
Private Set Operations from Multi-Query Reverse Private
Membership Test

Yu Chen ∗ Min Zhang∗ Cong Zhang † Minglang Dong∗

Abstract

Private set operations allow two parties perform secure computation on two private sets, such
as intersection or union related functions. In this paper, we identify a framework for performing
private set operations. At the technical core of our framework is multi-query reverse private mem-
bership test (mqRPMT), which is a natural extension of RPMT recently proposed by Kolesnikov et
al. [KRTW19]. In mqRPMT, a client with set X = (x1, . . . , xn) interacts with a server holding a set
Y . As a result, the server only learns a bit vector (e1, . . . , en) indicating whether xi ∈ Y but without
knowing the value of xi, while the client learns nothing. We present two constructions of mqRPMT
from newly introduced cryptographic primitive and protocol. One is is based on commutative weak
pseudorandom function (cwPRF), the other is based on permuted oblivious pseudorandom functions
(pOPRF). Both cwPRF and pOPRF can be instantiated from the decisional Diffie-Hellman like as-
sumptions in the random oracle model. We also introduce a slight weak version of mqRPMT dubbed
mqRPMT∗, in which the client learns the cardinality of X ∪ Y . We show mqRPMT∗ can be build
from a category of mqPMT called Sigma-mqPMT, which in turn can be realized from the DDH
assumption or oblivious polynomial evaluation. This makes the first step towards establishing the
relation between the two building blocks.

We demonstrate the practicality of our framework with implementations. By plugging our
cwPRF-based mqRPMT to the general framework, we obtain the first PSU protocol with strict
linear complexity. For input sets of size 220, the resulting PSU protocol requires roughly 80 MB
bandwidth, and 50 seconds using 8 threads. To the best of our knowledge, it requires the least
communication among all the known PSU protocols. By plugging our FHE-based mqRPMT∗ to
the general framework, we obtain a PSU∗ suitable for unbalanced setting, whose communication
complexity is linear in the size of the smaller set, and logarithmic in the larger set.

Keywords: PSO, PSU, multi-query RPMT, commutative weak PRF, permuted OPRF

∗Shandong University. Email: {yuchen, zm_min, minglang_dong}@mail.sdu.edu.cn
†SKLOIS, IIE, Chinese Academy of Sciences. Email: zhangcong@iie.ac.cn

Contents
1 Introduction 1

1.1 Motivation . 1
1.2 Our Contribution . 2
1.3 Technical Overview . 2
1.4 Related Works . 4

2 Preliminaries 4
2.1 MPC in the Semi-honest Model . 5
2.2 Private Set Operation . 5

3 Protocol Building Blocks 5
3.1 Oblivious Transfer . 5
3.2 Multi-Query RPMT . 5

4 Review of Pseudorandom Function 6
4.1 Weak PRF from the DDH Assumption . 7
4.2 PRF from the DDH Assumption . 7

5 Commutative Weak Pseudorandom Functions 8
5.1 Definition of Commutative Weak PRF . 8
5.2 Construction of Commutative Weak PRF . 9
5.3 mqRPMT from Commutative Weak PRF . 9

6 mqRPMT from Permuted Oblivious Pseudorandom Function 11
6.1 Definition of Permuted OPRF . 11
6.2 Construction of Permuted OPRF . 12
6.3 mqRPMT from Permuted OPRF . 14

7 mqRPMT from Sigma-mqPMT 16
7.1 Private Membership Test . 16
7.2 Connection to Sigma-mqPMT . 17

8 Applications of mqRPMT 18

9 Implementation 19

A Missing Definitions 21
A.1 Weak Pseudorandom EGA . 21
A.2 mqPMT from OPRF . 22

B Instantiations of Sigma-mqPMT 23
B.1 Sigma-mqPMT from DDH . 23
B.2 Sigma-mqPMT from FHE . 24

C Missing Security Proofs 24
C.1 Proof of Permuted OPRF Based on the DDH Assumption 24

2

1 Introduction
Consider two parties, each with a private dataset of items, want to compute on their respect sets without
revealing any other information to each other. Private set operation refers to such family of interactive
cryptographic protocols that takes two private sets as input, computes the desired function, and outputs
the result to one or both of the participants. If one party obtains the result, we call this party the
receiver and the other party the sender, and refer to the protocol as one-sided. Two-sided PSO protocol
can be realized by having the receiver in one-sided protocol forwards the result to the sender. Let X and
Y denote the sender’s and the receiver’s sets, respectively. In what follows, we briefly introduce PSO
protocols in the semi-honest model in terms of typical functionalities.

Private set intersection. PSI has found many applications including privacy-preserving sharing, pri-
vate contact discovery, DNA testing and pattern matching. In the past two decades PSI has been exten-
sively studied and has become truly practical with extremely fast implementation. We refer to [PSZ18] for
a good survey of different PSI paradigms. State-of-the-art two party PSI protocols [KKRT16, PRTY19,
CM20, GPR+21, RS21] mainly rely on symmetric-key operations, except a little public-key operations
in base OT used in the OT extension protocol.
Private computing on set intersection. Many real-world applications requires only partial/aggregate
information about the intersection to be revealed. In this case we need private computing on set in-
tersection (PCSI), including PSI-card for intersection cardinality [HFH99] and PSI-sum for intersection
sum [IKN+20, MPR+20].
Private set union. Like PSI, PSU also has numerous applications in practice, such as cyber risk
assessment and management via joint IP blacklists and joint vulnerability data. There are two paradigms
of existing PSU protocols. The first is mainly based on public-key techniques [KS05, Fri07, HN10, DC17].
The second is mainly based on symmetric-key techniques [KRTW19, GMR+21].

PSO protocols are primarily designed for the balanced setting, where |X| ≈ |Y |. In unbalanced
setting, we have |Y | � |X|. PSI, PCSI and PSU are closely related functionalities. Among them, PSI
is extensively studied. The state-og-the-art PSI is almost as efficient as the naive insecure hash-based
protocol. In contrast to the affairs of PSI, the efficiency of the state-of-the-art PCSI and PSU are less sat-
isfactory. In balanced setting, there are PSI protocols [Mea86, CM20] and PCSI protocols [IKN+20] with
optimal linear complexity. In unbalanced setting, there are PSI protocols [CLR17, CHLR18, CMdG+21]
with sublinear complexity in the larger set size |X|, but no such PCSI protocol is known. So far, there is
no PSU protocol with linear complexity in either balanced or unbalanced setting in the literature. As to
practical efficiency, PSI-card is concretely about 20× slower and requires over 30× more communication
than PSI. and PSU is concretely about 20× slower and requires over 30× more communication than PSI.

It is somewhat surprising that the state-of-the-art protocols for different functionalities have signif-
icantly different efficiency. Why is this case? Observe that PSI protocol essentially can be viewed as
multi-query private membership test (mqPMT), which has very efficient realizations in both balanced
and unbalanced setting. However, mqPMT generally does not implies PCSI or PSU. The reason is that
mqPMT reveals information about intersection, which should be kept privately in PCSI and PSU.

1.1 Motivation
The above discussion indicates that the most efficient PSI protocols may not be easily adapted to PCSI
and PSU protocols. Therefore, different approaches are employed for different private set operations,
creating much more engineering effort. We are motivated to seek for a common core protocol that enables
all private set operations, with the hope to design PSO in a unified framework. Moreover, given the huge
efficiency gap between PSI and other closely related protocols, we are also motivated to give efficient
construction of the core protocol to close the gap. In summary, it is intriguing to know:

Is there a core protocol that enables a unified framework for all private set operations? If so, can we
give efficient constructions that lead to optimal complexity?

1

1.2 Our Contribution
In this work, we make positive progress on the aforementioned questions. We summarize our contribution
as below.

A framework of PSO. We identify that multi-query reverse private membership test (mqRPMT) is
a “Swiss Army Knife” for private set operations. More precisely, mqRPMT itself already implies PSI-
card; by coupling with OTe, mqRPMT implies PSI and PSU; by further coupling with secret sharing or
additively homomorphic encryption, mqRPMT implies PSI-sum. Therefore, mqRPMT enables a PSO
framework, which can perform all set operations in a unified and flexible manner.
Efficient construction of mqRPMT. We propose two generic constructions of mqRPMT. The first is
based on a new cryptographic primitive called commutative weak PRF, the second is based on another
new secure protocol called permuted oblivious PRF. Both of them can be instantiated from the DDH
like assumptions in the random oracle model, leading to incredibly simple mqRPMT protocols with
linear communication and computation complexity. Note that the asymptotic complexity of our PSO
framework is dominated by the underlying mqRMPT. Therefore, all PSO protocols derived from our
framework inherit linear complexity. Particularly, to the best of our knowledge, it is the first time to
have PSU with linear complexity.
Relaxed mqRPMT. We propose a slight weak version of mqRPMT (denoted mqRPMT∗ hereafter).
Compared to the standard mqRPMT, mqRPMT∗ allows the sender learn the intersection size. We
show that mqRMPT∗ can be build from a special category of mqPMT called Sigma-mqPMT in a black-
box manner via the “permute-then-test” recipe. This makes the initial step towards to establishing the
connection between mqRPMT and mqPMT. By instantiating the transformation from fully homomorphic
encryption (FHE) based Sigma-mqPMT, we obtain an efficient mqRPMT∗ in unbalanced setting, which
immediately gives rise to a PSU∗ protocol with sublinear complexity of the size of larger set X.
Evaluations. We implement our framework. The experimental results demonstrate that our PSU
protocol is superior to all the known PSU protocols in terms of communication cost.

1.3 Technical Overview
PSO from mqRPMT. As discussed above, mqPMT (a.k.a. PSI) protocols generally is not applicable
for computing PCSI and PSU. We examine the reverse direction, i.e., whether the core protocol under-
lying PSU can be used for computing PSI and PCSI. We identify that the central protocol beneath all
the existing PSU protocols is mqRPMT, which is a generalization of RPMT proposed in [KRTW19].
Roughly speaking, mqRPMT is a two party protocol between a client with set X = (x1, . . . , xn) and a
server with set Y . After execution of the protocol, the server learns an indication bit vector (e1, . . . , en)
such that ei = 1 if and only if xi ∈ Y but without knowing xi, while the client learns nothing. Su-
perficially, mqRPMT is similar to mqPMT, except that the server but not the client learns the test
results instead. This subtle difference turns out to be significant. To see this, note that in mqRPMT
the information of intersection (except its cardinality) is hidden from both sides, while in mqPMT the
intersection is finally known by the client. In light of this difference, mqRPMT is particular suitable for
functionalities that have to keep intersection private. A PSU protocol is immediate by having the sender
(play the role of client) and the receiver (play the role of server) invoke a mqRPMT protocol on the first
place, then carrying out n one-out-two OT with ei and (⊥, yi) respectively. PSI and other protocols
such as PSI-card and PSI-sum can be constructed similarly by coupling with additively homomorphic
encryption or secret sharing.

