
Dynamic Searchable Encryption with Optimal Search in the Presence of Deletions

Javad Ghareh Chamani
HKUST

Dimitrios Papadopoulos
HKUST

Mohammadamin
Karbasforushan
UC Santa Cruz

Ioannis Demertzis
UC Santa Cruz

Abstract
We focus on the problem of Dynamic Searchable Encryp-
tion (DSE) with efficient (optimal/quasi-optimal) search in
the presence of deletions. Towards that end, we first propose
OSSE, the first DSE scheme that can achieve asymptotically
optimal search time, linear to the result size and independent
of any prior deletions, improving the previous state of the art
by a multiplicative logarithmic factor. We then propose our
second scheme LLSE, that achieves a sublogarithmic search
overhead (log log iw, where iw is the number or prior inser-
tions for a keyword) compared to the optimal achieved by
OSSE. While this is slightly worse than our first scheme, it
still outperforms prior works, while also achieving faster dele-
tions and asymptotically smaller server storage. Both schemes
have standard leakage profiles and are forward-and-backward
private. Our experimental evaluation is very encouraging as it
shows our schemes consistently outperform the prior state-of-
the-art DSE by 1.3-6.4× in search computation time, while
also requiring just a single roundtrip to receive the search re-
sult. Even compared with prior simpler and very efficient con-
structions in which all deleted records are returned as part of
the result, our OSSE achieves better performance for deletion
rates ranging from 45-55%, while the previous state-of-the-art
quasi-optimal scheme achieves this for 65-75% deletion rates.

1 Introduction

Searchable encryption (SE) [17, 59] allows a user to upload
her dataset to an untrusted server in encrypted form, while
maintaining the ability to search over it without revealing raw
data to the server. Since its introduction by Song et al. [59], it
has become a heavily studied research topic with numerous
works that try to improve its security [21, 38, 41, 54], effi-
ciency [6,20,24,25,51], expressiveness of supported types of
queries [11,12,15,22,23,28,37,49], and support for multiple
users [34, 56, 57, 64, 65]. One common denominator in SE re-
search has been the focus on highly practical schemes that can

be used in real-world applications and scale to large datasets,
at the cost of a clearly defined leakage of information about
the dataset to the server such as whether queries are repeated,
the size of the returned result, and when the same results are
returned. Partly due to this emphasis on efficient performance,
SE has been used in a variety of settings starting from simple
text keyword search [17, 59], and including encrypted rela-
tional [12, 39], NoSQL [55], or graph [30, 47, 49] databases.
Consequently, SE has been proposed for applications such as
annotated image search [3], encrypted email clients [50], and
very recently for maintaining a secure gun registry [42].

Our focus in this work is dynamic searchable encryption
(DSE) [8, 43, 44], that is, schemes that allow the user to effi-
ciently modify the dataset, without having to re-run a costly
setup process from scratch. More specifically, we are inter-
ested in DSE with efficient search performance in the presence
of deletions. Ideally, the search time for a query should be op-
timal, i.e., proportional to the result size itself, independently
of the number of prior deletions that affect this result. For
instance, consider an extremely simple example for a DSE
keyword search over a textual dataset, returning which files
contain it. If the keyword appears in 100 files but subsequently
90 of them are deleted, the search overhead should only be
proportional to its actual returned result (i.e., 10). Given the
wide range of potential SE applications, this can make a big
difference in the system’s performance.

In particular, in a graph database deleting a node immedi-
ately triggers deletions of all its adjacent edges. For a rela-
tional database (likewise, for streaming systems [4, 35] and
pure key-value storage [1]), which use a (LSM-like) key-
value store (or an encrypted store in the case of DSE) as a
storage layer [29], a single deletion/update of a tuple/value
will produce a multiplicative number of deleted/cancellation
tuples—at least one for each attribute. These deleted tuples
can later interleave with future search queries affecting the
search performance. Such issues have also been observed
recently by [58]; that work considers settings in which “low-
level” deletes are triggered not only by users’ direct actions,
and studies scenarios of delete-intensive query workloads.

1

Table 1: Comparison with prior DSE with quasi-optimal search. N is the upper bound on the (w, id) pairs and D total number of
deletions, |W | is the number of distinct keywords, and for each keyword, iw and dw are the number of insertions and deletions,
aw = iw +dw is the total number of updates, and nw = iw−dw is the number of non-deleted (w, id) pairs. RT is the number of
roundtrips for completing a search query. We assume oblivious maps are instantiated with [63]. For QOS, we refer to the version
from [19] with counters locally stored at the client.

Scheme Search Insert Delete Search RT Server Storage BP
SPS [60] O(min{aw + logN,nw log3 N}) O(log2 N) O(log2 N) 1 O(N) ✗

Orion [13] O(nw log2 N) O(log2 N) O(log2 N) O(logN) O(N) I
Horus [13] O(nw logdw logN + log2 |W |) O(log2 N) O(log2 N) O(logN) O(N) III
QOS [19] O(nw log iw) O(log3 N) O(log3 N) 2 O(N) III

OSSE (Sec. 4) O(nw + log iw) O(log2 N) O(log3 N) 1 O(N +D logN) III
LLSE (Sec. 5) O((nw + log iw) · log logN) O(log2 N) O(log2 N) 1 O(N) III

Prior DSE with (quasi-)optimal search. The majority of
DSE schemes in the literature (e.g., [9, 13, 19, 27]) adopt a
“lazy deletion” policy, treating deletions as actual entries on
their own behalf (similar to the LSM-like policy mentioned
above). In subsequent searches, the client retrieves all rel-
evant inserted entries and “deletion entries” and filters out
the actual result. While this leads to a conceptually simple
search process, it can have significant adverse impact on the
system’s search performance, as motivated in our discussion
above. That said, a small number of works focus on the same
goal as we do and we provide an overview of their asymptotic
performance in Table 1, starting from Stefanov et al. [60]
that proposed the first DSE where the search performance is
always quasi-optimal, i.e., within a poly-logarithmic factor
from the result size. Unfortunately, their construction has the
drawback that it reveals to the server the id’s of records that
contained the searched keyword but have since been deleted1,
which may not be acceptable in some applications (e.g., as
related to the right-to-erasure of EU GDPR article 17).

Formally this property has been defined as backward pri-
vacy in [9], distinguishing it from forward privacy [14, 60]
that minimizes information leakage during updates. Focusing
on works that achieve both forward and backward privacy, the
best such scheme (QOS from [19]) requires O(nw log iw) for a
search for keyword w with result size nw after iw relevant entry
insertions.2 Previous works (Orion and Horus from [13]) em-
bed the entire dataset inside an oblivious index [18,31,61,63].
If this is instantiated with the state-of-the-art oblivious in-
dexes [5], the result would be asymptotically the same as QOS,
i.e., a logarithmic factor slower than the optimal. Interestingly,
there exist very strong lower-bound results [31, 48, 53] that
show that relying solely on oblivious indexes one cannot hope
to further improve search performance asymptotically.

Motivated by this, we ask whether it is possible to design a
forward-and-backward private DSE with search performance

1Having been inserted after the last search for this keyword; otherwise,
the server already knows these id’s as information leakage during that search.

2As in all prior works referenced here, when referring to asymptotics
we implicitly assume map lookups are constant-time operations, e.g., via
dynamic perfect hashing [26].

that is asymptotically within a sublogarithmic factor from the
optimal O(nw), or indeed with optimal search performance.
This work. We present the first DSE schemes that answer the
above question in the affirmative. Our first construction OSSE
(Section 4) is the only existing DSE that, for large enough
result sizes, requires an optimal number of O(nw) operations
for search queries (and for very small hidden constants). Its
main drawback is a somewhat increased storage, as the size
of the encrypted storage grows logarithmically with the total
number of deletions (that said, in our experimental evaluation
we show that this is not a prohibitive factor in practice). Our
second scheme LLSE requires O(nw log log iw) operations for
searches with large enough results. While this is weaker than
our first result, LLSE still outperforms the prior state of the art
QOS by a factor or O(log iw/ log log iw), while also achieving
better deletion performance than OSSE and QOS, and asymp-
totically optimal storage (see Table 1). Moreover, both our
schemes retrieve the search result with a single roundtrip.

At the core of our results lies a carefully chosen arrange-
ment of entries in the encrypted dataset as conceptual keyword
binary trees (see Figure 3 and discussion in Section 4.1). With
insertions lying at the leaf level, subsequent deletions “prune”
this tree to minimize the number of traversed such nodes dur-
ing a search. The key challenge is how to manipulate these
trees without revealing significant information to the server.
Interestingly, our schemes use an oblivious map to store tree
data, however, they only access it during updates (using re-
trieved information as “guidelines” to prepare future searches)
thus making searches extremely fast and non-interactive.

Our contributions can be summarized as follows:
1. We propose OSSE, the first DSE that can achieve asymp-

totically optimal search performance (for nw ≥ log iw),
independently of prior deletions, and LLSE, a DSE with
search performance within an asymptotic loglog factor
from the optimal, that also achieves faster deletions and
linear storage. For both schemes, we prove their security
for standard leakages and show they are forward-and-
backward private (BP-III).

2. We propose a series of performance optimizations (Sec-
tion 6) and report on the efficiency of prototype imple-

2

mentations of our schemes (Section 7.1) with encourag-
ing results (e.g., optimized OSSE takes < 1ms of com-
putation time to retrieve a result of 100 id’s and < 10ms
for a result of 20K id’s, from a database of 1M entries).

3. We compare the performance of our schemes vs. existing
quasi-optimal ones (Section 7.2) for different settings
(variable deletion rates, for both random and “structured”
deletions). Both our constructions consistently outper-
form QOS by roughly 1.3-4× but for large result sizes
and large deletion rates the improvement is up to 6.4×.

4. We also compare our schemes with conceptually sim-
pler DSE with “lazy” deletion (Section 7.2). As ex-
pected, as deletion rates increase our schemes outper-
form SDd from [19]. Concretely, for OSSE this happens
for rates 45-55%, and our fully optimized OSSE with
result caching, in the best case, can outperform SDd even
after a single deletion!. Surprisingly, for large enough
sizes this carries over even for a “succinct-client-storage”
version of our schemes albeit for larger deletion rates.

Related Work. In our security formulation, we use the stan-
dard SE definition of [17] extended to the dynamic setting
in [60]. The QOS scheme from Demertzis et al. [19] is cur-
rently the best existing quasi-optimal DSE and we bench-
mark our constructions’ performance with it. In [19], the
authors propose two versions of QOS with small O(1) and
large O(|W |) client storage. We mainly compare our schemes
with the second one, but in Section 7.2 we measure perfor-
mance in both settings. From a technical viewpoint, QOS
also encodes entries in keyword trees, however, the way they
are maintained cannot achieve our target of sublogarithmic
overhead. Moreover, the design of OSSE, allows us to benefit
from “early” stop while parsing the tree if empty nodes are
found, whereas QOS needs to keep traversing the layers.

Regarding “lazy” deletion schemes, there exist several can-
didates for performance comparison, e.g., from [9, 13, 19].
Among them, Mitra (with the recently proposed optimizations
of [16]) and SDd stand out. Although they have very similar
performance, we chose the latter since, as shown in [19], it
can give slightly faster searches, and it is the only one with
succinct client storage without performing oblivious map ac-
cesses during searches. One point to note is that the way all
existing DSE schemes implement “lazy” deletion is by stor-
ing a separate record for each deletion. This is unlike “lazy”
deletion in plaintext databases where the deletion is usually
marked in-place (e.g., using a special flag). Storing this entry
separately is necessary; touching the same location in the en-
crypted index during an update as a previously accessed one
would violate forward privacy (see Section 2). Consequently,
when using such a scheme the server observes the result size
“growing” after deletions, whereas in our schemes it “shrinks.”
In both cases, this is already captured by the standard leakage
profile used in the literature (see Section 2 and Appendix B.1).
We also note many of these DSE schemes use similar building

blocks as ours (encrypted maps and oblivious indexes). How-
ever, the way we use them to embed our “shrinking” keyword
trees (Section 4.1) is what allows us to match practical per-
formance with theoretical improvements, achieving the first
scheme with optimal search.

