
Private Set Operations from Multi-Query Reverse Private
Membership Test

Abstract. Private set operations allow two parties to perform secure
computation on two private sets, such as intersection or union related
functions. In this paper, we identify a framework for performing private
set operations. At the technical core of our framework is multi-query
reverse private membership test (mqRPMT), which is a natural exten-
sion of RPMT recently proposed by Kolesnikov et al. [KRTW19]. In
mqRPMT, a client with a vector X = (x1, . . . , xn) interacts with a server
holding a set Y . As a result, the server only learns a bit vector (e1, . . . , en)
indicating whether xi ∈ Y but without knowing the value of xi, while the
client learns nothing. We present two constructions of mqRPMT from
newly introduced cryptographic primitive and protocol. One is based on
commutative weak pseudorandom function (cwPRF), the other is based
on permuted oblivious pseudorandom function (pOPRF). Both cwPRF
and pOPRF can be realized from the decisional Diffie-Hellman like as-
sumptions in the random oracle model. We also introduce a slightly weak
version of mqRPMT dubbed mqRPMT∗, in which the client addition-
ally learns the cardinality of X ∩ Y . We show that mqRPMT∗ can be
built from a category of multi-query private membership test (mqPMT)
called Sigma-mqPMT, which in turn can be realized from DDH-like as-
sumptions or oblivious polynomial evaluation. This makes the first step
towards establishing the relation between mqPMT and mqRPMT.

We demonstrate the practicality of our framework with implemen-
tations. By plugging our cwPRF-based mqRPMT to the general frame-
work, we obtain various PSO protocols that are superior or competi-
tive to the state-of-the-art protocols. For intersection functionality, our
protocol is faster than the most efficient one for small sets. For car-
dinality functionality, our protocol achieves a 2.4 − 10.5× speedup in
running time and a 10.9 − 14.8× shrinking in communication cost. For
cardinality-with-sum functionality, our protocol achieves a 28.5− 76.3×
speedup in running time and 7.4× shrinking in communication cost. For
union functionality, our protocol achieves strict linear complexity, and
requires the least concrete computation and communication costs in all
settings. Specifically, for input set of size 220, our PSU protocol requires
roughly 100 MB of communication, and 16 seconds using 4 threads in
the LAN setting. For private-ID functionality, our protocol achieves a
2.7 − 4.9× speedup in running time. Moreover, by plugging our FHE-
based mqRPMT∗ to the general framework, we obtain a PSU∗ protocol
(the sender additionally learns the intersection size) suitable for unbal-
anced setting, whose communication complexity is linear in the size of
the smaller set, and logarithmic in the larger set.

1 Introduction

Consider two parties, each with a private set of items, wanting to compute on
their respect sets without revealing any other information to each other. Two-



party private set operation (PSO) refers to such family of interactive crypto-
graphic protocols that takes two private sets X and Y as input, computes the
desired function, and outputs the result to one or both of the participants. If
one party obtains the result, we call this party the receiver and the other party
the sender, and refer to the protocol as one-sided. Two-sided protocol in the
semi-honest setting can be realized by having the receiver in one-sided protocol
forward the result to the sender. In what follows, we briefly review two-party
PSO protocols in the semi-honest model in terms of typical functionalities.

Private set intersection. PSI has found many applications including privacy-
preserving sharing, private contact discovery, DNA testing, pattern matching
and so on. Due to its importance and wide applications, in the past two decades
PSI has been extensively studied in a long sequence of works and has become
truly practical with extremely fast implementation. The most efficient PSI pro-
tocols [KKRT16, PRTY19, CM20, GPR+21, RS21] mainly rely on symmetric-
key operations, except a little public-key operations in base OT used in the
OT extension protocol. We refer to [PSZ18] for a good survey of different PSI
paradigms.
Private computing on set intersection. Certain real-world application sce-
narios only require partial/aggregated information about the intersection. In this
setting fine-grained private computation on set intersection (PCSI) is needed,
such as PSI-card for intersection cardinality [HFH99, CGT12], PSI-card-sum
for intersection cardinality and sum [IKN+20, GMR+21]. For general-purpose
PCSI (also known as circuit-PSI) [HEK12, PSTY19, RS21], the parties learn se-
cret shares of the set intersection, which can be further fed into generic two-party
computation (2PC) to compute g(X ∩ Y ) for arbitrary function g.
Private set union. Like PSI, PSU also has numerous applications in prac-
tice, such as cyber risk assessment and management via joint IP blacklists and
joint vulnerability data. According to the underlying cryptographic techniques,
existing PSU protocols can be roughly divided into two categories. The first is
mainly based on public-key techniques [KS05, Fri07, HN10, DC17]. The second
is mainly based on symmetric-key techniques [KRTW19, GMR+21, JSZ+22].
We refer to [ZCL+23] for a good survey of existing PSU protocols.

PSO protocols are primarily designed for balanced setting, in which the two
sets’ sizes are approximately the same. Recently, some works begin to consider
unbalanced setting, in which one set is much more larger than the other. Among
all PSO protocols, PSI has been extensively studied. In balanced setting, nu-
merous PSI protocols achieve linear complexity, and the current state-of-the-art
PSI [RR22] is almost as efficient as the naive insecure hash-based protocol. In
unbalanced setting, a series of works [CLR17, CHLR18, CMdG+21] show how
to leverage fully homomorphic encryption (FHE) to build PSI protocols with
sublinear complexity in the larger set size. In contrast to the affairs of PSI, the
studies of PCSI and PSU are less satisfactory. As to PCSI, in balanced setting
few protocols [PSTY19, IKN+20] achieve linear complexity, but the practical
performance is poor. As pin-pointed by [GMR+21], semi-honest PCSI – even in
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the simplest case, like PSI-card – is concretely about 20× slower and requires
over 30× more communication than PSI. [CHLR18] also propose PSI-card and
PSI-card-sum protocols based on generic 2PC in unbalanced setting, but these
protocols are more of theoretical interest, and are not accompanied by imple-
mentations. As to PSU, no protocol with linear complexity in either balanced
or unbalanced setting is known for a long time being. It is until very recently,
Zhang et al. [ZCL+23] make a breakthrough by proposing the first PSU with
linear complexity. However, their work does not close this issue. Their concrete
PSU protocols have large constants in computation and communication com-
plexity, incurring a large efficiency gap compared with PSI: roughly 20× slower
and requires 25× more communication than PSI.

It is somewhat surprising that different PSO protocols have significantly dif-
ferent efficiency. Why is this case? Observe that PSI essentially can be viewed
as multi-query private membership test (mqPMT), which has very efficient real-
izations in both balanced and unbalanced settings. However, mqPMT generally
does not imply PCSI or PSU. The reason is that mqPMT reveals information
about intersection, which should be hidden from the receiver in PCSI and PSU.

1.1 Motivation

Our motivation of this work is threefold. First, the above discussion indicates
that the most efficient PSI protocols may not be easily adapted to PCSI and
PSU protocols. Therefore, different approaches are employed for different pri-
vate set operations, requiring much more engineering effort. We are motivated
to seek for the minimal common protocol that enables all private set operations
via a unified framework. Second, given the huge efficiency gap between PSI and
other closely related protocols, we are also motivated to give efficient instantia-
tions of the framework to close the gap. Last but not the least, recall that the
seminal PSI protocol known as DH-PSI [Mea86] (related ideas were appeared
in [Sha80, HFH99]) is derived from the Diffie-Hellman key-exchange protocol
based on the decisional Diffie-Hellman (DDH) assumption. After roughly four
decades, DH-PSI is still the most easily understood and implemented one among
numerous PSI protocols. Somewhat surprisingly, no counterpart is known in the
PSU setting yet. It is curious to know if the DDH assumption can strike back.
In summary, we are intrigued to know:

Is there a central building block that enables a unified framework for all private
set operations? If so, can we give efficient instantiations with optimal

asymptotic complexity and good concrete efficiency? Can the DDH assumption
strike back with efficient PSU protocols?

1.2 Our Contribution

In this work, we make positive answers to the aforementioned questions. We
summarize our contribution as below.
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A framework of PSO. We identify that multi-query reverse private member-
ship test (mqRPMT) is a “Swiss Army Knife” for various private set operations.
mqRPMT itself already implies PSI-card; by coupling with OT, mqRPMT im-
plies PSI and PSU; by further coupling with simple secret sharing, mqRPMT im-
plies PSI-card-sum and PSI-card-secret-sharing (further admits general-purpose
PCSI with cardinality). Therefore, mqRPMT enables a unified PSO framework,
which can perform a variety of private set operations in a flexible manner.
Efficient construction of mqRPMT. We propose two generic constructions
of mqRPMT. The first is based on a new cryptographic primitive called commu-
tative weak PRF (cwPRF), while the second is based on a new secure protocol
called permuted oblivious PRF (pOPRF). Both of them can be realized from
DDH-like assumptions in the random oracle model, yielding incredibly simple
mqRPMT constructions with linear communication and computation complex-
ity. Note that the complexity of our PSO framework is dominated by the un-
derlying mqRPMT. Therefore, all resulting PSO protocols inherit optimal linear
complexity. Notably, the obtained PSU protocol is arguably the most simple
and efficient one among existing protocols.
Connection to mqPMT. mqRPMT is of great theoretical interest since it is
the core building block of the PSO framework. It is thus interesting to inves-
tigate the relation between mqRPMT and mqPMT. Towards this goal, we put
forward a variant of mqRPMT called mqRPMT with cardinality (denoted by
mqRPMT∗ hereafter). Compared to the standard mqRPMT, mqRPMT∗ addi-
tionally reveals the intersection size to the client. We show that mqRPMT∗ can
be built from a broad class of mqPMT called Sigma-mqPMT in a black-box
manner via the “permute-then-test” approach. This makes the initial step to-
wards establishing the connection between mqRPMT and mqPMT. We argue
that though mqRPMT∗ deviates from standard mqRPMT in revealing addi-
tional information (intersection size) to the client, it could also be a desirable
feature in application scenarios where both parties want to learn intersection
size, for example, PSI-card-sum [IKN+20]. We leave the general connection be-
tween mqPMT and mqRPMT as a challenging open problem.
Evaluations. We give efficient instantiation of our generic framework from
cwPRF-based mqRPMT protocol. We provide C++ implementations. The ex-
perimental results demonstrate that almost all PSO protocols derived from our
generic framework are superior or competitive to the state-of-the-art correspond-
ing protocols.

1.3 Technical Overview

PSO from mqRPMT. As discussed above, mqPMT (a.k.a. PSI) protocol gen-
erally is not applicable for computing PCSI and PSU. We examine the reverse
direction, i.e., whether the core protocol underlying PSU can be used for comput-
ing PSI and PCSI. We identify that the central protocol beneath all the existing
PSU protocols is actually mqRPMT, which is a generalization of RPMT formal-
ized in [KRTW19]. Roughly speaking, mqRPMT is a two-party protocol between
a server holding a set Y and a client holding a vector X = (x1, . . . , xn). After
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execution, the server learns an indication bit vector (e1, . . . , en) such that ei = 1
if and only if xi ∈ Y but without knowing xi, while the client learns nothing.
Superficially, mqRPMT is similar to mqPMT, except that it is the server but
not the client learns the test results instead. This subtle difference turns out
to be significant. To see this, note that in mqRPMT the intersection informa-
tion (a.k.a. xi and ei) are shared between the two parties, while in mqPMT the
intersection information are entirely known by the client. In light of this differ-
ence, mqRPMT is not only particularly suitable for functionalities that have to
keep intersection private, but also retains the necessary information to compute
the intersection. With mqRPMT in hand, PSI-card protocol is immediate. PSI
(resp. PSU) protocol can be done by having the receiver (playing the role of
server) and the sender (playing the role of client) invoke a mqRPMT protocol
in the first place, then carry out n one-sided OTs with 1 − ei (resp. ei) and
xi. PSI-card-sum and PSI-card-secret-sharing protocols can be constructed by
further coupling with OT and simple secret-sharing trick.

Next, we show two generic constructions of mqRPMT. For convenience of
narration, we explicitly parameterize RPMT and PMT with two parameters n1

and n2, namely (n1, n2)-(R)PMT, where n1 is the size of server’s set Y , n2 is
the length of client’s vector X, a.k.a. the number of membership test queries.

mqRPMT from cwPRF. We observe that private equality test (PEQT) pro-
tocol [PSZ14] not only can be viewed as an extreme case of mqPMT, but can also
be viewed as an extreme case of mqRPMT. Under the terminology introduced
above, PEQT is essentially (1, 1)-PMT and (1, 1)-RPMT. We choose PEQT as
the starting point of our first mqRPMT construction.

The basic idea of building (1, 1)-RPMT protocol that is amenable to ex-
tension is oblivious joint encoding, i.e., an element can only be encoded to a
codeword by two parties in a joint manner, while the process reveals nothing to
the party without the element. To implement this idea, we introduce a new cryp-
tographic primitive called commutative weak PRF (cwPRF). Let F : K×D → R
be a family of weak PRF, where R ⊆ D. We say F is commutative if for any
k1, k2 ∈ K and any x ∈ D, it holds that Fk1

(Fk2
(x)) = Fk2

(Fk1
(x)). In other

words, the two composite functions Fk1
◦ Fk2

and Fk2
◦ Fk1

are essentially the
same function, say, F̂ .