The seminal PSI protocol [Mea86] (related ideas were appeared in [Sha80, HFH99]) is based on the
commutative properties of the DH function, known as DH-PSI. After roughly four decades, the DH-PSI
protocol is still the most easily understood and to implement one among numerous PSI protocols. It is
somewhat surprisingly that no counterpart is known in the PSU setting yet. An intriguing question is:
Can DH strike back? In this work, we give an affirmative answer to the above question.
mqRPMT from cwPRF. We propose a new cryptographic primitive called commutative weak PRF.
Let F : K × D → R be a family of weak PRF, where R ⊆ D. We say F is commutative if for any
k1, k2 ∈ K and any x ∈ D, it holds that Fk1

(Fk2
(x)) = Fk2

(Fk1
(x)). In other words, the two composite

functions Fk1
◦ Fk2

and Fk2
◦ Fk1

are essentially the same function, say, F̂ .

2

We then show how to build mqRPMT from cwPRF. Let server and client generate cwPRF key k1 and
k2 respectively, and both of them map their items to elements in the domain D of F via a common crypto-
graphic hash function H, which will be modeled as a random oracle. We begin with the construction of the
basic single-query RPMT. First observe that cwPRF gives rise to a private equality test (PEQT) protocol.
Suppose server with y and client with x, they perform PEQT via the following steps: (1) server computes
and sends Fk1

(H(y)) to client; (2) client computes and sends Fk2
(H(x)) and Fk2

(Fk1
(H(y))) to server; (3)

P1 then learns the test result by comparing Fk1(Fk2(H(x))) =?Fk2(Fk1(H(y))). The commutative prop-
erty of F guarantee the correctness. The weak pseudorandomness of F guarantee that P2 learns nothing
and P1 learns nothing beyond the test result. At a high level, Fk2

(Fk1
(H(·))) = Fk1

(Fk2
(H(·))) = F̂ (H(·))

serves as pseudorandom encoding function in the joint view, while Fk1
(H(·)) and Fk2

(H(·)) serve as a
partial encoding function in the individual views of server and client respectively.

However, naive repetition of the above PEQT protocol by sending back Fk2
(Fk1

(H(yi))) for each
yi ∈ Y in the same order of server’s first move message Fk1(H(yi)) does not lead to a secure single-query
mqRPMT. The reason is that {F̂ (H(yi))}i∈[n] constitutes an order preserving pseudorandom encoding of
set Y . As a consequence, the server will learn the exact value of x if x ∈ Y . In order to perform the mem-
bership test in an oblivious manner, the idea is to make the pseudorandom encoding of Y independent
of the order known by the server. A straightforward approach is to permuted {F̂ (H(yi))}. In this way,
we build a single-query RMPT protocol from cwPRF, and the resulting protocol can be easily batched
to handle multiple queries by reusing the pseudorandom encoding of X. A simple calculation shows that
the computation cost is 3n times evaluation of F and n times look up, and the communication cost is
3n elements in the range of F . The mqRPMT protocol is optimal in the sense that both computation
and communication complexity is linear to the set size. We can further reduce the communication cost
by inserting {F̂ (H(yi))} into an order hiding data structure such as Bloom filter, instead of permuting
them.

We show that cwPRF can be realized from DDH-like assumptions. Henceforth, DDH strikes back
with a simple PSU protocol, and demonstrates the DH-function endowed with versatile properties is
truly a golden goose in cryptography.
mqRPMT from permuted OPRF. OPRF provides a conceptually simple approach to build PSI
(a.k.a. mqPMT) protocols. We exemplify this by recalling the multi-point OPRF-based PSI [CM20] as
below: the sender with Y and the receiver with X = (x1, . . . , xn) first engage in a multi-point OPRF
protocol. As a result, the sender obtains a random key k of PRF F , while the receiver obtains PRF values
(Fk(x1), . . . , Fk(xn)). Subsequently, the sender randomly shuffles the elements in his own set, obtains
(y1, . . . , yn), and sends the corresponding PRF values (Fk(y1), . . . , Fk(yn)) to the receiver. Finally, the
receiver obtains the intersection by checking if Fk(xi) ∈ {Fk(yi)}i∈[n] for each xi ∈ X. It is interesting
to investigate if the above instructive approach can also be used to compute PSU. However, OPRF does
not readily imply a mqRPMT protocol. The reason is that the receiver learns the PRF values with the
same order of his input X = (x1, . . . , xn). To remedy this problem, we introduce a new cryptographic
protocol called permuted OPRF (pOPRF). pOPRF can be viewed as a generalization of OPRF. The
difference is that the sender additionally obtains a random permutation π over [n] besides PRF key k,
while the receiver obtains PRF values in a permuted order as per π. pOPRF immediately implies a
mqRPMT protocol: The server with Y = (y1, . . . , yn) and the client with X = (x1, . . . , xn) first engage
in a pOPRF protocol. As a result, the server obtains {Fk(yπ(i))}i∈[n], while the client learns a PRF key
k and a permutation π. The client then computes and sends {Fk(xi)}i∈[n]. Finally, the server learns if
xi ∈ Y by testing whether Fk(xi) ∈ {Fk(yπ(i))}i∈[n], but learns nothing more since its PRF values are
of permuted order. At a high level, Fk(·) serves as an encoding function in client’s view, while Fk(π(·))
serves as a pseudorandom and permuted encoding function in server’s view.

The question remains is how to build pOPRF. One common approach to build OPRF is “mask-then-
unmask”. We choose OPRF as the starting point. The rough idea is exploiting the input homomorphism
to mask inputs1, then unmask the outputs. If the mask procedure is different per input, then the
unmask procedure must be carried out accordingly. Therefore, OPRF protocols of this case cannot be
easily adapted to pOPRF, cause the receiver is unable to perform the unmask procedure over permuted
masked outputs correctly, namely, recovering outputs in permuted order. The above analysis indicates
us that if the masking procedure can be done via a unifying manner, then the receiver might be able

1Standard pseudorandomness denies input homomorphism. Rigorously speaking, we utilize the homomorphism over
intermediate input.

3

to unmask the permuted masked outputs correctly. Observe that the simplest way to perform unified
masking is to apply a weak pseudorandom function Gs to the intermediate input H(x). To enable efficient
unmask procedure, we further require that Gs is a permutation and commutative with respect to Fk.
This yields a simple pOPRF construction from enhanced cwPRF (Fk, Gs) in which Gs(·) is a weak
pseudorandom permutation. More precisely, to build pOPRF, the sender picks a random PRF key k for
F , while the receiver with input X = (x1, . . . , xn) picks a random PRP key s for G. The receiver then
sends {Gs(H(xi))}i∈[n] to the sender. Upon receiving the masked intermediate inputs, the sender applies
Fk to them, then sends the results in permuted order, a.k.a. {Fk(Gs(H(xπ(i)))}i∈[n]. Finally, the receiver
applies G−1

s to the permuted masked outputs, and will obtain {Fk(H(xπ(i))}i∈[n] by the commutative
property.

Note that many efficient OPRF constructions [CM20] seem not amenable to pOPRF construction.
This somehow explains the efficiency gap between the state-of-the-art PSI and PCSI/PSU.
mqRPMT∗ from mqPMT. Towards the goal of studying the connection between mqRPMT and
mqPMT, we abstract a category of mqPMT protocol called Sigma-mqPMT, which underlies several PSI
protocols [Mea86, CLR17] with linear complexity. Following the permute-then-test approach, we can
tweak Sigma-mqPMT to mqRPMT∗ with same asymptotic complexity, and thus obtain asymptotically
efficient PSU∗ protocols in both balanced and unbalanced settings. We leave the more general connection
as an interesting open problem.
Applications of mqRPMT. With mqRPMT in hand, we can build a general PSO framework. mqRPMT
itself immediately give rise to private set intersection/union cardinality. Coupling with oblivious trans-
fer, we can obtain PSI, private set intersection sum or PSU, depending the messages on OT sender’s
side.

In Figure 1, we give an overview of the main contribution of this work.

mqRPMT +OT

cwPRF pOPRFenhanced
version

PSU PSI PSI-card

dash line from PSI to mqRPMT
means the construction is semi-generic

Sigma-mqPMT ⇒ mqRPMT∗

Figure 1: Constructions and Applications of mqRPMT

1.4 Related Works
Garimella et al. [GMR+21] proposed a framework for all private set operations. At their technical
core is a new protocol called permuted characteristic, which could be viewed as as an extension of
mqRPMT protocol. Nevertheless, the oblivious shuffle in permuted characteristic functionality is not
necessary for PSO, but seems unavoidable due to the use of oblivious switching networks. This incurs
superlinear complexity to permuted characteristic protocols and the resulting PSO protocols. In a
concurrent work [ZCL+22], Zhang et al. [ZCL+22] build mqRPMT protocols with linear complexity
from oblivious key-value store, set-membership encryption and oblivious vector decryption-then-test
functionality. Compared to their construction, our protocol is conceptually simpler. Besides, we explore
more applications of mqRPMT, while they only focus on PSU protocol.

2 Preliminaries
Notations. We assume that every set X has a default order (e.g. lexicographical order), and write it
as X = {x1, . . . , xn}. We use (x1, . . . , xn) to deonote a vector, whose ith element is xi.

4

2.1 MPC in the Semi-honest Model
We use the standard notion of security in the presence of semi-honest adversaries. Let Π be a protocol
for computing the function f(x1, x2), where party Pi has input xi. We define security in the following
way. For each party P , let ViewP (x1, x2) denote the view of party P during an honest execution of Π
on inputs x1 and x2. The view consists of P ’s input, random tape, and all messages exchanged as part
of the Π protocol.

Definition 2.1. 2-party protocol Π securely realizes f in the presence of semi-honest adversaries if there
exists a simulator Sim such that for all inputs x1, x2 and all i ∈ {1, 2}:

Sim(i, xi, f(x1, x2)) ≈c ViewPi(x1, x2)

Roughly speaking, a protocol is secure if the party with xi learns no more information other than
f(x1, x2) and xi.

2.2 Private Set Operation
PSO is a special case of secure two-party computation.

Parameters: size of sets n.
Functionality: On input X = {x1, . . . , xn} ⊆ {0, 1}ℓ (and possibly V = {v1, . . . , vn}) from the
sender P1 and Y = {y1, . . . , yn} ⊆ {0, 1}ℓ from the receiver P2:

• intersection: give X ∩ Y to the receiver P2.

• union: give X ∪ Y to the receiver P2.

• union∗: give |X ∩ Y | to the sender P1 and X ∪ Y to the receiver P2.

• intersection cardinality: give |X ∩ Y | to the receiver P2.

• intersection sum with cardinality: give |X ∩ Y | and S =
∑

i:xi∈Y vi to the sender.

