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Abstract. In previous years there has been an increased interest in
designing threshold signature schemes. Most of the recent works focus on
constructing threshold versions of ECDSA or Schnorr signature schemes
due to their appealing usage in blockchain technologies. Additionally, a
lot of research is being done on cryptographic schemes that are resistant
to quantum computer attacks.
In this work, we propose a new version of the two-party Dilithium sig-
nature scheme. The security of our scheme is based on the hardness of
Module-LWE and Module-SIS problems. In our construction, we follow a
similar logic as Damgård et al. (PKC 2021) and use an additively homo-
morphic commitment scheme. However, compared to them, our protocol
uses signature compression techniques from the original Dilithium sig-
nature scheme which makes it closer to the version submitted to the
NIST PQC competition. We focus on two-party signature schemes in
the context of user authentication.

Keywords: public-key cryptography · threshold signatures · threshold
cryptography · lattice-based cryptography · Fiat–Shamir with aborts ·
CRYSTALS-DILITHIUM.

1 Introduction

Threshold cryptography, particularly threshold signature schemes, has become
a compelling research topic in recent years. Using these protocols, a distinct
number of parties may transfer their joint right to generate a signature to any
subset among themselves equal to or larger than a specific threshold. There
are threshold variants of RSA [22,8], Schnorr [16,18], and ECDSA [19,10,6,1],
which could be used in the blockchain or as an authentication solution. In this
work, we focus on the latter use case where the private key is shared between
the user’s mobile device and a server. To create a signature for authentication,
the mobile device and server should cooperate to create a single signature. The
advantage of using threshold cryptography for authentication is that it helps to
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avoid reliance on trusted hardware to store the user’s private key. If the private
key is split between the mobile device and the server, an adversary who gets
access to the mobile device will be unable to create valid signatures on behalf
of the user without communicating with the server. This technology has been
already successfully deployed in Baltic countries (having more than 3 million
users), where the underlying signature scheme is a two-party RSA signature
scheme [5].

In 1994, Peter Shor [21] described a quantum algorithm that allows solving
factoring and discrete logarithm problems. When a powerful enough quantum
computer will be constructed, the security of RSA, Schnorr, and ECDSA signa-
ture schemes and their threshold variants will be broken. To prevent informa-
tion security systems from total breakdown, the National Institute of Standards
and Technology (NIST) announced a Public-Key Post-Quantum Cryptographic
(PQC) Algorithms competition in 2016. In this paper, we aim to construct a
two-party signature scheme based on the Dilithium [11] signature, which is the
primary post-quantum signature scheme that will be standardised by NIST. Our
focus is to design a two-party signature scheme that would fit in the authenti-
cation use case to replace the currently used RSA.

1.1 Contribution

In this work, we construct a three-round two-party signature protocol based on
Dilithium and we use an additively homomorphic commitment scheme from [3].
We use signature compression techniques from the Dilithium scheme; this leads
to the problem of accommodating bit carry. We thus introduce an additional
component to the final signature that we call hint. It is needed to adjust the
value computed in the verification process taking a bit carry into account. We
prove the security of our scheme in the classical random oracle model and show
that the security of our scheme follows from the hardness of Module-SIS and
Module-LWE problems. Additionally, we present results of implementation of
the proposed scheme. We leave security proof in QROM for future work.

1.2 Related work

In this work we focus only on lattice-based threshold signature schemes, mul-
tisignature schemes such as Fukumitsu et al. [15] are out of scope of this paper.

Cozzo et al. [7] studied signature schemes that participated in the 2nd
Round of the NIST PQC competition to develop threshold variants of those
schemes. Among those signatures, there were three lattice-based schemes: Crystals-
Dilithium, qTesla [2], and Falcon. By the authors’ estimations of proposed thresh-
old variants, it takes about 12 seconds to produce the Crystals-Dilithium signa-
ture; 16 seconds for qTesla signature; 6 seconds for Falcon signature. The main
reason for such performance is that the authors applied only generic multiparty
computation techniques, such as linear secret sharing and garbled circuits to
construct threshold signature protocols with security against an active adver-
sary.
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Damgard et al. [9] proposed two n-out-of-n threshold signature schemes
based on a Dilithium-G [12]. The first (DS2) is a two-round threshold signa-
ture scheme with a trapdoor additively homomorphic commitment scheme. The
second (DS3) is a three-round threshold signature scheme with an additively ho-
momorphic commitment scheme. Both commitment schemes are variants of the
scheme proposed by Baum et al. [3]. However, the signature sizes in DS2 and DS3
protocols are bigger compared to the Crystals-Dilithium submitted to the NIST
PQC competition, since those protocols do not utilize compression mechanisms.

Vakarjuk et al. [23] proposed a three-round 2-out-of-2 lattice-based signa-
ture scheme – DiLizium. The scheme is similar to the one proposed in [9] but
uses a homomorphic hash function [20] instead of a homomorphic commitment
scheme. This protocol is based on the scheme described in the paper by Kiltz
et al., Appendix B [17]. One of the disadvantages of DiLizium is that its secu-
rity proof relies on a non-standard rejected Module-LWE assumption introduced
in [15]. The second, more serious problem, is that SWIFFT hash function is not
additively homomorphic for all inputs.