Now we are ready to describe the construction of (1, 1)-RPMT from cwPRF.
The server P1 holding y and client P2 holding x can conduct PEQT function-
ality via the following steps: (1) P1 and P2 generate cwPRF key k1 and k2
respectively, and map their items to domain D of F via a common crypto-
graphic hash function H, which will be modeled as a random oracle; (2) P1

computes and sends Fk1
(H(y)) to P2; (3) P2 computes and sends Fk2

(H(x))
and Fk2

(Fk1
(H(y))) to P1; (4) P1 then learns the test result by comparing

Fk1(Fk2(H(x))) =?Fk2(Fk1(H(y))). The commutative property of F ensures the
correctness. The weak pseudorandomness of F guarantees that P2 learns noth-
ing and P1 learns nothing beyond the test result. In the above construction,
Fk2

(Fk1
(H(·))) = Fk1

(Fk2
(H(·))) = F̂k(H(·)) serves as a pseudorandom encod-
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ing function in the joint view, while Fk1
(H(·)) and Fk2

(H(·)) serve as a partial
encoding function in the individual views of server and client respectively.

We then extend the above (1, 1)-RPMT protocol to (n1, 1)-RPMT. How-
ever, naive repetition by sending back Fk2(Fk1(H(yi))) for each yi ∈ Y in the
same order of server’s first move message Fk1(H(yi)) does not lead to a se-
cure (n1, 1)-RPMT. The reason is that {F̂k(H(yi))}i∈[n1] constitutes an order-
preserving pseudorandom encoding of (y1, . . . , yn1

). As a consequence, the server
will learn the exact value of x if x ∈ Y . In order to perform the membership
test in an oblivious manner, the idea is to make the pseudorandom encoding of
(y1, . . . , yn1) independent of the order known by the server. A straightforward
approach is to shuffle {F̂k(H(yi))}. In this way, we obtain a (n1, 1)-RPMT pro-
tocol from cwPRF, and can further batch it to a full-fledged (n1, n2)-RPMT
protocol by reusing the encoding key k2. A simple calculation shows that for
a (n1, n2)-RPMT protocol the computation cost is (n1 + n2) times mapping,
(2n1 + n2) times evaluation of F and n2 times look-up, and the communication
cost is (2n1+n2) elements in the range of F . The resulting mqRPMT protocol is
optimal in the sense that both computation and communication complexity are
linear to the set size. We can further reduce the communication cost by inserting
{F̂ (H(yi))} into an order-hiding data structure such as Bloom filter, instead of
shuffling them.

We show that cwPRF can be realized from DDH-like assumptions. Hence-
forth, DDH strikes back with an incredibly simple PSU protocol. This once again
demonstrates that the DDH assumption is truly a golden goose in cryptography.
mqRPMT from permuted OPRF. We choose (n, 1)-RPMT as the starting
point of our second mqRPMT construction. The idea is oblivious permuted en-
coding, i.e., only one party say P2 is able to encode, and the other party say
P1 can learn the codewords of its elements (y1, . . . , yn1

) in a permuted order,
while P2 learns nothing. A tempting approach to implement this idea is using
multi-point OPRF that underlies many PSI protocols [PRTY19, CM20]. More
precisely, having P1 (acts as receiver) and P2 (acts as sender) engage in an OPRF
protocol. Eventually, P1 obtains PRF values of (y1, . . . , yn1

) as encodings, and
P2 obtains a PRF key k. However, OPRF does not readily enable oblivious per-
muted encoding. The reason is that the standard OPRF functionality always
gives the PRF values with the same order of inputs. To remedy this issue, we in-
troduce a new cryptographic protocol called permuted OPRF (pOPRF). pOPRF
can be viewed as a generalization of OPRF. The difference is that the sender
additionally obtains a random permutation π over [n1] besides PRF key k, while
the receiver obtains PRF values in a permuted order as per π. pOPRF immedi-
ately implies a (n1, 1)-RPMT protocol: The server with Y = (y1, . . . , yn1

) and
the client with X = {x} first engage in a pOPRF protocol. As a result, the server
obtains {Fk(yπ(i))}i∈[n1], while the client learns a PRF key k and a permutation
π. The client then computes and sends Fk(x) to the server as RPMT query.
Finally, the server learns if x ∈ Y by testing whether Fk(x) ∈ {Fk(yπ(i))}i∈[n1],
but learns nothing more since its PRF values are of permuted order. At a high
level, Fk(·) serves as an encoding function in client’s view, while Fk(π(·)) serves
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as a pseudorandom and permuted encoding function in server’s view. Extend-
ing the above (n1, 1)-RPMT to (n1, n2)-RPMT is straightforward by having the
client reuse k and send {Fk(xi)}i∈[n2] as RPMT queries.

The question remains is how to build pOPRF. One common approach to
build OPRF is “mask-then-unmask”. We choose this category of OPRF as the
starting point. The rough idea is exploiting the input homomorphism to mask
inputs1, then unmask the outputs. If the mask procedure is different per input,
then the unmask procedure must be carried out accordingly. Therefore, OPRF
protocols of this case cannot be easily adapted to pOPRF, since the receiver is
unable to perform the unmask procedure over permuted masked outputs cor-
rectly, namely, to recover outputs in permuted order. The above analysis indi-
cates us that if the masking procedure can be done via a unifying manner, then
the receiver might be able to unmask the permuted masked outputs correctly.
Observe that the simplest way to perform unified masking is to apply a weak
pseudorandom function Fs to the intermediate input H(x). To enable efficient
unmask procedure, we further require that Fs is a permutation and commutative
with respect to Fk. This yields a simple pOPRF construction from commutative
weak pseudorandom permutation. More precisely, to build pOPRF, the sender
picks a random PRP key k for F , while the receiver with input X = (x1, . . . , xn)
picks a random PRP key s for F . The receiver then sends {Fs(H(xi))}i∈[n] to the
sender. Upon receiving the masked intermediate inputs, the sender applies Fk to
them, then sends the results in permuted order, a.k.a. {Fk(Fs(H(xπ(i))))}i∈[n].
Finally, the receiver applies F−1

s to the permuted masked outputs, and will
obtain {Fk(H(xπ(i)))}i∈[n] by the commutative property.

Note that many efficient OPRF constructions [CM20] seem not amenable
to pOPRF construction due to lack of nice algebra structures. This somehow
explains the efficiency gap between the state-of-the-art PSI and PCSI/PSU.
mqRPMT∗ from Sigma-mqPMT. In Appendix A, we study the connection
between mqRPMT and mqPMT. We first abstract a category of mqPMT proto-
cols called Sigma-mqPMT, which is built from Sigma-PMT. Roughly speaking,
Sigma-PMT is a three-move protocol, which proceeds as below: (1) in the first
move, the server holding a set Y sends a message a to the client, where a is
best interpreted as an encoding of Y ; (2) in the second move, the client makes a
test query q of its item x; (3) in the last move, the server responds with z, and
eventually the client can decide if x ∈ Y by running algorithm Test(a, q, x, z). To
enable efficient parallel composition, we introduce the following two properties
for Sigma-PMT: (i) reusable property, which ensures the first move message can
be safely reused over multi-instance; (ii) context-independent property, which
means the test query only depends on the item in test. With these two properties,
one can build mqPMT by running multiple instances of Sigma-PMT in parallel,
without increasing round complexity. If the underlying Sigma-PMT additionally
satisfies stateless testing, namely, Test algorithm can be done without learning
(q, x), we refer to the resulting mqPMT as Sigma-mqPMT, which captures the

1 Standard pseudorandomness denies input homomorphism. Rigorously speaking, we
utilize the homomorphism over intermediate input.
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common form of several PSI protocols [Mea86, FIPR05, CLR17]. By utilizing the
stateless property, we can tweak Sigma-mqPMT to permuted mqPMT via the
“permute-then-test” approach, without incurring computation and communica-
tion overhead, while permuted mqPMT instantly implies mqRPMT∗. Therefore,
we can expand a series of results in PSI setting to PSO setting, on the premise
that revealing intersection size is acceptable. Notably, by applying the conver-
sion to fully homomorphic encryption (FHE) based Sigma-mqPMT, we obtain
an efficient mqRPMT∗ in unbalanced setting, which yields the first PSU∗ pro-
tocol whose communication complexity is sublinear to the size of the large set
X.

In Figure 1, we give an overview of the main contribution of this work.

mqRPMTSection 6

commutative
weak PRF

permuted
oblivious PRF

enhanced version
Section 4 Section 5

PSI/PSU PSI-card-[sum/secret-sharing] PSI-card

OT OT+SS

Sigma-mqPMT

permuted
mqPMT

shuffle-then-test

mqRPMT∗

Appendix A

Fig. 1: An overview of our main results. The rectangles denote our contributions.
The rounded rectangles denotes notions in previous works.

1.4 Related Works

We review previous PSI-card, PSI-card-sum and PSU protocols that are re-
lated to our work. Ion et al. [IKN+20] showed how to transform single-point
OPRF-based [PSZ14, KKRT16], garbled Bloom filter-based [DCW13, RR17],
and DDH-based [HFH99] PSI protocols into ones for computing PSI-card-sum
by leveraging additively homomorphic encryption (AHE). However, their con-
versions are not efficient due to the usage of AHE, and as noted by the authors,
detailed conversions to each category of protocols differ significantly, especially
in the way of making use of the underlying AHE. In contrast to their work,
we distill a broad class of PSI protocols as Sigma-mqPMT, then show how to
tweak it to mqRPMT∗ in a generic and black-box manner, without relying on
any additional cryptographic tools. Our conversion works in a more abstract and
lower level, and such generality lends it may find more potential applications.
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Miao et al. [MPR+20] put forward shuffled distributed oblivious PRF as a cen-
tral tool to build PSI-card-sum with malicious security. Compared to shuffled
distributed OPRF, our notion of permuted OPRF is much simpler and should be
best viewed as a useful extension of standard OPRF. The conceptual simplicity
lends it can be easily built from commutative weak pseudorandom permutation
and find more potential applications. For example, permuted OPRF immediately
implies permuted multi-point private equality test, which is a key tool in building
FHE-based PSU [TCLZ22]. Davidson and Cid [DC17] proposed a framework for
constructing PSI, PSU, and PSI-card. Their protocols have linear complexity,
but both the computation and communication complexities additionally rely on
the statistical security parameter λ (a typical concrete choice is 40), resulting
in low performance in practice. Kolesnikov et al. [KRTW19] showed that the
performance of PSU in [DC17] is four orders of magnitude worse than the state-
of-the-art at that time-being. Garimella et al. [GMR+21] proposed a framework
for all private set operations. At their technical core is a new protocol called
permuted characteristic, which could be viewed as an extension of mqRPMT
protocol. Nevertheless, the oblivious shuffle in permuted characteristic function-
ality is not necessary for PSO, but seems unavoidable due to the use of oblivious
switching networks. This incurs superlinear complexity to permuted character-
istic protocol and all the enabling PSO protocols. Moreover, we note that the
PSI-card-sum functionality defined in [GMR+21] differs from the original func-
tionality defined in [IKN+20]. The distinction is that in the original functionality
of PSI-card-sum, both parties are given the cardinality of intersection, and the
party initially holding values is also given the intersection sum, while in the
functionality described in [GMR+21], the party without holding values is given
the cardinality and sum of intersection. To highlight this subtle difference, we
prefer to call the functionality presented in [GMR+21] as reverse PSI-card-sum.

Concurrent work. Very recently, Zhang et al. [ZCL+23] propose a generic con-
struction of mqRPMT with linear complexity from oblivious key-value store, set-
membership encryption and oblivious vector decryption-then-test functionality.
By instantiating their generic construction from public-key and symmetric-key
encryption respectively and combining OT, they make the breakthrough by giv-
ing the first PSU protocol with optimal linear complexity. However, as noted by
the authors, their more efficient PKE-based construction is leaky, failing to sat-
isfy the standard security of mqRPMT. Besides, the communication complexity
of their two constructions additionally depends on the statistical security param-
eter. Compared with their work, our construction of mqRPMT is much simpler.
The instantiation meets the standard definition, and achieves strict linear com-
plexity. Moreover, we explore mqRPMT as a central building block for a family
of private set operations, while their main focus is limited to PSU.

2 Preliminaries

Notations. We use κ and λ to denote the computational and statistical param-
eter respectively. Let Zn be the set {0, 1, . . . , n− 1}, Z∗

n = {x ∈ Zn | gcd(x, n) =
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1}. We use [n] to denote the set {1, . . . , n}, and use Perm[n] to denote all the
permutations over the set {1, . . . , n}. We assume that every set X has a default
order (e.g. lexicographical order), and write it as X = {x1, . . . , xn}. For a set X,
we use |X| to denote its size and use x

R←− X to denote sampling x uniformly
at random from X. We use (x1, . . . , xn) to denote a vector, and its ith element
is xi. A function is negligible in κ, written negl(κ), if it vanishes faster than the
inverse of any polynomial in κ. A probabilistic polynomial time (PPT) algorithm
is a randomized algorithm that runs in polynomial time.

2.1 MPC in the Semi-honest Model

We use the standard notion of security in the presence of semi-honest adversaries.
Let Π be a two-party protocol for computing the function f(x1, x2), where party
Pi has input xi. We define security in the following way. For each party Pi where
i ∈ {1, 2}, let ViewPi(x1, x2) denote the view of party Pi during an honest
execution of Π on inputs x1 and x2. The view consists of Pi’s input, random
tape, and all messages exchanged as part of the Π protocol.

Definition 1. Two-party protocol Π securely realizes f in the presence of semi-
honest adversaries if there exists a simulator Sim such that for all inputs x1, x2

and all i ∈ {1, 2}:

Sim(i, xi, f(x1, x2)) ≈c ViewPi(x1, x2)

Roughly speaking, a protocol is secure if the party Pi with xi learns no more
information other than f(x1, x2) and xi.