Another recent scheme that falls under this category is
Aura [62] that also achieves one-round interaction for search,
same as our schemes. However, close inspection of the
scheme’s search process [62, Alg. 1] shows that the server
extracts all insertion and deletion entries for keyword w be-
fore “filtering out” the latter so its search is at least linear
to aw. Finally, recent work by Patel et al. [53] shows it is
fundamentally impossible (in the leakage cell probe model)
to achieve sublogarithmic search overhead if one requires
searches and updates to be independently simulatable without
state “carrying” across them during simulation. In relation to
this, our schemes are positive evidence that it is possible to
overcome this lower bound (even in the more stringent set-
ting with deletions) if one can settle for independent update
simulation (guaranteed by our forward privacy) whose state
is then available for subsequent searches.

2 Preliminaries

We denote by λ a security parameter and by v(λ) a negligible
function in λ. PPT stands for probabilistic polynomial-time.
Our protocols are executed between two parties, a client and
a server. The notion P(x;y) denotes a (possibly multi-round)
protocol execution where x and y are the client’s input and
the server’s input, respectively.

We consider a collection of F files/documents (this is an
abstraction that can possibly capture other data types, e.g.,
semi-structured data, database records, etc.) with identifiers
id1, . . . , idF , each of which contains textual keywords from
a given alphabet Λ. The database DB consists of keywords
and file identifiers such that (w, id) ∈ DB if and only if the
file id contains keyword w. Let W denote the set of all key-
words in DB, |W | its cardinality, and N an upper bound on
the total number of keyword/document pairs. Then, DB(w)
corresponds to the set of documents containing keyword w.

We rely on classic cryptographic tools, such as pseudoran-
dom functions and standard symmetric-key encryption. For
completeness, we provide their descriptions in Appendix A.

Oblivious Maps. A map (dictionary) is a data structure that
maps addresses (keys) to values and provides read (get) and
write (put) access methods. An oblivious map (OMAP) is a
privacy-preserving version of a regular map that hides the
type and content of operations. An OMAP consists of three
procedures: (i) OMAP.Setup for initializing the data structure,
(ii) OMAP.put to add/overwrite a key/value pair, and (iii)
OMAP.get to retrieve the value for a given key. Intuitively,
all equal-length sequences of data accesses (get/put) are in-
distinguishable from each other, even for an adversary that
stores the data structure itself (without knowing the secret

3

key). More concretely, this interaction can be simulated given
only the number of operations (see [63] for the detailed secu-
rity formulation). In our schemes, we use the popular OMAP
of Wang et al. [63] which stores an AVL-tree inside a PathO-
RAM [61] oblivious array. For a map with capacity N, each
access takes O(log2 N) operations and O(logN) roundtrips.
We refer interested readers to [63] for additional details.

3 Dynamic Searchable Encryption

A dynamic symmetric searchable encryption scheme (DSE) Σ

consists of algorithm Setup, and protocols Search and Update
that are executed between a client and a server.
• Setup(1λ,N) returns (K,σ,EDB) where K is the client’s se-

cret key, σ its local state, and EDB is an (empty) encrypted
database, initialized for capacity N, sent to the server.

• Search(K,w,σ;EDB) is a (possibly interactive) protocol
for retrieving DB(w), and may also modify K,σ,EDB.

• Update(K,op, id,w,σ;EDB) is a (possibly interactive) pro-
tocol for inserting/removing a document-keyword entry
(id,w) to/from the database. Operation op is either add or
del and the protocol may modify K,σ and EDB.

Here, we mostly follow the API description of [8,9,13]. Using
these procedures, the client runs Setup for an empty database,
followed by up to N executions of insertions to “populate”
EDB. Other works [27, 45] propose different but functionally
equivalent definitions for Update (e.g., inserting or deleting
an entire document, which can be decomposed to multiple
calls of Update). Finally, the above definition isolates the goal
of retrieving only DB(w) during Search, i.e., the id’s of all
files/documents containing w. In some applications, the client
would like to retrieve the actual documents; this is omitted
from our model as it can always be done with an extra round
of interaction after the completion of Search.

At a high level, a DSE is correct if the returned DB(w)
result is correct for every query and the given sequence of
prior updates. The security of a DSE scheme is parametrized
by a leakage function L = (LSt p,LSrch,LU pdt) that captures
the information that is revealed to server during the execution
of the different processes. LSt p corresponds to leakage dur-
ing setup, LSrch during a search operation, and LU pdt during
updates. Commonly encountered types of leakage in the rele-
vant literature, that also occur with our schemes, consist of: (i)
search pattern that reveals which searches are related to the
same w, (ii) volume pattern, i.e., |DB(w))| during a search for
w, and (iii) database size leakage during setup (in our case,
the upper bound N). Another very important type of leakage
is access pattern that reveals the actual contents of DB(w)
when w is searched for. This is inherently unavoidable when
the actual documents need to be retrieved as explained above
(unless stored with “costly” oblivious storage). Here, we fo-
cus on retrieving DB(w). Thus our schemes do not directly
leak this but, when used in an application that retrieves the
actual documents, this has to be taken into account.

Informally, a secure DSE scheme with leakage L should
reveal nothing about the database DB other than this leakage.
This is formally captured by a standard real/ideal experiment
with two games RealDSE, IdealDSE presented in Figure 8 in
Appendix B, using the following formulation from [60].

Definition 1. A DSE scheme Σ is adaptively-secure with
leakage function L , iff for any PPT adversary Adv issuing
polynomially many queries q, there exists a stateful PPT sim-
ulator Sim = (SimInit, SimSearch, SimU pdate) such that
|Pr[RealDSE

Adv (λ,q) = 1]−Pr[IdealDSE
Adv,Sim,L(λ,q) = 1]|< v(λ).

As explained above, many DSE schemes store deletions as
actual entries in EDB and filter them to retrieve the actual re-
sult during searches. Ghareh Chamani et al. [13], proposed the
following definition for schemes that avoid this and achieve
search time close to the optimal O(nw).

Definition 2. A DSE scheme Σ has optimal (resp.
quasi-optimal) search, if Search takes O(|DB(w)|) (resp.
O(|DB(w)|· polylog(N))) operations.

Forward & Backward Privacy. Forward privacy [14, 60]
limits the information revealed due to updates in EDB. Infor-
mally, a scheme is forward private if it is not possible to relate
an update to previous operations, when it takes place. E.g.,
it should be impossible to tell whether an insertion is for a
new keyword or a previously existing/searched one. Previous
works (e.g., [66]) have shown the potential of forward privacy
to thwart certain types of leakage-abuse attacks.

Definition 3. An L-adaptively-secure DSE scheme that sup-
ports addition/deletion of a single keyword is forward pri-
vate iff the update leakage function LU pdt can be written
as: LU pdt(op,w, id) = L ′U pdt(op, id) where L ′ is a stateless
function, op is insertion or deletion, and id is a file identifier.

Backward privacy [9] specifies the server should not be able
to learn the id’s of documents that contained w, if they have
since been deleted. Clearly, this is only meaningful if a search
for w did not take place prior to this deletion. Bost et al. [9]
proposed three different “flavors” of backward privacy with
varying leakage patterns, all of which achieve the minimum re-
quirement of hiding id’s of such deleted entries. Here, we only
aim for BP-III, according to the following definition from [9]
(the involved leakage functions are defined in Appendix B.1).

Definition 4. An L-adaptively-secure DSE scheme has back-
ward privacy (BP-III), iff LU pdt(op,w, id) = L ′(op,w) and
LSrch(w) = L ′′(TimeDB(w),DelHist(w)), where L ′ and L ′′

are stateless functions.

4 Optimal-Search DSE (OSSE)

We are now ready to present our first construction OSSE.
We first describe the main idea of maintaining a conceptual
binary tree to store the entries for each keyword w and then
we provide details about the algorithms of the scheme.

4

Node Sibling

Parent Uncle

Grand

Parent

Delete Node Sibling Uncle

Grand

Parent

Figure 1: OSSE: Deletion pruning

4.1 Labeled Binary Trees for Stored Entries

In our schemes, we store entries of the form (w, id) such that
keyword w appears in document (more generally, record) id.
Conceptually, each such entry is mapped to a leaf of a com-
plete binary tree Tw with N leafs (where N is an upper bound
for the number of total entries in the dataset), in chronolog-
ical order from left to right. The first entry for w is stored
at the leftmost leaf, etc. We consider a function lab(v) that
maps each tree node v to a unique numerical label, as follows.
First, leafs are ordered 1, ...,N left-to-right, then the remaining
nodes are ordered bottom-to-top and left-to-right. E.g., nodes
directly above the leafs are labelled starting from the left as
N +1, . . . ,3N/2, as shown in Figure 3. In the following, we
often refer to tree nodes directly by their labels. Note that we
use one tree for each keyword but the schemes do not require
storing and maintaining “complete” trees (that would make
the storage N · |W |)—these are just “conceptual” encodings
of the N actual (w, id) entries spread among keywords.

Having explained Tw, extracting the result DB(w) after iw
insertions can be achieved trivially by starting from the Mini-
mum Covering Subset (MCS) of nodes for the leafs in [1, iw].
The MCS consists of the smallest set of nodes whose leaf
descendants are exactly the leafs labeled 1, . . . , iw. E.g., in
Figure 3(top), the MCS of [1,15] is {29,27,23,15}. Follow-
ing the edges downwards from the MCS, this process will
parse in total < 2iw nodes. However, recall that our goal is
to do better than this, in the presence of deletions. When a
deletion takes place, we "remove" from Tw the corresponding
leaf node v and its parent pp, effectively “pruning” the tree.
In practice, we do this by setting the leaf’s sibling sib as the
direct child (left or right, depending on the tree topology) of
the grandparent gp of v, skipping its parent pp. We illustrate
this in Figure 1. Handling deletions in this way, leads to the
following result which we prove as part of our analysis: Given
a sequence of iw insertions and dw ≤ iw deletions, the number
of nodes of Tw below the MCS that need to be accessed to
extract DB(w) is < 2 · |DB(w)| (= nw).

Intuition: From trees to a secure index. Next, we will use
these keyword trees to build the secure index for our DSE. The
“classic” approach followed by many prior works [8, 9, 11, 11,
13, 19, 27] is to take each entry (in our case, its corresponding
tree node) and store it in an encrypted map. This is a standard
key-value hashmap but: (i) keys (positions) are computed with
a pseudorandom hash function, and values are encrypted in a
way that only reveals them to the server during searches (and

(w, 29)

Parent: 31

Left Child
17

Right Child

26

OSSE LLSE

Left Child
17

Right Child

26

Left Child

Access Counter
1

Right Child

Access Counter
0

Figure 2: OMTree data structure of OSSE and LLSE, with
node 29 in Figure 3(middle) as an example.

for leaf nodes, not even then). Although this approach gives us
the desired efficiency benefit, in our case, it introduces a subtle
security issue. The same node may be accessed repeatedly
during deletions. E.g., in Figure 3(bottom), deleting “cousin”
leafs 10 and 11 requires “touching” their grandparent 27 twice.
Even though the value in the hashmap is encrypted, the server
can clearly see the same position is accessed both times, which
unfortunately violates forward privacy.

To avoid this issue, in our schemes we use the following
trick. First, we give each Tw node its own increasing access
counter, initially set to 0 and incremented by 1 each time the
node is modified. Next, when pseudorandomly computing the
new encrypted map position for this node after it is accessed
during an update, we also include the incremented access
counter (and a freshly encrypted value). Thus, a new write
to update the information of an existing tree node is indistin-
guishable from random and cannot be linked to any previous
operation. The remaining challenge is how can the user know
these access counters, which is necessary both for searches
and for updates. We solve this by storing node information
also in an oblivious index (see Figure 2) that, crucially, is
accessed only during updates. Then during searches, our two
schemes follow a different strategy: the first stores node ac-
cess counters in their parent nodes, whereas in the second the
server “finds” the correct access counter by performing a bi-
nary search. In the next parts, we present in detail all the data
structures used in our DSE and the details of our algorithms.

