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Abstract. In this paper, we present the quantum implementation and analysis
of the recently proposed block cipher, DEFAULT. DEFAULT is consisted of two
components, namely DEFAULT-LAYER and DEFAULT-CORE. Two instances
of DEFAULT-LAYER is used before and after DEFAULT-CORE (the so-called
‘sandwich construction’).
We discuss about the the various choices made to keep the cost for the basic quantum
circuit and that of the Grover’s oracle search, and compare it with the levels of
quantum security specified by the United States’ National Institute of Standards
and Technology (NIST). All in all, our work nicely fits in the research trend of
finding the possible quantum vulnerability of symmetric key ciphers.
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1 Introduction

Recent trends in symmetric cryptography lead to designs that either allow efficient
implementations of side-channel and fault attack countermeasures, or offer a certain
level of inherent protection against these physical attack vectors. This is especially
important in the area of lightweight cryptography, which is aimed to be deployed in
embedded devices, and therefore, physical attacks are a realistic threat. DEFAULT
is a lightweight symmetric cipher, which takes its basic structure from GIFT [10],
proposed at Asiacrypt’21 [8] with the aim to offer protection against differential
fault analysis (DFA) [12] (see also [7, Section 5.1]). The main design feature to
provide this protection is an SBox with linear structures, to which we refer to as
LS SBox. It was shown that no matter how many faults the attacker injects at the
input of such an SBox, it is not possible to exactly determine the input value. The
DFA security of DEFAULT is 264, and generally, by using the same construction,
it is 2n/2 for an n-bit cipher.

The emergence of quantum computing constitutes a potent threat against
cryptography. Public key algorithms are especially weakened by Shor’s algorithm
that reduces the key search space complexity to a polynomial time [33]. There
have been a number of research works dedicated to explore the applicability of
public key ciphers against a quantum adversary, such as [18]. In general, symmetric
ciphers offer higher security when it comes to quantum attacks, with the Grover’s
algorithm being able to perform a full key search with 2n/2 queries.
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One may note that the quantum security of the symmetric key ciphers is not
properly analyzed at the time of design (basically, the quantum security is taken
from granted by the designers). Case in point, the lightweight ciphers not only
consume less resources in classical circuits, but also applies in quantum circuit.
Thus, it may just so happen that a lightweight cipher, despite having requisite
classical security, may not have the requisite quantum security. It highlights the
ever-growing need to implement and analyze the newly proposed symmetric key
ciphers with respect to an adversary with quantum computing capability.

Quantum circuits for AES were first reported by Grassl et al. in [20]4. Currently,
the costs estimated by Grassl et al. are cited in the NIST’s (National Institute of
Standards and Technology) post-quantum security requirements for the complexity
of quantum attacks. From potential quantum attacks, NIST evaluates the post-
quantum security level according to the cost required for a quantum attack on
the target cipher. Swimming with this tide, several studies have been conducted
to efficiently implement AES quantum circuits to reduce the cost of quantum
attacks. Recently, this research field has been extended to lightweight ciphers. This
is an important research pursuit since, lightweight ciphers can be picked up as
a choice of implementation due to tight resource constraints of many platforms,
which, on the other hand, can be susceptible to a quantum adversary. Therefore,
an important open research question is whether lightweight cipher leads to more
efficient quantum-enabled attack.

1.1 Our Contribution

DEFAULT has two variants, one was proposed in [8], and the other in [6] (the
latter is adopted from [5, Chapter 8]). The contribution in the paper consists of
both the variants and can be summarized as follows:

1. We report the first quantum circuit implementation of the cipher DEFAULT
[6,8]. Based on the implemented quantum circuit, we estimate the Grover key
search cost for DEFAULT in detail.

2. We use the optimal implementation considering the trade-offs in the number of
qubits, quantum gates, and circuit depth. The quantum circuit for DEFAULT
in [6] uses the minimum number of qubits and keeps the number of gates
and depth low. The quantum circuit for DEFAULT in [8] effectively lowers
the number of gates and circuit depth by allocating additional qubits for key
schedule.

3. We compare the quantum circuits of DEFAULT and other recently imple-
mented lightweight ciphers. With this, we analyze the quantum implementation
characteristics of lightweight ciphers.

4. We evaluate the post-quantum security for DEFAULT based on NIST’s post-
quantum security requirements.

The relevant source-code is shared as an open-source project5.