2.2 Private Set Operation

PSO is a special case of secure two-party computation. We call the two parties
engaging in PSO the sender and the receiver. The sender holds a set X of size
n1, and the receiver holds a set Y of size n2 (we write n1 = n2 = n in balanced
setting). The ideal PSO functionality (depicted in Figure 2) computes the in-
tersection, union, cardinality, intersection sum with cardinality and intersection
secret-sharing with cardinality.

3 Protocol Building Blocks

3.1 Oblivious Transfer

Oblivious Transfer (OT) [Rab05] is a central cryptographic primitive in the area
of secure computation. 1-out-of-2 OT allows a sender with two input strings
(m0,m1) and a receiver with an input choice bit b ∈ {0, 1}. As a result of the
OT protocol, the receiver learns mb and neither party learns any additional
information. In some cases, it suffices to use a “one-sided” version of OT, which
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Parameters: P1’s input size n1 and P2’s input size n2.
Inputs: The receiver P1 inputs a set of elements Y = {y1, . . . , yn1} where yi ∈
{0, 1}ℓ. The sender P2 inputs a set of elements X = {x1, . . . , xn2} where xi ∈
{0, 1}ℓ and possibly a set of values V = {v1, . . . , vn2} where vi ∈ Zp for some
integer modular p.
Output:

– intersection: The receiver P1 gets X ∩ Y .
– union: The receiver P1 gets X ∪ Y .
– union∗: The receiver P1 gets X ∪ Y . The sender P2 gets |X ∩ Y |.
– card: The receiver P1 gets |X ∩ Y |.
– card-sum: The receiver P1 gets |X ∩ Y |. The sender P2 gets |X ∩ Y | and

S =
∑

i:xi∈Y vi.
– card-secret-sharing: The receiver P1 gets |X∩Y | and {z1i }i∈[n2]. The sender

P2 gets {z2i }i∈[n2]. For each (z1i , z
2
i ), z1i ⊕ z2i = xi if xi ∈ Y and z1i ⊕ z2i = 0

otherwise.

Fig. 2: Ideal functionality FPSO for PSO

conditionally transfers the only item of the sender or nothing to the receiver
depending on the choice bit.

Though expensive public-key operations are unavoidable for a single OT, a
powerful technique called OT extension [IKNP03, KK13, ALSZ15] allows one
to perform n OTs by only performing O(κ) public-key operations and O(n) fast
symmetric-key operations. In Figure 3 we formally define the ideal functionality
for OT that provides n parallel instances of OT.

Parameters: Number of OT instances n and message length ℓ.
Inputs: The sender P1 inputs {(mi,0,mi,1)}i∈n, where each mi,b ∈ {0, 1}ℓ. The
receiver P2 inputs a bit vector (b1, . . . , bn) ∈ {0, 1}n.
Output: The sender P1 gets nothing. The receiver P2 gets {mi,bi}i∈[n].

Fig. 3: Ideal functionality FOT for OT

3.2 Multi-Query RPMT

RPMT [KRTW19] refers to a protocol where the client with input x interacts
with a server holding a set Y . As a result, the server learns (only) the bit in-
dicating whether x ∈ Y , while the client learns nothing about the set Y . The
default notion of RPMT allows the client to query for a single element. While
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this procedure can be repeated several times, one may seek more efficient so-
lutions allowing the client to make n distinct queries at a reduced cost. It is
straightforward to define this generalized notion of n-time RPMT. Hereafter, we
refer to n-time RPMT as multi-query RPMT. In Figure 4 we formally define the
ideal functionality for mqRPMT. We also define a relaxed version of mqRPMT
called mqRPMT∗, in which the client is given |X ∩ Y |.

Parameters: P1’s set size n1 and number of RPMT queries n2.
Inputs: The server P1 inputs a set Y = (y1, . . . , yn1), where yi ∈ {0, 1}ℓ. The
client P2 inputs a set X = (x1, . . . , xn2) (should be interpreted as a vector), where
xi ∈ {0, 1}ℓ.
Output: The server P1 gets a vector e⃗ = (e1, . . . , en2) ∈ {0, 1}n2 , where ei = 1 if
xi ∈ Y and ei = 0 otherwise. The client P2 gets nothing.

Fig. 4: Ideal functionality FmqRPMT for multi-query RPMT

Family of PMT protocols. For completeness and fixing terminology, we are
tempting to systematically list the whole family of PMT protocols. We identify
two characteristics of PMT protocols. One is direction, which consists of two
options, namely forward or reverse. Standard option means the indication bit
indicates the membership of the server’s elements, while reverse option means
the indication bit indicates the membership of the client’s elements. The other
one is order, which also consists of two options, namely ordered and permuted.
The ordered option means the indication bit is of the right order (known by
the receiver). The permuted option means the indication bit is of the permuted
order unknown by the sender. By mix-match two characteristics, we obtain four
types PMT protocols, shown in Table 1.

4 Commutative Weak Pseudorandom Function

In Appendix B we review the notion of PRF, including formal definition as well
as simple construction from the DDH assumption. On this basis, we introduce
a new notion called commutative weak PRF as below.

4.1 Definition of Commutative Weak PRF

We first formally define two standard properties for keyed functions.

Composable. For a family of keyed functions F : K×D → R, F is 2-composable
if R ⊆ D, namely, for any k1, k2 ∈ K, the function Fk1

(Fk2
(·)) is well-defined.

In this work, we are interested in a special case namely R = D.
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Table 1: The family of PMT protocols
Protocol Direction Order Direct usageforward reverse ordered permuted
mqPMT ✓ ✓ PSI

mqRPMT ✓ ✓ PSI-card
permuted mqPMT ✓ ✓ PSI-card

permuted mqRPMT ✓ ✓ PSI-card

mqPMT and PSI are the same protocol under different names. mqRPMT is for-
malized in [KRTW19, ZCL+23]. Permuted mqRPMT is introduced in [GMR+21]
under the name of permuted characteristic. To the best of our knowledge, the notion
of permuted mqPMT is new to this work, which could be viewed as a high-level
abstraction of the DH-based PSI-card protocol due to [HFH99].

Commutative. For a family of composable keyed functions, we say it is com-
mutative if:

∀k1, k2 ∈ K, ∀x ∈ D : Fk1(Fk2(x)) = Fk2(Fk1(x))

It is easy to see that the standard pseudorandomness denies commutative
property. Consider the following attack against the standard pseudorandomness
of Fk as below: the adversary A picks k′

R←− K, x R←− D, and then queries the
real-or-random oracle at point Fk′(x) and point x respectively, receiving back
responses y′ and y. A then outputs ‘1’ iff Fk′(y) = y′. Clearly, A breaks the
pseudorandomness with advantage 1/2. Provided commutative property exists,
the best security we can expect is weak pseudorandomness. Looking ahead, weak
pseudorandomness and commutative property may co-exist based on some well-
studied assumptions.

Definition 2 (Commutative Weak PRF). Let F be a family of keyed func-
tions K ×D → D. F is called commutative weak PRF if it satisfies weak pseu-
dorandomness and commutative property simultaneously. If F is a permutation,
we say F is a commutative weak pseudorandom permutation (cwPRP).

Further generalization. Instead of sticking to one family of keyed functions,
commutative property can be defined over two families of keyed functions. Let
F be a family of weak PRFs from K × D to D, G be a family of weak PRFs
S ×D to D. If the following equation holds,

∀k ∈ K, s ∈ S, ∀x ∈ D : Fk(Gs(x)) = Gs(Fk(x))

we say (F,G) is a pair of cwPRF.

Remark 1. We note that our notion of cwPRF is similar to but strictly weaker
than a previous notion called commutative encryption [AES03]. The difference
is that cwPRF neither requires Fk be a permutation nor F−1

k be efficiently
computable.
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4.2 Construction of Commutative Weak PRF

We observe that the weak PRF construction presented in Section B.1 already
satisfies commutative property. This gives us a simple cwPRF construction from
the DDH assumption.

4.3 mqRPMT from Commutative Weak PRF

In Figure 5, we show how to build mqRPMT from cwPRF F : K ×D → D and
cryptographic hash function H : {0, 1}ℓ → D.

Parameters: P1’s set size n1 and P2’s set size n2, cwPRF F : K ×D → D, and
hash function H : {0, 1}ℓ → D.
Inputs: The server P1 inputs a set Y = {y1, . . . , yn1}, where yi ∈ {0, 1}ℓ. The
client P2 inputs a set X = {x1, . . . , xn1} (should be interpreted as a vector), where
xi ∈ {0, 1}ℓ.
Protocol:

1. P1 picks k1
R←− K, then sends {Fk1(H(yi))}i∈[n1] to P2.

2. P2 picks k2
R←− K, then computes and sends {Fk2(H(xi)))}i∈[n2] to P1. P2 also

computes {Fk2(Fk1(H(yi)))}i∈[n1], picks a random permutation π
R←− [n1],

then sends {Fk2(Fk1(H(yπ(i))))}i∈[n1] to P1. An alternative choice instead of
explicit shuffle is inserting {Fk2(Fk1(H(yi)))}i∈[n1] to a Bloom filter, then
sends the resulting filter to P1. We slightly abuse the notation, and still use
Ω to denote the Bloom filter.

3. P1 computes {Fk1(Fk2(H(xi)))}i∈[n2], then sets ei = 1 iff Fk1(Fk2(H(xi))) ∈
Ω.

F : K ×D → D, H : {0, 1}ℓ → D

P1 (server)
Y = (y1, . . . , yn1

)
P2 (client)

X = (x1, . . . , xn2
)

k1
R←− K

{Fk1(H(yi))}i∈[n1]

π
R←− Perm[n1]

k2
R←− K

{Fk2(H(xi))}i∈[n2]

Ω ← {Fk2(Fk1(H(yπ(i))))}i∈[n1]

Ω ← BF({Fk2(Fk1(H(yi)))}i∈[n1])

set ei = 1 iff
Fk1

(Fk2
(H(xi))) ∈ Ω

Fig. 5: Multi-query RPMT from commutative weak PRF

Remark 2. We observe that thanks to the nice properties of cwPRF, the same
cwPRF-based mqRPMT protocol can also be tweaked to permuted mqPMT by
checking if F̂k(H(yπ(i))) ∈ {F̂k(H(xi))}i∈[n2].
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Correctness. The protocol is correct except the event E that Fk1
(Fk2

(H(x))) =
Fk1

(Fk2
(H(y))) for some x 6= y occurs. In what follows, we fix a tuple (x, y) such

that x 6= y. Let E0 be the event H(x) = H(y). By the collision resistance of H, we
have Pr[E0] = 2−κ. Let E1 be the event that H(x) 6= H(y) but Fk1(Fk2(H(x))) =
Fk1

(Fk2
(H(y))), which can further be divided into sub-cases E10—Fk2

(H(x)) =
Fk2

(H(y)) and E11—Fk2
(H(x)) 6= Fk2

(H(y)) but Fk1
(Fk2

(H(x))) = Fk1
(Fk2

(H(y))).
By the weak pseudorandomness of F , we have Pr[E10] = (1 − Pr[E0]) · 1/|D|,
and Pr[E11] = (1−Pr[E0]) · (1− 1/|D|) · 1/|D|. If |D| = ω(κ), then both Pr[E0],
Pr[E10] and Pr[E11] are negligible in κ. Therefore, by union bound we have
Pr[E] ≤ n1n2 · (Pr[E0] + Pr[E10] + Pr[E11]) = negl(κ).

Theorem 1. The mqRPMT protocol described in Figure 5 is secure in the semi-
honest model assuming H is a random oracle and F is a family of cwPRFs.

Due to space limit, we defer the security proof to Appendix D.1.

5 Permuted Oblivious Pseudorandom Function

5.1 Definition of Permuted OPRF

An oblivious pseudorandom function (OPRF) [FIPR05] is a two-party protocol
in which the sender learns a PRF key k and the receiver learns Fk(x1), . . . , Fk(xn),
where F is a pseudorandom function (PRF) and (x1, . . . , xn) are the receiver’s
inputs. Nothing about the receiver’s inputs is revealed to the sender and nothing
more about the key k is revealed to the receiver.

We consider an extension of OPRF which we called permuted OPRF. Roughly
speaking, the sender additionally picks a random permutation π over [n], and
the receiver learns its PRF values in permuted order, namely, yi = Fk(xπ(i)). In
Figure 6 we formally define the ideal functionality for pOPRF.

Parameters: Number of OPRF queries n.
Inputs: The sender P1 inputs nothing. The receiver P2 inputs a set X =
(x1, . . . , xn), where xi ∈ {0, 1}ℓ.
Output: The sender P1 gets a random PRF key k and a random permutation π
over [n]. The client P2 gets yi = Fk(xπ(i)).

Fig. 6: Ideal functionality FpOPRF for permuted OPRF

5.2 Construction of Permuted OPRF

As we sketched in the introduction part, we can create a permuted OPRF from
cwPRP F . At a high level, the unified masking procedure is done by applying a
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weak PRF Fs(·) to H(x), and the unmasking process is enabled by the commuta-
tive property of F and the fact that Fs(·) is an efficiently invertible permutation.
We depict the construction in Figure 7.

F : K ×D → D, H : {0, 1}ℓ → D

P1 (sender) P2 (receiver)
X = (x1, . . . , xn)

s
R←− K

{Fs(H(xi))}i∈[n]

k
R←− K, π R←− [n]

{Fk(Fs(H(xπ(i))))}i∈[n]
Fk(H(xπ(i)))← F−1

s (Fk(Fs(H(xπ(i))))

Fig. 7: Permuted OPRF from cwPRP

Remark 3. We note that it suffices to build permuted OPRF from a tuple of
cwPRF (Fk, Gs) where Gs is a weak permutation.

