
Faster Non-interactive Verifiable Computing

Pascal Lafourcade1, Gael Marcadet1, and Léo Robert1

Université Clermont-Auvergne, CNRS,
Mines de Saint-Étienne, LIMOS,
63000 Clermont-Ferrand, France.

firstname.lastname@uca.fr

Abstract. In 1986, A.Yao introduced the notion of garbled circuits, de-
signed to verify the correctness of computations performed on an un-
trusted server. However, correctness is guaranteed for only one input,
meaning that a new garbled circuit must be created for each new input.
To address this drawback, in 2010 Gennaro et al. performed the evalu-
ation of the garbled circuit homomorphically using Fully Homomorphic
Encryption scheme, allowing to reuse the same garbled circuit for new in-
puts. Their solution requires to encrypt the garbled circuit at every new
input. In this paper, we propose a verifiable-computation scheme allow-
ing to verify the correctness of computations performed by an untrusted
server for multiple inputs, where the garbled circuit is homomorphically
encrypted only once. Hence, we have a faster scheme comparing to Gen-
naro’s solution, since for each new input, we reduce the computations by
the size of the circuit representing the function to be computed, for the
same security level. The key point to obtain this speed-up is to rely on
Multi-Key Homomorphic Encryption (MKHE) and then to encrypt only
once the garbled circuit.

1 Introduction

With the Cloud-As-A-Service model, clients are interested to outsource their
computations on an external cloud managed by a third-party. One goal is to
limit the cost due to the maintenance and ensure security of the architecture.
Two problems are faced by the client when computations are outsourced: cor-
rectness and privacy. The client wants a result computed as expected, even if
computations are performed on a cloud. In addition, the client wants to keep
the ownership of the data, meaning that the cloud should not learn any in-
formation from the input, the output but also all intermediate computations.
Many applications require to perform verifiable computation, such that billing
systems [PHCP13] or e-voting [Cha04,CRS05].

The Fully Homomorphic Encryption (FHE), introduced for the first time by
Gentry [Gen09], allows a server to perform any computations over encrypted
data without relying on a decryption key. A typical use-case of FHE is the del-
egation of a computation from a client to a semi-trusted server which follows
a protocol as expected but could try to learn as much information as possible.
FHE schemes can be improved in two ways, either increasing the performance

of homomorphic operations, or introducing new features such as Multi-Key Ho-
momorphic Encryption (MKHE). Intuitively, MKHE allows a server to perform
a computation over two (or more) encrypted inputs, encrypted under different
keys.

A verifiable-computation scheme allows a client to verify the computation
f(x) = y of a function f over an input x, performed by a malicious server.
In a verifiable-computation scheme, the server performs the function f over σx
instead over x, preventing the server to learn some information about the input
x. The server computes σy the encoding of y = f(x) by using the verifiable-
computation scheme. At the end, if the computations done by the server are
valid, then the client can to retrieve f(x) = y from σy, else the client can detect
that the computed result is malformed.

In 1986, Andrew Yao introduced the notion of garbled circuit [Yao86], a
verifiable-computation scheme designed to verify the computation of f(x) per-
formed by a malicious server, for any function f represented as a boolean circuit
and any input x. A boolean circuit is a set of gates (e.g., AND, XOR) connected
together with wires, allowing to transmit the value of a bit from a gate to an-
other. Each gate takes two input wires and outputs a single output wire. The
value provided to the input wires of the first gates of the circuit is the binary
representation of the input x. The output wires of the last gates of the circuit
output the binary representation of the output f(x). In a garbled circuit, the
encoding of the input x, denoted σx, is constructed via Oblivious Transfer and
symmetric encryption scheme which is required to be Yao-Secure. We depict in
Fig. 1 the general workflow of a protocol using garbled circuits.

Client Server

x

(1) garbled circuit of f

(2) σx

(3) σy = f(σx)

(4) Verify(σy) = f(x) or ⊥

Fig. 1: Overview of garbled circuits for delegation of y = f(x). By σx, σy we
denote respectively to the encoding of x, y. The Verify function returns f(x) if
given encoding is correct, ⊥ if encoding σy is incorrect, meaning that the server
has returned an invalid result.

The computation of f(x) are delegated using a garbled circuit; the client
starts by creating the boolean circuit simulating f . For the sake of clarity, let
f(a, b) = a ∧ b the boolean circuit representing the AND function, taking two
input bits a and b, producing 1 if a = b = 1 else 0.

2

AND
a

b
AND(a, b)

wa

wb

wz

Fig. 2: Boolean circuit of the AND gate.

The AND gate, represented in Fig. 2, is composed of two input wires denoted
wa and wb used to transmit the bit value of a and b respectively, to the gate.
The output wire denoted wy, which handles the value of the bit computed by the
AND gate corresponds to AND(a, b). Yao’s idea to prevent the server to learn
information about bit that the server handles, is that for each wire w composing
the boolean circuit of f , we pick two uniformly chosen random labels denoted
k0w and k1w, corresponding to 0 and 1 respectively. Note that labels are defined
in higher space than bit. As an example, for the wire wa, we have two labels
k0wa

and k1wa
. We replace each bit by its corresponding label. Hence, instead of

sending bits a and b to the server, the client sends kawa
and kbwb

the encoding
respectively of a and b. Since the server sees only the encoding of the inputs and
not the inputs itself, and since each label is randomly chosen, the serve cannot
infer the real values of the inputs a and b.

AND

kawa

kbwb

k
AND(a,b)
wz

wa

wb

wz

Fig. 3: Boolean circuit of the AND gate where each bit has been replaced by a
random label.

Instead of computing f(a, b), the server computes f(kawa
, kbwb

) which is in-
tuitively difficult since the boolean circuit f works only over bits and not over
labels.

wa wb wz wa wb wz Garbled Table (known by the server)

0 0 0 k0wa
k0wb

k0wz
γ00
AND = Enck0wa

(Enck0wb
(k0wz

))

0 1 0 k0wa
k1wb

k0wz
γ01
AND = Enck0wa

(Enck1wb
(k0wz

))

1 0 0 k1wa
k0wb

k0wz
γ10
AND = Enck1wa

(Enck0wb
(k0wz

))

1 1 1 k1wa
k1wb

k1wz
γ11
AND = Enck1wa

(Enck1wb
(k1wz

))

Fig. 4: The left table corresponds to the truth table for AND gate. The middle
table corresponds to the truth table where for each wire w ∈ {wa, wb, wz},
we have replaced 0 (resp. 1) to uniformly chosen random label k0w (resp. k1w).
Note that the two leftmost tables are not known by the server. The right table
corresponds to the garbled table of the gate AND which is sent to the server.

3

The execution of the AND gate over labels is possible by considering the
usage of a symmetric encryption scheme. For each gate, we construct four ci-
phertexts, one ciphertext for each possible AND result. By garbled table, we
denote the set of four ciphertexts. In Fig. 4, we present the garbled table of our
AND gate. To construct the garbled table of the AND gate, we compute the set
{γ00AND, γ

01
AND, γ

10
AND, γ

11
AND} as detailed in Fig. 4 using the symmetric encryption

scheme. To simulate the function f over the labels kawa
and kbwb

, the server de-
crypts γ00AND. Supposing that the symmetric encryption scheme allows to know
if the decryption of γ00AND fails, the server decrypts γ01AND then γ10AND and finally
γ11AND, until a successfully decryption. The symmetric encryption scheme used in
the garbled circuit is not commutative. Hence, each ciphertext can be decrypted
using the correct combination of two labels used as keys of the ciphertext. After

a valid decryption, the server obtains a new label, which is our example k
AND(a,b)
wz

since the boolean circuit of the AND gate is composed by a single gate. Then,

the server sends back k
AND(a,b)
wz to the client, which knows the mapping of the

bit value associated to k
AND(a,b)
wz . The so-called garbled circuit corresponds to

the set of all garbled tables. The server knows only the input labels kawa
and

kbwb
, from which the server simulates f using the garbled circuits. At the end

of the simulation, the server has access to the output label k
AND(a,b)
wz , which is

returned to the client able to retrieve AND(a, b).