Figure 2: Ideal functionality FPSO for PSO

3 Protocol Building Blocks
3.1 Oblivious Transfer
Oblivious Transfer (OT) [Rab] is a central cryptographic primitive in the area of secure computation.
1-out-of-2 OT allows a sender with two input strings (m0,m1) and a receiver with an input choice bit
b ∈ {0, 1}. As a result of the OT protocol, the receiver learns mb and neither party learns any additional
information. Though expensive public-key operations is unavoidable for a single OT, a powerful technique
called OT extension [IKNP03, KK13, ALSZ15] allows one to perform n OTs by only performing O(κ)
public-key operations (where κ is the computational security parameter) and O(n) fast symmetric-key
operations. In Figure 3 we formally define the ideal functionality for OT that provides n parallel instances
of OT.

3.2 Multi-Query RPMT
RPMT [KRTW19] refers to a protocol where the client with input x interacts with a server holding a set
Y . As a result, the server learns (only) the bit indicating whether x ∈ Y , while the client learns nothing
about the set Y . The default notion of RPMT allows the client to query for a single element. While
this procedure can be repeated several times, one may seek more efficient solutions allowing the client to

5

Parameters: number of OT instances n; string length ℓ.
Functionality: On input {(mi,0,mi,1)}i∈n from the sender P1 where each mi,b ∈ {0, 1}ℓ, and input
b⃗ ∈ {0, 1}n from the receiver P2:

• Give output (m1,b1 , . . . ,mn,bn) to the receiver.

Figure 3: Ideal functionality FOT for OT

make n distinct queries at a reduced cost. This generalized notion of n-time RPMT is straightforward
to define. Hereafter, we refer to n-time RPMT as multi-query RMPT. In Figure 4 we formally define
the ideal functionality for mqRPMT. We also define a relaxed version of mqRPMT called mqRPMT∗,
in which the client is given |X ∩ Y |.

Parameters: number of RPMT queries n.
Functionality: On input set Y from the server P1 and input set X = (x1, . . . , xn) ⊆ {0, 1}ℓ from
the client P2:

1. Define the vector e⃗ = (e1, . . . , en) ∈ {0, 1}n, where ei = 1 if xi ∈ Y and ei = 0 otherwise.

2. Give e⃗ to the server P1.

3. ∗Also give |X ∩ Y | to the server P1.

Figure 4: Ideal functionality FmqRPMT for multi-query RPMT

4 Review of Pseudorandom Function
In this section, we recap the standard notions of PRF, as well as the canonical construction from the DDH
like assumption. Looking ahead, we will build more advanced variants of PRF with richer properties on
these basis. We first recall the notion of standard pseudorandom functions (PRFs) [GGM86].
Definition 4.1 (PRF). A family of PRFs consists of three polynomial-time algorithms as follows:

• Setup(1κ): on input a security parameter κ, outputs public parameter pp. pp specifies a family of
keyed functions F : K ×D → R, where K is the key space, D is domain, and R is range.

• KeyGen(pp): on input pp, outputs a secret key k
R←− K.

• Eval(k, x): on input k ∈ K and x ∈ D, outputs y ← F (k, x). For notation convenience, we will
write F (k, x) as Fk(x) interchangeably.

The standard security requirement for PRFs is pseudorandomness.
Pseudorandomness. Let A be an adversary against PRFs and define its advantage as:

AdvA(κ) = Pr

b′ = b :

pp← Setup(1κ);
k ← KeyGen(pp);
β ← {0, 1};
β′ ← AOror(β,·)(λ);

− 1

2
,

where Oror(0, x) = Fk(x), Oror(1, x) = H(x) (here H is chosen uniformly at random from all the functions
from D to R2). Note that A can adaptively access the oracle Oror(β, ·) polynomial many times. We say

2To efficiently simulate access to a uniformly random function H from D to R, one may think of a process in which
the adversary’s queries to Oror(1, ·) are “lazily” answered with independently and randomly chosen elements in R, while
keeping track of the answers so that queries made repeatedly are answered consistently.

6

that F is pseudorandom if for any PPT adversary its advantage function AdvA(κ) is negligible in κ. We
refer to such security as full PRF security.

Sometimes the full PRF security is not needed and it is sufficient if the function cannot be dis-
tinguished from a uniform random one when challenged on random inputs. The formalization of such
relaxed requirement is weak pseudorandomness, which is defined the same way as pseudorandomness
except that the inputs of oracle Oror(b, ·) are uniformly chosen from D by the challenger instead of
adversarially chosen by A. PRFs that satisfy weak pseudorandomness are referred to as weak PRFs.

4.1 Weak PRF from the DDH Assumption
We build weak PRF from the DDH assumption as below.

• Setup(1κ): runs GroupGen(1κ)→ (G, g, p), outputs pp = (G, g, p). pp defines a family of functions
from Zp ×G to G, a.k.a. on input k ∈ Zp and x ∈ G outputs xk.

• KeyGen(pp): outputs k
R←− Zp.

• Eval(k, x): on input k ∈ Zp and x ∈ D, outputs y ← xk.

The following theorem establishes its pseudorandomness based on the DDH assumption.

Theorem 4.1. The above construction is weak pseudorandom assuming the hardness of the DDH prob-
lem.

Proof. DDH assumption states that DDH tuple (ga, gb, gab) and random tuple (ga, gb, gc) are computa-
tionally indistinguishable. By exploiting the random self-reducibility of the DDH problem [NR95], the
standard DDH assumption implies that (ga, gb1 , . . . , gbn , gab1 , . . . , gabn) and (ga, gb1 , . . . , gbn , gc1 , . . . , gcn)

are computationally indistinguishable, where a, bi, ci
R←− Zp. We are now ready to reduce the weak pseudo-

randomness of Fk(·) based on the DDH assumption. Let B be an adversary against the DDH assumption.
Given a DDH challenge instance (ga, gb1 , . . . , gbn , gc1 , . . . , gcn), B interacts with an adversary A in the
weak pseudorandomness experiment, with the aim to determine if ci = abi or random values.

Setup: B sends pp = (G, g, p) to A. B implicitly set a as the key of PRF.
Real-or-random query: Upon receiving the i-th query to oracle Oror, B sets the i-th random input xi :=

gbi , computes yi = gci , then sends (xi, yi) to A.
Guess: A makes a guess β′ ∈ {0, 1} for β, where ‘0’ indicates real mode and ‘1’ indicates random mode.
B forwards β′ to its own challenger.

Clearly, if ci = abi for all i ∈ [n], then A simulates the real oracle. If ci are random values, then A
simulates the random oracle. Thereby, B breaks the DDH assumption with the same advantage as A
breaks the pseduorandomness of Fk(·).

Remark 4.1. We note that Fk(x) = xk is actually a permutation over G, and it is efficiently invertible.

4.2 PRF from the DDH Assumption
We next recall the standard PRF from the DDH assumption [NPR99]. The construction is very similar
to the weak PRF construction. The only modification is to map the input to G via a cryptographic hash
function H first, then apply Fk in a cascade way, yielding a composite function Fk ◦ H : D → G. By
leveraging the programmability of H, we reduce to pseudorandomness of the composite function Fk ◦ H
to the weak pseudorandomness of Fk. In other words, random oracle amplifies weak pseudorandomness
to standard pseudorandomness.

For completeness, we provide the details as below.

• Setup(1κ): runs GroupGen(1κ) → (G, g, p), pick a cryptographic hash function H from domain D
to G. outputs pp = (G, g, p,H). pp defines a family of functions from Zp × D to G, which takes
k ∈ Zp and x ∈ D as input and outputs Fk(H(x)) = H(x)k.

7

• KeyGen(pp): outputs k
R←− Zp.

• Eval(k, x): on input k ∈ Zp and x ∈ D, outputs H(x)k.

The following theorem establishes its pseudorandomness based on the DDH assumption.

Theorem 4.2. Fk(H(x)) is a family of PRF assuming H is a random oracle and the DDH assumption
holds w.r.t. GroupGen(1κ)→ (G, g, p).

Proof. We now reduce the pseudorandomness of Fk(H(·)) to the hardness of DDH problem. Let B be
an adversary against the DDH problem. Given a DDH challenge instance (ga, gb1 , . . . , gbn , gc1 , . . . , gcn),
B interacts with an adversary A in the pseudorandomness experiment, with the aim to determine if
ci = abi or random values. A , and simulates the random oracle H and real-or-random oracle as below:

• Setup: B sends pp = (G, g, p,H) to A, and implicitly sets a as the key of PRF.

• Random oracle query: for random oracle query 〈xi〉, B programs H(xi) := gbi .

• Real-or-random query: without loss of generality, it is safe to assume adversary has already make
the corresponding RO queries before making the evaluation queries. For evaluation query 〈xi〉, B
returns yi := gci to A.

• Guess: A makes a guess β ∈ {0, 1}, where ‘0’ indicates real mode and ‘1’ indicates random mode.
B forwards β to its own challenger.

Clearly, if ci = abi for all i ∈ [n], then A simulates the real oracle. If ci are random values, then A
simulates the random oracle. Thereby, B breaks the DDH assumption with the same advantage as A
breaks the pseduorandomness of Fk(H(·)).

Remark 4.2. (Weak) PRF can be build from weak pseudorandom group action (c.f. Definition in Ap-
pendix A.1) in a similar way.

5 Commutative Weak Pseudorandom Functions
5.1 Definition of Commutative Weak PRF
We first formally define two standard properties for keyed functions.

Composable. For a family of keyed function F , F is 2-composable if R ⊆ D, namely, for any k1, k2 ∈ K,
the function Fk1(Fk2(·)) is well-defined. In this work, we are interested in a special case namely R = D.
Commutative. For a family of composable keyed function, we say it is commutative if:

∀k1, k2 ∈ K, ∀x ∈ X : Fk1
(Fk2

(x)) = Fk2
(Fk1

(x))

It is easy to see that the standard pseudorandomness denies commutative property. Consider the
following attack against the standard pseudorandomness of Fk as below: the adversary A picks k′ R←− K,
x

R←− D, and then queries the real-or-random oracle at point Fk′(x) and point x respectively, receiving
back responses y′ and y. A then outputs ‘1’ iff Fk′(y) = y′. Clearly, A breaks the pseudorandomness
with advantage 1/2 − negl(λ). Provided commutative property exists, the best security we can expect
is weak pseudorandomness. Looking ahead, weak pseudorandomness and commutative property may
co-exist based on some well-studied assumptions.

Definition 5.1 (Commutative Weak PRF). Let F be a family of keyed functions K×D → D. F is called
commutative weak PRF if it satisfies weak pseudorandomness and commutative property simultaneously.

Further generalization. Instead of sticking to one family of keyed functions, commutative property
can be defined over two families of keyed functions. Let F be a family of weak PRF from K ×D to D,
G be a family of weak PRF S ×D to D. If the following equation holds,

∀k ∈ K, r ∈ R, ∀x ∈ X : Fk(Gs(x)) = Gs(Fk(x))

we say (F,G) is a tuple of commutative weak PRF.