Theorem 2. The above permuted OPRF protocol described in Figure 7 is secure
in the semi-honest model assuming H is a random oracle and F is a family of
cwPRPs.

Due to space limit, we defer the security proof to Appendix D.2.

5.3 mqRPMT from Permuted OPRF

In Figure 8, we show how to build mqRPMT from permuted OPRF for F :
K × D → R. For simplicity, we assume that {0, 1}ℓ ⊆ D. Otherwise, we can
always map {0, 1}ℓ to D via collision resistant hash function.

Correctness. The above protocol is correct except the case E = ∨i,jEij occurs,
where Eij denotes Fk(xi) = Fk(yj) but xi 6= yj . By pseudorandomness of F , we
have Pr[Eij ] = 2−ℓ. Apply the union bound, we have Pr[E] ≤ n1n2 · Pr[Eij ] =
n1n2/2

ℓ = negl(λ).

Theorem 3. The above mqRPMT protocol described in Figure 8 is secure in
the semi-honest model assuming the security of permuted OPRF F .

Due to space limit, we defer the security proof to Appendix D.3.
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Parameters: P1’s set size n1 and P2’s set size n2, a permuted OPRF for F :
K ×D → R.
Inputs: The server P1 inputs a set Y = {y1, . . . , yn1}, where yi ∈ {0, 1}ℓ. The
client P2 inputs a set X = {x1, . . . , xn2}, where xi ∈ {0, 1}ℓ.
Protocol:

1. P1 with inputs Y = {y1, . . . , yn1} and P2 invoke the permuted OPRF protocol.
At the end of the protocol, P1 obtains {Fk(yπ(i))}i∈[n1], P2 obtains k and a
permutation π over [n1].

2. P2 computes and sends (Fk(x1), . . . , Fk(xn1)) to P1.
3. P1 sets ei = 1 iff Fk(xi) ∈ {Fk(yπ(i))}i∈[n1].

Fig. 8: mqRPMT from permuted OPRF

Parameters: P1’s set size n1 and P2’s set size n2.
Inputs: The receiver P1 inputs a set Y = {y1, . . . , yn1}, where yi ∈ {0, 1}ℓ.
The sender P2 inputs a set X = {x1, . . . , xn2} and V = {v1, . . . , vn2}, where
xi ∈ {0, 1}ℓ and vi ∈ Zp. Let q be a big integer greater than n2 · p.
Protocol:

0. P2 shuffles the set (x1, . . . , xn2) and (v1, . . . , vn2) according to the same ran-
dom permutation over [n2]. For simplicity, we still use the original notation
to denote the vector after permutation.

1. P1 (playing the role of server) with Y and P2 (playing the role of client)
with X = {x1, . . . , xn2} invoke FmqRPMT. P1 obtains an indication bit vector
e⃗ = (e1, . . . , en2). P2 obtains nothing.

– cardinality: P1 learns the cardinality by calculating the Hamming weight
of e⃗.

2. P1 and P2 invoke n2 instances of OT via FOT. P1 uses e⃗ as the choice bits.
– intersection: P1 holding ei and P2 holding (⊥, xi) invoke one-sided OT

n2 times. P1 learns {xi | ei = 1}i∈[n2] = X ∩ Y .
– union: P1 holding ei and P2 holding (xi,⊥) invoke one-sided OT n2 times.

P1 learns {xi | ei = 0}i∈[n2] = X\Y , and outputs {X\Y } ∪ Y = X ∪ Y .
– card-sum: P2 randomly picks ri ∈ Zq and computes r′ =

∑n2
i=1 ri mod q.

Subsequently, P1 holding ei and P2 holding (ri, ri + vi) invoke 1-
out-of-2 OT n2 times. P1 learns S′ = {

∑n2
i=1 vi | ei = 1}i∈[n2] +

{
∑n2

i=1 ri}i∈[n2] mod q, then sends S′ and the Hamming weight of e⃗ to
P2. P2 computes S = (S′ − r′) mod q.

– card-secret-sharing: P2 randomly picks ri ∈ Zq. Subsequently, P1 hold-
ing ei and P2 holding (ri, ri+xi) invoke 1-out-of-2 OT n2 times. P1 learns
{zi}i∈[n2]. {(zi, ri)}ei=1 constitutes the shares of intersection.

Fig. 9: PSO from mqRPMT

17



6 Applications of mqRPMT

6.1 PSO Framework from mqRPMT

We show how to build a PSO framework centering around mqRPMT in Figure 9.

We prove the security of the above PSO framework by the case of PSU. The
security proof of other functionality is similar.

Theorem 4. The PSU derived from the above framework described in Figure 9
is secure by assuming the semi-honest security of mqRPMT and OT.

Due to space limit, we defer the security proof to Appendix D.4.
We compare our PSI-card-sum protocol with protocols [IKN+20, GMR+21]

as below. As mentioned in the introduction part, the PSI-card-sum protocols pre-
sented in [IKN+20] are built from concrete primitives (e.g. DH-protocol, ROT-
protocol, Phasing+OPPRF etc.) with general 2PC techniques or AHE schemes.
This renders their protocols less general and efficient. The protocol presented
in [GMR+21] is built from permuted characteristic (permuted mqRPMT under
our terminology) and secret sharing. Our protocol is similar to their protocol
but with the following differences. First, mqRPMT underlying our protocol is
conceptually simpler than its permuted version. More importantly, mqRPMT
admits instantiations with optimal linear complexity, while the current best in-
stantiation of permuted mqRPMT requires superlinear complexity. Second, as
we pointed out in the introduction part, the protocol due to [GMR+21] devi-
ates from the standard functionality of PSI-card-sum. In contrast, our protocol
meets the standard functionality of PSI-card-sum as defined in [IKN+20]. We
do so by simply removing the constraint

∑n
i=1 ri = 0 on the receiver side (as did

in [GMR+21]), and having the sender send back the masked sum value to the
receiver, and the receiver finally recovers the intersection sum by unmasking.

We also briefly discuss the differences between our card-secret-sharing pro-
tocol with related work. The most related functionality is circuit-PSI [HEK12,
PSTY19, RS21]. The only difference between our card-secret-sharing and circuit-
PSI is that our protocol additionally leaks the cardinality to the receiver. How-
ever, as pointed out by Garimella et al. [GMR+21], in many applications of
interest, the functions that need to be computed indeed imply such leakage.
Garimella et al. [GMR+21] also proposed a similar functionality named secret-
shared intersection, in which the parties only get the sharing of intersection
elements. As a result, their protocol leaks the cardinality to both the sender and
the receiver.

6.2 Private-ID

Recently, Buddhavarapu et al. [BKM+20] proposed a two-party functionality
called private-ID, which assigns two parties, each holding a set of items, a truly
random identifier per item (where identical items receive the same identifier).
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As a result, each party obtains identifiers to his own set, as well as identi-
fiers associated with the union of their input sets. With private-ID, two parties
can sort their private set with respect to a global set of identifiers, and then
can proceed any desired private computation item by item, being assured that
identical items are aligned. Buddhavarapu et al. [BKM+20] also gave a concrete
DDH-based private-ID protocol. Garimella et al. [GMR+21] showed how to build
private-ID from oblivious PRF and PSU. Roughly speaking, their approach pro-
ceeds in two phases. In phase 1, P1 holding X and P2 holding Y run an OPRF
twice by switching the roles, so that first P1 learns k1 and P2 learns Fk1(yi), and
second P2 learns k2 and P1 learns Fk2(xi). The random identifier of an item z is
thus defined as idz = Fk1

(z)⊕ Fk2
(z). After phase 1, both parties can compute

identifiers for their own items. In phase 2, they simply engage a PSU protocol
on their sets id(X) and id(Y ) to finish private-ID.

Our method is largely inspired by the approach presented in [GMR+21]. We
first observe that in phase 1, two parties essentially need to engage a distributed
OPRF protocol, as we formally depict in Figure 10. The random identifier of
an item z is defined as Gk1,k2

(z), where G is a PRF determined by key (k1, k2).
Furthermore, note that id(X) and id(Y ) are pseudorandom, which means in
phase 2 a distributional PSU protocol suffices, whose semi-honest security is
additionally defined on the input distribution. Looking ahead, such relaxation
may lead to nice efficiency improvement.

In this work, we instantiate the generic private-ID construction as below: (1)
realize the distributed OPRF protocol by running the multi-point OPRF [CM20]
twice in reverse order; (2) run the PSU protocol from cwPRF-based mqRPMT
with the obtained two sets of pseudorandom identifiers as inputs to fulfill the
private-ID functionality.

Parameters: PRF G : K ×D → R, where K = K1 ×K2.
Inputs: P1 inputs a set X = {x1, . . . , xn1}, where xi ∈ D. P2 inputs a set Y =
{y1, . . . , yn2}, where yi ∈ D.
Output: P1 gets {Gk1,k2(xi)}i∈[n1] and k1. P2 gets {Gk1,k2(yi)}i∈[n2] and k2,

Fig. 10: Ideal functionality for distributed OPRF

Distributional PSU. Standard security notions for MPC are defined w.r.t.
any private inputs. This treatment facilitates secure composition of different
protocols. We find that in certain settings it is meaningful to consider a weaker
security notion by allowing the real-ideal indistinguishability to also base on the
distribution of private inputs. This is because such relaxed security suffices if
the protocol’s input is another protocol’s output which obeys some distribution,
and the relaxation may admit efficiency improvement. Suppose choosing the
DDH-based distributed OPRF and DDH-based PSU in the same elliptic curve
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(EC) group as ingredients, faithful implementation according to the above recipe
requires 4n hash-to-point operations. Observe that the output of distributed
DDH-based OPRF are already pseudorandom EC points. In this case, it suffices
to use distributional DDH-based PSU instead, and thus can save 2n hash-to-
point operations, which are costly in the real-world implementation.

7 Performance

We describe details of our implementation and report the performance of the
following set operations: (1) psi: intersection of the sets; (2) psi-card: cardinality
of the intersection; (3) psi-card-sum: sum of the associated values for every item
in the intersection with cardinality; (4) psu: union of the sets; (5) private-ID:
a universal identifier for every item in the union. We compare our work with the
current fastest known protocol implementation for each functionality.

7.1 Implementation Details

Our protocols are written in C++ with detailed documentations, which is avail-
able upon request. In consistency with our paper, our implementation is orga-
nized in a modular and unified fashion: we first implement the core mqRPMT
protocol, then build various PSO protocols upon it. Besides, it is only built upon
the OpenSSL library [Opea], and can smoothly run on both Linux and x86_64
MacOS platforms.

7.2 Experimental Setup

We run all our protocols and related protocols on Ubuntu 20.04 with a single
Intel i7-11700 2.50 GHz CPU (8 physical cores) and 16 GB RAM. We simulate
the network connection using Linux tc command. For the WAN setting, we set
the average RTT to be 80 ms and bandwidth to be 50 Mbps. We use iptables
command to calculate the communication cost, and use running time to compute
the computation complexity, which is the maximal time from the beginning to
the end of protocol, including the messages transmission time.

For a fair comparison, we stick to the following setting for all protocols:

– We set the computational security parameter κ = 128 and the statistical
security parameter λ = 40.

– We test the balanced scenario by setting the input set size n1 = n2 (our im-
plementation supports unbalanced scenario as well), and randomly generate
two input sets with 128 bits length item conditioned on the intersection size
being roughly 0.5n. The exception is the protocol in [GMR+21], whose item
length is set as 61 bits in default and cannot exceed 64 bits.

– The PSI-card-sum protocol [IKN+20] and the private-id protocol [BKM+20]
are two of the related works we are going to compare. The former implemen-
tation is built upon nist P-256 (also known as secp256r1 and prime256v1),

20



while the latter implementation relies on special elliptic curve Curve25519
realized in the highly-optimized Dalek library. For a fair and comprehen-
sive comparison, we implement our protocols under both standard ellip-
tic curve nist P-256 and special elliptic curve Curve25519. For protocols
based on standard elliptic curve, we denote the one not using or using point
compression technique with ♦ and ▼ respectively. For protocols based on
Curve25519, we denote with ⋆.

7.3 Evaluation of Our Core Protocol

We first report the performances of our core protocol cwPRF-based mqRPMT
described in Section 4.3, which dominates the communication and computation
overheads of its enabling PSO protocols. We test our protocol up to 4 threads,
since both the server and the client run on a single CPU with 8 physical cores.
Our cwPRF-based mqRPMT achieves optimal linear complexity, and thus is
scalable, which is demonstrated by the experimental results in Table 2. Moreover,
the computation tasks on both sides in our cwPRF-based mqRPMT are highly
parallelable, thus we can effortlessly using OpenMP [Opeb] to make the program
multi-threaded.

Table 2: The computation and communication complexity of mqRPMT.