Suppose that the client wants to reuse the garbled circuits simulating the
AND function over a′ and b′. We assume that a′ is different from a; or b′ is
different from b. As explained above, the client sends to the server the labels
ka
′

wa
and kb

′

wb
to the server. The server could simulate f using the garbled circuit

to get k
AND(a′,b′)
wz as expected. But the server is also able to simulate f to get

either k
AND(a′,b)
wz or k

AND(a,b′)
wz by replacing one input label with an input label of

the previous execution (e.g., replace ka
′

wa
with a

wa
), or to reuse the output label

k
AND(a,b)
wz computed at the previous execution. Therefore, a garbled circuit is

a one-time verifiable-computation scheme. To compute the same function over
two different inputs, the client must generate two distinct garbled circuits which
is not efficient. An ideal verifiable-computation scheme should be reusable for
any number of inputs, while still ensuring the same verifiability property.

Contribution. We address the one-time limitation of Yao’s garbled circuit by
introducing a verifiable-computation scheme denoted VCmk based on Multi-Key
Homomorphic Encryption [CCS19, AJJM20, AJJ20, CDKS19]. Our verifiable-
computation scheme uses several MKHE keys: one key dedicated to encrypt the
input and one key used to encrypt the garbled circuit once. This approach al-
lows our scheme to be faster than state-of-the-art of garbled-circuit homomorphic
encryption based verifiable-computation scheme. As an overview, our verifiable-
computation scheme works in three steps, depicted in Fig. 5.

4

– At step (1), executed once, the client generates two distinct key pairs: a
function-keypair (pkf , skf) and an input-keypair (pkx, skx). The client sends
to the server the garble tables encrypted under pkf .

– At step (2), the client creates σx the encoding of the input x, encrypted
under pkx.

– At step (3), the server evaluates the boolean circuit using the encrypted
garbled tables and the encrypted encoding inputs to obtain σy the encoding
of y = f(x), encrypted under both pkf and pkx. The client retrieves the
decrypted result using the secret keys skf and skx.

With this settings, if the client wants to compute f over a new input x′,
the client generates a new key pair (pkx′ , skx′) used to encrypt the encoding of
x′. The garbled circuit is then encrypted only once, which makes our scheme
more efficient, compared to the state-of-the-art [GGP10]. In details, for each
new input, we reduce the required computations by the size of the circuit rep-
resenting a function f to be evaluated. Our scheme is correct, meaning that an
honest server can to provide a valid computation, accepted by the client. Also,
our scheme is secure (with respect to the verifiable-computation scheme secure
property) meaning that a malicious server can provide an invalid computation
without being noticed by the client only with a negligible probability. In addi-
tion, our scheme is private meaning that the server cannot learn information
about the input, the output but also any intermediate computations. Finally,
our scheme is outsourceable, meaning that the client performs less computations
by outsourcing the computations of a function f compared to the case where
the client computes f locally. At the exception of the initialization phase, the
functions executed by the client depends only on the size of the inputs and the
outputs, regardless about the size of f .

Client Server

x
(pkf , skf)
(pkx, skx)

(1) garbled circuit
encrypted under pkf

(2) {σx}pkx
(3) {σy}pkf ,pkx

(4) Verify(σy) = f(x) or ⊥

Fig. 5: Overview of our scheme for delegation of two inputs y = f(x). By σx
(resp. σy) we denote the encoding of x (resp. y).

In this paper, we propose a verifiable-computation scheme based on garbled
circuit improved using a MKHE scheme.

Related Work. Verifiability of computation done by an untrusted server is an
active research topic. Interactive Proofs [Kil92] [Mic00] allow a server to prove
the validity of a statement (or computations in our case) to a client. The verifica-
tion process is performed during an interaction between the server and the client.

5

Probability Checkable Proofs (PCP) allows a client to detect malicious server with
a probability which increases after many executions. We focus on Non-Interactive
Proofs where the client and the server interact only to transmit during an ini-
tialization and a result obtaining steps. Arguments from [GKR15] or Micali’s
CS proofs [Mic00] are the state-of-the-art proofs in non-interactive PCPs. In
this work, we move away from notions of PCP to focus on garbled circuits.
The garbled circuits introduced by Yao [Yao86] is a one-time non-interactive
verifiable-scheme able to verify the correctness of computations performed by an
untrusted server. Garbled circuits are extensively studied by the research com-
munity to increase the reusability [HKK+14,Lin16,HKE13]. Indeed, the original
version garbled circuit suffers of a one-time limitation problem, restricting the
verification to only one input. This one-time limitation has been addressed by
using Cut-And-Choose [LP15, HKK+14, GGP10] technique or by using Homo-
morphic Encryption [GGP10]. In this paper, we focus on Gennaro et al. [GGP10]
work which addresses the one-time verifiability limitation of the garbled circuit
using Fully Homomorphic Encryption, introduced for the first time by Gentry in
2009 [Gen09]. They proposed a verifiable-computation scheme VCgen where the
evaluation of the garbled circuit is done homomorphically by a server. Although
their approach allows to reuse the same garbled circuits without limitation in
the number of inputs, the garbled circuit should be entirely encrypted with a
different key, each time that the client wants to compute f over a new input.

We go further in this last direction and improve significatively the Gennaro
et al. result by using MKHE scheme.

Outline. In Section 2, we introduce preliminaries including a definition of verifiable-
computation scheme, garbled circuit and a MKHE scheme. In Section 3, we for-
mally introduce the security definitions of verifiable-computation scheme. Then,
in Section 4, we present the verifiable-computation scheme VCgen introduced
in [GGP10], followed by the description of our scheme VCmk based on MKHE.
In Section 5, we prove that VCmk is a correct, secure, private and outsourceable
verifiable-computation scheme. Finally, in Section 6, we detail a performance
comparison between VCmk and VCgen schemes.

2 Preliminaries

First, we present the definition of a verifiable-computation scheme. Then, we
present the Yao’s garbled circuits. Finally, we present the definition of a MKHE
scheme.

2.1 Definition of Verifiable-Computation Scheme

A verifiable-computation scheme is a method allowing the verification of com-
putations outsourced on an untrusted server. A verifiable-computation scheme
works in four steps: suppose that a client wants to delegate y = f(x) the com-
putation of the function f over an input x to a server:

6

1. The client generates a key pair denoted (PK,SK) where the public part PK
is the encoding of f and SK is the matching secret key.

2. Then the client generates σx the public encoding of x, given as an input to
the server, and the secret verification string denoted τx, kept private by the
client and used to verify the result returned by the server.

