
Private Set Operations from Multi-Query Reverse Private
Membership Test

Yu Chen ∗ Min Zhang∗ Cong Zhang † Minglang Dong∗ Weiran Liu ‡

Abstract

Private set operations allow two parties to perform secure computation on two private sets, such as
intersection or union related functions. In this paper, we identify a framework for performing private
set operations. At the technical core of our framework is multi-query reverse private membership test
(mqRPMT), which is a natural extension of RPMT recently proposed by Kolesnikov et al. [KRTW19].
In mqRPMT, a client with a vector X = (x1, . . . , xn) interacts with a server holding a set Y . As a
result, the server only learns a bit vector (e1, . . . , en) indicating whether xi ∈ Y but without knowing
the value of xi, while the client learns nothing. We present two constructions of mqRPMT from newly
introduced cryptographic primitive and protocol. One is based on commutative weak pseudorandom
function (cwPRF), the other is based on permuted oblivious pseudorandom function (pOPRF). Both
cwPRF and pOPRF can be realized from the decisional Diffie-Hellman (DDH) like assumptions in
the random oracle model. We also introduce a slightly weak version of mqRPMT dubbed mqRPMT∗,
in which the client also learns the cardinality of X ∩ Y . We show that mqRPMT∗ can be built from
a category of multi-query private membership test (mqPMT) called Sigma-mqPMT, which in turn
can be realized from DDH-like assumptions or oblivious polynomial evaluation. This makes the first
step towards establishing the relation between mqPMT and mqRPMT.

We demonstrate the practicality of our framework with implementations. By plugging our
cwPRF-based mqRPMT to the general framework, we obtain various PSO protocols that are supe-
rior or competitive to the state-of-the-art protocols. For intersection functionality, our protocol is
faster than the most efficient one for small sets. For cardinality functionality, our protocol achieves
a 2.4 − 10.5× speedup in running time and a 10.9 − 14.8× shrinking in communication cost. For
cardinality-with-sum functionality, our protocol achieves a 28.5 − 76.3× speedup in running time
and 7.4× shrinking in communication cost. For union functionality, our protocol is the fisrt one that
attains strict linear complexity. It requires the least concrete computation and communication costs
in all settings, achieving a 2.7 − 17× speedup in running time and 2× shrinking in communication
cost. Concretely, for input set of size 220, our PSU protocol requires roughly 100 MB of communi-
cation, and 16 seconds using 4 threads on a laptop in the LAN setting. For private-ID functionality,
our protocol achieves a 2.7− 4.9× speedup in running time. Moreover, by plugging our FHE-based
mqRPMT∗ to the general framework, we obtain a PSU∗ protocol (the sender additionally learns the
intersection size) suitable for unbalanced setting, whose communication complexity is linear in the
size of the smaller set, and logarithmic in the larger set.

Keywords: PSO, PSU, multi-query RPMT, commutative weak PRF, permuted OPRF

∗Shandong University. Email: yuchen.prc@gmail.com, {zm_min, minglang_dong}@mail.sdu.edu.cn
†SKLOIS, IIE, Chinese Academy of Sciences. Email: zhangcong@iie.ac.cn
‡Alibaba Group. Email: weiran.lwr@alibaba-inc.com

Contents
1 Introduction 1

1.1 Motivation . 2
1.2 Our Contribution . 2
1.3 Technical Overview . 2
1.4 Related Works . 5

2 Preliminaries 6
2.1 Notation . 6
2.2 MPC in the Semi-honest Model . 6
2.3 Private Set Operation . 6

3 Protocol Building Blocks 7
3.1 Oblivious Transfer . 7
3.2 Multi-Query RPMT . 7

4 Review of Pseudorandom Function 8
4.1 Weak PRF from the DDH Assumption . 9
4.2 PRF from the DDH Assumption . 9

5 Commutative Weak Pseudorandom Function 10
5.1 Definition of Commutative Weak PRF . 10
5.2 Construction of Commutative Weak PRF . 11
5.3 mqRPMT from Commutative Weak PRF . 11

6 Permuted Oblivious Pseudorandom Function 13
6.1 Definition of Permuted OPRF . 13
6.2 Construction of Permuted OPRF . 14
6.3 mqRPMT from Permuted OPRF . 16

7 mqRPMT from Sigma-mqPMT 17
7.1 Sigma-mqPMT . 17
7.2 Connection to Sigma-mqPMT . 18

8 Applications of mqRPMT 20
8.1 PSO Framework from mqRPMT . 20
8.2 Private-ID . 22

9 Performance 22
9.1 Implementation Details . 23
9.2 Experimental Setup . 23
9.3 Evaluation of Our Core Protocol . 23
9.4 Benchmark Comparison . 24
9.5 Tips For ECC-based Implementations . 26

10 Summary 27

A Missing Definitions 30
A.1 Weak Pseudorandom EGA . 30

B Instantiations of Sigma-mqPMT 31
B.1 Sigma-mqPMT from DDH . 31
B.2 Sigma-mqPMT from FHE . 31

C Missing Security Proofs 32
C.1 Proof of Permuted OPRF Based on the DDH Assumption 32

2

1 Introduction
Consider two parties, each with a private set of items, want to compute on their respect sets without
revealing any other information to each other. Two-party private set operation (PSO) refers to such
family of interactive cryptographic protocols that takes two private sets X and Y as input, computes
the desired function, and outputs the result to one or both of the participants. If one party obtains the
result, we call this party the receiver and the other party the sender, and refer to the protocol as one-
sided. Two-sided protocol in the semi-honest setting can be realized by having the receiver in one-sided
protocol forward the result to the sender. In what follows, we briefly review two-party PSO protocols in
the semi-honest model in terms of typical functionalities.

Private set intersection. PSI has found many applications including privacy-preserving sharing,
private contact discovery, DNA testing, pattern matching and so on. Due to its importance and wide
applications, in the past two decades PSI has been extensively studied in a long sequence of works and has
become truly practical with extremely fast implementation. The most efficient PSI protocols [KKRT16,
PRTY19, CM20, GPR+21, RS21] mainly rely on symmetric-key operations, except a little public-key
operations in base OT used in the OT extension protocol. We refer to [PSZ18] for a good survey of
different PSI paradigms.
Private computing on set intersection. Certain real-world application scenarios only require par-
tial/aggregated information about the intersection. In this setting fine-grained private computation on
set intersection (PCSI) is needed, such as PSI-card for intersection cardinality [HFH99], PSI-card-sum for
intersection cardinality and sum [IKN+20, GMR+21]. For general-purpose PCSI (also known as circuit-
PSI) [HEK12, PSTY19], the parties learn secret shares of the set intersection, which can be further fed
into generic 2PC to compute g(X ∩ Y) for arbitrary function g.
Private set union. Like PSI, PSU also has numerous applications in practice, such as cyber risk assess-
ment and management via joint IP blacklists and joint vulnerability data. According to the underlying
cryptographic techniques, existing PSU protocols can be roughly divided into two categories. The first
is mainly based on public-key techniques [KS05, Fri07, HN10, DC17]. The second is mainly based on
symmetric-key techniques [KRTW19, GMR+21, JSZ+22]. We refer to [ZCL+23] for a good survey of
existing PSU protocols.

PSO protocols are primarily designed for balanced setting, in which the two sets’s sizes are ap-
proximately the same. Recently, some works begin to consider unbalanced setting, in which one set
is much more larger than the other. Among all PSO protocols, PSI has been extensively studied. In
balanced setting, numerous PSI protocols achieve linear complexity, and the current state-of-the-art
PSI [RR22] is almost as efficient as the naive insecure hash-based protocol. In unbalanced setting,
a series of work [CLR17, CHLR18, CMdG+21] shows how to leverage fully homomorphic encryption
(FHE) to build PSI protocols with sublinear complexity in the larger set size. In contrast to the af-
fairs of PSI, the studies of PCSI and PSU are less satisfactory. As to PCSI, in balanced setting few
protocols [PSTY19, IKN+20] achieve linear complexity, but the practical performance is poor. As pin-
pointed by [GMR+21], semi-honest PCSI – even in the simplest case, like PSI-card – is concretely about
20× slower and requires over 30× more communication than PSI. [CHLR18] also propose PSI-card and
PSI-card-sum protocols based on generic 2PC in unbalanced setting, but these protocols are more of
theoretical interest, and are not accompanied by implementations. As to PSU, no protocol with linear
complexity in either balanced or unbalanced setting is known for a long time being. It is until very
recently, Zhang et al. [ZCL+23] make a breakthrough by proposing the first PSU with linear complexity.
However, their work does not close this issue. Their concrete PSU protocols have large constants in com-
putation and communication complexity, incurring a large efficiency gap compared with PSI: roughly
20× slower and requires 25× more communication than PSI.