Protocol T
Running time (s) Commu. (MB)

LAN WAN total
212 216 220 212 216 220 212 216 220

mqRPMT♦
1 0.50 7.20 114.16 1.39 9.68 136.27

0.52 8.35 133.62 0.31 3.89 62.09 1.14 6.54 86.60
4 0.22 2.37 40.41 1.11 5.08 62.77

Speedup 1.6-2.3× 1.9-3.0× 1.8-2.8× 1.2-1.3× 1.5-1.9× 1.6-2.2× – – –

mqRPMT▼
1 0.50 8.00 128.00 1.35 10.15 141.52

0.27 4.35 69.62 0.32 5.05 80.69 1.18 7.11 94.19
4 0.23 3.54 58.40 1.08 5.54 71.26

Speedup 1.6-2.2× 1.6-2.3× 1.6-2.2× 1.1-1.3× 1.4-1.8× 1.5-2× – – –

mqRPMT⋆
1 0.26 3.51 54.85 0.81 5.41 68.68

0.26 4.23 67.662 0.15 1.79 28.24 0.75 3.83 41.38
4 0.10 1.07 15.32 0.72 3.09 28.31

Speedup 1.7-2.6× 2.0-3.3× 1.9-3.6× 1.1-1.1× 1.4-1.8× 1.7-2.4× – – –

7.4 Benchmark Comparison

We derive all kinds of PSO protocols from cwPRF-based mqRPMT protocol,
and compare them with the state-of-the-art related protocols. We report the
performances of all protocols on 3 input sizes n = {212, 216, 220}, executed over
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a single thread for LAN and WAN configurations. When testing the PSI-card,
PSI-card-sum and PSU protocols in [GMR+21], we set the number of mega-bins
as {1305, 16130, 210255} and the number of items in each mega-bin as {51, 62, 72}
for set sizes n = {212, 216, 220} respectively. These parameter choices have been
tested to be much more optimal than their default ones.

PSI. We compare our mqRPMT-based PSI protocol to the classical DH-PSI pro-
tocol implemented by [PRTY19] and re-implemented by ourselves. We remark
that all PSI protocols in comparison are not competitive with the state-of-the-art
PSI protocol. We include them merely for illustrative purposes. PSI protocols
from public-key techniques are always thought to be very inefficient, but our
experiment demonstrates that by carefully choosing modern crypto library with
optimized parameters they could be pretty practical. Our mqRPMT-based PSI
protocol is more than an order of magnitude faster than the DH-PSI proto-
col2 implemented in [PRTY19]. By leveraging the features of Curve25519 in
important ways (see Section 7.5 in details), our re-implemented DH-PSI proto-
col (denoted by DH-PSI⋆) achieves 26× speedup, which is arguably the most
efficient implementation known to date.

Table 3: Communication cost and running time of PSI protocol.

PSI
Running time (s) Comm. (MB)

LAN WAN total
212 216 220 212 216 220 212 216 220

[PRTY19]⋆ 5.51 88.64 1418.20 5.82 90.79 1498.67 0.30 4.74 76.60
Our PSI♦ 0.50 7.24 114.66 1.71 10.50 142.45 0.67 10.38 165.77
Our PSI▼ 0.55 8.04 128.18 1.73 11.02 148.18 0.41 6.38 101.63
Our PSI⋆ 0.29 3.56 55.11 1.19 6.38 75.56 0.40 6.25 99.71
DH-PSI⋆ 0.22 3.39 54.79 0.92 5.57 69.31 0.28 4.57 74.1

Recently, Rosulek and Trieu [RT21] propose a PSI protocol based on Diffie-
Hellman key agreement, which requires the least time and communication of any
known PSI protocols for small sets. Somewhat surprisingly, Table 4 shows that
for small sets our mqRPMT-based PSI protocol is faster than their protocol in
LAN setting, and our re-implemented DH-PSI is faster than their protocol in all
settings.
2 We remark that except inefficiency, their implementation also has a severe security

issue. More precisely, they realize the hash-to-point function {0, 1}∗ → G as x 7→
gH(x), where H is some cryptographic hash function. However, such hash-to-point
function cannot be modeled as random oracle anymore since it exposes the algebra
structure of output in the clear, and hence totally compromise security. Similar issue
also appears in libPSI.
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Table 4: Communication cost and running time of PSI protocol on small sets.

PSI
Running time (ms) Comm. (KB)

LAN WAN total
28 29 210 28 29 210 28 29 210

[RT21]⋆ 50.0 71.0 147.3 224.1 260.2 457.9 17.9 34.1 66.3
Our PSI⋆ 41.9 69.5 99.3 577.0 582.9 646.1 38.6 63.5 113.3
DH-PSI⋆ 16.49 31.80 56.91 210.42 227.33 252.32 18.48 36.68 72.8

PSI-card. We compare our mqRPMT-based PSI-card protocol to the PSI-card
protocol in [GMR+21]. Table 5 shows that our protocol achieves a 2.4 − 10.5×
speedup in running time, and reduces the communication cost by a factor 10.9−
14.8×.

Table 5: Communication cost and running time of PSI-card protocol.

PSI-card
Running time (s) Comm. (MB)

LAN WAN total
212 216 220 212 216 220 212 216 220

[GMR+21] 1.00 8.41 126.01 8.60 27.46 323.52 2.93 55.49 1030
Our PSI-card♦ 0.49 7.20 114.31 1.30 9.68 136.06 0.52 8.36 133.71
Our PSI-card▼ 0.53 8.00 128.00 1.35 10.16 141.31 0.27 4.35 69.6
Our PSI-card⋆ 0.27 3.51 54.89 0.82 5.42 68.31 0.26 4.23 67.70

PSI-card-sum. We compare our mqRPMT-based PSI-card-sum protocol to
the PSI-card-sum protocol (the most efficient and the deployed one based on
DH-protocol+Paillier) in [IKN+20]. We do not compare the protocol described
in [GMR+21] since its functionality is not the standard one, as we discussed in the
introduction. Our protocol is more advantageous than the protocol of [GMR+21]
due to our random masking trick is much simpler and efficient than the AHE-
based technique. Particularly, the upper bound of intersection sum in [GMR+21]
is closely tied to the AHE scheme in use, which requires sophisticated parameter
tuning and ciphertext packing techniques. In our protocol, the upper bound
of intersection sum can be flexibly adjusted according to applications. Table 6
shows that, compared with the protocol in [IKN+20], our protocol is roughly
28.5− 76.3× faster and reduces the communication cost by a factor 7.4×.

PSU. We compare our PSU protocol to recently emerging PSU protocols in
[GMR+21, JSZ+22, ZCL+23]. The work [JSZ+22] provides two PSU protocols
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Table 6: Communication cost and running time of PSI-card-sum protocol.

PSI-card-sum
Running time (s) Comm. (MB)

LAN WAN total
212 216 220 212 216 220 212 216 220

[IKN+20]▼ (deployed) 23.64 176.34 – 30.10 186.29 – 2.72 43.24 –
Our PSI-card-sum♦ 0.51 7.22 113.66 1.46 9.68 136.27 0.64 9.89 157.80
Our PSI-card-sum▼ 0.57 8.12 129.66 1.94 11.83 157.66 0.38 5.87 93.74
Our PSI-card-sum⋆ 0.31 3.73 57.44 1.36 6.53 76.16 0.37 5.75 91.70

Communication cost and running time of PSI-card-sum protocol. We assume each
associated value is a non-negative integer in [0, 232) conditioned on the upper bound
of intersection sum being 232. We note that the implementation of [IKN+20] only
works in our environment at set sizes 212 and 216. For set size 220, we encounter a
run time error reported in [Pri], which has not been fixed yet. The corresponding
cells are marked with “–”.

called PSU-R and PSU-S. The work [ZCL+23] also provides two PSU proto-
cols from public-key and symmetric-key respectively. We choose the most effi-
cient PKE-PSU [ZCL+23] and PSU-S [JSZ+22] for comparison. Among all the
mentioned PSU protocols, only the PSU protocols in [ZCL+23] and our PSU
protocol achieve linear communication and computation complexity. The exper-
imental results in Table 7 indicate that our PSU protocol is the most superior
one. Comparing to the state-of-the-art PSU protocol of [ZCL+23], our protocol
is 2× smaller in terms of communication cost, and thus achieves a 2.7 − 17×
speedup.

Table 7: Communication cost and running time of PSU protocol.

PSU
Running time (s) Comm. (MB)

LAN WAN total
212 216 220 212 216 220 212 216 220

[GMR+21] 1.16 10.06 151.34 10.34 38.52 349.43 3.85 67.38 1155
[ZCL+23]♦ 4.87 12.19 141.38 5.78 15.75 182.88 1.35 21.41 342.38
[ZCL+23]▼ 5.10 15.13 187.29 5.82 17.37 210.06 0.77 12.20 195.17
[JSZ+22] 2.29 8.50 516.04 5.33 27.00 736.30 3.59 70.37 1341.55

Our PSU♦ 0.52 7.27 114.44 1.70 10.56 143.29 0.68 10.38 165.77
Our PSU▼ 0.57 8.04 128.20 1.76 10.92 148.15 0.41 6.38 101.63
Our PSU⋆ 0.30 3.55 55.48 1.19 6.38 74.96 0.40 6.25 99.71

Private-ID. We compare our concrete private-ID protocol described in Sec-
tion 6.2 to the state-of-the-art protocols in [BKM+20, GMR+21]. The experi-
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mental results in Table 8 show that our private-ID protocol achieves a 2.7−4.9×
speedup comparing to the existing most computation efficient private-ID proto-
col of [GMR+21], while its bandwidth is only marginally larger than the most
communication efficient private-ID protocol [BKM+20]. Thereby, our protocol is
arguably the most efficient one in terms of monetary cost. By instantiating the
distributed OPRF from the current best OPRF due to [RR22], we will obtain a
private-ID protocol with better performance.

Table 8: Communication cost and running time of private-ID protocol.

Private-ID
Running time (s) Comm. (MB)

LAN WAN total
212 216 220 212 216 220 212 216 220

[GMR+21] 1.65 11.023 158.76 13.82 43.00 385.12 4.43 76.57 1293
[BKM+20]⋆ 2.21 37.56 671.75 7.98 46.97 710.94 1.00 15.97 226.70

Our Private-ID♦ 0.77 8.40 114.45 2.91 13.62 148.48 1.46 20.52 330.40
Our Private-ID▼ 0.89 9.57 146.73 3.07 14.53 186.98 1.13 16.43 266.31
Our Private-ID⋆ 0.61 5.11 71.57 2.83 10.06 114.66 1.13 16.31 265.15

7.5 Tips For ECC-based Implementations

In what follows, we summarize the lessons we learned during the implementation
of ECC-based protocols, with the hope to uncover some dark details and correct
imprecise impressions.

We first highlight the following two caveats when implementing with standard
elliptic curves:

Pros and cons of point compression technique. Point compression is a standard
trick in elliptic-curve cryptography (ECC), which can roughly reduce the storage
cost of EC point by half, at the cost of performing decompression when needed.
Point decompression was empirically thought to be cheap, but experiment indi-
cates that it could be as expensive as point multiplication. Our perspective is
that point compression offers a natural trade-offs between communication and
computation. The above experimental results demonstrate that the total run-
ning time gives a large weight to communication cost in bandwidth constrained
scenarios. Therefore, in the LAN setting (involving parties are co-located), we
recommend not to apply point compression trick, while in the WAN setting (in-
volving parties cannot be co-located), we recommend to apply point compression
trick. A quick take-away is that point compression trick pays off in setting where
communication is much more expensive than computation.
Tricky hash-to-point operation. The hash to point operation is very tricky in
ECC. So far, there is no universal method to securely map arbitrary bit strings
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to points on elliptic curves. Here, the vague term “securely” indicates the hash
function could be modeled as a random oracle. A folklore method is the “try-and-
increment” algorithm [BLS01], which is also the method adopted in this work.
Nevertheless, even such simple hash-to-point operation could be as expensive as
point multiplication, which should be avoid if possible.

Regarding to the two caveats discussed above, the following questions arise:
(1) is it possible to get the best of two worlds of point compression? (2) could
the hash-to-point operation be cheaper? Luckily, the answers are both yes under
some circumstance.

With the aim to avoid many potential implementation pitfalls, in 2005 Bern-
stein [Ber06] designed an elliptic curve dedicated to ECDH function known as
Curve25519. Due to its many efficiency/security advantages, it has been widely
deployed in numerous applications and has become the de facto alternative to
NIST P-256. Here, we highlight its two nice features that are particularly bene-
ficial for our cwPRF-based mqRPMT protocol: (i) it allows efficient scalar mul-
tiplication in compressed form (only X coordinates); (ii) by design, any 32-byte
bit string (interpreting as X coordinate) can be ambiguously identified as a valid
point on curve. Feature (i) brings us the best of two worlds of point compres-
sion, without making trade-off anymore, while feature (ii) makes the hash-to-
point operation almost free, by simply hashing the input to a 32-byte bit string
via cryptographic hash function. Naturally, Curve25519 has deficiencies com-
ing with its nice features. All the known implementations of Curve25519 that
support efficient scalar multiplication in X-coordinate compressed form do not
provide interfaces for point addition, subtraction, and scalar inverse multiplica-
tion. The reason is that (a) point addition and subtraction operations cannot
be performed using only X coordinates, thus in turn requiring expensive decom-
pression operation; (b) giving any 32-byte integer value as the scalar, existing
implementations would automatically “clamp” it before scalar multiplication,
thus requiring complicated treatment to support scalar inverse multiplication.

