
1

Statistical Effective Fault Attacks:
The other Side of the Coin

Navid Vafaei, Sara Zarei, Nasour Bagheri, Maria Eichlseder, Robert Primas and Hadi Soleimany

Abstract— The introduction of Statistical Ineffective
Fault Attacks (SIFA) has led to a renewed interest in fault
attacks. SIFA requires minimal knowledge of the concrete
implementation and is effective even in the presence
of common fault or power analysis countermeasures.
However, further investigations reveal that undesired and
frequent ineffective events, which we refer to as the
noise phenomenon, are the bottleneck of SIFA that can
considerably diminish its strength. This includes noise
associated with the attack’s setup and caused by the
countermeasures utilized in the implementation. This
research aims to address this significant drawback. We
present two novel statistical fault attack variants that are
far more successful in dealing with these noisy conditions.
The first variant is the Statistical Effective Fault Attack
(SEFA), which exploits the non-uniform distribution of
intermediate variables in circumstances when the induced
faults are effective. The idea behind the second proposed
method, dubbed Statistical Hybrid Fault Attacks (SHFA),
is to take advantage of the biased distributions of
both effective and ineffective cases simultaneously. Our
experimental results in various case studies, including
noise-free and noisy setups, back up our reasoning that
SEFA surpasses SIFA in several instances and that SHFA
outperforms both or is at least as efficient as the best of
them. For example, in the case of a 4-bits random-AND
fault injected into the AES with a 35 % missed fault rate,
utilizing SEFA reduces the number of needed ciphertexts
by 50 %. In the same case study, SHFA can yield 10 % and
55 % reductions compared to SEFA and SIFA.

Index Terms— Statistical Fault Attack, SIFA, SEFA, AES

I. INTRODUCTION

Starting with the seminal work by Boneh et al. [1] on RSA,
numerous studies have assessed the security of cryptographic
implementations against a wide range of fault attacks.
The earliest fault attack on symmetric-key cryptosystems
is Differential Fault Analysis (DFA) [2], which requires
concurrent knowledge of a faulty ciphertext and its correct
counterpart ciphertext under the same key. A variety of

N. Vafaei and N.Bagheri are with CPS2 Lab., Electrical Engineering
Dept. of Shahid Rajaee Teacher Training University (SRTTU), Tehran,
Iran, e-mail: n.vafaei@sru.ac.ir and Nbagheri@sru.ac.ir, N.Bagheri is
also with School of Computer Science (SCS), Institute for Research in
Fundamental Sciences (IPM), Farmanieh Campus

S. Zarei is with imec-COSIC, KU Leuven, Kasteelpark
Arenberg 10, B-3001 Leuven-Heverlee, Belgium e-mail:
firstname.lastname@esat.kuleuven.be

H. Soleimany is with Shahid Beheshti University, Tehran, Iran e-mail:
h soleimany@sbu.ac.ir

M. Eichlseder and R. Primas are with Graz University of
Technology, Graz, Austria, e-mail: maria.eichlseder@iaik.tugraz.at and
robert.primas@iaik.tugraz.at

differential fault attack techniques have been applied to
symmetric primitives by exploiting the difference between the
correct and faulty ciphertexts. Li et al. [3] proposed Fault
Sensitivity Analysis (FSA) which does not use the value of
the faulty ciphertexts in the key retrieval procedure. This
works by raising the fault intensity until a distinct feature may
be observed that can be used as leakage information. FSA
requires a profiling phase and assumes that the adversary has
control over the input in the chosen-plaintext scenario. Fuhr et
al. introduced a novel technique called Statistical Fault Attack
(SFA) [4], which exploits the statistical bias introduced by
injected faults. Contrary to previous attacks, SFA only requires
faulty ciphertexts and is thus applicable in several scenarios
where previous attacks are not [5], [6]. For instance, SFA can
target the final rounds of AES to practically recover the key
with a small number of faulty ciphertexts. In contrast to the
aforementioned attacks, Safe Error Attacks (SEA) [7]–[9] and
Ineffective Fault Attacks (IFA) exclusively rely on cases where
the injected fault has no effect on the output. Dobraunig et
al. [10] recently proposed a new type of fault attack called
Statistical Ineffective Fault Attacks (SIFA), which combines
the concepts of IFA and SFA. A method to accelerate SIFA
on AES is proposed in [11].

Amongst all active physical attacks, SIFA seems to be
the most simple and effective one from the attacker’s point
of view but the most intricate one to counteract from
the designer’s point of view. SIFA and IFA are similar
in that the attacker exploits the information whether the
fault affected the ciphertext or not, and requires only the
correct, unchanged ciphertexts. As with SFA, SIFA exploits
the statistical distribution of an intermediate value impacted
by the injected fault. The bias ensures that the probabilities
of changing/not changing intermediate variables in fault
inductions are not uniform. The attack does not require
knowledge of the dependency or a specific fault model.
The second advantage of SIFA is the result of focusing on
ineffective faults, which enables it to bypass several fault
countermeasures, including detection-based [12] and infection-
based [13]–[15], as well as side-channel countermeasures like
masking. In the presence of certain other countermeasures
like error correction or dummy rounds, SIFA still works, but
becomes less efficient. After the launch of SIFA, one of the
notable introduced works was [16]. It exploits the leakages
of both faulty and correct ciphertexts to conduct a template
attack, and therefore, belongs to the category of Fault Template
Attacks (FTA). These types of attacks make use of yes/no
distributions and have their own appeals and applications, but

2

TABLE I: Comparison between different fault attacks. CP:
Chosen plaintext, CO: Ciphertext only, KP: Known plaintext,
X∗: Correct and faulty ciphertexts are identical for ineffective
faults; both can be obtained from a single computation for
SIFA and SHFA.

Attack Data Used for Key Recovery
Bypass Detection
Countermeasures

Attack
Scenario

Correct Ciphertexts Faulty Ciphertexts
Effective Ineffective Ineffective Effective

DFA X X 7 CP
FSA X 7 7 CP
SFA 7 X 7 CO
SIFA 7 X∗ 7 X CO or CP
SEFA X 7 7 7 X KP or CP
SHFA X X∗ 7 X CP

because they operate in a different scenario compared to SIFA
(non-profiled), we leave them for their related scope.

Our Contribution: We introduce a novel technique for fault
analysis: Statistical Effective Fault Attacks (SEFA). SEFA
makes use of the abandoned portion of the leakage that the
attacker has access to when performing SIFA. Surprisingly,
this information has been completely overlooked so far.
Assume that the correct and faulty encryption of a plaintext
P is C and CE, respectively. When C equals CE, the output is
referred to as ineffective ciphertext; otherwise, it is referred
to as effective ciphertext. In the presence of detection- or
infection-based countermeasures, the attacker cannot observe
the faulty ciphertexts when the fault is effective. However,
the attacker typically retains access to the correct, non-
faulty ciphertexts in which the fault was effective, even in
the presence of these countermeasures. To the best of our
knowledge, no comparable fault attack has exploited leakage
from such correct ciphertexts (see Table I). SEFA employs
non-faulty effective ciphertexts, whereas SIFA employs the set
of ineffective ciphertexts. Both SIFA and SEFA exploit the fact
that the distribution of an intermediate value over the selected
ciphertexts may be non-uniform. Our main observation is
that SEFA outperforms SIFA in many practical scenarios,
particularly in noisy situations. To get the best of both worlds,
we introduce SHFA, a combined SEFA/SIFA attack that
outperforms the individual attacks.

Our main contributions in this paper are the following:

1) We propose Statistical Effective Fault Attacks. SEFA
is a novel fault attack strategy that is more efficient
than SIFA in many circumstances, like noise or certain
countermeasures. At the same time, it shares many of
the advantages of SIFA, such as the power to bypass
state-of-the-art detection and infection countermeasures.

2) We detail how SEFA can circumvent countermeasures,
including combined countermeasures and noisy setups.

3) We propose Statistical Hybrid Fault Attacks (SHFA) to
combine the advantages of SEFA and SIFA by collecting
data for both concurrently and yield the best results.

4) We practically evaluate SEFA, SHFA, and SIFA
in different scenarios in both simulations and real
experiments on implementations of Keccak/SHA-3 and
AES, confirming that SEFA outperforms SIFA in many
scenarios, particularly under high missed-fault rates or

under countermeasures like error correction and dummy
rounds, and that SHFA is generally the most efficient.

The simulations and experiments we conducted to validate our
theoretical achievements are all accessible through the GitHub
repository https://github.com/Navidvafaei/
SEFA.

Outline: Section II gives a brief introduction to SIFA and
its countermeasures. In Section III, we introduce the novel
SEFA approach. Section IV demonstrates its application in
different scenarios. Section V introduces the hybrid SHFA
attack. In Section VI, we present our experiments and results.