3. Given the public encoding of f and σx, the server sends back to the client
the encoding of y denoted σy.

4. Finally, the client retrieves y from σy using the secret verification τx and SK.

Definition 1 (Verifiable-computation scheme). A verifiable-computation
scheme VC is a tuple composed of four algorithms VC = (KeyGen,ProbGen,
Compute,Verify) where:

– KeyGen(f, λ)→ (PK,SK): Given a function f and a security parameter λ,
outputs a public key PK that encodes the function f , and a secret key SK.

– ProbGenSK(x) → (σx, τx): Given the input x and the private key SK,
returns σx the public encoding of input x used by the server to compute
y = f(x), and τx a secret verification string, which is different for every
input, used for to verify the correctness of computations.

– ComputePK(σx)→ σy: Given the public key PK and the encoded input σx,
returns σy the encoded output.

– VerifySK(τx, σy) → y ∪ ⊥: Given the private key SK and τx the secret
verification string and σy the encoded output, outputs y if the correctness of
computations is verified, ⊥ otherwise.

A verifiable-computation scheme VC has several properties. VC must be cor-
rect meaning that a verifiable-computation scheme for any input x, an honest
server can compute f(x). VC must be secure meaning that the client is able
to detect if a malicious server returns ŷ, an invalid result instead of the valid
result f(x), with a high probability. VC must be private meaning that the server
cannot learn some information about the inputs x and the output f(x). Finally,
VC must be outsourceable meaning that the client must perform strictly less
operations than computing the function by himself.

2.2 Yao’s Garbled Circuit

Suppose that a client wants to delegate f(x), the computation of a function f
over an input x to an untrusted server. The first step performed by the client is to
compute ∆f = (G,W,Win,Wout) the boolean circuit corresponding to f , where
G is the set of gates in ∆f , W is the set of wires in ∆f , Win (resp. Wout) are
the wires at the input (resp. output) of ∆f , with Win ⊂ W (resp. Wout ⊂ W).
Each gate g ∈ G takes as input two wires wa, wb ∈ W and as an output a wire
wz ∈ W, denoted by (g : wa, wb → wz). For each wire w ∈ W, the client chooses
uniformly at random two random labels k0w, k

1
w corresponding respectively to 0

(wire off) and 1 (wire on). Once each wire has been affected with two random

7

labels, then for each gate (g : wa, wb → wz) we compute γg as follows:

γg = (γ00g , γ
01
g , γ

10
g , γ

11
g)

γ00g = Enck0wa
(Enck0wb

(kg(0,0)wz
))

γ01g = Enck0wa
(Enck1wb

(kg(0,1)wz
))

γ10g = Enck1wa
(Enck0wb

(kg(1,0)wz
))

γ11g = Enck1wa
(Enck1wb

(kg(1,1)wz
))

(1)

where Enck(·) is a symmetric encryption function. In Fig. 6, we depicted the
setup of a garbled table for a gate g ∈ G. From the above equation (1), we can
construct the garbled circuit γ = {γg|g ∈ G}.

wa wb wz wa wb wz Garbled Table (known by the server)

0 0 g(0, 0) k0wa
k0wb

k
g(0,0)
wz γ00

g = Enck0wa
(Enck0wb

(k
g(0,0)
wz))

0 1 g(0, 1) k0wa
k1wb

k
g(0,1)
wz γ01

g = Enck0wa
(Enck1wb

(k
g(0,1)
wz))

1 0 g(1, 0) k1wa
k0wb

k
g(1,0)
wz γ10

g = Enck1wa
(Enck0wb

(k
g(1,0)
wz))

1 1 g(1, 1) k1wa
k1wb

k
g(1,1)
wz γ11

g = Enck1wa
(Enck1wb

(k
g(1,1)
wz))

Fig. 6: The table at left corresponds to the truth table for the gate (g : wa, wb →
wz). The table at center corresponds to the truth table where for each wire
w ∈ {wa, wb, wz}, we have replaced 0 (resp. 1) to uniformly chosen random label
k0w (resp. k1w). The table at right corresponds to the garbled table of the gate g
which is sent to the server.

Definition 2 (Yao’s garbled circuit). A Yao’s garbled circuit is a verifiable-
computation scheme denoted VCyao = (KeyGenyao,ProbGenyao,Computeyao,
Verifyyao) where:

– KeyGenyao(f, λ) → (PK,SK) : Computes ∆f = (G,W,Win,Wout) the
boolean circuit corresponding to f . For each wire w ∈ W, chooses two
random labels k0w, k

1
w ∈R {0, 1}λ. Then, computes the garbled circuit γ =

{γg|g ∈ G} where γg is defined as in equation (1). Outputs PK = γ and
SK = ∪w∈W{k0w, k1w}.

– ProbGenyao
SK (x) → (σx, τx) : Given binary encoding x1, . . . , xn of input x,

outputs σx = {kx1
w1
, . . . , kxn

wn
} the set of labels associated to the wire regarding

on the input bits, and τx = SK.
– ComputeyaoPK(σx) → σy : Given σx the set of labels representing the binary

encoding of input x, outputs σy = {ky1w1
, . . . , kymwm

} the set of labels repre-
senting the binary encoding y1, . . . , ym of the output y = f(x), by computing
gate-by-gate using the garble circuit γ.

8

– VerifyyaoSK (σy, τx)→ y∪⊥ : Given σy the set of labels representing the binary
encoding of y = f(x) and τx, outputs y = y1, . . . , ym only if for all i ∈ [1,m]
we have kyiwi

∈ {k0wi
, k1wi
}, otherwise the server is cheating, thus we refuse

the result with ⊥.

We stress that the VCyao scheme is one-time verifiable-computation scheme
at the condition that the symmetric encryption scheme E, used for the double
encryption of labels, must be Yao-Secure.

Definition 3 (Yao-Secure Symmetric Encryption Scheme). A symmetric
encryption scheme E is Yao-Secure if:

– E is indistinguishable under multiple messages, meaning that for every two
vectors of polynomial x̄ and ȳ, no polynomial time adversary can distinguish
between an encryption of x̄ or ȳ.

– E has an elusive range, meaning that the encryption of a message falls under
different keyspaces depending on the encryption key used.

– E has an efficient checkable range property, where given a key k and a ci-
phertext c, there is a polynomial time algorithm able to check if c has been
encrypted under k.

2.3 Multi-Key Homomorphic Encryption Scheme

Introduced in 2009 by Gentry [Gen09], the Fully Homomorphic Encryption
(FHE) allows to perform any boolean circuit over encrypted data. A traditional
use-case of FHE starts by a client who sends to an untrusted server {x}pk an
input x encrypted under a public key pk. Then, the server sends back {f(x)}pk
the result of the function f over x, without relying on the decryption key sk. The
MKHE is a natural extension of FHE where the evaluation of a circuit is per-
formed over inputs encrypted under different keys. Many MKHE schemes have
been designed these last years [CCS19, BP16, CZW17], showing the interest of
this approach for Multi-Party Computations. Note that the number of possible
keys is unbounded for MKHE, yet we give the definition for only 2 keys as needed
in our setup and for clarity.

Definition 4 (Multi-Key Homomorphic Encryption Scheme). A MKHE
scheme is a tuple M = (MKKeyGen, MKEnc,MKEval,MKDec) where:

– MKKeyGen(λ) → (pk, sk): Given a security parameter λ, outputs a new
key pair (pk, sk) with pk the public key and sk the secret key.

– MKEnc(m, pk)→ {m}pk: Given a message m and a public key pk, outputs
{m}pk the message m encrypted under pk.