4Those were probably the first to do so for a symmetric key cipher.
5https://github.com/starj1023/DEFAULT QC.
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1.2 Related Works

Quite a few implementation/analysis works on symmetric key ciphers with respect
to a functional quantum computer have been reported so far. Examples of such
works include [3, 4, 9, 19,22,23,24,28,30,35]. Additionally, the LIGHTER-R tool
was proposed in [16] for finding improved in-place implementation of SBoxes.

2 Background

In simple words, a quantum algorithm (that has a theoretical advantage over the
best-known classical algorithm) starts with random set of inputs. Then, with the
quantum circuit it finds a solution that works with a high probability. Thus, all
such algorithms are inherently probabilistic.

2.1 Key Recovery using Grover’s Algorithm

1. Hadamard gates are applied to all qubits of the n-qubit key to prepare the key
in superposition state (|ψ⟩). An n-qubit key has the same amplitude for 2n

states as:

|ψ⟩ = H⊗n |0⟩⊗n =
( |0⟩+ |1⟩√

2

)
=

1

2n/2

2n−1∑

x=0

|x⟩ (1)

2. In oracle, the target cipher is implemented as a quantum circuit. The quantum
circuit implemented in oracle generates ciphertexts for all key values by encrypt-
ing the known plaintext with the previously prepared key in the superposition
state. The generated ciphertexts are compared with the known ciphertext and,
if they match (f(x) = 1 in Equation (2)), the sign of the key state to be
recovered is changed to negative (f(x) = 1 in Equation (3)). At the end of
oracle, the implemented quantum circuit works once more in reverse, returning
the generated ciphertexts back to known plaintext.

f(x) =

{
1 if Enc(k) = c

0 if Enc(k) ̸= c
(2)

Uf (|ψ⟩ |−⟩) =
1

2n/2

2n−1∑

x=0

(−1)f(x) |x⟩ |−⟩ (3)

3. The diffusion operator amplifies the amplitude of the key state to be recovered,
which is indicated by the oracle by changing the sign to negative. The quantum
circuit for the diffusion operator is usually generic, so no special technique is
required to implement it. Also, the diffusion operator is generally ignored when
estimating the cost of Grover’s algorithm because its overhead is negligible
compared to oracle. Finally, Grover’s algorithm measures the solution key with
high probability by repeating the oracle and diffusion sufficiently to increase
the amplitude of the key to be recovered.
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2.2 Quantum Gates

Reversible computing that can return a given output to an input is the unitary of
quantum computers. There are several representative quantum gates to implement
reversible quantum circuits for ciphers, as shown in Figure 1. The X gate can
replace the classical NOT operation, inverting the state of the input qubit, i.e.,
X(x) = ∼ x. The CNOT gate can replace the classical XOR operation. This
quantum gate inverts the state of the target qubit if the control qubit is 1, i.e.,
CNOT(x, y) = (x, x⊕ y). The Toffoli gate can replace the classical AND operation.
This quantum gate inverts the state of the target qubit if both control qubits are
1, i.e., Toffoli(x, y, z) = (x, y, z ⊕ (x · y)) Since the diagram of the Toffoli gate in
Figure 1 is simplified, it is actually decomposed into quantum gates such as X,
CNOT, and H, T gates [1], and the cost is high. The Swap gate swaps the state of
the input qubits, i.e., Swap(x, y) = (y, x).

x X ∼ x

(a) X (NOT) gate

x • x

y x⊕ y

(b) CNOT gate

x • x

y • y

z z ⊕ x · y
(c) Toffoli gate

x × y

y × x

(d) Swap gate

Fig. 1: Common quantum gates

3 Description of DEFAULT

DEFAULT [8] is a 128-bit lightweight block cipher, aimed at providing inherent
protection against DFA. It borrows its structure from GIFT-128 [11], but changes
the SBox to prevent the attacker from getting enough differential information to
uniquely identify the key among the key candidates after injecting faults. The
protection is achieved by using so-called linear structures (LS) in the DEFAULT
SBox. By utilizing a 4× 4 SBox with 4 LS, DEFAULT achieves a 264 security for
its 128-bit state size – this means that after injecting as many faults as the attacker
wants, they still have to do exhaustive search with a complexity of 264. Usage of such
SBoxes, however, lowers the cipher’s security against differential cryptanalysis, as it
introduces linearity. Therefore, to provide the protection against both, DEFAULT
uses a sandwich construction – two outer blocks (called DEFAULT-LAYER) use
some SBox with non-trivial LS (referred to as LS SBox for simplicity), while the
inner block (called DEFAULT-CORE) uses an SBox with no non-trivial (referred
to as non-LS SBox). In the following, we provide the description of each of these.
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The schematic diagrams of DEFAULT can be found in Figure 2. In particular,
the overall sandwich construction of DEFAULT (which is consisted by sandwiching
an instance of DEFAULT-CORE between two instances of DEFAULT-LAYER) is
shown in Figure 2(c).