II. PRELIMINARIES

In this section, we first introduce the notation used in this
paper. Then, we give a brief overview of SIFA’s core ideas
and techniques, including fault distributions and statistical
hypothesis tests. We also discuss how SIFA interacts with
different countermeasures.

A. Statistical Scoring Functions
In statistical attacks like SFA, we evaluate all key candidates

for a partial last round key based on the distribution of some
intermediate value in the cipher evaluation. This distribution
is measured by partially decrypting a given set of ciphertexts
under this key candidate. For this purpose, we associate a
statistical scoring function S(p̂) with each key candidate,
where p̂ is the corresponding probability distribution in the
intermediate value, e.g., one byte in AES. This scoring
function indicates how close the measured distribution is to
the expected behaviour under the correct key. Then, the key
candidates are ranked according to the metric S(p̂).

We consider two fault scenarios: the attacker may or may
not know p, the true statistical distribution of intermediate
values corresponding to the correct key. In case p is known,
to rank the keys depending on their distribution p̂, one can
follow [10], [17], [18] and use the log-likelihood ratio (LLR)
statistic, which is defined as follows, where θ denotes the
uniform distribution and N is the number of samples:

LLR(k) = N
∑
x∈X

p̂k(x) · log2

p(x)

θ(x)
. (1)

In the second scenario, it is assumed that the attacker does
not know the details of the faulty distribution except that it
is biased when compared to a uniform distribution. In this
circumstance, a good metric for recovering the key is Squared
Euclidean Imbalance (SEI), which is defined as follows [10],
[18], [19]:

SEI(k) =
∑
x∈X

(p̂k(x)− θ(x))2 . (2)

As a result, we use S(p̂) = LLR(k) or S(p̂) = SEI(k)
to rank the key candidates. In both cases, for large N , the
distribution of S(p̂) is independently normally distributed for
samples from either p or θ [10], [20]:

S(p̂) ∼

{
N (µp, σ

2
p) if p̂ was produced by p,

N (µθ, σ
2
θ) if p̂ was produced by θ.

https://github.com/Navidvafaei/SEFA
https://github.com/Navidvafaei/SEFA

3

The difference ∆a between the score of target key k and the
score of the wrong key with rank 2κ−a of 2κ possible keys is
also normally distributed:

∆a ∼ N (µ∆, σ
2
∆) ,

where µ∆ = µp − µθ − σθ · Φ−1
0,1(1 − 2−a) and σ∆ ≈ σp.

Hence, the success probability of getting an a-bit advantage,
that is, limiting the maximum number of candidates examined
in the final search phase to 2κ−a when the number of possible
key candidates is 2κ, is computed as follows [20], [21]:

P(∆a > 0) = Φ0,1

(
µp − µθ − σθ · Φ−1

0,1(1− 2a)

σp

)
.

Assuming that p is very close to θ, the capacity C(p, θ) is
defined as follows:

C(p, θ) =
∑
x∈X

(p(x)− θ(x))2

θ(x)
.

Then, the number of ciphertexts required to obtain the success
probability PS = P(∆a > 0) can be estimated as follows [10],
[21] for LLR and SEI:

NLLR ≈
2 · [Φ−1

0,1(PS) + Φ−1
0,1(α)]2

C(p, θ)
(3)

NSEI ≈
β · Φ−1

0,1(α)

C(p, θ)
for PS = 0.5. (4)

These estimates assume sufficiently large N , i.e., that p and θ
are not too far apart.

B. Statistical Ineffective Fault Attacks (SIFA)

Fuhr et al. [4] introduced the Statistical Fault Attack (SFA),
which takes advantage of a bias in an intermediate target value
caused by fault induction. Although SFA is more powerful
than its preceding generation of fault attack, e.g., DFA, and
works on ciphertext-only scenarios, it fails when confronting
detection and infection-based countermeasures due to its
reliance on a faulty ciphertext. Statistical Ineffective Fault
Attack (SIFA) relaxes this reliance. [10] shows that almost
all practical fault inductions, whether effective or not, change
the targeted intermediate variable to a new value with a non-
uniform probability distribution. SIFA then works the same
way as SFA, with one exception: SIFA gathers and decrypts
ineffective, correct ciphertexts, whereas SFA requires faulty
ones.

The efficiency of SIFA attacks is characterized by several
metrics, which we introduce in our notation in the remainder
of this section. We use the i superscript to indicate that
the formula describes an ineffective-based statistical attack
(SIFA). The first relevant characteristic is the probability of
an ineffective fault when the faulted intermediate variable
X equals value j. Similarly, we define a second probability
parameter that calculates the probability of X = j if the
injected fault is ineffective. We call it qi

j and compute it using

the Bayesian relation:

pi
j = Pr(i | X = j) = Pr(X = X ′ = j) (5)

qi
j = Pr(X = j | i) =

Pr(i | X = j) · Pr(X = j)

pi .

Assuming that X is uniformly distributed, Pr(X = j) = 2−m,
we can estimate qi

j as

qi
j = Pr(X = j | i) =

pi
j∑
pi
j

. (6)

Given N ciphertexts, we assume there exist Ni ineffective
ciphertexts. For a key candidate k, one can partially decrypt
the ineffective ciphertexts to compute the m-bit intermediate
value X . The number of times that value j is observed in the
fault location (intermediate value X) for the key guess k is

ri
j(k) =

#{X = j | i, key = k}
Ni

.

As with SFA, the attacker can recover the correct key
using statistical tests such as LLR or SEI. The required Ni
is inversely proportional to the capacity as we discuss in
Section II-A. The probability of an ineffective event is referred
to as the ineffectivity rate Πi:

Πi =

∑2m−1
j=0 pi

j

2m
.

The total number N of ciphertexts required to get Ni
ineffective ciphertexts can be calculated as follows based on
the ineffectivity rate:

N =
Ni

Πi
. (7)

C. SIFA on Masked Implementations with Fault
Countermeasures

Consider a dth-order masked redundant implementation that
executes each operation d times and outputs only if all
redundant computations are identical. Such an implementation
is generally assumed to be secure against up to d fault
inductions, as the redundant computations identify faults,
and against up to dth-order side-channel attacks thanks to
the masking approach. However, it is shown in [22] that
this assumption holds only for fault attacks that make use
of faulty ciphertexts, and SIFA is able to invalidate the
statement’s generality. In a circuit with masking and detection
countermeasures, a single-bit fault induction to only one out of
d shares of a variable is sufficient for the attacker to attain the
original (unmasked) value of another variable. The observation
is not confined to any specific masking scheme. There is also
no limitation for the fault model (bit flip, instruction skip,
stuck-at, etc.). The only existing complication is determining
which fault model is best for each scheme.

D. Countermeasures Against SIFA

The purpose of any SIFA countermeasures should be to
either reduce the distribution’s capacity or make the fault
effective when injected into the sensitive value.

4

Regarding the first direction, adding noise by introducing
ineffective events that do not originate from ineffective faults
can help in the establishment of an unbiased distribution over
ineffective events, or at least in reduction of the capacity Ci.
For example, in the case of hiding, the attacker is prevented
from easily injecting the fault into the intended intermediate
value with a high success rate. Dummy rounds and shuffling
are two common approaches to hiding. Other alternatives
include error-correction methods, which correct specific faulty
bits. As a result, the attacker is unable to distinguish between
corrected and ineffective faults [23], [24]. The use of error-
correction techniques in the SIFA countermeasures can be
effective, but it comes with significant overhead, especially
when combined with masking techniques.

The second direction was proposed in [25], where
a sophisticated mechanism is introduced for circuits
with simultaneous masking and detection redundancies to
counteract SIFA. For this purpose, the authors recommend
employing Toffoli gates [26] to construct circuits. When the
sensitive intermediate variable is dependent on a complete
set of shares, such a circuit ensures that faults are effective
and thus detected; but when it is only dependent on an
incomplete set of shares, they can be ineffective without
providing exploitable information to the attacker.

III. STATISTICAL EFFECTIVE FAULT ATTACKS (SEFA)
In this section, we first introduce the concept of

Statistical Effective Fault Attacks. Then, we study its
application on circuits with simultaneous side-channel and
fault countermeasures.

A. SEFA
Critical information can be exploited utilizing ineffective

faults, as previously discussed. We now show that effective
faults, on the other side of the coin, can also lead to the
retrieval of the key. We use a 2-bit random-AND fault model
as an example to describe the outline of the idea of SEFA. The
probability distributions for various transitions that are likely
to occur due to the fault injection are represented in Table II.
The red diagonal of the table denotes the transitions in which
the fault has not affected the intermediate variable, i.e., an
ineffective fault. The higher and lower triangles (in blue), on
the other hand, indicate effective faults. We observe that the
probability distribution of the intermediate variable x is not
only non-uniform when restricted to the ineffective faults, but
is also biased over the effective faults (see Table IIIa). SIFA
uses the former; for SEFA, we want to take advantage of the
latter with the same presumptions and in the same manner.

