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Abstract. In this study, we accelerate Matsui’s search algorithm to search for the
best differential and linear trails of AES-like ciphers. Our acceleration points are
twofold. The first exploits the structure and branch number of an AES-like round
function to apply strict pruning conditions to Matsui’s search algorithm. The second
employs permutation characteristics in trail search to reduce the inputs that need to
be analyzed. We demonstrate the optimization of the search algorithm by obtaining
the best differential and linear trails of existing block ciphers: AES, LED, MIDORI-64,
CRAFT, SKINNY, PRESENT, and GIFT. In particular, our search program finds the full-
round best differential and linear trails of GIFT-64 (in approx. 1 s and 10 s) and
GIFT-128 (in approx. 89 h and 452 h), respectively.
For a more in-depth application, we leverage the acceleration to investigate the
optimal DC/LC resistance that GIFT-variants, called BOGI-based ciphers, can achieve.
To this end, we identify all the BOGI-based ciphers and reduce them into 41,472
representatives. Deriving 16-, 32-, 64-, and 128-bit BOGI-based ciphers from the
representatives, we obtain their best trails until 15, 15, 13, and 11 rounds, respectively.
The investigation shows that 12 rounds are the minimum threshold for a 64-bit BOGI-
based cipher to prevent efficient trails for DC/LC, whereas GIFT-64 requires 14
rounds. Moreover, it is shown that GIFT can provide better resistance by only
replacing the existing bit permutation. Specifically, the bit permutation variants of
GIFT-64 and GIFT-128 require fewer rounds, one and two, respectively, to prevent
efficient differential and linear trails.
Keywords: Substitution–Permutation Network (SPN) · Matsui’s Search Algorithm ·
Best Differential Trail · Best Linear Trail · Bad Output must go to Good Input
(BOGI)

1 Introduction
Nowadays, differential cryptanalysis (DC) [BS91] and linear cryptanalysis (LC) [Mat94]
are two of the most fundamental attacks employed during the design stage of new ciphers.
In particular, DC/LC resistance is regarded as the main factor to determine the number
of rounds for an iterative block cipher, while the other known attacks are applied later
and cause more minor modifications of new ciphers.

DC and LC each start by constructing a corresponding distinguisher with high proba-
bility because the probability mainly determines their attack complexity and success rate.
Differential and linear distinguishers are derived from differential and linear trails (i.e.,
characteristics), respectively. Thus, block cipher designers try to demonstrate the (non-
)existence of high-probability trails to show their ciphers’ DC/LC resistance. Although
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various studies have indicated that single trails are not enough to represent distinguishers
owing to strong differential and linear clustering effects [AK19], the probability of a single
trail or its upper bound are still the main concern of providing the lower bounds for the
complexity of DC/LC and estimating the required number of rounds during the design
phase.

There are two main approaches for evaluating the upper bound for the probability of
trails. The first involves enumerating the least number of active S-boxes over all trails,
and the second is to traverse all the concrete trails and obtain best trails, which have the
maximum probability. Generally, the former approach exploits the property of S-boxes,
the wide trail strategy, or the mixed integer linear programming (MILP)-aided search
and provides the useful bounds in the proposals of various block ciphers, such as PRESENT
[BKL+07], AES, and SKINNY [BJK+16]. However, it should be noted that such an approach
only provides the upper bound for the probability rather than concrete trails and thus
may not guarantee the tight upper bound. The tightness significantly affects some cases.
An example can be found in GIFT [BPP+17]. The least number of active S-boxes over
22-round GIFT-128 differential trails amounts to 54 and evaluates the probability upper
bound1 as 2−75.6, whereas the best differential trail has the probability of 2−132.4 [SWW21].
This considerable gap may lead to designers using more than a compact number of rounds,
resulting in an unnecessary drop in performance of the cipher. Therefore, finding the best
trail is still considered one of the main concerns not only when conducting attacks but
also when designing block ciphers.

At EUROCRYPT’94 [Mat95], Matsui proposed a dedicated search algorithm for the
best differential and linear trails. Subsequently, Matsui’s search algorithm was improved
in [OMA95, AKM97]. The main idea of these studies was to introduce a pre-computation
phase in which search patterns for each round are discarded if proper conditions are not
satisfied. This approach was further optimized in [BZL15] by beginning from an efficient
search point in each pattern and grouping search patterns. As another direction for
improving Matsui’s search algorithm, tailoring the pruning conditions for bit permutation-
based substitution permutation network was proposed in [BBF15]. The study improved on
Matsui’s original pruning condition, and further suggested an additional pruning condition
to prune search trees more strictly.

A large number of lightweight block ciphers adopt bit permutation owing to its negli-
gible hardware implementation cost. Among these block ciphers, GIFT outperforms the
others with its state-of-the-art design approach. Therefore, GIFT is widely used as the
underlying primitive of various candidates on the ongoing NIST Lightweight Cryptography
standardization process [CDJ+20, BCI+20, CDJN19, CDJ+19, BBP+19]. Moreover, one
of the candidates, GIFT-COFB [BCI+20], was chosen as a finalist [BCD+]. The main novelty
of GIFT is its design logic: “Bad Output must go to Good Input” (BOGI). This logic
prevents differential and linear trails consisting of only one active S-box in each round,
even though the round function is composed of a bit permutation and an S-box with
differential and linear branch numbers of two. This simple but effective idea enhanced the
design strategy of PRESENT [BKL+07], allowing GIFT to provide better DC/LC resistance
in fewer rounds.

1.1 Our Contributions

In this study, we accelerate Matsui’s search algorithm by tailoring it for AES-like ciphers
and utilize this acceleration to investigate the best trails of GIFT-variants. Specifically, our
contributions are threefold, as described below.

1This upper bound is solely derived from the least number of active S-boxes and the maximum
differential probability (2−1.4) over the S-box of GIFT.
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Table 1: Summary of Best Trail Searches on the Considered Ciphers

Cipher Best Trail Type Range of Analysis Rounds Total Elapsed Time

GIFT-64
Differential 2 ∼ 28 (full-round) 0.390 s*
Linear 2 ∼ 28 (full-round) 9.755 s*

GIFT-128
Differential 2 ∼ 40 (full-round) 89.0 h*
Linear 2 ∼ 40 (full-round) 451.3 h*

PRESENT Differential 2 ∼ 31 (full-round) 5.131 s

AES
Differential 2 ∼ 3 17.452 s
Linear 2 ∼ 3 21.009 s

LED
Differential 2 ∼ 3 0.008 s
Linear 2 ∼ 3 0.013 s

MIDORI-64
Differential 2 ∼ 12 210.5 h
Linear 2 ∼ 16 (full-round) 74.2 h

CRAFT
Differential 2 ∼ 8 456.9 h
Linear 2 ∼ 7 3.2 h

SKINNY-64
Differential 2 ∼ 7 27.6 h
Linear 2 ∼ 7 256.1 h

SKINNY-128
Differential 2 ∼ 6 24.998 s
Linear 2 ∼ 6 0.5 h

*The total elapsed times for GIFT were measured with a dedicated implementation of GIFT. They are
detailed in Suppl. E, whereas the other results can be found in Suppl. D.

Strengthening the Pruning Conditions of Matsui’s Search Algorithm. We improve
Matsui’s search algorithm [Mat95] by devising strict pruning conditions. Our proposed
pruning conditions are based on [BBF15]. However, we extend the existing conditions
to be available for non-bit permutation-based AES-like ciphers, and strengthen them for
bit permutation-based AES-like ciphers. The main idea is to leverage the fact that the
mixing layer of AES-like round function can be decomposed into a number of matrix
multiplications that operate independently. Moreover, the branch number of the matrix
multiplication allows the pruning conditions to become stricter. To evaluate the impact
of strengthened pruning conditions on trail search, we set up two implementations that
were identical except for the application of pruning conditions, and compared their elapsed
times. According to the experimental results2, our pruning conditions can reduce the time
by up to factors of 463 and 22 for non-bit permutation-based and bit-permutation-based
AES-like ciphers, respectively.

Employing Permutation Characteristics in Trail Search. We propose an approach for
removing duplicate candidates of first round input differences/masks by utilizing (word-
wise) permutation characteristics. Permutation characteristics were initially suggested for
invariant subspace attack [LMR15], but we adjust the notion of permutation characteristic
into trail search. To this end, we show that two trails derived from each other through a
permutation characteristic have the same probability. In addition, we propose a method to
find permutation characteristics of AES-like ciphers. It should be noted that our adoption
of permutation characteristics can consist of independent interests in search for other types
of distinguishers. For example, the consideration of permutation characteristics can reduce
the initial input division properties considered for division trail search [XZBL16].

By integrating the strengthened pruning conditions and the duplicate removal, our final
optimized search program required only 0.39 s to provide the full-round best differential trail
of GIFT-64 without any prerequisites. Compared with the most recent result for GIFT-64
[SWW21], which required 2,210.6 s, our improved approach performs approximately 5,668
times faster. Including bit permutation-based AES-like ciphers – GIFT and PRESENT, we

2All the experiments were conducted on a system with Intel® Xeon® Gold 6230 CPU @ 2.10 GHz, and
we used one core for each case.
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Table 2: Summary of Minimum Required Rounds for BOGI-Based Ciphers

Block
Size

(b-bit)

Minimum Required Rounds to Prevent Efficient Trails for DC/LC

GIFT-b* With Replacement of
Bit Permutation

With Replacement of
Bit Perm. and S-box

16-bit 6 rounds 6 rounds 5 rounds
32-bit 10 rounds 10 rounds 8 rounds
64-bit 14 rounds 13 rounds 12 rounds
128-bit 22 rounds 20 rounds 19 rounds**

*GIFT-16 and GIFT-32 consist of GIFT’s S-box and the reduced version of GIFT’s bit permutation.
**For the 128-bit versions, alternatives may exist, which require fewer rounds.

also investigated the best trails of non-bit permutation-based AES-like ciphers – AES, LED3,
MIDORI-64, CRAFT, and SKINNY. Table 1 summarizes the trail search results.

Investigating the Most DC/LC Resistant BOGI-Based Cipher. We take advantage of
the above acceleration to examine the most DC/LC resistant combinations of S-box and
bit permutation for BOGI-based construction, that is, GIFT-variants, called BOGI-based
ciphers. To achieve this, we revisit the BOGI design and identify the entire combinations
of S-box and mixing layer that can compose a BOGI-based round function. We refer to
the analysis results of BOGI-applicable S-boxes in [KHSH20], and then consider mixing
layers that follow BOGI logic for each BOGI-applicable S-box. We consider not only the
existing mixing layer of GIFT but also its variants derived from 4× 4 Latin squares. These
initially provide us approximately 237.09 combinations. Considering the relations among
inner components, we deduce equivalent combinations in terms of DC/LC resistance, and
reduce the total combinations into 41,472 representatives.

We derive 16-, 32-, 64-, and 128-bit BOGI-based ciphers from the representatives,
and search for their best trails. According to the results, 16-, 32-, and 64-bit BOGI-
based ciphers require at least 5, 8, and 12 rounds, respectively, to prevent efficient trails
for DC/LC. For the 128-bit versions, we could not obtain the minimum required rounds
because of increased analysis time. Alternatively, we analyze the best trails up to 22 rounds
by concentrating on promising combinations with 11-round optimal DC/LC resistance.
According to this analysis, 19 rounds are sufficient for the promising variants of GIFT-128
to prevent efficient trails, which is 3 rounds fewer than GIFT-128.

Moreover, we investigate whether better resistance can be obtained by only replacing
the existing mixing layer of GIFT. The analysis shows that each best choice of mixing
layer is distinct, depending on block size, and allows a savings of 1 and 3 rounds for
GIFT-64 and GIFT-128, respectively. Because such modifications do not present additional
implementation costs compared with GIFT, they are expected to outperform the existing
ones. Table 2 summarizes the analysis results for BOGI-based ciphers.

1.2 Organizations

The remainder of this paper is organized as follows. Section 2 introduces the relevant
contents and notations used in this paper, and outlines Matsui’s search algorithm. In
Section 3, we demonstrate how the pruning conditions are strengthened by tailoring them
to the structure of an AES-like round function. The methods of employing permutation
characteristics in trail search and finding them are described in Section 4. In Section 5, we
discuss the BOGI design and investigate the optimal DC/LC resistance of BOGI-based
ciphers. We conclude the paper in Section 6.

3Although LED applies the key-addition every four rounds, we assume that it is applied in each round.
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Figure 1: Example of an AES-like round function and two partitions of inputs

2 Preliminaries
2.1 AES-Like Ciphers
In this study, we consider AES-like ciphers, assuming that round keys within each round
are chosen to be uniformly random and mutually independent. An AES-like cipher is
a key-alternating block cipher that applies an AES-like round function R in all rounds.
Thus, an AES-like cipher consisting of R rounds is defined as

E(R) = ⊕kR
◦ R ◦ · · · ◦ ⊕k2 ◦ R ◦ ⊕k1 ◦ R ◦ ⊕k0 ,

where the round key additions ⊕ki
(x) = x⊕ ki. The round function R is decomposed into

three functions, denoted by Sub, Mix, and Shuf. While Shuf is a word-wise permutation
(transposition) determined by a permutation σ over the index space, Sub and Mix are
the parallel applications of an S-box S and a matrix multiplication M, respectively, on
smaller inputs. To specify the smaller inputs, we use two partitions of inputs (states) • as
the square brackets •[i] and angles •⟨k⟩ for S and M, respectively. Figure 1 presents an
example of an AES-like round function and the two partitions. We refer to a transposition
over the partition •⟨k⟩ as an M-wise permutation (transposition).

Definition 1. An AES-like round function is R : Fwmn
2 → Fwmn

2 which is parameterized
by the state dimension m× n and word size w, and is the composition of S-layer Sub and
P-layer Perm = Shuf ◦Mix; R = Shuf ◦Mix ◦ Sub. For Sub(X) = Y, an S-box S : Fw

2 → Fw
2

is concurrently applied to all mn words X[j] as

(Y[0], ...,Y[mn− 1]) = (S(X[0]), ..., S(X[mn− 1])).

Analogously, the mixing layer Mix is the parallel application of a matrix multiplication
M : Fwm

2 → Fwm
2 . For Mix(Y) = Z, we have

(Z⟨0⟩, ...,Z⟨n− 1⟩) = (M(Y⟨0⟩), ..., M(Y⟨n− 1⟩)),

where M is a linear function satisfying

M(Y⟨k⟩)⊤ = M · Y⟨k⟩⊤,

for a binary matrix M ∈ GL(wm, F2). The shuffle layer Shuf shuffles the words using the
corresponding permutation σ of mn elements. For Shuf(Z) = X′, we have

(X′[σ(0)], ...,X′[σ(mn− 1)]) = (Z[0], ...,Z[mn− 1]).

Moreover, R is called a bit permutation-based AES-like round function if M is a bit
permutation (transposition), and a non-bit permutation-based AES-like cipher otherwise.
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Figure 2: PRESENT and GIFT-64’s round functions

Examples of non-bit permutation-based AES-like ciphers4 include MIDORI, SKINNY, LED
[GPPR11], and CRAFT [BLMR19], whereas PRESENT and GIFT are bit permutation-based
AES-like ciphers.

Example 1. PRESENT has a bit permutation-based AES-like round function with w = 4 and
m× n = 4× 4. PermPRESENT is a 64-bit permutation and can be decomposed into MixPRESENT
and ShufPRESENT, as shown in Figure 2. MixPRESENT consists of four 16-bit permutations
MPRESENT. σPRESENT(j) for ShufPRESENT is defined as σPRESENT(j) = 4× (j mod 4) +

⌊
j
4
⌋
.

GIFT-64 also has a bit permutation-based AES-like round function. PermGIFT64 consists
of ShufGIFT64 = ShufPRESENT and MGIFT, which is determined by the BOGI design of GIFT.
The detailed discussion on the design is provided in Section 5.

GIFT-128 adopts the same MGIFT for MixGIFT128, while ShufGIFT128 is derived from
σGIFT128(j) = 8× (j mod 4) +

⌊
j
4
⌋
.

When considering linear trails, we may use the notation M−⊤ = (M−1)⊤ and the
corresponding functions; M−⊤ and Perm−⊤ = Shuf ◦M−⊤. When both types of trail are
considered, M∗, M∗, and Perm∗ may be used5.

2.2 Resistance against Differential and Linear Cryptanalysis
The probabilities of differential and linear trails quantify DC/LC resistance. The probability
of a trail is derived from difference and linear propagations over rounds of the trail.
Therefore, to discuss DC/LC resistance of AES-like block ciphers, we begin with the
definition of difference and linear propagations.

Definition 2. Let f : Fn
2 → Fn

2 be a function. A difference propagation ∆ f−→ ∆′ has a
differential probability Pr[∆ f−→ ∆′], which is defined as

Pr[∆ f−→ ∆′] = |{x : f(x)⊕ f(x⊕∆) = ∆′}| /2n.

Analogously, a linear propagation Γ f−→ Γ′ has a linear correlation Cr[Γ f−→ Γ′], which is
defined as

Cr[Γ f−→ Γ′] =
∣∣{x : Γ⊤ · x = Γ′⊤ · f(x)

}∣∣ /2n−1 − 1.

4Note that one can easily exchange the orders of Shuf and Mix with the modified round-keys because
Shuf is commutative with Sub.

5Since a bit permutation M satisfies M = M−⊤, we simply use the corresponding notations without the
superscript ∗ if M is a bit permutation.
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Moreover, we define a linear probability (i.e., linear potential) as the square of the linear
correlation, Cr2[Γ f−→ Γ′].

The weight of a difference propagation ∆ f−→ ∆′ is the negative of the binary logarithm
of Pr[∆ f−→ ∆′], i.e., W(∆ f−→ ∆′) = − log2 Pr[∆ f−→ ∆′]. Analogously, the weight of a linear
propagation Γ f−→ Γ′ is defined as W(Γ f−→ Γ′) = − log2 Cr2[Γ f−→ Γ′].

We also define the minimum/maximum differential and linear weights of f as

∆f = min{W(∆ f−→ ∆′) : ∆ ̸= 0},

Γf = min{W(Γ f−→ Γ′) : Γ′ ̸= 0},

∆f = max{W(∆ f−→ ∆′) : ∆ ̸= 0, Pr[∆ f−→ ∆′] ̸= 0},

Γf = max{W(Γ f−→ Γ′) : Γ′ ̸= 0, Cr2[Γ f−→ Γ′] ̸= 0}

When f is an S-box and both types of the weights are considered simultaneously, the
notations W and W denote the minimum and maximum weights, respectively.

Notations for Differential and Linear Trails. The following table presents the notations
for differential and linear trails over AES-like ciphers.

T Differential trail or linear trail
T[i].X Input difference (or mask) of Sub in the i-th round

T[i].Y Output difference (or mask) of Sub in the i-th round;
This also denotes the input difference (or mask) of Mix in the i-th round.

T[i].Z Output difference (or mask) of Mix in the i-th round;
This also denotes the input difference (or mask) of Shuf in the i-th round.

T[i].X′ Output difference (or mask) of Shuf in the i-th round;
It is always satisfied that T[i].X′ = T[i + 1].X.

T[i]. • [j] Difference (or mask) of the j-th word in T[i].•
T[i]. • ⟨k⟩ Difference (or mask) of the k-th M’s position in T[i].•
T[i].W Weight of the difference (linear) propagation T[i].X Sub−−→ T[i].Y
T[i].W[j] Weight of the difference (linear) propagation T[i].X[j] S−→ T[i].Y[j]

T[i].A[j] Activity pattern of T[i].X;
T[i].A[j] = 0 if T[i].X[j] = 0 or otherwise, T[i].A[j] = 1.