– MKEval(f, {m0}pk0 , {m1}pk1) → {f(m0,m1)}pk0,pk1 : Given f ∈ F a func-
tion and {m0}pk0 , {m1}pk1 two messages encrypted respectively under public
key pk0 and pk1, outputs {f(m0,m1)}pk0,pk1 the image of the function f over
m0, and m1 encrypted under both pk0 and pk1.

– MKDec({m}pk0,pk1 , {sk0, sk1}) → m: Given {m}pk0,pk1 the message m en-
crypted under pk0 and pk1, the related secret keys sk1 and sk1, outputs m.

9

ExpSec
A [VC, f, λ]

(PK, SK)← KeyGen(f, λ)
for i ∈ {1, . . . , l = poly(λ)}

xi ← A(σx1 , . . . , σxi−1)
(σxi , τxi)← ProbGen(xi)

(i, σŷ)← A(PK, σx1 , . . . , σxl)
ŷ ← VerifySK(τxi , σŷ)
if ŷl 6= ⊥ and ŷl 6= f(xl) then returns 1 else 0

Fig. 7: Experiment for the security of a verifiable-computation scheme. By
poly(λ), we denote a polynomial function depending on the security parame-
ter λ.

3 Security Properties of Verifiable-Computation Scheme

As described informally in previous sections, we give the formal definitions of
usual security properties of a verifiable-computation scheme.

A verifiable-computation scheme is correct if a server following the scheme
as expected is able to return to the client a valid result.

Definition 5 (Correctness). Let VC a verifiable-computation scheme, f a
function, and (PK,SK)← KeyGen(f, λ). A verifiable computation scheme VC
is correct if for any valid input x, we have:

f(x) = VerifySK(ComputePK(ProbGenSK(x)))

A verifiable-computation scheme is outsourceable if the client performs strictly
less operations by using the scheme, compared to the execution of the function
by itself.

Definition 6 (Outsourceability). Let f a function, a verifiable-computation
scheme VC is outsourceable if the asymptotic complexities of ProbGen and
Verify are strictly lower than the asymptotic complexity of the fastest algorithm
to compute f .

A verifiable-computation scheme is secure if the client is able to detect an
invalid result produced by the server with a high probability.

Definition 7 (Security). Let VC a verifiable-computation scheme, f a func-
tion, λ a security parameter and (PK,SK)← KeyGen(f, λ). We state that VC a
verifiable computation scheme is secure if for every PPT adversary A, we have:

AdvSecA [VC, f, λ] ≤ negl(λ)

where AdvSecA [VC, f, λ] = Pr[ExpSec
A [VC, f, λ] = 1], and the experiment ExpSec

A
is given in Figure 7.

A verifiable-computation scheme is private if the server does not learn infor-
mation about the input, or with a negligible probability.

10

ExpPriv
A [VC, f, λ]

(PK,SK)← KeyGen(f, λ)
(x0, x1)← APubProbGenSK(PK)

b
$← {0, 1}

(σxb , τxb)← ProbGenSK(xb)

b̂← A(σxb)

If b = b̂ then returns 1 else 0

Fig. 8: Experiment for the Privacy property of a verifiable computation scheme.

Definition 8 (Privacy). Let VC a verifiable-computation scheme, f a func-
tion, λ a security parameter and (PK,SK) ← KeyGen(f, λ). We state that a
verifiable computation scheme VC is private if for every PPT adversary A, we
have:

AdvPriv
A [VC, f, λ] ≤ negl(λ)

where AdvPriv
A [VC, f, λ] = |Pr[ExpPriv

A [VC, f, λ] = 1] − 1
2 | where ExpPriv

A is de-
scribed in Figure 8.

4 MKHE Verifiable-Computation Scheme

Our verifiable-computation scheme VCmk relies on a garbled circuit, hence it re-
quires a Yao-Secure symmetric encryption scheme as introduced in Section 2. In
addition, our scheme relies on a semantically secure MKHE scheme. Our scheme
VCmk is composed of four algorithms KeyGenmk, ProbGenmk, Computemk

and Verifymk.
KeyGenmk algorithm, executed once by the client, takes as input the func-

tion f to be simulated and a security parameter λ. The KeyGenmk algorithm
is in charge of the construction of the garbled circuit simulating f , but also to
generate the function key pair (pkf , skf)←MKKeyGen(λ). Finally, it outputs
the public key PK containing the garbled circuit simulating f encrypted under
pkf , and the secret key SK containing both the mapping of the labels associated
to the bit value for each wire and the secret key skf .

ProbGenmk
SK algorithm, executed by the client at every input, encodes the in-

put x given by the client. The algorithm generates the input key pair (pkx, skx)←
MKKeyGen(λ) and outputs {σx}pkx the encoding of x, encrypted under pkx.

Computemk
PK algorithm, executed by the server, simulates f with the garbled

circuit, over {σx}pkx the encoding of x encrypted under pkx. The Computemk
PK

algorithm assumes a circuit Γ able to perform the decryption of a garbled table.
A gate (g : wa, wb → wz) takes as an input two labels kxwa

, kywb
and γg the

garbled table associated with g as defined in equation (1), and outputs the

resulting label k
g(x,y)
wz corresponding to the bit g(x, y) on the wire wz. Using Γ ,

the server computes {σy}pkf ,pkx based on the garbled circuit encrypted under
pkf and {σx}pkx the encoding of the input x encrypted under pkx.

11

Finally, Verifymk
SK algorithm, executed by the client, verifies the result com-

puted by the server. Given {σy}pkf ,pkx and the two secret keys skf and skx, the
client computes σy and verifies that σy is a valid encoding using the secret key
SK.

Our verifiable-computation scheme relies on MKHE scheme instead of a ho-
momorphic encryption scheme as it is done in VCgen (see Appendix A). Moreover,
the distinction between VCgen and VCmk is that in VCgen, the circuit Γ takes
an input the garbled circuit encrypted under pk a public key different at every
new input. Hence, the drawback we want to address is that for each input, γg is
encrypted using the public key pk, which changes at every new input. This im-
plies that γg must be encrypted every time a new input is provided by the client.
In our scheme VCmk, thanks to the function key pair (pkf , skf), we encrypt the
garbled tables only once. Therefore, while the function f does not change, we
can reuse the encrypted garbled tables over multiple inputs.

Definition 9 (Definition of VCmk). The verifiable-computation scheme VCmk

is defined by a tuple of four functions
(KeyGenmk,ProbGenmk

SK,Computemk
PK,Verifymk

SK) where:

– KeyGenmk(f, λ)→ (PK,SK):
1. Compute ∆f = (G,W,Win,Wout) the boolean circuit representing f .
2. For each wire w ∈ W, choose randomly two values k0w, k

1
w ∈R {0, 1}λ

representing respectively 0 and 1 on the wire w.
3. Compute the garbled circuit γ = {γg|g ∈ G} where γg is computed as in

equation (1).
4. Generate (pkf , skf)←MKKeyGen(λ) the function-keypair.
5. Compute γ = {MKEncpkf (γg)|g ∈ G} where γg is defined as in the

Equation (1).
6. Output PK = γ and SK = ∪w∈W{k0w, k1w} ∪ {skf} the set of randomly

chosen labels and the secret key related with the input.
– ProbGenmk

SK,λ(x)→ ({σx}pkx , τx):
Let the binary encoding x1, . . . , xn of input x.
1. Generate the input-keypair (pkx, skx) using MKKeyGen(λ).
2. Output {σx}pkx = {MKEncpkx(kx1

w1
), . . . ,MKEncpkx(kxn

wn
)} the set of

labels associated to the wire regarding on the input bits encrypted under
pkx, and τx = SK ∪ {skx}.