Luckily, our cwPRF-based mqRPMT protocol only requires scalar multi-
plication and hash-to-point operations, and thus can enjoy the nice features
without being affected by the deficiencies. This explains the advantages our
cwPRF-based mqRPMT protocol based on Curve25519 over that based on
NIST P-256. To the best of our knowledge, this is also the first time that
Curve25519 fully unleashes its advantages in the area of private set operations.
Prior to this work, Rosulek and Tireu [RT21] employed Curve25519 to build
a PSI protocol from Diffie-Hellman key agreement (DHKA) with strongly uni-
form property [FMV19], whose instantiation inherently requires the elligator
encoding/decoding mechanism [BHKL13]. The optimizations originated from
feature (i) and (ii) does not apply to their construction because it requires en-
coding/decoding EC points to bit strings (thus points cannot only be represented
by X coordinates), rather than hashing elements to EC points. In summary, for
protocols that are not involved with point addition/subtraction and scalar in-
verse multiplication, Curve25519 would be a good choice.
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Public-key operations are always rashly thought to be much expensive than
symmetric-key operations, and thus the design philosophy of many practical
protocols opts to avoid public-key operations. Our experimental results demon-
strates this impression is not precise anymore after rapid advances on ECC-based
cryptography in recent years. By leveraging optimized implementation, public-
key operations could be as efficient as symmetric-key operations. As a concrete
example, in EC group with 128 bit security level, one EC point scalar operation
takes 0.026 ms and one EC point addition takes 0.00028 ms on a laptop.

8 Summary

In this work, we show that mqRPMT protocol is complete for most private
set operations. By coupling with OT, we create a unified PSO framework from
mqRPMT, which can greatly reduce the deployment and maintaining costs of
PSO in the real world. We build the core mqRPMT protocol from two newly
introduced cryptographic primitives, namely cwPRF and pOPRF respectively.
By instantiating cwPRF and pOPRF from DDH-like assumptions, we obtain
mqRPMT protocols with linear complexity. The significance of this result is two
folds. The first is of practical interest, namely providing a simple PSO framework.
Particularly, we view the simplicity as a great merit since it yields a family of
PSO protocols that are competitive or superior to existing ones. The second
is of more theoretical interest, namely introducing cwPRF and pOPRF. The
notion of cwPRF can be viewed as the right cryptographic abstraction of the
celebrated DH functions, which not only demonstrates that the DDH assumption
is complete for PSO, but also opens the door for possible new instantiations
beyond DDH-like assumptions. The notion of pOPRF is of independent interest.
It enriches the OPRF family, and help us to understand which OPRF-based
PSI protocols can (or cannot) be adapted to PCSI/PSU protocols. We left more
applications and efficient constructions of pOPRF as an interesting problem.

In addition, we present a semi-generic conversion from a category mqPMT
protocols called Sigma-mqPMT to mqRPMT, making the first step towards in-
vestigating relations between the two core protocols. As an application of such
conversion, we obtain a mqRPMT protocol from FHE which is suitable in the
unbalanced setting. However, the resulting mqRPMT is a slightly weak version
in the sense that the intersection size is leaked to the sender. We left the con-
struction of standard mqRPMT in the unbalanced setting as an open problem.

To demonstrate the efficiency of our framework, we opensource our C++
implementation with detailed documentations. When conducting performance
comparison, we find that quite a few PSO implementations suffer from one or
more of the following deficiencies: (i) rely on multiple libraries, but configu-
rations are not well documented; (ii) require sophisticated parameters tuning,
but optimized parameters are not explicitly given; (iii) codes are not faithful
to protocols described in paper, such as insecure random oracle instantiation,
incorrect thread number counting etc. Sometimes, even making these programs
successfully running would require tremendous efforts. We are thus expect a
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high-quality MPC platform that admits easy and fair benchmarking of all PSO
protocols.
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Supplementary Materials

A mqRPMT from Sigma-mqPMT

A.1 Sigma-mqPMT

Private membership test (PMT) protocol [PSZ14] is a two-party protocol in
which the client with input x learns whether or not its item is in the input set
Y of the server. PMT can be viewed as a special case of private keyword search
protocol [FIPR05] by setting the payload as any indication string. We consider
three-move PMT, which we refer to Sigma-PMT hereafter.

Sigma-PMT proceeds via the following pattern.

1. Server P1 sends the first round message a to client P2, which is best inter-
preted as an encoding of Y .

2. Client P2 sends query q w.r.t. to his item x.
3. Server P1 responds with z.

After receiving z, client P2 can decide if x ∈ Y by running Test(a, x, q, z). The
basic notion of Sigma-PMT allows the client P2 to test for a single item. While
this procedure can be repeated several times, one may seek for more efficient
protocol allowing the client to test n items at reduced communication cost and
round complexity. To this end, we introduce the following two properties for
Sigma-PMT:

– Reusable: The first round message is performed by the server P1 once and
for all.

– Context-independent: Each test query qi is only related to the element
xi under test and the randomness of P2.

The first property helps to reduce communication cost, while the second prop-
erty admits parallelization, hence the round complexity is unchanged even when
handling multiple items. Sigma-PMT may enjoy an additional property:

– Stateless: For any xi and associated (qi, zi), Test(a, xi, qi, zi) can work in
a memoryless way, namely, without looking at (xi, qi). In this case, the test
algorithm can be simplified as Test(a, zi).

By running Sigma-PMT with reusable, context-independent, and stateless
properties in parallel, we obtain mqPMT with three-move pattern (depicted in
Figure 11), which we refer to as Sigma-mqPMT.

To reduce the semi-honest security of mqRPMT∗ to that of Sigma-mqPMT,
we assume the simulator Sim(X, e⃗) for client P2 is composed of two sub-routines
(Sim′, Sim′′), and satisfies the following properties:

– Locality: zi ≈ Sim′(ei; ri), a.k.a. the i-th response can be emulated via
invoking a sub-routine Sim′(ei) with independent random coins ri;

– Order invariance: a ≈ Sim′′({eπ(i), rπ(i)}i∈[n2]; s), where π could be an
arbitrary permutation over [n2], s is the random coins.
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P1 (server)
Y = (y1, . . . , yn1

)
P2 (client)

X = (x1, . . . , xn2
)

a← Encode(Y )
a

qi ← GenQuery(a, xi)
q⃗ = {q1, . . . , qn2}

z⃗ = {z1, . . . , zn2}
zi ← Response(qi) ei ← Test(a, zi)

Fig. 11: Sigma-mqPMT

A.2 Instantiations of Sigma-mqPMT

A.2.1 Sigma-mqPMT from DDH

We first present an instantiation of Sigma-mqPMT based on the DDH assump-
tion, which is obtained by plugging DDH-based OPRF to the above generic
construction.

P1 (server)
Y = (y1, . . . , yn)

P2 (client)
X = (x1, . . . , xn)

k
R←− Zp

a← {H(y1)k, . . . ,H(yn1
)k}

r
R←− Zp, qi ← H(xi)

r
q⃗ = {q1, . . . , qn2

}

z⃗ = {z1, . . . , zn2
}

zi ← (H(xi)
r)k ei := zi ∈ a

A.2.2 Sigma-mqPMT from FHE

We then present an instantiation of Sigma-mqPMT based on oblivious polyno-
mial evaluation (OPE). By instantiating OPE from FHE, we obtain the following
mqPMT protocol, which is the backbone of [CLR17].
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P1 (server)
Y = (y1, . . . , yn1

)
P2 (client)

X = (x1, . . . , xn2
)

a← ⊥
⊥

qi ← FHE.Enc(pk, xi)
q⃗ = {q1, . . . , qn2

}

z⃗ = {z1, . . . , zn2
}ri

R←− F
fi ← ri

∏
y∈Y (yi − x)

zi ← FHE.Eval(pk, fi, qi)
ei := FHE.Dec(dk, zi)

?
= 0

Alternatively, we can realize OPE from additively homomorphic encryption.
The change is that each qi now consists of n1 ciphertexts of the following form:
{AHE.Enc(pk, x1

i ), . . . ,AHE.Enc(pk, x
n1
i )}.

Remark 4. As noted in [CLR17], the above protocol only serves as a toy example
to illustrate the idea of how to using FHE to build PSI, which is impractical.
They also show how to make the basic protocol efficient. However, the optimizing
techniques destroy structure and properties of Sigma-mqPMT. As a consequence,
so far the transformation from Sigma-mqPMT to mqRPMT∗ does not have
efficient instantiation in the unbalanced setting, and only serves as a proof of
concept.

A.3 Connection to Sigma-mqPMT

Next, we show a generic construction of mqRPMT∗ from Sigma-mqPMT. With
the nice properties of Sigma-mqPMT, the construction is pretty simple, a.k.a.
having the server P1 shuffle the last move message in Sigma-mqPMT (yielding
permuted mqPMT upon this step), then having the client P2 send the test
results back to P1, and finally P1 recovers the indication bits in the right order.
We formally describe the construction in Figure 12.

Theorem 5. The above mqRPMT∗ protocol depicted in Figure 12 is secure in
the semi-honest model assuming the semi-honest security of the starting Sigma-
mqPMT protocol.

Proof. We exhibit simulators SimP1
and SimP2

for simulating corrupt server P1

and corrupt client P2 respectively. Let |X ∩ Y | = m.

Security against corrupt client. SimP2
simulates the view of corrupt client

P2, which consists of P2’s randomness, input, output and received messages.
We argue that the output of SimP2 is indistinguishable from the real exe-

cution. We formally show SimP2 ’s simulation is indistinguishable from the real
execution via a sequence of hybrid transcripts.
Hybrid0: P2’s view in the real protocol.
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P1 (server)
Y = (y1, . . . , yn1

)
P2 (client)

X = (x1, . . . , xn2
)

a← mqPMT.Encode(Y )
a

qi ← mqPMT.GenQuery(a, xi)
q⃗ = {q1, . . . , qn2}

π
R←− Perm[n2]

z⃗∗ = {zπ(1), . . . , zπ(n2)}

e∗i ← mqPMT.Test(a, z∗i )
e⃗∗ = {e∗1, . . . , e∗n2

}
e⃗ = {e∗π−1(i)}

n2
i=1

Fig. 12: mqRPMT∗ from Sigma-mqPMT

Hybrid1: SimP2 chooses the randomness for P1, and simulates with the knowledge
of Y . Clearly, SimP2 ’s simulation is identical to the real view of P2.
Hybrid2: SimP2

does not choose the randomness for P1, and simulates without
the knowledge of Y . Instead, it invokes the Sigma-mqPMT’s simulator for P2 on
his private input X and output e⃗∗ to emulate the view (a, z⃗∗) in the following
manner:

– for 1 ≤ i ≤ n2, run Sim′(e∗i ; ri)→ z∗i , obtaining z⃗∗ = (z∗1 , . . . , z
∗
n).

– run Sim′′({(e∗i , ri)}i∈[n2]; s)→ a.

By the locality and order invariance properties, the simulated view in Hybrid2

and Hybrid1 are computationally indistinguishable based on semi-honest security
of mqPMT on P2 side.
Security against corrupt server. SimP1

simulates the view of corrupt server
P1, which consists of P1’s randomness, input, output and received messages. We
formally show SimP1

’s simulation is indistinguishable from the real execution via
a sequence of hybrid transcripts.
Hybrid0: P1’s view in the real protocol.
Hybrid1: SimP1 chooses the randomness for P2, and simulates with the knowledge
of X. Clearly, SimP1

’s simulation is identical to the real view of P1.
Hybrid2: SimP1

does not choose the randomness for P2, and simulates without
the knowledge of X. Instead, given (Y, e⃗) it first invokes the Sigma-mqPMT’s
simulator for P1 on input Y to generate q⃗, then picks a random permutation π
over [n2] and computes e⃗∗ = π−1(e⃗), outputs (q⃗, e⃗∗).
Clearly, the view in Hybrid1 and Hybrid2 are computationally indistinguishable
based on the semi-honest security of Sigma-mqPMT on P1’s side.

This proves the theorem. ut

Remark 5. As a byproduct, we note that if P1 only permutes and sends the last
move message in Sigma-mqPMT, then we obtain a standard PSI-card protocol.
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From this perspective, it is fair to say Sigma-mqPMT distills sufficient charac-
teristics of what kind of PSI protocols can be converted to PSI-card with no
extra overhead.

B Pseudorandom Function

In this section, we recap the standard notions of PRF, as well as the canonical
construction from the DDH like assumption. Looking ahead, we will build more
advanced variants of PRF with richer properties on these basis. We first recall
the notion of standard pseudorandom functions (PRFs) [GGM86].

Definition 3 (PRF). A family of PRFs consists of three polynomial-time al-
gorithms as follows:

– Setup(1κ): on input a security parameter κ, outputs public parameter pp. pp
specifies a family of keyed functions F : K × D → R, where K is the key
space, D is domain, and R is range.

– KeyGen(pp): on input pp, outputs a secret key k
R←− K.

– Eval(k, x): on input k ∈ K and x ∈ D, outputs y ← F (k, x). For notation
convenience, we will write F (k, x) as Fk(x) interchangeably.

The standard security requirement for PRF is pseudorandomness.

Pseudorandomness. Let A be an adversary against PRF and define its ad-
vantage as:

AdvA(κ) = Pr

β′ = β :

pp← Setup(1κ);
k ← KeyGen(pp);
β ← {0, 1};
β′ ← AOror(β,·)(κ);

− 1

2
,

whereOror(β, ·) denotes the real-or-random oracle controlled by β, i.e., Oror(0, x) =
Fk(x), Oror(1, x) = H(x) (here H is chosen uniformly at random from all the func-
tions from D to R3). A can adaptively access the oracle Oror(β, ·) polynomial
many times. We say that F is pseudorandom if for any PPT adversary AdvA(κ)
is negligible in κ. We refer to such security as full PRF security.

Sometimes the full PRF security is not needed and it is sufficient if the func-
tion cannot be distinguished from a uniform random one when challenged on
random inputs. The formalization of such relaxed requirement is weak pseudo-
randomness, which is defined the same way as pseudorandomness except that
the inputs of oracle Oror(b, ·) are uniformly chosen from D by the challenger
instead of adversarially chosen by A. PRF that satisfy weak pseudorandomness
are referred to as weak PRF.
3 To efficiently simulate access to a uniformly random function H from D to R, one

may think of a process in which the adversary’s queries to Oror(1, ·) are “lazily”
answered with independently and randomly chosen elements in R, while keeping
track of the answers so that queries made repeatedly are answered consistently.
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B.1 Weak PRF from the DDH Assumption

We recall the folklore weak PRF from the DDH assumption as below.