ACT(•) Number of active words (S-boxes) in the full or partial state •, where active
word has a non-zero value

Differential Trail and Its Weight. An R-round differential trail over an AES-like cipher
is a sequence of difference propagations over each round. Because round key additions are
considered as identities by trails, the output differences of propagations are always equal
to the input differences of the subsequent round propagations; i.e., T[i].X′ = T[i + 1].X.
Assuming the independence of uniformly random round keys, the (expected) probability of
a differential trail, denoted by EDP(T), can be derived as

EDP(T) =
R∏

i=1
Pr

[
T[i].X R−→ T[i].X′

]
.

The probabilities of difference propagation over each round can also be decomposed into
them over Sub and Perm as

Pr
[
T[i].X R−→ T[i].X′

]
= Pr

[
T[i].X Sub−−→ T[i].Y

]
× Pr

[
T[i].Y Perm−−−→ T[i].X′

]
.
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Because Pr
[
T[i].Y Perm−−−→ T[i].X′

]
= 1 if T[i].X′ = Perm(T[i].Y) or 0 otherwise, the

difference propagation T[i].X Sub−−→ T[i].Y determines Pr
[
T[i].X R−→ T[i].X′

]
as long as

T[i].X′ = Perm(T[i].Y). Pr
[
T[i].X Sub−−→ T[i].Y

]
is derived from the probabilities of differ-

ence propagations over mn S-boxes as

Pr
[
T[i].X Sub−−→ T[i].Y

]
=

mn−1∏
j=0

Pr
[
T[i].X[j] S−→ T[i].Y[j]

]
.

As a result, assuming that T[i].X′ = Perm(T[i].Y) for all i, the probability of differential
trail can be derived as

EDP(T) =
R∏

i=1

mn−1∏
j=0

Pr
[
T[i].X[j] S−→ T[i].Y[j]

]
.

Here, we can define the weight of a differential trail from the weights of difference propaga-
tions over each S-box as in Definition 3.

Definition 3. Let T be an R-round differential trail over an AES-like cipher. The weight
of differential trail W(T) is defined as the negative of the binary logarithm of EDP(T).
If T satisfies T[i].X′ = Shuf(T[i].Z) = Perm(T[i].Y) for 1 ≤ i ≤ R, W(T) can be derived
from the weights of each round with each representing the sum of weights of difference
propagations over the corresponding S-boxes; i.e.,

W(T) = − log2 EDP(T) =
R∑

i=1
T[i].W =

R∑
i=1

mn−1∑
j=0

T[i].W[j].

Linear Trail and Its Weight. An R-round linear trail is a sequence of linear propa-
gations over each round function. Assuming the independence of uniformly random
round keys, the (expected) probability of a linear trail can be derived as ELP(T) =∏R

i=1 Cr2
[
T[i].X R−→ T[i].X′

]
. Therefore, similar to the case of differential trail, the weight

of linear trail can be evaluated as in Definition 4.

Definition 4. Let T be an R-round linear trail over an AES-like cipher. The weight of
linear trail W(T) is defined as the negative of the binary logarithm of ELP(T). If T satisfies
T[i].X′ = Shuf(T[i].Z) = Perm−⊤(T[i].Y) for 1 ≤ i ≤ R, W(T) can be derived from the
weights of each round with each representing the sum of weights of linear propagations
over the corresponding S-boxes; i.e.,

W(T) = − log2 ELP(T) =
R∑

i=1
T[i].W =

R∑
i=1

mn−1∑
j=0

T[i].W[j].

The necessary conditions for differential and linear trails T to have a non-zero probability
are T[i].X′ = Shuf(T[i].Z) = Perm(T[i].Y) and T[i].X′ = Shuf(T[i].Z) = Perm−⊤(T[i].Y),
respectively. If a trail’s propagations over P-layers satisfy this equality, we refer to the
trail as a non-trivial trail. Consequently, the non-trivial feature of a trail determines Z
and X′ for a given Y.

Minimum Required Rounds for Resistance against DC/LC. Generally, the complexity
of single trail-based DC/LC increases as the weight of the used trail increases. In particular,
single trail-based DC/LC is possible only if the considered trail has a smaller weight than
the block size (< wmn). Although such efficient trails for DC/LC can almost always be
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Algorithm 1: Matsui’s Search Algorithm (M)

Input: R ≥ 2 and B[1, ..., R− 1]
Output: T and B[R] = W(T)

1 Bstep ← a constant positive weight
2 Perm∗ ← Perm or Perm−⊤

3 Binit, Bset, T, Tout, Found← F alse

4 EstimateBoundAndStart()

5 Procedure EstimateBoundAndStart()
6 Binit ← B[R− 1] + Bstep

7 while Found is False do
8 Bset ← Binit

9 FirstRound()
10 Binit ← Binit + Bstep

11 return B[R], Tout

12 Procedure FirstRound()
13 for each Y ∈ Fwmn

2 − {0} do
14 T[1].X← arg minX W

(
X Sub−−→ Y

)
15 T[1].Y← Y

16 T[1].W←W
(
T[1].X Sub−−→ T[1].Y

)
17 if T[1].W + B[R− 1] ≤ Bset then
18 if R = 2 then
19 LastRound()
20 else
21 MiddleRound(2)

22 Procedure MiddleRound(r)
23 T[r].X← Perm∗

(
T[r − 1].Y

)
24 for each Y such that Pr

[
T[r].X Sub−−→ Y

]
̸= 0 do

25 T[r].Y← Y

26 T[r].W←W
(
T[r].X Sub−−→ T[r].Y

)
27 if

∑r

i=1
T[i].W + B[R− r] ≤ Bset then

28 if r + 1 = R then
29 LastRound()
30 else
31 MiddleRound(r + 1)

32 Procedure LastRound()
33 T[R].X← Perm∗

(
T[R− 1].Y

)
34 T[R].Y← arg minY W

(
T[R].X Sub−−→ Y

)
35 T[R].W←W

(
T[R].X Sub−−→ T[R].Y

)
36 if

∑R

i=1
T[i].W ≤ Bset then

37 Found← T rue

38 Bset ←
∑R

i=1
T[i].W

39 B[R]← Bset

40 Tout ← T

prevented by taking enough rounds, unnecessarily many rounds occur the overhead of
encryption. Therefore, designers are interested in the minimum required rounds beyond
which the minimum differential and linear weights are both larger than or equal to the
block size (≥ wmn). For example, when two candidates of round functions have the
same or similar implementation costs, the minimum required rounds can be considered an
additional criterion for choosing the best one.

2.3 Matsui’s Search Algorithm
This subsection outlines Matsui’s search algorithm, denoted by M. Algorithm 1 describes
M briefly. This algorithm is dedicated to searching for the best differential and linear
trails based on depth-first search (DFS) with branch-and-bound technique. We denote
an R-round best trail by T and its (best) weight by B[R] = W(T). For consistency, the
0-round best weight is defined as B[0] = 0.

Requirements for Matsui’s Search Algorithm. To provide an R-round best trail T and
its (best) weight B[R], M requires the (1 ∼ R− 1)-round best weights B[1, ..., R− 1] as
inputs. The 1-round best weight B[1] of an AES-like cipher is intuitively evaluated as
the minimum weight of S-box W , whereas the others B[2, ..., R − 1] cannot be trivially
determined. However, they can be obtained by applying M inductively from 2 to R− 1
rounds. Therefore, hereafter we can assume that the best weights B[1, ..., R− 1] are given
for M, and focus on how M provides an R-round best trail T from the knowledge of
B[1, ..., R− 1]. Algorithm 1 divides M into four procedures; EstimateBoundAndStart()
and the main search procedures – FirstRound(), MiddleRound(), and LastRound().

Estimating the Initial Bound for B[R]. As shown below, the main search procedures of
M traverse all non-trivial trails whose weights are smaller than or equal to Bset. Bset is
initialized as Binit, and is updated only when a trail is found. This implies that the main
search procedures provide nothing if Binit < B[R]. Therefore, EstimateBoundAndStart()
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increases the initial bound Binit until Binit ≥ B[R]. The method for increasing Binit can
be dedicated for each cipher, such as the approach in [OMA95].

Pruning Unnecessary Search Tree. To verify thatM of Algorithm 1 works correctly, we
need to demonstrate that the intermediate bound checks in each main search procedure
do not drop the sub-part T[1, ..., r] of trails, whose weights are smaller than or equal to
Bset; W(T) ≤ Bset. This can be easily shown by the fact that AES-like ciphers consist
of the same round functions, and thus, W(T[r + 1, ..., R]) ≥ B[R − r] for any remaining
parts T[r + 1, ..., R]. Therefore, the intermediate bound checks allow M to work well and
efficiently by skipping unnecessary sub trails.

However, it remains infeasible when analyzing all the candidates for round outputs;
c.f., the line 13 and 24 in Algorithm 1. Matsui proposes to determine Y S-box by S-box
instead of once and to apply the pruning conditions based on Proposition 1.

Proposition 1 ([Mat95]). Let R ≥ 1 and T be an R-round non-trivial trail. For any
1 ≤ r ≤ R and 0 ≤ c < mn, if W(T) ≤ Bset, it is satisfied that

r−1∑
i=1

T[i].W +
c∑

j=0
T[r].W[j] + B[R− r] ≤ Bset.

Algorithm 3 presents this approach using the sub-procedure version of MiddleRound().
The other search procedures can be derived in a similar way. Note that in addition to these
frequent bound checks, sorting the candidates of T[r].Y[c] by their weight is also possible
owing to the smaller number of candidates, and thus, an early abortion is facilitated at
line 17 of Algorithm 3.

2.4 Optimizing Matsui’s Search Algorithm
In this subsection, we introduce the optimizations presented in [BBF15]. The optimizations
tighten the left side of inequality in Proposition 1. If the left side becomes bigger,
unnecessary trees can be pruned earlier, resulting in a faster search. Another optimization
of [BBF15] devises a new pruning condition considering the feature of bit permutation.

Filling the Undetermined. The first optimization uses the information of activity pattern
T[r].A to make up the undetermined output differences (masks) of S-box. At the search
tree on MiddleSubRound() in Algorithm 3, although T[r].Y[c + 1, ..., mn − 1] are not
determined yet, the lower bound for

∑mn−1
j=c+1 T[r].W[j] can be obtained from the number

of non-zero words in T[r − 1].X′[c + 1, ..., mn− 1] = T[r].X[c + 1, ..., mn− 1]. By adding
the lower bound to the left side of inequality in Proposition 1, one can derive a more strict
pruning condition as Proposition 2. We denote the condition by PC1.

Proposition 2 ([BBF15], PC1). Let R ≥ 1 and T be an R-round non-trivial trail. For
any 1 ≤ r ≤ R and 0 ≤ c < mn, if W(T) ≤ Bset it is satisfied that

r−1∑
i=1

T[i].W +
c∑

j=0
T[r].W[j] +

mn−1∑
j=c+1

T[r].A[j]×W + B[R− r] ≤ Bset.

It seems that this strengthened bound check is not applicable to the first round because
T[1].A cannot be obtained from the previous output state. However, with the next
optimization, PC1 can also be available for the first round.
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Active S-boxes in the First Round Input. The second optimization determines the
activity pattern T[1].A of the first round before starting the search. The pre-determined
activity pattern allows to obtain the lower bound for

∑mn−1
j=c+1 T[1].W[j] even at the first

round. Algorithm 4 presents FirstRound() and FirstSubRound() with PC1. PC1 is
checked at line 7 and 20 of Algorithm 4.

Another advantage of using the pre-determined activity pattern is that the early-
abortion of FirstRound() can be possible by starting the pre-determined activity patterns
in the order of the patterns with less active S-boxes. In Algorithm 4, the sets A of active
S-box positions for T[1].A are generated in Atab and sorted by the number of active
S-boxes. This enables to preemptively break the loop of Atab if the bound check at line 7
of Algorithm 4 is not satisfied.

Exploiting the Feature of Bit Permutation. The third optimization can only be used
for bit permutation-based AES-like ciphers. It exploits the feature that partial input bits
can determine the corresponding output bits exactly over bit permutation, which means
the number of active S-boxes in the subsequent round increases as additional input bits of
bit permutation are determined.

Lemma 1. Let Perm be a bit permutation. For any 0 ≤ c < mn, it is satisfied that

ACT (Perm (Y[0, ..., c] ∥ 0)) ≤ ACT (Perm (Y)) ,

where 0 denotes a zero-bit padding.

Proposition 3 ([BBF15], PC2). Let R ≥ 2 and T be an R-round non-trivial trail over
a bit permutation-based AES-like cipher. For any 1 ≤ r < R and 0 ≤ c < mn, if
W(T) ≤ Bset it is satisfied that

r−1∑
i=1

T[i].W +
c∑

j=0
T[r].W[j] +

mn−1∑
j=c+1

T[r].A[j]×W

+ ACT
(
Perm(T[r].Y[0, ..., c] ∥ 0)

)
×W + B[R− 1− r] ≤ Bset.

Proof. See Appendix C.1.

Since Lemma 1 is the main factor for Proposition 3, the pruning condition PC2 of
Proposition 3 cannot be applied to “non”-bit permutation-based AES-like ciphers.

3 Strengthening Pruning Condition
In this section, we strengthen the previous pruning conditions – PC1 of Proposition 2 and
PC2 of Proposition 3. The main idea is to thoroughly use the structure of AES-like round
functions and the properties of S and M during trail search.

3.1 Unbalance of the Minimum Weights of S-box
During the trail search for r ≥ 2, the r-th input T[r].X is determined by the (r − 1)-th
output T[r− 1].X′. Therefore, in Propositions 2 and 3, the term

∑mn−1
j=c+1 T[r].A[j]×W for

r ≥ 2 can be tightened by replacing it with
∑mn−1

j=c+1 minY W(T[r].X[j] S−→ Y ). In particular,
this replacement is influential if S has unbalanced weights.

Definition 5. If min∆′ ̸=0 W(∆ S−→ ∆′) for each fixed input difference ∆ ̸= 0 are not same,
S has unbalanced differential weights. Analogously, If minΓ′ ̸=0 W(Γ S−→ Γ′) for each fixed
input mask Γ ̸= 0 are not same, S has unbalanced linear weights.
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The following table presents an example with the S-box SGIFT of GIFT.

∆ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

min∆′ ̸=0 W(∆
SGIFT−−−→ ∆′) 3 2 3 1.4 2 1.4 2 2 3 2 3 2 2 2 2

Γ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

minΓ′ ̸=0 W(Γ
SGIFT−−−→ Γ′) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

Only two input differences ∆ = 4, 6 can have the minimum differential weight 1.4. In such a
case, depending on the input difference state T[r].X for r ≥ 2,

∑mn−1
j=c+1 minY W(T[r].X[j] S−→

Y ) is strictly bigger than
∑mn−1

j=c+1 T[r].A[j]×W . This implies that PC1 of Proposition 2
and PC2 of Proposition 3 can become more strict by using T[r].X instead of the activity
pattern T[r].A for r ≥ 2 if S-box has unbalanced weights. Table 3 presents the unbalanced
weights of the considered ciphers.

3.2 Exploiting Branch Number and Structure of Mixing Layer
Although Perm∗ is not a bit permutation, the partial input T[r].Y[0, ..., c] of Perm∗ can
provide a lower bound for the (r + 1)-th round’s weight. The lower bound is derived from
the branch number of M∗ and the structure of Mix∗.

Branch Number. The branch numbers of matrix multiplication M in an AES-like round
function quantify the mixing power of M. Therefore, most ciphers adopt M, which has the
highest possible differential and linear branch numbers. The differential and linear branch
numbers of M are defined as

B = min
x̸=0
{ACT(x) + ACT(M (x))} and B−⊤ = min

x ̸=0
{ACT(x) + ACT(M−⊤ (x))}.

We also use B∗ to indicate both branch numbers. Table 3 shows the branch numbers of
the considered ciphers.

The knowledge of branch number can allow the lower bound for number of active
S-boxes in the subsequent round as Lemma 2.

Lemma 2. Let R ≥ 2 and T be an R-round non-trivial trail. For any 1 ≤ r < R and
0 ≤ k < n, it is satisfied that

ϕ(
m−1∑
j=0

T[r].A[mk + j]) ≤
m−1∑
j=0

T[r + 1].A[σ(mk + j)],

where ϕ(x) =
{

max(1,B∗ − x) if x ̸= 0
0 if x = 0

and σ is the shuffle function of Shuf.

Therefore, we can replace Lemma 1 with Lemma 2 to devise PC2 for non-bit permutation-
based AES-like cipher. Moreover, the structure of Mix∗ further strengthens PC2.

Table 3: Unbalanced Weights and Branch Numbers of the Considered Ciphers

Cipher dif. wt. lin. wt. B B−⊤ Cipher dif. wt. lin. wt. B B−⊤

AES Bal. Bal. 5 5 SKINNY-64 Unbal. Bal. 2 2
LED Unbal. Bal. 5 5 SKINNY-128 Unbal. Unbal. 2 2

MIDORI-64 Unbal. Bal. 4 4 GIFT Unbal. Bal. 2 2
CRAFT Unbal. Bal. 2 2 PRESENT Unbal. Bal. 2 2
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Structure of Mixing Layer. We leverage the fact that Mix∗ is the parallel application of a
matrix multiplication M∗. This structure allows that the output of a round (i.e., the input
of the subsequent round T[r + 1].X) can be partially determined by the corresponding
partial part of T[r].Y.

Lemma 3. Let R ≥ 2 and T be an R-round non-trivial trail. For any 1 ≤ r < R and
0 ≤ c < mn, it is satisfied that

nM−1∑
k=0

m−1∑
j=0

min
Y

W
(
M∗

(
T[r].Y⟨k⟩

)
[j] S−→ Y

)
≤

mnM−1∑
j=0

T[r + 1].W[σ(j)],

where nM = ⌊(c + 1)/m⌋ and σ is the shuffle function of Shuf.

Proof. See Appendix C.2.

3.3 Proposed Pruning Conditions
As mentioned in Subsection 3.1, we can strengthen PC1 of Proposition 2 if the S-box has
unbalanced weights.

Proposition 4 (PC1). Let R ≥ 1, 0 ≤ c < mn, and T be an R-round non-trivial trail. If
W(T) ≤ Bset, it is satisfied that

c∑
j=0

T[1].W[j] + T[1].A[j]×W + B[R− 1] ≤ Bset,

and that for 2 ≤ r ≤ R,

r−1∑
i=1

T[i].W +
c∑

j=0
T[r].W[j] +

mn−1∑
j=c+1

min
Y

W(T[r].X[j] S−→ Y ) + B[R− r] ≤ Bset.

We suggest that one chooses PC1 of Proposition 2 or 4 depending on whether the S-box
has unbalanced weights. This is because Proposition 2 can be more efficiently implemented.
Algorithm 7 compares the applications of PC1 for r ≥ 2. While the application of
Proposition 2 enumerates the number of active S-boxes by simply obtaining the cardinality
|Ac<j<mn|, that of Proposition 4 consists of a For loop at line 6 of Algorithm 7, which
causes a non-negligible overhead whenever PC1 is checked.

For Non-bit Permutation-based AES-like Cipher. Based on Lemma 2 and 3, a new
pruning condition is available for non-bit permutation-based AES-like cipher.

Proposition 5 (PC2). Let R ≥ 2, 0 ≤ c < mn, and T be an R-round non-trivial trail
over a non-bit permutation-based AES-like cipher. If W(T) ≤ Bset, it is satisfied
that

c∑
j=0

T[1].W[j] + T[1].A[j]×W

+
nM−1∑
k=0

m−1∑
j=0

min
Y

W
(
M∗

(
T[1].Y⟨k⟩

)
[j] S−→ Y

)
+

n−1∑
k=nM

ϕ(
m−1∑
j=0

T[1].A[mk + j])×W

+ B[R− 2] ≤ Bset,
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and that for 2 ≤ r < R,

r−1∑
i=1

T[i].W +
c∑

j=0
T[r].W[j] +

mn−1∑
j=c+1

min
Y

W(T[r].X[j] S−→ Y )

+
nM−1∑
k=0

m−1∑
j=0

min
Y

W
(
M∗

(
T[r].Y⟨k⟩

)
[j] S−→ Y

)
+

n−1∑
k=nM

ϕ(
m−1∑
j=0

T[r].A[mk + j])×W

+ B[R− 1− r] ≤ Bset,

where ϕ(x) =
{

max(1,B∗ − x) if x ̸= 0
0 if x = 0

and nM = ⌊(c + 1)/m⌋.