8

Remark 5.1. We note that our notion if commutative weak PRF (cwPRF) is similar to but strictly
weaker than a previous notion called commutative encryption [AES03]. The difference is that cwPRF
neither require Fk be a permutation nor F−1

k be efficiently computable.

5.2 Construction of Commutative Weak PRF
We observe that the weak PRF construction presented in Section 4.1 already satisfies commutative
property. This gives us a simple cwPRF construction from the DDH assumption.

5.3 mqRPMT from Commutative Weak PRF
In Figure 5, we show how to build mqRPMT from cwPRF F : K × D → D and cryptographic hash
function H : {0, 1}ℓ → D.

Parameters:

• Common input: F : K ×D → D, hash function H : {0, 1}ℓ → D.

• Input of server P1: Y = {y1, . . . , yn} ⊆ {0, 1}ℓ.

• Input of client P2: X = {x1, . . . , xn} ⊆ {0, 1}ℓ (should be interpreted as a vector).

Protocol:

1. P1 picks k1
R←− K, then sends {Fk1

(H(yi))}i∈[n] to P2.

2. P2 picks k2
R←− K, then computes and sends {Fk2(H(xi))}i∈[n] to P1. P2 also computes

{Fk2
(Fk1

(H(yi))}i∈[n], picks a random permutation π
R←− [n], then sends {Fk2

(Fk1
(H(yπ(i))}i∈[n]

to P1. An alternative choice instead of explicit shuffle is inserting {Fk2
(Fk1

(H(yi))}i∈[n] to a
Bloom filter, then sends the resulting filter to P1. We slightly abuse the notation, and still use
Ω to denote the Bloom filter.

3. P1 computes {Fk1
(Fk2

(H(xi))}i∈[n], forms a set Ω← {Fk2
(Fk1

(H(yπ(i))}i∈[n], then sets ei = 1
iff Fk1

(Fk2
(H(xi))) ∈ Ω.

Figure 5: Multi-query RPMT from commutative weak PRF

F : K ×D → D, H : {0, 1}ℓ → D

P1 (server)

Y = (y1, . . . , yn)

P2 (client)

X = (x1, . . . , xn)

k1
R←− K

{Fk1
(H(yi))}i∈[n]

k2
R←− K

{Fk2
(H(xi))}i∈[n]

Ω← {Fk2(Fk1(H(yπ(i)}i∈[n]

Ω← Bloom({Fk2
(Fk1

(H(yi)}i∈[n])

set ei = 1 iff
Fk1

(Fk2
(H(xi))) ∈ Ω

Correctness. The above protocol is correct except the case E that Fk1(Fk2(H(x))) = Fk1(Fk2(H(y)))
for some x 6= y occurs. We further divide E to E0 and E1. E0 denotes the case that H(x) = H(y). E1

denotes the case that H(x) 6= H(y) but Fk1
(Fk2

(H(x))) = Fk1
(Fk2

(H(y))), which can further be divided
into sub-cases E10 — Fk2

(H(x)) = Fk2
(H(y)) and E11 — Fk2

(H(x)) 6= Fk2
(H(y)) but Fk1

(Fk2
(H(x))) =

Fk1
(Fk2

(H(y))). By the collision resistance of H, we have Pr[E0] = 2−σ. By the weak pseudorandomness

9

of F , we have Pr[E10] = Pr[E11] = 2−ℓ. Therefore, we have Pr[E] ≤ Pr[E0] + Pr[E10] + Pr[E11] =
2−σ + 2−ℓ+1.

Theorem 5.1. The multi-query RPMT protocol described in Figure 5 is secure in the semi-honest model
assuming H is a random oracle and F is a family of cwPRF.

Proof. We exhibit simulators SimP1
and SimP2

for simulating corrupt P1 and P2 respectively, and argue
the indistinguishability of the simulated transcript from the real execution. Let |X ∩ Y | = m.

Security against corrupt client. SimP2 simulates the view of corrupt client P2, which consists of P2’s
randomness, input, output and received messages. We formally show SimP2 ’s simulation is indistinguish-
able from the real execution via a sequence of hybrid transcripts.
Hybrid0: P2’s view in the real protocol.
Hybrid1: Given P2’s input X, SimP2

chooses the randomness for P1 (i.e., picks k1
R←− K), and simulates

with the knowledge of Y .

• RO query: SimP2 emulates the random oracle H honestly. For each query 〈zi〉, SimP2 picks αi
R←− D,

and assigns H(zi) := αi.

• SimP2
outputs (Fk1

(H(y1)), . . . , Fk1
(H(yn))).

X ∩ Y

Y X

for zi ∈ D, H(zi) := αi
R←− D

Clearly, SimP2
’s simulated view in Hybrid1 is identical to P2’s real view.

Hybrid2: SimP2
does not choose the randomness for P1 (i.e., picks k1

R←− K), and simulates without the
knowledge of Y . It emulates the random oracle H honestly as before, and only changes the simulation
of P1’s message.

• SimP2
outputs (η1, . . . , ηn) where ηi

R←− D.

We argue that the simulated view in Hybrid1 and Hybrid2 are computationally indistinguishable.
More precisely, a PPT adversary A (with knowledge of X and Y) against cwPRF (with secret key k) is
given n tuples (γi, ηi) where γi

R←− D, and is asked to distinguish if ηi = Fk(γi) or ηi are random values.
A implicitly sets P1’s randomness k1 := k, and simulates as below.

• RO query: for each random oracle query 〈zi〉, if zi /∈ Y , picks αi
R←− D and sets H(zi) := αi; if

zi ∈ Y , sets H(zi) := γi.

• outputs (η1, . . . , ηn).

X ∩ Y

Y X

for zi /∈ Y , H(zi) := αi
R←− D

for zi ∈ Y , H(zi) := γi
R←− D

If ηi = Fk(βi) for i ∈ [n], then A’s simulation is identical to Hybrid1. If ηi are random values, then
A’s simulation is identical to Hybrid2.

Security against corrupt server. SimP1
simulates the view of corrupt server P1, which consists

of P1’s randomness, input, output and received messages. We formally show SimP1
’s simulation is

indistinguishable from the real execution via a sequence of hybrid transcripts.
Hybrid0: P1’s view in the real protocol.
Hybrid1: Given P1’s input Y and output (e1, . . . , en), SimP1

chooses the randomness for P2 (i.e., picks
k2

R←− K and a random permutation π over [n]), and simulates with the knowledge of X.

10

• RO queries: SimP1
emulates the random oracle H honestly. For each query 〈zi〉, SimP1

picks αi
R←− D

and assigns H(zi) := αi.

• SimP1
outputs {Fk2

(H(xi))}i∈[n] and Ω← {Fk2
(Fk1

(H(yπ(i))}i∈[n].

X ∩ Y

Y X

for zi ∈ D, H(zi) := αi
R←− D

Clearly, SimP1
’s simulation in Hybrid1 is identical to the real view of P1.

Hybrid2: SimP1
does not choose randomness for P1, and simulates without the knowledge of X. It

simulates the random oracle H honestly as before, and changes it simulation of P2’s message. Let m be
the Hamming weight of (e1, . . . , en).

• SimP1 picks vi
R←− D for i ∈ [n] (associated with Fk2(H(xi)) where xi ∈ X), outputs {vi}i∈[n]; picks

wj
R←− D for ℓ ∈ [n −m] (associated with Fk2

(H(yj)) where yj ∈ Y −X ∩ Y), outputs a random
permutation of ({Fk1

(vi)}ei=1, {Fk1
(wj)}j∈[n−m]).

X ∩ Y

Y X
Fk2

(xi) := vi

Fk2
(yi) := wj

We argue that the view in Hybrid1 and Hybrid2 are computationally indistinguishable. More precisely,
a PPT adversary A (with knowledge of X and Y) against cwPRF are given 2n−m tuples (γi, ηi) where
γi

R←− D, and is asked to determine if ηi = Fk(γi) or random values. A implicitly sets P2’s randomness
k2 := k, picks k1

R←− K.

• RO queries: for zi /∈ X ∪ Y , picks αi
R←− D and assigns H(zi) := αi; for zi ∈ X ∪ Y , assigns

H(zi) := γi.

• For each zi ∈ X, A picks out the associated ηi to form {vj}j∈[n]; for each zi ∈ Y −X ∩ Y , A picks
out the associated ηi to form {wℓ}ℓ∈[n−m]. Finally, A outputs {vj}j∈[n] and a random permutation
of ({Fk1

(vj)}xj∈X∩Y , {Fk1
(wℓ)}ℓ∈[n−m]).

X ∩ Y

Y X

for zi /∈ X ∪ Y , H(zi) := αi
R←− D

for zi ∈ X ∪ Y , H(zi) := γi
R←− D

Fk2
(xj) := vj

Fk2
(yℓ) := wℓ

If ηi = Fk(γi), thenA’s simulation is identical to Hybrid1. If ηi are random values, thenA’s simulation
is identical to Hybrid2.

This proves the theorem.

6 mqRPMT from Permuted Oblivious Pseudorandom Function
6.1 Definition of Permuted OPRF
An oblivious pseudorandom function (OPRF) [FIPR05] is a two-party protocol in which the sender learns
a PRF key k and a receiver learns Fk(x1), . . . , Fk(xn), where F is a pseudorandom function (PRF) and
(x1, . . . , xn) are the receiver’s inputs. Nothing about the receiver’s inputs is revealed to the sender and
nothing more about the key k is revealed to the receiver.

We consider an extension of OPRF which we called permuted OPRF. Roughly speaking, the sender
additionally picks a random permutation π over [n], and the receiver learns its PRF values in permuted
order, namely, yi = Fk(xπ(i)).

11

Parameters: number of OPRF queries n.
Functionality: On inputs set X = (x1, . . . , xn) ⊆ {0, 1}ℓ from the receiver:

1. Choose a random PRF key k and a random permutation π over [n].

2. Give k and π to the sender and yi = Fk(xπ(i)) to the receiver.

Figure 6: Ideal functionality FpOPRF for permuted OPRF

6.2 Construction of Permuted OPRF
As we sketched in the introduction part, we can create a permuted OPRF from enhanced cwPRF (Fk, Gs),
in which Gs is a weak permutation. At a high level, the unified masking procedure is done by applying a
weak PRF Fr(·) to H(x), and the unmasking process is enabled by the commutative property of (Fk, Gs)
and the fact that Gs(·) is an efficiently invertible permutation. We depict the construction as below.