3.1 DEFAULT-LAYER

DEFAULT-LAYER is a 28-round keyed permutation. Its round consists of 4
operations: SubCells applies a 4-bit SBox to the state; PermBits permutes the state
bits the same way as GIFT-128 [10]; The AddRoundConstants sub-routine XORs a
6-bit constant and another bit of the state is flipped at each round; AddRoundKey
XORs the round key to the state. The schematic of DEFAULT-LAYER is depicted
in Figure 2(a). A detailed description of all the operations is provided in the
following.

(Intermediate) Plaintext Key

⊕

SubCells
(037ED4A9CF18B265)

PermBits Key Schedule

AddConstants

⊕ AddRoundKey
(for each round)

(Intermediate) Ciphertext

28 rounds

(a) DEFAULT-LAYER

(Intermediate) Plaintext Key

⊕

SubCells
(196F7C82AED043B5)

PermBits Key Schedule

AddConstants

⊕ AddRoundKey
(for each round)

(Intermediate) Ciphertext

24 rounds

(b) DEFAULT-CORE

LDEFAULT-LAYER

(DFA is difficult)

EDEFAULT-CORE

(DFA is easy)

LDEFAULT-LAYER

(DFA is difficult)

(c) DEFAULT (sandwich construction)

Fig. 2: Schematic structure of DEFAULT
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SubCells In this sub-routine, DEFAULT-LAYER uses a 4-bit LS SBox (S =
037ED4A9CF18B265), applied to every nibble of the state: wi ← S(wi), ∀i ∈
{0, . . . , 31}. The coordinate functions of this SBox are given respectively by:

y0 = x0 ⊕ x1 ⊕ x2,

y1 = x0 ⊕ x1 ⊕ x0x1 ⊕ x0x2 ⊕ x1x3 ⊕ x2x3,

y2 = x1 ⊕ x2 ⊕ x3,

y3 = x0x1 ⊕ x2 ⊕ x0x2 ⊕ x3 ⊕ x1x3 ⊕ x2x3.

PermBits The bit-permutation is taken from that of the bit-permutation P128 in
GIFT-128, mapping bits from bit position i of the internal state to bit position
P128(i): bP128(i) ← bi, ∀i ∈ {0, ..., 127}. The specification of this permutation is as
stated as follows: (0, 33, 66, 99, 96, 1, 34, 67, 64, 97, 2, 35, 32, 65, 98, 3, 4, 37, 70, 103, 100, 5,
38, 71, 68, 101, 6, 39, 36, 69, 102, 7, 8, 41, 74, 107, 104, 9, 42, 75, 72, 105, 10, 43, 40, 73, 106, 11,

12, 45, 78, 111, 108, 13, 46, 79, 76, 109, 14, 47, 44, 77, 110, 15, 16, 49, 82, 115, 112, 17, 50, 83, 80,

113, 18, 51, 48, 81, 114, 19, 20, 53, 86, 119, 116, 21, 54, 87, 84, 117, 22, 55, 52, 85, 118, 23, 24, 57,

90, 123, 120, 25, 58, 91, 88, 121, 26, 59, 56, 89, 122, 27, 28, 61, 94, 127, 124, 29, 62, 95, 92, 125,

30, 63, 60, 93, 126, 31).

AddRoundConstants This subroutine XORs a single bit “1” and a 6-bit round
constant C = c5||c4||c3||c2||c1||c0 into the cipher state at bit positions 127, 23, 19,
15, 11, 7 and 3, respectively: w127 = w127 ⊕ 1, w23 = w23 ⊕ c5, w19 = w19 ⊕ c4,
w15 = w15 ⊕ c3. The round constants (6-bit) for DEFAULT-CORE are given
respectively by: (1, 3, 7, 15, 31, 62, 61, 59, 55, 47, 30, 60, 57, 51, 39, 14, 29, 58, 53, 43, 22, 44,
24, 48, 33, 2, 5, 11, 28); the first 24 of which are used by DEFAULT-LAYER. At every
round, the corresponding constant is encoded to a 6-bit word and XORed to the
cipher state, with c0 being the least significant bit.