It is somewhat surprising that different PSO protocols have significantly different efficiency. Why is
this case? Observe that PSI essentially can be viewed as multi-query private membership test (mqPMT),
which has very efficient realizations in both balanced and unbalanced settings. However, mqPMT gen-
erally does not imply PCSI or PSU. The reason is that mqPMT reveals information about intersection,
which should be hidden from the receiver in PCSI and PSU.

1

1.1 Motivation
Our motivation of this work is threefold. First, the above discussion indicates that the most efficient PSI
protocols may not be easily adapted to PCSI and PSU protocols. Therefore, different approaches are
employed for different private set operations, requiring much more engineering effort. We are motivated
to seek for the minimal common protocol that enables all private set operations via a unified framework.
Second, given the huge efficiency gap between PSI and other closely related protocols, we are also
motivated to give efficient instantiations of the framework to close the gap. Last but not the least, recall
that the seminal PSI protocol known as DH-PSI [Mea86] (related ideas were appeared in [Sha80, HFH99])
is derived from the Diffie-Hellman key-exchange protocol based on the decisional Diffie-Hellman (DDH)
assumption. After roughly four decades, DH-PSI is still the most easily understood and implemented
one among numerous PSI protocols. Somewhat surprisingly, no counterpart is known in the PSU setting
yet. It is curious to know if the DDH assumption can strike back. In summary, we are intrigued to know:

Is there a central building block that enables a unified framework for all private set operations? If so,
can we give efficient instantiations with optimal asymptotic complexity and good concrete efficiency?

Can the DDH assumption strike back with efficient PSU protocols?

1.2 Our Contribution
In this work, we make positive answers to the aforementioned questions. We summarize our contribution
as below.

A framework of PSO. We identify that multi-query reverse private membership test (mqRPMT) is
a “Swiss Army Knife” for various private set operations. mqRPMT itself already implies PSI-card; by
coupling with OT, mqRPMT implies PSI and PSU; by further coupling with simple secret sharing,
mqRPMT implies PSI-card-sum and PSI-card-secret-sharing (further admits general-purpose PCSI with
cardinality). Therefore, mqRPMT enables a unified PSO framework, which can perform a variety of
private set operations in a flexible manner.
Efficient construction of mqRPMT. We propose two generic constructions of mqRPMT. The first
is based on a new cryptographic primitive called commutative weak PRF (cwPRF), while the second
is based on a new secure protocol called permuted oblivious PRF (pOPRF). Both of them can be
realized from DDH-like assumptions in the random oracle model, yielding incredibly simple mqRPMT
constructions with linear communication and computation complexity. Note that the complexity of our
PSO framework is dominated by the underlying mqRPMT. Therefore, all resulting PSO protocols inherit
optimal linear complexity. Notably, the obtained PSU protocol is arguably the most simple and efficient
one among existing protocols.
Connection to mqPMT. mqRPMT is of great theoretical interest since it is the core building block
of the PSO framework. It is thus interesting to investigate the relation between mqRPMT and mqPMT.
Towards this goal, we put forward a variant of mqRPMT called mqRPMT with cardinality (denoted
by mqRPMT∗ hereafter). Compared to the standard mqRPMT, mqRPMT∗ additionally reveals the
intersection size to the client. We show that mqRPMT∗ can be built from a broad class of mqPMT
called Sigma-mqPMT in a black-box manner via the “permute-then-test” approach. This makes the
initial step towards establishing the connection between mqRPMT and mqPMT. We argue that though
mqRPMT∗ deviates from standard mqRPMT in revealing additional information (intersection size) to
the client, it could also be a desirable feature in application scenarios where both parties want to learn
intersection size, for example, PSI-card-sum [IKN+20]. We leave the general connection between mqPMT
and mqRPMT as a challenging open problem.
Evaluations. We give efficient instantiation of our generic framework from cwPRF-based mqRPMT
protocol. We provide C++ implementations. The experimental results demonstrate that almost all
PSO protocols derived from our generic framework are superior or competitive to the state-of-the-art
corresponding protocols.

1.3 Technical Overview
PSO from mqRPMT. As discussed above, mqPMT (a.k.a. PSI) protocol generally is not applicable for
computing PCSI and PSU. We examine the reverse direction, i.e., whether the core protocol underlying

2

PSU can be used for computing PSI and PCSI. We identify that the central protocol beneath all the
existing PSU protocols is actually mqRPMT, which is a generalization of RPMT formalized in [KRTW19].
Roughly speaking, mqRPMT is a two-party protocol between a server holding a set Y and a client holding
a vector X = (x1, . . . , xn). After execution, the server learns an indication bit vector (e1, . . . , en) such
that ei = 1 if and only if xi ∈ Y but without knowing xi, while the client learns nothing. Superficially,
mqRPMT is similar to mqPMT, except that it is the server but not the client learns the test results
instead. This subtle difference turns out to be significant. To see this, note that in mqRPMT the
intersection information (a.k.a. xi and ei) are shared between the two parties, while in mqPMT the
intersection information are entirely known by the client. In light of this difference, mqRPMT is not
only particularly suitable for functionalities that have to keep intersection private, but also retains
the necessary information to compute the intersection. With mqRPMT in hand, PSI-card protocol is
immediate. PSI (resp. PSU) protocol can be done by having the receiver (playing the role of server)
and the sender (playing the role of client) invoke a mqRPMT protocol in the first place, then carry out
n one-sided OTs with 1− ei (resp. ei) and xi. PSI-card-sum and PSI-card-secret-sharing protocols can
be constructed by further coupling with OT and simple secret-sharing trick.

Next, we show two generic constructions of mqRPMT. For convenience of narration, we explicitly
parameterize RPMT and PMT with two parameters n1 and n2, namely (n1, n2)-(R)PMT, where n1 is
the size of server’s set Y , n2 is the length of client’s vector X, a.k.a. the number of membership test
queries.
mqRPMT from cwPRF. We observe that private equality test (PEQT) protocol [PSZ14] not only
can be viewed as an extreme case of mqPMT, but can also be viewed as an extreme case of mqRPMT.
Under the terminology introduced above, PEQT is essentially (1, 1)-PMT and (1, 1)-RPMT. We choose
PEQT as the starting point of our first mqRPMT construction.

The basic idea of building (1, 1)-RPMT protocol that is amenable to extension is oblivious joint
encoding, i.e., an element can only be encoded to a codeword by two parties in a joint manner, while
the process reveals nothing to the party without the element. To implement this idea, we introduce a
new cryptographic primitive called commutative weak PRF (cwPRF). Let F : K ×D → R be a family
of weak PRF, where R ⊆ D. We say F is commutative if for any k1, k2 ∈ K and any x ∈ D, it holds
that Fk1

(Fk2
(x)) = Fk2

(Fk1
(x)). In other words, the two composite functions Fk1

◦ Fk2
and Fk2

◦ Fk1

are essentially the same function, say, F̂ .
Now we are ready to describe the construction of (1, 1)-RPMT from cwPRF. The server P1 holding

y and the client P2 holding x can conduct PEQT functionality via the following steps: (1) P1 and P2

generate cwPRF key k1 and k2 respectively, and map their items to domain D of F via a common
cryptographic hash function H, which will be modeled as a random oracle; (2) P1 computes and sends
Fk1

(H(y)) to P2; (3) P2 computes and sends Fk2
(H(x)) and Fk2

(Fk1
(H(y))) to P1; (4) P1 then learns the

test result by comparing Fk1
(Fk2

(H(x))) =?Fk2
(Fk1

(H(y))). The commutative property of F ensures the
correctness. The weak pseudorandomness of F guarantees that P2 learns nothing and P1 learns nothing
beyond the test result. In the above construction, Fk2(Fk1(H(·))) = Fk1(Fk2(H(·))) = F̂k(H(·)) serves
as a pseudorandom encoding function in the joint view, while Fk1(H(·)) and Fk2(H(·)) serve as a partial
encoding function in the individual views of server and client respectively.