Fu et al. [14] proposed a four-round two-party Crystals-Dilithium signature
scheme using Fan et al. [13] fully homomorphic encryption scheme (FHE). Due
to the high number of rounds and usage of FHE, the proposed protocol is less
efficient compared to Damgard et al. [9] and Vakarjuk et al. [23]

1.3 Notation

Let R and Rq denote the rings Z[x]/(xn + 1) and Zq[x]/(x
n + 1), where n ∈ N.

We denote elements in R and Rq in italic lowercase letters p. We denote vectors
with elements in R and Rq by bold lowercase v and matrices with elements in
R and Rq by bold uppercase A.

We follow the notation from [11] and use centered modular reduction mod ±α.
For a positive integer α and for every x ∈ Z, define x′ = x mod ±α, as x′ in the
range −α

2 < x′ ≤ α
2 when α is even and x′ in the range −α−1

2 ≤ x′ ≤ α−1
2 when

α is odd such that x′ ≡ x (mod α).
For an element x ∈ Zq, its infinity norm is defined as ∥x∥∞ = |x mod ±q|,

where |x| denotes the absolute value of the element. For an element p ∈ Rq,
its infinity norm is defined as ∥p∥∞ = maxi∥pi∥∞ and its l2 norm is defined as
∥p∥2 =

√
(
∑

i∥pi∥2∞).
Sη denotes a set of all elements p ∈ Rq such that ∥p∥∞ ≤ η. a← A denotes

sampling an element uniformly at random from the set A. a ← χ(A) denotes
sampling an element from the distribution χ defined over the set A. The symbol
⊥ is used to indicate a failure or rejection.

1.4 Definitions

Definition 1 (Decisional Module-LWE). Let χ be a probability distribution
and n,m ∈ Z. We define the advantage of adversary A in breaking decisional
Module-LWE for the set of parameters (q, n,m, η, χ) as AdvD−MLWE

(q,n,m,η,χ)(A) :=

|PD−MLWE
0 − PD−MLWE

1 |, where:
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PD−MLWE
0 = Pr[b = 1 : A← Rn×m

q , (s1, s2)← χ(Sm
η ×Sn

η ), t := As1+s2, b←
A(A, t)]

PD−MLWE
1 = Pr[b = 1 : A← Rn×m

q , t← Rn
q , b← A(A, t)].

Definition 2 (Computational Module-LWE). Let χ be a probability dis-
tribution and n,m ∈ Z. We define the advantage of adversary A in breaking
computational Module-LWE for the set of parameters (q, n,m, η, χ) as follows:

AdvC−MLWE
(q,n,m,η,χ)(A) := Pr[s1 = s′1 : A ← Rn×m

q , (s1, s2) ← χ(Sm
η × Sn

η ), t :=

As1 + s2, s
′
1 ← A(A, t)].

Definition 3 (Module-SIS). Let χ be a probability distribution and n,m ∈ Z.
We define the advantage of adversary A in breaking Module-SIS for the set of
parameters (q, n,m, η) as follows:

AdvMSIS
(q,n,m,η)(A) := Pr[

[
A|I

]
· x = 0 and 0 < ∥x∥∞ ≤ η : A ← Rn×m

q ,x ←
A(A)].

1.5 Commitment scheme

In this section, we present a description of an additively homomorphic commit-
ment scheme that is used in our protocol. Definitions in this section are adapted
from [9].

Definition 4 (Commitment scheme). A commitment scheme consists of the
following algorithms:

– ComSetup(1λ) is an algorithm that takes as input security parameter λ and
outputs a public set of parameters par that define set of commitment keys
K, message set M, set of random elements R and set of commitments C.

– ComKeyGen(par) is a key generation algorithm that takes as input set of
parameters par and outputs a commitment key ck ∈ K.

– Commitck(m, r) is an algorithm that takes as input a message m ∈ M and
a randomness r ∈ R and outputs a commitment c ∈ C.

– Openck(m, r, c) is an algorithm that outputs 1 if the input contains a valid
commitment on a message m and outputs 0 otherwise.

Definition 5 (Hiding). We define the advantage of a probabilistic polynomial
time adversary A in breaking the hiding property of the commitment scheme as
AdvHiding(A) := |PHiding

0 − PHiding
1 |, where:

PHiding
0 = Pr[b = 1 : par ← ComSetup(1λ), ck ← ComKeyGen(par),m0,m1 ←

A(par, ck), c← Commitck(m0), b← A(c)]

PHiding
0 = Pr[b = 1 : par ← ComSetup(1λ), ck ← ComKeyGen(par),m0,m1 ←

A(par, ck), c← Commitck(m1), b← A(c)]

Definition 6 (Binding). We define the advantage of a probabilistic polynomial
time adversary A in breaking the binding property of the commitment scheme as
follows:

AdvBinding(A) := Pr[m ̸= m′ ∧ Openck(m, r, c) = 1 ∧ Openck(m
′, r′, c) = 1 :

par ← ComSetup(1λ), ck ← ComKeyGen(par), (m, r, c,m′, r′)← A(par, ck)].
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Definition 7 (Uniform key). A commitment scheme is called uniform if the
output of the key generation algorithm ComKeyGen(par) is distributed uniformly
over the set of commitment keys K.