AddRoundKey This subroutine applies the bit-wise XOR the respective round
key k to the state: bi ← bi ⊕ kji ,∀i ∈ {0, ..., 127}.

Key Schedule There are two variants of key schedule, depending on which version
of DEFAULT is considered:

1. The key scheduling algorithm of DEFAULT defined in [8] operates as follows.
It generates four 128-bit sub-keys K0, K1, K2 and K3 from the 128−bit master
key K as follows: K0 = K and Ki+1 = R′(R′(R′(R′(Ki)))) for i ∈ [0, 1, 2],
where R′ denotes the R round function with no AddLayerKey layer and with
the AddRoundConstants layer changed to only flipping the bit at position 127.
Alternatively, R′ can be seen as the R function with an all-zero round key and
an all-zero round constant. Then, these four sub-keys are used to generate the
round keys as follows: for round i with i ≥ 0, the sub-key Ki mod 4 is used as
round key input for AddLayerKey.

2. The key scheduling algorithm of DEFAULT defined in [6] uses only rotation
operations. The 128-bit key (which is the same as the master key for the
underlying cipher in case of the ad-hoc layer) is split into 16-bit words: k7 || k6
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|| . . . || k0. Each round key is extracted first and then the next round key is
generated by the update rule: k7 || k6 || . . . || k0 ← (k7 || k6 || . . . || k0) ≫ 20
followed by k7 ≫ 1, where ≫ i is an i-bit rotation to the right within the
16-bit word.

3.2 DEFAULT-CORE

DEFAULT-CORE is a 24-round block cipher. It follows the same structure as
DEFAULT-LAYER except for the following:

1. The SBox (196F7C82AED043B5) does not have any non-trivial linear structures.
The coordinate functions of this SBox are given respectively by:

y0 = 1⊕ x1 ⊕ x0x1 ⊕ x0x2 ⊕ x3,

y1 = x1 ⊕ x2 ⊕ x0x2 ⊕ x3,

y2 = x1 ⊕ x2 ⊕ x0x3,

y3 = x0 ⊕ x1x2 ⊕ x3 ⊕ x0x3 ⊕ x0x1x3 ⊕ x2x3.

2. The key schedule is the same as DEFAULT-LAYER given in [6] (described in
variant 2 earlier in Section 3.1).

The schematic of DEFAULT-CORE is depicted in Figure 2(b). As most of the
operations are identical to DEFAULT-CORE, we skip the detailed description to
avoid repetition.

4 Quantum Implementation

4.1 LS and Non-LS SBoxes

In this section, the implementation of the quantum circuit for DEFAULT is
described in detail. In quantum circuits for block ciphers of SPN structure, the most
resources are generally required for SBox implementation. To achieve an efficient
quantum circuit for DEFAULT, in implementing SBox, we use the LIGHTER-R
tool [16] instead of implementing the algebraic normal form defined in [8] as it is.
Figure 3 shows the näıve quantum implementation of DEFAULT SBoxes using its
coordinate functions (see Section 3). Notice that the input variables (x0, x1, x2, x3)
are not used and the output variables (y0, y1, y2, y3) are initialized at 0. Figure
4 shows the quantum implementation of DEFAULT SBoxes using LIGHTER-R.
Table 1 shows detailed resources for quantum implementation of DEFAULT SBoxes.

For detailed resource estimation, we decompose the Toffoli gate to the Clifford
+ T level. Following the method of [1], the Toffoli gate is decomposed into 7 T gates
+ 8 Clifford gates, with a T-depth of 4 and a total depth of 8. This decompose
method applies equally to all Toffoli gates used in DEFAULT.