We then extend the above (1, 1)-RPMT protocol to (n1, 1)-RPMT. However, naive repetition by
sending back Fk2

(Fk1
(H(yi))) for each yi ∈ Y in the same order of server’s first move message Fk1

(H(yi))
does not lead to a secure (n1, 1)-RPMT. The reason is that {F̂k(H(yi))}i∈[n1] constitutes an order-
preserving pseudorandom encoding of (y1, . . . , yn1). As a consequence, the server will learn the exact
value of x if x ∈ Y . In order to perform the membership test in an oblivious manner, the idea is to
make the pseudorandom encoding of (y1, . . . , yn1

) independent of the order known by the server. A
straightforward approach is to shuffle {F̂k(H(yi))}. In this way, we obtain a (n1, 1)-RPMT protocol from
cwPRF, and can further batch it to a full-fledged (n1, n2)-RPMT protocol by reusing the encoding key
k2. A simple calculation shows that for a (n1, n2)-RPMT protocol the computation cost is (n1 + n2)
times mapping, (2n1 + n2) times evaluation of F and n2 times look-up, and the communication cost is
(2n1 + n2) elements in the range of F . The resulting mqRPMT protocol is optimal in the sense that
both computation and communication complexity are linear to the set size. We can further reduce the
communication cost by inserting {F̂ (H(yi))} into an order-hiding data structure such as Bloom filter,
instead of shuffling them.

We show that cwPRF can be realized from DDH-like assumptions. Henceforth, DDH strikes back

3

with an incredibly simple PSU protocol. This once again demonstrates that the DDH assumption is
truly a golden goose in cryptography.
mqRPMT from permuted OPRF. We choose (n, 1)-RPMT as the starting point of our second
mqRPMT construction. The idea is oblivious permuted encoding, i.e., only one party say P2 is able to
encode, and the other party say P1 can learn the codewords of its elements (y1, . . . , yn1

) in a permuted
order, while P2 learns nothing. A tempting approach to implement this idea is using multi-point OPRF
that underlies many PSI protocols [PRTY19, CM20]. More precisely, having P1 (acts as receiver) and
P2 (acts as sender) engage in an OPRF protocol. Eventually, P1 obtains PRF values of (y1, . . . , yn1

) as
encodings, and P2 obtains a PRF key k. However, OPRF does not readily enable oblivious permuted
encoding. The reason is that the standard OPRF functionality always gives the PRF values with the
same order of inputs. To remedy this issue, we introduce a new cryptographic protocol called permuted
OPRF (pOPRF). pOPRF can be viewed as a generalization of OPRF. The difference is that the sender
additionally obtains a random permutation π over [n1] besides PRF key k, while the receiver obtains
PRF values in a permuted order as per π. pOPRF immediately implies a (n1, 1)-RPMT protocol: The
server with Y = (y1, . . . , yn1

) and the client with X = {x} first engage in a pOPRF protocol. As a result,
the server obtains {Fk(yπ(i))}i∈[n1], while the client learns a PRF key k and a permutation π. The client
then computes and sends Fk(x) to the server as RPMT query. Finally, the server learns if x ∈ Y by
testing whether Fk(x) ∈ {Fk(yπ(i))}i∈[n1], but learns nothing more since its PRF values are of permuted
order. At a high level, Fk(·) serves as an encoding function in client’s view, while Fk(π(·)) serves as a
pseudorandom and permuted encoding function in server’s view. Extending the above (n1, 1)-RPMT to
(n1, n2)-RPMT is straightforward by having the client reuse k and send {Fk(xi)}i∈[n2] as RPMT queries.

The question remains is how to build pOPRF. One common approach to build OPRF is “mask-then-
unmask”. We choose this category of OPRF as the starting point. The rough idea is exploiting the input
homomorphism to mask inputs1, then unmask the outputs. If the mask procedure is different per input,
then the unmask procedure must be carried out accordingly. Therefore, OPRF protocols of this case
cannot be easily adapted to pOPRF, since the receiver is unable to perform the unmask procedure over
permuted masked outputs correctly, namely, to recover outputs in permuted order. The above analysis
indicates us that if the masking procedure can be done via a unifying manner, then the receiver might
be able to unmask the permuted masked outputs correctly. Observe that the simplest way to perform
unified masking is to apply a weak pseudorandom function Fs to the intermediate input H(x). To enable
efficient unmask procedure, we further require that Fs is a permutation and commutative with respect
to Fk. This yields a simple pOPRF construction from commutative weak pseudorandom permutation.
More precisely, to build pOPRF, the sender picks a random PRP key k for F , while the receiver with
input X = (x1, . . . , xn) picks a random PRP key s for F . The receiver then sends {Fs(H(xi))}i∈[n] to
the sender. Upon receiving the masked intermediate inputs, the sender applies Fk to them, then sends
the results in permuted order, a.k.a. {Fk(Fs(H(xπ(i))))}i∈[n]. Finally, the receiver applies F−1

s to the
permuted masked outputs, and will obtain {Fk(H(xπ(i)))}i∈[n] by the commutative property.

Note that many efficient OPRF constructions [CM20] seem not amenable to pOPRF construction due
to lack of nice algebra structures. This somehow explains the efficiency gap between the state-of-the-art
PSI and PCSI/PSU.
mqRPMT∗ from Sigma-mqPMT. Towards the goal of studying the connection between mqRPMT
and mqPMT, we first abstract a category of mqPMT protocols called Sigma-mqPMT. The starting
point of Sigma-mqPMT is Sigma-PMT. Roughly speaking, Sigma-PMT is a three-move protocol, which
proceeds as below: (1) in the first move, the server holding a set Y sends a message a to the client, where
a is best interpreted as an encoding of Y ; (2) in the second move, the client makes a test query q of its
item x; (3) in the last move, the server responds with z, and eventually the client can decide if x ∈ Y
by running algorithm Test(a, q, x, z). To enable efficient parallel composition, we introduce the following
two properties for Sigma-PMT: (i) reusable property, which ensures the first move message can be safely
reused over multi-instance; (ii) context-independent property, which means the test query only depends
on the item in test. With these two properties, one can build mqPMT by running multiple instances of
Sigma-PMT in parallel, without increasing round complexity. If the underlying Sigma-PMT additionally
satisfies stateless testing, namely, Test algorithm can be done without learning (q, x), we refer to the
resulting mqPMT as Sigma-mqPMT, which captures the common form of several PSI protocols [Mea86,

1Standard pseudorandomness denies input homomorphism. Rigorously speaking, we utilize the homomorphism over
intermediate input.

4

FIPR05, CLR17]. By utilizing the stateless property, we can tweak Sigma-mqPMT to permuted mqPMT
via the “permute-then-test” approach, without incurring computation and communication overhead,
while permuted mqPMT instantly implies mqRPMT∗. Therefore, we can expand a series of results in PSI
setting to PSO setting, on the premise that revealing intersection size is acceptable. Notably, by applying
the conversion to fully homomorphic encryption (FHE) based Sigma-mqPMT, we obtain an efficient
mqRPMT∗ in unbalanced setting, which gives rise to the first PSU∗ protocol whose communication
complexity is sublinear to the size of the large set X.

In Figure 1, we give an overview of the main contribution of this work.

mqRPMTSection 8

commutative
weak PRF

permuted
oblivious PRF

enhanced version
Section 5 Section 6

PSI/PSU PSI-card-[sum/secret-sharing] PSI-card

OT OT+SS

Sigma-mqPMT

permuted
mqPMT

shuffle-then-test

mqRPMT∗

Section 7

Figure 1: An overview of our main results. The rectangles denote our contributions. The rounded
rectangles denotes notions in previous works.

1.4 Related Works
We review previous PSI-card, PSI-card-sum and PSU protocols that are related to our work. Ion et
al. [IKN+20] showed how to transform single-point OPRF-based [PSZ14, KKRT16], garbled Bloom filter-
based [DCW13, RR17], and DDH-based [HFH99] PSI protocols into ones for computing PSI-card-sum
by leveraging additively homomorphic encryption (AHE). However, their conversions are not efficient
due to the usage of AHE, and as noted by the authors, detailed conversions to each category of protocols
differ significantly, especially in the way of making use of the underlying AHE. In contrast to their work,
we distill a broad class of PSI protocols as Sigma-mqPMT, then show how to tweak it to mqRPMT∗ in
a generic and black-box manner, without relying on any additional cryptographic tools. Our conversion
works in a more abstract and lower level, and such generality lends it may find more potential applications.
Miao et al. [MPR+20] put forward shuffled distributed oblivious PRF as a central tool to build PSI-card-
sum with malicious security. Compared to shuffled distributed OPRF, our notion of permuted OPRF
is much simpler and should be best viewed as a useful extension of standard OPRF. The conceptual
simplicity lends it can be easily built from commutative weak pseudorandom permutation and find more
potential applications. For example, permuted OPRF immediately implies permuted multi-point private
equality test, which is a key tool in building FHE-based PSU [TCLZ22]. Davidson and Cid [DC17]
proposed a framework for constructing PSI, PSU, and PSI-card. Their protocols have linear complexity,
but both the computation and communication complexities additionally rely on the statistical security
parameter λ (a typical concrete choice is 40), resulting in low performance in practice. Kolesnikov
et al. [KRTW19] showed that the performance of PSU in [DC17] is four orders of magnitude worse
than the state-of-the-art at that time-being. Garimella et al. [GMR+21] proposed a framework for all
private set operations. At their technical core is a new protocol called permuted characteristic, which
could be viewed as an extension of mqRPMT protocol. Nevertheless, the oblivious shuffle in permuted
characteristic functionality is not necessary for PSO, but seems unavoidable due to the use of oblivious
switching networks. This incurs superlinear complexity to permuted characteristic protocol and all the
enabling PSO protocols. Moreover, we note that the PSI-card-sum functionality defined in [GMR+21]
differs from from the original functionality defined in [IKN+20]. The distinction is that in the original

5

functionality of PSI-card-sum, both parties are given the cardinality of intersection, and the party initially
holding values is also given the intersection sum, while in the functionality described in [GMR+21], the
party without holding values is given the cardinality and sum of intersection. To highlight this subtle
difference, we prefer to call the functionality presented in [GMR+21] as reverse PSI-card-sum.