Except for the duplicated terms of Proposition 4, it is enough to evaluate the different
terms to apply PC2 by storing the duplicated terms. The different terms can be evaluated
as Algorithm 9.

For Bit Permutation-based AES-like Cipher. One can notice that Proposition 5 can be
also applied to bit permutation-based AES-like ciphers. However, Proposition 5 does not use
the entire determined part T[r].Y[0, ..., c] but only the partial part T[r].Y[0, ..., m(nM−1)−1].
The remaining part can still be used with Lemma 1. Therefore, we can derive Proposition
6 for bit permutation-based AES-like ciphers from Lemma 1 and Proposition 5.

Proposition 6 (PC2). Let R ≥ 2, 0 ≤ c < mn and T be an R-round non-trivial trail over
a bit permutation based AES-like cipher. If W(T) ≤ Bset, it is satisfied that

c∑
j=0

T[1].W[j] + T[1].A[j]×W

+
nM−1∑
k=0

m−1∑
j=0

min
Y

W
(
M

(
T[1].Y⟨k⟩

)
[j] S−→ Y

)
+ ACT

(
M

(
T[1].Y⟨nM⟩[0, ..., mM − 1] ∥ 0

))
×W

+
n−1∑

k=nM+ϕ(mM)

ϕ(
m−1∑
j=0

T[1].A[mk + j])×W + B[R− 2] ≤ Bset,

and that for 2 ≤ r < R,

r−1∑
i=1

T[i].W +
c∑

j=0
T[r].W[j] +

mn−1∑
j=c+1

min
Y

W(T[r].X[j] S−→ Y )

+
nM−1∑
k=0

m−1∑
j=0

min
Y

W
(
M

(
T[r].Y⟨k⟩

)
[j] S−→ Y

)
+ ACT

(
M

(
T[r].Y⟨nM⟩[0, ..., mM − 1] ∥ 0

))
×W

+
n−1∑

k=nM+ϕ(mM)

ϕ(
m−1∑
j=0

T[r].A[mk + j])×W + B[R− 1− r] ≤ Bset,

where ϕ(x) =
{

1 if x ̸= 0
0 if x = 0

, nM = ⌊(c + 1)/m⌋, and mM = c + 1−mnM.
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The term ACT(M(T[r].Y⟨nM⟩[0, ..., mM−1] ∥ 0))×W is added and replaces ϕ(
∑m−1

j=0 T[r].A[mnM+
j])×W of Proposition 5. Because the replaced term is smaller than or equal to the current
term, Proposition 6 provides a more strict pruning condition than Proposition 5.

The following two terms support that Proposition 6 provides a more strict pruning
condition than Proposition 3.

1.
∑nM−1

k=0
∑m−1

j=0 minY W
(
M∗(T[r].Y⟨k⟩)[j] S−→ Y

)
: As in Proposition 4, this term is

influential if S has unbalanced weights.

2.
∑n−1

k=nM+ϕ(mM) ϕ(
∑m−1

j=0 T[r].A[mk + j]) ×W : This term is an additional part to
increase the left side of inequality.

3.4 Implementation of Search Algorithm
The search algorithm that we implement to compare the pruning conditions of [BBF15]
with ours is described in Algorithm 5 and 6 of Appendix A.

3.4.1 Utility Procedures

Atab and the utility procedures – EstimateBoundAndStart(), BoundCheck() are presented
in Algorithm 5.

Atab. Similar to the existing method of [BBF15], the pre-determined indices of active
S-boxes for T[1].A are used in our algorithm. However, by introducing permutation
characteristics, the size of Atab can be reduced. This reduction will be discussed in Section
4. When comparing the pruning conditions of [BBF15] and ours in Subsection 3.5, we
do not apply this reduction. The experimental results with the reduced Atab will be
separately given in Subsection 4.4.

EstimateBoundAndStart(). Instead of the constant step Bstep in Algorithm 1, the
minimum and maximum weights of the S-box W, W are used to update Binit. This
procedure updates Binit as B[R− 1] + W for the first trial, and then increases it by W for
each trial.

BoundCheck(). This procedure checks the pruning conditions after adding the lower
bound for weight of remaining part (i.e., B[R− r] at the r-th round search tree). Because
searching for a single best trail suffices, trails whose weights are expected to be equal to
Bset are excluded after a trail is found.

3.4.2 Main Search Procedures

The main search procedures; First, Middle, and LastRound() and their sub-procedures;
First, Middle, and LastSubRound() are presented in Algorithm 5, 6 respectively.

Accumulating the Weights. Instead of computing the weights
∑r

i=1
∑c

j=0 T[i].W[j] at
each search tree, they are gradually evaluated from the previous weight Wcum to reduce
duplicate computations. Moreover, as mentioned, it may be observed that the weight of
PC2 (WPC2 in Algorithm 5, 6) can be computed with a part of PC1’s weight (WPC1 in
Algorithm 5, 6). Therefore, we reuse the evaluated weight WPC1 to obtain the weight
WPC2 for PC2.



Seonggyeom Kim, Deukjo Hong, Jaechul Sung and Seokhie Hong 15

Table 4: Performance Comparisons of Best Trail Searches on the Considered Ciphers

Cipher |Atab|
|OptAtab| Round* Trail Mprev Mpc Mour

Mprev
Mpc

Mpc
Mour

Mprev
Mour

PRESENT 1 2 ∼ 31 Dif. 9.777 s 5.131 s 1.91 1 1.91

GIFT-64 15.77 2 ∼ 28 Dif. 436.242 s 57.235 s 5.627 s 7.62 10.17 77.52
Lin. 1.0 h 0.5 h 177.506 s 1.92 10.31 19.79

GIFT-128 1 2 ∼ 19 Dif. 68.2 h 4.5 h 15.00 1 15.00
Lin. 354.9 h 62.0 h 5.72 1 5.72

AES 15.77 2 ∼ 2 Dif. 1.0 h <0.001 s <0.001 s ∞ 2.00 ∞
Lin. 1.4 h <0.001 s <0.001 s ∞ 2.00 ∞

LED 3.98 2 ∼ 3 Dif. 7.393 s 0.033 s 0.008 s 221.34 3.98 880.11
Lin. 24.191 s 0.051 s 0.013 s 474.34 4.02 1904.83

MIDORI-64 15.77 2 ∼ 2 Dif. 0.535 s 0.004 s 0.001 s 130.51 6.83 891.83
Lin. 0.084 s 0.002 s <0.001 s 33.44 6.25 209.00

CRAFT 3.95 2 ∼ 7 Dif. 235.3 h 4.6 h 1.4 h 50.94 3.30 168.10
Lin. 171.3 h 3.3 h 3.2 h 51.75 1.05 54.26

SKINNY-64 3.98 2 ∼ 6 Dif. 291.702 s 11.468 s 2.139 s 25.44 5.36 136.39
Lin. 0.9 h 164.916 s 35.964 s 19.81 4.59 90.86

SKINNY-128 3.98 2 ∼ 6 Dif. 446.164 s 52.572 s 24.998 s 8.49 2.10 17.85
Lin. 7.9 h 1.0 h 0.5 h 8.17 2.15 17.54

*For the comparisons, the range of analysis rounds is determined by the existing method of [BBF15]. The range
our method can analyze is summarized in Table 1 and detailed in Suppl. D.
Mprev : The existing method of [BBF15].
Mpc : Our method with the strengthened pruning conditions.
Mour : Our method combining the strengthened pruning conditions and permutation characteristics.

|Atab|
|OptAtab| : Reduction in input differences (masks) by employing permutation characteristics.

Searching from the Promising Output First. As the early abortion of Algorithm 3,
the same technique is applied to FirstSubRound() and MiddleSubRound(). This search
approach can be efficiently implemented with the pre-computed tables that consist of
properly reordered propagations by their weights [JZD20].

Concerning Active S-box Only. When applying PC2, the index cnxt of the subsequent
active word can be considered the number of determined words in T[r].Y because zero-input
words must have zero outputs. In Algorithm 6, the index cnxt is evaluated at lines 7 and
36 and then used for obtaining the weight Wnxt to check PC2 at lines 17 and 44. This
consideration gives a larger nM, making Propositions 6 and 5 more influential.

3.5 Performance Comparisons
In this subsection, we justify the improvement of our pruning conditions by comparing the
search programs that have distinct procedures for checking PC1 and PC2. Algorithm 7
shows the differences for checking PC1 while Algorithm 8 and 9 show the differences for
checking PC2. Note that the others except for these parts are identical as Algorithm 5
and 6.

The performance comparisons are presented in the Mprev

Mpc
column in Table 4, and the

detailed results for each round are given in Suppl. D. Our method outperforms the existing
method of [BBF15] on all considered ciphers.

GIFT. In GIFT-64, the existing method and ours found the full-round best differential and
linear weights within an hour. However, our method was faster by a factor of approximately
7.62.

In GIFT-128, there is a significant difference between the execution times. Our method
provided the (20 ∼ 24)-round best differential weights and the (18 ∼ 21)-round best linear
weights, whereas the existing method was unable to do so within the execution time (details
are provided in Suppl. D.10). The obtained best weights are in accordance with those of
[SWW21].
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Remark 1. For simplicity of application, we did not consider the decomposition of Perm∗
to implement NextRoundLowerBound(), and thus, simply used Perm∗ instead of M∗ for
Algorithm 9. This implies that a dedicated implementation should provide better perfor-
mances than the experimental results obtained on our method. As shown in Subsection
5.4, our dedicated search program for BOGI-based ciphers considered the decomposition
of Perm∗ and performed better on GIFT than what Table 4 shows. With the dedicated
search program, the full-round best trail of GIFT-128 can be obtained, and to the best of
our knowledge, these results are new. The experimental results obtained on the dedicated
search program are detailed in Suppl. E.

LED. The state of LED [GPPR11] is parameterized by m = 4, n = 4, w = 4. Our method
provided the 3-round best differential and linear weights in less than 0.1 s, whereas the
existing method required several seconds. Consequently, our method finds the (2 ∼ 3)-
round best linear weights 474.34 times faster. The obtained best weights are in accordance
with the lower bounds derived from the minimum active S-boxes in [GPPR11].

MIDORI-64. The state of MIDORI-64 [BBI+15] is parameterized by m = 4, n = 4, w = 4.
Our method provided the 9-round best differential weight and the 10-round linear weight,
whereas the existing method provided only the 3-round best differential and linear weights.
Moreover, the required time for obtaining the (2 ∼ 3)-round best differential weights is
reduced by a factor of 130.51. The obtained best weights are in accordance with the lower
bounds derived from the minimum active S-boxes in [BBI+15].

4 Employing Permutation Characteristics in Trail Search
In this section, we suggest an approach for reducing the inputs that need to be analyzed in
trail search. The main idea is to utilize permutation characteristics, which were originally
presented in [LMR15] for invariant subspace attack. It can be noted that our approach
can be of independent interest for obtaining other types of distinguishers, such as division
trails [XZBL16].

The simplest case of our approach is to employ a word-wise permutation A such that
Perm ◦ A = A ◦ Perm. Since W(∆ Sub−−→ ∆′) = W(A(∆) Sub−−→ A(∆′)), it is easy to show that
W(∆ R−→ ∆′) = W(A(∆) R−→ A(∆′)). Let T and T′ be R-round differential trails satisfying

T[i].X = ∆i,T′[i].X = A(∆i) for 1 ≤ i ≤ R, and T[R].X′ = ∆f ,T′[R].X′ = A(∆f ).

W(∆ R−→ ∆′) = W(A(∆) R−→ A(∆′)) yields that T[i].W = T′[i].W for 1 ≤ i ≤ R and
W(T) = W(T′). Therefore, when it comes to searching for a best differential trail, one does
not have to consider other trails starting from the input difference A(∆1) after all trails
from an input difference ∆1 are traversed. Analogously, when searching for a best linear
trail, one can employ a word-wise permutation A such that Perm−⊤ ◦ A = A ◦ Perm−⊤.

In this manner, our approach finds A and reduces Atab of Algorithm 5 by removing
the duplicate A under A. Moreover, we generalize the commutative case to obtain more A
by considering Perm∗ ◦ A = B ◦ Perm∗, denoted by A Perm∗

====⇒ B.
Remark 2. One can notice a general linear permutation A such that R ◦A = A ◦ R can also
be used for trail search because A yields

|{X | R(X)⊕ R(X⊕∆) = ∆′}| = |{X | R(X)⊕ R(X⊕ A(∆)) = A(∆′)}| , and
|{X | Γ · X = Γ′ · R(X)}| =

∣∣{X | A−⊤(Γ) · X = A−⊤(Γ′) · R(X)
}∣∣ .

However, we concentrate on word-wise permutations because of their easy adjustments into
Atab and the high complexity of obtaining general permutation characteristics. Therefore,
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one may further consider the general linear permutations, such as the self-equivalences of
S-layer, which are presented in Corollary 1 of [RP21].

4.1 Permutation Characteristics for Trail Search
Unlike the commutative case A Perm∗

====⇒ A, the general case A Perm∗

====⇒ B does not simply
allow two distinct trails to have the same weight. To derive the same notion as above, we
require a permutation characteristic for a given number of rounds.

Definition 6. An R-round differential permutation characteristic of an AES-like cipher is
a sequence of word-wise permutations D(1) ⇒ D(2) ⇒ · · · ⇒ D(R+1) such that D(i) Perm===⇒
D(i+1) for 1 ≤ i ≤ R. Analogously, an R-round linear permutation characteristic of an
AES-like cipher is a sequence of word-wise permutations L(1) ⇒ L(2) ⇒ · · · ⇒ L(R+1) such
that L(i) Perm−⊤

=====⇒ L(i+1) for 1 ≤ i ≤ R.

Proposition 7. Let T be an R-round non-trivial differential trail over an AES-like cipher.
If D(1) ⇒ D(2) ⇒ · · · ⇒ D(R+1) is an R-round differential permutation characteristic of
the AES-like cipher, an R-round differential trail T′ such that

T′[i].X = D(i) (T[i].X) , T′[i].Y = D(i) (T[i].Y) ,

T′[i].Z = Mix(T′[i].Y), T′[i].X′ = D(i+1) (T[i].X′) ,

for 1 ≤ i ≤ R is also non-trivial and has the same weight as W(T).

Proof. See Appendix C.3.

Proposition 7 implies that T′ need not be considered after the equivalent trail T is
traversed in the best trail search. This allows the reduction of input differences that need
to be considered.

Let D be the set of the first word-wise permutation D(1) of each permutation charac-
teristic. To search for a best trail, one can only consider trails beginning from inputs that
are not derived from each other via a word-wise permutation in D. The representative of
each ∆ can be defined as minD∈D D(∆) in lexicographical order. In this regard, the set
of representatives can be obtained as {∆ : ∆ = minD∈D D(∆)}. We adjust such removal
into activity patterns for the first round, and reduce Atab of Algorithm 5. We denote the
reduced table by OptAtab.

Example 2. Atab for AES is

{{0}, {1}, · · · , {15}︸ ︷︷ ︸
16 1−combinations

, {0, 1}, {0, 2}, · · · , {14, 15}︸ ︷︷ ︸
120 2−combinations

, {0, 1, 2}, {0, 1, 3}, · · · , {13, 14, 15}︸ ︷︷ ︸
560 3−combinations

, · · · }

and has the cardinality |Atab| of 65,535. The set D of D(1) presented in Subsection 4.3
reduces Atab as

OptAtab ={{0}} ∪ {{0, 1}, {0, 2}, {0, 4}, {1, 4}, {2, 4}, {3, 4}, {0, 8}, {1, 8}, {2, 8}︸ ︷︷ ︸
9 2−combinations

}

∪ {{0, 1, 2}, {0, 1, 4}, {0, 2, 4}, · · · , {2, 7, 8}, {3, 7, 8}︸ ︷︷ ︸
35 3−combinations

} · · · ,

It is expected that the removal allows the best trail search to be faster as the reduction
rate |Atab|/|OptAtab| ≈ 15.77.
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Because Proposition 7 can also be applied to linear trails by replacing differential
permutation characteristics with linear permutation characteristics, the same knowledge
can be used when searching for a best linear trail.

It may be observed that such reductions can be directly applied to search not only for
variant differential/linear trails (e.g., impossible differential trail) but also for other types
of distinguisher. In particular, the considered initial division properties for division trail
search [XZBL16] can be reduced by the same approach.

Iterative Permutation Characteristic. It is better to consider iterative permutation
characteristics D(1) ⇒ D(2) ⇒ · · · ⇒ D(R+1) = D(1) for an arbitrary number of rounds.
Moreover, D can include all the word-wise permutations D(i) since any D(i) can be the
first word-wise permutation. In this regard, we only considered iterative permutation
characteristics when obtaining OptAtab of the considered ciphers.

4.2 Obtaining Permutation Characteristics of AES-like Cipher
In this subsection, we demonstrate how to obtain permutation characteristics of an AES-
like cipher. Due to a vast number of word-wise permutations, the exhaustive search
of A Perm∗

====⇒ B is computationally infeasible. Therefore, we consider the decomposition
Perm∗ = Shuf ◦Mix∗ and derive A Perm∗

====⇒ B from A Mix∗

===⇒ B.
Let Ak

M∗

==⇒ Bk for 0 ≤ k < n and C be a M-wise permutation (transposition). Because
Mix∗ consists of the same matrix multiplications M∗ and Shuf also a word-wise permutation,
it is satisfied that

(A0 ∥ · · · ∥ An−1) ◦ C Mix∗

===⇒ (B0 ∥ · · · ∥ Bn−1) ◦ C, and

(A0 ∥ · · · ∥ An−1) ◦ C Perm∗

====⇒ Shuf ◦ (B0 ∥ · · · ∥ Bn−1) ◦ C ◦ Shuf−1.

We denote the set of such pairs over Perm∗ by DWSE(Perm∗).
Now, one can obtain R-round permutation characteristics and D by regarding the

pairs (A, B) ∈ DWSE(Perm∗) as the edges of a directed graph G. Algorithm 2 presents
this approach. It may be noted that the connected subgraphs of G are cyclic or linear
subgraphs. The cyclic subgraphs at line 4 represent iterative permutation characteristics.
Therefore, all the vertices are added into D at line 7. On the other hand, the linear
subgraphs at line 5 represent permutation characteristics that are not iterative. Therefore,
some vertices from the head vertex are only added into D at line 9.

Moreover, in Algorithm 2, DWSE(Perm∗) is reduced into ←−−−→DWSE(Perm∗) as we are
interested in obtaining a permutation characteristic whose length is R ≥ 2. Such a
consideration leads to a better performance when obtaining the subgraphs of G.

4.3 Permutation Characteristics of Considered Ciphers
In this subsection, we present the permutation characteristics of the considered ciphers
and demonstrate the reduced table OptAtab. It can be noted that we solely consider the
connected cyclic subgraphs in Algorithm 2 so that the number of rounds is not restricted.
However, the connected linear subgraphs tend to be too small for long trail search. Table 5
summarizes the results of the analysis, and Figure 3 describes some of the obtained directed
graphs G in Algorithm 2. All the considered ciphers have DWSE(Perm) = DWSE(Perm−⊤).
Therefore, the same reduction of Atab is applied to both differential and linear trail searches.
AES. The matrices M∗

AES of M∗AES are equivalent to 4 × 4 circulant matrices over F28 .
Therefore, it is satisfied that ROLk

M∗
AES===⇒ ROL4−k, where ROLk denotes a word-wise left-

rotation with the amount k. This provides DWSE(Perm∗AES) of 6,144 pairs, and generates
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Algorithm 2: R-Round Permutation Characteristics of AES-like Cipher
Input: Perm∗ and Rounds R ≥ 2
Output: D

1 D ← ∅

2
←−−−→DWSE(Perm∗)← {(A, B) ∈ DWSE(Perm∗) : ∃X such that (B, X) ∈ DWSE(Perm∗)}

3 G← a directed graph regarding the pairs in ←−−−→DWSE(Perm∗) as the edges
4 C ← the set of connected cyclic subgraphs in G
5 L ← the set of connected linear subgraphs in G

6 for H ∈ C do
7 D ← D ∪ {all vertices (word-wise permutations) in H}

8 for H ∈ L do
// Note that there is one more removed vertex for H.