As shown in Table 1, the näıve implementation uses more resources in terms of
gate count and circuit depth, not to mention it requires an additional 4 qubits for
output. On the other hand, an implementation using LIGHTER-R [16] (the results
shown here were found using NCT-gc option) can achieve in-place quantum circuits
for the SBoxes with fewer resources. In-place LS and Non-LS SBoxes operate in
parallel 32 times for 128-qubit in SubCell.
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x0 • • • x0

x1 • • • • x1

x2 • • • • x2

x3 • • • x3

0 • y0

0 • y1

0 • y2

0 y3

(a) LS SBox (037ED4A9CF18B265)

x0 • • • • • • x0

x1 • • • • • • x1

x2 • • • • • x2

x3 • • • • • x3

0 • y0

0 • y1

0 • y2

0 y3

(b) Non-LS SBox (196F7C82AED043B5)

Fig. 3: Näıve quantum implementation of DEFAULT SBoxes

Table 1: Quantum resources required for DEFAULT SBoxes implementations

SBox Method #CNOT #1qCliff #T #qubits Full depth

LS Näıve 33 2 28 8 34

LS LIGHTER-R※ 17 2 14 4 19

Non-LS Näıve 57 15 56 8 69

Non-LS LIGHTER-R※ 38 11 42 4 50

※: Used in this work

4.2 PermBits

Bit permutation can be implemented using quantum Swap gates, but since it can
be replaced by changing the index of qubits, it is not counted as a resource in most
cases [20, 24, 27, 32]. We do not use Swap gates by implementing logical swap that
changes the index of qubits. In ProjectQ, a Python-based quantum programming
tool used in this work, bit permutation can be implemented as in Code 1.1, and
quantum resources are not used.

4.3 AddRoundConstants and AddRoundKey

AddRoundConstants is implemented using a few X gates and the depth is also
low as one. Since round constants are defined in advance, it is implemented by
performing X gates according to the position where the bit of the round constant
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x0 • • • y3

x1 • • y0

x2 • • y1

x3 • • y2

(a) LS SBox (037ED4A9CF18B265)

x0 • • • y3

x1 • • • y0

x2 • • • • y2

x3 • • • • y1

(b) Non-LS SBox (196F7C82AED043B5)

Fig. 4: Quantum implementation of DEFAULT SBoxes using LIGHTER-R

Code 1.1: Implementation of DEFAULT PermBits using logical swap

1 def Permutation (eng, x): # `x` is of 128-qubits

2
3 index = [0, 5, 10, 15, 16, 21, 26, 31, 32, 37, 42, 47, 48, 53,

4 58, 63, 64, 69, 74, 79, 80, 85, 90, 95, 96, 101, 106,

5 111, 112, 117, 122, 127, 12, 1, 6, 11, 28, 17, 22, 27,

6 44, 33, 38, 43, 60, 49, 54, 59, 76, 65, 70, 75, 92, 81,

7 86, 91, 108, 97, 102, 107, 124, 113, 118, 123, 8, 13,

8 2, 7, 24, 29, 18, 23, 40, 45, 34, 39, 56, 61, 50, 55,

9 72, 77, 66, 71, 88, 93, 82, 87, 104, 109, 98, 103, 120,

10 125, 114, 119, 4, 9, 14, 3, 20, 25, 30, 19, 36, 41, 46,

11 35, 52, 57, 62, 51, 68, 73, 78, 67, 84, 89, 94, 83, 100,

12 105, 110, 99, 116, 121, 126, 115]

13
14 new_x = []

15 for i in range (128):

16 new_x.append (x[index[i]])

17
18 return new_x

is 1. The number of X gates used is determined by the round constant. (e.g., the
number of X gates with a round constant of 7 is 3).

AddRoundKey, which XORs a 128-qubit round key, is implemented using 128
CNOT gates and has a depth of 1. Algorithms 1 and 2 describe the quantum
circuits performing AddRoundKey and AddRoundConstants in our DEFAULT
implementation.

9



Algorithm 1: AddRoundConstants

Input: 128-qubit x, Round constant RC
Output: x (after update)
1: if 1st bit of RC = 1 then
2: x[3]← X(x[3])

3: if 2nd bit of RC = 1 then
4: x[7]← X(x[7])

5: if 3rd bit of RC = 1 then
6: x[11]← X(x[11])

7: if 4th bit of RC = 1 then
8: x[15]← X(x[15])

9: if 5th bit of RC = 1 then
10: x[19]← X(x[19])

11: if 6th bit of RC = 1 then
12: x[23]← X(x[23])

13: x[127]← X(x[127)

Algorithm 2: AddRoundKey

Input: 128-qubit x, Round key RK
Output: x (after update)
1: for i = 0 to 127 do
2: x[i]← CNOT(RK[i], x[i])

4.4 DEFAULT-LAYER and DEFAULT-CORE

DEFAULT-LAYER is 28 rounds and DEFAULT-CORE is 24 rounds. A round
consists of SubCell → PermBits → AddConstants → AddRoundKey and the
quantum circuits described above are used. In DEFAULT-LAYER, LS SBox is
used for SubCell and Non-LS SBox is used for SubCell in DEFAULT-CORE. Table
2 shows the quantum resources required to implement the quantum circuit for
the DEFAULT-LAYER and DEFAULT-CORE. The reason why more quantum
resources are used in DEFAULT-CORE despite fewer rounds is that the cost for a
SubCell in which Non-LS SBox is high.