F : K ×D → D, G : S ×D → D
H : {0, 1}ℓ → D

sender P1 receiver P2
X = (x1, . . . , xn)

s
R←− S

{Gs(H(xi))}i∈[n]

k
R←− K, π R←− [n]

{Fk(Gs(H(xπ(i))}i∈[n]

Fk(H(xπ(i)))← G−1
s (Fk(Gs(H(xπ(i))

Figure 7: Permuted OPRF from cwPRF

Theorem 6.1. The above permuted OPRF protocol described in Figure 7 is secure in the semi-honest
model assuming H is a random oracle, (Fk, Gs) is a tuple of cwPRF and Gs is a weak permutation.

Proof. We exhibit simulators SimP1 and SimP2 for simulating corrupt P1 and P2 respectively, and argue
the indistinguishability of produced transcript from the real execution.

Security against corrupt sender. SimP1
simulates the view of corrupt sender P1, which consists

of P1’s randomness, input, output and received messages. We formally show SimP1
’s simulation is

indistinguishable from the real execution via a sequence of hybrid transcripts.
Hybrid0: P1’s view in the real protocol.
Hybrid1: Given P1’s output k and π, SimP1

chooses the randomness r for P2, and simulates with the
knowledge of X = (x1, . . . , xn):

• RO queries: SimP1
honestly emulates random oracle H. For every query 〈zi〉, picks αi

R←− G and
assigns H(zi) := αi.

• SimP1 outputs (βr
1 , . . . , β

r
n), where H(xi) = βi.

X ∩ Y

Y X

for zi ∈ D, H(zi) := αi
R←− D

12

Clearly, SimP1 ’s simulated view in Hybrid1 is identical to P1’s real view.
Hybrid2: SimP1

does not choose the randomness for P2, and simulates without the knowledge of X. It
honestly emulates random oracle H as in Hybrid1, and only changes the simulation of P2’s message.

• SimP1
outputs (η1, . . . , ηn) where ηi

R←− G.
We argue that the view in Hybrid1 and Hybrid2 are computationally indistinguishable. Let A be a

PPT adversary against the weak pseudorandom of Gs. Given a real-or-random oracle Oror(·), A is asked
to distinguish which mode he is in. A queries the Oror(·) n times, and obtains (γi, ηi) in return. A then
simulates (with the knowledge of X) as below:

• RO queries: for each query 〈zi〉, if zi /∈ X, picks αi
R←− G and assigns H(zi) := αi; if zi ∈ X, assigns

H(xi) := γi.

• Outputs (η1, . . . , ηn).

X ∩ Y

Y X

for zi /∈ X, H(zi) := αi
R←− D

for zi ∈ X, H(zi) := γi

Clearly, if ηi = Gs(γi), A simulates Hybrid1. Else, it simulates Hybrid2. Thereby, SimP1
’s simulated

view is computationally indistinguishable to P1’s real view.
Security against corrupt receiver. SimP2 simulates the view of corrupt receiver P2, which consists
of P2’s randomness, input, output and received messages. We formally show SimP2 ’s simulation is
indistinguishable from the real execution via a sequence of hybrid transcripts.
Hybrid0: P2’s view in the real protocol.
Hybrid1: Given P2’s input X = (x1, . . . , xn) and output {Fk(H(xπ(i)))}i∈[n], SimP2 emulates the random
oracle H honestly, picks r

R←− Zp, simulates message from P1 as {Gs(Fk(H(xπ(i))))}i∈[n].

According to the commutative property of cwPRF, SimP2
’s simulated view is identical to the real view.

This proves the theorem.

Observe that the cwPRF construction presented in Section 5.2 already satisfies the enhanced property
that Gr being a permutation. Plugging it to the above generic construction, we obtain a concrete pOPRF
protocol as described in Figure 8.

Parameters:

• Common input: F : Zp ×G→ G, hash function H : {0, 1}ℓ → G.

• Input of receiver P2: X = {x1, . . . , xn} ⊆ {0, 1}ℓ.

Protocol:

1. P2 picks s
R←− Zp, then sends (H(x1)

s, . . . ,H(xn)
s) to the sender P1.

2. P1 picks k R←− Zp and a random permutation π over [n], computes (H(x1)
rk, . . . ,H(xn)

rk), then
sends y′i = H(xπ(i))

sk for i ∈ [n] to P2.

3. P1 outputs k and π.

4. P2 computes yi = (y′i)
s−1 for each i ∈ [n].

Figure 8: Permuted OPRF from the DDH assumption

The security of the above pOPRF protocol is guaranteed by Theorem 6.1 and the security of the
underlying cwPRF, which is in turn based on the DDH assumption. For completeness, we provide a
direct security proof based on the DDH assumption in Appendix C.1.

13

6.3 mqRPMT from Permuted OPRF
In Figure 9, we show how to build mqRPMT from permuted OPRF F : K × D → R. For simplicity,
we assume that {0, 1}ℓ ⊆ D. Otherwise, we can always map {0, 1}ℓ to D via collision resistant hash
function.

Parameters:

• Common input: permuted OPRF F : K ×D → R.

• Input of server P1: Y = {y1, . . . , yn} ⊆ {0, 1}ℓ.

• Input of client P2: X = {x1, . . . , xn} ⊆ {0, 1}ℓ.

Protocol:

1. P1 with inputs Y = {y1, . . . , yn} and P2 invoke the permuted OPRF protocol. At the end of
the protocol, P1 obtains {Fk(yπ(i))}i∈[n], P2 obtains k and a permutation over [n].

2. P2 computes and sends (Fk(x1), . . . , Fk(xn))) to P1.

3. P1 sets ei = 1 iff Fk(xi) ∈ {Fk(yπ(i))}i∈[n].

Figure 9: mqRPMT from permuted OPRF

F : K ×D → R

P1 (server)

Y = (y1, . . . , yn)

P2 (client)

X = (x1, . . . , xn)

permuted OPRF
(y1, . . . , yn)

(Fk(yπ(1)), . . . , Fk(yπ(n)))

k
R←− K, π

{Fk(xi)}i∈[n]set ei = 1 iff
Fk(xi) ∈ {Fk(yπ(i))}i∈[n]

Correctness. The above protocol is correct except the case E = ∨i,jEij oucurs, where Eij denotes
Fk(xi) = Fk(yj) but xi 6= yj . By pseudorandomness of F , we have Pr[Eij] = 2−ℓ. Apply the union
bound, we have Pr[E] ≤ n2 · Pr[Eij] ≤ n2/2ℓ = negl(λ).

Theorem 6.2. The above mqRPMT protocol described in Figure 9 is secure in the semi-honest model
assuming the security of permuted OPRF F .

Proof. We exhibit simulators SimP1
and SimP2

for simulating corrupt P1 and P2 respectively, and argue
the indistinguishability of the produced transcript from the real execution. Let |X ∩ Y | = m.

Security against corrupt client. SimP2 simulates the view of corrupt client P2, which consists of P2’s
randomness, input, output and received messages. We formally show SimP2

’s simulation is indistinguish-
able from the real execution via a sequence of hybrid transcripts.
Hybrid0: P2’s view in the real protocol.
Hybrid1: SimP2 simply picks k and π, then invokes the simulator for P2 in the permuted OPRF with
(k, π) as output. By the semi-honest security of permuted OPRF on P2’s side, the simulation is indis-
tinguishable to the real view.

14

Security against corrupt server. SimP1 simulates the view of corrupt server P1, which consists
of P1’s randomness, input, output and received messages. We formally show SimP1 ’s simulation is
indistinguishable from the real execution via a sequence of hybrid transcripts.
Hybrid0: P1’s view in the real protocol. Note that P1’s view consists of its view in stage 1 (the permuted
OPRF part) and its view in stage 2.
Hybrid1: Given P1’s input Y = (y1, . . . , yn) and output (e1, . . . , en), SimP1 creates the simulated view
as below:

• pick a random PRF key k and a random permutation π;

• compute (Fk(yπ(1)), . . . , Fk(yπ(n))), then generate its stage 1’s view by invoking the simulator for
P1 of permuted OPRF with input (y1, . . . , yn) and output (Fk(yπ(1)), . . . , Fk(yπ(n)));

• generate stage 2’s view (Fk(x1), . . . , Fk(xn)) using k with the knowledge of P2’s input X.

The simulated stage 2’view is identical to that in the real one. By the semi-honest security of permuted
OPRF on P1’ side, the stage 1’s simulated view of stage 1 in is computationally indistinguishable to that
in the real one. Thereby, the simulated view in Hybrid1 is computationally indistinguishable to the real
one.
Hybrid2: SimP1 creates the simulated view without the knowledge of X, and it neither picks k nor
explicitly picks π:

• generate stage 2’s view by outputting (η1, . . . , ηn), where ηi
R←− R; this implicitly sets Fk(xi) := ηi.

• for each ei = 1, pick out the associated ηi to form {vj}j∈[m]; for each ei = 0, pick random values
to form {wℓ}ℓ∈[n−m]; pick a random permutation Π of ({vj}j∈[m], {wℓ}ℓ∈[n−m]), treat the result as
(Fk(yπ(1)), . . . , Fk(yπ(n))) (note that the real permutation π is unknown to the simulator cause it
does not know X∩Y); then generate its stage 1’s view by invoking the simulator for P1 of permuted
OPRF with input (y1, . . . , yn) and output (Fk(yπ(1)), . . . , Fk(yπ(n))).

X ∩ Y

Y X
Fk(xi) := ηi

{Fk(yπ(i))}i∈[n] := Π({vj}j∈[m], {wℓ}ℓ∈[n−m])

We argue that the simulated views in Hybrid1 and Hybrid2 are computationally indistinguishable
based on the pseudorandomness of F . Let A be an adversary against F . Given X and Y , A simulates
as below:

• query the real-or-random oracleOror(·) with (x1, . . . , xn) and obtain (η1, . . . , ηn), output (η1, . . . , ηn).

• pick a random permutation π;

• query the real-or-random oracle with (yπ(1), . . . , yπ(n)) and obtains (ζ1, . . . , ζn) in return; then gen-
erate its stage 1’s view by invoking the simulator for P1 of permuted OPRF with input (y1, . . . , yn)
and output (ζ1, . . . , ζn).

Clearly, if A queries the real oracle, then its simulation is identical to that Hybrid1. Else, its simulation
is identical to that Hybrid2. This reduces the computational indistinguishability of views in Hybrid1 and
Hybrid2 to the pseudorandomness of Fk(·). Therefore, SimP1

’s simulation is indistinguishable to the real
one.

This proves the theorem.

15

7 mqRPMT from Sigma-mqPMT
7.1 Private Membership Test
Private membership test (PMT) protocol [PSZ14] is a two-party protocol in which the client with input
x learns whether or not its item is in the input set Y of the server. PMT can be viewed as a special
case of private keyword search protocol [FIPR05] by setting the payload as any indication string. We
consider three-move PMT, which we refer to Sigma-PMT hereafter.

Sigma-PMT proceeds via following pattern.