9 D ← D ∪ {from the first head vertex, min(0, |H|+ 1−R) vertices in H}

10 return D

Table 5: Comparisons Between the Sizes of Atab and OptAtab

Cipher |Atab| |DWSE(Perm∗)| |
←−−−−−−−−−→
DWSE(Perm∗)| |D| |OptAtab| |Atab|/|OptAtab|

AES 65,535 6,144 16 16 4,155 15.77
LED 65,535 20 4 4 16,455 3.98

MIDORI-64 65,535 7,962,624 576 16 4,155 15.77
CRAFT 65,535 20 4 4 16,575 3.95
SKINNY 65,535 20 4 4 16,455 3.98
PRESENT 65,535 24 1 1 65,535 1
GIFT-64 65,535 6,144 16 16 4,155 15.77
GIFT-128 232 − 1 ≈ 231.3 512 1 232 − 1 1

a directed graph with 16 edges and 16 vertices6. The directed graph consists of ten cycles –
(four 1-cycles and six 2-cycles). This gives |D| = 16 and allows the decrease of |Atab| from
65,535 to 4,155.

MIDORI-64. According to our exhaustive analysis, {(A, B) : A M∗
MIDORI64=====⇒ B} = {(A, A−1)},

where A is a word-wise permutation on four words. This provides DWSE(Perm∗MIDORI64) of
7,962,624 pairs, and generates a directed graph with 576 edges and 1,072 vertices. The
directed graph consists of 6 cycles – (two 1-cycles, one 2-cycle, and three 4-cycles) and 496
linear subgraphs. All linear subgraphs have a size of 1. Although the linear subgraphs can
be used up to two rounds, we consider only six cycles for an arbitrary number of rounds.
This allows the decrease of |Atab| from 65,535 to 4,155.

GIFT. According to our exhaustive analysis, {(A, B) : A MGIFT===⇒ B} has four pairs. This
provides |DWSE(PermGIFT64)| = 6,144 and |DWSE(PermGIFT128)| = 10,321,920 ≈ 223.3.

DWSE(PermGIFT64) gives a corresponding directed graph consisting of 16 edges and 16
vertices. In the directed graph, there exist 6 cycles – (two 1-cycles, one 2-cycle, and three
4-cycles), which drives |D| = 16. This allows the decrease of |Atab| from 65,535 to 4,155.

For GIFT-128, |D| = 1. This yields no reduction in |Atab|. However, there exist
non-trivial linear subgraphs – (498 1-linear subgraphs, 5 2-linear subgraphs, and 1 3-linear
subgraphs). As mentioned above, they can be used to obtain the 2-, 3-, and 4-round best
weights.

6This implies that the remaining 6,128 pairs cannot be used for more than one round.
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(a) (b) (c) (d)

Figure 3: The directed graphs G in Algorithm 2 : (a) GIFT-64, (b) GIFT-128, (c) AES,
and (d) MIDORI-64.

4.4 Impact of Permutation Characteristics on Trail Search

This subsection discusses the impacts of the reduced table OptAtab on trail search. They
are evaluated by comparing the elapsed time after applying OptAtab to our method with
the strengthened pruning conditions. The comparisons are presented in the Mpc

Mour
column

in Table 4, and the detailed results for each round are given in Suppl. D.

GIFT-64. As shown in Subsection 3.5, our pruning conditions already provide a con-
siderably accelerated search on GIFT-64. Moreover, the adoption of OptAtab assists
the full-round best differential and linear trail searches to end in 5.627 s and 177.506 s,
respectively. Our approach presented better performances compared to the method of
[BBF15] by factors of 77.52 and 19.79 on differential and linear trail searches, respectively.
This outstanding performance enables us to exhaustively investigate the most DC/LC
resistant BOGI-based ciphers, which is discussed in Section 5.

MIDORI-64. The (2 ∼ 9)-round best trail search was improved by a factor of approxi-
mately 7 by applying OptAtab. Moreover, OptAtab allows to provide the full-round best
linear weight and 12-round best differential weight in 74.2 h and 210.5 h, respectively.

5 Toward the Most Resistant BOGI-based Cipher
In this section, we take advantage of the above acceleration to exhaustively investigate the
optimal DC/LC resistance of BOGI-based ciphers. Our evaluations show that GIFT is not
optimal in terms of DC/LC resistance. Moreover, even if we consider the implementation
cost of round function, some variants provide better resistance than GIFT.

SPRESENT SPRESENT SPRESENT SPRESENT

B B B G B B B G B B B G B B B G

B B B B B B B B B B B B G G G G

B B B G B B B G B B B G B B B G

SPRESENT SPRESENT SPRESENT SPRESENT

MPRESENT

SGIFT SGIFT SGIFT SGIFT

B B G G B B G G B B G G B B G G

B B G G B B G G B B G G B B G G

G G B B G G B B G G B B G G B B

SGIFT SGIFT SGIFT SGIFT

MGIFT

Figure 4: Consecutive single active bit propagations of PRESENT and GIFT
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5.1 BOGI Logic
BOGI logic is a design approach proposed for the fundamental prevention of consecutive
single active bit propagations over a trail. Let ei ∈ Fw

2 be the vector with 1 in i-th
coordinate and 0 elsewhere. The i-th input bit of an S-box S is bad, denoted by B, if
Pr[ei

S−→ ej ] ̸= 0 or Cr[ei
S−→ ej ] ̸= 0 for some ej . Otherwise, the i-th input bit is good,

denoted by G. The bad/good output bits are determined in a similar way. Assume that a
bad output bit of S is connected to a bad input bit of S over the bit permutation-based
AES-like round function. One can easily derive a propagation that has only four active
S-boxes over four successive rounds, and could extend the propagation to obtain a longer
trail on which only a single active S-box exists for each round.

The existence of such B-B connections over Perm of bit permutation-based AES-like
round function can be checked by the Super Box [DR20], which consists of S and M, because
Shuf does not affect the connections. Figure 4 presents the Super Boxes of PRESENT and
GIFT. As can be observed in Figure 4, there exist B-B connections over MPRESENT. This
raises a number of efficient linear trails and allows multidimensional linear cryptanalysis
on PRESENT up to 28 rounds out of 31 rounds [Cho10, FN20]. On the other hand, GIFT
tackles this weakness with the well-crafted combination {SGIFT, MGIFT}. Therefore, although
GIFT-64 adopts the same structure as PRESENT and takes a smaller number of rounds7, it
is believed that GIFT-64 provides better security margin against DC/LC than PRESENT.

BOGI-applicable S-box. For GIFT’s prevention to be available, a necessary condition is
required on the S-box, as given below.

Lemma 4. [BPP+17, KHSH20] Let S be a 4-bit S-box. B-B connections can be prevented
by a proper 16-bit permutation, if and only if S has at least four good bits.

We refer to the S-boxes satisfying Lemma 4 as BOGI-applicable S-boxes and denote their
set by BS. All the BOGI-applicable S-boxes were identified in [KHSH20]. The total
number |BS| of 4-bit BOGI-applicable S-boxes is 186,392,448. Among them, only 2,654,208
S-boxes have the minimum differential uniformity and linearity as 6 and 8, respectively.

5.2 Mixing Layer of BOGI Logic
In this subsection, we demonstrate how to construct the proper 16-bit permutations MBOGI
of Lemma 4 for a given BOGI-applicable S-box SBOGI ∈ BS. Merely finding a 16-bit
permutation that prevents B-B connections with a given S-box is not reasonable due to a
number of 16-bit permutations and their low mixing power. Therefore, we construct MBOGI
considering a proper decomposition.

In our decomposition, MBOGI consists of three layers; MBOGI = OB ◦ LS ◦ IB where
IB = (ib ∥ ib ∥ ib ∥ ib) (resp. OB = (ob ∥ ob ∥ ob ∥ ob)) is the application of the four same
4-bit permutations ib (resp. ob), and LS is a 16-bit permutation. Figure 5 describes the
decomposition.
Additionally, the 16-bit permutation LS satisfies the following conditions.

1. The four input bits of LS in each S-box position go to four distinct S-box positions.

2. Each bit order of the four input bits of LS in each S-box position is invariant on the
four output bits of LS in an S-box position.

We denote LS as the set of LS. It is easy to demonstrate that LS can be derived from
4× 4 Latin squares; therefore, the size |LS| is 576.

7Since GIFT-64 does not have the whitening key, the cipher is cryptographically considered to have 27
rounds.
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SBOGI SBOGI SBOGI SBOGI

SBOGI SBOGI SBOGI SBOGI

LS

IB ib ib ib ib

OB ob ob ob ob

SBOGI

ib

ob

SBOGI

No
B −B

Connections

Figure 5: Our Decomposition of MBOGI

Because of the second condition of LS, the distribution of B and G in each S-box position
is invariant over LS. Thus, finding the pair (ib, ob) that prevents the B-B connections over
MBOGI is simplified into finding the composition ob ◦ ib that gives no B-B connections with
the given SBOGI.

We denote by BP(SBOGI) the set of such pairs (ib, ob) for SBOGI. As shown in [KHSH20],
all BOGI-applicable S-boxes with differential uniformity of 6 and linearity of 8 have
two Bs and two Gs on their input and output bits. Thus, one can easily deduce that
|BP(SBOGI)| = 24× 4 = 96 if SBOGI has a differential uniformity of 6 and a linearity of 8.

Example 3. MGIFT of GIFT can be decomposed into a 16-bit permutation LSGIFT and a
pair of 4-bit identity permutations (i, i) as described in Figure 5. LSGIFT places the l-th
input bit (MSB is the 0-th bit) in the πGIFT(l)-th output bit, where πGIFT is defined as
follows.

l 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
πGIFT(l) 12 1 6 11 8 13 2 7 4 9 14 3 0 5 10 15

Therefore, LSGIFT satisfies the above two conditions. Since SGIFT has the input/output bits
of GGBB/BBGG (c.f., Figure 4), the composition i ◦ i can prevent B-B connections. One
may notice that 96 pairs of 4-bit permutations are included in BP(SGIFT).

Remark 3. Although we focus on the case where IB and OB are the parallel applications of
ib and ob, respectively, IB and OB with distinct four 4-bit permutations may also prevent
the B-B connections. However, the current decomposition can be expected to fit into
bit-slice implementations such as Fixslicing [ANP20].

5.3 BOGI-based Ciphers
In this subsection, we evaluate the number of non-equivalent BOGI-based ciphers in terms
of DC/LC resistance. First, we define BOGI-based ciphers.

Definition 7. A (16·n)-bit BOGI-based cipher, denoted by BOGI-16·n, is a bit permutation-
based AES-like cipher that is parameterized by the state dimension (m = 4)× n and the
word size w = 4. Each component of the AES-like round function is given as follows.

• SubBOGI16·n : The parallel application of a BOGI-applicable S-box SBOGI ∈ BS that
has differential uniformity of 6 and linearity of 8.

• MixBOGI16·n : The parallel application of a 16-bit permutation MBOGI which is derived
from LS ∈ LS and (ib, ob) ∈ BP(SBOGI) as described in Figure 5.

• ShufBOGI16·n : The shuffle layer with σBOGI16·n(j) = n× (j mod 4) +
⌊

j
4
⌋

.

Note that the number of considered SBOGI is 2,654,208, |LS| = 576, and |BP(SBOGI)| = 96
as we mentioned. Therefore, the number of (16 · n)-bit BOGI-based ciphers is about 237.09.



Seonggyeom Kim, Deukjo Hong, Jaechul Sung and Seokhie Hong 23

Reducing Considered S-boxes. We first reduce the considered S-boxes SBOGI ∈ BS by
introducing DDT-equivalence relation. Because DDT-equivalent S-boxes have exactly the
same DDT and extended-LAT (absolute version of LAT) [DH19], we can choose a single
representative in each equivalent class in terms of DC/LC resistance. The number of such
classes is 10,368 according to [KHSH20].

Reduction in |LS|. For any 4-bit permutation p, if LS ∈ LS, then LS′ = (p−1 ∥ p−1 ∥
p−1 ∥ p−1)◦LS◦(p ∥ p ∥ p ∥ p) is also included in LS. This yields OB◦LS◦IB = OB′◦LS′◦IB′
where (IB′, OB′) = ((p−1 ∥ p−1 ∥ p−1 ∥ p−1) ◦ IB, OB ◦ (p ∥ p ∥ p ∥ p)) for any 4-bit
permutation p. Therefore, when all the pairs in BP(SBOGI) are concerned, it suffices to
consider the 24 representatives LSi which are not represented by the other as the above.
The 24 representatives are presented in Appendix B.

Restricting BP(SBOGI). The BOGI-applicability of S-box is invariant up to the permu-
tation equivalence. This gives a reduction in the number of considered combinations
{SBOGI, (ib, ob)} for a given LS ∈ LS.
Lemma 5. If (a, b) ∈ BP(SBOGI) and S′BOGI = a ◦ SBOGI ◦ b, a pair of identities (i, i) ∈
BP(S′BOGI). Moreover, for a given LS ∈ LS, two (16·n)-bit BOGI-based ciphers derived from
{SBOGI, LS, (a, b)} and {S′BOGI, LS, (i, i)} have the same best differential and linear weights
for any rounds.

Proof. See Appendix C.4

According to Lemma 5, it is sufficient to analyze the combinations of {SBOGI, (i, i)} for
a given LS ∈ LS. Among the 10,368 representatives of SBOGI, 1,728 representatives have
(i, i) ∈ BP(SBOGI). As a result, the final considered combinations of {SBOGI, LS, (i, i)} amount
to 1,728× 24× 1 = 41,472.

Further Reduction. The consideration of ShufBOGI16·n can further reduce the consid-
ered combinations. A brief reduction can be derived from the fact that two ciphers
with {SBOGI, LS, (i, i)} and {S−1

BOGI, LS−1, (i, i)} have the same best weights if ShufBOGI16·n is
involutory. ShufBOGI16 and ShufBOGI64 satisfy the property.

Moreover, for some LS ∈ LS, there may exist (a, b) such that two ciphers derived from
{SBOGI, LS, (i, i)} and {a ◦ SBOGI ◦ b, LS, (i, i)} have the same best weights. This equivalence
is briefly given in Appendix C.5. The reduction depends on block size – BOGI-16, -128,
-256 : 25,920 and BOGI-32 : 29,376.

However, we do not apply both reductions when searching for the best trails of BOGI-
based ciphers.

5.4 Best Trail Search on BOGI-based Ciphers
Pruning Conditions. Because all the BOGI-based ciphers are bit permutation-based
AES-like ciphers, the applied pruning conditions are derived from Propositions 4 and 6.
Since all the considered SBOGI have unbalanced differential weights, the impact of PC1 and
PC2 of Propositions 4 and 6 on the differential trail search is more influential.

Permutation Characteristics. Because we restrict BP(SBOGI) as a pair of the identities
(i, i), the 16-bit permutation MBOGI is derived solely from LS. Therefore, for simplicity, we use
the notation LS instead of {LS, (i, i)} to indicate MBOGI. We classify the 24 representatives
of LS depending on D obtained from the connected cyclic subgraphs of Algorithm 2. Since
D is affected by the shuffle layer ShufBOGI16·n, the classifications depend on each version of
BOGI-16 · n.

64-bit BOGI-based ciphers have the reduction in |Atab| is up to 15.77 factors.
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BOGI-16 · n i of LSi |Atab| |D| Reduce? |OptAtab| |Atab|/|OptAtab|

BOGI-64

6, 7, 10, 11, 12, 13,
15, 16, 17, 19, 20, 21

65,535

1 ✗ 65,535 1

0, 5, 9, 14, 18, 22 16 ✓ 4,335 15.12
1, 4 16 ✓ 4,155 15.77

2, GIFT 16 ✓ 4,155 15.77
3, 8 16 ✓ 4,155 15.77

Although GIFT-128 has no reduction in |Atab|, 128-bit BOGI-based ciphers have a
reduction of up to 32 factors.

BOGI-16 · n i of LSi |Atab| |D| Reduce? |OptAtab| |Atab|/|OptAtab|

BOGI-128

1, 2, 4, 6, 7, 12, 15,
16, 19, 20, 21, GIFT

232 − 1

1 ✗ 232 − 1 1

3, 8 2 ✓ ≈ 231.00 2
11, 13 4 ✓ ≈ 230.00 4
10, 17 8 ✓ ≈ 229.00 8

0, 5, 9, 14, 18, 22 32 ✓ ≈ 227.00 32

The permutation characteristics of BOGI-16, BOGI-32, and BOGI-256 can be found in
Suppl. F.

Considering the Decomposition of P-layer. At line 6 and 20 of Algorithm 9, Z =
M∗(T[r].Y⟨k⟩) are computed whenever PC2 is checked. These duplicate evaluations can be
removed by storing Z in T[r].Z⟨k⟩. Moreover, since M∗ is a linear function, T[r].Z⟨k⟩ can
be gradually obtained by XORing it with M∗(0 ∥ T[r].Y[c] ∥ 0), which is similar to the use
of T-table in AES implementations. Another advantage of using T[r].Z is to simplify the
computation Perm∗(T[r].Y) for the next input state T[r + 1].X into the simple word-wise
permutation Shuf(T[r].Z).

We adjust such approaches into our search program for BOGI-based ciphers. The
dedicated implementation requires standard memory loads and XOR instructions to
evaluate MBOGI(0 ∥ T[r].Y[c] ∥ 0), which is more efficient than SIMD instructions for
PermBOGI16·n in [JZD20]. It is noted that the final implementation for the full-round best
differential and linear trail searches takes 0.390 and 9.755 s (resp. 89 and 451.3 h) on
GIFT-64 (resp. GIFT-128), which is detailed in Suppl. E.

5.5 Optimal DC/LC Resistance of BOGI-based Ciphers
This subsection investigates the DC/LC resistance of BOGI-based ciphers. The considered
block sizes include 16-, 32-, 64-, 128-, and 256-bit. Table 6 summarizes the range of analysis
rounds and the elapsed time on each version of BOGI-based ciphers. Among these versions,
we demonstrate the resistance of 16-, 32-, 64-, and 128-bit versions. Table 2 summarizes
the analysis results, whereas the detailed analysis results can be found in Suppl. G.

Table 6: Summary of the Best Trail Searches on BOGI-Based Ciphers

BOGI-16 · n Combinations Trail Type Rounds Min Elapsed Avg Elapsed Max Elapsed

BOGI-16

41,472

Differential 2 ∼ 15 0.001 s 0.016 s 1.261 s
Linear <0.001 s 0.003 s 0.11 s

BOGI-32
Differential 2 ∼ 15 0.001 s 0.072 s 4.622 s
Linear 0.001 s 0.03 s 1.229 s

BOGI-64
Differential 2 ∼ 13 0.004 s 29.508 s 0.5 h
Linear 0.002 s 40.618 s 1.3 h

BOGI-128
Differential 2 ∼ 11 0.011 s 1.5 h 450.9 h
Linear 0.004 s 0.9 h 156.4 h

BOGI-256 3,456* Differential 2 ∼ 9 13.842 s 5.4 h 93.5 h
Linear 2 ∼ 11 0.82 s 289.452 s 5.7 h

*For 256-bit versions, we consider BOGI-based ciphers with LS that supports |D| = 32. The considered
combinations amount to 1,728× 2 = 3,456 out of 41,472.