Definition 8 (Min-entropy). A commitment scheme is said to have at least
ξ-bits of min-entropy if for all ck ∈ K and m ∈M

ξ ≤ − logmaxc∈C Pr[Commitck(m, r) = c : r ← R] .

Let c← Commitck(m) (computed with r) and c′ ← Commitck(m
′) (computed

with r′). A commitment scheme is additively homomorphic if for any m,m′ ∈M
it holds that Openck(c+ c′,m+m′, r + r′) = 1.

Figure 1 presents an additively homomorphic commitment scheme that is
used in our construction from Baum et al. [3]. At the beginning, the ComSetup(1λ)
algorithm is invoked that outputs set of parameters par = (q, n, k, l, β,B).

ComKeyGen(par) :

1. A′
1 ← R

n×(k−n)
q ,

A1 =
[
In A′

1

]
∈ Rn×k

q

2. A′
2 ← R

l×(k−n−l)
q

A2 =
[
0l×n In A′

2

]
∈ Rl×k

q

3. return ck := (A1,A2)

Commitck(m ∈ Rl
q, r← Sk

β ):

1. com :=

[
c1
c2

]
=

[
A1

A2

]
· r+

[
0n

m

]
2. return com

Openck(m, com, r) :

1. if
[
c1
c2

]
=

[
A1

A2

]
· r +

[
0n

m

]
and

∥r∥2 ≤ B return 1
2. else return 0

Fig. 1. Commitment scheme from [3]

1.6 Dilithium

Dilithium is a lattice-based signature scheme that is constructed from identi-
fication protocol using Fiat-Shamir with aborts approach [11]. Dilithium uses
supporting algorithms that extract high-order and low-order bits out of each
coefficient of an element from the ring Rq. Decomposeq(·) decomposes input r

to r = rH · α + rL, such that 0 ≤ rH < (q−1)
α and ∥rL∥∞ ≤ α

2 . To apply
Decomposeq(·) algorithm to an element (or vector of elements) from the ring Rq,
one needs to apply Decomposeq(·) on each coefficient separately.

Figure 2 presents a non-optimized version of Dilithium signature scheme [11]
and supporting algorithms, on which the distributed signature protocol presented
in this work is based. The challenge space C = {c ∈ Rq : ∥c∥∞ = 1 and ∥c∥2 =√
τ} is parameterised by τ and consists of polynomials with small infinity norm.
C is used as the image of the random oracle H0.
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Decomposeq(r, α):
1. r := r mod q
2. rL := r mod ±α
3. if r − rL = q − 1,

then rH := 0, rL := rL − 1
4. else rH := r−rL

α
5. return (rL, rH)

HighBitsq(r, α):
1. (rL, rH) := Decomposeq(r, α)
2. return rH

LowBitsq(r, α):
1. (rL, rH) := Decomposeq(r, α)
2. return rL

KeyGen(par) :
1. A← Rk×l

q

2. (s1, s2)← Sl
η × Sk

η

3. t := As1 + s2
4. return pk = (A, t),

sk = (A, t, s1, s2)

Sign(sk,m):

1. z :=⊥
2. while z =⊥ do:

(a) y← Sl
γ−1

(b) wH := HighBitsq(Ay, 2γ′)

(c) c := H0(m,wH) ∈ C
(d) z := y + cs1
(e) if ∥z∥∞ ≥ γ − β or
∥LowBitsq(w − cs2, 2γ

′)∥∞ ≥
γ′ − β, then z :=⊥

3. return σ = (z, c)

Verify(m,σ, pk) :

1. w′
H := HighBitsq(Az− ct, 2γ′)

2. if ∥z∥∞ < γ − β and c =
H0(m,w′

H) return 1
3. else return 0

Fig. 2. Dilithium signature scheme

2 Our scheme

In this section, we introduce our two party signature scheme. Table 1 describes
parameters for our signature scheme.

Parameter Description
q ring modulus
d degree of polynomials

(k, l) dimensions of public matrix A
(ncom, lcom, kcom) dimensions of matrices in the commitment scheme

γ size bound of the coefficients in the masking vector share; ≈ maximum
coefficients of signature share

γ′ 2γ′|(q − 1); maximum coefficients of LowBitsq(·) output
β maximum coefficients of shares of cs1 and cs2
τ number on nonzero elements in the output of hash function H0

α size bound of the coefficients in the random vector from the commit-
ment scheme

Table 1. Description of parameters

Key Generation Before starting the key generation protocol, both parties invoke
a Setup(1λ) (with λ being a security parameter) algorithm that outputs a set of
public parameters par that are defined in Table 1.
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The first party’s view of the key generation protocol is presented in Figure 3;
the second party’s actions are symmetric. The parties start with jointly generat-
ing A. The parties sample their shares of the matrix and exchange hash commit-
ments on their shares H1(Ai), this prevents a malicious party from choosing their
share based on the share of the honest party. Upon receiving the commitment
from the other party, they proceed by revealing matrix shares and verifying that
the commitment was opened correctly. If the verification succeeds, parties de-
rive a combined matrix A. The next step consists of generating secret key shares
(si1, s

i
2) and computing shares of a public vector ti. As in the previous step, par-

ties exchange hash commitments H2(ti), and only upon receiving a commitment
from the other party, exchange vector shares ti. Parties proceed by verifying
commitment opening and computing the second part of the public key t.