In the following, we formulate SEFA analogous to the
notation presented in Section II-B for SIFA. Then, we use
these formulas to evaluate two different examples: the 2-bit
random-AND model, as illustrated in Table II, and its 4-bit
version.

The probability of an effective fault (pe
j) when X = j is

denoted as follows, where pi
j is the probability of an ineffective

fault as defined in Equation (5):

pe
j = Pr(e | X = j) = 1− pi

j . (8)

TABLE II: Fault distribution for a 2-bit random-AND model

x′

00 01 10 11

x

00 1 0 0 0
01 1

2
1
2 0 0

10 1
2 0 1

2 0

11 1
4

1
4

1
4

1
4

Conversely, the probability of X = j when the injected fault
is effective is then

qe
j = Pr(X = j | e) =

pe
j∑
pe
j

. (9)

Given N ciphertexts, we assume that there are Ne =
N −Ni ineffective ciphertexts. One can partially decrypt the
ineffective ciphertexts to obtain the m-bit intermediate value
X for a key candidate k. re

j (k) denotes how frequently the
value j is observed in the fault location (intermediate value
X) for the key guess k over the effective ciphertexts:

re
j (k) =

#{X = j | e, key = k}
Ne

.

The number of necessary effective ciphertexts Ne for
successful key-recovery can be estimated based on the capacity
of the q-distribution. The total number of required ciphertexts
N also depends on the probability of an effective event, the
effectivity rate Πe:

Πe =

∑2m−1
j=0 pe

j

2m
= 1−Πi (10)

N =
Ne

Πe
. (11)

a) Example: 2-bit and 4-bit AND: The probability
distributions of an intermediate variable under both the
effective and ineffective scenarios of 2-bit random-AND and
4-bit random-AND faults are illustrated in Table III. The
amount of data required for key recovery is determined by the
capacity and rate, different for effective and ineffective events.
The required number of ciphertexts N is proportional to 1

C·Π .
For 2-bit random-AND faults, 1

C·Π ≈ 7.6 for ineffective faults
and ≈ 5.9 for effective faults, so we expect SEFA to require
less data than SIFA. Our experiments, discussed in detail later
in Section VI, confirm this expectation. All in all, depending
on the application, SEFA may require less data than SIFA or
vice versa since effective and ineffective faults have distinct
capacities and rates.

B. SEFA on Masked Implementations with Fault
Countermeasures

We are interested in investigating the performance of SEFA
when applied to implementations providing masking and fault
detection countermeasures.

Consider a simple masked AND gate, as found in most S-
boxes. A first-order implementation of this gate with Domain-

5

TABLE III: Probability distribution of effective/ineffective fault with capacity C and rate Π.
(a) 2-bit random-AND model

j 00 01 10 11 C Π

qi
j 0.44 0.22 0.22 0.11 0.234 0.562

qe
j 0 0.29 0.29 0.43 0.387 0.437

(b) 4-bit random-AND model

j 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 C Π

qi
j 0.20 0.10 0.10 0.05 0.10 0.05 0.05 0.02 0.10 0.05 0.05 0.02 0.05 0.02 0.02 0.01 0.52 0.32

qe
j 0.00 0.05 0.05 0.07 0.05 0.07 0.07 0.08 0.05 0.07 0.07 0.08 0.07 0.08 0.08 0.09 0.11 0.68

Oriented Masking (DOM) [27] is given by

z0 = x0y0 ⊕ (x0y1 ⊕ r)
z1 = x1y1 ⊕ (x1y0 ⊕ r) .

If we examine the gate as a single masked circuit, the output
shares z0 and z1 are joined together to produce the z output.
However, they are treated as two distinct outputs when we
suppose the gate is a subcircuit. A bit-flip fault induced into
each of the x input shares leads to effective or ineffective faults
at the outputs of this implementation (in either of the joint
or distinct output cases) with a probability of 50 %. This is
illustrated in the bit-flip columns in the DOM Implementation
segment in Table IV; the effectivity and ineffectivity cases
are represented in blue and red, respectively, in the table. An
attacker who fails to obtain the desired output after inducing
a bit-flip fault on the x0 share can conclude that the fault was
effective as the detection system filtered it out. Then, they can
translate the effectivity of the fault to the unmasked value of y
input by a closer look at Table IV. Effective cases are possible
only if the original value of y equals 1.

The observation is not confined to the bit-flip fault model or
the DOM implementation of S-boxes. Other schemes, such as
CMS [28], suffer from similar exploitable leaks if the proper
fault model is utilized. We consider some further examples for
SEFA applications:

1) The first-order masked AND gate implementation with
the stuck-at-0 fault model,

2) Masked implementations within a broader scope,
considering both bit-flip and stuck-at-0 fault models. By
broader scope, we mean every realization that generates
component functions x0y0, x0y1, . . . , and uses them as
components that together are expected to construct the
output in a more complicated manner.

The stuck-at-0 columns of the DOM Implementation
segment and the last six columns of Table IV illustrate both
the effective and ineffective cases of the first two examples.
A cursory examination of the effective/ineffective cases may
result in the conclusion that one cannot exploit them to
retrieve the unmasked value of y input with the same certainty
as to the preliminary example. In other words, they cannot
provide us with a definitive answer concerning the y input.
However, that is not all, and both SEFA and SIFA still
work. They can be used to recover the original value of
the y input, although not at first glance, but by employing

TABLE IV: Revealing the unmasked value of y input by
inducing stuck-at-0 (S0) or bit-flip (BF) faults on input share
x0 in a masked AND-gate for two types of masking.

DOM Implementation General masked implementations
x0 x′0 x′0 y0 y1 z0 z′0 z′0 z1 z z′ z′ x0y0 x0y1 x′0y0 x′0y1 x′0y0 x′0y1

S0 BF S0 BF S0 BF S0 S0 BF BF

0 0 1 0 0 r r r r 0 0 0 0 0 0 0 0 0
0 0 1 0 1 r r r̄ x1 ⊕ r x1 x1 x̄1 0 0 0 0 0 1
0 0 1 1 0 r r r̄ x1 ⊕ r x1 x1 x̄1 0 0 0 0 1 0
0 0 1 1 1 r r r r 0 0 0 0 0 0 0 1 1
1 0 0 0 0 r r r r 0 0 0 0 0 0 0 0 0
1 0 0 0 1 r̄ r r x1 ⊕ r x̄1 x1 x1 0 1 0 0 0 0
1 0 0 1 0 r̄ r r x1 ⊕ r x̄1 x1 x1 1 0 0 0 0 0
1 0 0 1 1 r r r r 0 0 0 1 1 0 0 0 0︸ ︷︷ ︸

distinct outputs
︸ ︷︷ ︸

joint output

some computations. We will give some numerical criteria
later in Section IV-C to assess and compare SEFA and SIFA
in the mentioned examples. Our comparison methodology
works for all masked implementations with fault detection
countermeasures in general. We leave the impact of inducing
multiple faults per execution for future research, as did the
authors of [22].

IV. SEFA VS. SIFA
Comparing the performance of SIFA and SEFA entails

assessing the adversary model and the amount of data required.
To begin, we will explore how the attack model is dependent
on the countermeasure employed. We will then inspect various
parameters that affect the data required for SIFA and SEFA in
practice.

A. Attack Model in Detection- and Infection-based
Countermeasures

To mount SIFA or SEFA, the attacker must possess
ineffective ciphertexts and non-faulty effective ciphertexts,
respectively. Various scenarios for acquiring the relevant data
may be considered depending on the countermeasures used
in the implementation. Different fault attacks, such as SFA
and DFA, are applicable to unprotected implementations. As
a result, we concentrate on protected implementations that
employ detection- or infection-based countermeasures, where
classical fault assaults are inapplicable.

In the presence of infection-based countermeasures, the
attacker is unable to determine ineffective ciphertexts directly.
SIFA can be mounted in one of two ways. First, the attacker

6

can determine which ciphertexts are ineffective by encrypting
specific inputs in the chosen-plaintext model using both
normal and faulty encryption. As a result, the required data
is multiplied by two, and input control is assumed to be in
the attacker’s hands. Alternatively, the attacker can perform
SIFA on all available faulty ciphertexts. This attack has the
advantage of remaining within the known-ciphertext model.
On the other hand, the set of ineffective ciphertexts is not
distinguishable. As a result, the amount of data required
significantly increases because unknown effective ciphertexts
act as noise during the key recovery process. The attacker must
execute the encryption twice to obtain non-faulty effective
ciphertexts for mounting the SEFA: once to compute the
correct ciphertexts and once to compute the faulty ciphertext.
This fact implies that the required data doubles, and the attack
is defined in the chosen-plaintext scenario.