1. Server P1 sends the first round message a to sender P2, which is best interpreted as an encoding
of Y .

2. Sender P2 sends query q w.r.t. to his item x.

3. Server P1 responds with t.

After receiving t, client P2 can decide if x ∈ Y by running Test(a, x, q, t). The basic notion of Sigma
PMT allows the client P2 to test for a single item. While this procedure can be repeated several times,
one may seed more efficient protocol allowing the client to test n items at reduced communication cost
and round complexity. To this end, we introduce the following two properties for Sigma-PMT:

• Reusable: The first round message is performed by the server P1 once and for all.

• Context-free: Each test query qi is only related to the element xi under test and the randomness
of P2.

The first property helps to reduce communication cost, while the second property admits parallelization,
hence the round complexity is unchanged even when handling multiple items. Sigma-PMT may enjoy
an additional property:

• Stateless: For any xi and associated (qi, ti), Test(a, xi, qi, ti) can work in a memoryless way,
namely, without looking at (xi, qi). In this case, the test algorithm can be simplified as Test(a, ti).

We consider mqRPMT built from Sigma-PMT that is reusable, non-adaptive and supports stateless
testing, and refer it to Sigma-mqPMT, as depicted in Figure 10.

server P1

Y = (y1, . . . , yn1)
client P2

X = (x1, . . . , xn2)

a← Encode(Y)
a

qi ← GenQuery(a, xi)
q⃗ = {q1, . . . , qn2}

z⃗ = {z1, . . . , zn2}
zi ← Response(qi) ei ← Test(a, zi)

Figure 10: Sigma-mqPMT

We assume the simulator Sim(X, e⃗) for client P2 is composed of two sub-routines (Sim′,Sim′′), and
satisfies the following properties:

• Locality: zi ≈ Sim′(ei; ri), a.k.a. the i-th response can be emulated via invoking a sub-routine
Sim′(ei) with independent random coins ri;

• Order invariance: a ≈ Sim′′({eπ(i), rπ(i)}i∈[n2]; s), where π could be an arbitrary permutation
over [n2], s is the random coins.

16

server P1

Y = (y1, . . . , yn1
)

client P2

X = (x1, . . . , xn2
)

a← mqPMT.Encode(Y)
a

qi ← mqPMT.GenQuery(xi)
q⃗ = {q1, . . . , qn2

}

π
R←− [n2]

z⃗∗ = {zπ(1), . . . , zπ(n2)}

e∗i ← mqPMT.Test(a, z∗i)
e⃗∗ = {e∗1, . . . , e∗n}e⃗ = {e∗π−1(i)}

n2
i=1

Figure 11: mqRPMT∗ from Sigma-mqPMT

7.2 Connection to Sigma-mqPMT
Theorem 7.1. The above mqRPMT∗ protocol depicted in Figure 11 is secure in the semi-honest model
assuming the semi-honest security of the starting Sigma-mqPMT protocol.

Proof. We exhibit simulators SimP1
and SimP2

for simulating corrupt server P1 and corrupt client P2

respectively. Let |X ∩ Y | = m.

Security against corrupt client. SimP2
simulates the view of corrupt client P2, which consists of P2’s

randomness, input, output and received messages.
We argue that the output of SimP2

is indistinguishable from the real execution. We formally show
SimP2

’s simulation is indistinguishable from the real execution via a sequence of hybrid transcripts.
Hybrid0: P2’s view in the real protocol.
Hybrid1: SimP2 chooses the randomness for P1, and simulates with the knowledge of Y . Clearly, SimP2 ’s
simulation is identical to the real view of P2.
Hybrid2: SimP2

does not choose the randomness for P1, and simulates without the knowledge of Y .
Instead, it invokes the Sigma-mqPMT’s simulator for P2 on his private input X and output e⃗∗ to
emulate the view (a, z⃗∗) in the following manner:

• for 1 ≤ i ≤ n2, run Sim′(e∗i ; ri)→ z∗i , obtaining z⃗∗ = (z∗1 , . . . , z
∗
n).

• run Sim′′({(e∗i , ri}i∈[n2]; s)→ a.

By the locality and order invariance properties, the simulated view in Hybrid2 and Hybrid1 are compu-
tationally indistinguishable based on semi-honest security of mqPMT on P2 side.
Security against corrupt server. SimP1 simulates the view of corrupt server P1, which consists
of P1’s randomness, input, output and received messages. We formally show SimP2

’s simulation is
indistinguishable from the real execution via a sequence of hybrid transcripts.
Hybrid0: P1’s view in the real protocol.
Hybrid1: SimP1 chooses the randomness for P2, and simulates with the knowledge of X. Clearly, SimP1 ’s
simulation is identical to the real view of P1.
Hybrid2: SimP1

does not choose the randomness for P2, and simulates without the knowledge of X.
Instead, it first invokes the Sigma-mqPMT’s simulator for P1 on input Y to generate q⃗, then picks a
random permutation π, computes e⃗∗ = π−1(e⃗), outputs (q⃗, e⃗∗).
Clearly, the view in Hybrid1 and Hybrid2 are computationally indistinguishable based on the semi-honest
security of Sigma-mqPMT on P1’s side.

This proves the theorem.

17

8 Applications of mqRPMT
We show how to build a PSO framework central around mqRPMT in Figure 12.

Parameters:

• Input of receiver P1: Y = {y1, . . . , yn1
} ⊆ {0, 1}ℓ.

• Input of sender P2: X = {x1, . . . , xn2
} ⊆ {0, 1}ℓ and V = {v1, . . . , vn2

}.

Protocol:

0. P2 shuffles the set (x1, . . . , xn2
) and (v1, . . . , vn2

) according to the same random permutation
over [n2]. For simplicity, we still use the original notation to denote the vector after permuta-
tion.

1. P1 (playing the role of server) with Y and P2 (playing the role of client) with X = {x1, . . . , xn2
}

invoke FmqRPMT. P1 obtains an indication bit vector e⃗ = (e1, . . . , en2
). P2 obtains nothing.

• cardinality: P1 learns the cardinality by calculating the Hamming weight of e⃗.

2. P1 and P2 invoke n2 instances of OT via FOT. P1 uses e⃗ as the choice bits.

• intersection: P2 uses (⊥, xi) as input to the ith OT. P1 learns {xi | ei = 1}i∈[n2] = X∩Y .
• union: P2 uses (xi,⊥) as input to the ith OT. P1 learns {xi | ei = 0}i∈[n2] = X/Y , and

outputs {X/Y } ∪ Y = X ∪ Y .
• intersection sum with cardinality: P2 randomly generate ri subject to the constraint∑n2

i=1 ri = 0, then uses (ri, ri + vi) as input to the ith OT. P1 learns {
∑n2

i=1 vi | ei =
1}i∈[n2] = X ∩ Y .

• intersection sum with cardinality∗: P2 generates a key pair (pk, dk) for some AHE,
then encrypts vi to obtain ci ← Enc(pk, vi), uses (⊥, ci) as input to the ith OT. P1 learns
{
∑n2

i=1 ci | ei = 1}i∈[n2], then re-randomizes the sum ciphertext and sends it back to P2.
P2 decrypts the ciphertext, obtaining the intersection sum.

Figure 12: PSO from mqRPMT

Theorem 8.1. The PSU framework described in Figure 12 is semi-honest secure by assuming the semi-
honest security of mqRPMT and OT.

Proof. We exhibit simulators SimP1 and SimP2 for simulating corrupt P1 and P2 respectively, and argue
the indistinguishability of the produced transcript from the real execution. Let |X ∩ Y | = m.

Security against corrupt sender. SimP2
simulates the view of corrupt sender P2, which consists

of P2’s randomness, input, output and received messages. We formally show SimP2
’s simulation is

indistinguishable from the real execution via a sequence of hybrid transcripts.
Hybrid0: P2’s view in the real protocol. Note that P2’s view consists of two parts, i.e., the mqRPMT
part of view (stage 1) and the OT part of view (stage 2).
Hybrid1: SimP2 first invokes the simulator for client in the mqRPMT with X as input to generate the
stage 1’s part of view, then invokes the simulator for sender in the OT with {(xi,⊥)}i∈[n2] as input to
generate stage 2’s part of view. By the semi-honest security of mqRPMT on client side and the semi-
honest security for OT on sender side, the simulation is indistinguishable to the real view via standard
hybrid argument.

Security against corrupt receiver. SimP1 simulates the view of corrupt receiver P1, which consists
of P1’s randomness, input, output and received messages. We formally show SimP1 ’s simulation is
indistinguishable from the real execution via a sequence of hybrid transcripts.

18

Hybrid0: P1’s view in the real protocol. Note that P1’s view also consists of two parts, i.e., the mqRPMT
part of view (stage 1) of and the OT part of view (stage 2).
Hybrid1: Given P1’s input Y = (y1, . . . , yn1

) and output X ∪ Y , SimP1
creates the simulated view as

below:

• pick a random indication vector e⃗ = (e1, . . . , en2
) with Hamming weight m = X ∩Y , then generate

the output vector z⃗ = (z1, . . . , zn2) from e⃗ and X ∪ Y in the following manner: randomly shuffle
the (n2 −m) elements in X\Y , and assign them to zi if ei = 0, then assign zi = ⊥ iff ei = 0; then
invoke the simulator for OT receiver with input e⃗ and output z⃗ and to generate stage 2’s view.

• invoke the simulator for mqRPMT server with input Y and output e⃗ = (e1, . . . , en2
) to generate

stage 1’s view.

It is easy to check that the distribution of e⃗ and z⃗ is identical to that (induced by the distribution
of mqRPMT’s input vector (x1, . . . , xn2

)) in the real protocol. By the semi-honest security of mqRPMT
on server side and the semi-honest security for OT on receiver side, the simulation is indistinguishable
to the real view via standard hybrid argument.

This proves the theorem.

9 Implementation
We will report the experimental results and comparison to related works soon.

Acknowledgments
We thank Yilei Chen for bringing up EGA to our attention, and thank Navid Alamati for helpful
clarification on input-homomorphic weak PRF. We thank Hong Cheng for enlightening discussion on
OPRF. We particularly thank Weiran Liu for many instructive advices on both theortical constructions
and implementation techniques.

References
[AES03] Rakesh Agrawal, Alexandre V. Evfimievski, and Ramakrishnan Srikant. Information sharing across

private databases. In 2003 ACM SIGMOD International Conference on Management of Data, pages
86–97. ACM, 2003.

[AFMP20] Navid Alamati, Luca De Feo, Hart Montgomery, and Sikhar Patranabis. Cryptographic group
actions and applications. In Advances in Cryptology - ASIACRYPT 2020, volume 12492 of LNCS,
pages 411–439. Springer, 2020.

[ALSZ15] Gilad Asharov, Yehuda Lindell, Thomas Schneider, and Michael Zohner. More efficient oblivious
transfer extensions with security for malicious adversaries. In Advances in Cryptology - EURO-
CRYPT 2015, volume 9056 of Lecture Notes in Computer Science, pages 673–701. Springer, 2015.