16-bit BOGI-based ciphers require at least 5 rounds for both the best differential and
linear weights to become larger than or equal to 16. The combination of {SGIFT, LSGIFT} with
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ShufBOGI16, denoted by GIFT-16, has the 5-round differential and linear weights as (15.8, 14),
whereas the 5-round optimal resistance (17, 16) can be obtained by 240 combinations.

32-bit BOGI-based ciphers require at least 8 rounds for both the best differential and
linear weights to become larger than or equal to 32. The combination of {SGIFT, LSGIFT}
with ShufBOGI32, denoted by GIFT-32, has the 8-round best differential and linear weights
as (28.8, 24), whereas the 8-round optimal resistance (33, 32) can be obtained by 24
combinations.

64-bit BOGI-based ciphers require at least 12 rounds for both the best differential
and linear weights to become larger than or equal to 64. The 12-round optimal resistance
(68, 64) can be obtained by 96 combinations. Among them, two examples are given as
follows:

1. {SBOGI = (3, 10, 4, 7, 12, 1, 9, 14, 6, 13, 11, 2, 0, 15, 5, 8), LS6 }
2. {SBOGI = (5, 2, 10, 12, 9, 7, 4, 11, 3, 13, 0, 6, 14, 1, 15, 8), LS12}

Considering that GIFT-64 has the 12-round differential and linear weights as (58, 62) and
requires 14 rounds to prevent efficient trails for DC/LC, these combinations outperform
GIFT-64.

GIFT-128 requires 22 rounds to prevent efficient trails for DC/LC. However, we evaluate
the best weights of 128-bit BOGI-based ciphers up to 11 rounds instead of 22 rounds
because of the increased analysis time. The 11-round optimal resistance (72, 72) can be
obtained using 8 combinations:

1. {SBOGI = (2, 6, 11, 8, 15, 9, 4, 3, 1, 12, 13, 7, 10, 5, 0, 14), LS0}
2. {SBOGI = (1, 7, 9, 4, 2, 14, 12, 11, 15, 8, 6, 3, 5, 0, 10, 13), LS0}
3. {SBOGI = (8, 15, 4, 10, 9, 6, 3, 5, 14, 1, 7, 0, 2, 12, 13, 11), LS0}
4. {SBOGI = (4, 8, 15, 5, 13, 11, 2, 0, 6, 3, 9, 10, 1, 14, 12, 7), LS0}
5. {SBOGI = (11, 0, 5, 10, 2, 13, 12, 1, 9, 4, 6, 15, 14, 7, 3, 8), LS0}
6. {SBOGI = (13, 9, 4, 7, 10, 6, 3, 12, 0, 2, 11, 14, 5, 15, 8, 1), LS0}
7. {SBOGI = (14, 8, 6, 11, 0, 7, 1, 13, 5, 3, 9, 12, 10, 4, 15, 2), LS0}
8. {SBOGI = (7, 10, 0, 5, 6, 9, 8, 15, 1, 12, 14, 2, 13, 3, 11, 4), LS0}

Based on the above promising combinations, we further analyze the best weights up to
22 rounds. The result shows that all the combinations require 19 rounds for their best
weights to be (134, 132). This implies that they require 3 rounds fewer than GIFT-128 to
prevent efficient trails for DC/LC.

5.6 Considering the Implementation Cost of Round Function
Because replacing MGIFT (= LSGIFT) with other variants does not present an additional
implementation cost, we ascertain whether better combinations {SGIFT, LSi} exist by only
replacing the existing bit permutation LSGIFT in GIFT. The evaluation shows that such
replacements allow for GIFT-64 and -128 to prevent efficient differential and linear trails
in at most 1 and 2 rounds fewer, respectively. All the optimal replacements out of 24 are
as follows.

• SGIFT = (1, 10, 4, 12, 6, 15, 3, 9, 2, 13, 11, 7, 5, 0, 8, 14)
• GIFT-64 : the 13-round, 14-round best weights as (62, 68), (64, 74)

– {SGIFT, LS12}, {SGIFT, LS19} : the 13-round best weights as (65.4, 64)
– {SGIFT, LS16} : the 13-round best weights as (69.4, 64)
– {SGIFT, LS7}, {SGIFT, LS20} : the 13-round best weights as (70, 64)
– {SGIFT, LS13} : the 13-round best weights as (69.4, 68)

• GIFT-1288 : the 21-round, 22-round best weights as (126.4, 136), (132.4, 148)
– {SGIFT, LS15} : the 20-round best weights as (130.8, 132)
– {SGIFT, LS20} : the 20-round best weights as (136.4, 128)

8{SGIFT, LS6} prevents efficient differential trails with 20 rounds since it has the 20-round best differential
weight as 133.4. However, we could not obtain the minimum required rounds for LC resistance. Instead,
we obtained the 18-round best linear weight as 122.
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– {SGIFT, LS18} : the 20-round best weights as (138.8, 128)
– {SGIFT, LS4} : the 20-round best weights as (131.4, 136)
– {SGIFT, LS5} : the 20-round best weights as (129, 140)
– {SGIFT, LS22} : the 20-round best weights as (132, 138)
– {SGIFT, LS16} : the 20-round best weights as (133.8, 138)

We also consider the replacement of S-box, as 384 S-boxes out of the 1,728 S-boxes have
the same software/hardware implementation costs as those of SGIFT [KHSH20]. However,
these further replacements do not result in an improvement to GIFT-64 compared with
only replacing MGIFT (details are given in Suppl. H).

6 Conclusion
In this study, we attempted to optimize Matsui’s search algorithm for AES-like ciphers
by strengthening the pruning conditions and employing permutation characteristics. The
main idea of the former is to take advantage of the structure of AES-like ciphers, whereas
the latter stems from the fact that two trails that can be derived from each other via a
permutation characteristic have the same weight. Moreover, we applied our algorithm
to investigate the optimal DC/LC resistance that BOGI-based ciphers can achieve, and
suggested combinations of S-box and bit permutation that are superior to GIFT.

Software and Experimental Result. Our codes and more detailed results can be found
in https://github.com/jeffgyeom/Best-Trail-Search-on-AES-Like-Ciphers. The
codes could be easily adapted to other ciphers or modified for clustering. Moreover, the
obtained best trails of BOGI-based ciphers will be helpful for future design considerations.
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A Algorithms

Algorithm 3: The sub-procedure version of MiddleRound() in Algorithm 1
1 Procedure MiddleRound(r)
2 T[r].X← Perm∗(T[r − 1].Y)
3 MiddleSubRound(r, 0)

4 Procedure MiddleSubRound(r, c)

5 for each Y sorted in ascending order according to W
(
T[r].X[c] S−→ Y

)
do

6 T[r].Y[c]← Y

7 T[r].W[c]←W
(
T[r].X[c] S−→ T[r].Y[c]

)
8 if

∑r−1
i=1 T[i].W +

∑c

j=0 T[r].W[j] + B[R− r] ≤ Bset then
9 if c = mn− 1 then

10 if r + 1 = R then
11 LastRound()
12 else
13 MiddleRound(r + 1)
14 else
15 MiddleSubRound(r, c + 1)
16 else
17 break

Algorithm 4: The optimized version of FirstRound() with Atab

1 W ← ∆S or ΓS

2 Atab←
{
|A|-combinations of the word indices {0, ..., mn− 1}

for 1 ≤ |A| < mn

}
3 Sort A of Atab in ascending order according to |A|
4 Procedure FirstRound()
5 for A in Atab do
6 WPC1 ←W × |A|
7 if WPC1 + B[R− 1] ≤ Bset then
8 T[1].X← 0, T[1].Y← 0, T[1].W← 0
9 cinit ← minA

10 FirstSubRound(cinit, A)
11 else
12 break

13 Procedure FirstSubRound(c, A)
14 Ac<j<mn ← { c < j < mn : j ∈ A}
15 Wrem ←W × |Ac<j<mn|

16 for each nonzero Y sorted in ascending order according to minX W
(

X
S−→ Y

)
do

17 T[1].X[c]← arg minX W
(

X
S−→ Y

)
18 T[1].Y[c]← Y , T[1].W[c]←W

(
X

S−→ Y
)

19 WPC1 ←
∑c

j=0 T[1].W[j] + Wrem

20 if WPC1 + B[R− 1] ≤ Bset then
21 if |Ac<j<mn| = 0 then
22 if R = 2 then
23 LastRound()
24 else
25 MiddleRound(2)
26 else
27 cnxt ← minAc<j<mn

28 FirstSubRound(cnxt, A)
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Algorithm 5: Our Search Algorithm

Input: R ≥ 2 and B[1, ..., R− 1]
Output: T and B[R] = W(T)

1 Atab←
{
|A|-combinations of the word indices
{0, ..., mn− 1} for 1 ≤ |A| < mn

}
2 Reduce Atab by permutation characteristics
3 Sort A of Atab in ascending order according to |A|
4 W ← ∆S or ΓS
5 W ← ∆S or ΓS

6 Perm∗ ← Perm or Perm−⊤

7 Binit, Bset, T, Tout

8 Found ← FALSE

9 EstimateBoundAndStart()

10 Procedure EstimateBoundAndStart()
11 Binit ← B[R− 1] + W
12 while Found is FALSE do
13 Bset ← Binit

14 FirstRound()
15 Binit ← Binit + W

16 return B[R], Tout

17 Procedure BoundCheck(r, W)
18 Wck ← W + B[R− r]
19 if Found is TRUE then
20 if Wck ≥ Bset then
21 return EXCEED
22 else
23 return UNDERBOUND
24 else
25 if Wck > Bset then
26 return EXCEED
27 else
28 return UNDERBOUND

// FillUndetermined() and NextRoundLowerBound()
are presented in Algorithm 7 and 9,
respectively.

// FirstSubRound(), MiddleSubRound(), and
LastSubRound() are presented in Algorithm 6.

29 Procedure FirstRound()
30 for A in Atab do
31 WPC1 ← |A| ×W
32 if BoundCheck(1, WPC1) returns EXCEED then
33 break
34 Wnxt ← NextRoundLowerBound(1, 0, NULL, A)
35 WPC2 ← WPC1 + Wnxt

36 if BoundCheck(2, WPC2) returns EXCEED then
37 continue
38 T[1].X← 0
39 T[1].Y← 0
40 T[1].W← 0
41 Wcum ← 0
42 cinit ← minA
43 FirstSubRound(cinit, A, Wcum)

44 Procedure MiddleRound(r, Wcum)
45 T[r].X← Perm∗

(
T[r − 1].Y

)
46 A ← {j : T[r].X[j] ̸= 0}
47 WPC1 ← Wcum+ FillUndetermined(c, T[r].X, A)
48 if BoundCheck(r, WPC1) returns EXCEED then
49 return
50 Wnxt ← NextRoundLowerBound(r, 0, NULL, A)
51 WPC2 ← WPC1 + Wnxt

52 if BoundCheck(r + 1, WPC2) returns EXCEED then
53 return
54 T[r].Y← 0
55 T[r].W← 0
56 cinit ← minA
57 MiddleSubRound(r, cinit, A, Wcum)

58 Procedure LastRound(Wcum)
59 T[R].X← Perm∗

(
T[R− 1].Y

)
60 A ← {j : T[R].X[j] ̸= 0}
61 WPC1 ← Wcum+ FillUndetermined(c, T[r].X, A)
62 if BoundCheck(R, WPC1) returns EXCEED then
63 return
64 T[R].Y← 0
65 T[R].W← 0
66 cinit ← minA
67 LastSubRound(cinit, A, Wcum)
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Algorithm 6: FirstSubRound(), MiddleSubRound(), and LastSubRound()

1 Procedure FirstSubRound(c, A, Wcum)
2 Ac<j<mn ← { c < j < mn : j ∈ A}
3 Wrem ← Wcum + |Ac<j<mn| ×W

4 if |Ac<j<mn| = 0 then
5 cnxt ← mn
6 else
7 cnxt ← minAc<j<mn

8 for each nonzero Y sorted in ascending order

according to minX W
(

X
S−→ Y

)
do

9 X ← arg minX W
(

X
S−→ Y

)
10 W ←W

(
X

S−→ Y
)

11 WPC1 ← Wrem + W
12 if BoundCheck(1, WPC1) returns EXCEED then
13 break
14 T[1].X[c]← X
15 T[1].Y[c]← Y
16 T[1].W[c]← W

17 Wnxt ← NextRoundLowerBound(1, cnxt, T[1].Y, A)
18 WPC2 ← WPC1 + Wnxt

19 if BoundCheck(2, WPC2) returns EXCEED then
20 continue
21 Wdet ← Wcum + W
22 if cnxt = mn then
23 if R = 2 then
24 LastRound(Wdet)
25 else
26 MiddleRound(2, Wdet)
27 else
28 FirstSubRound(cnxt, A, Wdet)

29 Procedure MiddleSubRound(r, c, A, Wcum)
30 Ac<j<mn ← { c < j < mn : j ∈ A}
31 Wrem ← Wcum+ FillUndetermined(c, T[r].X, A)
32 X ← T[r].X[c]
33 if |Ac<j<mn| = 0 then
34 cnxt ← mn
35 else
36 cnxt ← minAc<j<mn

37 for each nonzero Y sorted in ascending order

according to W
(

X
S−→ Y

)
do

38 W ←W
(

X
S−→ Y

)
39 WPC1 ← Wrem + W
40 if BoundCheck(r, WPC1) returns EXCEED then
41 break
42 T[r].Y[c]← Y
43 T[r].W[c]← W

44 Wnxt ← NextRoundLowerBound(r, cnxt, T[r].Y, A)
45 WPC2 ← WPC1 + Wnxt

46 if BoundCheck(r + 1, WPC2) returns EXCEED then
47 continue
48 Wdet ← Wcum + W
49 if cnxt = mn then
50 if r = R− 1 then
51 LastRound(Wdet)
52 else
53 MiddleRound(r + 1, Wdet)
54 else
55 MiddleSubRound(r, cnxt, A, Wdet)
56 return

57 Procedure LastSubRound(c, A, Wcum)
58 Ac<j<mn ← { c < j < mn : j ∈ A}
59 X ← T[R].X[c]

60 Y ← arg minY W
(

X
S−→ Y

)
61 W ←W

(
X

S−→ Y
)

62 Wdet ← Wcum + W
63 WPC1 ← Wdet+ FillUndetermined(c, T[r].X, A)
64 if BoundCheck(R, WPC1) returns EXCEED then
65 return
66 T[R].Y[c]← Y
67 T[R].W[c]← W

68 if |Ac<j<mn| = 0 then
69 Found ← TRUE
70 Bset ← Wdet

71 B[R]← Bset

72 Tout ← T
73 else
74 cnxt ← minAc<j<mn

75 LastSubRound(cnxt, A, Wdet)
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Algorithm 7: FillUndetermined(c,T[r].X,A) for the Previous and Our Methods

// PC1 based on Proposition 2
1 Procedure FillUndetermined(c, T[r].X,A)
2 Ac<j<mn ← { c < j < mn : j ∈ A}
3 return |Ac<j<mn| ×W

// PC1 based on Proposition 4
4 Procedure FillUndetermined(c, T[r].X,A)
5 Wu ← 0
6 for j ← c + 1 to mn− 1 do
7 Wu ← Wu + minY W(T[r].X[j] S−→ Y )
8 return Wu

Algorithm 8: NextRoundLowerBound(r, ndet,T[r].Y,A) for the Previous Method

1 c← ndet − 1
2 if ndet = 0 then
3 return 0

// No PC2 is applied
4 if Perm∗ is Not a Bit Permutation then
5 return 0

// PC2 based on Proposition 3
6 if Perm∗ is a Bit Permutation then
7 return ACT

(
Perm∗(T[r].Y[0, ..., c] ∥ 0)

)
×W

Algorithm 9: NextRoundLowerBound(r, ndet,T[r].Y,A) for Our Method

1 c← ndet − 1
2 nM ← ⌊(c + 1)/m⌋
3 W1 ← 0, W2 ← 0, W3 ← 0
4 if nM ̸= 0 then
5 for k ← 0 to nM − 1 do
6 Z ← M∗

(
T[r].Y⟨k⟩

)
7 for j ← 0 to m− 1 do
8 W1 ← W1 + minY W

(
Z[j] S−→ Y

)
9 if nM = n then

10 return W1

// PC2 based on Proposition 5
11 if Perm∗ is Not a Bit Permutation then
12 for k ← nM to n− 1 do
13 x← |{ mk ≤ j < m(k + 1) : j ∈ A}|
14 if x ̸= 0 then
15 W2 ← W2 + max(1,B∗ − x)×W

16 return W1 + W2

// PC2 based on Proposition 6
17 if Perm∗ is a Bit Permutation then
18 mM ← c + 1−mnM

19 if mM ̸= 0 then
20 Z ← M∗

(
T[r].Y⟨nM⟩[0, ..., mM − 1] ∥ 0

)
21 W2 ← ACT(Z)×W

22 if nM + 1 ̸= n then
23 for k ← nM + 1 to n− 1 do
24 if T[r].Y⟨k⟩ ̸= 0 then
25 W3 ← W3 + W

26 else
27 for k ← nM to n− 1 do
28 if T[r].Y⟨k⟩ ̸= 0 then
29 W3 ← W3 + W

30 return W1 + W2 + W3

B Representative Latin Squares for BOGI-based Ciphers
The following table presents the 24 representative 16-bit permutations LSi ∈ LS. LSi place
the l-th input bit (MSB is the 0-th bit) in the πi(l)-th output bit.

l 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
LS0 π0(l) 12 9 6 3 8 13 2 7 4 1 14 11 0 5 10 15
LS1 π1(l) 8 13 6 3 12 9 2 7 4 1 14 11 0 5 10 15
LS2 π2(l) 4 9 14 3 8 13 2 7 12 1 6 11 0 5 10 15
LS3 π3(l) 12 5 10 3 8 13 2 7 4 1 14 11 0 9 6 15
LS4 π4(l) 12 9 6 3 8 13 2 7 4 1 10 15 0 5 14 11
LS5 π5(l) 8 13 6 3 12 9 2 7 4 1 10 15 0 5 14 11
LS6 π6(l) 4 13 10 3 12 9 2 7 8 1 6 15 0 5 14 11
LS7 π7(l) 8 5 14 3 12 9 2 7 4 1 10 15 0 13 6 11
LS8 π8(l) 12 9 6 3 4 13 2 11 8 1 14 7 0 5 10 15
LS9 π9(l) 12 5 10 3 4 13 2 11 8 1 14 7 0 9 6 15
LS10 π10(l) 4 13 10 3 12 5 2 11 8 1 14 7 0 9 6 15
LS11 π11(l) 8 5 14 3 4 13 2 11 12 1 10 7 0 9 6 15
LS12 π12(l) 8 13 6 3 4 9 2 15 12 1 10 7 0 5 14 11
LS13 π13(l) 12 5 10 3 4 9 2 15 8 1 14 7 0 13 6 11
LS14 π14(l) 8 5 14 3 4 9 2 15 12 1 10 7 0 13 6 11
LS15 π15(l) 4 9 14 3 8 5 2 15 12 1 10 7 0 13 6 11
LS16 π16(l) 8 13 6 3 12 5 2 11 4 1 10 15 0 9 14 7
LS17 π17(l) 12 5 10 3 4 13 2 11 8 1 6 15 0 9 14 7
LS18 π18(l) 4 13 10 3 12 5 2 11 8 1 6 15 0 9 14 7
LS19 π19(l) 4 9 14 3 12 5 2 11 8 1 6 15 0 13 10 7
LS20 π20(l) 4 13 10 3 8 5 2 15 12 1 6 11 0 9 14 7
LS21 π21(l) 8 5 14 3 4 9 2 15 12 1 6 11 0 13 10 7
LS22 π22(l) 4 9 14 3 8 5 2 15 12 1 6 11 0 13 10 7
LSGIFT πGIFT(l) 12 1 6 11 8 13 2 7 4 9 14 3 0 5 10 15
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C Proof
C.1 Proof of Proposition 3
It is sufficient to show that ACT

(
Perm(T[r].Y[0, ..., c] ∥ 0)

)
×W ≤ T[r + 1].W. According

to Lemma 1, it is satisfied that

ACT(Perm(T[r].Y[0, ..., c] ∥ 0))×W ≤ ACT(Perm(T[r].Y))×W

= ACT(T[r + 1].X)×W

≤ T[r + 1].W.