If a detection-based countermeasure is used, it is possible to
obtain ineffective ciphertexts from the faulted encryption. As
a result, SIFA can be performed without incurring additional
overhead in the known ciphertext scenario. In the presence of
a detection-based countermeasure, there are two approaches
to perform SEFA. The first is a chosen-plaintext technique,
as previously discussed for infection-based countermeasures.
However, achieving both correct and faulty encryption doubles
the amount of required data. Alternatively, the attacker can
target an intermediate value of the first rounds. Thus, SEFA
can be mounted in the known-plaintext scenario without
requiring additional data. It is worth mentioning that SEFA
might also be performed in a ciphertext-only scenario, if
the adversary can determine whether the injected fault was
effective or not. For example, if the attacker can identify
the tag verification procedure in an authenticated encryption
system, it is possible to follow the strategy described by
[29] but for SEFA. Any fault injection for which the tag
has been checked is deemed an ineffective fault injection in
this situation, and vice versa. As a result, in a ciphertext-only
scenario, the adversary can obtain the necessary data to carry
out the attack.

B. Effect of Undesired Ineffective Events
Apart from ineffective faults, there are several other

possible causes of ineffective ciphertexts. The attacker cannot
distinguish between ineffective faults and these events,
as neither modifies the ciphertexts. As a result of these
occurrences, the performance of SIFA and even SEFA may
be impacted. In this part, we examine the consequences of
these occurrences.

1) Missed Faults: In practice, despite the attacker’s efforts,
the injected fault may not be successful. When missed
faults occur, the observable ineffective rate is higher than
expected, whereas the observable effective rate is lower
than expected. The observable ineffective and effective rates
are proportional to the probability of missed fault injection
Πmiss = Pr[missed fault]. Πi,miss and Πe,miss denote ineffective
and effective rates, respectively:

Πi,miss = Πmiss + (1−Πmiss)Πi

Πe,miss = (1−Πmiss)Πe .

When faults are missed, the probability of X = j over
ineffective ciphertexts is

qi,miss
j = (1−Πmiss)q

i
j + 2−mΠmiss .

The missed fault rate varies depending on the attack’s
setup and equipment. The probability distribution of the target
intermediate value over ineffective ciphertexts approaches
uniform distribution as the probability of missing a fault
increases.

In comparison, missed faults do not affect on the probability
distribution of the target intermediate value for effective
ciphertexts. However, SEFA requires slightly more data to
get enough effective ciphertexts, as the effective rate Πe,miss
decreases with missed faults.

2) Error Correction: Assume that an error-correction code-
based countermeasure is used to protect the implementation
against fault attacks. Consider a simple correcting code such
as [30] that detects d bit faults and corrects d′ = d

2 bits
faults. SIFA and SEFA can both be applied by injecting d′+1
biased bit faults. However, restoring d′ faulty bits increases the
number of observable ineffective ciphertexts. In other words,
not all ineffective ciphertexts result from ineffective faults,
but error correction may also cause ineffective ciphertexts.
However, it is impossible to distinguish between corrected
errors and ineffective faults. The probability of a fault being
ineffective or corrected when the faulty intermediate variable
X equals the value j increases, where HW denotes the
Hamming weight:

pi,cor
j = Pr(i | X = j) + Pr(cor | X = j)

= Pr(X = j,HW(X ⊕X ′) ≤ d′)r .

The probability of X = j for a correct ciphertext approaches
the uniform distribution:

qi,cor
j = Pr(X = j | i, cor) =

pi,cor
j∑
pi,cor
j

.

This fact significantly increases the amount of data required
for SIFA, as it results in a less biased probability distribution
for SIFA’s target.

By contrast, the probability of a fault being effective when
the faulty intermediate variable X equals the value j decreases
in this scenario:

pe,cor
j = Pr(e | X = j) + Pr(cor | X = j)

= Pr(X = j,HW(X ⊕X ′) > d′) .

Thus, the probability distribution of effective faults in SEFA
becomes more biased:

qe,cor
j = Pr(X = j | e, cor) =

pe,cor
j∑
pe,cor
j

.

a) Example: To demonstrate this point, consider a 2-bit
random-AND fault corrected using the 1-bit correction method.
Table V illustrates the effective and ineffective probability
distributions for this scenario. The attacker can retrieve the
intermediate value with probability one since 11 → 00 is the
only possible effective event.

7

TABLE V: Fault distribution for a 2-bit random-AND model
with the assumption of 1-bit correction. Red: corrected and
ineffective events. Blue: effective events.

x′

00 01 10 11

x

00 1 0 0 0
01 1

2
1
2 0 0

10 1
2 0 1

2 0

11 1
4

1
4

1
4

1
4

However, increasing effective capacity does not always
imply that SEFA can be enhanced by implementing error-
correction mechanisms as the effective rate decreases.
Nevertheless, SEFA can significantly outperform SIFA when
an error-correction technique is used, as we will demonstrate
in Section VI-C.

b) Majority Voting: As already discussed in [10], error
correction can also be implemented on the cipher level.
For example, consider an implementation that performs two
additional redundant computations and only releases an
output if it was produced by at least two of the redundant
computations. This can hamper both SIFA and SEFA since
the attacker, performing only one fault injection during
the entire computation, cannot observe a different behavior
between effective/ineffective fault injections anymore. In such
a case, the attacker can adopt the attack strategy by using an
additional (possibly random) fault somewhere within one of
the additional computations such that the criteria if the output
can be observed again relies on the effect of the first fault
injection.

3) Hiding: Typically, fault attacks use a biased distribution
of intermediate values. By limiting the attacker’s knowledge of
the computed values at various points during the execution, the
hiding countermeasures make it more difficult for an attacker
to inject faults into a specific intermediate value. The ideal
goal of preventing fault attacks through the use of hiding
countermeasures appears challenging to achieve. However, as
the amount of data required for fault attacks grows, hiding
countermeasures can provide additional security.

We now discuss two common strategies for hiding
countermeasures and their implications for SIFA and SEFA.
The first method involves inserting dummy rounds between
the real rounds at random. The second method is shuffling,
which randomly orders the operations.

a) Dummy Rounds: The basic idea behind this technique is
to perform ineffective dummy rounds preceding and following
real rounds at random. As a result, the position of each round
varies from execution to execution. Injecting a fault into the
dummy rounds always results in ineffective ciphertexts that are
indistinguishable from those produced by the target round’s
ineffective fault. Similar to [22], we consider a protected
AES implementation in which each execution includes 10
real AES rounds and 10(k − 1) ineffective dummy rounds.
As demonstrated in [22], this protection increases the amount
of data required for the SIFA by a factor of 6.5 · k2.

TABLE VI: Approximation data complexity of SEFA and SIFA
with masking countermeasure.

SEFA SIFA
Implementation Fault model Πe Ce

1
Ce·Πe

Πi Ci
1

Ci·Πi

DOM-AND gate
Bit-flip 1

2 1 2 1
2 1 2

Stuck-at-0 1
4 1 4 3

4
1
9 12

Random-AND 1
8 1 8 7

8
1
49 56

General masked implementations
Bit-flip 3

4
1
9 12 1

4 1 4

Stuck-at-0 3
8

1
9 24 5

8
4

100 40

Random-AND 3
16

1
9 48 13

16
1

169 208

Dummy rounds do not induce any noise in the probability
distribution of the intermediate value over the non-faulty
effective ciphertexts. Consequently, in the case of SEFA, this
countermeasure has no effect on capacity. The dummy rounds
only reduce the effective rate by a factor of at most k, resulting
in an increase in data complexity by a factor of k. As a result,
dummy rounds are significantly less efficient against SEFA
than they are against SIFA.

b) Shuffling: As with dummy rounds, shuffling is intended
to make it more difficult for an attacker to inject the desired
fault into a precise intermediate value. Ineffective ciphertexts
can be generated due to an untargeted intermediate value
being injected with an ineffective fault. Similarly, the effective
fault on non-target intermediate values can generate effective
ciphertexts. Due to this impact, this approach is equally
efficient against SIFA and SEFA.