[CHLR18] Hao Chen, Zhicong Huang, Kim Laine, and Peter Rindal. Labeled PSI from fully homomorphic en-
cryption with malicious security. In Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2018, pages 1223–1237. ACM, 2018.

[CLR17] Hao Chen, Kim Laine, and Peter Rindal. Fast private set intersection from homomorphic encryption.
In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security,
CCS 2017, pages 1243–1255. ACM, 2017.

[CM20] Melissa Chase and Peihan Miao. Private set intersection in the internet setting from lightweight
oblivious PRF. In Advances in Cryptology - CRYPTO 2020, volume 12172 of Lecture Notes in
Computer Science, pages 34–63. Springer, 2020.

[CMdG+21] Kelong Cong, Radames Cruz Moreno, Mariana Botelho da Gama, Wei Dai, Ilia Iliashenko, Kim
Laine, and Michael Rosenberg. Labeled PSI from homomorphic encryption with reduced com-
putation and communication. In CCS ’21: 2021 ACM SIGSAC Conference on Computer and
Communications Security, pages 1135–1150. ACM, 2021.

19

[DC17] Alex Davidson and Carlos Cid. An efficient toolkit for computing private set operations. In Infor-
mation Security and Privacy - 22nd Australasian Conference, ACISP 2017, volume 10343 of Lecture
Notes in Computer Science, pages 261–278. Springer, 2017.

[FIPR05] Michael J. Freedman, Yuval Ishai, Benny Pinkas, and Omer Reingold. Keyword search and oblivious
pseudorandom functions. In Theory of Cryptography, Second Theory of Cryptography Conference,
TCC 2005, volume 3378 of Lecture Notes in Computer Science, pages 303–324. Springer, 2005.

[Fri07] Keith B. Frikken. Privacy-preserving set union. In Applied Cryptography and Network Security, 5th
International Conference, ACNS 2007, volume 4521 of Lecture Notes in Computer Science, pages
237–252. Springer, 2007.

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions. J. ACM,
33(4):792–807, 1986.

[GMR+21] Gayathri Garimella, Payman Mohassel, Mike Rosulek, Saeed Sadeghian, and Jaspal Singh. Private
set operations from oblivious switching. In Public-Key Cryptography - PKC 2021, volume 12711 of
Lecture Notes in Computer Science, pages 591–617. Springer, 2021.

[GPR+21] Gayathri Garimella, Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai. Oblivious key-value
stores and amplification for private set intersection. In Advances in Cryptology - CRYPTO 2021,
volume 12826 of Lecture Notes in Computer Science, pages 395–425. Springer, 2021.

[HFH99] Bernardo A. Huberman, Matthew K. Franklin, and Tad Hogg. Enhancing privacy and trust in
electronic communities. In Proceedings of the First ACM Conference on Electronic Commerce (EC-
99), pages 78–86. ACM, 1999.

[HN10] Carmit Hazay and Kobbi Nissim. Efficient set operations in the presence of malicious adversaries.
In Public Key Cryptography - PKC 2010, volume 6056 of Lecture Notes in Computer Science, pages
312–331. Springer, 2010.

[IKN+20] Mihaela Ion, Ben Kreuter, Ahmet Erhan Nergiz, Sarvar Patel, Shobhit Saxena, Karn Seth, Mariana
Raykova, David Shanahan, and Moti Yung. On deploying secure computing: Private intersection-
sum-with-cardinality. In IEEE European Symposium on Security and Privacy, EuroS&P 2020, pages
370–389. IEEE, 2020.

[IKNP03] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending oblivious transfers efficiently.
In Advances in Cryptology - CRYPTO 2003, volume 2729 of Lecture Notes in Computer Science,
pages 145–161. Springer, 2003.

[KK13] Vladimir Kolesnikov and Ranjit Kumaresan. Improved OT extension for transferring short secrets.
In Advances in Cryptology - CRYPTO 2013, volume 8043 of Lecture Notes in Computer Science,
pages 54–70. Springer, 2013.

[KKRT16] Vladimir Kolesnikov, Ranjit Kumaresan, Mike Rosulek, and Ni Trieu. Efficient batched oblivi-
ous PRF with applications to private set intersection. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2016, pages 818–829. ACM, 2016.

[KRTW19] Vladimir Kolesnikov, Mike Rosulek, Ni Trieu, and Xiao Wang. Scalable private set union from
symmetric-key techniques. In Advances in Cryptology - ASIACRYPT 2019, volume 11922 of Lecture
Notes in Computer Science, pages 636–666. Springer, 2019.

[KS05] Lea Kissner and Dawn Xiaodong Song. Privacy-preserving set operations. In Advances in Cryptology
- CRYPTO 2005, volume 3621 of Lecture Notes in Computer Science, pages 241–257. Springer, 2005.

[Mea86] Catherine A. Meadows. A more efficient cryptographic matchmaking protocol for use in the absence
of a continuously available third party. In Proceedings of the 1986 IEEE Symposium on Security
and Privacy, pages 134–137. IEEE Computer Society, 1986.

[MPR+20] Peihan Miao, Sarvar Patel, Mariana Raykova, Karn Seth, and Moti Yung. Two-sided malicious
security for private intersection-sum with cardinality. In Advances in Cryptology - CRYPTO 2020,
volume 12172 of Lecture Notes in Computer Science, pages 3–33. Springer, 2020.

[NPR99] Moni Naor, Benny Pinkas, and Omer Reingold. Distributed pseudo-random functions and kdcs. In
Advances in Cryptology - EUROCRYPT 1999, volume 1592 of Lecture Notes in Computer Science,
pages 327–346. Springer, 1999.

[NR95] Moni Naor and Omer Reingold. Synthesizers and their application to the parallel construction of
psuedo-random functions. In 36th Annual Symposium on Foundations of Computer Science, FOCS
1995, pages 170–181. IEEE Computer Society, 1995.

[PRTY19] Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai. Spot-light: Lightweight private set
intersection from sparse OT extension. In Advances in Cryptology - CRYPTO 2019, volume 11694
of Lecture Notes in Computer Science, pages 401–431. Springer, 2019.

[PSZ14] Benny Pinkas, Thomas Schneider, and Michael Zohner. Faster private set intersection based on OT

20

extension. In Proceedings of the 23rd USENIX Security Symposium, 2014, pages 797–812. USENIX
Association, 2014.

[PSZ18] Benny Pinkas, Thomas Schneider, and Michael Zohner. Scalable private set intersection based on
OT extension. ACM Trans. Priv. Secur., 21(2):7:1–7:35, 2018.

[Rab] Michael O. Rabin. How to exchange secrets with oblivious transfer. http://eprint.iacr.org/
2005/187.

[RS21] Peter Rindal and Phillipp Schoppmann. VOLE-PSI: fast OPRF and circuit-psi from vector-ole. In
Advances in Cryptology - EUROCRYPT 2021, volume 12697 of Lecture Notes in Computer Science,
pages 901–930. Springer, 2021.

[Sha80] Adi Shamir. On the power of commutativity in cryptography. In ICALP 1980, volume 85 of Lecture
Notes in Computer Science, pages 582–595. Springer, 1980.

[ZCL+22] Cong Zhang, Yu Chen, Weiran Liu, Min Zhang, and Dongdai Lin. Optimal private set union from
multi-query reverse private membership test, 2022. https://eprint.iacr.org/2022/358.

A Missing Definitions
A.1 Weak Pseudorandom EGA
We begin by recalling the definition of a group action.

Definition A.1 (Group Actions). A group G is said to act on a set X if there is a map ⋆ : G×X → X
that satisfies the following two properties:

1. Identity: if e is the identity element of G, then for any x ∈ X, we have e ⋆ x = x.

2. Compatibility: for any g, h ∈ G and any x ∈ X, we have (gh) ⋆ x = g ⋆ (h ⋆ x).

From now on, we use the abbreviated notation (G, X, ⋆) to denote a group action. If (G, X, ⋆) is a
group action, for any g ∈ G the map ϕg : x 7→ g ⋆ x defines a permutation of X.

We then define an effective group action (EGA) [AFMP20] as follows.

Definition A.2 (Effective Group Actions). A group action (G, X, ⋆) is effective if the following properties
are satisfied:

1. The group G is finite and there exist PPT algorithms for:

(a) Membership testing, i.e., to decide if a given bit string represents a valid group element in G.
(b) Equality testing, i.e., to decide if two bit strings represents the same group element in G.
(c) Sampling, i.e., to sample an element g from a uniform (or statistically close to) distritution

on G.
(d) Operation, i.e., to compute gh for any g, h ∈ G.
(e) Inversion, i.e., to compute g−1 for any g ∈ G.

2. The set X is finite and there exist PPT algorithms for:

(a) Membership testing, i.e., to decide if a bit string represents a valid set element.
(b) Unique representation, i.e., given any arbitrary set element x ∈ X, compute a string x̂ that

canonically represents x.

3. There exists a distinguished element x0 ∈ X, called the origin, such that its bit-string representation
is known.

4. There exists an efficient algorithm that given (some bit-string representations of) any g ∈ G and
any x ∈ X, outputs g ⋆ x.

Definition A.3 (Weak Pseudorandom EGA). A group action (G,X, ⋆) is weakly pseudorandom if the
family of efficiently computable permutation {ϕg : X → X}g∈G is weakly pseudorandom, i.e., there is no
PPT adversary that can distinguish tuples of the form (xi, g ⋆ xi) from (xi, ui) where g

R←− G and each
xi, ui

R←− X.

21

http://eprint.iacr.org/2005/187
http://eprint.iacr.org/2005/187
https://eprint.iacr.org/2022/358

A.2 mqPMT from OPRF
In Figure 13, we show how to build mqPMT from permuted OPRF F : K ×D → R.

Parameters:

• Common input: OPRF F : K ×D → R.

• Input of server P1: Y = {y1, . . . , yn} ⊆ {0, 1}ℓ.

• Input of client P2: X = {x1, . . . , xn} ⊆ {0, 1}ℓ.

Protocol:

1. P1 and P2 with inputs X = {x1, . . . , xn} invoke the OPRF protocol. At the end of the protocol,
P1 obtains k, P2 obtains {Fk(xi)}i∈[n].

2. P2 picks a random permutation over [n], then computes and sends {Fk(xπ(1)), . . . , Fk(yπ(n))}
to P1.

3. P1 sets ei = 1 iff Fk(xi) ∈ {Fk(yπ(i))}i∈[n].

Figure 13: mqPMT from OPRF

F : K ×D → R

P1 (server)

Y = (y1, . . . , yn)

P2 (client)

X = (x1, . . . , xn)

OPRF
(x1, . . . , xn)

(Fk(x1), . . . , Fk(xn))
k

R←− K

π
R←− [n]

{Fk(yi)}i∈[n]

set ei = 1 iff
Fk(xi) ∈ Ω

Ω← {Fk(yπ(i)}i∈[n]

Ω← Bloom({Fk(yi}i∈[n])

Correctness. The above protocol is correct except the case E = ∨i,jEij oucurs, where Eij denotes
Fk(xi) = Fk(yj) but xi 6= yj . By pseudorandomness of F , we have Pr[Eij] = 2−ℓ. Apply the union
bound, we have Pr[E] ≤ n2 · Pr[Eij] ≤ n2/2ℓ = negl(λ).