Table 2: Quantum resources required for DEFAULT-LAYER and DEFAULT-CORE implementa-
tions

Component #CNOT #1qCliff #T #qubits Full depth

DEFAULT-LAYER
1 round

672 69 448 128 21

DEFAULT-CORE 1,344 356 1,344 128 52

DEFAULT-LAYER
Full

18,816 1,917 12,544 128 561

DEFAULT-CORE 32,256 8,561 32,256 128 1,225

4.5 Key Schedule

For key schedule, the on-the-fly approach is adopted in most quantum implemen-
tations [2, 20,21,24,29,31,36]. In the quantum implementation, storing all round
keys incurs significant overhead for qubits. For this reason, an on-the-fly approach
that can save qubits by using a round key and replacing it with the next round
key is frequently adopted. In addition, since the key schedule is performed in each
round, in an ideal case, the key schedule can be operated in parallel with the round
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function. However, adopting the on-the-fly approach is inefficient for key schedule
in DEFAULT [8].

In DEFAULT, only 4 round keys including the master key are used in AddRound-
Key. Of course, it is possible to adopt an on-the-fly approach to implementing a
quantum circuit for the DEFAULT key schedule. However, the key schedule for
generating the round key must be operated in every round, and the cost of the
SubCells (LS SBox), which is performed 4 times for the key schedule, cannot be
ignored. In implementing the DEFAULT key schedule, we take the overhead of
qubits and initially generate 4 round keys and use them for each round. This is
the best choice as we consider the qubit and (gate, depth) trade-off. For this, we
allocate qubits for storing 3 round keys, excluding the master key (i.e., 3 × 128
qubits), but provide the optimal qubit and (gate, depth) trade-off. Figure 5 shows
the quantum circuit for the DEFAULT key schedule in which 4 round keys are
stored and used.

The two variants of DEFAULT differ only in the key schedule. The key schedule
in [8] described above is heavier than that of [6]. Since the key schedule in [6] uses
only rotation operations, quantum resources are not required. For this very reason,
it is not described here.

k0 • k0

k1 SubCell PermBits X • SubCell PermBits X • SubCell PermBits X k3

k2 k1

k3 k2

Fig. 3: Quantum Circuit

6

× 4 ×4 ×4

Fig. 5: DEFAULT key schedule in quantum

Table 3: Quantum resources required for DEFAULT key schedule implementation

Sub-routine #CNOT #1qCliff #T #qubits Full depth

Key schedule [8] 6,912 780 5,376 512 232

5 Performance and Analysis

In this section, we present the performance of our DEFAULT quantum circuit
implemented in this work. A quantum programming tool, ProjectQ6, is used to
implement and simulate the quantum circuit. The ClassicalSimulator, a library
of ProjectQ, is used to verify the implementation, and the ReousrceCounter is
used to analyze the quantum resources used. Table 4 shows the resources required
for our DEFAULT quantum circuit implementation and is compared with quantum
circuits of other block ciphers.

6Website: http://projectq.ch/.
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Table 4 shows the resources required for our DEFAULT quantum circuit
implementation and is compared with quantum circuits of other block ciphers. For
consistent comparison, Table 4 compares quantum resources at the NCT (NOT,
CNOT, Toffoli) level in which the Toffoli gates are not decomposed.