C. Masking
As discussed in Section III-B, both SEFA and SIFA can

be mounted on implementations that leverage masking and
detection as their underlying defenses against power analysis
and fault attacks. We also showed through various cases
that depending on the masking strategy and the fault model,
SEFA and SIFA can yield similar or better outcomes. A
reasonable benchmark to compare their efficiency would be
an approximation of their data complexity using the 1

C·Π
parameter. Hence, in Table VI, we provide the capacity C,
rate Π, and 1

C·Π values for each case studied in Section III-B.
The results show that when the fault model is stuck-at-0 or
random-AND, SEFA has a much lower data complexity for
each of the examined masking strategies. This superiority is
also valid for the stuck-at-1 case; we give no details because
the analysis is very similar. On the other hand, when the DOM
approach is employed as the underlying masking in the bit-flip
fault model, the two attacks have the same data complexities,
while SIFA outperforms when we move to a more general
masked implementation. We also present experimental results
for concrete instances in Section VI.

D. Inapplicable Cases
So far, we have explored the events and countermeasures

that, while not preventing SIFA, make it more difficult to
perform in practice. However, there are specific circumstances
in which SIFA cannot be applied even if the adversary has
access to an unlimited amount of data. A natural question
arises regarding the applicability of SEFA in these instances.

8

In this part, we analyze these scenarios in detail below and
explain that if SIFA is not applicable, SEFA will not work as
well. Using the same argument, one can demonstrate that if
SEFA is not applicable, SIFA will also be inapplicable.

1) Unbiased Ineffective Faults: Let us assume that the
probability distribution of a faulty value is uniform over all
ineffective ciphertexts, i.e., qi

j = 2−m for all 0 ≤ j ≤ 2m− 1.
It is possible to demonstrate that in this case, the probability
distribution of the same intermediate value over effective
events is uniform as well. The probability of X = j in case
of effective injection can be determined using Equation (9).
Since pe

j = Pr(e | X = j) = 1 − pi
j (refer to Equation (5)),

and qi
j = 2−m implies

∑2m−1
j′=0 pi

j′ = 2mpi
j (see Equation (6)),

we get

qe
j =

1− pi
j∑2m−1

j′=0 (1− pi
j′)

=
1− pi

j

2m −
∑2m−1
j′=0 pi

j′

=
1− pi

j

2m − 2mpi
j

= 2−m .

Thus, the probability distribution over effective ciphertexts is
also uniform. As a consequence, if SIFA is inapplicable due to
an unbiased ineffective fault, SEFA will also be inapplicable.

2) Zero Ineffective Rate: Let us assume that the ineffective
rate Πi for the injected fault over an intermediate value is
zero. In other words, qi

j = 0 for all 0 ≤ j ≤ 2m − 1, or
equivalently pi

j = 0. Naturally, SIFA cannot be successful in
this case. The probability distribution of the intermediate value
over the effective ciphertexts should be taken into account to
determine the applicability of SEFA. Using Equation (8), it is
possible to deduce that pe

j = 1 for all 0 ≤ j ≤ 2m − 1. Thus,
the probability distribution of the intermediate value over the
effective ciphertexts is unbiased; as a result, neither SEFA nor
SIFA are applicable in this scenario:

qe
j =

pe
j∑
pe
j

=
pj

2mpj
= 2−m .

3) Reversible Computations: A recent paper in CHES
2020 [25] describes how to combine a typical combination
of masking and redundant computations with principles
from reversible computing to build SIFA-resistant S-box
implementations. This construction is efficient against SIFA
since a fault based on the intermediate value either (1) is
effective (with Πi = 0) or (2) becomes ineffective but only
depending on an incomplete set of shares. This method should
also help against SEFA since the fault is either (1) effective
but with uniform distribution over the faulty value, or (2)
ineffective but an insufficient number of shares are dependent
on the faulty value.

E. SEFA’s Applicability in Comparison to Other Fault
Attacks

In summary, compared to other types of fault attacks and
specifically to SIFA, SEFA has the following advantages and
disadvantages:

a) Disadvantages of SEFA:

• Compared to SIFA and SFA, one downside of SEFA is
the demand for input control which is, for example, not
typically available in the case of nonce-based encryption.
However, SEFA is applicable in authenticated decryption
if the attacker also has access to a decryption device
that essentially signals effective/ineffective faults via the
successful/unsuccessful tag verification.

• For an infection-based countermeasure, SEFA requires
both correct and faulty encryption of the same plaintext:
the number of necessary encryptions is doubled.

• As with other fault attacks, SEFA is also somewhat
impacted by misplaced faults caused by shuffling
countermeasures or fault inductions with an unintended
effect.
b) Advantages of SEFA:

• Like SIFA, SEFA can bypass typical detection- and
infection-based countermeasures. Similarly, SEFA is
often applicable to implementations that include both
masking and redundancy-based fault countermeasures.

• Compared to SIFA, SEFA is much less affected by noise
from missed faults. Error-correction approaches against
SEFA are significantly less effective than against SIFA.
Dummy rounds are substantially less effective against
SEFA than against SIFA.

• The data required for both SEFA and SIFA can be
obtained concurrently. This enables us to propose our
second technique, SHFA, a combination of SEFA and
SIFA that usually outperforms either of the techniques
alone. We introduce SHFA next.

V. STATISTICAL HYBRID FAULT ATTACKS (SHFA)

In this section, we define the Statistical Hybrid Fault Attack
(SHFA) by introducing an appropriate statistical model to take
benefit of both SIFA and SEFA and all available ciphertexts
simultaneously.

The sets of effective and ineffective ciphertexts are denoted
by E and I, respectively. Clearly, E and I may be used to
determine the distribution of SEFA and SIFA, respectively.
The ciphertexts that yield the SEFA and SIFA distributions,
on the other hand, are disjoint, i.e., E ∩ I = ∅. As a result,
the outcome distributions, qe

j and qi
j , will be independent.

Therefore, the joint distribution of SEFA and SIFA, can be
determined easily and used as a score statistic in SHFA to
rank the key candidates. More precisely, since E ∩ I = ∅:

qh(x, y) = Pr(X = x | e, Y = y | i) = qe
x · qi

y .

Given the qh(x, y) and following the defined statistical scoring
functions in Section II-A, we adapt Equation (1) to define
LLRh as follows:

LLRh(k) = N
2m−1∑
x=0

2m−1∑
y=0

q̂e
x · q̂i

y · log2

qe
x · qi

y

θx,y
.

Similarly, we adapt Equation (2) to define SEIh as follows:

SEIh(k) =
2m−1∑
x=0

2m−1∑
y=0

(q̂e
x · q̂i

x − θx,y)2 .

9

Given qh, its capacity is also defined as follows:

C(qh, θh) =
∑
x∈X

∑
y∈Y

(qe
x · qi

y − θx,y)2

θx,y
.

For an instant, assuming that qi is uniformly distributed, then:

C(qh, θh) =
∑
x∈X

∑
y∈Y

(qe
x · θy − θx · θy)2

θx · θy

=
∑
x∈X

(qe
x − θx)2

θx
= C(qe, θe) .

When qe is uniformly distributed, a similar argument may be
made, demonstrating that SHFA is at least as good as the best
of SEFA and SIFA.

It is also possible to follow Equations (3) and (4)
respectively to determine Nh

LLR and Nh
SEI for the success

probability of getting an a-bit advantage, that are the number
of ciphertexts required to obtain the gain PS = P(∆a > 0)
for LLR and SEI respectively.

It is worth noting that, in addition to the joint distribution,
we investigated alternative options, including SEIi +SEIe and
SEIi×SEIe. In most circumstances, though, joint distribution
surpasses them. As a result, we used it in this research.

VI. RESULTS

To compare SIFA, SEFA, and SHFA experimentally, we
performed these attacks in various circumstances, taking into
account the noise associated with the attack’s setup and
countermeasures. The simulations and experimental testing
that we employed are archived in the GitHub repository1. We
would also like to mention that all percentage comparisons of
this section are based on the required number of ciphertexts
and are taken from the stated figures.

A. Noise-Free Setup
We first consider a scenario in which the fault can be

injected with a success probability of 1 and no missing fault
events occur. Our target is AES. At the start of the last round,
we inject 2-bit and 4-bit random-AND faults into the least
significant bits of the first byte of AES. By guessing a portion
of the last subkey, the ciphertexts are decrypted in order to
obtain the desired intermediate value. The key candidates are
then ranked using the SEI statistic. We repeated the experiment
with 100 randomly generated keys and calculated the average
rank of the correct key based on the number of ciphertexts
available. The output of our simulations is depicted in Figure 1.
SEFA and SIFA outperform each other in the presence of
2- and 4-bit faults, respectively, whereas SHFA consistently
outperforms both.