– Computemk
PK({σx}pkx)→ {σy}pkf ,pkx :

Let Γ be the circuit such that given kxwa
, kywb

and γg outputs k
g(x,y)
wz .

1. Compute MKEval(Γ, {kxwa
}pkx), {kywb

}pkx , {γg}pkf) successively for each
gate (g : wa, wb → wz), until to get {kyiwi

}pkx,pkf the value of output wires
wi ∈ Wout, encrypted under pkx and pkf .

2. Output {σy}pkf ,pkx ← {{k
yi
wi
}pkf ,pkx |wi ∈ Wout}.

– Verifymk
SK(τx, {σy}pkf ,pkx)→ y ∪ ⊥:

1. Given skf from SK and skx from τx, compute
MKDec({kyiwi

}pkf ,pkx , {skf , skx}) for each wi ∈ Wout.

2. Output y = y1, . . . , ym if for all i ∈ [1,m], kyiwi
∈ {k0wi

, k1wi
}, otherwise

reject the result with ⊥.

12

5 Security Analysis

We prove that our scheme VCmk is a correct, secure, private and outsourceable
verifiable-computation scheme. For the proofs of these results, we use the follow-
ing result proven in [LP08].

Theorem 1 (VCyao is a verifiable-computation scheme). [LP08] Let E a
Yao-Secure symmetric encryption scheme. Then VCyao is a correct, one-time
secure, private and outsourceable computation scheme.

We want to prove that our verifiable-computation scheme VCmk is correct,
meaning that an honest server can produce a valid result. We state the correct-
ness theorem as follows:

Theorem 2 (Correctness of VCmk). Let E a Yao-Secure symmetric encryp-
tion scheme and M a semantically secure MKHE scheme. VCmk is a correct
verifiable-computation scheme, hence we have:

f(x) = Verifymk
SK(Computemk

PK(ProbGenmk
SK(x)))

Proof. The proof relies on the correctness of the VCyao stated in Theorem 1
and on the correctness of the MKHE scheme M used in VCmk. Since we assume a
Yao-Secure symmetric encryption scheme, then by Theorem 1, VCyao is a correct
verifiable-computation scheme.

To prove that VCmk is correct, we create a new scheme VC′mk which works
as the same as VCmk, except that we replace every homomorphic operation
(i.e., encryption, evaluation and decryption) by his equivalent in clear. This
manipulation is possible since M is assumed to be correct. Hence, instead of
performing computation in the ciphertext space, computations are realized in
the plaintext space. In the protocol, the garbled circuit is no more encrypted by
the client before to be sent to the server, as well as the labels σx of the input
x. The server performs the execution of the garbled circuit over the plaintext
labels to produce the output labels σf(x) for a given function f , then sent back
to the client able to verify the verification of the produced result. Clearly, we
have VC′mk = VCyao. By assumption from Theorem 1, VCyao is correct, therefore
VCmk is correct by reduction. ut

To formalize the privacy of our verifiable-computation scheme VCmk, we con-
sider the experiment in Fig. 8 presented in [GGP10] where a PPT adversary A
sends two inputs x0 and x1 to the challenger. The challenger encodes the input
xb where b is a bit randomly chosen by the challenger. The challenger sends to
adversary A the public encoding of σxb

. The adversary A predicts the selected

input by outputting a bit b̂. The output of the experiment is 1 if the adversary A
successfully predicts the input chosen by the challenger i.e., b̂ = b, 0 otherwise.
Before to propose the two inputs x0 and x1 to the challenger, the adversary
A is allowed to call a polynomial number of times (depending on the security
parameter λ) the oracle PubProbGenSK(x) which for a given input x different
from x0 and x1, computes (σx, τx)← ProbGenyao

SK (x) and returns σx the public
encoding of the input x.

13

Theorem 3. Privacy of VCmk Let E be a Yao-Secure symmetric encryption
scheme and M be a semantically secure MKHE scheme. Then, VCmk is a private
verifiable-computation scheme, with respect to the definition 8.

Proof. Theorem 3 says that given a function f and security parameter λ, there
is no adversary A able to break the privacy of our scheme VCmk with a non-
negligible advantage, leading to have:

AdvPriv
A [VCmk, f, λ] ≤ negl(λ)

By contradiction, we assume that there is an adversary A able to break the
privacy of VCmk. Hence, we have:

AdvPriv
A [VCmk, f, λ] ≥ ε

where ε is a non-negligible probability. Our goal is to construct an adversary B
able to win against the privacy of the one-time verifiable-computation scheme
VCyao (on which our scheme is based) with a non-negligible advantage ε′, leading
to following relation:

AdvPriv
B [VCyao, f, λ] = ε′ + negl(λ) ≤ AdvPriv

A [VCmk, f, λ] = ε+ negl(λ)

In the reduction we want to construct, the challenger Cyao is playing against
a PPT adversary B which wants to break the privacy of VCyao the one-time
verifiable-computation scheme. The adversary B simulates the challenger Cmk

challenging the adversary A against the privacy of our scheme VCmk. The adver-
saryA is allowed to call a polynomial number of times the oracle PubProbGenSK

simulated by B, which given an input x, computes (σx, τx)← ProbGenyao
SK (x),

generates a new MKHE key pair (pkx, skx) and outputs {σx}pkx the public en-
coding of x encrypted under pkx. The reduction works as follows:

1. The challenger Cyao computes (PK,SK) ← KeyGenyao(λ) and actives the
adversary B with PK. The adversary B generates a MKHE key pair (pkf , skf)←
MKKeyGen(λ) and activates the adversary A with {PK}pkf the garbled
circuit produced by Cyao encrypted under pkf .

2. The adversary A calls the PubProbGenSK oracle simulated by B, a number
of times bounded by a polynomial depending on the security parameter λ.
This oracle captures the fact that A has access to a polynomial number of
encrypted encoding of inputs. This property is necessary since our protocol
allows the server to reuse the same garbled circuits over different inputs.

3. Finally, the adversary A sends to the adversary B two inputs x0 and x1,
forwarded to the challenger Cyao. The challenger Cyao responds to B with
σxb

the encoding of the input xb where b is a randomly chosen bit. Then,
B computes (pkxb

, skxb
)←MKKeyGen(λ) and sends {σxb

}pkxb
to A. The

adversary A sends b̂ a prediction over the bit b, to the adversary B, directly
forwarded to the challenger Cyao.

14

By assumption, the adversary A has a non-negligible advantage ε to break
the privacy of our scheme. As the adversary B sends to the challenger Cyao the

prediction b̂ over the bit b from A, then the non-negligible advantage of B to win
against the challenger Cyao is only based on the advantage of A to win against
Cmk, simulated by B. Therefore, we have ε = ε′, leading to the relation:

AdvPriv
B [VCyao, f, λ] = ε′ + negl(λ) = AdvPriv

A [VCmk, f, λ] = ε+ negl(λ)

⇔ AdvPriv
B [VCyao, f, λ] = AdvPriv

A [VCmk, f, λ] = ε+ negl(λ)

By reduction, we have shown that assuming an adversary A able to break
the privacy of our scheme VCmk with a non-negligible advantage ε, it is possible
to construct an adversary B able to break the privacy of VCyao scheme with the
same non-negligible advantage. This contradicts Theorem 1 which states that
there is no PPT adversary able to break the privacy of VCyao. This concludes
the proof. ut

To formalize the security of our verifiable-computation scheme VCmk, we con-
sider the experiment depicted in Fig. 7 presented in [GGP10], where a challenger
C provides a l = poly(λ) number of public encoding σxi

for an input xi chosen
by a PPT attacker A. At the end, for an index 1 ≤ i ≤ l, the attacker A tries
to produce σŷ the encoding of an invalid result ŷ 6= f(x) approved by the client
through the Verify function (defined in VC). The output of this experiment is
1 if the invalid encoding σŷ is accepted by the client, 0 otherwise.