C.2 Proof of Lemma 3
Since Mix∗ consists of n independent M∗s, it is satisfied that T[r].Z⟨k⟩ = M∗

(
T[r].Y⟨k⟩

)
for 0 ≤ k < nM. This yields that

mnM−1∑
j=0

T[r + 1].W[σ(j)] ≥
mnM−1∑

j=0
min

Y
W

(
T[r + 1].X[σ(j)] S−→ Y

)
=

mnM−1∑
j=0

min
Y

W
(
T[r].Z[j] S−→ Y

)
=

nM−1∑
k=0

m−1∑
j=0

min
Y

W
(
(T[r].Z⟨k⟩)[j] S−→ Y

)
=

nM−1∑
k=0

m−1∑
j=0

min
Y

W
(
M∗

(
T[r].Y⟨k⟩

)
[j] S−→ Y

)
.

C.3 Proof of Proposition 7
It is sufficient to show that T′ is also a non-trivial differential trail because if then,

W(T′) =
R∑

i=1

mn−1∑
j=0

W(T′[i].X[j] S−→ T′[i].Y[j])

=
R∑

i=1

mn−1∑
j=0

W(T[i].X[d(i)(j)] S−→ T[i].Y[d(i)(j)]) = W(T),

where d(i) is the corresponding shuffle function of D(i). To do so, we will show that
T′[i].X′ = Perm (T′[i].Y) for 1 ≤ i ≤ R. Since T is non-trivial and D(i) Perm===⇒ D(i+1), it is
satisfied that

T′[i].X′ = D(i+1) (T[i].X′) = D(i+1) (Perm (T[i].Y))
= Perm(D(i) (T[i].Y)) = Perm (T′[i].Y) .

C.4 Proof of Lemma 5
Since (a, b) ∈ BP(SBOGI) and S′BOGI ◦ i◦ i◦S′BOGI = a◦(SBOGI ◦b◦a◦SBOGI)◦b, (i, i) ∈ BP(S′BOGI).

Next, we will show that two (16·n)-bit BOGI-based ciphers derived from {SBOGI, LS, (a, b)}
and {S′BOGI, LS, (i, i)}, denoted by BE and BE′, are permutation equivalent up to round key
additions for any rounds. Let B = (b ∥ · · · ∥ b︸ ︷︷ ︸

4n times

), A = (a ∥ · · · ∥ a︸ ︷︷ ︸
4n times

), and LS× = (LS ∥ · · · ∥ LS︸ ︷︷ ︸
n times

).



Seonggyeom Kim, Deukjo Hong, Jaechul Sung and Seokhie Hong 35

For simplicity, we denote ShufBOGI16·n by Shuf without the subscript, and denote by Sub and
Sub′ the S-layers consisting of SBOGI and S′BOGI, respectively. Note that Sub′ = A ◦ Sub ◦ B,
and A and B are commutative with Shuf.

If BE and BE′ have a single round, it is satisfied that

BE′

= ⊕k1 ◦ Shuf ◦ LS× ◦ Sub′ ◦ ⊕k0

= ⊕k1 ◦ Shuf ◦ B−1 ◦ B ◦ LS× ◦ A ◦ A−1 ◦ Sub′ ◦ ⊕k0

= ⊕k1 ◦ Shuf ◦ B−1 ◦ B ◦ LS× ◦ A ◦ A−1 ◦ A ◦ Sub ◦ B ◦ ⊕k0

= ⊕k1 ◦ Shuf ◦ B−1 ◦ B ◦ LS× ◦ A ◦ Sub ◦ B ◦ ⊕k0

= ⊕k1 ◦ B−1 ◦ Shuf ◦ B ◦ LS× ◦ A ◦ Sub ◦ B ◦ ⊕k0

= B−1 ◦ ⊕B(k1) ◦ Shuf ◦ B ◦ LS× ◦ A ◦ Sub ◦ ⊕B(k0) ◦ B
= B−1 ◦ BE ◦ B

up to round key additions.
Assume that if BE(t) and BE′(t) have t rounds, BE′(t) = B−1 ◦ BE(t) ◦ B up to round

key additions. If BE(t+1) and BE′(t+1) have t + 1 rounds, it is satisfied that

BE′(t+1)

= ⊕kt+1 ◦ Shuf ◦ LS× ◦ Sub′ ◦ {⊕ki
◦ Shuf ◦ LS ◦ Sub′}t

i=1 ◦ ⊕k0

= ⊕kt+1 ◦ Shuf ◦ B−1 ◦ B ◦ LS× ◦ A ◦ A−1 ◦ Sub′ ◦ B−1 ◦ BE(t) ◦ B
= ⊕kt+1 ◦ Shuf ◦ B−1 ◦ B ◦ LS× ◦ A ◦ A−1 ◦ A ◦ Sub ◦ B ◦ B−1 ◦ BE(t) ◦ B
= ⊕kt+1 ◦ Shuf ◦ B−1 ◦ B ◦ LS× ◦ A ◦ Sub ◦ BE(t) ◦ B
= ⊕kt+1 ◦ B−1 ◦ Shuf ◦ B ◦ LS× ◦ A ◦ Sub ◦ BE(t) ◦ B
= B−1 ◦ ⊕B(kt+1) ◦ Shuf ◦ B ◦ LS× ◦ A ◦ Sub ◦ BE(t) ◦ B

= B−1 ◦ BE(t+1) ◦ B

up to round key additions. Therefore, by mathematical induction, it is true that BE and
BE′ are permutation equivalent up to round key additions for any rounds. This implies
that BE and BE′ have the same best weights for any rounds.

C.5 Consideration of ShufBOGI16·n

This subsection shows that for some LS ∈ LS, there may exist (a, b) such that two ciphers
derived from {SBOGI, LS, (i, i)} and {b ◦ SBOGI ◦ a, LS, (i, i)} have the same best weights. Let
B = (b ∥ ... ∥ b︸ ︷︷ ︸

4n times

), A = (a ∥ ... ∥ a︸ ︷︷ ︸
4n times

), and LS× = (LS ∥ ... ∥ LS︸ ︷︷ ︸
n times

). The equivalence is obtained

by checking if

P(t) = {B ◦ ShufBOGI16·n ◦ LS× ◦ A}t ◦ {(LS×)−1 ◦ Shuf−1
BOGI16·n}t

is a word-wise permutation for any t ≥ 1. The proof can be obtained from the fact that
P(t) are commutative with SubBOGI16·n.
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>>>>>> Supplementary Material <<<<<<

D Analysis Results and Performance Comparisons
D.1 Experimental Environment and Notations
All the experiments were conducted on a system with Intel® Xeon® Gold 6230 CPU @
2.10 GHz, and we used one core for each case. The following notations are used through
result tables.

B[R] R-round best weight.
Bg

init
Initial bound weight Binit for the first trial.

Bf
init

Initial bound weight Binit updated for the last trial. It is always satisfied that Bg
init

≤
B[R] ≤ Bf

init
.

Mprev Elapsed time the existing method of [BBF15] requires from the initial bound Bg
init

.
Mpc Elapsed time with our strengthened pruning conditions.
Mour Elapsed time with our strengthened pruning conditions and permutation characteristics

applied.
Mprev

Mpc
Improvement rate between Mprev and Mpc.

Mpc
Mour

Improvement rate between Mpc and Mour.
Mprev
Mour

Final improvement rate.

D.2 AES
•Best Differential Weights

R B[R] Bg
init

Bf
init

Mprev Mpc Mour
Mprev

Mpc

Mpc
Mour

Mprev
Mour

1 6.0
2 30.0 12.0 33.0 1.0 h <0.001 s <0.001 s ∞ ∞ ∞
3 54.0 36.0 57.0 - 258.654 s 17.452 s - 14.82 -

•Best Linear Weights
R B[R] Bg

init
Bf

init
Mprev Mpc Mour

Mprev
Mpc

Mpc
Mour

Mprev
Mour

1 6.0
2 30.0 12.0 36.0 1.4 h <0.001 s <0.001 s ∞ ∞ ∞
3 54.0 36.0 60.0 - 333.918 s 21.008 s - 15.89 -

D.3 LED
•Best Differential Weights

R B[R] Bg
init

Bf
init

Mprev Mpc Mour
Mprev

Mpc

Mpc
Mour

Mprev
Mour

1 2.0
2 10.0 4.0 10.0 0.402 s <0.001 s <0.001 s ∞ ∞ ∞
3 18.0 12.0 18.0 6.991 s 0.033 s 0.008 s 210.58 4.00 842.34

•Best Linear Weights
R B[R] Bg

init
Bf

init
Mprev Mpc Mour

Mprev
Mpc

Mpc
Mour

Mprev
Mour

1 2.0
2 10.0 4.0 12.0 0.704 s <0.001 s <0.001 s ∞ ∞ ∞
3 18.0 12.0 20.0 23.488 s 0.051 s 0.013 s 463.27 4.02 1864.10
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D.4 MIDORI-64
•Best Differential Weights

R B[R] Bg
init

Bf
init

Mprev Mpc Mour
Mprev

Mpc

Mpc
Mour

Mprev
Mour

1 2.0
2 8.0 4.0 10.0 0.011 s <0.001 s <0.001 s ∞ ∞ ∞
3 14.0 10.0 16.0 0.524 s 0.004 s <0.001 s 131.12 ∞ ∞
4 32.0 16.0 34.0 - 1.1 h 455.930 s - 8.42 -
5 46.0 34.0 46.0 - 3.2 h 607.661 s - 18.97 -
6 60.0 48.0 60.0 - 73.8 h 6.9 h - 10.68 -
7 70.0 62.0 71.0 - 147.7 h 16.7 h - 8.83 -
8 76.0 72.0 78.0 - 1.8 h 686.880 s - 9.56 -
9 82.0 78.0 84.0 - 4.634 s 4.459 s - 1.04 -

10 100.0 84.0 102.0 - 53.6 h 5.9 h - 9.07 -
11 114.0 102.0 114.0 - - 138.4 h - - -
12 124.0 116.0 125.0 - - 42.0 h - - -

•Best Linear Weights
R B[R] Bg

init
Bf

init
Mprev Mpc Mour

Mprev
Mpc

Mpc
Mour

Mprev
Mour

1 2.0
2 8.0 4.0 8.0 0.005 s <0.001 s <0.001 s ∞ ∞ ∞
3 14.0 10.0 14.0 0.079 s 0.002 s <0.001 s 32.79 ∞ ∞
4 32.0 16.0 32.0 - 0.5 h 252.591 s - 7.16 -
5 46.0 34.0 46.0 - 2.8 h 664.165 s - 15.19 -
6 60.0 48.0 60.0 - 66.7 h 6.9 h - 9.72 -
7 70.0 62.0 70.0 - 47.0 h 8.7 h - 5.42 -
8 76.0 72.0 76.0 - 0.4 h 169.766 s - 8.96 -
9 82.0 78.0 82.0 - 2.733 s 2.686 s - 1.02 -

10 100.0 84.0 100.0 - 3.3 h 0.4 h - 7.50 -
11 114.0 102.0 114.0 - 255.1 h 14.0 h - 18.22 -
12 124.0 116.0 124.0 - 1.2 h 377.420 s - 11.32 -
13 134.0 126.0 134.0 - - 41.8 h - - -
14 144.0 136.0 144.0 - - 1.6 h - - -
15 150.0 146.0 150.0 - - 2.825 s - - -
16 168.0 152.0 168.0 - - 0.5 h - - -

D.5 CRAFT
•Best Differential Weights

R B[R] Bg
init

Bf
init

Mprev Mpc Mour
Mprev

Mpc

Mpc
Mour

Mprev
Mour

1 2.0
2 4.0 4.0 4.0 <0.001 s <0.001 s <0.001 s ∞ ∞ ∞
3 8.0 6.0 9.0 <0.001 s <0.001 s <0.001 s ∞ ∞ ∞
4 12.0 10.0 13.0 0.007 s 0.002 s <0.001 s 3.84 ∞ ∞
5 20.0 14.0 20.0 0.855 s 0.217 s 0.046 s 3.95 4.70 18.55
6 28.0 22.0 28.0 140.953 s 16.156 s 4.005 s 8.72 4.03 35.20
7 40.0 30.0 42.0 235.3 h 4.6 h 1.4 h 50.98 3.30 168.20
8 52.0 42.0 54.0 - - 455.5 h - - -

•Best Linear Weights
R B[R] Bg

init
Bf

init
Mprev Mpc Mour

Mprev
Mpc

Mpc
Mour

Mprev
Mour

1 2.0
2 4.0 4.0 4.0 <0.001 s <0.001 s <0.001 s ∞ ∞ ∞
3 8.0 6.0 10.0 <0.001 s <0.001 s <0.001 s ∞ ∞ ∞
4 12.0 10.0 14.0 0.015 s 0.004 s 0.002 s 3.53 2.53 8.94
5 20.0 14.0 22.0 2.528 s 0.388 s 0.104 s 6.51 3.73 24.28
6 28.0 22.0 30.0 724.806 s 91.097 s 29.274 s 7.96 3.11 24.76
7 40.0 30.0 42.0 171.1 h 3.3 h 3.1 h 52.09 1.04 54.33
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D.6 SKINNY-64
•Best Differential Weights

R B[R] Bg
init

Bf
init

Mprev Mpc Mour
Mprev

Mpc

Mpc
Mour

Mprev
Mour

1 2.0
2 4.0 4.0 4.0 <0.001 s <0.001 s <0.001 s ∞ ∞ ∞
3 10.0 6.0 12.0 0.011 s 0.003 s <0.001 s 4.24 ∞ ∞
4 16.0 12.0 18.0 0.249 s 0.039 s 0.010 s 6.46 3.86 24.95
5 24.0 18.0 24.0 3.127 s 0.719 s 0.165 s 4.35 4.36 18.96
6 32.0 26.0 32.0 288.315 s 10.708 s 1.963 s 26.93 5.45 146.86
7 52.0 34.0 52.0 - 210.2 h 27.6 h - 7.62 -

•Best Linear Weights
R B[R] Bg

init
Bf

init
Mprev Mpc Mour

Mprev
Mpc

Mpc
Mour

Mprev
Mour

1 2.0
2 4.0 4.0 4.0 <0.001 s <0.001 s <0.001 s ∞ ∞ ∞
3 10.0 6.0 10.0 0.005 s 0.001 s <0.001 s 3.57 ∞ ∞
4 16.0 12.0 16.0 0.114 s 0.026 s 0.007 s 4.45 3.76 16.75
5 24.0 18.0 26.0 20.081 s 1.947 s 0.451 s 10.32 4.32 44.57
6 32.0 26.0 34.0 0.9 h 162.942 s 35.506 s 19.93 4.59 91.47
7 52.0 34.0 54.0 - - 256.1 h - - -

D.7 SKINNY-128
•Best Differential Weights

R B[R] Bg
init

Bf
init

Mprev Mpc Mour
Mprev

Mpc

Mpc
Mour

Mprev
Mour

1 2.0
2 4.0 4.0 4.0 <0.001 s <0.001 s <0.001 s ∞ ∞ ∞
3 10.0 6.0 13.0 0.027 s 0.004 s 0.002 s 7.60 2.19 16.62
4 16.0 12.0 19.0 0.632 s 0.055 s 0.051 s 11.41 1.08 12.37
5 24.0 18.0 25.0 13.247 s 1.332 s 0.657 s 9.94 2.03 20.16
6 32.0 26.0 33.0 432.258 s 51.181 s 24.288 s 8.45 2.11 17.80

•Best Linear Weights
R B[R] Bg

init
Bf

init
Mprev Mpc Mour

Mprev
Mpc

Mpc
Mour

Mprev
Mour

1 2.0
2 4.0 4.0 4.0 <0.001 s <0.001 s <0.001 s ∞ ∞ ∞
3 10.0 6.0 16.0 0.072 s 0.014 s 0.004 s 5.12 3.71 19.00
4 16.0 12.0 22.0 1.690 s 0.203 s 0.083 s 8.34 2.44 20.31
5 24.0 18.0 28.0 111.002 s 8.459 s 2.004 s 13.12 4.22 55.39
6 32.0 26.0 36.0 7.9 h 1.0 h 0.5 h 8.16 2.14 17.49
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D.8 PRESENT
•Best Differential Weights

R B[R] Bg
init

Bf
init

Mprev Mpc =Mour
Mprev

Mpc
= Mprev

Mour

1 2.0
2 4.0 4.0 4.0 <0.001 s <0.001 s ∞
3 8.0 6.0 9.0 <0.001 s <0.001 s ∞
4 12.0 10.0 13.0 0.006 s 0.007 s 0.9
5 20.0 14.0 20.0 0.241 s 0.223 s 1.1
6 24.0 22.0 25.0 0.146 s 0.102 s 1.4
7 28.0 26.0 29.0 0.136 s 0.056 s 2.4
8 32.0 30.0 33.0 0.077 s 0.027 s 2.9
9 36.0 34.0 37.0 0.010 s 0.007 s 1.5

10 41.0 38.0 41.0 0.048 s 0.033 s 1.5
11 46.0 43.0 46.0 0.077 s 0.049 s 1.6
12 52.0 48.0 54.0 0.789 s 0.388 s 2.0
13 56.0 54.0 57.0 0.221 s 0.099 s 2.2
14 62.0 58.0 64.0 2.513 s 1.185 s 2.1
15 66.0 64.0 67.0 0.466 s 0.243 s 1.9
16 70.0 68.0 71.0 0.117 s 0.066 s 1.8
17 74.0 72.0 75.0 0.034 s 0.016 s 2.1
18 78.0 76.0 79.0 0.055 s 0.033 s 1.7
19 82.0 80.0 83.0 0.016 s 0.010 s 1.6
20 86.0 84.0 87.0 0.018 s 0.011 s 1.6
21 90.0 88.0 91.0 0.016 s 0.010 s 1.6
22 96.0 92.0 98.0 0.231 s 0.132 s 1.8
23 100.0 98.0 101.0 0.060 s 0.032 s 1.9
24 106.0 102.0 108.0 0.696 s 0.360 s 1.9
25 110.0 108.0 111.0 0.136 s 0.060 s 2.3
26 116.0 112.0 118.0 3.225 s 1.739 s 1.9
27 120.0 118.0 121.0 0.221 s 0.118 s 1.9
28 124.0 122.0 125.0 0.088 s 0.048 s 1.8
29 128.0 126.0 129.0 0.034 s 0.016 s 2.1
30 132.0 130.0 133.0 0.084 s 0.052 s 1.6
31 136.0 134.0 137.0 0.017 s 0.011 s 1.6

Total 9.777 s 5.131 s 1.9



40 Accelerating the Best Trail Search on AES-Like Ciphers

D.9 GIFT-64
•Best Differential Weights

R B[R] Bg
init

Bf
init

Mprev Mpc Mour
Mprev

Mpc

Mpc
Mour

Mprev
Mour

1 1.4
2 3.4 2.8 5.8 <0.001 s <0.001 s <0.001 s ∞ ∞ ∞
3 7.0 4.8 7.8 <0.001 s <0.001 s <0.001 s ∞ ∞ ∞
4 11.4 8.4 11.4 0.007 s 0.005 s <0.001 s 1.46 ∞ ∞
5 17.0 12.8 18.8 0.104 s 0.056 s 0.004 s 1.85 15.67 28.92
6 22.4 18.4 24.4 0.433 s 0.149 s 0.011 s 2.90 13.21 38.36
7 28.4 23.8 29.8 3.519 s 0.897 s 0.090 s 3.92 9.92 38.88
8 38.0 29.8 38.8 130.440 s 27.586 s 1.916 s 4.73 14.40 68.08
9 42.0 39.4 42.4 14.232 s 1.319 s 0.267 s 10.79 4.94 53.35