4.2 OSSE Data Structures & Algorithms
We are now ready to describe OSSE in detail. First, we present
the different data structures that we use to maintain and ma-
nipulate the trees Tw for the different keywords.
• OMTree is an oblivious map that maps pairs of key-

words and node labels (w, lab(v)) to that node data struc-
ture v containing the following: (v.le f t, v.le f tAcc, v.right,
v.rightAcc). These are the label of the left child of v with
its access counter, and the label of the right child of v with
its access counter (see Figure 2). This oblivious map is
accessed during updates (but not searches) to change Tw.

• OMDel is an oblivious map that maps pairs of keywords
and document identifiers (w, id) to lab(v), where v is the
leaf of Tw that stores this entry. This is accessed only during
deletions, to efficiently identify the node to be pruned.

• EM is an encrypted map mapping node label and access

5

1 2

17

3 4

18

5 6

19

7 8

20

9 10

21

11 12

22

13 14

23

15 16

24

25 26 27 28

29
30

31

1 2

17

3 4

18

5 6

19

7 8

20

9 10

21

11 12

22

13 14

23

15 16

24

25 26 27 28

29
30

31

1 2

17

3 4

18

5 6

19

7 8

20

9 10

21

11 12

22

13 14

23

15 16

24

25 26 27 28

29
30

31

timestamp t1

timestamp t2

timestamp t3

Inserted nodes Nodes that are being deleted Deleted nodes Pointer to the new child MCS nodes to be accessed
during a search operation

Figure 3: Example of the tree Tw state after executing insertion/deletion with OSSE and LLSE. (top) The tree after 15 insertions
for w. (middle) The tree when deleting node 8 (and consequently its parent 20) and sibling nodes 3,4 (which also deletes their
parents 18 and grandparent 25). After these deletions, remaining siblings replace the removed parent nodes (e.g., 7 is now the
right chilg of 26). (bottom) The tree when deleting nodes 9-15. After the deletion, the only remaining node in the right subtree
(node 16) will be the right child of 31 (for future insertion). In all cases, nodes in blue boxes denote the MCS nodes that will
have to be accessed in a subsequent search for w.

counter pairs (lab(v),acc) to: (i) stored document id, if v is
a leaf, and (ii) (v.le f t, v.le f tAcc, v.right, v.rightAcc), oth-
erwise. It is traversed in searches and modified in updates.

• MCnt is a plaintext map stored at the client that maps key-
word w to counters (cntw, iw,dw), corresponding to number
of searches, insertions, and deletions for w.

• MT ks is a plaintext map stored at the server that maps pairs
of tokens and node labels (tk0, lab) to tokens ctk. The look-
up token tk0 is unique for each keyword w. This is used to
facilitate searches for w that involve nodes that have been
written/removed prior to the previous search, and it returns
the correct “old” token for this node entry. By default, in
each search the server first searches at EM with the latest
token tk received from the client, and only in case this
returns nothing it falls back to MT ks.

Setup. The client first initializes these data structures (with
capacity N for the two OMAPs). It then samples a pseu-
dorandom function key k← PRF.Gen(1λ) and a symmetric
encryption key sk← SKE.Gen(1λ). Its local state σ consists
of MCnt and the state of the two OMAPs, and its key K is
(k,sk). Finally, it sends EDB = {EM,OMDel ,OMtree} to the
server. Throughout the scheme, all parties have access to hash

functions H0,H1 (modelled as random oracles).

Insertion. The process to insert a keyword and document
identifier pair (w, id) is shown in Algorithm 1. The client first
computes the label of the leaf where this will be stored based
on its insertion counter from MCnt and stores a corresponding
entry at OMDel . It also uses the PRF F to compute a token tk
that is unique for this keyword and the number of previous
searches. Finally, it creates an entry to be stored in EM by the
server. It calculates the address by hashing tk, the leaf’s label,
and its access counter 1, and the value by encrypting id.

Deletion. Removing an entry with OSSE requires more ef-
fort, as shown in Algorithm 2. First the client increments the
deletions counter dw and retrieves the label of the node of Tw
that stores the entry (w, id) to be removed from OMDel (lines
1-3). The next steps requires retrieving all the nodes of Tw
from the root of the tree down to node pos, with a logarithmic
number of OMAP accesses. Using the information from the
retrieved nodes, the client deduces which are the actual parent
pp, grandparent gp, and sibling sib of pos (lines 4-11). Then
it can “prune” the tree and remove pos and pp, by setting sib
as the direct (left or right) child of gp (lines 12-14).

Finally, it needs to store all this updated information back

6

Algorithm 1 OSSE.Update(K,add,w, id,σ;EDB)

Client:
1: (cntw, iw,dw)←MCnt .get(w); tk← Fk(w,cntw)
2: MCnt .put(w,(cntw,++iw,dw))
3: OMDel .put((w, id), iw)
4: addr← H0(tk, iw,1); val← Enc(sk,(w, id))
5: Send (addr,val) to server

Server:
6: EM.put(addr,val)

to EDB. As in insertion, this will take place in two parts. Once
in EM for future searches and once in OMTree for future up-
dates. To guarantee forward privacy, the entries to EM must
be unrelated to prior entries for w from the viewpoint of the
server. This is done by incrementing the access counter acc
of retrieved nodes (stored at all nodes and their parents) and
then computing the new EM address-value pairs for these
incremented counters (lines 15-23). Addresses are then com-
puted as in insertion. Values are computed by XOR’ing the
node’s data with the output of H1 on the same input as for
the address. Due to the randomness of H1 and the pseudoran-
dom way token tk was computed, these writes to EM appear
entirely random to the server. We note that some of these
nodes are “redundant” as they may have been removed from
prior deletions. Still, to hide this information the client puts
back their entries, although they will not be used for searches.
OMTree will also store the updated node information (line
19); these accesses do not reveal any information due to the
OMAP security.

For en example, see Figure 3(middle). When leaf 8 is re-
moved, its parent 20 is also removed and its sibling 7 will
become the new right child of its grandparent 26. Moreover
the access counters of all nodes along the path to the root (26,
29, and 31) are increased to 1.

Search. Having spent the necessary effort to maintain and
prune Tw during updates, we can now benefit during searches
(Algorithm 3). The client computes s, the next-next power of
2 from iw. This is the parent of the largest tree of the MCS and
let start be its label. Another way to view it is that this is the
highest node in Tw that may be affected due to deletions in the
leaf range [1, iw]—if all of them are deleted—which makes
it the ideal starting point of the search. (For completeness
OSSE maintains an extra node above the root of Tw; we omit
it from the presentation for simplicity.) Then, the client needs
to calculate the access counter for s. This is very easy due to
two facts. First, each deletion increments the access counter
of the entire path up to the root of Tw. Second, s lies on this
path for all prior deletions for w. Thus, its access counter is dw
which is why we store this deletion counter in MCnt . Finally,
the client sends (iw,start,dw) to the server, together with the
pseudorandom token tk for this combination of keyword and
search counter (and increments this counter), and tk0, the first

Algorithm 2 OSSE.Update(K,del,w, id,σ;EDB)

Client:
1: (cntw, iw,dw)←MCnt .get(w); tk← Fk(w,cntw)
2: MCnt .put(w,(cntw, iw,++dw))
3: pos← OMDel .get((w, id))
4: Let V,KV ← /0

5: Let Labs be the labels on the path from root to leaf pos
6: for l ∈ Labs\ pos do
7: vl ← OMTree.get((w, l))
8: if vl is null then initialize to default
9: Add vl to V

10: Let pp,gp be the parent and grandparent of pos
11: Let sib be the label of the sibling of pos
12: if pp is left child of gp then
13: gp.le f t← sib; gp.le f tAcc← sib.acc
14: else gp.right← sib; gp.rightAcc← sib.acc
15: for each vl ∈V do ▷ start from root
16: Let vl′ be the child of vl on the path
17: if vl′ is left child of vl then vl .le f tAcc++
18: else vl .rightAcc++
19: vl .acc++; OMTree.put((w, l),vl)
20: addr← H0(tk, l,vl .acc); t← H1(tk, l,vl .acc)
21: val← t⊕ (vl .le f t,vl .le f tAcc,vl .right,vl .rightAcc)
22: Add (addr,val) to KV
23: Send KV to server
Server:
24: for (addr,val) ∈ KV do EM.put(addr,val)

search token for w that serves as a unique identifier.
Armed with this information, the server traverses Tw recur-

sively from start to leafs containing the result (ignoring nodes
that do not have any descendant leafs in [1, iw]. To “access”
a node, it computes its candidate entry in EM, in a way that
mimics how this was computed by the client during previous
updates. With access to the token tk, the server retrieves the
actual information stored for intermediate nodes (i.e., EM is
a response-revealing encrypted map): their children and their
children’s access counters. In this way, it can keep traversing
the tree until it either finds leafs, or it hits null entries. Note
that, for each label, the server first “tests” the latest token tk
(line 13); if this does not return anything, it looks up the entry
for tk0 in MT ks to see if there is an entry to be found for this
label from a prior token for w (lines 14-18).

For instance, see Figure 3(bottom). It starts from s (the
conceptual node above root 31). Knowing iw = 15, it ignores
its right child (node 16), moving to its left child node 27 and
from then to 17, 26, etc., each time reading the access counter
from the parent. If a leaf is reached, the server adds the re-
trieved ciphertext from EM to the result (note that leaf access
counters are never incremented) (line 19). More interestingly,
if a null entry is reached this implies no deletions have taken
place among the leafs of the sub-tree rooted at this node. So

7

Algorithm 3 OSSE.Search(K,w,σ;EDB)

Client:
1: (cntw, iw,dw)←MCnt .get(w);
2: tk← Fk(w,cntw); tk0← Fk(w,0)
3: MCnt .put(w,(++cntw, iw,dw))
4: Let s be the smallest power-of-2 such that iw ≤ s
5: Let v be the root of the subtree of leafs 1, . . . ,2s
6: start← lab(v)
7: Send (tk,start, iw,dw, tk0) to server

Server:
8: Initialize emptylists TLabs,Res
9: Append (start,dw) to TLabs

10: while TLabs ̸= /0 do
11: Remove the first entry (lab,acc) from TLabs
12: if lab≤ N then acc← 1 ▷ lab is a leaf
13: ctk← tk; val← EM.get(H0(ctk, lab,acc))
14: if val is null then
15: ctk←MT ks.get(tk0, lab)
16: if ctk ̸= null then
17: val← EM.get(H0(ctk, lab,acc))
18: else MT ks.put((tk0, lab),(tk))
19: if lab≤ N then Append (lab,val) to Res ▷ is a leaf
20: else if val ̸= null then
21: data← val⊕H1(tk, lab,acc)
22: Parse data as (le f t, le f tAcc,right,rightAcc)
23: if le f t or right = ⊥ then set to default values
24: Append (le f t, le f tAcc) to TLabs
25: if ∃ leaf l below right with l ≤ iw then
26: Append (right,rightAcc) to TLabs

27: else ▷ no deletions below lab
28: Let l be the leftmost leaf below lab
29: Let l′ be the rightmost leaf below lab, with l′ ≤ iw
30: Append (i,0) to TLabs, for i = l, . . . , l′

31: Send Res to client
Client:
32: Initialize set DB(w)← /0

33: for (lab,val) in Res do Add Dec(sk,val) to DB(w)

the server can immediately add the EM entries of all these
leafs to the result (lines 27-30).

4.3 OSSE Efficiency & Security Analysis
We now analyse OSSE in terms of its asymptotic efficiency
and its achieved security properties. First, in Appendix C.1
we prove the following lemma regarding its search efficiency.