Signing The formal definition of the signing protocol is presented in Figure 3.
The first step of the signing protocol consists of generating a value that will
be hashed to get a challenge c ∈ C in the underlying identification protocol.
Parties cannot straightforwardly exchange their vectors wi because of several
reasons. Firstly, if wi becomes revealed before the signature share gets rejected,
wi may leak some information about the secret key. Although there are no
known attacks in the literature, the security proof of such a scheme would need
to rely on a non-standard security assumption called Rejected Module-LWE,
as was done in [15]. Secondly, if one of the parties knows wi and zi of the
other party, they can extract csi2 from zi and retrieve a part of the other party’s
secret key si2. Therefore, the parties exchange commitments ci, which are opened
only if the signature shares pass the rejection sampling. Those commitments
are aggregated using the homomorphic property of the commitment scheme,
resulting value serves as input to the hash function H0 to compute a challenge
c ∈ C. However, instead of exchanging commitments in the first communication
rounds, the parties exchange a hash of their commitments H3(ci). This step is
analogous to the step in the key generation protocol, without it an adversary
could adaptively choose a malicious c′i after seeing the honest party’s share. In
the final communication round, the parties exchange their signature shares zi
together with the randomness ri used to generate commitments. Finally, parties
need to compute hint value h at Step 18 which helps to accommodate bit carry
that can occur when adding high order bits of wi.

Verification The formal definition of the verification algorithm is presented in
Figure 3. The verification algorithm in our scheme is different from the origi-
nal Dilithium verification because we introduce additional components to the
signature.

Hint correctness Let us denote α = 2γ′. Given a number x ∈ Zq, we can write
it x ≡ xH · α+ xL (mod q), where

(xH , xL) ∈
{
0, . . . ,

q − 1

α
− 1

}
×
{
−α

2
+ 1, . . . ,

α

2

}
∪
{(

0,−α

2

)}
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KeyGenP1
(par) :

1. A1 ← Rk×l
q

2. −→ P2 : hk1 := H1(A1)
←− P2 : hk2 := H1(A2)

3. −→ P2 : A1

←− P2 : A2

4. if H1(A2) ̸= hk2,
send out ABORT message

5. A := A1 +A2

6. (s11, s
1
2)← Sl

η × Sk
η

7. t1 := As11 + s12
8. −→ P2 : comk1 := H2(t1)
←− P2 : comk2 := H2(t2)

9. −→ P2 : t1
←− P2 : t2

10. if H2(t2) ̸= comk2,
send out ABORT message

11. t := t1 + t2
12. output: sk1 = (A, t2, s

1
1, s

1
2),

pk = (A, t)

Hint(r, r′, α) :

1. h := r− r′

2. h1 := ⌊ h
α−1
⌋

3. h2 := h mod ± α
2

4. return (h1,h2)

UseHint(r,h1,h2, α) :

1. h := h1 · α+ h2

2. r′ := r− h
3. return r′

SignP1
(sk1,m)

1. ck ← H4(m, pk)

2. y1 ← Sl
γ−1, w1 := Ay1

3. wH
1 := HighBitsq(w1, 2γ

′)

4. r1 ← Sκ
α

5. c1 := Commitck(w
H
1 , r1)

6. −→ P2 : h1 := H3(c1)

←− P2 : h2 := H3(c2)

7. −→ P2 : c1
←− P2 : c2

8. if H3(c2) ̸= h2,
send out ABORT message

9. c := c1 + c2, c := H0(m, c, pk)

10. z1 := y1 + cs11
11. if ∥z1∥∞ ≥ γ − β

or ∥LowBitsq(w1 − cs12, 2γ
′)∥∞ ≥

γ′ − β,
send out RESTART message

12. −→ P2 : (z1, r1)

←− P2 : (z2, r2)

13. wH
2 := HighBitsq(Az2 − ct2, 2γ

′)

14. if Openck(c2,w
H
2 , r2) ̸= 1,

send out ABORT message
15. z := z1 + z2, r := r1 + r2

16. ŵH = wH
1 +wH

2

17. if ∥LowBitsq(Az − ct, 2γ′)∥∞ ≥
γ′ − 2β,
send out RESTART message

18. wH := HighBitsq(Az− ct, 2γ′),

19. h := (h1,h2) = Hint(ŵH ,wH , q−1
2γ′ )

20. output: σ = (z, c, r,h)

Verify(m,σ, pk) :
1. Derive a commitment key ck := H4(m, pk)
2. Derive a challenge c := H0(m, c, pk)
3. wH := HighBitsq(Az− ct, 2γ′)

4. ŵH := UseHint(wH ,h1,h2,
q−1
2γ′ )

5. if Openck(c, ŵ
H , r) = 1 and ∥z∥∞ < 2(γ − β) return 1

6. else return 0
Fig. 3. Specification of our two-party signature scheme

and this choice of (xH , xL) is unique. The values xH and xL are the high bits
and low bits of x. Let x1, x2 ∈ Zq. We want to find the possible values of
h := (xH

1 + xH
2 )− ((x1 + x2) mod q)H . We have

((x1 + x2) mod q)H = (((xH
1 + xH

2 ) · α+ xL
1 + xL

2 ) mod q)H ;
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Consider the following cases. In the following we assume that x1, x2 ∈ {0, . . . , q−
1}.