Table 4: Summary of quantum resources required for DEFAULT and other block ciphers

Cipher #CNOT #X #Toffoli Toffoli depth #qubits Depth

DEFAULT [6] 13,824 1,131 8,192 256 256 644

DEFAULT [8] 23,040 1,143 8,960 280 640 754

GIFT-128/128 [24] 6,144 10,853 6,144 N/A 256 528

PRESENT-64/128 [24] 4,838 1,164 2,232 N/A 192 311

PIPO-64/128 [27] 2,248 1,477 1,248 N/A 192 248

SPECK-128/128 [2] 25,862 75 7,938 N/A 256 10,144

LEA-128/128 [25] 32,616 11,152 10,248 N/A 388 6,505

HIGHT-64/128 [25] 22,614 4,496 5,824 N/A 228 2,479

CHAM-128/128 [25] 28,760 4,880 4,880 N/A 292 5,307

For quantum circuits of block ciphers, the required quantum resources are
determined according to the encryption structure and implementation technique.
In Table 4, SPECK, LEA, HIGHT and CHAM use more quantum resources than
other block ciphers. SPECK, LEA, HIGHT, and CHAM are block ciphers of the
ARX (Addition, Rotation, XOR) structure in which addition is used for encryption.
Rotation can design a circuit without using quantum resources at all through
logical swap that changes the index between qubits. XOR is simply implemented
as a CNOT gate. On the other hand, quantum addition is implemented with a
combination of multiple Toffoli, CNOT, and X gates, and the circuit depth is high.
Unlike classical computers, addition is a complex operation in quantum computers,
and since there are various design methods, many studies have been proposed to
effectively implement it [15,17,34].

Conversely, in the quantum circuit implementation for block ciphers of the SPN
(Substitution-Permutation Network) structure, relatively few quantum resources
are used if the SBox can be implemented efficiently. This is convincing as fewer
quantum resources are used for GIFT, PRESENT, PIPO and DEFAULT in this
work than SPECK, LEA, HIGHT, and CHAM.

This becomes more evident when estimating full gates and full depth by
decomposing the Toffoli gates. Table 5 shows a detailed analysis at the Clifford +
T level for the quantum resources required for our DEFAULT quantum circuit and
quantum circuits of other block ciphers. As described in Section 4.1, following the
method of [1], the Toffoli gate is decomposed into 7 T gates + 8 Clifford gates,
with a T-depth of 4 and a total depth of 8.

6 Grover’s Key Search

In this section, the cost of Grover key search for DEFAULT is estimated in detail.
Grover key search quantum circuit for block cipher consists of iterations of oracle
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Table 5: Details of quantum resources required for DEFAULT and other block ciphers

Cipher #CNOT #1qCliff #T T depth #qubits Full depth

DEFAULT [6] 62,976 12,395 57,344 1,024 256 2,291

DEFAULT [8] 76,800 13,175 62,720 1,120 640 2,497

GIFT-128/128 [24] 35,840 19,377 35,840 N/A 256 1,520

PRESENT-64/128 [24] 18,230 5,628 15,624 N/A 128 1,179

PIPO-64/128 [27] 9,928 3,973 8,736 N/A 192 1,041

SPECK-128/128 [2]♢ 73,490 15,951 55,566 N/A 256 36,358

LEA-128/128 [25] 94,104 31,588 71,736 N/A 388 47,401

HIGHT-64/128 [25] 57,558 16,144 40,540 N/A 228 14,058

CHAM-128/128 [25] 58,040 14,640 34,160 N/A 292 37,766

♢: Extrapolated result

and diffusion operator. Cost estimation for Grover key search generally ignores
diffusion operator and counts only quantum resources for oracle [20, 25,29, 30, 36].
This is because the overhead of the diffusion operator is negligible, so th total cost
is determined by the oracle.

Figure 6 shows the quantum circuit for oracle of Grover key search for DE-
FAULT. In oracle, plaintext 128-qubit |m⟩ is encrypted with 128-qubit key |k⟩ in
superposition state to generate ciphertext in superposition state. 3 clean qubits
(i.e., |0⟩’s) are used to store round keys. In the middle of oracle, it checks whether
the generated ciphertext matches the known ciphertext. Since the overhead for this
task is negligible, in our estimation, it is excluded from the cost for simplicity. At
the end of oracle, in order to prepare for the next iteration, the reverse operation
of DEFAULT is performed (i.e., DEFAULT†) to return to the initial state.

