abd⊕ acd
z = f3(a, b, c, d) = 1⊕ a⊕ b⊕ d⊕ bc⊕ abc⊕ abd⊕ acd

f0
0 (a1, b0, c0, d0) = b0c0 ⊕ c0 ⊕ a1 ⊕ r0 ⊕ r4 → w′0
f0

1 (a1, b0, c1, d1) = b0c1 ⊕ d1 ⊕ r3 ⊕ r7 → w′1

f0
2 (a1, b1, c0, d0) = b1c0 ⊕ d0 ⊕ r0 ⊕ r7 → w′2
f0

3 (a0, b1, c1, d1) = b1c1 ⊕ c1 ⊕ a0 ⊕ r3 ⊕ r4 → w′3

f1
0 (a1, b0, c0, d0) = a1c0d0 ⊕ a1b0d0 ⊕ a1b0c0 ⊕ c0d0 ⊕ r0 ⊕ r4 → x′0
f1

1 (a0, b0, c0, d1) = a0c0d1 ⊕ a0b0d1 ⊕ a0b0c0 ⊕ b0d1 ⊕ d1 ⊕ r1 ⊕ r5 → x′1
f1

2 (a0, b0, c1, d0) = a0c1d0 ⊕ a0b0d0 ⊕ a0b0c1 ⊕ b0d0 ⊕ r2 ⊕ r6 → x′2
f1

3 (a1, b0, c1, d1) = a1c1d1 ⊕ a1b0d1 ⊕ a1b0c1 ⊕ c1d1 ⊕ b3 ⊕ r0 ⊕ r7 → x′3

f1
4 (a0, b1, c0, d0) = a0c0d0 ⊕ a0b1d0 ⊕ a0b1c0 ⊕ b1d0 ⊕ d0 ⊕ r0 ⊕ r7 → x′4
f1

5 (a1, b1, c0, d1) = a1c0d1 ⊕ a1b1d1 ⊕ a1b1c0 ⊕ c0d1 ⊕ r1 ⊕ r6 → x′5
f1

6 (a1, b1, c1, d0) = a1c1d0 ⊕ a1b1d0 ⊕ a1b1c1 ⊕ c1d0 ⊕ b1 ⊕ r2 ⊕ r5 → x′6
f1

7 (a0, b1, c1, d1) = a0c1d1 ⊕ a0b1d1 ⊕ a0b1c1 ⊕ b1d1 ⊕ r3 ⊕ r4 → x′7

f2
0 (a1, b0, c0, d0) = 1⊕ a1c0d0 ⊕ a1b0d0 ⊕ b0d0 ⊕ c0 ⊕ r0 ⊕ r4 → y′0
f2

1 (a0, b0, c0, d1) = a0c0d1 ⊕ a0b0d1 ⊕ b0d1 ⊕ a0d1 ⊕ r1 ⊕ r5 → y′1
f2

2 (a0, b0, c1, d0) = a0c1d0 ⊕ a0b0d0 ⊕ a0d0 ⊕ a0b0 ⊕ r2 ⊕ r6 → y′2
f2

3 (a1, b0, c1, d1) = a1c1d1 ⊕ a1b0d1 ⊕ a1b0 ⊕ c1 ⊕ r3 ⊕ r7 → y′3

f2
4 (a0, b1, c0, d0) = a0c0d0 ⊕ a0b1d0 ⊕ b1d0 ⊕ d0 ⊕ r0 ⊕ r7 → y′4
f2

5 (a1, b1, c0, d1) = a1c0d1 ⊕ a1b1d1 ⊕ b1d1 ⊕ a1d1 ⊕ r1 ⊕ r6 → y′5
f2

6 (a1, b1, c1, d0) = a1c1d0 ⊕ a1b1d0 ⊕ a1d0 ⊕ a1b1 ⊕ r2 ⊕ r5 → y′6
f2

7 (a0, b1, c1, d1) = a0c1d1 ⊕ a0b1d1 ⊕ a0b1 ⊕ d1 ⊕ r3 ⊕ r4 → y′7

f3
0 (a1, b0, c0, d0) = 1⊕ a1c0d0 ⊕ a1b0d0 ⊕ a1b0c0 ⊕ b0c0 ⊕ r0 ⊕ r4 → z′0
f3

1 (a0, b0, c0, d1) = a0c0d1 ⊕ a0b0d1 ⊕ a0b0c0 ⊕ d1 ⊕ a0 ⊕ r1 ⊕ r5 → z′1
f3

2 (a0, b0, c1, d0) = a0c1d0 ⊕ a0b0d0 ⊕ a0b0c1 ⊕ b0c1 ⊕ r2 ⊕ r6 → z′2
f3

3 (a1, b0, c1, d1) = a1c1d1 ⊕ a1b0d1 ⊕ a1b0c1 ⊕ b0 ⊕ r3 ⊕ r7 → z′3

f3
4 (a0, b1, c0, d0) = a0c0d0 ⊕ a0b1d0 ⊕ a0b1c0 ⊕ d0 ⊕ r0 ⊕ r7 → z′4
f3

5 (a1, b1, c0, d1) = a1c0d1 ⊕ a1b1d1 ⊕ a1b1c0 ⊕ b1c0 ⊕ r1 ⊕ r6 → z′5
f3

6 (a1, b1, c1, d0) = a1c1d0 ⊕ a1b1d0 ⊕ a1b1c1 ⊕ b1 ⊕ a1 ⊕ r2 ⊕ r5 → z′6
f3

7 (a0, b1, c1, d1) = a0c1d1 ⊕ a0b1d1 ⊕ a0b1c1 ⊕ b1c1 ⊕ r3 ⊕ r4 → z′7

w0 = w′0 ⊕ w′1 w1 = w′2 ⊕ w′3
x0 = x′0 ⊕ x′1 ⊕ x′2 ⊕ x′3 x1 = x′4 ⊕ x′5 ⊕ x′6 ⊕ x′7
y0 = y′0 ⊕ y′1 ⊕ y′2 ⊕ y′3 y1 = y′4 ⊕ y′5 ⊕ y′6 ⊕ y′7
z0 = z′0 ⊕ z′1 ⊕ z′2 ⊕ z′3 z1 = z′4 ⊕ z′5 ⊕ z′6 ⊕ z′7


	Introduction
	Notations
	Background
	Secure masking implementations
	The dual-rail encoding
	Eliminating glitches with monotonic logic
	Avoiding the early propagation effect
	Data synchronization with the Muller c-elements

	Register-free implementations
	PRESENT S-box implementation
	AES S-box implementation

	Implementation results
	Comparison with related works

	Side-Channel Analysis
	Conclusion
	PRESENT s-box without fresh masks DBLP:journals/tches/ShahmirzadiM21
	2-share masked PRESENT s-box with fresh masks