– x1 ≥ q − α
2 , x2 ≥ q − α

2 . In this case, xH
1 = xH

2 = 0, and (x1 + x2)
H ∈

{ q−1α − 1, 0}. Hence h ∈ {0,− q−1
α + 1}.

– x1 ≥ q− α
2 , x2 < q− α

2 . In this case, xH
1 = 0. The value (x1 + x2)

H is either
equal to xH

2 , or to xH
2 − 1; it cannot shift by more than that, when adding

x1 to x2. Hence h ∈ {0, 1}.
– x1 < q − α

2 , x2 ≥ q − α
2 . This is symmetric to previous case.

– x1 < q− α
2 , x2 < q− α

2 , x1 +x2 < q− α
2 . Then h ∈ {−1, 0, 1}, depending on

the segment into which xL
1 + xL

2 falls. If xL
1 + xL

2 ∈ [α2 + 1, α], then h = −1.
If xL

1 + xL
2 ∈ [−α + 2,−α

2 ], then h = 1. If xL
1 + xL

2 falls somewhere in the
middle, then h = 0.

– x1 < q− α
2 , x2 < q− α

2 , x1+x2 ≥ q− α
2 . In this case, (x1+x2)

H “rolls over”,
the roll-over is by q−1

α . We get h ∈ { q−1α − 1, q−1
α , q−1

α + 1}.

Hence there are seven possible values for h:

h ∈ {−q − 1

α
+ 1,−1, 0, 1, q − 1

α
− 1,

q − 1

α
,
q − 1

α
+ 1} .

When we calculate hint, for each integer coefficient h of h := ŵH −wH we
produce two values:

1. h1 := h
( q−1

α −1)
=


−1 for h ∈ {− q−1

α + 1}
0 for h ∈ {−1, 0, 1}
1 for h ∈ { q−1α − 1, q−1

α , q−1
α + 1}

. This component

indicates whether the roll-out by q−1
α happened and whether it results in

negative or positive number.

2. h2 := h mod ± q−1
2α =


−1 for h ∈ { q−1α − 1, 1}
0 for h ∈ {0, q−1

α }
1 for h ∈ {− q−1

α + 1, 1, q−1
α + 1}

. This compo-

nent indicates whether the bit carry happened.

When we use the hint, we firstly scale component h1 by q−1
α to perform

roll-out for those coefficients where it is needed. And then we add component
h2 which accommodates bit carry. Therefore we get back all the seven possible
values of h.

Thus, it holds that

UseHint(wH ,Hint(wH , ŵH ,
q − 1

α
),
q − 1

α
) = ŵH = wH

1 +wH
2 . (1)

Signature scheme correctness Let us examine two verification conditions sepa-
rately. The first check is Openck(c, ŵ

H , r) = 1, where

c = c1+c2 = Commitck(w
H
1 , r1)+Commitck(w

H
2 , r2) = Commitck(w

H
1 +wH

2 , r1+r2)
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ŵH = UseHint(wH ,h1,h2,
q − 1

2γ′
) = UseHint(wH ,Hint(wH , ŵH ,

q − 1

2γ′
),
q − 1

2γ′
)

equation 1
= wH

1 +wH
2

Therefore, we have Openck(Commitck(w
H
1 +wH

2 , r1+r2),w
H
1 +wH

2 , r1+r2) = 1.
Second verification condition is ∥z∥∞ < 2(γ−β). As all the rejection sampling

steps have been successfully passed, it holds that ∥zi∥∞ < γ − β. It follows that
∥z∥∞ = ∥z1 + z2∥∞ ≤ ∥z1∥∞ + ∥z2∥∞ < γ − β + γ − β = 2(γ − β).

Finally, note that wH
i = HighBitsq(Azi−cti, 2γ′) = HighBitsq(wi−csi2, 2γ′)

lemma 1
=

HighBitsq(wi, 2γ
′).

3 Security

Definition 9 (Existential Unforgeability under Chosen Message At-
tack). Distributed signature protocol is Existentially Unforgeable under Chosen
Message Attack (DS-UF-CMA) if for any probabilistic polynomial time adver-
sary A, its advantage of creating a successful signature forgery is negligible.
The advantage of A is defined as a probability of winning in the experiment
ExpDS−UF−CMA given in Fig. 4:

AdvDS−UF−CMA(A) := Pr[ExpDS−UF−CMA(A)→ 1].

ExpDS−UF−CMA(A):
1. M← ∅
2. kgen := false
3. par ← Setup(1λ)
4. (m∗, σ∗)← ADSn(·)(par)
5. b← Verify(m∗, σ∗, pk)
6. if b = 1 and m∗ /∈M: return 1
7. else return 0

Fig. 4. Experiment ExpDS−UF−CMA(A)

The main idea of our security proof relies on a similar proof from [9], we
show that given an adversary that succeeds in creating a valid forgery with
non-negligible probability one can break the computational binding of the com-
mitment scheme or Module-SIS assumption.