Lemma 1. For a keyword w for which iw insertions have
taken place and |DB(w)|= nw, the search process accesses
at most 2nw + log iw nodes from Tw.

From the above, it follows that search takes O(nw + log iw)
operations, i.e., linear in the result size and independent from

the number of insertions. Moreover, searches require a single
roundtrip to complete. Regarding updates, insertions take
just one oblivious map and encrypted map access. Deletions
require O(logN) such operations to access the path above the
node to be removed. The setup takes O(N) time (for N an
upper bound on the number of entries in the dataset). Finally,
client storage consists of three counters per keyword in |W |,
as well as the oblivious maps’ client state and the secret keys.
The server storage is linear in the total number of entries N
but it grows logarithmically with the number of deletions D,
so it is overall O(N +D logN). In the absolute worst case, if
all entries are deleted, this becomes O(N logN).

The correctness of OSSE (i.e., that a search returns the cor-
rect result DB(w), as formulated by all prior updates for w)
follows from the construction and the correctness of the un-
derlying primitives, with one exception. If two distinct inputs
to H0 or H1 (or the same input for the two different hash func-
tions) map to the same hash value, this affects the correctness
of the scheme, e.g., as the latter entry will “overwrite” the
prior one. This is a common issue with prior DSE works that
use an encrypted map as we do (e.g., [8, 27]) and the solution
is to pick the range of H0,H1 so as to make this probability
negligible in the security parameter λ. Let M be the total
number of entries that will be stored in EM throughout the
execution (for OSSE, M ≤ N logN). If we then set the range
of H0,H1 to 2λ+2logM , a simple birthday problem analysis
guarantees the negligible probability of this event.

Regarding the security of OSSE, we can analyze its leakage
as follows. First, during setup the server only learns the upper
bound N. During updates, note that the server’s view consists
of two types of data: (i) the messages involved in the oblivi-
ous map access (or accesses for deletions), (ii) the (addr,val)
pairs it inserts to the encrypted map. For (i), assuming a se-
cure oblivious map these leak no information. For (ii), each of
these is computed with a new keyword/token/access-counter
combination, even when it pertains to a previously accessed
node, using a secure PRF. Without access to the token tk
used as input to this PRF (this will only be revealed during a
subsequent search), these addresses and values are indistin-
guishable from random when they refer to intermediate nodes.
When pertaining to leafs, the values are encrypted using a
secure encryption scheme, and exactly one such value is sent
for insertions. Finally, the total number of accesses and entries
is fixed depending only on the type of operation (and N for
deletions). From the above, OSSE satisfies forward privacy.

In a search for keyword w, the server learns tokens tk0, tk.
The first reveals when previous searches for w took place.
With the second, the server can exhaustively access EM for
all labels and learn the entire topology of Tw. Remembering
when these entries were written reveals when prior insertions
and deletions for w took place. Moreover, by extracting all ver-
sions of Tw nodes for different access counters and correlating
this with the update timestamps reveals the specific insertion
that each deletion cancelled. However, since document ids

8

remain encrypted, the server cannot learn which documents
contained w but have since been removed (if not search for
w took place since). Based on this leakage profile, OSSE
satisfies backward privacy. We formally state and prove its
security in Appendix C.2.

5 Log-Log Search DSE with Improved Storage
& Deletion (LLSE)

Our OSSE scheme achieves excellent search performance,
however, during deletions it performs a logarithmic number
of oblivious/encrypted map accesses. Moreover, this also in-
creases storage. Here we present our second scheme, LLSE,
that requires only O(1) map accesses during updates and has
O(N) storage, at the trade-off of an extra O(log log iw) factor
for searches (which is still asymptotically better than the pre-
vious state-of-the-art quasi-optimal search scheme from [19].

The main idea behind LLSE is to still use the same Tw tree
structure but enhance it so that each node has a parent pointer.
This allows us, during deletes, to access directly the node to be
removed, its parent, and its grandparent, without starting each
time from the root. This simple idea introduces a negative
side-effect: during searches we can no longer rely on every
node to store its children’s access counters. To overcome
this, for each encountered node, the server performs a binary
search to find the largest acc for which there exists an entry
in EM. A careful analysis shows that the upper bound for
this binary search is roughly twice the height of the node in
Tw, which yields the O(log log iw) extra overhead. The actual
implementation of this is trickier as one needs to maintain
access counters across searches (without re-encrypting every
node/access-counter combination entry, as this increases the
search overhead to O(log iw)), as we explain in detail next.

5.1 LLSE Data Structures & Algorithms
First we describe the involved data structures. These are the
same as for OSSE, with the following exceptions.
• OMTree stores for node v its own access counter acc, and

its left child, right child, and parent (v.le f t, v.right, v.prnt),
but not their access counters (see Figure 2).

• EM is the same as OSSE, except for non-leaf nodes v for
which it stores (v.le f t, v.right), but not access counters.

• MCnt , instead of dw, stores locally the label of the correct
parent for the next future insertion. Initially, this is N +
1 (the natural parent of the leaf with label 1). After iw
insertions, it is set to the natural parent of the leaf with
label iw +1. However, if the most recent updates for w are
a series of one or more deletions, the parent for the next
insertion lies higher in Tw. The correct value for this pointer
is calculated by the client during updates.

• MT ks now stores, not only the prior token version for a
label, but also the access counter of the latest previous

Algorithm 4 LLSE.Update(K,op,w, id,σ;EDB)

Client:
1: (cntw, iw,nxtPrntw)←MCnt .get(w); tk← Fk(w,cntw)
If update is insertion (op = add)

2: OMDel .put((w, id), iw)
3: OMTree.put((w, iw),(⊥,⊥,nxtPrntw))
4: nxtPrntw← label of the parent of iw +1 (unused) leaf
5: MCnt .put(w,(cntw,++iw,nxtPrntw))
6: addr← H0(tk, iw,0); val← Enc(sk,(w, id))
7: Send (addr,val) to server
If update is deletion (op = del)

8: pos← OMDel .get((w, id))
9: v← OMTree.get((w, pos))

10: pp← OMTree.get((w,v.prnt)) ▷ parent node
11: gp← OMTree.get((w, pp.prnt)) ▷ grandparent node

▷ if parent/grandparent not found set it to default
12: if v is left child of pp then sibPos← pp.right
13: else sibPos← pp.le f t
14: sib← OMTree.get((w,sibPos)) ▷ sibling node
15: sib.prnt← pp.prnt
16: if pp is left child of gp then gp.le f t← sibPos
17: else gp.right← sibPos
18: gp.acc++
19: Update nxtPrntw if it is affected
20: MCnt .put(w,(cntw, iw,nxtPrntw))
21: addr← H0(tk, pp.prnt,gp.acc)
22: val← H1(tk, pp.prnt,gp.acc)⊕ (gp.le f t,gp.right)
23: OMTree.put((w,sibPos),sib)
24: OMTree.put((w, pp.prnt),gp)
25: Send (addr,val) to server
Server:
26: EM.put(addr,val)

entry. The goal of this is subtle but crucial: It is necessary
for launching the binary search for the correct range. This
is best illustrated by an example. Consider that during the
first search for w, the binary search for node v with height
h is correctly executed in the range [0,2h] and the result is
acc. In the second search for w the server will try to run the
same binary search in vain as at least some of the entries are
the ones that were calculated with the old token (from the
first search)! To avoid this, MT ks stores for v the old token
and the access counter acc, so that the server can retrieve it
and then launch the next binary search in [acc,2h].

Setup. As in OSSE, this process initializes all data structures
and generates keys. The one difference is the capacity of
OMTree which is 2N as it will store all nodes, including leafs.

Insertion. This proceeds very similarly with OSSE, as shown
in Algorithm 4. The main difference is that it takes one ad-
ditional OMAP access in order to write the new leaf’s infor-
mation to OMTree (line 3). This is necessary for finding its
parent quickly, in case it is deleted in the future.

9

Deletion. This is basically a “lightweight” version of dele-
tions with our first scheme. Since nodes store their parents’
labels, we can now retrieve the node pos to be deleted from
in OMTree, and directly from this its parent and grandparent
(Algorithm 4, lines 9-11), without having to fetch the entire
path from the root. The remaining of the algorithm is essen-
tially the same as before, except for the need to calculate what
the next parent’s label nxtPrnt for w will be. This is only
affected if the current deletion removes the latest entry, or
is part of a series of consecutive deletions that includes the
latest entry. Finally, this process adds only one entry to EM,
for the updated grandparent node, which makes the storage
grow only linearly with the total number of operations.

Search. The search process for LLSE is shown in Algorithm 5.
The client first sends the necessary data to bootstrap the search.
The server traverses the tree from start in largely the same
manner as in OSSE, with one crucial difference: it does not
know the correct acc for the nodes it encounters. This is
resolved as follows. First (lines 12-15), it checks whether there
is a previous entry in MT ks for this keyword/label combination.
If found, then it extracts sacc, the access counter that node
lab had when (and if) it was last accessed during the previous
search for w, and otk which is the token during that search.
Clearly, if the node has even been written, the correct current
acc can only be larger or equal than sacc. In both cases, it
then begins a binary search in the range between this value
(or 0, if not found) and twice the lab node’s height, looking
for the largest value acc for which the entry for lab in EM
is not empty, which is indeed the correct acc for node lab.
When this counter is computed, the correct data for lab is
retrieved from EM with the appropriate token (lines 21-25).
The search then progresses to the retrieved node’s children, or
its “natural” children if no entry is found for lab (lines 26-31).

5.2 LLSE Efficiency & Security Analysis
The search efficiency of LLSE is similar to OSSE. Each search
entails the same tree traversal, so it accesses O(nw + log iw)
nodes. But this time retrieving each node’s data requires a
binary search with max range [0,2h], where h≤ logN is the
node’s height. This follows from the fact that for a node
at height h each of its children pointers can change due to
deletions at most h− 1 times (each time moving “up” a
layer in the tree). Therefore, with LLSE searches require
O((nw + log iw) · log logN) operations. Updates require O(1)
oblivious and encrypted map accesses, both for insertions
and for deletions—an O(logN) factor faster than OSSE for
the latter. Finally, the storage is linear in both insertions N
and deletions D; since D≤ N, its overall storage is optimal
O(N). Other efficiency metrics are asymptotically the same
as OSSE. It is easy to see the two schemes have the same
leakage profile; a curious server can ignore the binary search
and try all access counters to extract all Tw node information
from EM. Thus, LLSE is also forward-and-backward private.

Algorithm 5 LLSE.Search(K,w,σ;EDB)

Client:
1: (cntw, iw,nxtPrntw)←MCnt .get(w);
2: tk← Fk(w,cntw); tk0← Fk(w,0)
3: MCnt .put(w,(++cntw, iw,dw))
4: Let s be the smallest power-of-2 such that iw ≤ s
5: Let v be the root of the subtree of leafs 1, . . . ,2s
6: start← lab(v)
7: Send (tk,start, iw, tk0) to server

Server:
8: Initialize emptylists TLabs,Res
9: Append start to TLabs

10: while TLabs ̸= /0 do
11: Remove the first entry lab from TLabs
12: sacc← 0; ctk← tk
13: r←MT ks.get(tk0, lab)
14: if r ̸= null then parse r as (otk,osacc)
15: sacc← osacc; ctk← otk
16: if lab≤ N then ▷ lab is a leaf
17: val← EM.get(H0(ctk, lab,1))
18: Append (lab,val) to Res; continue
19: Let h be the height of node lab
20: Perform binary search in [sacc,2h] to find max acc

such that EM.get(H0(tk, lab,acc)) ̸= null
21: if acc > sacc then
22: val← EM.get(H0(tk, lab,acc))
23: Mtks.put((tk0, lab)),(tk,acc))
24: else if acc = sacc and acc > 0 then
25: val← EM.get(H0(ctk, lab,acc))
26: if acc > 0 then
27: (le f t,right)← val⊕H1(tk, lab,acc)
28: else (le f t,right)← natural children of lab
29: Append le f t to TLabs
30: if ∃ leaf below right with label ≤ iw then
31: Append right to TLabs

32: Send Res to client
Client:
33: Initialize set DB(w)← /0

34: for (lab,val) in Res do Add Dec(sk,val) to DB(w)

We formally state its security in Appendix C.2; due to lack of
space, we delegate the proof to the full version.