Concurrent work. Very recently, Zhang et al. [ZCL+23] propose a generic construction of mqRPMT
with linear complexity from oblivious key-value store, set-membership encryption and oblivious vec-
tor decryption-then-test functionality. By instantiating their generic construction from public-key and
symmetric-key encryption respectively and combining OT, they make the breakthrough by giving the
first PSU protocol with optimal linear complexity. However, as noted by the authors, their more ef-
ficient PKE-based construction is leaky, failing to satisfy the standard security of mqRPMT. Besides,
the communication complexity of their two constructions additionally depends on the statistical security
parameter. Compared with their work, our construction of mqRPMT is much simpler. The instantiation
meets the standard definition, and achieves strict linear complexity. Moreover, we explore mqRPMT as
a central building block for a family of private set operations, while their main focus is limited to PSU.

2 Preliminaries
2.1 Notation
We use κ and λ to denote the computational and statistical parameter respectively. Let Zn be the set
{0, 1, . . . , n−1}, Z∗

n = {x ∈ Zn | gcd(x, n) = 1}. We use [n] to denote the set {1, . . . , n}, and use Perm[n]
to denote all the permutations over the set {1, . . . , n}. We assume that every set X has a default order
(e.g. lexicographical order), and write it as X = {x1, . . . , xn}. For a set X, we use |X| to denote its size
and use x

R←− X to denote sampling x uniformly at random from X. We use (x1, . . . , xn) to denote a
vector, and its ith element is xi. A function is negligible in κ, written negl(κ), if it vanishes faster than
the inverse of any polynomial in κ. A probabilistic polynomial time (PPT) algorithm is a randomized
algorithm that runs in polynomial time.

2.2 MPC in the Semi-honest Model
We use the standard notion of security in the presence of semi-honest adversaries. Let Π be a two-party
protocol for computing the function f(x1, x2), where party Pi has input xi. We define security in the
following way. For each party Pi where i ∈ {1, 2}, let ViewPi(x1, x2) denote the view of party Pi during
an honest execution of Π on inputs x1 and x2. The view consists of Pi’s input, random tape, and all
messages exchanged as part of the Π protocol.

Definition 2.1. Two-party protocol Π securely realizes f in the presence of semi-honest adversaries if
there exists a simulator Sim such that for all inputs x1, x2 and all i ∈ {1, 2}:

Sim(i, xi, f(x1, x2)) ≈c ViewPi
(x1, x2)

Roughly speaking, a protocol is secure if Pi with xi learns no more information other than f(x1, x2)
and xi.

2.3 Private Set Operation
PSO is a special case of secure two-party computation. We call the two parties engaging in PSO the
sender and the receiver. The sender holds a set X of size n1, and the receiver holds a set Y of size n2 (we
write n1 = n2 = n in balanced setting). The ideal PSO functionality (depicted in Figure 2) computes
the intersection, union, cardinality, intersection sum with cardinality and intersection secret-sharing with
cardinality.

6

Parameters: The receiver P1’s input size n1 and the sender P2’s input size n2.
Inputs: The receiver P1 inputs a set of elements Y = {y1, . . . , yn1

} where yi ∈ {0, 1}ℓ. The sender
P2 inputs a set of elements X = {x1, . . . , xn2

} where xi ∈ {0, 1}ℓ and possibly a set of values
V = {v1, . . . , vn2

} where vi ∈ Zp for some integer modular p.
Output:

• intersection: The receiver P1 gets X ∩ Y .

• union: The receiver P1 gets X ∪ Y .

• union∗: The receiver P1 gets X ∪ Y . The sender P2 gets |X ∩ Y |.

• card: The receiver P1 gets |X ∩ Y |.

• card-sum: The receiver P1 gets |X ∩ Y |. The sender P2 gets |X ∩ Y | and S =
∑

i:xi∈Y vi.

• card-secret-sharing: The receiver P1 gets |X ∩ Y | and {z1i }i∈[n2]. The sender P2 gets
{z2i }i∈[n2]. For each (z1i , z

2
i), z1i ⊕ z2i = xi if xi ∈ Y and z1i ⊕ z2i = 0 otherwise.

Figure 2: Ideal functionality FPSO for PSO

3 Protocol Building Blocks
3.1 Oblivious Transfer
Oblivious Transfer (OT) [Rab05] is a central cryptographic primitive in the area of secure computation.
1-out-of-2 OT allows a sender with two input strings (m0,m1) and a receiver with an input choice
bit b ∈ {0, 1}. As a result of the OT, the receiver learns mb and neither party learns any additional
information. In some cases, it suffices to use a “one-sided” version of OT, which conditionally transfers
the only item of the sender or nothing to the receiver depending on the choice bit.

Though expensive public-key operations is unavoidable for a single OT, a powerful technique called
OT extension [IKNP03, KK13, ALSZ15] allows one to perform n OTs by only performing O(κ) public-key
operations and O(n) fast symmetric-key operations. In Figure 3 we formally define the ideal functionality
for OT that provides n parallel instances of OT.

Parameters: Number of OT instances n and message length ℓ.
Inputs: The sender P1 inputs {(mi,0,mi,1)}i∈n, where each mi,b ∈ {0, 1}ℓ. The receiver P2 inputs
a bit vector (b1, . . . , bn) ∈ {0, 1}n.
Output: The sender P1 gets nothing. The receiver P2 gets {mi,bi}i∈[n].

Figure 3: Ideal functionality FOT for OT

3.2 Multi-Query RPMT
RPMT [KRTW19] refers to a protocol where the client with input x interacts with a server holding a set
Y . As a result, the server learns (only) the bit indicating whether x ∈ Y , while the client learns nothing
about the set Y . The default notion of RPMT allows the client to query for a single element. While
this procedure can be repeated several times, one may seek more efficient solutions allowing the client to
make n distinct queries at a reduced cost. It is straightforward to define this generalized notion of n-time
RPMT. Hereafter, we refer to n-time RPMT as multi-query RPMT. In Figure 4 we formally define the
ideal functionality for mqRPMT. We also define a relaxed version of mqRPMT called mqRPMT∗, in
which the client is given |X ∩ Y |.

7

Parameters: The server P1’s set size n1 and number of RPMT queries n2 by the client P2.
Inputs: The server P1 inputs a set Y = (y1, . . . , yn1), where yi ∈ {0, 1}ℓ. The client P2 inputs a set
X = (x1, . . . , xn2

) (should be interpreted as a vector), where xi ∈ {0, 1}ℓ.
Output: The server P1 gets a vector e⃗ = (e1, . . . , en2

) ∈ {0, 1}n2 , where ei = 1 if xi ∈ Y and ei = 0
otherwise. The client P2 gets nothing.

Figure 4: Ideal functionality FmqRPMT for multi-query RPMT

Family of PMT protocols. For completeness and fixing terminology, we are tempting to systematically
list the whole family of PMT protocols. We identify two characteristics of PMT protocols. One is
direction, which consists of two options, namely forward or reverse. Standard option means the indication
bit indicates the membership of the receiver’s elements, while reverse option means the indication bit
indicates the membership of the sender’s elements. The other one is order, which also consists of two
options, namely ordered and permuted. The ordered option means the indication bit is of the right
order (known by the receiver). The permuted option means the indication bit is of the permuted order
unknown by the sender. By mix-match two characteristics, we obtain four types PMT protocols, shown
in Table 1.

Table 1: The family of PMT protocols

Protocol Direction Order Direct usageforward reverse ordered permuted
mqPMT ✓ ✓ PSI

mqRPMT ✓ ✓ PSI-card
permuted mqPMT ✓ ✓ PSI-card

permuted mqRPMT ✓ ✓ PSI-card

mqPMT and PSI are the same protocol under different names. mqRPMT is formalized in [KRTW19,
ZCL+23]. Permuted mqRPMT is introduced in [GMR+21] under the name of permuted characteris-
tic. To the best of our knowledge, the notion of permuted mqPMT is new to this work, which could
be viewed as a high-level abstraction of the DH-based PSI-card protocol due to [HFH99].