10 48.0 43.4 49.4 132.776 s 9.106 s 0.993 s 14.58 9.17 133.78
11 52.0 49.4 52.4 12.931 s 0.899 s 0.177 s 14.38 5.09 73.18
12 58.0 53.4 59.4 76.958 s 5.423 s 0.634 s 14.19 8.56 121.44
13 62.0 59.4 62.4 2.659 s 0.218 s 0.066 s 12.18 3.33 40.54
14 68.0 63.4 69.4 12.130 s 1.573 s 0.175 s 7.71 8.98 69.23
15 72.0 69.4 72.4 0.423 s 0.090 s 0.036 s 4.70 2.51 11.79
16 78.0 73.4 79.4 6.674 s 1.311 s 0.146 s 5.09 8.98 45.71
17 82.0 79.4 82.4 0.421 s 0.091 s 0.037 s 4.64 2.46 11.45
18 88.0 83.4 89.4 6.688 s 1.321 s 0.147 s 5.06 8.96 45.37
19 92.0 89.4 92.4 0.423 s 0.090 s 0.036 s 4.70 2.50 11.74
20 98.0 93.4 99.4 6.709 s 1.331 s 0.147 s 5.04 9.06 45.64
21 102.0 99.4 102.4 0.421 s 0.090 s 0.037 s 4.67 2.46 11.48
22 108.0 103.4 109.4 6.720 s 1.339 s 0.149 s 5.02 8.96 44.98
23 112.0 109.4 112.4 0.423 s 0.090 s 0.036 s 4.68 2.49 11.67
24 118.0 113.4 119.4 6.737 s 1.347 s 0.149 s 5.00 9.04 45.19
25 122.0 119.4 122.4 0.422 s 0.090 s 0.037 s 4.67 2.45 11.43
26 128.0 123.4 129.4 6.774 s 1.355 s 0.151 s 5.00 9.00 44.98
27 132.0 129.4 132.4 0.424 s 0.091 s 0.036 s 4.68 2.48 11.61
28 138.0 133.4 139.4 6.794 s 1.366 s 0.150 s 4.97 9.08 45.17

Total 436.242 s 57.235 s 5.627 s 7.62 10.17 77.52
•Best Linear Weights

R B[R] Bg
init

Bf
init

Mprev Mpc Mour
Mprev

Mpc

Mpc
Mour

Mprev
Mour

1 2.0
2 4.0 4.0 4.0 <0.001 s <0.001 s <0.001 s ∞ ∞ ∞
3 6.0 6.0 6.0 <0.001 s <0.001 s <0.001 s ∞ ∞ ∞
4 10.0 8.0 12.0 <0.001 s <0.001 s <0.001 s ∞ ∞ ∞
5 14.0 12.0 16.0 0.002 s 0.002 s <0.001 s 1.31 ∞ ∞
6 20.0 16.0 20.0 0.023 s 0.018 s 0.001 s 1.29 13.69 17.69
7 26.0 22.0 26.0 0.119 s 0.077 s 0.008 s 1.55 9.27 14.36
8 32.0 28.0 32.0 1.005 s 0.568 s 0.048 s 1.77 11.77 20.81
9 40.0 34.0 42.0 38.481 s 18.464 s 2.427 s 2.08 7.61 15.86

10 50.0 42.0 50.0 612.174 s 301.243 s 21.548 s 2.03 13.98 28.41
11 58.0 52.0 60.0 0.4 h 899.000 s 63.717 s 1.79 14.11 25.20
12 62.0 60.0 64.0 254.368 s 108.001 s 11.072 s 2.36 9.75 22.97
13 68.0 64.0 68.0 197.336 s 90.373 s 10.632 s 2.18 8.50 18.56
14 74.0 70.0 74.0 265.399 s 121.480 s 18.375 s 2.18 6.61 14.44
15 80.0 76.0 80.0 225.098 s 109.007 s 16.877 s 2.06 6.46 13.34
16 86.0 82.0 86.0 139.898 s 72.981 s 12.304 s 1.92 5.93 11.37
17 92.0 88.0 92.0 57.407 s 34.011 s 5.127 s 1.69 6.63 11.20
18 98.0 94.0 98.0 13.432 s 9.366 s 1.644 s 1.43 5.70 8.17
19 104.0 100.0 104.0 9.524 s 6.329 s 1.180 s 1.51 5.36 8.07
20 110.0 106.0 110.0 9.363 s 5.944 s 1.439 s 1.58 4.13 6.51
21 116.0 112.0 116.0 11.028 s 6.984 s 1.280 s 1.58 5.46 8.62
22 122.0 118.0 122.0 9.851 s 6.193 s 1.471 s 1.59 4.21 6.70
23 128.0 124.0 128.0 11.058 s 7.024 s 1.289 s 1.57 5.45 8.58
24 134.0 130.0 134.0 9.928 s 6.220 s 1.474 s 1.60 4.22 6.74
25 140.0 136.0 140.0 11.120 s 7.055 s 1.300 s 1.58 5.43 8.55
26 146.0 142.0 146.0 9.941 s 6.263 s 1.488 s 1.59 4.21 6.68
27 152.0 148.0 152.0 11.135 s 7.098 s 1.312 s 1.57 5.41 8.49
28 158.0 154.0 158.0 10.002 s 6.295 s 1.492 s 1.59 4.22 6.71

Total 1.0 h 0.5 h 177.506 s 1.92 10.31 19.79
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D.10 GIFT-128
•Best Differential Weights

R B[R] Bg
init

Bf
init

Mprev Mpc =Mour
Mprev

Mpc
= Mprev

Mour

1 1.4
2 3.4 2.8 5.8 <0.001 s <0.001 s ∞
3 7.0 4.8 7.8 0.003 s 0.001 s 2.3
4 11.4 8.4 11.4 0.033 s 0.023 s 1.4
5 17.0 12.8 18.8 0.615 s 0.331 s 1.9
6 22.4 18.4 24.4 1.459 s 0.603 s 2.4
7 28.4 23.8 29.8 10.907 s 2.827 s 3.9
8 39.0 29.8 41.8 1.7 h 833.735 s 7.2
9 45.4 40.4 46.4 0.3 h 111.879 s 9.1

10 49.4 46.8 49.8 74.630 s 3.835 s 19.5
11 54.4 50.8 56.8 506.167 s 23.051 s 22.0
12 60.4 55.8 61.8 896.855 s 40.930 s 21.9
13 67.8 61.8 67.8 0.4 h 77.168 s 20.8
14 79.0 69.2 81.2 34.6 h 2.3 h 14.7
15 85.4 80.4 86.4 4.7 h 0.3 h 14.8
16 90.4 86.8 92.8 1.8 h 499.185 s 13.3
17 96.4 91.8 97.8 3.0 h 710.925 s 15.2
18 103.4 97.8 103.8 5.5 h 0.3 h 16.1
19 110.8 104.8 110.8 15.8 h 0.9 h 17.6
20 121.4 112.2 124.2 - 33.7 h -
21 126.4 122.8 128.8 - 1.3 h -
22 132.4 127.8 133.8 - 1.6 h -
23 139.4 133.8 139.8 - 2.4 h -
24 146.8 140.8 146.8 - 5.9 h -
25 157.4 148.2 160.2 - 210.7 h -
26 162.4 158.8 164.8 - 8.5 h -
27 168.4 163.8 169.8 - 9.0 h -
28 174.4 169.8 175.8 - 11.1 h -
29 181.8 175.8 181.8 - 13.9 h -

•Best Linear Weights
R B[R] Bg

init
Bf

init
Mprev Mpc =Mour

Mprev
Mpc

= Mprev
Mour

1 2.0
2 4.0 4.0 4.0 <0.001 s <0.001 s ∞
3 6.0 6.0 6.0 <0.001 s <0.001 s ∞
4 10.0 8.0 12.0 <0.001 s <0.001 s ∞
5 14.0 12.0 16.0 0.005 s 0.004 s 1.3
6 20.0 16.0 20.0 0.082 s 0.067 s 1.2
7 26.0 22.0 26.0 0.383 s 0.248 s 1.5
8 34.0 28.0 36.0 56.153 s 32.719 s 1.7
9 44.0 36.0 44.0 700.208 s 358.827 s 2.0

10 52.0 46.0 54.0 3.3 h 1.1 h 3.1
11 62.0 54.0 62.0 12.9 h 3.9 h 3.3
12 72.0 64.0 72.0 44.9 h 16.1 h 2.8
13 76.0 74.0 78.0 2.7 h 0.6 h 4.5
14 82.0 78.0 82.0 1.9 h 0.5 h 3.8
15 90.0 84.0 92.0 58.0 h 8.8 h 6.6
16 96.0 92.0 96.0 24.7 h 3.1 h 8.1
17 102.0 98.0 102.0 14.4 h 1.9 h 7.5
18 112.0 104.0 112.0 165.8 h 22.4 h 7.39
19 118.0 114.0 118.0 26.0 h 3.6 h 7.26
20 128.0 120.0 128.0 160.9 h 30.4 h 5.28
21 136.0 130.0 138.0 - 40.0 h -
22 148.0 138.0 150.0 - 360.0 h -
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E Analysis Results of GIFT
The following results are evaluated with a dedicated implementation to GIFT. The main
differences from the implementation in Suppl. D are discussed in Subsection 5.4.

E.1 GIFT-64
•Best Differential Weights and Elapsed Times (Total Elapsed Time : 0.390 s)

R B[R] Elapsed R B[R] Elapsed R B[R] Elapsed R B[R] Elapsed
1 1.4 8 38.0 0.139 s 15 72.0 0.003 s 22 108.0 0.010 s
2 3.4 <0.001 s 9 42.0 0.018 s 16 78.0 0.010 s 23 112.0 0.003 s
3 7.0 <0.001 s 10 48.0 0.064 s 17 82.0 0.003 s 24 118.0 0.010 s
4 11.4 <0.001 s 11 52.0 0.012 s 18 88.0 0.010 s 25 122.0 0.003 s
5 17.0 <0.001 s 12 58.0 0.041 s 19 92.0 0.003 s 26 128.0 0.010 s
6 22.4 0.001 s 13 62.0 0.005 s 20 98.0 0.010 s 27 132.0 0.003 s
7 28.4 0.008 s 14 68.0 0.012 s 21 102.0 0.003 s 28 138.0 0.011 s

•Best Linear Weights and Elapsed Times (Total Elapsed Time : 9.755 s)
R B[R] Elapsed R B[R] Elapsed R B[R] Elapsed R B[R] Elapsed
1 2.0 8 32.0 0.003 s 15 80.0 0.890 s 22 122.0 0.081 s
2 4.0 <0.001 s 9 40.0 0.148 s 16 86.0 0.661 s 23 128.0 0.071 s
3 6.0 <0.001 s 10 50.0 1.280 s 17 92.0 0.273 s 24 134.0 0.081 s
4 10.0 <0.001 s 11 58.0 3.492 s 18 98.0 0.092 s 25 140.0 0.072 s
5 14.0 <0.001 s 12 62.0 0.582 s 19 104.0 0.064 s 26 146.0 0.082 s
6 20.0 <0.001 s 13 68.0 0.599 s 20 110.0 0.079 s 27 152.0 0.072 s
7 26.0 <0.001 s 14 74.0 0.979 s 21 116.0 0.071 s 28 158.0 0.082 s

E.2 GIFT-128
•Best Differential Weights and Elapsed Times (Total Elapsed Time : 89.0 h)

R B[R] Elapsed R B[R] Elapsed R B[R] Elapsed R B[R] Elapsed
1 1.4 11 54.4 1.301 s 21 126.4 227.728 s 31 198.4 2.6 h
2 3.4 <0.001 s 12 60.4 2.314 s 22 132.4 275.725 s 32 204.4 1.7 h
3 7.0 <0.001 s 13 67.8 4.356 s 23 139.4 424.719 s 33 210.4 1.3 h
4 11.4 0.002 s 14 79.0 405.529 s 24 146.8 0.3 h 34 217.4 1.7 h
5 17.0 0.018 s 15 85.4 56.977 s 25 157.4 11.2 h 35 224.8 2.2 h
6 22.4 0.041 s 16 90.4 25.514 s 26 162.4 0.5 h 36 234.4 22.3 h
7 28.4 0.191 s 17 96.4 36.356 s 27 168.4 0.5 h 37 240.4 3.9 h
8 39.0 41.122 s 18 103.4 62.416 s 28 174.4 0.6 h 38 246.4 3.0 h
9 45.4 6.729 s 19 110.8 156.618 s 29 181.8 0.7 h 39 253.4 3.6 h

10 49.4 0.216 s 20 121.4 1.6 h 30 193.0 26.7 h 40 260.4 4.2 h
•Best Linear Weights and Elapsed Times (Total Elapsed Time : 451.3 h)

R B[R] Elapsed R B[R] Elapsed R B[R] Elapsed R B[R] Elapsed
1 2.0 11 62.0 645.423 s 21 136.0 1.6 h 31 216.0 0.7 h
2 4.0 <0.001 s 12 72.0 0.7 h 22 148.0 15.7 h 32 224.0 8.8 h
3 6.0 <0.001 s 13 76.0 93.287 s 23 158.0 17.2 h 33 234.0 9.4 h
4 10.0 <0.001 s 14 82.0 78.174 s 24 164.0 1.3 h 34 242.0 9.5 h
5 14.0 <0.001 s 15 90.0 0.4 h 25 172.0 88.9 h 35 252.0 49.1 h
6 20.0 0.004 s 16 96.0 474.670 s 26 182.0 115.8 h 36 260.0 26.5 h
7 26.0 0.016 s 17 102.0 294.646 s 27 188.0 12.9 h 37 266.0 0.5 h
8 34.0 1.752 s 18 112.0 0.9 h 28 196.0 61.4 h 38 274.0 4.5 h
9 44.0 18.271 s 19 118.0 521.480 s 29 202.0 2.9 h 39 280.0 0.7 h

10 52.0 177.917 s 20 128.0 1.2 h 30 210.0 19.9 h 40 286.0 892.746 s
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F Permutation Characteristics of BOGI-based Ciphers
16-Bit BOGI-Based Ciphers. The reduction in |Atab| is up to 3 factors.

BOGI-16 · n i of LSi |Atab| |D| Reduce? |OptAtab| |Atab|/|OptAtab|

BOGI-16

6, 7, 10, 11, 12, 13,
15, 16, 17, 19, 20, 21

15

1 ✗ 15 1

0, 5, 9, 14, 18, 22 4 ✓ 6 2.5
1, 4 4 ✓ 5 3

2, GIFT 4 ✓ 5 3
3, 8 4 ✓ 5 3

32-Bit BOGI-Based Ciphers. The reduction in |Atab| is up to 6.54 factors.

BOGI-16 · n i of LSi |Atab| |D| Reduce? |OptAtab| |Atab|/|OptAtab|

BOGI-32

1, 2, 4, 6, 7, 12, 15,
16, 19, 20, 21, GIFT

255

1 ✗ 255 1

3, 8 2 ✓ 135 1.89
10, 17 4 ✓ 75 3.4

0, 5, 9, 14, 18, 22 8 ✓ 45 5.67
11, 13 8 ✓ 39 6.54

256-Bit BOGI-Based Ciphers. Since |DWSE(Perm∗BOGI256)| becomes infeasible to analyze,
we reduce DWSE(Perm∗BOGI256) into

(A ∥ · · · ∥ A) ◦ C Perm∗
BOGI256======⇒ ShufBOGI256 ◦ (B ∥ · · · ∥ B) ◦ C ◦ Shuf−1

BOGI256,

where A M∗
BOGI256=====⇒ B and C is a M-position transposition.

The classification is equal to that of 64-bit BOGI-based cipher. Since |Atab| amounts
to 264 − 1, |OptAtab| cannot be computed in a practical time. Therefore, we compare the
sizes considering the number of the active S-boxes is from 1 to 4, denoted by |Atab4

1| and
|OptAtab4

1|.

BOGI-16 · n i of LSi |Atab4
1| |D| Reduce? |OptAtab4

1| |Atab4
1|/|OptAtab4

1|

BOGI-256

6, 7, 10, 11, 12, 13,
15, 16, 17, 19, 20, 21

679,120

1 ✗ 679,120 1

0, 5, 9, 14, 18, 22 64 ✓ 10,416 61.01
1, 4 64 ✓ 9,996 63.57

2, GIFT 64 ✓ 9,996 63.57
3, 8 64 ✓ 9,996 63.57



44 Accelerating the Best Trail Search on AES-Like Ciphers

G The Best Weights of BOGI-based Ciphers
Rows : Best differential weights
Columns : Best linear weights
Cells : Number of BOGI-16·n

G.1 5-Round 16-bit BOGI-based Ciphers
B[5] 14 16
13.8 1920 1344
14.4 1152 -
14.8 6240 1536
15 672 -

15.2 - 1152
15.4 8928 2208
15.8 2928* 2784
16 2832 2688

16.4 1152 3504
16.8 - 192
17 - 240

*5-round GIFT-16 has the best weights as (15.8, 14).
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G.2 8-Round 32-bit BOGI-based Ciphers
B[8] 20 22 24 26 28 30 32
23.4 - - 48 128 104 - -
24 - 128 176 224 32 - -

24.2 - 16 - - - - -
24.4 40 192 232 464 272 144 -
24.8 - - 48 920 280 - -
25 - 48 400 568 96 8 -

25.4 - 136 976 2424 1720 336 16
25.8 - 16 32 64 48 48 -
26 - 8 168 720 800 184 16

26.4 40 64 296 2136 2392 816 56
26.8 - - - - 128 16 -
27 8 24 216 944 1064 240 8

27.4 - 88 472 1440 1384 888 192
27.8 - - 16 16 152 72 -
28 - - 192 912 656 536 184

28.1 - - - 40 48 - -
28.2 - - 128 - 128 - -
28.4 - - 288 536 1256 400 32
28.7 - - - 40 48 8 -
28.8 - - 72* 120 224 32 16
29 - - 208 264 504 152 72

29.1 - - 32 - 48 - -
29.2 - - - - 64 - -
29.4 - - 104 528 768 704 208
29.7 - - - - 8 - -
29.8 - - 48 104 152 32 8
30 - - 32 152 584 248 168

30.1 - - - - 40 - -
30.2 - - 8 56 96 8 -
30.4 - - 32 296 560 384 128
30.5 - - - - 16 - -
30.7 - - - 16 40 - -
30.8 - - 16 88 96 192 16
31 - - - 128 184 208 152

31.2 - - - - 8 24 16
31.4 - - - 448 352 128 16
31.8 - - - 168 128 200 48
32 - - - 40 80 120 8

32.2 - - - - 16 8 -
32.4 - - - 8 104 64 56
32.8 - - - - 8 - 16
33 - - - - - 40 24
34 - - - - - 48 -
*8-round GIFT-32 has the best weights of (28.8, 24).
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G.3 12-Round 64-bit BOGI-based Ciphers
B[12] 42 44 46 48 50 52 54 56 58 60 62 64 66 68
46.8 - - - 528 - 96 144 336 288 144 96 96 - -
48 - - - 96 - - - - 96 96 96 - - -

48.4 - - - 192 - 384 192 192 - - - - - -
49.4 - - - - - 144 48 - - - - - - -
50.4 - - - 192 - 192 - 192 - - - - - -
50.8 - - - - - - 48 - - - - - - -
51.8 - - - - - - - - 48 - - - - -
52 - - - - - - 192 - - - - - - -