6 Optimizations

In this section, we present some optimizations that can im-
prove the performance of our schemes.

(I) Improving Tree Traversals (during search). The search
algorithms of OSSE and LLSE need to search the sub-trees
that contain the MCS nodes for the range [1, iw]. We can opti-
mize this by storing as additional metadata two bits for each

10

 0.01

 0.1

 1

 10

 100

10
1

10
2

10
3

10
4

10
5

T
im

e
(m

ill
is

e
c
o
n
d
s
)

nw

OSSE*
OSSE
LLSE

(a)

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

10
3

10
4

10
5

10
6

10
7

T
im

e
(m

ill
is

e
c
o
n
d
)

|DB|

OSSE*
OSSE
LLSE

(b)

 0

 10

 20

 30

 40

 50

 60

 70

10
5

10
6

10
7

T
im

e
 (

m
ill

is
e
c
o
n
d
)

|DB|

OSSE*
OSSE
LLSE

(c)

10
-2

10
-1

10
0

10
1

10
2

10
3

10 10
2

10
3

10
4

10
5

T
im

e
 (

m
ill

is
e
c
o
n
d
s
)

nw

OSSE
OSSE*-30%
OSSE*-10%

OSSE*

(d)
Figure 4: Search computation time vs. (a) variable nw for |DB| = 1M, (b) variable |DB| for nw = 100, (c) variable |DB| for
nw = 20K, (d) variable nw for |DB|= 1M and different OSSE cache settings.

MCS root node, which are used to: (i) avoid deleted sub-trees
and (ii) start the search from the parents of the MCS nodes
that contain a single leaf. To maintain these metadata bits, dur-
ing deletions we simply check whether the leaf to be deleted
is the last or second-last in its MCS sub-tree. Otherwise, the
metadata do not change. During search, these bits are sent to
the server who then chooses its best strategy. For example,
in Figure 3(bottom), only MCS root node 29 is searched, be-
cause all the other MCS sub-trees are empty. In cases like this,
where almost all MCS sub-trees are empty, this optimization
can reduce the number of operations to linear in nw. It also
works naturally with search result caching, which we describe
next. Finally, this does not affect the leakage of the scheme (a
“curious” server can already access all tree nodes anyway).

(II) Search Result Caching. Similar to [16], we propose a
second optimization in which previous results can be cached
at the server. This entirely avoids sub-tree traversals for un-
changed nodes (since the last search) and directly returns the
cached results. This is done by using a simple hashmap at the
server and storing the returned results in this map using the
search token as the key. The client sends the previous search
token together with the next search query, and the server uses
it to find cached results (if any). Identifying whether a node
has been changed between two consecutive searches can be
done using its access counter in OSSE (and, potentially, in
LLSE at the cost of additional bookkeeping). For example,
in Figure 3 assume a search query was performed before the
deletion of nodes 9-15 and a second query is performed after
the deletion of these nodes (in Figure 3(bottom)). In this case,
the second query will get the results for node 29 directly from
the cache (since that sub-tree remains unchanged). We note
this optimization does not incur extra leakage as the informa-
tion of when past updates and searches for w took place is
already part of our schemes’ search leakage profile.

(III) Storage Clean-Up in OSSE. When deleting a leaf in
OSSE, logN nodes are re-written with incremented access
counters. This is necessary to avoid leaking information about
the tree topology, but it also causes an extra logarithmic write
and space overhead.We can use a similar approach to Java’s
background garbage collection, so that the server will be able
to remove “stale ” records that are identified after a relevant
search query (exposing stale records during deletes would

violate forward privacy definition). This can run periodically
or in the background between queries to keep storage low. We
experimentally evaluate its impact in Section 7.3.

(IV) Constant Client Storage. Our schemes require non-
constant client storage to maintain the necessary metadata
MCnt ,MT ks. An approach to reduce the DSE client storage
that has already been proposed in [19] and is applicable in our
schemes is to store MCnt ,MT ks at the server using OMAPs,
at the cost of additional roundtrips of communication. Due
to the oblivious property, all these accesses are simulatable,
revealing no additional information to the server. In practice
this mainly affects the search performance since it takes an
OMAP access to retrieve the metadata for w—an additive
O(log2 N) factor. We experimentally evaluate this approach
for our schemes in Section 7.2.

7 Experimental Evaluation

We now report on the performance of our schemes and
compare them with prior state-of-the-art DSE. We imple-
mented OSSE and LLSE with approximately 10K lines of
code in C++. Our code is available at https://github.
com/jgharehchamani/OS-SSE. For symmetric encryption,
PRF, and hashing we used the AES implementation of
OpenSSL [2]. For comparison with Horus, QOS, and SDd we
used the publicly available code of [13, 19], also in C++. We
used a machine with eight-core Intel Xeon E-2174G 3.8GHz
processor, 128GB RAM, 1TB SSD, running Ubuntu16.04
LTS. In all our experiments, the database is stored in RAM.

We focus on measuring computation time and communica-
tion size for Search and Update queries. We measure these for
variable size synthetic datasets with |DB|= 103-107 records,
each time setting the total number of distinct keywords |W | to
one-hundredth of |DB|. Likewise, we report results for vary-
ing result size nw between 10-105 documents. Moreover, to
demonstrate the impact of deletions in the search performance
we report result for variable deletion rates from 0-90%. Fi-
nally, since our OSSE scheme is the first to achieve optimal
search but it has asymptotically increased server storage, we
run a specially designed experiment to demonstrate that in
practice this storage blowup is often not prohibitively large.
Experiments were repeated 10× and the average is reported.

11

https://github.com/jgharehchamani/OS-SSE
https://github.com/jgharehchamani/OS-SSE

7.1 Performance of our Schemes

Our first set of experiments focuses on the performance
of OSSE, LLSE, and on evaluating the effect of our result-
caching optimization from Section 6. Specifically, OSSE*
denotes the version of OSSE with result caching. Regarding
smart tree traversal, we integrated this optimization to both
OSSE and OSSE* and we found it to have very small impact
in most cases. For this part, we fixed the deletion rate to 10%.

Search Performance. Figure 4 shows search computation
time as the result size (a) and database size (b,c) change. First,
as expected from our analysis search time grows linearly with
nw whereas its change with respect to the database size |DB|
is not considerable (note the exponential growth in the x-axis).
More importantly, all our schemes have excellent performance
in practice. E.g., even for retrieving large results of 100K id’s
from a dataset of size 1M they take less than 200ms, whereas
for smaller result sizes their performance is even better!

In Figures 4(a-c), OSSE* specifically refers to “best-case”
result caching, i.e., when two searches for w take place with-
out an intermediate update, so the second search can maxi-
mally benefit from caching. Not surprisingly, OSSE* outper-
forms the other two schemes by 2.1-4.8×. To better evaluate
the effect of result caching on OSSE, we ran an experiment
with variable caching benefit, shown in Figure 4(d). In this
setting, after inserting a number of entries for w and removing
10%, we execute a search for w to fill the cache. We then
delete additional entries so as to invalidate a certain percent-
age of the cache for w and report the time for a second search
and variable result size for: (i) OSSE* where the entire re-
sult is in cache, (ii) OSSE* with 10% and (iii) OSSE* with
30% of the cached result is modified, and (iv) OSSE-none
of the cash can be re-used. As expected, the more modified
the result is the second time, the smaller the improvement
achieved. E.g., for |DB| = 1M and result size 100K OSSE*
takes 61ms, OSSE* with 10% and 30% modification takes
97ms and 111ms, and OSSE takes 134ms. In that sense, OSSE
and OSSE* represent an upper and lower bound for the search
performance of our first scheme, and in the following experi-
ments for search performance we report both of these.

Finally, search communication size is the same for both
OSSE and LLSE and it is concretely optimal. The client sends
at most two search tokens and the server responds with exactly
nw ciphertexts. For example, for |DB| = 1M, result size 1K
and 128-bit AES ciphertexts this is approximately 16KB.

Update Performance. Figure 5 shows the update compu-
tation time for OSSE and LLSE vs. variable |DB|. The ob-
vious conclusions from the figures are: (i) the update time
slightly increases with DB due to the increase in the size of
the OMAPs (again, note the exponential x-axis), (ii) OSSE
has faster insertion than LLSE as it needs one oblivious map
access while LLSE needs two, (iii) as expected, deletion with
LLSE is much faster than OSSE. Overall, OSSE is 2-2.2×
faster than LLSE in insertion and LLSE is 3.2-7.2× faster than

 4

 8

 12

 16

 20

 24

 28

 32

10
3

10
4

10
5

10
6

10
7

T
im

e
 (

m
ill

is
e

c
o

n
d

)

|DB|

QOS
OSSE
LLSE
SDD

(a)

 0

 40

 80

 120

 160

 200

10
3

10
4

10
5

10
6

10
7

T
im

e
 (

m
ill

is
e

c
o

n
d

)

|DB|

QOS
OSSE
LLSE
SDD

(b)
Figure 5: (a) Insertion, (b) Deletion computation time vs. |DB|

OSSE in deletion. That said, both schemes have good perfor-
mance, e.g., OSSE and LLSE take 4ms and 9ms to insert an
entry and 101ms and 16ms to delete one from a database of
size 1M. Update communication sizes follow the same trend:
larger in LLSE for insertion, but smaller for deletion.

7.2 Comparison with Other DSE
Next, we compare the performance of our schemes with prior
forward and backward private schemes, focusing on existing
DSE with quasi-optimal search, QOS from [19] and Horus
from [13]. We also compare their performance with SDd
from [19], a state-of-the-art DSE that achieves very fast search
but linear in the total number of insertions aw.
Search Performance. Our main motivation for studying op-
timal DSE schemes is to avoid “paying” for deleted entries
during a search. Thus, we ran a set of experiments with vari-
able deletion percentages to measure the effect of deletions
for the different schemes. We also included Horus in our ex-
periments, however, it is not shown in the figures, as it was
2-5 orders of magnitude slower than all other schemes.
Random deletions. First we vary the deletion percentage be-
tween 0-90% after a fixed number of insertions for the queried
keyword, with deletions chosen at random among them. We
try two cases: (a) small results iw = 100, (b) big results
iw = 20K, in Figures 6 (a),(b), respectively. The search time of
all optimal/quasi-optimal schemes generally decreases with
deletion percentage increases (except for OSSE that for 0-
20% slightly increases as it is already optimal initially), while
for SDd it grows as expected, since it stores deletions as en-
tries. Second, our schemes OSSE,LLSE, OSSE* outperform
the prior best quasi-optimal search DSE QOS across all delete
percentages and are 1.4-2.6×, 1.2-1.8×, 3.2-6.6× faster, re-
spectively. The encouraging side-effect of this is that they
become truly faster than SDd at 55%, 55%, and 5% deletion
rates for small results and at 45%, 50%, and 5% deletion rates
for large results, respectively. In contrast, QOS becomes faster
than SDd only after 65% and 75% deletion for the two settings.
This is the joint effect of our compact tree design, elimination
of re-encryption in searches, and optimizations. In practice,
we believe this really drives the case for the practicality of
DSE with search time independent of past deletions.
Structured deletions. We repeated this comparison for the
case of more “structured” deletions in which consecutive tree

12

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 10 20 30 40 50 60 70 80 90

T
im

e
(m

ill
is

e
c
o
n
d
s
)

Delete Percentage

SDD
QOS

OSSE

OSSE*
LLSE

(a)

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60 70 80 90

T
im

e
(m

ill
is

e
c
o
n
d
s
)

Delete Percentage

SDD
QOS

OSSE

OSSE*
LLSE

(b)

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 10 20 30 40 50 60 70 80

T
im

e
 (

m
ill

is
e
c
o
n
d
)

Delete Percentage

SDD
QOS

OSSE

OSSE*
LLSE

(c)

 0

 10

 20

 30

 40

 50

 10 20 30 40 50 60 70 80

T
im

e
 (

m
ill

is
e
c
o
n
d
)

Delete Percentage

SDD
QOS

OSSE

OSSE*
LLSE

(d)
Figure 6: Search computation time for |DB| = 1M and (a) variable deletion percentage for iw = 100, (b) variable deletion
percentage for iw = 20K, (c) structured deletion for iw = 100, (d) structured deletion for iw = 20K.