We state the following theorem:

Theorem 4 (Security of VCmk). Let E a Yao-Secure symmetric encryption
scheme and M a semantically secure MKHE scheme. Then VCmk verifiable-
computation scheme is secure, with respect to Definition 7.

Proof. Theorem 4 says that there is no PPT attackerA able to break the security
of our scheme VCmk with a non-negligible advantage leading to have:

AdvSec
A [VCmk, f, λ] ≤ negl(λ)

For the sake of contradiction, consider that there is a PPT attacker A able
to break security of our scheme VCmk with a non-negligible advantage ε. Hence,
we have:

AdvSec
A [VCmk, f, λ] ≥ ε

The proof is divided into two parts:

1. We construct a reduction between Gyao = ExpSec
B [VCyao, f, λ] the game

where the challenger Cyao challenges the adversary B in the experiment Sec

for the VCyao verifiable-computation scheme, and Gmk = ExpSec
A [VCmk, f, λ]

the game where the challenger Cmk challenges the adversary A in the experi-
ment Sec for the VCmk verifiable-computation scheme. InGmk, the adversary
is allowed to call an oracle PubProbGenGmk

mk a polynomial number of times
denoted l = poly(λ) depending to security parameter λ.

15

2. Let Grand the game working exactly as Gmk, except that the adversary has
only access to random inputs. We perform an hybrid experimentation to show
that the game Gmk is indistinguishable from the game Grand. By Hk for some
k ∈ {1, . . . , l}, we denote the game Gmk where we modify the behavior of
PubProbGenGmk

mk . Our hybrid experiment is structured as follows:

– We set H0 = Gmk and H l = Grand.

– We prove that for k ∈ {0, ..., t − 1}, Hk−1 is indistinguishable from Hk

by considering that the adversary does not obtain or lose information.

– We prove that Ht−1 is indistinguishable from Ht by considering the
semantic security of the MKHE scheme. In particular, if a distinguisher
is able to distinguish between Ht−1 and Ht, then the distinguisher can
also win against the indishtinguishability of MKHE scheme.

– We prove that for k ∈ {t+ 1, ..., l}, we have Hk−1 = Hk by considering
that the adversary does not obtain or lose information.

Reduction from Gmk to Gyao. The challenger Cyao is playing against a PPT ad-
versary B which wants to break the security of the one-time verifiable-computation
scheme VCyao. The adversary B has access to an oracle PubProbGenyao a single
time, which given an input x outputs σx the encoding of x, where σx is generated
using the ProbGenyao simulated by the challenger Cyao. The adversary B simu-
lates the challenger Cmk challenging the adversary A against the security of our
scheme VCmk. The adversary A is allowed to call an oracle PubProbGenmk a
poly(λ) number of times where λ is the security parameter. The reduction works
as follows:

1. The challenger Cyao computes (PK,SK) ← KeyGenyao(λ) and activates
the adversary B with PK. Then, B generates a MKHE key pair (pkf , skf)←
MKKeyGen(λ) and activates the adversary A with {PK}pkf the garbled
circuit produced by Cyao encrypted under pkf .

2. B randomly picks an index t
$← [1, l].

3. For j ∈ [1, l]:

(a) B computes (pkj , skj)←MKKeyGen(λ).

(b) A sends an input xj of his choice to B.

(c) B computes σxj
← PubProbGenmk(j, t, xj).

(d) B sends {xj}pkxj
to A.

4. A sends the tuple (i, {σŷ}pkf ,pki) to B, where i ∈ [1, l] is chosen by A.

5. B computes σŷ ←MKDec({σŷ}pkf ,pki , {skf , ski}).
6. B sends σŷ to Cyao.

The oracle PubProbGenGmk

mk works as follows:

16

Oracle PubProbGenGmk

mk

Inputs from A: An index j ∈ {1, . . . , l} and the input xj
Inputs from B: An index t ∈ {1, . . . , l}
Output: The encoding σxj of xj
if j 6= t then

r
$← Fλ2 // a random input label

return r
else

σxj ← PubProbGenyao(xj) // the real input label
return σxj

end if

Hybrid experiments. We present the hybrid experiments where we want to show
that the game Gmk is indistinguishable from the game Grand. By Hk with
k ∈ {1, . . . , l}, we denote the game Gmk where we modify the behavior of the

PubProbGenH
k

mk oracle as follows:

Oracle PubProbGenH
k

mk

Inputs from A: An index j ∈ {1, . . . , l} and the input xj
Inputs from B: An index t ∈ {1, . . . , l}
Output: The encoding σxj of xj
if j 6= t or j < k then

r
$← Fλ2 // a random input label

return r
else

σxj ← PubProbGenyao(xj)
return σxj

end if

When k = 0, we have H0 = Gmk.
When k ∈ {1, . . . , t− 1}, the adversary A does not obtain more information,

since the oracle PubProbGenH
k

mk in Hk remains unchanged. Hence, the adver-
sary A has the same advantage to win against the challenger in Gmk and in the
game Hk. Hence, we have Hk−1 = Hk, leading to the relation:

Pr[ExpH
0

A [VCmk, f, λ] = 1] = Pr[ExpH
t−1

A [VCmk, f, λ] = 1]

When k = t, the oracle PubProbGenH
t

mk is modified, since the oracle no
more produces valid encoding but only random labels. Hence, the adversary A
loses some information. To prove that Ht−1 (where PubProbGenH

t−1

mk remains
unchanged) and Ht are distinguishable only with negligible probability, we per-
form a proof by contradiction where we assume that there is a distinguisher D
able to distinguish between Ht−1 and Ht with a non-negligible advantage p.

17

Consider a challenger CInd which given two messages m0 and m1 by the
adversary, picks a random bit b and returns to the adversary {xb}pk the message
xb encrypted under the MKHE public key pk.