4 Review of Pseudorandom Function
In this section, we recap the standard notions of PRF, as well as the canonical construction from the DDH
like assumption. Looking ahead, we will build more advanced variants of PRF with richer properties on
these basis. We first recall the notion of standard pseudorandom functions (PRFs) [GGM86].
Definition 4.1 (PRF). A family of PRFs consists of three polynomial-time algorithms as follows:

• Setup(1κ): on input a security parameter κ, outputs public parameter pp. pp specifies a family of
keyed functions F : K ×D → R, where K is the key space, D is domain, and R is range.

• KeyGen(pp): on input pp, outputs a secret key k
R←− K.

• Eval(k, x): on input k ∈ K and x ∈ D, outputs y ← F (k, x). For notation convenience, we will
write F (k, x) as Fk(x) interchangeably.

The standard security requirement for PRF is pseudorandomness.
Pseudorandomness. Let A be an adversary against PRF and define its advantage as:

AdvA(κ) = Pr

β′ = β :

pp← Setup(1κ);
k ← KeyGen(pp);
β ← {0, 1};
β′ ← AOror(β,·)(κ);

− 1

2
,

8

where Oror(β, ·) denotes the real-or-random oracle controlled by β, i.e., Oror(0, x) = Fk(x), Oror(1, x) =
H(x) (here H is chosen uniformly at random from all the functions from D to R2). A can adaptively
access the oracle Oror(β, ·) polynomial many times. We say that F is pseudorandom if for any PPT
adversary AdvA(κ) is negligible in κ. We refer to such security as full PRF security.

Sometimes the full PRF security is not needed and it is sufficient if the function cannot be dis-
tinguished from a uniform random one when challenged on random inputs. The formalization of such
relaxed requirement is weak pseudorandomness, which is defined the same way as pseudorandomness
except that the inputs of oracle Oror(b, ·) are uniformly chosen from D by the challenger instead of
adversarially chosen by A. PRF that satisfy weak pseudorandomness are referred to as weak PRF.

4.1 Weak PRF from the DDH Assumption
We recall the folklore weak PRF from the DDH assumption as below.

• Setup(1κ): runs GroupGen(1κ)→ (G, g, p), outputs pp = (G, g, p). pp defines a family of functions
from Zp ×G to G, a.k.a. on input k ∈ Zp and x ∈ G outputs Fk(x) = xk.

• KeyGen(pp): outputs k
R←− Zp.

• Eval(k, x): on input k ∈ Zp and x ∈ D, outputs y ← xk.

The following theorem establishes its pseudorandomness based on the DDH assumption.

Theorem 4.1. Fk(x) is a family of weak pseudorandom functions assuming the hardness the DDH
assumption holds w.r.t. GroupGen(1κ)→ (G, g, p).

Proof. DDH assumption states that DDH tuple (ga, gb, gab) and random tuple (ga, gb, gc) are computa-
tionally indistinguishable. By exploiting the random self-reducibility of the DDH problem [NR95], the
standard DDH assumption implies that (ga, gb1 , . . . , gbn , gab1 , . . . , gabn) and (ga, gb1 , . . . , gbn , gc1 , . . . , gcn)

are computationally indistinguishable, where a, bi, ci
R←− Zp. We are now ready to reduce the weak pseudo-

randomness of Fk(·) based on the DDH assumption. Let B be an adversary against the DDH assumption.
Given a DDH challenge instance (ga, gb1 , . . . , gbn , gc1 , . . . , gcn), B interacts with an adversary A in the
weak pseudorandomness experiment, with the aim to determine if ci = abi or ci is a random value.

Setup: B sends pp = (G, g, p) to A. B implicitly sets a as the key of PRF.
Real-or-random query: Upon receiving the i-th query to oracle Oror, B sets the i-th random input xi :=

gbi , computes yi = gci , then sends (xi, yi) to A.
Guess: A makes a guess β′ ∈ {0, 1} for β, where ‘0’ indicates real mode and ‘1’ indicates random mode.
B forwards β′ to its own challenger.

Clearly, if ci = abi for all i ∈ [n], then A simulates the real oracle. If ci are random values, then A
simulates the random oracle. Thereby, B breaks the DDH assumption with the same advantage as A
breaks the pseduorandomness of Fk(·).

Remark 4.1. We note that Fk(x) = xk is actually a permutation over G, and it is efficiently invertible.

4.2 PRF from the DDH Assumption
We next recall the standard PRF from the DDH assumption known as HashDH presented in [NPR99].
The construction is very similar to the weak PRF construction. The only modification is to map the
input to G via a cryptographic hash function H first, then apply Fk in a cascade way, yielding a composite
function Fk ◦ H : D → G. By leveraging the programmability of H, we reduce to pseudorandomness
of the composite function Fk ◦ H to the weak pseudorandomness of Fk. In other words, random oracle
amplifies weak pseudorandomness to standard pseudorandomness.

For completeness, we provide the details as below.
2To efficiently simulate access to a uniformly random function H from D to R, one may think of a process in which

the adversary’s queries to Oror(1, ·) are “lazily” answered with independently and randomly chosen elements in R, while
keeping track of the answers so that queries made repeatedly are answered consistently.

9

• Setup(1κ): runs GroupGen(1κ) → (G, g, p), picks a cryptographic hash function H from domain D
to G, outputs pp = (G, g, p,H). pp defines a family of functions from Zp × D to G, which takes
k ∈ Zp and x ∈ D as input and outputs Fk(H(x)) = H(x)k.

• KeyGen(pp): outputs k
R←− Zp.

• Eval(k, x): on input k ∈ Zp and x ∈ D, outputs H(x)k.

The following theorem establishes its pseudorandomness based on the DDH assumption.

Theorem 4.2. Fk(H(x)) is a family of PRF assuming H is a random oracle and the DDH assumption
holds w.r.t. GroupGen(1κ)→ (G, g, p).

Proof. We now reduce the pseudorandomness of Fk(H(·)) to the hardness of DDH problem. Let B be
an adversary against the DDH problem. Given a DDH challenge instance (ga, gb1 , . . . , gbn , gc1 , . . . , gcn),
B interacts with an adversary A in the pseudorandomness experiment, with the aim to determine if
ci = abi or ci is a random value. B simulates the random oracle H and real-or-random oracle as below:

• Setup: B sends pp = (G, g, p,H) to A, and implicitly sets a as the key of PRF.

• Random oracle query: for random oracle (RO) query 〈xi〉, B programs H(xi) := gbi .

• Real-or-random query: without loss of generality, it is safe to assume adversary has already made
the corresponding RO queries before making the evaluation queries. For evaluation query 〈xi〉, B
returns yi := gci to A.

• Guess: A makes a guess β ∈ {0, 1}, where ‘0’ indicates real mode and ‘1’ indicates random mode.
B forwards β to its own challenger.

Clearly, if ci = abi for all i ∈ [n], then A simulates the real oracle. If ci are random values, then A
simulates the random oracle. Thereby, B breaks the DDH assumption with the same advantage as A
breaks the pseduorandomness of Fk(H(·)).

Remark 4.2. (Weak) PRF can be built from weak pseudorandom group action (c.f. Definition in Ap-
pendix A.1) in a similar way.

5 Commutative Weak Pseudorandom Function
5.1 Definition of Commutative Weak PRF
We first formally define two standard properties for keyed functions.

Composable. For a family of keyed functions F : K ×D → R, F is 2-composable if R ⊆ D, namely,
for any k1, k2 ∈ K, the function Fk1

(Fk2
(·)) is well-defined. In this work, we are interested in a special

case namely R = D.
Commutative. For a family of composable keyed functions, we say it is commutative if:

∀k1, k2 ∈ K, ∀x ∈ D : Fk1
(Fk2

(x)) = Fk2
(Fk1

(x))

It is easy to see that the standard pseudorandomness denies commutative property. Consider the
following attack against the standard pseudorandomness of Fk as below: the adversary A picks k′ R←− K,
x

R←− D, and then queries the real-or-random oracle at point Fk′(x) and point x respectively, receiving
back responses y′ and y. A then outputs ‘1’ iff Fk′(y) = y′. Clearly, A breaks the pseudorandomness
with advantage 1/2. Provided commutative property exists, the best security we can expect is weak
pseudorandomness. Looking ahead, weak pseudorandomness and commutative property may co-exist
based on some well-studied assumptions.