 0

 2

 4

 6

 8

 10

 0 10 20 30 40 50 60 70 80 90

T
im

e
(m

ill
is

e
c
o
n
d
s
)

Delete Percentage

SDD
QOS

OSSE

OSSE*
LLSE

(a)

 4

 6

 8

 10

 12

 14

 16

 18

 0 10 20 30 40 50 60 70 80 90

T
im

e
(m

ill
is

e
c
o
n
d
s
)

Delete Percentage

SDD
QOS

OSSE

OSSE*
LLSE

(b)

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60 70 80 90

T
im

e
(m

ill
is

e
c
o
n
d
s
)

Delete Percentage

SDD
QOS

OSSE

OSSE*
LLSE

(c)

 50

 100

 150

 200

 250

10
4

10
3

10
2 50 20 10 4 2

#
 o

f
E

n
tr

ie
s
 a

t
th

e
 S

e
rv

e
r

(*
1
0

3
)

Number of Deletes Before Each Search

OSSE
LLSE

Optimal

(d)
Figure 7: Search computation time for |DB|= 1M and variable deletion percentage for: (a) iw = 100 using OMAP, (b) iw = 5K
using OMAP, (c) iw = 20K using OMAP. (d) Number of entries in server for iw = 100K and 30K deletion and variable search.

leafs are pruned in batch to see how this affects performance.
In practice, this deletion pattern may occur in applications
such as an encrypted relational database that performs a bulk
update in a table, effectively removing all entries for a column
and inserting new ones. Subsequent such modifications will
again delete consecutively place entries. To evaluate this, we
insert a fixed number of entries for w and then delete a vari-
able percentage of them by choosing consecutive ranges of
size 1,2,4,8 at random with 10% probability. In this manner,
we achieve deletion rates of 10,20,40,80% but in a certain
structure. The result is shown in Figure 6 (c),(d). The general
observation is that the impact of this is not significant, with all
schemes achieving slightly better performance (roughly 1.1-
1.7×) as these deletions eliminate entire sub-trees and reduce
the number of accessed nodes in a “nice” manner, but the
improvement is not that considerable. The one exception to
this is SDd that is unaffected as it treats all deletions equally.

Small-client storage versions. Demertzis et al. [19] consider
a scenario with small-client users who cannot store keyword
counters locally. For QOS, they do this by storing them in an
oblivious map of size |W | and retrieving them at the beginning
of each search. As discussed in Section 6, we can do the same
for our schemes. One expects that this OMAP access will dom-
inate the search time for all schemes. Indeed this is shown
for small results in Figure 7(a) where all schemes except SDd
have essentially the same performance. SDd outperforms all
other candidates as it achieves small client storage without the
need for an oblivious map in search. However, for medium
(iw = 5K) and larger (iw = 20K) result sizes (Figure 7(b),(c)),
surprisingly our schemes eventually outperform all competi-
tors. E.g., for large result size 20K, OSSE*, OSSE, LLSE, are

always better than QOS and even outperform SDd at 25%,
65%, and 70%, deletion rates, respectively.

Update performance. Regarding insertion computation
times (Figure 5), OSSE and QOS have almost the same in-
sertion (and about 2× faster than LLSE). For deletions, LLSE
outperforms QOS by 3-6.4× faster than QOS.

7.3 Effect of Deletion Storage for OSSE

One of the drawbacks of OSSE is that it needs to store logN
entries in the encrypted map for every deletion. In the ab-
solute worse case (number of deletions D = N), this blows
the storage for EM by a logarithmic factor. That said, there
are two important observations that point towards this not
being such a prohibitive factor. First, the server’s storage also
consist of two OMAPs that are setup to max capacity N and
their size is not affected by deletions, so the blowup is only
partial. Second, as we explained in Section 6, the server can
perform a “clean-up” in the background or periodically, using
the tokens it gathers from searches to remove unnecessary
“stale” entries. Here, we attempt to demonstrate the effect this
cleanup can have in keeping the storage smaller. The crucial
measure here is how often searches take place, i.e., the relative
frequency of searches and deletions for a keyword.

In lack of a real-world query workload that would allow
us to accurately evaluate this, we perform a simplified exper-
iment where we first insert 100K entries for a keyword and
then we randomly delete 30%. What we vary is how searches
are interleaved with these 30K deletions among {1/10K,
1/1K, 1/100, 1/50, 1/20, 1/10, 1/4, 1/2}. E.g., 1/2 means
that each deletion is followed by a search for the keyword,

13

whereas 1/10K means only three searches happen, each after
10K deletions. What we report in Figure 7(d) is the average
number of entries in EM throughout the execution of all these
searches/deletions (assuming for simplicity that cleanup hap-
pens immediately after each search). For comparison we also
include the same number for LLSE, as well as an “optimal”
plaintext storage where deletions just mark a cell as available.

As expected, lower search frequency leads to overall in-
crease in the server’s storage in OSSE. However, even when
search occurs after 10K deletions the overall average storage
is at most 2× the optimal size 100K, as a result of cleanup.
Besides the average, we also measured the 75-th and 90-th
percentile as 280K and 116K entries, respectively. This can
be interpreted as 90% of the time the entries’ storage for this
keyword is less than 3× the optimal and 75% of the time it is
less than 1.16×. While our simplified experiment runs for one
w, if we assume similar query distribution across keywords
these results can be extrapolated for the dataset. On the other
hand, with LLSE the storage is almost the same for differ-
ent search intervals, e.g., for our experiments the average is
1.07-1.1× the optimal number of entries.

8 Conclusion

In this work, we presented two forward-and-backward private
DSE schemes with very efficient search performance, indepen-
dent of prior deletions. The experimental evaluation shows our
schemes outperform prior ones for a variety of settings. Our
results leave several possible directions for improvement, e.g.,
propose schemes with similar search performance but faster
updates, or DSE that achieve stronger variants of backward
privacy (without compromising search efficiency). Finally,
motivated by leakage abuse attacks [7,10,32,33,36,46,52,66],
it seems very promising to try and adopt leakage-suppression
techniques [21, 40, 54, 67] to combine optimal search perfor-
mance with improved leakage profiles.

References

[1] Mongodb. http://www.mongodb.com/.

[2] OpenSSL: The open source toolkit for SSL/TLS. https:
//www.openssl.org/.

[3] Pixek: An App That Encrypts Your Photos From
Camera to Cloud. https://www.wired.com/story/
pixek-app-encrypts-photos-from-camera-to-cloud/.

[4] Tyler Akidau, Robert Bradshaw, Craig Chambers, Slava
Chernyak, Rafael J. Fernández-Moctezuma, Reuven
Lax, Sam McVeety, Daniel Mills, Frances Perry, Eric
Schmidt, and Sam Whittle. The Dataflow Model: A
Practical Approach to Balancing Correctness, Latency,
and Cost in Massive-Scale, Unbounded, Out-of-Order
Data Processing. PVLDB, 8:1792–1803, 2015.

[5] Gilad Asharov, Ilan Komargodski, Wei-Kai Lin, Kartik
Nayak, Enoch Peserico, and Elaine Shi. Optorama: Op-
timal oblivious RAM. In EUROCRYPT 2020, pages
403–432, 2020.

[6] Gilad Asharov, Moni Naor, Gil Segev, and Ido Shahaf.
Searchable symmetric encryption: Optimal locality in
linear space via two-dimensional balanced allocations.
In STOC 2016, page 1101–1114, 2016.

[7] Laura Blackstone, Seny Kamara, and Tarik Moataz. Re-
visiting leakage abuse attacks. NDSS, 2020.

[8] Raphael Bost. ∑oϕoς: Forward Secure Searchable En-
cryption. In ACM CCS, 2016.

[9] Raphaël Bost, Brice Minaud, and Olga Ohrimenko. For-
ward and backward private searchable encryption from
constrained cryptographic primitives. In CCS, 2017.

[10] David Cash, Paul Grubbs, Jason Perry, and Thomas Ris-
tenpart. Leakage-abuse attacks against searchable en-
cryption. In CCS, 2015.

[11] David Cash, Stanislaw Jarecki, Charanjit Jutla, Hugo
Krawczyk, Marcel-Cătălin Roşu, and Michael Steiner.
Highly-Scalable Searchable Symmetric Encryption with
Support for Boolean Queries. In CRYPTO, 2013.

[12] David Cash, Ruth Ng, and Adam Rivkin. Improved
Structured Encryption for SQL Databases via Hybrid
Indexing. In ACNS 2021, pages 480–510, 2021.

[13] Javad Ghareh Chamani, Dimitrios Papadopoulos, Char-
alampos Papamanthou, and Rasool Jalili. New con-
structions for forward and backward private symmetric
searchable encryption. In ACM CCS, 2018.

[14] Yan-Cheng Chang and Michael Mitzenmacher. Privacy
Preserving Keyword Searches on Remote Encrypted
Data. In ACNS, 2005.

[15] Melissa Chase and Seny Kamara. Structured Encryption
and Controlled Disclosure. In ASIACRYPT, 2010.

[16] Tianyang Chen, Peng Xu, Wei Wang, Yubo Zheng, Willy
Susilo, and Hai Jin. Bestie: Very practical searchable
encryption with forward and backward security. In ES-
ORICS 2021, pages 3–23, 2021.

[17] Reza Curtmola, Juan Garay, Seny Kamara, and Rafail
Ostrovsky. Searchable symmetric encryption: Improved
definitions and efficient constructions. In CCS, 2006.

[18] Emma Dauterman, Vivian Fang, Ioannis Demertzis, Nat-
acha Crooks, and Raluca Ada Popa. Snoopy: Surpassing
the scalability bottleneck of oblivious storage. In SOSP,
2021.

14

http://www.mongodb.com/
https://www.openssl.org/
https://www.openssl.org/
 https://www.wired.com/story/pixek-app-encrypts-photos-from-camera-to-cloud/
 https://www.wired.com/story/pixek-app-encrypts-photos-from-camera-to-cloud/

[19] Ioannis Demertzis, Javad Ghareh Chamani, Dimitrios
Papadopoulos, and Charalampos Papamanthou. Dy-
namic searchable encryption with small client storage.
In NDSS, 2020.

[20] Ioannis Demertzis, Dimitrios Papadopoulos, and Char-
alampos Papamanthou. Searchable encryption with op-
timal locality: Achieving sublogarithmic read efficiency.
CRYPTO, 2018.

[21] Ioannis Demertzis, Dimitrios Papadopoulos, Charalam-
pos Papamanthou, and Saurabh Shintre. SEAL: attack
mitigation for encrypted databases via adjustable leak-
age. In USENIX Security 2020, pages 2433–2450, 2020.

[22] Ioannis Demertzis, Stavros Papadopoulos, Odysseas Pa-
papetrou, Antonios Deligiannakis, Minos Garofalakis,
and Charalampos Papamanthou. Practical private range
search in depth. TODS, 2018.

[23] Ioannis Demertzis, Stavros Papadopoulos, Odysseas Pa-
papetrou, Antonios Deligiannakis, and Minos N. Garo-
falakis. Practical private range search revisited. In
SIGMOD, 2016.

[24] Ioannis Demertzis and Charalampos Papamanthou. Fast
Searchable Encryption With Tunable Locality. In SIG-
MOD, 2017.