B. Noisy Setup with Possible Missed Faults
To investigate the effect of missed faults in practice, we

simulate a fault attack on AES with a 4-bit random-AND fault,
identical to the one described in Section VI-A, considering

1https://github.com/Navidvafaei/SEFA

different missed fault rates of 10%, 25%, 35%, and 90%. It
means that faults are not injected into the device for these
ratios of encryptions. The obtained results are reflected in
Figure 2 and Table VII. As the missed fault rate increases,
SEFA significantly outperforms SIFA. For the 10% missed
rate, the superiority is roughly 16% in favor of SIFA. Then, the
tide turns already for a relatively low fault miss rate, with 17%,
50%, and 100% in favor of SEFA for 25%, 35%, and 90%
missed rates, respectively. This outcome is hardly surprising,
as explained in Section IV-B.1: the miss rate has a much
smaller effect on SEFA. On the other hand, SHFA is superior
to both SIFA and SEFA according to the same expectation,
as it exploits information from both effective and ineffective
leaked information. Compared to SEFA, the required number
of ciphertexts for SHFA is reduced by about 37%, 20%, and
10% for 10%, 25%, and 35% missed rates, respectively (they
require the same number of ciphertexts for 90% missed rate).
When compared to SIFA, this reduction is about 25%, 33%,
and 55% for 10%, 25%, and 35% missed rates, respectively
(the rank of the correct key for 90% missed rate is around 100
in 5000 ciphertexts in the SIFA case, while in the SHFA case
it converges to the first rank in 3200 ciphertexts).

C. Protected Implementation with Error Correction
As in previous tests, we use AES as the target cipher.

However, in this test, AES is protected by error-correction
mechanisms capable of detecting d error bits and correcting
d′ = d/2 of them. The results for d = 2 and d = 4 are
illustrated in Figure 3 and also reported in Table VII. They
nicely illustrate that SEFA outperforms SIFA as the number
of recovered faulty bits increases. This observation verifies
the explanations presented in Section IV-B.2 that SEFA acts
more effectively in the presence of error-correction techniques
since the probability distribution of effective fault becomes
more biased. Besides, it can be observed from the results that
SHFA cannot considerably improve SEFA in this scenario,
as information leakage via ineffective events is negligible.
For 1-bit correction, SEFA acts 11.6% better than SIFA, and
SHFA works 43.4% and 35.8% better than SIFA and SEFA,
respectively. When it comes to 2-bit correction, SIFA does not
yield a low-ranked key even in 3000 ciphertexts. SEFA and
SHFA, on the other hand, produce nearly identical outcomes,
with SHFA showing only a 7.7% reduction.

D. Protected Implementation with Dummy Rounds
Assuming 10(k − 1) ineffective dummy rounds are

performed at random during the encryption process, Figure 4
represents the effect of this hiding countermeasure against
SIFA, SEFA, and SHFA. We expect SEFA to be less affected
by this technique, based on what was explained in Section IV-
B.3. This assertion has come true for our two examinations
where k = 2 and k = 5 (see also Table VII). When comparing
SEFA to SIFA in the k = 2 situation, there is a 59% reduction
in needed ciphertexts. With 5000 ciphertexts, the rank of
the correct key in SIFA does not converge to low positions
for k = 5; nevertheless, in SEFA, it converges in roughly
1700 ciphertexts. For the same reason as Section VI-C, SHFA

https://github.com/Navidvafaei/SEFA

10

0 50 100 150 200 250 300
0

25

50

75

100

125

Faulted computations

R
an

k
of

co
rr

ec
t

ke
y SEFA

SIFA
SHFA

(a) SEI, 2-bit random-AND fault

0 50 100 150 200 250 300
0

25

50

75

100

125

Faulted computations

R
an

k
of

co
rr

ec
t

ke
y SEFA

SIFA
SHFA

(b) SEI, 4-bit random-AND fault

Fig. 1: The rank of the correct key in deterministic fault injection model on unprotected AES, for SIFA, SEFA, and SHFA,
using SEI as the statistical scoring function.

0 200 400 600 800 1 000
0

25

50

75

100

125

R
an

k
of

co
rr

ec
t

ke
y SEFA

SIFA
SHFA

(a) Missed faults, 10% miss rate

0 200 400 600 800 1 000
0

25

50

75

100

125

R
an

k
of

co
rr

ec
t

ke
y SEFA

SIFA
SHFA

(b) Missed faults, 25% miss rate

0 200 400 600 800 1 000
0

25

50

75

100

125

R
an

k
of

co
rr

ec
t

ke
y SEFA

SIFA
SHFA

(c) Missed faults, 35% miss rate

0 1 000 2 000 3 000 4 000 5 000
0

25

50

75

100

125

R
an

k
of

co
rr

ec
t

ke
y SEFA

SIFA
SHFA

(d) Missed faults, 90% miss rate

Fig. 2: The rank of the correct key in the non-deterministic fault injections model on unprotected AES, for SIFA, SEFA, and
SHFA, using SEI as the statistical scoring function.

does not enhance the results of SEFA significantly as the
k parameter grows. In our experiments, SHFA reduces the
number of ciphertext by 38% versus SEFA (75% versus SIFA)
in the k = 2 case. In k = 5, SHFA and SEFA demand similar
amounts.

E. Implementations with Combined Countermeasures
In this section, we evaluate the performance of

SIFA/SEFA/SHFA against implementations featuring
combined countermeasures against fault attacks and power
analysis. First, we perform a comprehensive analysis of
simulated attacks against a bit-sliced, masked, redundant
implementation of AES-128. We then describe practical
attacks on different variants of the Keccak S-box with/without
implementation-level protection against SIFA from [25] and
with/without noise in the fault injection setup.

a) Emulated Attacks on AES: We first consider emulated
fault injections on an assembler-optimized, masked AES

implementation for the 32-bit Cortex-M4 platform from [31].
This implementation can encrypt two 128-bit inputs per block
cipher call in CTR mode and is fully unrolled. For our
purposes, and similarly as done in [22], we add temporal
redundancy but only encrypt one 128-bit input per block cipher
call in ECB mode to keep the evaluation scenario as simple
as possible. In our experiments, we consider faults that flip
a single bit in the output of one specific instruction during
the execution of the S-box layer in round 9 of the encryption
operation (which is the usual location when mounting SIFA
on AES-128 [10]). We then call the AES encryption operation
1000/2000/3000/4000 times and collect the received outputs.
We use correct outputs for evaluation of SIFA, correct re-
encryptions of inputs that resulted in faulty outputs for the
evaluation of SEFA, or both faulty and correct outputs for
the evaluation of SHFA. Hereby, we consider an attack to be
successful if the rank of the correct key is the lowest after
having observed a certain amount of faulted computations.

11

0 200 400 600 800 1 000
0

25

50

75

100

125

Faulted computations

R
an

k
of

co
rr

ec
t

ke
y SEFA

SIFA
SHFA

(a) 1-bit error correction

0 500 1 000 1 500 2 000 2 500 3 000
0

25

50

75

100

125

Faulted computations

R
an

k
of

co
rr

ec
t

ke
y SEFA

SIFA
SHFA

(b) 2-bit error correction

Fig. 3: The rank of the correct key in the fault injections model
on protected AES with error correction for SIFA, SEFA, and
SHFA, using SEI as the statistical scoring function.

0 500 1 000 1 500 2 000
0

25

50

75

100

125

Faulted computations

R
an

k
of

co
rr

ec
t

ke
y SEFA

SIFA
SHFA

(a) Protected by dummy rounds when k = 2

0 1 000 2 000 3 000 4 000 5 000
0

25

50

75

100

125

Faulted computations

R
an

k
of

co
rr

ec
t

ke
y SEFA

SIFA
SHFA

(b) Protected by dummy rounds when k = 5

Fig. 4: The rank of the correct key in the fault injections model
on protected AES with dummy rounds for SIFA, SEFA, and
SHFA, using SEI as the statistical scoring function.

This experiment is repeated for all 688 instructions that make
up the masked S-box computation on the entire state in round

9. Hence, we can see which type of attack is successful after
a certain amount of faulted encryptions and at which fault
locations.

The results of our analysis are presented in Figure 5. Each
vertical line indicates if an attack is successful when a bit-
flip fault is injected in the corresponding instruction of the
S-box computation. We additionally color code the strength
of the resulting bias by using a dark color if the attack was
already successful after observing 1000 faulted computations,
a light color if the attack was only successful after 4000
faulted computations, and two steps in between. Conversely,
a white line indicates that a bit-flip fault at the corresponding
instruction does not lead to a successful attack after 4000
faulted computations.