– Setup(1κ): runs GroupGen(1κ)→ (G, g, p), outputs pp = (G, g, p). pp defines
a family of functions from Zp × G to G, a.k.a. on input k ∈ Zp and x ∈ G
outputs Fk(x) = xk.

– KeyGen(pp): outputs k
R←− Zp.

– Eval(k, x): on input k ∈ Zp and x ∈ D, outputs y ← xk.

The following theorem establishes its pseudorandomness based on the DDH as-
sumption.

Theorem 6. Fk(x) is a family of weak pseudorandom functions assuming the
hardness the DDH assumption holds w.r.t. GroupGen(1κ)→ (G, g, p).

Proof. DDH assumption states that DDH tuple (ga, gb, gab) and random tu-
ple (ga, gb, gc) are computationally indistinguishable. By exploiting the random
self-reducibility of the DDH problem [NR95], the standard DDH assumption im-
plies that (ga, gb1 , . . . , gbn , gab1 , . . . , gabn) and (ga, gb1 , . . . , gbn , gc1 , . . . , gcn) are
computationally indistinguishable, where a, bi, ci

R←− Zp. We are now ready to
reduce the weak pseudorandomness of Fk(·) based on the DDH assumption.
Let B be an adversary against the DDH assumption. Given a DDH challenge
instance (ga, gb1 , . . . , gbn , gc1 , . . . , gcn), B interacts with an adversary A in the
weak pseudorandomness experiment, with the aim to determine if ci = abi or ci
is a random value.

Setup: B sends pp = (G, g, p) to A. B implicitly sets a as the key of PRF.
Real-or-random query: Upon receiving the i-th query to oracle Oror, B sets the
i-th random input xi := gbi , computes yi = gci , then sends (xi, yi) to A.
Guess: A makes a guess β′ ∈ {0, 1} for β, where ‘0’ indicates real mode and ‘1’
indicates random mode. B forwards β′ to its own challenger.

Clearly, if ci = abi for all i ∈ [n], then A simulates the real oracle. If ci are
random values, then A simulates the random oracle. Thereby, B breaks the
DDH assumption with the same advantage as A breaks the pseduorandomness
of Fk(·).

Remark 6. We note that Fk(x) = xk is actually a permutation over G, and it is
efficiently invertible.

B.2 PRF from the DDH Assumption

We next recall the standard PRF from the DDH assumption known as HashDH
presented in [NPR99]. The construction is very similar to the weak PRF con-
struction. The only modification is to map the input to G via a cryptographic
hash function H first, then apply Fk in a cascade way, yielding a composite
function Fk ◦H : D → G. By leveraging the programmability of H, we reduce to
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pseudorandomness of the composite function Fk ◦H to the weak pseudorandom-
ness of Fk. In other words, random oracle amplifies weak pseudorandomness to
standard pseudorandomness.

For completeness, we provide the details as below.

– Setup(1κ): runs GroupGen(1κ) → (G, g, p), picks a cryptographic hash func-
tion H from domain D to G, outputs pp = (G, g, p,H). pp defines a family of
functions from Zp ×D to G, which takes k ∈ Zp and x ∈ D as inputs and
outputs Fk(H(x)) = H(x)k.

– KeyGen(pp): outputs k
R←− Zp.

– Eval(k, x): on input k ∈ Zp and x ∈ D, outputs H(x)k.

The following theorem establishes its pseudorandomness based on the DDH
assumption.

Theorem 7. Fk(H(x)) is a family of PRF assuming H is a random oracle and
the DDH assumption holds w.r.t. GroupGen(1κ)→ (G, g, p).

Proof. We now reduce the pseudorandomness of Fk(H(·)) to the hardness of
DDH problem. Let B be an adversary against the DDH problem. Given a DDH
challenge instance (ga, gb1 , . . . , gbn , gc1 , . . . , gcn), B interacts with an adversary
A in the pseudorandomness experiment, with the aim to determine if ci = abi
or ci is a random value. B simulates the random oracle H and real-or-random
oracle as below:

– Setup: B sends pp = (G, g, p,H) to A, and implicitly sets a as the key of
PRF.

– Random oracle query: for random oracle query 〈xi〉, B programs H(xi) :=

gbi .
– Real-or-random query: without loss of generality, it is safe to assume adver-

sary has already made the corresponding random oracle (RO) queries before
making the evaluation queries. For evaluation query 〈xi〉, B returns yi := gci

to A.
– Guess: A makes a guess β ∈ {0, 1}, where ‘0’ indicates real mode and ‘1’

indicates random mode. B forwards β to its own challenger.

Clearly, if ci = abi for all i ∈ [n], then A simulates the real oracle. If ci’s
are random values, then A simulates the random oracle. Thereby, B breaks the
DDH assumption with the same advantage as A breaks the pseduorandomness
of Fk(H(·)).

Remark 7. (Weak) PRF can be built from weak pseudorandom group action
(c.f. Definition in Appendix C) in a similar way.

C Weak Pseudorandom EGA

We begin by recalling the definition of a group action.
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Definition 4 (Group Actions). A group G is said to act on a set X if there
is a map ⋆ : G×X → X that satisfies the following two properties:

1. Identity: if e is the identity element of G, then for any x ∈ X, we have
e ⋆ x = x.

2. Compatibility: for any g, h ∈ G and any x ∈ X, we have (gh)⋆x = g⋆(h⋆x).

From now on, we use the abbreviated notation (G, X, ⋆) to denote a group
action. If (G, X, ⋆) is a group action, for any g ∈ G the map ϕg : x 7→ g ⋆ x
defines a permutation of X.

We then define an effective group action (EGA) [AFMP20] as follows.

Definition 5 (Effective Group Actions). A group action (G, X, ⋆) is effec-
tive if the following properties are satisfied:

1. The group G is finite and there exist PPT algorithms for:
(a) Membership testing, i.e., to decide if a given bit string represents a valid

group element in G.
(b) Equality testing, i.e., to decide if two bit strings represent the same group

element in G.
(c) Sampling, i.e., to sample an element g from a uniform (or statistically

close to) distribution on G.
(d) Operation, i.e., to compute gh for any g, h ∈ G.
(e) Inversion, i.e., to compute g−1 for any g ∈ G.

2. The set X is finite and there exist PPT algorithms for:
(a) Membership testing, i.e., to decide if a bit string represents a valid set

element.
(b) Unique representation, i.e., given any set element x ∈ X, compute a

string x̂ that canonically represents x.
3. There exists a distinguished element x0 ∈ X, called the origin, such that its

bit-string representation is known.
4. There exists an efficient algorithm that given (some bit-string representations

of) any g ∈ G and any x ∈ X, outputs g ⋆ x.

Definition 6 (Weak Pseudorandom EGA). A group action (G,X, ⋆) is
weakly pseudorandom if the family of efficiently commutable permutation {ϕg :
X → X}g∈G is weakly pseudorandom, i.e., there is no PPT adversary that can
distinguish tuples of the form (xi, g ⋆ xi) from (xi, ui) where g

R←− G and each
xi, ui

R←− X.

D Missing Security Proofs

D.1 Proof of mqRPMT from cwPRF

Theorem 8. The mqRPMT protocol described in Figure 5 is secure in the semi-
honest model assuming H is a random oracle and F is a family of cwPRFs.
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Proof. We exhibit simulators SimP1
and SimP2

for simulating corrupt P1 and P2

respectively, and argue the indistinguishability of the simulated transcript from
the real execution. Let |X ∩ Y | = m.

Security against corrupt client. SimP2
simulates the view of corrupt client

P2, which consists of P2’s randomness, input, output and received messages. We
formally show SimP2

’s simulation is indistinguishable from the real execution via
a sequence of hybrid transcripts.
Hybrid0: P2’s view in the real protocol.
Hybrid1: Given P2’s input X, SimP2

chooses the randomness for P1 (i.e., picks
k1

R←− K), and simulates with the knowledge of Y .
– RO query: SimP2 emulates the random oracle H honestly. For each query
〈zi〉, SimP2 picks αi

R←− D, and assigns H(zi) := αi.
– SimP2

outputs (Fk1
(H(y1)), . . . , Fk1

(H(yn1
))).

X ∩ Y

Y X

for zi ∈ D, H(zi) := αi
R←− D

Clearly, SimP2
’s simulated view in Hybrid1 is identical to P2’s real view.

Hybrid2: SimP2
does not choose the randomness for P1 (i.e., picks k1

R←− K), and
simulates without the knowledge of Y . It emulates the random oracle H honestly
as before, and only changes the simulation of P1’s message.

– SimP2
outputs (η1, . . . , ηn1

) where ηi
R←− D.

We argue that the simulated view in Hybrid1 and Hybrid2 are computation-
ally indistinguishable. More precisely, a PPT adversary A (with knowledge of
X and Y ) against cwPRF (with secret key k) is given n tuples (γi, ηi) where
γi

R←− D, and is asked to distinguish if ηi = Fk(γi) or ηi are random values. A
implicitly sets P1’s randomness k1 := k, and simulates as below.

– RO query: for each random oracle query 〈zi〉, if zi /∈ Y , picks αi
R←− D and

sets H(zi) := αi; if zi ∈ Y , sets H(zi) := γi.
– outputs (η1, . . . , ηn1

).

X ∩ Y

Y X

for zi /∈ Y , H(zi) := αi
R←− D

for zi ∈ Y , H(zi) := γi
R←− D

If ηi = Fk(γi) for i ∈ [n1], then A’s simulation is identical to Hybrid1. If ηi
are random values, then A’s simulation is identical to Hybrid2.

Security against corrupt server. SimP1 simulates the view of corrupt server
P1, which consists of P1’s randomness, input, output and received messages. We
formally show SimP1

’s simulation is indistinguishable from the real execution via
a sequence of hybrid transcripts.
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Hybrid0: P1’s view in the real protocol.
Hybrid1: Given P1’s input Y and output (e1, . . . , en1), SimP1 chooses the ran-
domness for P2 (i.e., picks k2

R←− K and a random permutation π over [n1]), and
simulates with the knowledge of X.

– RO queries: SimP1
emulates the random oracle H honestly. For each query

〈zi〉, SimP1
picks αi

R←− D and assigns H(zi) := αi.
– SimP1

outputs {Fk2
(H(xi))}i∈[n1] and Ω ← {Fk2

(Fk1
(H(yπ(i))}i∈[n1].

X ∩ Y

Y X

for zi ∈ D, H(zi) := αi
R←− D

Clearly, SimP1 ’s simulation in Hybrid1 is identical to the real view of P1.
Hybrid2: SimP1

does not choose randomness for P2, and simulates without the
knowledge of X. It simulates the random oracle H honestly as before, and changes
its simulation of P2’s message. Let m be the Hamming weight of (e1, . . . , en1).

– SimP1 picks vi
R←− D for i ∈ [n2] (associated with Fk2(H(xi)) where xi ∈

X), outputs {vi}i∈[n2]; picks wj
R←− D for j ∈ [n1 − m] (associated with

Fk2
(H(yj)) where yj ∈ Y − X ∩ Y ), outputs a random permutation of

({Fk1
(vi)}ei=1, {Fk1

(wj)}j∈[n1−m]).

X ∩ Y

Y X
Fk2(H(xi)) := vi

Fk2(H(yi)) := wj

We argue that the view in Hybrid1 and Hybrid2 are computationally indis-
tinguishable. More precisely, a PPT adversary A (with knowledge of X and Y )
against cwPRF are given n1+n2−m tuples (γi, ηi) where γi

R←− D, and is asked
to determine if ηi = Fk(γi) or random values. A implicitly sets P2’s randomness
k2 := k, picks k1

R←− K.

– RO queries: for zi /∈ X ∪ Y , picks αi
R←− D and assigns H(zi) := αi; for

zi ∈ X ∪ Y , assigns H(zi) := γi.
– For each zi ∈ X, A picks out the associated ηi to form {vj}j∈[n2]; for each

zi ∈ Y −X∩Y ,A picks out the associated ηi to form {wℓ}ℓ∈[n1−m].A outputs
{vj}j∈[n2] and a random permutation of ({Fk1

(vj)}xj∈X∩Y , {Fk1
(wℓ)}ℓ∈[n1−m]).

X ∩ Y

Y X

for zi /∈ X ∪ Y , H(zi) := αi
R←− D

for zi ∈ X ∪ Y , H(zi) := γi
R←− D

Fk2(H(xj)) := vj

Fk2(H(yℓ)) := wℓ
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If ηi = Fk(γi), then A’s simulation is identical to Hybrid1. If ηi are random
values, then A’s simulation is identical to Hybrid2.

This proves the theorem. ut

D.2 Proof of Permuted OPRF from cwPRP

Theorem 9. The above permuted OPRF protocol described in Figure 7 is secure
in the semi-honest model assuming H is a random oracle and F is a family of
cwPRPs.

Proof. We exhibit simulators SimP1 and SimP2 for simulating corrupt P1 and P2

respectively, and argue the indistinguishability of produced transcript from the
real execution.