[25] Ioannis Demertzis, Rajdeep Talapatra, and Charalampos
Papamanthou. Efficient searchable encryption through
compression. PVLDB, 2018.

[26] Martin Dietzfelbinger, Anna R. Karlin, Kurt Mehlhorn,
Friedhelm Meyer auf der Heide, Hans Rohnert, and
Robert Endre Tarjan. Dynamic perfect hashing: Upper
and lower bounds. SIAM J. Comput., 23(4):738–761,
1994.

[27] Mohammad Etemad, Alptekin Küpçü, Charalampos Pa-
pamanthou, and David Evans. Efficient dynamic search-
able encryption with forward privacy. PETS, 2018.

[28] Sky Faber, Stanislaw Jarecki, Hugo Krawczyk, Quan
Nguyen, Marcel Rosu, and Michael Steiner. Rich
Queries on Encrypted Data: Beyond Exact Matches. In
ESORICS, 2015.

[29] Facebook. Myrocks. http://myrocks.io/.

[30] Esha Ghosh, Seny Kamara, and Roberto Tamassia. Effi-
cient graph encryption scheme for shortest path queries.
In AsiaCCS 2021, pages 516–525, 2021.

[31] Oded Goldreich and Rafail Ostrovsky. Software pro-
tection and simulation on oblivious rams. J. ACM,
43(3):431–473, may 1996.

[32] Paul Grubbs, Marie-Sarah Lacharité, Brice Minaud,
and Kenny Paterson. Pump up the volume: Practical
database reconstruction from volume leakage on range
series. In ACM CCS, 2018.

[33] Zichen Gui, Oliver Johnson, and Bogdan Warinschi. En-
crypted databases: New volume attacks against range
queries. In ACM CCS 2019, pages 361–378, 2019.

[34] Ariel Hamlin, Abhi Shelat, Mor Weiss, and Daniel
Wichs. Multi-key searchable encryption, revisited. In
PKC, 2018.

[35] F Hueske. State TTL for Apache Flink: How to Limit
the Lifetime of State. https://www.ververica.com/
blog/, 2018.

[36] Mohammad Saiful Islam, Mehmet Kuzu, and Murat
Kantarcioglu. Inference attack against encrypted range
queries on outsourced databases. In CODASPY, pages
235–246. ACM, 2014.

[37] Seny Kamara and Tarik Moataz. Boolean searchable
symmetric encryption with worst-case sub-linear com-
plexity. In EUROCRYPT, 2017.

[38] Seny Kamara and Tarik Moataz. Encrypted multi-maps
with computationally-secure leakage. IACR Cryptol.
ePrint Arch., 2018:978, 2018.

[39] Seny Kamara and Tarik Moataz. SQL on structurally-
encrypted databases. In ASIACRYPT, 2018.

[40] Seny Kamara and Tarik Moataz. Computationally
volume-hiding structured encryption. In EUROCRYPT,
pages 183–213, 2019.

[41] Seny Kamara, Tarik Moataz, and Olya Ohrimenko.
Structured encryption and leakage suppression. In
CRYPTO, 2018.

[42] Seny Kamara, Tarik Moataz, Andrew Park, and Lucy
Qin. A decentralized and encrypted national gun registry.
IEEE S&P, 2021.

[43] Seny Kamara and Charalampos Papamanthou. Parallel
and dynamic searchable symmetric encryption. In FC
2013, 2013.

[44] Seny Kamara, Charalampos Papamanthou, and Tom
Roeder. Dynamic Searchable Symmetric Encryption. In
CCS, 2012.

[45] Kee Sung Kim, Minkyu Kim, Dongsoo Lee, Je Hong
Park, and Woo-Hwan Kim. Forward secure dynamic
searchable symmetric encryption with efficient updates.
In CCS, 2017.

15

http://myrocks.io/
https://www.ververica.com/blog/
https://www.ververica.com/blog/

[46] Marie-Sarah Lacharité, Brice Minaud, and Kenneth G
Paterson. Improved reconstruction attacks on encrypted
data using range query leakage. In IEEE S&P, 2018.

[47] Russell W. F. Lai and Sherman S. M. Chow. Forward-
secure searchable encryption on labeled bipartite graphs.
In ACNS, 2017.

[48] Kasper Green Larsen and Jesper Buus Nielsen. Yes,
There is an Oblivious RAM Lower Bound! In CRYPTO
2018, pages 523–542, 2018.

[49] Xianrui Meng, Seny Kamara, Kobbi Nissim, and George
Kollios. GRECS: Graph Encryption for Approximate
Shortest Distance Queries. In CCS, 2015.

[50] Tatsuya Midorikawa, Akihiro Tachikawa, and Akira
Kanaoka. Helping Johnny to Search: Encrypted Search
on Webmail System. In AsiaJCIS, 2018.

[51] Ian Miers and Payman Mohassel. IO-DSSE: Scaling
Dynamic Searchable Encryption to Millions of Indexes
By Improving Locality. In NDSS, 2017.

[52] Simon Oya and Florian Kerschbaum. Hiding the access
pattern is not enough: Exploiting search pattern leakage
in searchable encryption. In USENIX Security, 2021.

[53] Sarvar Patel, Giuseppe Persiano, and Kevin Yeo. Lower
bounds for encrypted multi-maps and searchable encryp-
tion in the leakage cell probe model. In CRYPTO 2020,
pages 433–463, 2020.

[54] Sarvar Patel, Giuseppe Persiano, Kevin Yeo, and Moti
Yung. Mitigating leakage in secure cloud-hosted data
structures: Volume-hiding for multi-maps via hashing.
In ACM CCS, pages 79–93, 2019.

[55] Rishabh Poddar, Tobias Boelter, and Raluca Ada Popa.
Arx: An encrypted database using semantically secure
encryption. PVLDB, 12(11):1664–1678, 2019.

[56] Cédric Van Rompay, Refik Molva, and Melek Önen.
Multi-user searchable encryption in the cloud. In ISC
2015, 2015.

[57] Cedric Van Rompay, Refik Molva, and Melek Onen.
Secure and scalable multi-user searchable encryption.
In SCC Workshop, 2018.

[58] Subhadeep Sarkar, Tarikul Islam Papon, Dimitris
Staratzis, and Manos Athanassoulis. Lethe: A tunable
delete-aware lsm engine. In SIGMOD, 2020.

[59] Dawn Xiaoding Song, David Wagner, and Adrian Perrig.
Practical Techniques for Searches on Encrypted Data.
In SP, 2000.

[60] Emil Stefanov, Charalampos Papamanthou, and Elaine
Shi. Practical Dynamic Searchable Encryption with
Small Leakage. In NDSS, 2014.

[61] Emil Stefanov, Marten Van Dijk, Elaine Shi, Christopher
Fletcher, Ling Ren, Xiangyao Yu, and Srinivas Devadas.
Path Oram: An Extremely Simple Oblivious Ram Pro-
tocol. In CCS, 2013.

[62] Shi-Feng Sun, Ron Steinfeld, Shangqi Lai, Xingliang
Yuan, Amin Sakzad, Joseph Liu, Surya Nepal, and Dawu
Gu. Practical non-interactive searchable encryption with
forward and backward privacy. In NDSS, 2021.

[63] Xiao Shaun Wang, Kartik Nayak, Chang Liu, TH Chan,
Elaine Shi, Emil Stefanov, and Yan Huang. Oblivious
data structures. In CCS, 2014.

[64] Yun Wang and Dimitrios Papadopoulos. Multi-user
collusion-resistant searchable encryption with optimal
search time. In AsiaCCS 2021, pages 252–264, 2021.

[65] J. Yang, Z. Liu, J. Li, C. Jia, and B. Cui. Multi-key
searchable encryption without random oracle. In INCoS
2014, pages 79–84, 2014.

[66] Yupeng Zhang, Jonathan Katz, and Charalampos Papa-
manthou. All your queries are belong to us: The power
of File-Injection attacks on searchable encryption. In
USENIX Security 2016, pages 707–720, 2016.

[67] Yongjun Zhao, Huaxiong Wang, and Kwok-Yan Lam.
Volume-hiding dynamic searchable symmetric encryp-
tion with forward and backward privacy. Cryptology
ePrint Archive, Report 2021/786, 2021.

A Details of Cryptographic Primitives

Pseudorandom functions. Let Gen(1λ) ∈ {0,1}λ be a key
generation function, and F : {0,1}λ×{0,1}ℓ→{0,1}ℓ′ be a
pseudorandom function (PRF) family. Fk(x) denotes F(k,x).
F is a secure PRF family if for all PPT adversaries Adv,
|Pr[k← Gen(1λ);AdvFk(·)(1λ) = 1]−Pr[AdvR(·)(1λ) = 1]| ≤
v(λ), where R : {0,1}ℓ→{0,1}ℓ′ is a truly random function.

Symmetric-Key Encryption. A symmetric-key encryption
scheme SKE = (Keygen,Enc(sk,x),Dec(sk,c)) consists of
the three algorithms:

• KeyGen(λ): A probabilistic algorithm that takes the secu-
rity parameter λ as input and outputs a secret-key sk.

• Enc(sk,x): A probabilistic algorithm that takes sk as input
key and a plaintext x. It outputs a ciphertext c.

• Dec(sk,c): A deterministic algorithm that takes as input
key sk and ciphertext c. It outputs decrypted plaintext x.

16

b← RealDSE
Adv (λ,q):

1: N← Adv(1λ)
2: (K,σ0,EDB0)←Setup(1λ,N)
3: for k = 1 to q do
4: (typek, idk,wk)← Adv(1λ,EDB0, t1, . . . , tk−1)
5: if typek = search then
6: (σk,DB(wk);EDBk)←Search(K,wk,

σk−1;EDBk−1)
7: else if typek = update then
8: (σk;EDBk)←Update(K,add/del,(idk,wk),

σk−1; EDBk−1)

9: Let tk be the messages from client to server in
the Search/U pdate protocols above

10: b← Adv(1λ,EDB0, t1, t2, . . . , tq);
11: return b;

b← IdealDSE
Adv,Sim,L(λ,q):

1: N← Adv(1λ)
2: (stS ,EDB0)←SimSetup(1λ,N)
3: for k = 1 to q do
4: (typek, idk,wk)← Adv(1λ,EDB0, t1, . . . , tk−1)
5: if typek = search then
6: (stS ; tk,EDBk)←SimSearch(stS ,

LSrch(wk);EDBk−1)
7: else if typek = update then
8: (stS ; tk,EDBk)←SimUpdate(stS ,

LU pdt(wk);EDBk−1)

9: b← Adv(1λ,EDB0, t1, t2, . . . , tq);
10: return b

Figure 8: Real and ideal experiments for the DSE scheme.

A symmetric-key encryption scheme is said to be CPA-
secure if for all PPT adversaries Adv and any two arbi-
trary plaintext messages x0 and x1, |Pr[Adv(EncK(x0)) =
1]−Pr[Adv(EncK(x1)) = 1]| ≤ v(λ), where K←KeyGen(λ).

B DSE Security Game

Figure 8 shows the RealDSE and IdealDSE games for the DSE
security definition 1.

B.1 Leakage Functions for Backward Privacy
Assume Q is list with one entry for each operation. The
entry for a search and an update is of the form (u,w)
and (u,op,(w, id)), respectively, where u is the query
timestamp (starting from 1), w is the searched keyword,
op = add/del, and id is the modified file. For key-
word w, TimeDB(w) = {(u, id) | (u,add,(w, id)) ∈ Q ∧
∀u′,(u′,del,(w, id)) /∈Q} returns the list of all timestamp/file-
identifier pairs of keyword w that have been added to DB

and have not been subsequently deleted. Finally, the func-
tion DelHist(w) = {(uadd ,udel) | ∃ id : (uadd ,add,(w, id)) ∈
Q∧ (udel ,del,(w, id)) ∈ Q} returns the history of deleted en-
tries by giving all (insertion timestamp, deletion timestamp)
pairs to the adversary. Informally, it shows which deletion
corresponds to which addition.