The quantum resources required for the sequential operation of quantum circuits
DEFAULT and DEFAULT† are shown in Table 6, which is the oracle cost.

|k⟩

DEFAULT DEFAULT†

|k⟩

|0⟩ |0⟩

|0⟩ |0⟩

|0⟩ |0⟩

|m⟩ • |m⟩

|−⟩ |−⟩

Fig. 6: Quantum circuit to run Grover’s oracle on DEFAULT

Table 6: Quantum gates required for Grover’s oracle

Source #CNOT #1qCliff #T T depth #qubits Full depth

DEFAULT [6] 125,952 24,790 114,688 2,048 257 4,582

DEFAULT [8] 153,600 26,350 125,440 2,240 641 4,994
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The cost of Grover key search is calculated from the estimated oracle cost. The
number of iterations required for Grover key search for an n-bit search space is
about

√
2n. In [14], the authors suggested that the optimal number of iterations for

the n-bit search space is ⌊π4
√
2n⌋ (reduced) through tight analysis of the Grover’s

algorithm. The total cost of Grover key search is estimated as Table 6 ×⌊π4
√
2128⌋

because the diffusion operator is ignored.

It should be pointed out that there are r plaintext-ciphertext pairs needed to
find a unique key, not a spurious key. The cost estimation of Grover key search
for block ciphers was first presented for AES-128, 192, and 256 in [20], and the
authors set r = 3, 4, and 5. After that, [29, 31] suggested that r = ⌈key size/block
size⌉ is sufficient to find a unique key. We also estimate the cost of Grover key
search by setting r = ⌈key size/block size⌉ for DEFAULT using 128-bit block and
key (i.e., r = 1). Finally, the quantum resources required for Grover key search for
DEFAULT are shown in Table 7.

Table 7: Quantum resources required for Grover’s key search

Source r Total gates Total depth Cost NIST security

DEFAULT [6] 1 1.59 · 281 1.757 · 275 1.397 · 2157
2170

DEFAULT [8] 1 1.83 · 281 1.915 · 275 1.752 · 2157

NIST utilized the cost of the Grover’s key search to estimate post-quantum
security strength for symmetric key cryptography. NIST has defines the post-
quantum security level as follows according to the relative cost of quantum attacks
that violate the security of AES-128, -192, -256:

⋄ Any attack that breaks the relevant security definition must require computa-
tional resources comparable to or greater than those required for key search on
a block cipher with a 128-bit key (e.g., AES-128).

⋄ Any attack that breaks the relevant security definition must require computa-
tional resources comparable to or greater than those required for key search on
a block cipher with a 192-bit key (e.g., AES-192).

⋄ Any attack that breaks the relevant security definition must require computa-
tional resources comparable to or greater than those required for key search on
a block cipher with a 256-bit key (e.g., AES-256).

NIST focuses on the overhead of quantum gates and circuit depth due to
numerous iterations of Grover’s algorithm, and considers the number of qubits less
as they are not affected by iterations. In a nutshell, during the operation of Grover
algorithm, gates and depth are continuously increased, but the number of qubits
is fixed. One thing that makes this clear comes from the observation that NIST
estimates the cost for Grover key search as the product of the total gates and
total depth of the quantum circuit, excluding the number of qubits. By following
the Grover’s key search by Grassl et al.’s for AES [20], the costs for Levels 1, 3,
and 5 are estimated respectively as 2170, 2233, and 2298 search complexities. NIST
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recommends meeting Level 1 and/or Level 3 as it is likely to provide sufficient
security for the foreseeable future7.

If we compare the cost of the Grover’s key search of DEFAULT (2157) with the
post-quantum security level of NIST, Level 1 (2170) cannot be achieved. However, it
should be pointed out that the estimated costs (from the work of Grassl et al. [20])
for the levels (level 1: 2170, level 3: 2233, and level 5: 2298) are considerably high, and
the level is defined according to the relative attack cost for AES. This is evident
from the significantly reduced cost of most recent quantum implementations of
ciphers [2, 9, 13,21,24,26,29,31,36].

NIST noted that these preliminary classifications should be evaluated conserva-
tively if the cost of best known attacks is significantly reduced. To the best of our
knowledge, in EuroCrypt’20, the estimated costs for AES by Jaques et al.8 [29]
are the lowest: 2157, 2221, and 2285 . If the Grover’s key search cost for DEFAULT
estimated in this work (2157) is compared with the cost estimated in [29] (2157),
DEFAULT can achieve post-quantum security Level 1.

7 Conclusion

In this paper, we present a detailed implementation and analysis of the newly
proposed block cipher, DEFAULT [6, 8]. Along with optimizations, we explore
the possible vulnerability of DEFAULT against a quantum adversary. We show
DEFAULT can be expected to meet the NIST specified quantum security of Level
1. As one can expect this line of research only to grow with the passage of time, we
are optimistic that our work would become useful for the upcoming researchers.
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