From D, we construct a PPT adversary BInd able to break the indishtin-
guishability of the semantically secure MKHE with a non-negligible advantage,
against the challenger CInd. The adversary BInd picks a t ∈ {1, . . . , l}. For a
query j ∈ {1, . . . , l}, D sends an input xj to the adversary BInd. If j 6= t, then
BInd computes a new MKHE key pair and encrypts a random λ-string which
is sent back to the challenger. If j = t, then BInd sends to the challenger CInd
the input xj as message m0 and a random λ-string label as m1. The challenger
CInd responds to BInd with {mb}pk where b is a random bit and pk is a MKHE
encryption key generated by CInd. BInd transmits {mb}pk to D. Once all queries
executed, D responds to BInd with a bit 0 if D predicts that the input sent by
BInd corresponds to the game Ht−1, 1 for Ht. The bit sent D to BInd is forwarded
to CInd. We see that if D has a non-negligible advantage p to distinguish between
Ht−1 and Ht, then BInd has a non-negligible advantage p to break the indishtin-
guishability of the MKHE scheme, which contradicts our hypothesis. Therefore,
Ht−1 and Ht are indistinguishable, or at least with a negligible probability ε′.
Hence, we have the relation:

Pr[ExpH
k−1

A [VCmk, f, λ] = 1] = Pr[ExpH
k

A [VCmk, f, λ] = 1] + ε′

When k ∈ {t + 1, . . . , l}, the game Hk−1 is the same than Ht, since the
adversary A does not obtain more information. Hence, we have Hk−1 = Hk,
leading to the relation:

Pr[ExpH
t+1

A [VCmk, f, λ] = 1] = Pr[ExpH
l

A [VCmk, f, λ] = 1]

Finally, when k = l, we have the game H l = Grand where the adversary has
only a negligible advantage to win against the challenger Cmk in game H l =
Grand. To conclude our hybrid experiment, we show that we

Pr[ExpH
0

A [VCmk, f, λ] = 1] = Pr[ExpH
l

A [VCmk, f, λ] = 1] + ε′

Since H0 = Gmk and H l = Grand we have

Pr[ExpGmk

A [VCmk, f, λ] = 1] = Pr[ExpGrand

A [VCmk, f, λ] = 1] + ε′. (2)

And since the adversary A in Grand can only cheat with a negligible proba-
bility, then Pr[ExpGrand

A [VCmk, f, λ] = 1] is negligible in the security parameter

λ. Therefore, Pr[ExpGmk

A [VCmk, f, λ] = 1] is negligible by Equation (2). ut

Theorem 5 (Outsourceability of VCmk). Let E a Yao-Secure symmetric en-
cryption scheme and M a semantically secure MKHE scheme. Then, VCmk is an
outsourceable verifiable-computation scheme.

Proof. To prove the outsourceability of VCmk, we focus on an asymptotic com-
plexity. The client starts the scheme with KeyGenmk to generate the garbled

18

circuit of ∆f = (G,W,Win,Wout) corresponding to a function f . The garbled
circuit creation required to (1) generate two random labels for each wire and
(2) encrypt each gate four times using the Yao-Secure symmetric encryption
scheme then encrypt the four resulting ciphertexts, using pkf , over the input
x previously encoded and encrypted by the client under pkx. The server com-
putes the circuit ∆f gate-by-gate until to obtain the encoding of f(x) encrypted
under both pkx and pkf , sent back to the client. Therefore, the complexity of

Computemk depends on the number of gates |G| in ∆f , leading to a complexity

O(|G|). Finally, the client calls Verifymk function to verify the computation per-
formed by the server. In details, Verifymk decrypts each encrypted label of f(x)
and verifies that the resulting labels are valid, using the secret key SK, leading
us to a complexity of O(|Wout|). Note that KeyGenmk is computed only once
over multiple inputs. Therefore, we obtain an amortized complexity for the client
of O(|Win| + |Wout|), which is strictly lower than O(|G|) corresponding to the
complexity needed to compute the function f . Hence, VCmk is outsourceable. ut

Theorem 6. Let E a yao-secure symmetric encryption and M a semantically
secure MKHE scheme. Then, VCmk is a correct, secure, private and outsourceable
verifiable-computation scheme.

Proof. The proof is a simple consequence of Theorem 2, Theorem 4, Theorem 3,
and Theorem 5. ut

6 Performance Comparison

As presented in Fig. 10, our scheme VCmk requires stricly less operations than
VCgen, thanks to the MKHE scheme. Let a function f represented a boolean
circuit ∆f = (G,W,Win,Wout). In details, VCmk relies on two distinct key
pairs, called function-key pair denoted (pkf , skf) and input-key pair denoted

(pkx, skx). The public key pkf is used during KeyGenmk, to compute γ =
{MKEncpkf (γg)} the encrypted garbled circuit where each garbled table γg
for some gate g ∈ G has been encrypted under pkf . As ∆f does not depend
on some input, we can compute γ only once and reuse it for many inputs, as
depicted in Fig. 9. Compared to VCgen, we remove |G| homomorphic encryption,
which is significant, especially for large function.

Client Server

{γ}pk, {σx}pk
{σy}pk

{γ}pk′ , {σx′}pk′

{σy′}pk′ Client Server

{γ}pkf
{σx}pkx
{σy}pkf ,pkx
{σx′}pkx′
{σy′}pkf ,pkx′

Fig. 9: At the left, the original verifiable-computation scheme VCgen. At the
right, our verifiable-computation scheme VCmk.

19

Functions VCgen VCmk

KeyGen
Executed once by the
client.

• 2|W| labels generation
• 4|G| encryptions with E

• 2|W| labels generation
• 4|G| encryptions with E
• |G| encryptions with M
(under pkf)

ProbGen
Executed by the client.

• |Win| encryption with S
(under pk)

• |Win| encryptions with M
(under pkx)

Compute
Executed by the server.

• |G| encryptions with S
(under pk)
• |G| homomorphic evalua-
tions with S

• |G| homomorphic evalua-
tions with M

Verify
Executed by the client.

• |Wout| decryptions with
S (under sk)

• |Wout| decryptions with
M (under skx and skf)

Fig. 10: Number of sub-routines calls performed in VCgen compared to our scheme
VCmk, given a circuit ∆f = (G,W,Win,Wout). We denote by E a Yao-Secure
symmetric encryption scheme, S is a semantically secure homomorphic encryp-
tion scheme and M a semantically secure MKHE scheme. We assume in VCgen
a key pair (pk, sk). As well, we assume in VCmk the function-keypair (pkf , skf)
and the input-keypair (pkx, skx).

A direct consequence is that in the function Computemk, the server is al-
ready ready to evaluate ∆f = (G,W,Win,Wout), since every input i.e., the
garbled circuit γ and σx the encoding of input x, has been already encrypted
using the MKHE. This significantly diverges from VCgen where the server still
needs to encrypt the garbled circuit γ at every new input, under the public key
pk. Hence, in our scheme VCmk, we remove the necessity to encrypt each gate
g ∈ G. Hence, we reduce the number of encryption by |G|, leading to a complexity
of |G| in our scheme VCmk instead of 2|G| in VCgen.

We stress that once KeyGenmk has been computed, we do not require more
computation for the client in both ProbGenmk and Verifymk, compared to the
scheme VCgen. Indeed, the client deals respectively with the input pre-processing

and output post-processing. In details, the ProbGenmk computes the encryp-
tion of the encoding of the input, consisting of the calculation of a |Win| sized
set of encrypted labels, which is also done in VCgen. The Verifymk, however,
is slightly different since we require two secret keys instead of one secret key,
explained by the fact that we rely on a different homomorphic scheme, but the
idea does not change. First, each encrypted label is decrypted using the secret
keys skx and skf , which differ from VCgen where the decryption is performed
using secret key sk. Once the decryption is performed, each output label kyiwi

is
compared with the valid labels k0wi

, k1wi
. This verification does not differ from

VCgen except for the used homomorphic encryption scheme.

To replace the homomorphic encryption scheme defined in VCgen with a
MKHE scheme does not impact significantly the performance of our scheme

20

in practice. Indeed, MKHE schemes [CCS19, CDKS19] proposed a reasonable
execution time overhead.