C Formal Analysis

C.1 Proof of Lemma 1
Let s be the starting node of the search and recall that s is
the root of a full binary tree. We denote by S the set of nodes
in Tw that belong to the subtree rooted by s. Let v1, . . . ,vl
be the roots of the l full binary trees of the MCS forest for
leafs [1, iw], with l < log iw. Let S′ be the set that contains
all the nodes of Tw that belong to a subtree rooted by any of
the nodes vi. Clearly, since s is a common ancestor of all vi,
S′ ⊆ S. The set S′′ := S\S′ contains at most log iw nodes that
are ancestors of some of the leafs in [1, iw]: one for each layer
from s to right before the leafs (all parents of vi).

Having defined these sets, the search process starts from s
and accesses all the nodes in S′′ and those in S′ that have not
been removed by some of the previous deletions. The number
of nodes in S that are not deleted can be proven to be≤ 2nw by
a simple induction on the number of deletions. For 0 deletions,
S consists of full binary trees hence |S| = 2iw − 1 < 2nw,
since nw = iw in this case. After k deletions by the inductive
hypothesis there will be less than 2(iw− k) nodes. Since each
deletion removes exactly two nodes from S (the leaf to be
deleted and its parent), after deletion k+1, there will be less
than 2(iw− k)−2 = 2(iw− (k+1)), i.e., less than twice the
result size (iw− (k+1)).

As S′ and S′′ are disjoint, the total number of nodes accessed
by a search is upper bounded by 2nw + log iw.

C.2 Proof of Security
Theorem 1. Assuming F is a secure PRF, SKE is a se-
cure encryption scheme, OMDel ,OMTree are secure oblivi-
ous maps, OSSE is adaptively-secure in the programmable
random oracle model according to Definition 1, with
LSetup(N) = N and LU pdt(op,w, id) = op and LSrch(w) =
(TimeDB(w),DelHist(w)).

Proof. We prove the security of OSSE via a sequence of
indistinguishable hybrids as follows:

• Hybrid-0: This is the RealSSE game defined in Ap-
pendix B between the adversary and a challenger.

• Hybrid-1: This is the same as Hybrid-0 but all
encryptions val corresponding to leaf nodes during
insertion queries are replaced with SKE.Enc(sk,0),
i.e., encryptions of zero. Since decryption happens

17

only locally by the client, any adversary that can distin-
guish between these two games can be used to break
the CPA security of SKE via a series of standard hybrids.

• Hybrid-2: This is the same as Hybrid-1 but all tokens
tk for any keyword w and counter cntw are instead
generated uniformly at random from the range of
the PRF F {0,1}λ. More specifically, the challenger
initiates a map T K. Every time the code calls for
a token tk for a new w,cntw combination, it gets
the result of T K.get((w,cntw), tk). If the result is
null, it chooses tk uniformly at random and stores it
with T K.put((w,cntw), tk), for future reference. The
two games can be shown to be indistinguishable due
to the security of the PRF via a series of standard hybrids.

• Hybrid-3: This is the same as Hybrid-2 but the
challenger internally maintains a list I that stores the
contents of each query of the adversary (w for searches,
(w, id,op) for updates). With this list I, the challenger
can at any phase of the game, accurately compute the
correct Tw tree for every keyword w, including the
correct access counter for each node based on the history
of the adversary’s queries. This change is internal only
so Hybrid-3 is identical to Hybrid-2 for the adversary.

• Hybrid-4: This is the same as Hybrid-3 but during setup
the oblivious map initializations for OMDel ,OMTree
are replaced with calls to two simulators SIMOMAP for
capacity N. All future oblivious map accesses are emu-
lated by calls to the corresponding simulators SIMOMAP.
Whenever the code needs such an access during an
update, the challenger recreates the corresponding
tree Tw for the related keyword w at that phase of the
game and calculates the access result from this. Hence,
Hybrid-4 is indistinguishable from Hybrid-3 due to the
security of the oblivious maps.

• Hybrid-5: This is the same as Hybrid-4 but all calls to
H0 are emulated by the challenger as follows. Whenever
the code or the adversary calls for an evaluation of H0,
the challenger, who maintains a table H0 of all past
H0-calls, responds: (i) with a freshly chosen random
value from the range of H0 if this input has not been
requested for evaluation before, in which case it stores it
at H0 together with the input, (ii) with the evaluation
result stored in H0 if the input has been requested
before. Denote by Bad1 the event where throughout the
game the challenger happens to sample the same H0
evaluation for different inputs. If Bad1 takes place the
challenger aborts. Clearly, conditioned on not aborting,
the view provided to the adversary in Hybrid-4 is
identical to that of Hybrid-3. Second, since the range of
H0 is assumed exponential to the security parameter λ,
whereas the number of H0-calls that will be executed

throughout the game is polynomial in λ (since the
adversary is bounded) by the birthday problem the
probability of abort is negligible. Hence the games
are statistically indistinguishable in the programmable
random oracle model.

• Hybrid-6: This is the same as Hybrid-5 with the fol-
lowing modification. For calls to H0 to calculate addr
during insertions (Algorithm 1, line 4) and deletions
(Algorithm 2, line 20), the challenger samples the evalu-
ation as above but instead stores it to table H0′ together
with the timestamp 1≤ u≤ q of the operation. For dele-
tions, it stores all logN sampled valued in the order in
which they are called. Then, for a search query with to-
kens tk, tk0, let u1, . . . ,ut be the timestamps of all prior
updates for the same keyword w, after the latest prior
search for the same keyword. The challenger first builds
all prior “snapshots” of T (1)

w , . . . ,T (t)
w . Based on this, it

calculates for each update operation, the correspond-
ing involved node labels, access counters, and the order
in which they were accesses within the operation (for
deletions). For each involved node label lab in these
updates let MaxAcc be its maximal access counter in
all tree snapshots. The challenger matches each such
pair lab,acc for acc ∈ [1,maxAcc] to the corresponding
timestamp (and within the timestamped operation, the
exact order to which this pair corresponds) and identi-
fies the corresponding evaluation addr in H0′. It then
removes this entry from H0′ and inserts to H0 the map-
ping (tk, lab,acc)→ addr. Note that, if tk ̸= tk0, entries
for the latter have already been moved to H0. Effectively,
this “matches” the evaluations during searched with the
ones during previous related updates.
Denote by Bad2 the event where when the challenger
moves entries from H0′ to H0 in the above process, it
encounters an already filled entry in H0. Since during the
protocol execution all H0 evaluations during searches
follow prior evaluations on the same input during an
update, this can only happen if the adversary has posted
a query to H0 for a token tk it has not yet seen, effectively
guessing it. In this hybrid, the challenger modifies its
code to check if Bad2 take place; if that happens it aborts.
First, note that unless the challenger aborts the game
is identical to that of Hybrid-5. Second, given that
tokens are sampled uniformly at random from a domain
exponential in λ, whereas the total number of H0-calls
that the adversary can do throughout the game is
polynomial in λ (since the adversary is PPT), the
probability of aborting is negligible in λ, hence the two
Hybrids are statistically indistinguishable.

• Hybrid-7: This is the same as Hybrid-6 but we now also
replace H1 with a programmable random oracle exactly
as we did in Hybrid-5 for H0. By the same reasoning

18

as in that case, this hybrid is indistinguishable from the
previous one.

• Hybrid-8: This is the same as Hybrid-7 but we now ma-
nipulate the evaluations of H1 during deletions, exactly
as we did in Hybrid-6 for H1. More specifically, during
deletions we sample the different val uniformly at ran-
dom and store them at a table H1′ for the time being. Dur-
ing searches, the only difference is that when moving an
entry lab,acc with evaluation val and a corresponding to-
ken tk from H1′ to H1 during a search, tt sets the mapping
to (tk, lab,acc)→ val⊕ (le f t, le f tAcc,right,rightAcc)
where these four values can again be calculated directly
from the series of trees T 1

w , . . . ,T
t
w. This ensures subse-

quent evaluations during the search execution by the
server will be consistent with Algorithm 2, lines 20-21.
Note that this also eliminates the need for token
calculation during updates so this part is removed from
the code of the challenger. By the same reasoning as
for Hybrid-6, this hybrid is indistinguishable from the
previous one.

• Hybrid-9: This is the same as Hybrid-8 but the
challenger changes the list token map T K to map tokens
to the search timestamp during they were created. This
change is internal only so the game is identical to
Hybrid-8 for the adversary.

• Hybrid-10: This is the same as Hybrid-9 but the chal-
lenger changes what the query list I store for each query.
If k is an update, I(k) =⊥. If k is a search for keyword
w, I(k) = (TimeDB(w),DelHist(w)).
We note that the code of the challenger from Hybrid-9
can still be executed solely with this information, as
follows. At this point, updates only involve sampling
random appropriate random value for addr,val and
simulating oblivious map accesses. Regarding searches,
first the challenger can find which prior operations in-
volve the same keyword from TimeDB(w),DelHist(w),
directly for the case of prior updates, and indirectly by
comparing TimeDB(w) for past searches in order to
reuse token tk0. Second, it can calculate the counters
cntw, iw,dw directly from TimeDB(w),DelHist(w).
Third, the functions TimeDB(w),DelHist(w) map
previous insertions and deletions to a unique Tw since
they reveal when insertions took place and for each
deletion specifically which prior insertion it cancels.
Finally, from this the challenger can compute all nodes’
access counters which are necessary for running the
hybrid’s search code. Again, this change is internal only
so Hybrid-8 is identical to Hybrid-9 for the adversary.

• Hybrid-11 This is the same as Hybrid-10 but the
client only receives op (instead of op,w, id) during up-
dates, and TimeDB(w),DelHist(w) (instead of w) dur-

ing searches. Clearly, this is again indistinguishable to
the adversary.

The modified challenger’s code for the final hybrid is essen-
tially the code of our simulator in the IdealSSE game as it only
takes as input the leakage of Theorem 1. Since we showed
that Hybrid-0 and Hybrid 11 provide an indistinguishable
view to an adversary playing the DSE adaptive security of
Figure 8, the result follows.

We make two remarks about the above proof. First, even
though TimeDB(w) includes the actual id’s of the documents
in DB(w) we never used this information, since our scheme’s
goal is to retrieve DB(w) and this result remains always en-
crypted for the adversary. However, our use of Time(DB) also
covers our analysis for cases where OSSE is used in applica-
tions that want to retrieve the actual documents (see discus-
sion in Section 3). Second, in the above we make the implicit
assumption that search queries for non-existent keywords are
not repeated; with this restriction, our leakage profile always
captures standard search pattern leakage. However, to cover
such cases, we should expand our leakage to explicitly include,
when such a non-existing keyword was searched previously.

The following characterizes the security of LLSE (formal
proof is deferred to the full version).

Theorem 2. Assuming F is a secure PRF, SKE is a se-
mantically secure encryption scheme, OMDel ,OMTree are
secure oblivious maps, LLSE is adaptively-secure in the
programmable random oracle model according to Defini-
tion 1, with LSetup(N) = N and LU pdt(op,w, id) = op and
LSrch(w) = (TimeDB(w),DelHist(w)).

19

	Introduction
	Preliminaries
	Dynamic Searchable Encryption
	Optimal-Search DSE (OSSE)
	Labeled Binary Trees for Stored Entries
	OSSE Data Structures & Algorithms
	OSSE Efficiency & Security Analysis

	Log-Log Search DSE with Improved Storage & Deletion (LLSE)
	LLSE Data Structures & Algorithms
	LLSE Efficiency & Security Analysis

	Optimizations
	Experimental Evaluation
	Performance of our Schemes
	Comparison with Other DSE
	Effect of Deletion Storage for OSSE

	Conclusion
	Details of Cryptographic Primitives
	DSE Security Game
	Leakage Functions for Backward Privacy

	Formal Analysis
	Proof of Lemma 1
	Proof of Security