Theorem 1. Assume a commitment scheme is computationally binding, compu-
tationally hiding, uniform, additively homomorphic, and has ξ-bit min-entropy.
Then for any probabilistic polynomial time adversary A that makes a single query
to the key generation oracle, Qs queries to the signing oracle, and Qh queries
to the random oracles H0,H1,H2,H3,H4, the distributed signature protocol is
DS-UF-CMA secure in the random oracle model under decisional Module-LWE
assumption for parameters (q, k, l, η, U), and Module-SIS assumptions for pa-
rameters (q, k, l + 1, 4(γ − β)).
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Proof. Let us have an adversary A against distributed signature protocol. We
construct an algorithm S around A that simulates the behaviour of an honest
party in the protocol and does not use an actual secret key of the honest party. S
will use instructions from SimKeyGen(·) and SimSign(·) oracles defined in Figure
6 and Figure 7 respectively. We construct SimKeyGen(·) and SimSign(·) through
the sequence of intermediate games and for each game, we evaluate its difference
from the previous one starting from KeyGen(·) and Sign(·) defined in Figure 3.
Each intermediate game is detailed in the full version.

– Game 0: S interacts with A using instructions of KeyGen(·) and Sign(·).
– Game 1: we only change the signing process of S with respect to the previous

game. The challenge c is sampled uniformly at random from the set C. S
calculates signature share zn without communicating with A. Upon receiving
hi, S runs SearchHash(HT3, hi) to find a preimage ci and calculates c =
cn+ci. Finally, S programs random oracle H0 to respond the query (m, c, pk)
with the value c.

– Game 2: we make the following changes to the signing process. If ∥z1∥∞ ≥
γ − β, then sample wn ← Rk

q . Else define wn := Ayn with yn ← Sl
γ−1. S

proceeds as before by committing to high order bits of wn and sending hash
of corresponding commitment H3(cn) to A, where cn := Commitck(w

H
n , rn)

and rn ← Sκ
α.

– Game 3: S does not generate signature share zn and does not perform
first rejection sampling check (whether ∥z1∥∞ < γ− β). Instead S simulates

rejection sampling. With probability 1 − |S
k
γ−β−1|
|Sl

γ−1|
, sample wn ← Rk

q . With

probability |S
k
γ−β−1|
|Sl

γ−1|
, sample zn ← Sl

γ−β−1 and define wn := Azn−c(tn−sn2 ).
– Game 4: we completely remove the usage of the secret key from the signing

process. Therefore, in case of no rejection (with probability |S
k
γ−β−1|
|Sl

γ−1|
), w′n :=

Azn − ctn.
– Game 5: we start changing the key generation process. S is given random

A, S samples hkn ← {0, 1}l1 and sends it to A. Upon receiving hki, S runs
SearchHash(HT1, hki) to find a preimage Ai and calculates An := A −Ai.
Finally, S programs random oracle H1 to respond the query An with hkn.

– Game 6: we continue changing the key generation process. S samples tn ←
Rk

q , instead of computing tn := Asn1 + sn2 .
– Game 7: S gets as an input a random final public key t ∈ Rk

q , S samples
comkn ← {0, 1}l2 and sends it to A. Upon receiving comki from A, S runs
SearchHash(HT2, comki) to find a preimage ti and calculates tn := t − ti.
Finally, S programs random oracle H2 to respond the query tn with comkn.

Our next step is to embed an instance of Module-SIS [A′|I] and a challenge
commitment key ck⋆ ← ComKeyGen(par) to our proof. The final description of
algorithm S is given in Figure 5. We define an input generation algorithm IG
for the forking lemma (Lemma 3) such that it outputs a tuple (A, t, ck⋆). We
proceed by constructing an algorithm B around S that either breaks the binding
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of the commitment scheme with respect to ck⋆ or finds a solution to Module-SIS
on input A′ = [A|t].

Random oracle simulation:
– H0(x): Parse input as (m, c, pk); Make query H4(m, pk); If HT0[c,m, pk]

is not set, increment counter ctr and set HT0[c,m, pk] := hctr; Return
HT0[c,m, pk].

– H1(x): If HT1[x] is not set, set HT1[x]← {0, 1}l1 ; Return HT1[x].
– H2(x): If HT2[x] is not set, set HT2[x]← {0, 1}l2 ; Return HT2[x].
– H3(x): If HT3[x] is not set, set HT3[x]← {0, 1}l3 ; Return HT3[x].
– H4(x): Parse input as (m, pk); If HT4[m, pk] is not set, with probability

ω set HT4[m, pk] ← K, with probability (1 − ω), set HT4[m, pk] := ck⋆;
Return HT4[m, pk].