Overall, we can see that, when considering this concrete
experiment, SIFA seems to be applicable in more locations
than SEFA after having performed at most 4000 faulted
computations. While we have shown before that SEFA is
applicable whenever SIFA is applicable, the resulting bias, and
thus the necessary amount of observed faulted computations,
can still be different for both attacks. We have confirmed this
theory by observing that SEFA does sometimes require more
than 100 000 faulted computations to be successful in this
specific experiment. Besides that, we want to note that the
observed biases of SEFA seem to be generally more robust
than in the case of SIFA if fault injections in the latter half
of the computations are considered. In any case, SHFA works
well in both halves of the computation when compared to
performing SIFA and SEFA individually.

b) Practical Attacks: For our practical evaluation, we
target Keccak S-Box implementations using a traditional
combination of DOM masking with redundancy and the
SIFA-hardened Keccak S-Box implementation from [25]. The
practical evaluation of our fault attack was done on an 8-
bit Xmega 128D4 microprocessor using clock glitches on a
Chipwhisperer-Lite SCA evaluation board [32]. The choice
of using an 8-bit platform for practical attacks is mostly
motivated by the fact that we do not have easy access to
a fault setup suitable for 32-bit devices. The word size of
the target implementation can have an impact on the attack
performance, however, this strongly depends on the used fault
injection method. When considering simple clock glitches that
corrupt the result of one computation, smaller word sizes help
by limiting the effect of a fault to only 8-bit of an intermediate
value which gives very usable ratios between effective and
ineffective faults. However, a more localized fault injection
method based on e.g. Lasers or BBI can achieve similar
localized fault effects, no matter the processor word size.

In the attacks, we insert an additional fast clock
edge onto the device’s original clock signal to violate a
critical path guarantee and force a temporary undefined
behavior of the microprocessor. Similarly as before, we
evaluate the performance of SIFA, SEFA, and SHFA by
performing 1000/2000/3000/4000 faulted S-box computations.
The Keccak S-box can be used in schemes with different state
sizes. This fact influences the number of key bits that need to
be guessed at once [5]. Therefore, we now consider an attack
to be successful if the observed SEI of an input byte of the

12

SI
F A

SE
FA

SH
FA

1 Instruction 688

Fig. 5: Evaluation of SIFA/SEFA/SHFA using an ARM assembler optimized masked AES implementation with temporal
redundancy. Vertical lines indicate if injecting a bit-flip fault into the corresponding instruction of the AES S-box computation
in round 9 leads to a successful attack. Darker/lighter colors indicate stronger/weaker observed biases, while white lines indicate
that an attack was unsuccessful after 4000 faulted computations.

S-box is higher than the maximum SEI that one would expect
to observe when drawing the same amount of samples from a
uniform distribution 232 times. This is equivalent to checking
if the observed bias is stronger than the highest bias of testing
232 wrong key guesses during key recovery.

As a first experiment, we performed attacks on a DOM
masked Keccak S-box implementation with redundancy using
reliable clock glitches that corrupt one value (byte) of the
computation at a specified time. The results are depicted
in Figure 6a and essentially show that SIFA, SEFA, and SHFA
perform about the same. If we, however, modify the parameter
of the injected glitch (in terms of width and offset during the
targeted clock cycle) such that it only affects the executed
instruction about 90% of the time, thereby simulating the
effect of imperfect fault injection setups, we can see that the
performance of SIFA is impacted more than for SEFA and
SHFA (Figure 6b). Finally, we also test the SIFA-hardened
Keccak S-box implementation from [25] and confirm that
neither attack is applicable, even if perfectly reliable fault
injections are used (Figure 6c).

F. Discussion
The results of our experiments are summarized in

Table VII. In general, SEFA performs better than SIFA when
undesired ineffective events occur due to setup noise or the
countermeasures used. Considering Equations (7) and (11),
it seems surprising that SEFA (SIFA) is superior when the
effective (ineffective) rate is less. It is worth noting that
the rate is not the only aspect that affects the complexity
of the data; capacity also plays a central role. As a rule
of thumb, SIFA and SEFA require around O(1/CiΠi) and
O(1/CeΠe) data. In most situations, we observed a substantial
increase in the effective capacity Ce when the effective rate
Πe decreases. Since capacity usually varies substantially more
than the rate, capacity has a greater impact on data complexity.
As a result, SEFA requires less data in these instances. The
relationship between SIFA and ineffective rata is analogous.
As the effective rate and ineffective rate decrease, SEFA and
SIFA perform better, respectively. When the results of SIFA
and SEFA are comparable, SHFA surpasses both attacks. In
other instances when SIFA (SEFA) outperforms SEFA (SIFA),
the performance of SHFA is similar to SIFA (SEFA).

TABLE VII: Required number of faulted ciphertexts to reduce
the correct key’s rank below 2.

random-AND Miss rate Dummy rounds Error-Correction
2 bits 4 bits 10% 25% 35% 90% k = 2 k = 5 d′ = 1 d′ = 2SEI SEI

SIFA 118 232 320 600 1000 >5000 1600 >5000 600 >3000
SEFA 68 292 380 500 500 3200 650 1700 530 1300
SHFA 60 168 240 400 450 3200 400 1700 340 1200

VII. CONCLUSION

We proposed Statistical Effective Fault Attacks (SEFA), a
novel fault attack strategy that shares many of the advantages
of SIFA, such as the power to bypass many combined
countermeasure techniques or applicability to AEAD modes.
In many circumstances, SEFA is more efficient than SIFA,
for example when fault setups are not perfectly reliable or
under countermeasures such as error-correction or dummy
rounds. We also proposed Statistical Hybrid Fault Attacks
(SHFA), which combine the advantages of SIFA and SEFA
by collecting data for both attack strategies concurrently, thus
yielding the best results in most scenarios. We discuss in detail
how SIFA, SEFA, and SHFA perform in various scenarios,
including combined countermeasures and noisy setups, both by
means of simulations and real experiments on implementations
of Keccak and AES.

ACKNOWLEDGEMENTS

This project has received funding from the European
Research Council (ERC) under the EU’s Horizon 2020
research and innovation programme (grant agreement
681402).

REFERENCES

[1] D. Boneh, R. A. DeMillo, and R. J. Lipton, “On the importance
of checking cryptographic protocols for faults (extended abstract),” in
Advances in Cryptology – EUROCRYPT ’97, ser. LNCS, W. Fumy, Ed.,
vol. 1233. Springer, 1997, pp. 37–51.

[2] E. Biham and A. Shamir, “Differential fault analysis of secret key
cryptosystems,” in Advances in Cryptology – CRYPTO ’97, ser. LNCS,
B. S. K. Jr., Ed., vol. 1294. Springer, 1997, pp. 513–525.

[3] Y. Li, K. Sakiyama, S. Gomisawa, T. Fukunaga, J. Takahashi, and
K. Ohta, “Fault sensitivity analysis,” in Cryptographic Hardware and
Embedded Systems – CHES 2010, ser. LNCS, S. Mangard and F.-X.
Standaert, Eds., vol. 6225. Springer, 2010, pp. 320–334.

13

SI
FA

SE
F A

SH
FA

1 Instruction 105

(a) DOM, reliable faults

1 Instruction 105

(b) DOM, unreliable faults

1 Instruction 95

(c) [25], reliable faults

Fig. 6: Practical evaluation of SIFA/SEFA/SHFA on different Keccak S-box implementations with combined countermeasures.
Vertical lines indicate if injecting a fault in an instruction leads to a successful attack. Darker/lighter colors indicate
stronger/weaker observed biases; white lines indicate no successful attack after 4000 faulted computations.

[4] T. Fuhr, É. Jaulmes, V. Lomné, and A. Thillard, “Fault attacks on
AES with faulty ciphertexts only,” in Fault Diagnosis and Tolerance
in Cryptography – FDTC 2013, W. Fischer and J.-M. Schmidt, Eds.
IEEE Computer Society, 2013, pp. 108–118.

[5] C. Dobraunig, M. Eichlseder, T. Korak, V. Lomné, and F. Mendel,
“Statistical fault attacks on nonce-based authenticated encryption
schemes,” in Advances in Cryptology – ASIACRYPT 2016, ser. LNCS,
J. H. Cheon and T. Takagi, Eds., vol. 10031, 2016, pp. 369–395.

[6] W. Li, J. Li, D. Gu, C. Li, and T. Cai, “Statistical fault analysis of the
simeck lightweight cipher in the ubiquitous sensor networks,” IEEE
Trans. Inf. Forensics Secur., vol. 16, pp. 4224–4233, 2021. [Online].
Available: https://doi.org/10.1109/TIFS.2021.3102485

[7] M. Joye, J.-J. Quisquater, S.-M. Yen, and M. Yung, “Observability
analysis – detecting when improved cryptosystems fail,” in Topics in
Cryptology – CT-RSA 2002, ser. LNCS, B. Preneel, Ed., vol. 2271.
Springer, 2002, pp. 17–29.