Theorem A.1. The above mqPMT protocol described in Figure 13 is secure in the semi-honest model
assuming the security of OPRF F .

Proof. We exhibit simulators SimP1 and SimP2 for simulating corrupt P1 and P2 respectively, and argue
the indistinguishability of the produced transcript from the real execution. Let |X ∩ Y | = m.

Security against corrupt server. SimP1
simulates the view of corrupt server P1, which consists

of P1’s randomness, input, output and received messages. We formally show SimP1
’s simulation is

indistinguishable from the real execution via a sequence of hybrid transcripts.
Hybrid0: P1’s view in the real protocol.
Hybrid1: SimP1

simply picks k, then invokes the simulator for P1 in the OPRF with k as output. By
the semi-honest security of permuted OPRF on P2’s side, the simulation is indistinguishable to the real
view.

22

Security against corrupt client. SimP2 simulates the view of corrupt client P2, which consists of P2’s
randomness, input, output and received messages. We formally show SimP2 ’s simulation is indistinguish-
able from the real execution via a sequence of hybrid transcripts.
Hybrid0: P2’s view in the real protocol. Note that P2’s view consists of its view in stage 1 (the OPRF
part) and its view in stage 2.
Hybrid1: Given P2’s input X = (x1, . . . , xn) and output (e1, . . . , en), SimP2 creates the simulated view
as below:

• pick a random PRF key k and a random permutation π;

• compute (Fk(x1), . . . , Fk(xn)), then generate its stage 1’s view by invoking the simulator for P2 of
OPRF with input (x1, . . . , xn) and output (Fk(x1), . . . , Fk(xn));

• generate stage 2’s view (Fk(yπ(1), . . . , Fk(yπ(n)) using k and π with the knowledge of P1’s input Y .

The simulated stage 2’s view is identical to that in the real one. By the semi-honest security of OPRF
on P2 side, the stage 1’s simulated view is computationally indistinguishable to that in the real one.
Thereby, the simulated view in Hybrid1 is computationally indistinguishable to the real one.
Hybrid2: SimP2 creates the simulated view without the knowledge of Y , and it neither picks k nor
explicitly picks π:

• simulate stage 1’s output by outputting (η1, . . . , ηn), where ηi
R←− R; this implicitly sets Fk(xi) := ηi.

• for each ei = 1, pick out the associated ηi to form {vj}j∈[m]; for each ei = 0, pick random values
to form {wℓ}ℓ∈[n−m]; pick a random permutation of ({vj}j∈[m], {wℓ}ℓ∈[n−m]), treat the result as
(Fk(yπ(1)), . . . , Fk(yπ(n))) (note that the real permutation π is unknown to the simulator cause it
does not know the order of yi); then generate its stage 1’s view by invoking the simulator for P2 of
OPRF with input (x1, . . . , xn) and output (η1, . . . , ηn).

X ∩ Y

Y X
Fk(xi) := ηi

{Fk(yπ(i))}i∈[n] := shuffle({vj}j∈[m], {wℓ}ℓ∈[n−m])

We argue that the simulated views in Hybrid1 and Hybrid2 are computationally indistinguishable
based on the pseudorandomness of F . Let A be an adversary against F . Given X and Y , A simulates
as below:

• query the real-or-random oracle with (x1, . . . , xn) and obtain (η1, . . . , ηn), then generate stage 1’s
view by invoking the simulator for P2 of OPRF with input (x1, . . . , xn) and outputs (η1, . . . , ηn).

• pick a random permutation π, query the real-or-random oracle with (y1, . . . , yn) and obtains
(ζ1, . . . , ζn) in return, then generate stage 2’s view by outputting (ζπ(1), . . . , ζπ(n)).

Clearly, if A queries the real oracle, then its simulation is identical to that Hybrid1. Else, its simulation
is identical to that Hybrid2. This reduces the computational indistinguishability of views in Hybrid1 and
Hybrid2 to the pseudorandomness of Fk(·). Therefore, SimP2

’s simulation is indistinguishable to the real
one.

This proves the theorem.

B Instantiations of Sigma-mqPMT
B.1 Sigma-mqPMT from DDH
We first present an instantiation of Sigma-mqPMT based on the DDH assumption, which is obtained by
plugging DDH-based OPRF to the above generic construction.

23

server
P1

Y = (y1, . . . , yn)

client
P2

X = (x1, . . . , xn)

a← {H(yπ(1))k, . . . ,H(yπ(n1))
k} a

qi ← H(xi)
r

q⃗ = {q1, . . . , qn2
}

z⃗ = {z1, . . . , zn2
}

zi ← (H(xi)
r)k ei := zi ∈ a

B.2 Sigma-mqPMT from FHE
We then present an instantiation of Sigma-mqPMT based on oblivious polynomial evaluation (OPE).
By instantiating OPE from FHE, we obtain the following mqPMT protocol, which is the backbone
of [CLR17].

server
P1

Y = (y1, . . . , yn)

client
P2(pk, dk)

X = (x1, . . . , xn)

a← ⊥
⊥

qi ← FHE.Enc(pk, yi)
q⃗ = {q1, . . . , qn2

}

z⃗ = {z1, . . . , zn2
}fi = ri

∏
x∈X(yi − x)

zi ← FHE.Eval(pk, fi, qi)
ei := FHE.Dec(sk, zi)

?
= 0

Alternatively, we can realize OPE from additively homomorphic encryption. The change is that each
qi now consists of n1 ciphertexts of the following form: {AHE.Enc(pk, y1i), . . . ,AHE.Enc(pk, yn1

i)}.
Remark B.1. As noted in [CLR17], the above protocol only serves as a toy example to illustrate the idea
of how to using FHE to build PSI, which is impractical. They also show how to make the basic protocol
efficient. However, the optimizing techniques destroy structure and properties of Sigma-mqPMT. As
a consequence, so far the transformation from Sigma-mqPMT to mqRPMT∗ does not have efficient
instantiation in the unbalanced setting, and only serves as a proof of concept.

C Missing Security Proofs
C.1 Proof of Permuted OPRF Based on the DDH Assumption
Theorem C.1. The permuted OPRF protocol described in Figure 8 is secure in the semi-honest model
assuming H is a random oracle and the DDH assumption holds.

Proof. We exhibit simulators SimP1 and SimP2 for simulating corrupt P1 and P2 respectively, and argue
the indistinguishability of produced transcript from the real execution.

Security against corrupt receiver. SimP2 simulates the view of corrupt receiver P2, which consists
of P2’s randomness, input, output and received messages. We formally show SimP2 ’s simulation is
indistinguishable from the real execution via a sequence of hybrid transcripts.
Hybrid0: P2’s view in the real protocol.
Hybrid1: Given P2’s input X = (x1, . . . , xn) and output {yπ(1), . . . , yπ(n)}, SimP2

emulates the random
oracle H honestly, picks s

R←− Zp, simulates message from P1 as {ysπ(1), . . . , ysπ(n)}.

Clearly, SimP2 ’s simulated view is identical to the real view.

24

Security against corrupt sender. SimP1 simulates the view of corrupt sender P1, which consists
of P1’s randomness, input, output and received messages. We formally show SimP1 ’s simulation is
indistinguishable from the real execution via a sequence of hybrid transcripts,
Hybrid0: P1’s view in the real protocol.
Hybrid1: Given P1’s output k and π, SimP1

chooses the randomness s for P2, and simulates with the
knowledge of X = (x1, . . . , xn):

• RO queries: SimP1 honestly emulates random oracle H. For every query 〈zi〉, picks αi
R←− G and

assigns H(zi) := αi.

• SimP1
outputs (βs

1, . . . , β
s
n), where H(xi) = βi.

X ∩ Y

Y X

for zi ∈ D, H(zi) := αi
R←− D

Clearly, SimP1
’s simulated view in Hybrid1 is identical to P1’s real view.

Hybrid2: SimP1
does not choose the randomness for P2, and simulates without the knowledge of X. It

honestly emulates random oracle H as in Hybrid1, and only changes the simulation of P2’s message.

• SimP1
outputs (gc1 , . . . , gcn) where ci

R←− Zp.

We argue that the view in Hybrid1 and Hybrid2 are computationally indistinguishable. Let A be
a PPT adversary against the DDH assumption. Given the DDH challenge ga, gb1 , . . . , gbn , gc1 , . . . , gcn)

where a, bi
R←− Zp, A is asked to distinguish if ci = abi or random values. A implictly sets P2’s randomness

s := a, and simulates (with the knowledge of X) as below:

• RO queries: for each query 〈zi〉, if zi /∈ X, picks αi
R←− G and assigns H(zi) := αi; if zi ∈ X, assigns

H(xi) := gbi .

• Outputs (gc1 , . . . , gcn).

X ∩ Y

Y X

for zi /∈ X, H(zi) := αi
R←− D

for zi ∈ X, H(zi) := gbi

Clearly, if ci = abi, A simulates Hybrid1. Else, it simulates Hybrid2. Thereby, SimP1
’s simulated

view is computationally indistinguishable to P1’s real view.

This proves the theorem.

Remark C.1. In the above security proof, when establishing the security against corrupt sender, we can
obtain a more modular proof by reducing the indistinguishability of simulated views in Hybrid1 and
Hybrid2 to the pseudorandomness of Fk(H(·)), which is in turn based on the DDH assumption.

25

	Introduction
	Motivation
	Our Contribution
	Technical Overview
	Related Works

	Preliminaries
	MPC in the Semi-honest Model
	Private Set Operation

	Protocol Building Blocks
	Oblivious Transfer
	Multi-Query RPMT

	Review of Pseudorandom Function
	Weak PRF from the DDH Assumption
	PRF from the DDH Assumption

	Commutative Weak Pseudorandom Functions
	Definition of Commutative Weak PRF
	Construction of Commutative Weak PRF
	mqRPMT from Commutative Weak PRF

	mqRPMT from Permuted Oblivious Pseudorandom Function
	Definition of Permuted OPRF
	Construction of Permuted OPRF
	mqRPMT from Permuted OPRF

	mqRPMT from Sigma-mqPMT
	Private Membership Test
	Connection to Sigma-mqPMT

	Applications of mqRPMT
	Implementation
	Missing Definitions
	Weak Pseudorandom EGA
	mqPMT from OPRF

	Instantiations of Sigma-mqPMT
	Sigma-mqPMT from DDH
	Sigma-mqPMT from FHE

	Missing Security Proofs
	Proof of Permuted OPRF Based on the DDH Assumption