7 Conclusion

We presented VCmk a verifiable-computation scheme proven to be correct, secure,
private and outsourceable. Our scheme VCmk is based on MKHE scheme, allowing
to prepare some ciphertexts during an initialization, reused for every new inputs.
Compared to the state-of-the-art of garbled circuit with homomorphic encryp-
tion, we have significantly reduced the computations required to outsource a
computation on an untrusted server, with the same security guarantees.

References

AJJ20. Prabhanjan Vijendra Ananth, Abhishek Jain, and Zhengzhong Jin. Multi-
party homomorphic encryption. 2020.

AJJM20. Prabhanjan Vijendra Ananth, Abhishek Jain, Zhengzhong Jin, and Giulio
Malavolta. Multi-key fully-homomorphic encryption in the plain model. In
TCC, 2020.

BP16. Zvika Brakerski and Renen Perlman. Lattice-based fully dynamic multi-key
fhe with short ciphertexts. In Proceedings, Part I, of the 36th Annual Inter-
national Cryptology Conference on Advances in Cryptology — CRYPTO
2016 - Volume 9814, page 190–213, Berlin, Heidelberg, 2016. Springer-
Verlag.

CCS19. Hao Chen, Ilaria Chillotti, and Yongsoo Song. Multi-key homomorphic
encryption from tfhe. In Steven D. Galbraith and Shiho Moriai, editors,
Advances in Cryptology – ASIACRYPT 2019, pages 446–472, Cham, 2019.
Springer International Publishing.

CDKS19. Hao Chen, Wei Dai, Miran Kim, and Yongsoo Song. Efficient multi-key ho-
momorphic encryption with packed ciphertexts with application to oblivious
neural network inference. In Proceedings of the 2019 ACM SIGSAC Confer-
ence on Computer and Communications Security, CCS ’19, page 395–412,
New York, NY, USA, 2019. Association for Computing Machinery.

Cha04. D. Chaum. Secret-ballot receipts: True voter-verifiable elections. IEEE
Security Privacy, 2(1):38–47, 2004.

CRS05. David Chaum, Peter Y. A. Ryan, and Steve Schneider. A practical voter-
verifiable election scheme. In Proceedings of the 10th European Conference
on Research in Computer Security, ESORICS’05, page 118–139, Berlin, Hei-
delberg, 2005. Springer-Verlag.

CZW17. Long Chen, Zhenfeng Zhang, and Xueqing Wang. Batched multi-hop multi-
key fhe from ring-lwe with compact ciphertext extension. In Yael Kalai
and Leonid Reyzin, editors, Theory of Cryptography, pages 597–627, Cham,
2017. Springer International Publishing.

Gen09. Craig Gentry. Fully homomorphic encryption using ideal lattices. In Pro-
ceedings of the Forty-First Annual ACM Symposium on Theory of Comput-
ing, STOC ’09, page 169–178, New York, NY, USA, 2009. Association for
Computing Machinery.

21

GGP10. Rosario Gennaro, Craig Gentry, and Bryan Parno. Non-interactive verifiable
computing: Outsourcing computation to untrusted workers. In Tal Rabin,
editor, Advances in Cryptology – CRYPTO 2010, pages 465–482, Berlin,
Heidelberg, 2010. Springer Berlin Heidelberg.

GKR15. Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating
computation: Interactive proofs for muggles. J. ACM, 62(4), sep 2015.

HKE13. Yan Huang, Jonathan Katz, and David Evans. Efficient secure two-party
computation using symmetric cut-and-choose. volume 8043 LNCS, 2013.

HKK+14. Yan Huang, Jonathan Katz, Vladimir Kolesnikov, Ranjit Kumaresan, and
Alex J. Malozemoff. Amortizing garbled circuits. volume 8617 LNCS, 2014.

Kil92. Joe Kilian. A note on efficient zero-knowledge proofs and arguments (ex-
tended abstract). In Proceedings of the Twenty-Fourth Annual ACM Sym-
posium on Theory of Computing, STOC ’92, page 723–732, New York, NY,
USA, 1992. Association for Computing Machinery.

Lin16. Yehuda Lindell. Fast cut-and-choose-based protocols for malicious and
covert adversaries. Journal of Cryptology, 29, 2016.

LP08. Yehuda Lindell and Benny Pinkas. A proof of security of yao’s protocol for
two-party computation. Journal of Cryptology, 22:161–188, 2008.

LP15. Yehuda Lindell and Benny Pinkas. An efficient protocol for secure two-party
computation in the presence of malicious adversaries. Journal of Cryptology,
28, 2015.

Mic00. Silvio Micali. Computationally sound proofs. SIAM J. Comput., 30:1253–
1298, 2000.

PHCP13. Ki-Woong Park, Jaesun Han, JaeWoong Chung, and Kyu Ho Park. Themis:
A mutually verifiable billing system for the cloud computing environment.
IEEE Transactions on Services Computing, 6(3):300–313, 2013.

Yao86. Andrew Chi-Chih Yao. How to generate and exchange secrets. In 27th
Annual Symposium on Foundations of Computer Science (sfcs 1986), pages
162–167, 1986.

22

A Original Verififable-Computation scheme

We present the verifiable-computation scheme VCgen presented in [GGP10],
a garbled-circuit based verifiable-computation scheme improved with single-
key homomorphic encryption scheme. Intuitively, this scheme follows the Yao
verifiable-computation scheme VCyao, at the difference that the double decryp-
tions to obtain a label for a gate’s output is performed homomorphically. Let E
a Yao-Secure symmetric encryption scheme and
S = (HEKeyGen,HEEnc,HEEval,HEDec) a semantically secure homomor-
phic encryption scheme.

Definition 10. Let VCgen = (KeyGengen,ProbGengen,Computegen,Verifygen)
a verifiable-computation scheme where:

– KeyGengen(f, λ)→ (PK,SK):
1. Compute ∆f = (G,W,Win,Wout) the boolean circuit representing f .
2. For each wire w ∈ W, choose randomly two labels k0w, k

1
w ∈R {0, 1}λ

representing respectively 0 and 1 on the wire w.
3. Compute the garbled circuit γ = {γg|g ∈ G} where γg is computed as in

equation (1).
4. Output PK = γ and SK = ∪w∈W{k0w, k1w} the set of randomly chosen

labels.
– ProbGengen

SK (x)→ (σx, τx):
Let the binary encoding x1, . . . , xn of input x.
1. Generate the public key pair (pk, sk)← HEKeyGen(λ).
2. Outputs σx = {HEEncpk(k

x1
w1

), . . . ,HEEncpk(k
xn
wn

)} the set of labels
associated to the wire regarding on the input bits encrypted under pk,
and τx = SK ∪ {sk}.

– ComputegenPK(σx)→ σy:

Let Γ the circuit such that given kxwa
, kywb

and γg outputs k
g(x,y)
wz .

1. Compute HEEval(Γ, {kxwa
}pk), {kywb

}pk,HEEncpk(γg)) successively for
each gate (g : wa, wb → wz), until to get {kyiwi

}pk the value of output
wires wi ∈ Wout, encrypted under pk.

2. Outputs σy ← {{kyiwi
}pk|wi ∈ Wout}.

– VerifygenSK (τx, σy)→ y ∪ ⊥:
Let sk from τx.
1. Decrypt {{kyiwi

}pk|wi ∈ Wout}.
2. Output y = y1, . . . , ym if for all i ∈ [1,m], kyiwi

∈ {k0wi
, k1wi
}, otherwise

the server is cheating, therefore we refuse the result with ⊥.

23

	Faster Non-interactive Verifiable Computing