Definition 5.1 (Commutative Weak PRF). Let F be a family of keyed functions K×D → D. F is called
commutative weak PRF if it satisfies weak pseudorandomness and commutative property simultaneously.
If F is a permutation, we say F is a commutative weak pseudorandom permutation (cwPRP).

10

Further generalization. Instead of sticking to one family of keyed functions, commutative property
can be defined over two families of keyed functions. Let F be a family of weak PRFs from K ×D to D,
G be a family of weak PRFs S ×D to D. If the following equation holds,

∀k ∈ K, s ∈ S, ∀x ∈ D : Fk(Gs(x)) = Gs(Fk(x))

we say (F,G) is a pair of cwPRF.

Remark 5.1. We note that our notion of cwPRF is similar to but strictly weaker than a previous no-
tion called commutative encryption [AES03]. The difference is that cwPRF neither requires Fk be a
permutation nor F−1

k be efficiently computable.

5.2 Construction of Commutative Weak PRF
We observe that the weak PRF construction presented in Section 4.1 already satisfies commutative
property. This gives us a simple cwPRF construction from the DDH assumption.

5.3 mqRPMT from Commutative Weak PRF
In Figure 5, we show how to build mqRPMT from cwPRF F : K × D → D and cryptographic hash
function H : {0, 1}ℓ → D.

Parameters: The server P1’s set size n1 and the client P2’s set size n2, cwPRF F : K ×D → D,
and hash function H : {0, 1}ℓ → D.
Inputs: The server P1 inputs a set Y = {y1, . . . , yn1

}, where yi ∈ {0, 1}ℓ. The client P2 inputs a
set X = {x1, . . . , xn1

} (should be interpreted as a vector), where xi ∈ {0, 1}ℓ.
Protocol:

1. P1 picks k1
R←− K, then sends {Fk1(H(yi))}i∈[n1] to P2.

2. P2 picks k2
R←− K, then computes and sends {Fk2

(H(xi)))}i∈[n2] to P1. P2 also
computes {Fk2

(Fk1
(H(yi)))}i∈[n1], picks a random permutation π

R←− [n1], then sends
{Fk2

(Fk1
(H(yπ(i))))}i∈[n1] to P1. An alternative choice instead of explicit shuffle is insert-

ing {Fk2
(Fk1

(H(yi)))}i∈[n1] to a Bloom filter, then sends the resulting filter to P1. We slightly
abuse the notation, and still use Ω to denote the Bloom filter.

3. P1 computes {Fk1(Fk2(H(xi)))}i∈[n2], then sets ei = 1 iff Fk1(Fk2(H(xi))) ∈ Ω.

F : K ×D → D, H : {0, 1}ℓ → D

P1 (server)
Y = (y1, . . . , yn1)

P2 (client)
X = (x1, . . . , xn2)

k1
R←− K

{Fk1(H(yi))}i∈[n1]

π
R←− Perm[n1]

k2
R←− K

{Fk2(H(xi))}i∈[n2]

Ω← {Fk2(Fk1(H(yπ(i))))}i∈[n1]

Ω← BF({Fk2(Fk1(H(yi)))}i∈[n1])

set ei = 1 iff
Fk1(Fk2(H(xi))) ∈ Ω

Figure 5: Multi-query RPMT from commutative weak PRF

Remark 5.2. We observe that thanks to the nice properties of cwPRF, the same cwPRF-based mqRPMT
protocol can also be tweaked to permuted mqPMT by checking if F̂k(H(yπ(i))) ∈ {F̂k(H(xi))}i∈[n2].

11

Correctness. The above protocol is correct except the event E that Fk1(Fk2(H(x))) = Fk1(Fk2(H(y)))
for some x 6= y occurs. In what follows, we fix a tuple (x, y) such that x 6= y. Let E0 be the event
H(x) = H(y). By the collision resistance of H, we have Pr[E0] = 2−κ. Let E1 be the event that
H(x) 6= H(y) but Fk1

(Fk2
(H(x))) = Fk1

(Fk2
(H(y))), which can further be divided into sub-cases E10—

Fk2
(H(x)) = Fk2

(H(y)) and E11—Fk2
(H(x)) 6= Fk2

(H(y)) but Fk1
(Fk2

(H(x))) = Fk1
(Fk2

(H(y))). By the
weak pseudorandomness of F , we have Pr[E10] = (1− Pr[E0]) · 1/|D|, and Pr[E11] = (1− Pr[E0]) · (1−
1/|D|) · 1/|D|. If |D| = ω(κ), then both Pr[E0], Pr[E10] and Pr[E11] are negligible in κ. Therefore, by
union bound we have Pr[E] ≤ n1n2 · (Pr[E0] + Pr[E10] + Pr[E11]) = negl(κ).

Theorem 5.1. The multi-query RPMT protocol described in Figure 5 is secure in the semi-honest model
assuming H is a random oracle and F is a family of cwPRFs.

Proof. We exhibit simulators SimP1
and SimP2

for simulating corrupt P1 and P2 respectively, and argue
the indistinguishability of the simulated transcript from the real execution. Let |X ∩ Y | = m.

Security against corrupt client. SimP2 simulates the view of corrupt client P2, which consists of P2’s
randomness, input, output and received messages. We formally show SimP2

’s simulation is indistinguish-
able from the real execution via a sequence of hybrid transcripts.
Hybrid0: P2’s view in the real protocol.
Hybrid1: Given P2’s input X, SimP2

chooses the randomness for P1 (i.e., picks k1
R←− K), and simulates

with the knowledge of Y .

• RO query: SimP2
emulates the random oracle H honestly. For each query 〈zi〉, SimP2

picks αi
R←− D,

and assigns H(zi) := αi.

• SimP2 outputs (Fk1(H(y1)), . . . , Fk1(H(yn1))).

X ∩ Y

Y X

for zi ∈ D, H(zi) := αi
R←− D

Clearly, SimP2
’s simulated view in Hybrid1 is identical to P2’s real view.

Hybrid2: SimP2
does not choose the randomness for P1 (i.e., picks k1

R←− K), and simulates without the
knowledge of Y . It emulates the random oracle H honestly as before, and only changes the simulation
of P1’s message.

• SimP2 outputs (η1, . . . , ηn1) where ηi
R←− D.

We argue that the simulated view in Hybrid1 and Hybrid2 are computationally indistinguishable.
More precisely, a PPT adversary A (with knowledge of X and Y) against cwPRF (with secret key k) is
given n tuples (γi, ηi) where γi

R←− D, and is asked to distinguish if ηi = Fk(γi) or ηi are random values.
A implicitly sets P1’s randomness k1 := k, and simulates as below.

• RO query: for each random oracle query 〈zi〉, if zi /∈ Y , picks αi
R←− D and sets H(zi) := αi; if

zi ∈ Y , sets H(zi) := γi.

• outputs (η1, . . . , ηn1).

X ∩ Y

Y X

for zi /∈ Y , H(zi) := αi
R←− D

for zi ∈ Y , H(zi) := γi
R←− D

If ηi = Fk(γi) for i ∈ [n1], then A’s simulation is identical to Hybrid1. If ηi are random values, then
A’s simulation is identical to Hybrid2.

Security against corrupt server. SimP1 simulates the view of corrupt server P1, which consists
of P1’s randomness, input, output and received messages. We formally show SimP1 ’s simulation is
indistinguishable from the real execution via a sequence of hybrid transcripts.

12

Hybrid0: P1’s view in the real protocol.
Hybrid1: Given P1’s input Y and output (e1, . . . , en1), SimP1 chooses the randomness for P2 (i.e., picks
k2

R←− K and a random permutation π over [n1]), and simulates with the knowledge of X.

• RO queries: SimP1 emulates the random oracle H honestly. For each query 〈zi〉, SimP1 picks αi
R←− D

and assigns H(zi) := αi.

• SimP1
outputs {Fk2

(H(xi))}i∈[n1] and Ω← {Fk2
(Fk1

(H(yπ(i))}i∈[n1].

X ∩ Y

Y X

for zi ∈ D, H(zi) := αi
R←− D

Clearly, SimP1 ’s simulation in Hybrid1 is identical to the real view of P1.
Hybrid2: SimP1 does not choose randomness for P2, and simulates without the knowledge of X. It
simulates the random oracle H honestly as before, and changes its simulation of P2’s message. Let m be
the Hamming weight of (e1, . . . , en1

).

• SimP1
picks vi

R←− D for i ∈ [n2] (associated with Fk2
(H(xi)) where xi ∈ X), outputs {vi}i∈[n2];

picks wj
R←− D for j ∈ [n1 − m] (associated with Fk2(H(yj)) where yj ∈ Y − X ∩ Y), outputs a

random permutation of ({Fk1
(vi)}ei=1, {Fk1

(wj)}j∈[n1−m]).