[8] S.-M. Yen and M. Joye, “Checking before output may not be enough
against fault-based cryptanalysis,” IEEE Transactions on Computers,
vol. 49, no. 9, pp. 967–970, 2000.

[9] S.-M. Yen, S. Kim, S. Lim, and S.-J. Moon, “A countermeasure against
one physical cryptanalysis may benefit another attack,” in Information
Security and Cryptology – ICISC 2001, ser. LNCS, K. Kim, Ed., vol.
2288. Springer, 2001, pp. 414–427.

[10] C. Dobraunig, M. Eichlseder, T. Korak, S. Mangard, F. Mendel, and
R. Primas, “SIFA: Exploiting ineffective fault inductions on symmetric
cryptography,” IACR Transactions on Cryptographic Hardware and
Embedded Systems, vol. 2018, no. 3, pp. 547–572, 2018.

[11] G. Barbu, L. Castelnovi, and T. Chabrier, “Generalizing statistical
ineffective fault attacks in the spirit of side-channel attacks,” in
COSADE, ser. Lecture Notes in Computer Science, vol. 12910.
Springer, 2021, pp. 105–125.

[12] H. Bar-El, H. Choukri, D. Naccache, M. Tunstall, and C. Whelan, “The
sorcerer’s apprentice guide to fault attacks,” Proc. IEEE, vol. 94, no. 2,
pp. 370–382, 2006.

[13] H. Tupsamudre, S. Bisht, and D. Mukhopadhyay, “Destroying fault
invariant with randomization – A countermeasure for AES against
differential fault attacks,” in Cryptographic Hardware and Embedded
Systems – CHES 2014, ser. LNCS, L. Batina and M. Robshaw, Eds.,
vol. 8731. Springer, 2014, pp. 93–111.

[14] B. Gierlichs, J.-M. Schmidt, and M. Tunstall, “Infective computation
and dummy rounds: Fault protection for block ciphers without check-
before-output,” in Progress in Cryptology – LATINCRYPT 2012, ser.
LNCS, A. Hevia and G. Neven, Eds., vol. 7533. Springer, 2012, pp.
305–321.

[15] J. Feng, H. Chen, Y. Li, Z. Jiao, and W. Xi, “A framework for
evaluation and analysis on infection countermeasures against fault
attacks,” IEEE Trans. Inf. Forensics Secur., vol. 15, pp. 391–406, 2020.
[Online]. Available: https://doi.org/10.1109/TIFS.2019.2903653

[16] S. Saha, A. Bag, D. Basu Roy, S. Patranabis, and D. Mukhopadhyay,
“Fault template attacks on block ciphers exploiting fault propagation,”
Advances in Cryptology–EUROCRYPT 2020, vol. 12105, pp. 612–643,
2020.

[17] T. Baignères, P. Junod, and S. Vaudenay, “How far can we go beyond
linear cryptanalysis?” in Advances in Cryptology – ASIACRYPT 2004,
ser. LNCS, P. J. Lee, Ed., vol. 3329. Springer, 2004, pp. 432–450.

[18] M. Rivain, “Differential fault analysis on DES middle rounds,” in
Cryptographic Hardware and Embedded Systems – CHES 2009, ser.

LNCS, C. Clavier and K. Gaj, Eds., vol. 5747. Springer, 2009, pp.
457–469.

[19] T. Fuhr, É. Jaulmes, V. Lomné, and A. Thillard, “Fault attacks on
AES with faulty ciphertexts only,” in Fault Diagnosis and Tolerance
in Cryptography – FDTC 2013, W. Fischer and J.-M. Schmidt, Eds.
IEEE Computer Society, 2013, pp. 108–118.

[20] A. A. Selçuk, “On probability of success in linear and differential
cryptanalysis,” Journal of Cryptology, vol. 21, no. 1, pp. 131–147, 2008.

[21] C. Blondeau, B. Gérard, and K. Nyberg, “Multiple differential
cryptanalysis using LLR and χ2 statistics,” in Security and
Cryptography for Networks – SCN 2012, ser. LNCS, I. Visconti and
R. D. Prisco, Eds., vol. 7485. Springer, 2012, pp. 343–360.

[22] C. Dobraunig, M. Eichlseder, H. Groß, S. Mangard, F. Mendel, and
R. Primas, “Statistical ineffective fault attacks on masked AES with
fault countermeasures,” in Advances in Cryptology – ASIACRYPT 2018,
ser. LNCS, T. Peyrin and S. D. Galbraith, Eds., vol. 11273. Springer,
2018, pp. 315–342.

[23] S. Saha, D. Jap, D. B. Roy, A. Chakraborty, S. Bhasin, and
D. Mukhopadhyay, “A framework to counter statistical ineffective
fault analysis of block ciphers using domain transformation and error
correction,” IEEE Trans. Inf. Forensics Secur., vol. 15, pp. 1905–1919,
2020. [Online]. Available: https://doi.org/10.1109/TIFS.2019.2952262

[24] M. Gruber, M. Probst, P. Karl, T. Schamberger, L. Tebelmann,
M. Tempelmeier, and G. Sigl, “Domrep–an orthogonal countermeasure
for arbitrary order side-channel and fault attack protection,” IEEE
Transactions on Information Forensics and Security, vol. 16, pp. 4321–
4335, 2021.

[25] J. Daemen, C. Dobraunig, M. Eichlseder, H. Groß, F. Mendel, and
R. Primas, “Protecting against statistical ineffective fault attacks,” IACR
Transactions on Cryptographic Hardware and Embedded Systems, vol.
2020, no. 3, pp. 508–543, 2020.

[26] T. Toffoli, “Reversible computing,” in Automata, Languages and
Programming – ICALP 1980, ser. LNCS, J. W. de Bakker and J. van
Leeuwen, Eds., vol. 85. Springer, 1980, pp. 632–644.

[27] H. Groß, S. Mangard, and T. Korak, “Domain-oriented masking:
Compact masked hardware implementations with arbitrary protection
order,” in Theory of Implementation Security – TIS@CCS 2016,
B. Bilgin, S. Nikova, and V. Rijmen, Eds. ACM, 2016, p. 3.

[28] O. Reparaz, B. Bilgin, S. Nikova, B. Gierlichs, and I. Verbauwhede,
“Consolidating masking schemes,” in CRYPTO (1), ser. Lecture Notes
in Computer Science, vol. 9215. Springer, 2015, pp. 764–783.

[29] M. Gruber, M. Probst, and M. Tempelmeier, “Statistical ineffective
fault analysis of GIMLI,” in 2020 IEEE International Symposium on
Hardware Oriented Security and Trust, HOST 2020, San Jose, CA,
USA, December 7-11, 2020. IEEE, 2020, pp. 252–261. [Online].
Available: https://doi.org/10.1109/HOST45689.2020.9300260

[30] A. R. Shahmirzadi, S. Rasoolzadeh, and A. Moradi, “Impeccable circuits
II,” in Design Automation Conference – DAC 2020. IEEE, 2020, pp.
1–6.

[31] P. Schwabe and K. Stoffelen, “All the AES you need on cortex-m3 and
M4,” in SAC, ser. LNCS, vol. 10532. Springer, 2016, pp. 180–194.

[32] C. O’Flynn and Z. D. Chen, “Chipwhisperer: An open-source platform
for hardware embedded security research,” in COSADE, ser. LNCS, vol.
8622. Springer, 2014, pp. 243–260.

https://doi.org/10.1109/TIFS.2021.3102485
https://doi.org/10.1109/TIFS.2019.2903653
https://doi.org/10.1109/TIFS.2019.2952262
https://doi.org/10.1109/HOST45689.2020.9300260

	Introduction
	Preliminaries
	Statistical Scoring Functions
	Statistical Ineffective Fault Attacks (SIFA)
	SIFA on Masked Implementations with Fault Countermeasures
	Countermeasures Against SIFA

	Statistical Effective Fault Attacks (SEFA)
	SEFA
	SEFA on Masked Implementations with Fault Countermeasures

	SEFA vs. SIFA
	Attack Model in Detection- and Infection-based Countermeasures
	Effect of Undesired Ineffective Events
	Missed Faults
	Error Correction
	Hiding

	Masking
	Inapplicable Cases
	Unbiased Ineffective Faults
	Zero Ineffective Rate
	Reversible Computations

	SEFA's Applicability in Comparison to Other Fault Attacks

	Statistical Hybrid Fault Attacks (SHFA)
	Results
	Noise-Free Setup
	Noisy Setup with Possible Missed Faults
	Protected Implementation with Error Correction
	Protected Implementation with Dummy Rounds
	Implementations with Combined Countermeasures
	Discussion

	Conclusion
	References