Security against corrupt sender. SimP1
simulates the view of corrupt sender

P1, which consists of P1’s randomness, input, output and received messages. We
formally show SimP1 ’s simulation is indistinguishable from the real execution via
a sequence of hybrid transcripts.
Hybrid0: P1’s view in the real protocol.
Hybrid1: Given P1’s output k and π, SimP1

chooses the randomness s for P2,
and simulates with the knowledge of X = (x1, . . . , xn):

– RO queries: SimP1 honestly emulates random oracle H. For every query 〈zi〉,
picks αi

R←− D and assigns H(zi) := αi.
– SimP1

outputs (Fs(β1), . . . , Fs(βn)), where H(xi) = βi.

Clearly, SimP1
’s simulated view in Hybrid1 is identical to P1’s real view.

Hybrid2: SimP1
does not choose the randomness for P2, and simulates without

the knowledge of X. It honestly emulates random oracle H as in Hybrid1, and
only changes the simulation of P2’s message.

– SimP1
outputs (η1, . . . , ηn) where ηi

R←− D.

We argue that the view in Hybrid1 and Hybrid2 are computationally indis-
tinguishable. Let A be a PPT adversary against the weak pseudorandom of Fs.
Given a real-or-random oracle Oror(·), A is asked to distinguish which mode he is
in. A queries the Oror(·) n times, and obtains (γi, ηi) in return. A then simulates
(with the knowledge of X) as below:

– RO queries: for each query 〈zi〉, if zi /∈ X, picks αi
R←− D and assigns H(zi) :=

αi; if zi ∈ X, assigns H(xi) := γi.
– Outputs (η1, . . . , ηn).

Clearly, if ηi = Fs(γi), A simulates Hybrid1. Else, it simulates Hybrid2. Thereby,
SimP1 ’s simulated view is computationally indistinguishable to P1’s real view.
Security against corrupt receiver. SimP2 simulates the view of corrupt re-
ceiver P2, which consists of P2’s randomness, input, output and received mes-
sages. We formally show SimP2

’s simulation is indistinguishable from the real
execution via a sequence of hybrid transcripts.
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Hybrid0: P2’s view in the real protocol.
Hybrid1: Given P2’s input X = (x1, . . . , xn) and output {Fk(H(xπ(i)))}i∈[n],
SimP2 emulates the random oracle H honestly, picks s

R←− Zp, simulates message
from P1 as {Fs(Fk(H(xπ(i))))}i∈[n].

According to the commutative property of cwPRF, SimP2
’s simulated view

is identical to the real view.

This proves the theorem. ut

Observe that the cwPRF construction presented in Section 4.2 is actually a
family of cwPRPs. Plugging it to the above generic construction, we obtain a
concrete pOPRF protocol as described in Figure 7.

Parameters: hash function H : {0, 1}ℓ → G.
Inputs: The receiver P2 inputs a set X = {x1, . . . , xn}, where xi ∈ {0, 1}ℓ.
Protocol:

1. P2 picks s
R←− Zp, then sends (H(x1)

s, . . . ,H(xn)
s) to the sender P1.

2. P1 picks k
R←− Zp and computes (H(x1)

sk, . . . ,H(xn)
sk), then picks a random

permutation π over [n] and sends y′
i = H(xπ(i))

sk for i ∈ [n] to P2.
3. P1 outputs k and π.
4. P2 outputs yi = (y′

i)
s−1 for each i ∈ [n].

Fig. 13: Permuted OPRF based on the DDH assumption

The security of the above pOPRF protocol is guaranteed by Theorem 2
and the security of the underlying cwPRP, which is in turn based on the DDH
assumption. For completeness, we provide a direct security proof based on the
DDH assumption as below.

Theorem 10. The permuted OPRF protocol described in Figure 7 is secure in
the semi-honest model assuming H is a random oracle and the DDH assumption
holds.

Proof. We exhibit simulators SimP1 and SimP2 for simulating corrupt P1 and P2

respectively, and argue the indistinguishability of produced transcript from the
real execution.

Security against corrupt receiver. SimP2
simulates the view of corrupt re-

ceiver P2, which consists of P2’s randomness, input, output and received mes-
sages. We formally show SimP2

’s simulation is indistinguishable from the real
execution via a sequence of hybrid transcripts.
Hybrid0: P2’s view in the real protocol.
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Hybrid1: Given P2’s input X = (x1, . . . , xn) and output {yπ(1), . . . , yπ(n)}, SimP2

emulates the random oracle H honestly, picks s
R←− Zp, simulates message from

P1 as {ysπ(1), . . . , ysπ(n)}.

Clearly, SimP2 ’s simulated view is identical to the real view.

Security against corrupt sender. SimP1
simulates the view of corrupt sender

P1, which consists of P1’s randomness, input, output and received messages. We
formally show SimP1 ’s simulation is indistinguishable from the real execution via
a sequence of hybrid transcripts,
Hybrid0: P1’s view in the real protocol.
Hybrid1: Given P1’s output k and π, SimP1

chooses the randomness s for P2,
and simulates with the knowledge of X = (x1, . . . , xn):

– RO queries: SimP1 honestly emulates random oracle H. For every query 〈zi〉,
picks αi

R←− G and assigns H(zi) := αi.
– SimP1 outputs (βs

1, . . . , β
s
n), where H(xi) = βi.

X ∩ Y

Y X

for zi ∈ {0, 1}ℓ, H(zi) := αi
R←− G

Clearly, SimP1
’s simulated view in Hybrid1 is identical to P1’s real view.

Hybrid2: SimP1
does not choose the randomness for P2, and simulates without

the knowledge of X. It honestly emulates random oracle H as in Hybrid1, and
only changes the simulation of P2’s message.

– SimP1
outputs (gc1 , . . . , gcn) where ci

R←− Zp.

We argue that the view in Hybrid1 and Hybrid2 are computationally indis-
tinguishable. Let A be a PPT adversary against the DDH assumption. Given
the DDH challenge ga, gb1 , . . . , gbn , gc1 , . . . , gcn) where a, bi

R←− Zp, A is asked
to distinguish if ci = abi or random values. A implicitly sets P2’s randomness
s := a, and simulates (with the knowledge of X) as below:

– RO queries: for each query 〈zi〉, if zi /∈ X, picks αi
R←− G and assigns H(zi) :=

αi; if zi ∈ X, assigns H(xi) := gbi .
– Outputs (gc1 , . . . , gcn).

X ∩ Y

Y X

for zi /∈ X, H(zi) := αi
R←− G

for zi ∈ X, H(zi) := gbi

Clearly, if ci = abi, A simulates Hybrid1. Else, it simulates Hybrid2. Thereby,
SimP1 ’s simulated view is computationally indistinguishable to P1’s real view.

This proves the theorem. ut
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Remark 8. In the above security proof, when establishing the security against
corrupt sender, we can obtain a more modular proof by reducing the indistin-
guishability of simulated views in Hybrid1 and Hybrid2 to the pseudorandomness
of Fk(H(·)), which is in turn based on the DDH assumption.

D.3 Proof of mqRPMT from pOPRF

Theorem 11. The above mqRPMT protocol described in Figure 8 is secure in
the semi-honest model assuming the security of permuted OPRF F .

Proof. We exhibit simulators SimP1 and SimP2 for simulating corrupt P1 and P2

respectively, and argue the indistinguishability of the produced transcript from
the real execution. Let |X ∩ Y | = m.

Security against corrupt client. SimP2
simulates the view of corrupt client

P2, which consists of P2’s randomness, input, output and received messages. We
formally show SimP2

’s simulation is indistinguishable from the real execution via
a sequence of hybrid transcripts.
Hybrid0: P2’s view in the real protocol.
Hybrid1: SimP2 simply picks k and π, then invokes the simulator for P2 in the
permuted OPRF with (k, π) as output. By the semi-honest security of permuted
OPRF on P2’s side, the simulation is indistinguishable to the real view.

Security against corrupt server. SimP1
simulates the view of corrupt server

P1, which consists of P1’s randomness, input, output and received messages. We
formally show SimP1

’s simulation is indistinguishable from the real execution via
a sequence of hybrid transcripts.
Hybrid0: P1’s view in the real protocol. Note that P1’s view consists of its view
in stage 1 (the permuted OPRF part) and its view in stage 2.
Hybrid1: Given P1’s input Y = (y1, . . . , yn1

) and output (e1, . . . , en2
), SimP1

creates the simulated view as below:

– pick a random PRF key k and a random permutation π;
– compute (Fk(yπ(1)), . . . , Fk(yπ(n1))), then generate its stage 1’s view by in-

voking the simulator for P1 of permuted OPRF with input (y1, . . . , yn1) and
output (Fk(yπ(1)), . . . , Fk(yπ(n1)));

– generate stage 2’s view (Fk(x1), . . . , Fk(xn2
)) using k with the knowledge of

P2’s input X.

The simulated stage 2’s view is identical to the real one. By the semi-honest
security of permuted OPRF on P1’ side, the stage 1’s simulated view is com-
putationally indistinguishable to the real one. Thereby, the simulated view in
Hybrid1 is computationally indistinguishable to the real one.
Hybrid2: SimP1 creates the simulated view without the knowledge of X, and it
neither picks k nor explicitly picks π:

– generate stage 2’s view by outputting (η1, . . . , ηn2
), where ηi

R←− R; this
implicitly sets Fk(xi) := ηi.
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– for each ei = 1, pick out the associated ηi to form {vj}j∈[m]; for each ei = 0,
pick random values to form {wℓ}ℓ∈[n1−m]; apply a random permutation Π
of ({vj}j∈[m], {wℓ}ℓ∈[n1−m]), treat the result as (Fk(yπ(1)), . . . , Fk(yπ(n1)))
(note that the real permutation π is unknown to the simulator since it
does not know X ∩ Y ); then generate its stage 1’s view by invoking the
simulator for P1 of permuted OPRF with input (y1, . . . , yn1

) and output
(Fk(yπ(1)), . . . , Fk(yπ(n1))).

X ∩ Y

Y X
Fk(xi) := ηi

{Fk(yπ(i))}i∈[n1] :=
Π({vj}j∈[m], {wℓ}ℓ∈[n1−m])

We argue that the simulated views in Hybrid1 and Hybrid2 are computa-
tionally indistinguishable based on the pseudorandomness of F . Let A be an
adversary against F . Given X and Y , A simulates as below:

– query the real-or-random oracle Oror(·) with (x1, . . . , xn1), output the re-
sponse (η1, . . . , ηn1).

– pick a random permutation π;
– query the real-or-random oracle with (yπ(1), . . . , yπ(n1)) and obtain (ζ1, . . . , ζn1

)
in return; then generate its stage 1’s view by invoking the simulator for P1

of permuted OPRF with input (y1, . . . , yn1
) and output (ζ1, . . . , ζn1

).

Clearly, if A queries the real oracle, then its simulation is identical to Hybrid1.
Else, its simulation is identical to that Hybrid2. This reduces the computational
indistinguishability of views in Hybrid1 and Hybrid2 to the pseudorandomness
of Fk(·). Therefore, SimP1

’s simulation is indistinguishable to the real one.

This proves the theorem. ut

D.4 Proof of PSU from mqRPMT

Theorem 12. The PSU derived from the above framework described in Figure 9
is semi-honest secure by assuming the semi-honest security of mqRPMT and OT.

Proof. We exhibit simulators SimP1 and SimP2 for simulating corrupt P1 and P2

respectively, and argue the indistinguishability of the produced transcript from
the real execution. Let |X ∩ Y | = m.

Security against corrupt sender. SimP2
simulates the view of corrupt sender

P2, which consists of P2’s randomness, input, output and received messages. We
formally show SimP2 ’s simulation is indistinguishable from the real execution via
a sequence of hybrid transcripts.
Hybrid0: P2’s view in the real protocol. Note that P2’s view consists of two parts,
i.e., the mqRPMT part of view (stage 1) and the OT part of view (stage 2).

45



Hybrid1: SimP2
first invokes the simulator for client in the mqRPMT with X

as input to generate the stage 1’s part of view, then invokes the simulator for
sender in the OT with {(xi,⊥)}i∈[n2] as input to generate stage 2’s part of view.
By the semi-honest security of mqRPMT on the client side and the semi-honest
security for OT on the sender side, the simulation is indistinguishable to the real
view via standard hybrid argument.

Security against corrupt receiver. SimP1 simulates the view of corrupt re-
ceiver P1, which consists of P1’s randomness, input, output and received mes-
sages. We formally show SimP1

’s simulation is indistinguishable from the real
execution via a sequence of hybrid transcripts.
Hybrid0: P1’s view in the real protocol. Note that P1’s view also consists of two
parts, i.e., the mqRPMT part of view (stage 1) of and the OT part of view (stage
2).
Hybrid1: Given P1’s input Y = (y1, . . . , yn1) and output X ∪ Y , SimP1 creates
the simulated view as below:

– pick a random indication vector e⃗ = (e1, . . . , en2
) with Hamming weight

m = |X ∩ Y |, then generate the output vector z⃗ = (z1, . . . , zn2
) from e⃗ and

X ∪ Y in the following manner: randomly shuffle the (n2 −m) elements in
X\Y , and assign them to zi if ei = 0, then assign zi = ⊥ iff ei = 1; then
invoke the simulator for OT receiver with input e⃗ and output z⃗ and generate
stage 2’s view.

– invoke the simulator for mqRPMT server with input Y and output e⃗ =
(e1, . . . , en2

) to generate stage 1’s view.

It is easy to check that the distribution of e⃗ and z⃗ is identical to that (induced
by the distribution of mqRPMT’s input vector (x1, . . . , xn2

)) in the real protocol.
By the semi-honest security of mqRPMT on the server side and the semi-honest
security for OT on the receiver side, the simulation is indistinguishable to the
real view via standard hybrid argument.

This proves the theorem. ut
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