X ∩ Y

Y X
Fk2

(H(xi)) := vi

Fk2
(H(yi)) := wj

We argue that the view in Hybrid1 and Hybrid2 are computationally indistinguishable. More precisely,
a PPT adversary A (with knowledge of X and Y) against cwPRF are given n1 + n2 −m tuples (γi, ηi)

where γi
R←− D, and is asked to determine if ηi = Fk(γi) or random values. A implicitly sets P2’s

randomness k2 := k, picks k1
R←− K.

• RO queries: for zi /∈ X ∪ Y , picks αi
R←− D and assigns H(zi) := αi; for zi ∈ X ∪ Y , assigns

H(zi) := γi.

• For each zi ∈ X, A picks out the associated ηi to form {vj}j∈[n2]; for each zi ∈ Y − X ∩ Y , A
picks out the associated ηi to form {wℓ}ℓ∈[n1−m]. Finally, A outputs {vj}j∈[n2] and a random
permutation of ({Fk1(vj)}xj∈X∩Y , {Fk1(wℓ)}ℓ∈[n1−m]).

X ∩ Y

Y X

for zi /∈ X ∪ Y , H(zi) := αi
R←− D

for zi ∈ X ∪ Y , H(zi) := γi
R←− D

Fk2
(H(xj)) := vj

Fk2
(H(yℓ)) := wℓ

If ηi = Fk(γi), thenA’s simulation is identical to Hybrid1. If ηi are random values, thenA’s simulation
is identical to Hybrid2.

This proves the theorem.

6 Permuted Oblivious Pseudorandom Function
6.1 Definition of Permuted OPRF
An oblivious pseudorandom function (OPRF) [FIPR05] is a two-party protocol in which the sender learns
a PRF key k and the receiver learns Fk(x1), . . . , Fk(xn), where F is a pseudorandom function (PRF)
and (x1, . . . , xn) are the receiver’s inputs. Nothing about the receiver’s inputs is revealed to the sender
and nothing more about the key k is revealed to the receiver.

13

We consider an extension of OPRF which we called permuted OPRF. Roughly speaking, the sender
additionally picks a random permutation π over [n], and the receiver learns its PRF values in permuted
order, namely, yi = Fk(xπ(i)). In Figure 6 we formally define the ideal functionality for pOPRF.

Parameters: Number of OPRF queries n.
Inputs: The sender P1 inputs nothing. The receiver P2 inputs a set X = (x1, . . . , xn), where
xi ∈ {0, 1}ℓ.
Output: The sender P1 gets a random PRF key k and a random permutation π over [n]. The client
P2 gets yi = Fk(xπ(i)).

Figure 6: Ideal functionality FpOPRF for permuted OPRF

6.2 Construction of Permuted OPRF
As we sketched in the introduction part, we can create a permuted OPRF from cwPRP F . At a high
level, the unified masking procedure is done by applying a weak PRF Fs(·) to H(x), and the unmasking
process is enabled by the commutative property of F and the fact that Fs(·) is an efficiently invertible
permutation. We depict the construction in Figure 7.

F : K ×D → D, H : {0, 1}ℓ → D

P1 (sender) P2 (receiver)
X = (x1, . . . , xn)

s
R←− K

{Fs(H(xi))}i∈[n]

k
R←− K, π R←− [n]

{Fk(Fs(H(xπ(i))))}i∈[n]
Fk(H(xπ(i)))← F−1

s (Fk(Fs(H(xπ(i))))

Figure 7: Permuted OPRF from cwPRP

Remark 6.1. We note that it suffices to build permuted OPRF from a tuple of cwPRF (Fk, Gs) where
Gs is a weak permutation.

Theorem 6.1. The above permuted OPRF protocol described in Figure 7 is secure in the semi-honest
model assuming H is a random oracle and F is a family of cwPRPs.

Proof. We exhibit simulators SimP1
and SimP2

for simulating corrupt P1 and P2 respectively, and argue
the indistinguishability of produced transcript from the real execution.

Security against corrupt sender. SimP1 simulates the view of corrupt sender P1, which consists
of P1’s randomness, input, output and received messages. We formally show SimP1

’s simulation is
indistinguishable from the real execution via a sequence of hybrid transcripts.
Hybrid0: P1’s view in the real protocol.
Hybrid1: Given P1’s output k and π, SimP1 chooses the randomness s for P2, and simulates with the
knowledge of X = (x1, . . . , xn):

• RO queries: SimP1 honestly emulates random oracle H. For every query 〈zi〉, picks αi
R←− D and

assigns H(zi) := αi.

• SimP1
outputs (Fs(β1), . . . , Fs(βn)), where H(xi) = βi.

14

Clearly, SimP1 ’s simulated view in Hybrid1 is identical to P1’s real view.
Hybrid2: SimP1

does not choose the randomness for P2, and simulates without the knowledge of X. It
honestly emulates random oracle H as in Hybrid1, and only changes the simulation of P2’s message.

• SimP1
outputs (η1, . . . , ηn) where ηi

R←− D.

We argue that the view in Hybrid1 and Hybrid2 are computationally indistinguishable. Let A be a
PPT adversary against the weak pseudorandom of Fs. Given a real-or-random oracle Oror(·), A is asked
to distinguish which mode he is in. A queries the Oror(·) n times, and obtains (γi, ηi) in return. A then
simulates (with the knowledge of X) as below:

• RO queries: for each query 〈zi〉, if zi /∈ X, picks αi
R←− D and assigns H(zi) := αi; if zi ∈ X, assigns

H(xi) := γi.

• Outputs (η1, . . . , ηn).

Clearly, if ηi = Fs(γi), A simulates Hybrid1. Else, it simulates Hybrid2. Thereby, SimP1
’s simulated

view is computationally indistinguishable to P1’s real view.
Security against corrupt receiver. SimP2

simulates the view of corrupt receiver P2, which consists
of P2’s randomness, input, output and received messages. We formally show SimP2

’s simulation is
indistinguishable from the real execution via a sequence of hybrid transcripts.
Hybrid0: P2’s view in the real protocol.
Hybrid1: Given P2’s input X = (x1, . . . , xn) and output {Fk(H(xπ(i)))}i∈[n], SimP2 emulates the random
oracle H honestly, picks s

R←− Zp, simulates message from P1 as {Fs(Fk(H(xπ(i))))}i∈[n].

According to the commutative property of cwPRF, SimP2 ’s simulated view is identical to the real view.
This proves the theorem.

Observe that the cwPRF construction presented in Section 5.2 is actually a family of cwPRPs.
Plugging it to the above generic construction, we obtain a concrete pOPRF protocol as described in
Figure 7.

Parameters: hash function H : {0, 1}ℓ → G.
Inputs: The receiver P2 inputs a set X = {x1, . . . , xn}, where xi ∈ {0, 1}ℓ.
Protocol:

1. P2 picks s
R←− Zp, then sends (H(x1)

s, . . . ,H(xn)
s) to the sender P1.

2. P1 picks k
R←− Zp and computes (H(x1)

sk, . . . ,H(xn)
sk), then picks a random permutation π

over [n] and sends y′i = H(xπ(i))
sk for i ∈ [n] to P2.

3. P1 outputs k and π.

4. P2 outputs yi = (y′i)
s−1 for each i ∈ [n].

Figure 8: Permuted OPRF based on the DDH assumption

The security of the above pOPRF protocol is guaranteed by Theorem 6.1 and the security of the
underlying cwPRP, which is in turn based on the DDH assumption. For completeness, we provide a
direct security proof based on the DDH assumption in Appendix C.1.

15

Parameters: The server P1’s set size n1 and the client P2’s set size n2, a permuted OPRF for
F : K ×D → R.
Inputs: The server P1 inputs a set Y = {y1, . . . , yn1

}, where yi ∈ {0, 1}ℓ. The client P2 inputs a
set X = {x1, . . . , xn2

}, where xi ∈ {0, 1}ℓ.
Protocol:

1. P1 with inputs Y = {y1, . . . , yn1} and P2 invoke the permuted OPRF protocol. At the end of
the protocol, P1 obtains {Fk(yπ(i))}i∈[n1], P2 obtains k and a permutation π over [n1].

2. P2 computes and sends (Fk(x1), . . . , Fk(xn1
)) to P1.

3. P1 sets ei = 1 iff Fk(xi) ∈ {Fk(yπ(i))}i∈[n1].

Figure 9: mqRPMT from permuted OPRF

6.3 mqRPMT from Permuted OPRF
In Figure 9, we show how to build mqRPMT from permuted OPRF for F : K ×D → R. For simplicity,
we assume that {0, 1}ℓ ⊆ D. Otherwise, we can always map {0, 1}ℓ to D via collision resistant hash
function.