52.4 - - - 384 - 48 384 48 48 96 144 96 96 -
52.8 - 48 48 288 144 48 96 144 48 192 48 - - -
53.4 - - - 48 - 336 96 96 - 48 96 - - -
53.8 - - - - 48 144 - 192 192 528 96 - - -
54 - - 144 - - 48 48 48 48 48 48 48 - -

54.4 - - - 48 - - - - - - - - - -
54.8 48 - - 288 48 144 240 432 48 336 240 - - -
55.4 192 - - 96 48 - - 48 - - - 192 - -
55.8 - - - 384 - 144 96 - - 96 - - - -
56 - - - - 192 96 96 144 192 - 144 48 48 96

56.4 - - 48 240 - 240 - 144 192 48 96 - - -
56.8 - - 96 1584 96 432 288 1344 96 336 816 144 - -
57 - - - - - - - - 96 96 - - - -

57.4 - - - 528 - 192 - 432 96 816 96 144 - -
57.8 - - - 48 96 144 48 - 96 192 - - - -
58 - - - 624 - - 480 432 96 96 432* 48 - -

58.4 - - - - - - 288 144 192 384 - - - -
58.8 - - 96 1104 - 240 - 432 192 192 - - - -
59 - - - 96 - - - - 192 48 336 96 - -

59.2 - - - - - - - - 96 - - - - -
59.4 - - 96 96 - 192 240 672 - 240 288 48 - -
59.8 - 96 - 48 192 48 48 96 - 96 - - - -
60 - - 48 192 - 96 48 192 144 144 - - - -

60.4 - - 48 - - 48 192 288 240 288 96 48 - -
60.7 - - - - - - - - - 96 - - - -
60.8 - - 96 96 - 240 192 384 96 96 96 240 - -
61 - 96 - - - - - - - - 96 - - -

61.4 - - - 96 - - 144 - 240 144 48 288 - -
61.8 - - - - - - 192 96 - 96 96 96 - -
62 - - - - - - - - 192 192 48 96 - -

62.4 - - 96 96 - 144 96 288 96 240 144 96 - -
62.8 - - - 48 - 96 96 - 48 - 144 48 - -
63 - - - - - - - 96 96 - 48 - - -

63.2 - - - - - - 48 - - - 48 - - -
63.4 - - - - - - - 144 - 96 144 48 - -
63.8 - - - 48 - - - - - - - - - -
64 - - - 48 - - - 48 - - - - - -

64.2 - - - 48 - - - - - - - - - -
64.4 - - - - - - - - - - 192 - - -
64.8 - - - - - - - - - 96 - - - -
65 - - - - - - - - 96 192 48 - - -

65.4 - - - 48 - - - - - 384 48 - - -
65.8 - - - 48 - - - - - - 48 - - -
67.2 - - - - - - - - - - 48 - - -
68 - - - - - - - - - - - 96 - -

*12-round GIFT-64 has the best weights of (58, 62).
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G.4 11-Round 128-bit BOGI-based Ciphers
B[11] 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72
42.8 128 - - 40 40 - - - 48 - - - - - -
44 - - - - 8 32 88 - - - - - - - -

45.4 120 - - 40 16 - 56 56 160 72 120 - - - -
47.4 - - - - 16 - - 16 - - 48 48 - - -
47.8 - - - - - - 32 8 8 - - - - - -
48.4 192 - - - 224 - 56 168 280 160 136 64 - - -
48.8 - - - - - 16 32 16 - 32 - - - - -
49 - - - - - - - - - 32 24 8 - - -

49.4 - - 8 - 8 - 16 32 - - 16 - - - -
49.8 - - - - 56 16 80 96 88 80 24 32 - - -
50.4 - - - - - - - - 64 64 16 16 - - -
50.7 - - - - - - 8 - 8 - - - - - -
50.8 192 40 16 40 112 96 376 208 96 64 16 8 - - -
51 - - - - - - 8 - 16 - - - - - -

51.4 - - - - 64 - 40 16 8 16 - 48 - - -
51.7 256 - - - - - - - - - - - - - -
51.8 - - - 16 - 112 - 8 24 - - - - - -
52 64 40 - 40 216 48 160 184 168 8 16 32 - - -

52.2 - - - - - - - - - - 32 - - - -
52.4 - - 32 - 32 - 16 48 80 16 16 32 - - -
52.7 - - - - - - - - 32 - - - - - -
52.8 448 - 520 168 336 8 256 168 48 24 48 - - - -
53 - - - - - - - 32 32 - 32 48 - - -

53.2 - - - - - - 16 - - - 32 - - - -
53.4 128 16 16 - 16 48 160 - 32 - - - - - -
53.7 - - - - - - - - - 8 - - - - -
53.8 - - 16 - 16 - 80 - 48 24 112 16 8 - -
54 128 128 128 - - - 16 144 16 32 - - - - -

54.4 - - 64 - 64 128 40 16 16 32* 24 - - - -
54.8 8 - 144 32 104 104 352 144 144 168 200 24 32 - -
55 - - - - - - - 16 - - - - - - -

55.2 - - - - - - - - - 32 32 - - - -
55.4 - - - - - 16 - 32 - - - 16 32 - -
55.7 - - - - - - 8 - 8 16 - - - - -
55.8 - - - - - 16 128 112 64 112 32 64 - - -
56 - 16 72 48 8 - 24 72 - - 16 - - - -

56.2 - - - 32 64 96 48 16 48 - - - - - -
56.4 - 16 - 88 - 56 96 192 96 64 48 16 - - -
56.5 - - - - - - - - 16 - - - - - -
56.7 - - - - - - 16 - 64 32 - - - - -
56.8 56 8 56 64 208 72 328 48 208 120 432 80 8 - -
57 - - - - - 64 32 32 88 16 32 16 - - -

57.2 - - 112 - - - - 16 64 16 - - - - -
57.4 24 - 16 56 - 16 128 160 80 80 112 16 - - -
57.5 - - 8 - - - - - - - - - - - -
57.8 - 8 16 8 - - 64 8 - 32 64 - - - -
58 - - - 16 24 192 32 16 200 24 - 96 - - -

58.2 - - - - - - 128 112 16 - 16 - - - -
58.4 - - 64 32 - 16 48 80 48 16 16 48 16 - -
58.7 - - 8 - 32 - - - - - - - - - -
58.8 64 - 96 64 112 40 144 144 224 112 72 40 8 - -
59 - - - - 24 - 32 - - 16 - - - - -

59.2 - - - - - - - 64 8 - - - - - -
59.4 16 - 64 48 64 - 200 96 160 40 56 40 - - -
59.8 16 - 16 - - 64 144 264 72 112 160 104 24 - -
60 - - - 32 48 56 40 40 240 16 24 32 8 - -

60.2 64 - - - 32 64 - 80 - 24 16 - - - -
60.4 - - 16 96 - 40 32 168 72 56 112 32 - - -
60.7 - - - - - - - - - 8 8 - 16 - -
60.8 160 8 72 40 72 72 224 552 440 144 88 32 - - -
61 - - - - - - 96 104 136 40 - 16 - - -

61.2 - - - - - - - 8 8 - 24 8 - - -
61.4 16 16 16 48 64 64 112 96 144 24 40 16 - 16 -
61.7 8 - 8 8 - - 8 - - 8 - - - - -

*11-round GIFT-128 has the best weights of (54.4, 62).
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B[11] 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72
61.8 - 32 32 16 - 16 88 72 104 48 136 8 - 8 -
62 80 16 - 16 40 24 8 40 88 - 32 40 40 - -

62.2 - 16 - - - - 16 16 8 8 16 40 8 - -
62.4 32 8 - - 8 112 80 96 8 64 88 - 8 - -
62.7 - - - - - 16 48 16 24 48 - 8 - - -
62.8 32 24 16 56 112 136 96 64 224 144 184 144 16 - -
63 16 - 16 8 32 - - 8 24 - 24 32 16 - -

63.1 - - - - - - - - 8 - - - - - -
63.2 - - - - - - - - 40 32 32 40 - - -
63.4 16 16 - 48 40 40 136 24 192 32 160 48 32 - -
63.7 - - - - - - - - 16 - 24 - - - -
63.8 - - 32 8 - 24 48 40 96 40 64 8 - - -
64 - - - - 16 48 24 16 16 8 16 72 40 24 -

64.1 - - - - - - - 8 - - - - - - -
64.2 - - - - - - 8 - 40 16 16 40 - - -
64.4 16 32 16 40 32 128 104 64 208 48 88 64 - - -
64.5 - - - - - - - - - - 16 - - - -
64.7 - - - - - - - 16 - - - 40 8 - -
64.8 - 24 - 32 152 40 176 88 224 232 248 48 24 64 8
65 - 8 - 16 24 8 56 8 48 - 8 16 8 - -

65.1 - - - - - - - - 16 16 32 - - - -
65.2 - - - - 8 8 8 - - - 48 8 - - -
65.4 24 - - 56 88 56 72 144 168 32 64 24 - - 16
65.5 - - - - - - - 16 - - 24 - - - -
65.7 - 8 - - - - 16 - 24 - 8 - - - -
65.8 - - 24 16 24 - 80 40 96 72 40 80 32 - -
66 - - - 8 48 - 40 48 24 56 24 8 88 16 8

66.2 - - - - 16 32 32 16 16 40 - 16 - - -
66.4 8 - 72 8 152 24 40 264 72 16 - - - - -
66.5 - - - - - - 8 - - - - - - - -
66.7 - 8 - - - - 8 - - 32 80 32 - - -
66.8 - - 40 16 120 72 112 40 160 80 88 - - - -
67 - - - 8 8 88 48 32 32 8 24 - 32 - 8

67.2 - - - - - - 32 16 - 16 16 8 - - -
67.4 - 24 - 16 80 64 120 40 128 64 72 32 8 16 -
67.7 - - - - 16 - 8 - - 8 - 8 - - -
67.8 - 32 - 8 40 24 160 72 80 48 40 72 16 - -
68 - 8 - 8 40 48 48 16 24 16 40 48 8 16 -

68.2 - - - - 8 16 8 8 8 16 - - - - -
68.4 - - - 16 48 56 40 56 40 - - 16 - - -
68.7 - - - 8 - - 16 - 24 8 - - - - -
68.8 - - - 8 8 56 56 48 24 16 24 24 48 8 -
69 - - - - 40 - 16 - 112 40 56 40 - 32 -

69.2 - - - - 16 - - - 16 - - 8 - - -
69.4 - 24 - - - 24 48 24 - 8 32 48 - - -
69.7 - - - - 8 16 24 - 8 - 8 - - - -
69.8 - 16 - - - 40 16 16 16 16 8 - - - -
70 - - - 8 - - 40 8 32 16 32 24 - - -

70.2 - - - - - 16 - - 8 16 - 16 - - -
70.4 - - - 16 8 - - 24 16 16 - - - - -
70.8 - 8 - - - 48 16 16 8 8 8 16 - - -
71 - - - - - - 16 24 - - 8 8 16 - -

71.2 - - - 16 8 16 - 8 - - - - - - -
71.4 - - - - - 24 - - - - 8 - - - -
71.7 - 32 - - 16 16 - 8 16 - - - - - -
71.8 - - - - - 8 8 - - 16 - - 16 - 8
72 - - - 8 8 - 32 - 8 8 - 8 8 - 8

72.2 - - - 16 - - - 8 - - - - - - -
72.4 - - - - - 32 8 - 8 8 - - - - -
72.8 - 8 16 16 - 8 - - - 16 - - - - -
73 - 8 - - - - - - - - - - - - -

73.2 - - - - - - 8 - - - - 8 - - -
73.4 - - - - - - - 8 - - - - - - -
73.7 - - - - - 8 - - - - - - - - -
74.2 - - - - - 8 - - - - - - - - -
74.4 - - - - - 8 - - - - - - - - -
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H BOGI-based Ciphers Considering Implementation Cost
This section gives the best weights of BOGI-based ciphers that can support the same
software/hardware implementation costs as those of GIFT’s S-box. Among the 1,728
BOGI-applicable S-boxes, 384 S-boxes have the same implementation costs. Therefore,
the number of BOGI-based ciphers considered in this section is 384×24 = 9,216.

Rows : Best differential weights
Columns : Best linear weights
Cells : Number of BOGI-16·n

H.1 13-Round 64-bit BOGI-based Ciphers Considering Implementation
Cost

B[13] 50 52 54 56 58 60 62 64 66 68 70 72
50.8 - 192 - - - 48 - - - 96 48 -
52 - 96 - - - - 48 144 48 48 - -
56 - - - - - 96 - - - - - -

56.4 - - - - - 192 - - - - 144 48
56.8 - 96 96 48 - 144 - 48 48 - - -
57.4 - - - - - 192 - - 192 - - -
58 - - - - - - - - 48 48 - -

58.8 48 - - 48 - - - - 96 - - -
59.4 96 - - - - - - - - - - -
59.7 - - - - - - - - 48 48 - -
59.8 - - - - - - - - - 192 - -
60.4 - - - - - - - - - - 48 144
60.8 - - 48 - 48 288 - 48 240 192 96 -
61 - - - - - - - 96 96 - - -

61.2 48 48 - - - - - - - - - -
61.4 - - - - - - 192 - 96 - - -
61.8 - - - - - 96 - - - - - -
62 - - - - - - - 96 96 288* - -

62.4 - - - - - 96 96 96 96 - - -
62.8 - 192 - - - 288 - - 96 96 96 -
63.2 - - - 96 - - - - - - - -
63.4 - - - - 96 96 - 288 96 - - -
63.8 - - - - - - 96 - - - - -
64 - - - - - 48 - - - - - -

64.2 - - - - - - - 96 - - - -
64.4 - - - - - 96 96 96 - - - -
64.8 - - - - 96 - 96 - - - - -
65.4 - - - - - 48 - 192 - - - -
65.8 - 96 - - - 96 96 - - - - -
66 48 - - - - 48 - - - - - -

66.2 - - - - - 96 - - - - - -
66.4 48 96 - - - - - - - - - -
67.8 - - - - 96 - - - - - - -
68 48 - - - - - - - - - - -

68.2 - - - - - 48 - - - - - -
68.4 48 - - - - - - - - - - -
69 - - - - - 96 - - - - - -

69.4 - - - - - - - 48 96 48 - -
70 - - - - - - - 192 - - - -

*13-round GIFT-64 has the best weights of (62, 68).
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H.2 11-Round 128-bit BOGI-based Ciphers Considering Implementa-
tion Cost

B[11] 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72
42.8 64 - - - 40 - - - 24 - - - - - -
44 - - - - 8 32 88 - - - - - - - -

47.4 - - - - 16 - - 16 - - 48 48 - - -
48.4 - - - - 16 - - 16 - - 48 48 - - -
48.8 - - - - - - - - - 16 - - - - -
50.8 - - - - - 72 160 - 24 - - - - - -
51.4 - - - - - - - - - 16 - 48 - - -
52 - - - - 8 40 32 88 88 - - - - - -

52.4 - - - - 32 - 16 32 64 - 16 32 - - -
52.8 128 - 392 - 64 8 56 48 16 - 8 - - - -
53.4 - 16 16 - - - - - - - - - - - -
53.8 - - 16 - 16 - 16 - - - - - - - -
54 - - - - - - - 16 - 32 - - - - -

54.4 - - 48 - - - - - - 32* - - - - -
54.8 - - 56 24 16 64 48 16 48 32 48 16 16 - -
55 - - - - - - - 16 - - - - - - -

55.4 - - - - - 16 - - - - - 16 32 - -
55.7 - - - - - - 8 - 8 - - - - - -
55.8 - - - - - - - - 16 16 - - - - -
56 - - 16 - - - 24 - - - 16 - - - -

56.2 - - - 16 32 - 16 16 48 - - - - - -
56.4 - - - - - 16 48 112 - - 16 16 - - -
56.8 - - - - 48 16 - 16 - - 88 8 - - -
57 - - - - - 32 - - 32 - 16 - - - -

57.2 - - 112 - - - - - - - - - - - -
57.4 - - - - - - - 64 - - - - - - -
57.8 - - - 8 - - - 8 - - - - - - -
58 - - - - - 8 16 16 16 8 - - - - -

58.4 - - - 32 - - 16 - - - - 16 16 - -
58.8 - - - 16 - - 8 24 8 24 - 16 - - -
59 - - - - - - 16 - - 16 - - - - -

59.4 - - - - 16 - 8 8 - - 16 16 - - -
59.8 - - 16 - - - - - 16 - - 16 16 - -
60 - - - 32 - 8 8 - 8 - - 24 8 - -

60.2 - - - - 32 64 - - - - - - - - -
60.4 - - - - - 8 - - - - 32 16 - - -
60.7 - - - - - - - - - 8 8 - 16 - -
60.8 - - - - 32 8 80 48 32 56 24 16 - - -
61 - - - - - - - 32 8 8 - - - - -

61.4 - - - 16 - 32 - - 32 - - 16 - 16 -
61.8 - - 32 - - - - 40 8 8 16 - - 8 -
62 - - - - - 8 - 32 - - 16 40 32 - -

62.4 - - - - - 32 32 - - - 8 - 8 - -
62.7 - - - - - - 16 16 8 - - 8 - - -
62.8 - 8 8 - 16 - - 8 16 8 96 80 16 - -
63 - - 16 - 8 - - 8 - - - 16 8 - -

63.4 - - - 32 16 - 32 24 8 - 24 16 24 - -
63.7 - - - - - - - - 16 - - - - - -
63.8 - - - - - 16 8 8 40 16 16 8 - - -

*11-round GIFT-128 has the best weights of (54.4, 62).
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B[11] 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72
64 - - - - - 32 24 8 - - - 48 32 8 -

64.2 - - - - - - - - 8 - - - - - -
64.4 - - - 24 16 112 72 32 56 24 - 8 - - -
64.7 - - - - - - - 16 - - - - - - -
64.8 - - - 16 48 24 32 32 152 40 56 - - - 8
65 - 8 - 16 16 8 48 8 40 - - 8 - - -

65.4 - - - - 16 16 8 40 32 8 - - - - -
65.8 - - 16 - 16 - 48 40 64 32 - - - - -
66 - - - 8 32 - 8 48 8 56 16 - 32 16 -

66.2 - - - - 16 16 16 - - - - 16 - - -
66.4 - - 40 - 64 8 32 80 16 16 - - - - -
66.8 - - 8 - 32 32 56 32 24 16 16 - - - -
67 - - - 8 - 56 16 - 8 - 16 - 16 - -

67.2 - - - - - - 16 16 - - - - - - -
67.4 - - - - 32 8 32 8 32 - - 16 - 16 -
67.7 - - - - - - - - - 8 - - - - -
67.8 - - - - 8 16 - 8 16 24 16 48 16 - -
68 - - - - 40 24 16 8 8 8 - 16 - - -

68.2 - - - - 8 16 - 8 - 8 - - - - -
68.4 - - - - 48 8 16 40 24 - - 16 - - -
68.7 - - - - - - - - 8 - - - - - -
68.8 - - - - - 48 8 16 - - - 16 48 8 -
69 - - - - 8 - - - - - 16 - - 16 -

69.2 - - - - 16 - - - 16 - - - - - -
69.4 - - - - - 24 40 8 - 8 16 32 - - -
69.7 - - - - 8 16 - - - - 8 - - - -
70 - - - - - - - 8 - - 8 - - - -

70.2 - - - - - 16 - - - - - - - - -
70.4 - - - - 8 - - 24 16 - - - - - -
71 - - - - - - - 8 - - - - 16 - -

71.2 - - - - 8 16 - - - - - - - - -
71.4 - - - - - 16 - - - - - - - - -
71.8 - - - - - - - - - - - - 16 - -
72 - - - - - - - - - - - 8 - - -

72.4 - - - - - - 8 - 8 8 - - - - -
73.2 - - - - - - - - - - - 8 - - -
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