SearchHash(HT, h) :
1. For value h, find its preimage m in the hash table such that HT[m] = h.
2. If preimage of value h does not exist, set flag alert and set preimage m =⊥.
3. If for value h more than one preimage exists in hash table HT, set flag bad.
4. Output: (m,alert, bad)

Honest party oracle simulation: A makes a query to the honest party
oracle. S interacts with A using instructions defined in the Figure ??, but in-
stead of invoking KeyGenPn

(·) and SignPn
(·) protocols, S invokes SimKeyGen(·)

(Figure 6) and SimSign(·) (Figure 7) respectively.

Forgery: A outputs a forgery (m∗, σ∗ = (z∗, c∗, r∗,h∗)). Given a forgery, S
proceeds follows:
1. If m∗ /∈M, return (0,⊥).
2. Derive ck∗ ← H4(m

∗, pk) and c∗ ← H0(m
∗, c∗, pk). Compute ŵH =

HighBitsq(Az∗ − c∗t, γ′)− h∗.
3. If Openck(c

∗, ŵH , r∗) ̸= 1 or ∥z∗∥∞ ≥ 2(γ − β), return (0,⊥). If
HT4[m

∗, pk] ̸= ck⋆, return (0,⊥).
4. Find if ∈ [Qh + Qs + 1] such that c∗ = hif and return (if , out =

(z∗, c∗, r∗,h∗, c∗,m∗, ck∗))

Fig. 5. Final description of the algorithm S

Algorithm B invokes the forking algorithm F (Figure 8) on input (A, t, ck⋆).
With probability frk we obtain two valid forgeries out = (z∗, c∗, r∗,h∗, c∗,m∗, ck∗)
and out′ = (z′, c′, r′,h′, c′,m′, ck′).

By the construction of the forking algorithm, it holds that all the values
generated before the fork are the same in both forgeries: c∗ = c′, m∗ = m′ and
ck∗ = ck′ = ck⋆. We also know that c∗ ̸= c′ by the definition of the forking algo-
rithm. Therefore, it holds that Openck∗(c∗, ŵH∗ , r∗) = Openck∗(c∗, ŵH′ , r′) = 1,
where

ŵH∗ = UseHint(wH∗,h∗1,h
∗
2,

q − 1

2γ′
) = wH∗

1 +wH∗
2
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SimKeyGen(par,A, t) :
1. Sample hkn ← {0, 1}l1 , send out hkn
2. Upon receiving hki:

(a) (alert, bad4,Ai)← SearchHash(HT1, hki).
(b) if bad4 is set, return (0,⊥).
(c) if alert is set, sample An ← Rk×l

q . Otherwise, define An := A−Ai.
(d) Set HT1[An] := hkn. If HT1[An] has been already set, then set the flag

bad5 and return (0,⊥).
(e) Send out An.

3. Upon receiving Ai:
(a) if H1(Ai) ̸= hki, send out ABORT.
(b) if alert is set and H1(Ai) = hki, set the flag bad6 and return (0,⊥).

4. Sample comkn ← {0, 1}l2 , send out comkn
5. Upon receiving comki:

(a) (alert, bad7, ti)← SearchHash(HT2, comki).
(b) if bad7 is set, return (0,⊥).
(c) if alert is set, sample tn ← Rk

q . Otherwise, define tn := t−Ai.
(d) Set HT2[tn] := comkn. If HT2[tn] has been already set, then set the

flag bad8 and return (0,⊥).
(e) Send out An.

6. Upon receiving ti:
(a) if H2(ti) ̸= comki, send out ABORT.
(b) if alert is set and H2(ti) = comki, set the flag bad9 and return (0,⊥).

Fig. 6. Simulator for the key generation protocol

ŵH′ = UseHint(wH′
,h′1,h

′
2,

q − 1

2γ′
) = wH′

1 +wH′

2

There are two cases – ŵH∗ ̸= ŵH′ (Case 1) and ŵH∗ = ŵH′ (Case 2). From
the first case it follows that A has found two valid openings for the commitment
c∗ under the same commitment key ck⋆. This means that A has broken the
binding property of the commitment scheme.

In the second case, we have wH∗
1 +wH∗

2 = wH′

1 +wH′

2 . We can rewrite it as
follows

(Az∗1−c∗t1+x∗1)+(Az∗2−c∗t2+x∗2) = (Az′1−c′t1+x′1)+(Az′2−c′t2+x′2),
where for each x ∈ {x∗1,x∗2,x′1,x′2} it holds that ∥x∥∞ < γ′−β. After rearranging
the equation above we get

A(z∗1 + z∗2)− c∗(t1 + t2) + (x∗1 + x∗2) = A(z′1 + z′2)− c′(t1 + t2) + (x′1 + x′2)
⇒ Az∗− c∗t+x∗ = Az′− c′t+x′ ⇒ A(z∗− z′)+ t(c′− c∗)+ (x∗−x′) = 0.

Finally we obtain the following equation

[A|t|I] ·

z∗ − z′

c′ − c∗

x∗ − x′

 = 0, (2)

where [A|t|I] is an instance of Module-SIS problem, ∥z∗ − z′∥∞ ≤ 4(γ − β),
∥x∗−x′∥∞ ≤ 4(γ′−β) and ∥c′−c∗∥∞ = 2. It means that A has found a solution
for Module-SIS problem with parameters (q, k, l + 1, δ), where δ = ∥z∗ − z′∥∞.
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SimSign(tn, pk,m) :
1. c← C
2. With probability

|Sk
γ−β−1|
|Sl

γ−1|
sample zn ← Sl

γ−β−1 and set wn := Azn− ctn.

Otherwise set wn ← Rk
q

3. wH
n := HighBitsq(wn, 2γ

′)

4. rn ← Sκ
α and cn := Commitck(w

H
n , rn), send out hn := H3(cn)

5. Upon receiving hi:
– (ci, alert, bad1)← SearchHash(HT3, hi)
– if bad1 is set, return (0,⊥)
– if alert is set, then send out cn
– else c = cn + ci. Set HT0[m, c, pk] := c. If HT0[m, c, pk] has been

already set, then set the flag bad2 and return (0,⊥). Send out cn.
6. Upon receiving ci:

(a) if H3(ci) ̸= hi, send out ABORT
(b) if the flag alert is set and H3(ci) = hi, set the flag bad3 and return

(0,⊥).
(c) otherwise, send out (zn, rn). Upon receiving RESTART, go to step 1.

7. Upon receiving (zi, ri):
(a) wH

2 := HighBitsq(Az2 − ct2, 2γ
′)

(b) if Openck(c2,w
H
2 , r2) ̸= 1, send out ABORT message

(c) z := z1 + z2, r := r1 + r2

(d) ŵH = wH
1 +wH

2

(e) if ∥LowBitsq(Az− ct, 2γ′)∥∞ ≥ γ′ − 2β, send out RESTART message
(f) wH := HighBitsq(Az− ct, 2γ′)

(g) h := (h1,h2) = Hint(ŵH ,wH , q−1
2γ′ )

Fig. 7. Simulator for the signing protocol

4 Evaluation

We have implemented our two-party signature scheme in Java 17 with the
Bouncy Castle library for SHAKE256 implementation using parameters pre-
sented in Table 2. The running time average for 1000 executions is 1.48 ms for
key generation, 174.65 ms for signing, and 1.18 ms for verification running on
a laptop with AMD Ryzen 5 PRO 3500U 2.1 GHz CPU and 16 RAM. Note
that the running time for key generation and signing does not take into account
network delay to transmit intermediate messages from the client to the server,
which should also be scaled by the number of rejections in case of signing. The
average number of rejections for 1000 executions is around 101.55. The size of
the private key share is 8864 bytes, the size of the public key is 2976 and the size
of the signature is 21120 bytes. Presented sizes and number of rejections can be
potentially optimised through the right choice of parameters, which is left for
future work.
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Parameter Value
q (the same for signature and commitment) 8380417

d 256
(k, l) (4, 4)
γ 217

γ′ q − 1

88
β 78
τ 39

(ncom, lcom, kcom) 5, 4, 15
α 256

Table 2. Parameters chosen for implementation
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A Supporting lemmas

The following two lemmas that are adapted form [11] and required for the
Dilithium signature scheme correctness and security.

Lemma 1 ([11], Lemma 2). If ∥s∥∞ ≤ β and ∥LowBitsq(r, α)∥∞ ≤ α
2 − β,

then HighBitsq(r, α) = HighBitsq(r + s, α).

Lemma 2 ([17], Lemma 4.3). Let (s1, s2) ∈ Sl
η × Sk

η . If ∥cs∥∞ ≤ β then the
following holds:

For any c ∈ C and z ∈ Sk
γ−β−1

Pr
y←Sl

γ−1

[z = y + cs1] = Pr
y←Sl

γ−1

[y = z− cs1] =
1

|Sl
γ−1|

, (3)

Pr
y←Sl

γ−1

[y + cs1 ∈ Sk
γ−β−1] =

|Sk
γ−β−1|
|Sl

γ−1|
. (4)

Lemma 3 (General forking lemma [4]).
Fix an integer Q ≥ 1 to be the number of queries. Fix set C of size |C| ≥

2. Let B be a randomised algorithm that takes as input x, h1, . . . , hQ, where
h1, . . . , hQ ∈ C, and returns a pair (i, out) where i is an index (integer in the
range {0, . . . , Q}) and out is a side output. Let IG be a randomised input gener-
ation algorithm. Let F be a forking algorithm connected with B that is defined in
Figure 8.

Let us define the following probabilities:
acc := Pr[i ̸= 0 : x← IG, h1, . . . , hQ ← C, (i, out)← B(x, h1, . . . , hQ)]
frk = Pr[b = 1 : x← IG; (b, out, out′)← F(x)]

Then, frk ≥ acc ·

(
acc

Q
−

1

|C|

)
. Alternatively,

acc ≤
Q

|C|
+
√
Q · frk (5)

F(x) :
1. pick random coins ρ for B
2. h1, . . . , hQ ← C
3. (i, out)← B(x, h1, . . . , hQ; ρ)
4. if i = 0, return (0,⊥,⊥)
5. regenerate h′

i, . . . , h
′
Q ← C

6. (i′, out′)← B(x, h1, . . . , hi−1, h
′
i, . . . , h

′
Q; ρ)

7. if i = i′ and hi ̸= h′
i, return (1, out, out′)

8. else return (0,⊥,⊥)
Fig. 8. Forking algorithm
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