F : K ×D → R

P1 (server)
Y = (y1, . . . , yn1

)
P2 (client)

X = (x1, . . . , xn2
)

permuted OPRF
(y1, . . . , yn1

)

(Fk(yπ(1)), . . . , Fk(yπ(n1)))

k
R←− K, π

{Fk(xi)}i∈[n2]set ei = 1 iff
Fk(xi) ∈ {Fk(yπ(i))}i∈[n1]

Correctness. The above protocol is correct except the case E = ∨i,jEij occurs, where Eij denotes
Fk(xi) = Fk(yj) but xi 6= yj . By pseudorandomness of F , we have Pr[Eij] = 2−ℓ. Apply the union
bound, we have Pr[E] ≤ n1n2 · Pr[Eij] = n1n2/2

ℓ = negl(λ).

Theorem 6.2. The above mqRPMT protocol described in Figure 9 is secure in the semi-honest model
assuming the security of permuted OPRF F .

Proof. We exhibit simulators SimP1
and SimP2

for simulating corrupt P1 and P2 respectively, and argue
the indistinguishability of the produced transcript from the real execution. Let |X ∩ Y | = m.

Security against corrupt client. SimP2
simulates the view of corrupt client P2, which consists of P2’s

randomness, input, output and received messages. We formally show SimP2
’s simulation is indistinguish-

able from the real execution via a sequence of hybrid transcripts.
Hybrid0: P2’s view in the real protocol.
Hybrid1: SimP2

simply picks k and π, then invokes the simulator for P2 in the permuted OPRF with
(k, π) as output. By the semi-honest security of permuted OPRF on P2’s side, the simulation is indis-
tinguishable to the real view.

Security against corrupt server. SimP1 simulates the view of corrupt server P1, which consists
of P1’s randomness, input, output and received messages. We formally show SimP1 ’s simulation is
indistinguishable from the real execution via a sequence of hybrid transcripts.

16

Hybrid0: P1’s view in the real protocol. Note that P1’s view consists of its view in stage 1 (the permuted
OPRF part) and its view in stage 2.
Hybrid1: Given P1’s input Y = (y1, . . . , yn1) and output (e1, . . . , en2), SimP1 creates the simulated view
as below:

• pick a random PRF key k and a random permutation π;

• compute (Fk(yπ(1)), . . . , Fk(yπ(n1))), then generate its stage 1’s view by invoking the simulator for
P1 of permuted OPRF with input (y1, . . . , yn1

) and output (Fk(yπ(1)), . . . , Fk(yπ(n1)));

• generate stage 2’s view (Fk(x1), . . . , Fk(xn2)) using k with the knowledge of P2’s input X.

The simulated stage 2’s view is identical to the real one. By the semi-honest security of permuted OPRF
on P1’ side, the stage 1’s simulated view is computationally indistinguishable to the real one. Thereby,
the simulated view in Hybrid1 is computationally indistinguishable to the real one.
Hybrid2: SimP1 creates the simulated view without the knowledge of X, and it neither picks k nor
explicitly picks π:

• generate stage 2’s view by outputting (η1, . . . , ηn2
), where ηi

R←− R; this implicitly sets Fk(xi) := ηi.

• for each ei = 1, pick out the associated ηi to form {vj}j∈[m]; for each ei = 0, pick random values
to form {wℓ}ℓ∈[n1−m]; apply a random permutation Π of ({vj}j∈[m], {wℓ}ℓ∈[n1−m]), treat the result
as (Fk(yπ(1)), . . . , Fk(yπ(n1))) (note that the real permutation π is unknown to the simulator since
it does not know X ∩ Y); then generate its stage 1’s view by invoking the simulator for P1 of
permuted OPRF with input (y1, . . . , yn1

) and output (Fk(yπ(1)), . . . , Fk(yπ(n1))).

X ∩ Y

Y X
Fk(xi) := ηi

{Fk(yπ(i))}i∈[n1] := Π({vj}j∈[m], {wℓ}ℓ∈[n1−m])

We argue that the simulated views in Hybrid1 and Hybrid2 are computationally indistinguishable
based on the pseudorandomness of F . Let A be an adversary against F . Given X and Y , A simulates
as below:

• query the real-or-random oracle Oror(·) with (x1, . . . , xn1), output the response (η1, . . . , ηn1).

• pick a random permutation π;

• query the real-or-random oracle with (yπ(1), . . . , yπ(n1)) and obtain (ζ1, . . . , ζn1) in return; then gen-
erate its stage 1’s view by invoking the simulator for P1 of permuted OPRF with input (y1, . . . , yn1)
and output (ζ1, . . . , ζn1

).

Clearly, if A queries the real oracle, then its simulation is identical to Hybrid1. Else, its simulation is
identical to that Hybrid2. This reduces the computational indistinguishability of views in Hybrid1 and
Hybrid2 to the pseudorandomness of Fk(·). Therefore, SimP1

’s simulation is indistinguishable to the real
one.

This proves the theorem.

7 mqRPMT from Sigma-mqPMT
7.1 Sigma-mqPMT
Private membership test (PMT) protocol [PSZ14] is a two-party protocol in which the client with input
x learns whether or not its item is in the input set Y of the server. PMT can be viewed as a special
case of private keyword search protocol [FIPR05] by setting the payload as any indication string. We
consider three-move PMT, which we refer to Sigma-PMT hereafter.

Sigma-PMT proceeds via the following pattern.

17

1. The server P1 sends the first round message a to client P2, which is best interpreted as an encoding
of Y .

2. The client P2 sends query q w.r.t. to his item x.

3. The server P1 responds with z.

After receiving z, the client P2 can decide if x ∈ Y by running Test(a, x, q, z). The basic notion
of Sigma-PMT allows the client P2 to test for a single item. While this procedure can be repeated
several times, one may seek for more efficient protocol allowing the client to test n items at reduced
communication cost and round complexity. To this end, we introduce the following two properties for
Sigma-PMT:

• Reusable: The first round message is performed by the server P1 once and for all.

• Context-independent: Each test query qi is only related to the element xi under test and the
randomness of P2.

The first property helps to reduce communication cost, while the second property admits parallelization,
hence the round complexity is unchanged even when handling multiple items. Sigma-PMT may enjoy
an additional property:

• Stateless: For any xi and associated (qi, zi), Test(a, xi, qi, zi) can work in a memoryless way,
namely, without looking at (xi, qi). In this case, the test algorithm can be simplified as Test(a, zi).

By running Sigma-PMT with reusable, context-independent, and stateless properties in parallel, we
obtain mqPMT with three-move pattern (depicted in Figure 10), which we refer to as Sigma-mqPMT.

P1 (server)
Y = (y1, . . . , yn1

)
P2 (client)

X = (x1, . . . , xn2
)

a← Encode(Y)
a

qi ← GenQuery(a, xi)
q⃗ = {q1, . . . , qn2

}

z⃗ = {z1, . . . , zn2
}

zi ← Response(qi) ei ← Test(a, zi)

Figure 10: Sigma-mqPMT

To reduce the semi-honest security of mqRPMT∗ to that of Sigma-mqPMT, we assume the simulator
Sim(X, e⃗) for the client P2 is composed of two sub-routines (Sim′, Sim′′), and satisfies the following
properties:

• Locality: zi ≈ Sim′(ei; ri), a.k.a. the i-th response can be emulated via invoking a sub-routine
Sim′(ei) with independent random coins ri;

• Order invariance: a ≈ Sim′′({eπ(i), rπ(i)}i∈[n2]; s), where π could be an arbitrary permutation
over [n2], s is the random coins.

7.2 Connection to Sigma-mqPMT
Next, we show a generic construction of mqRPMT∗ from Sigma-mqPMT. With the nice properties of
Sigma-mqPMT, the construction is pretty simple, a.k.a. having the server P1 shuffle the last move
message in Sigma-mqPMT (yielding permuted mqPMT upon this step), then having the client P2 send
the test results back to P1, and finally P1 recovers the indication bits in the right order. We formally
describe the construction in Figure 11.

18

P1 (server)
Y = (y1, . . . , yn1

)
P2 (client)

X = (x1, . . . , xn2
)

a← mqPMT.Encode(Y)
a

qi ← mqPMT.GenQuery(a, xi)
q⃗ = {q1, . . . , qn2

}

π
R←− Perm[n2]

z⃗∗ = {zπ(1), . . . , zπ(n2)}

e∗i ← mqPMT.Test(a, z∗i)
e⃗∗ = {e∗1, . . . , e∗n2

}
e⃗ = {e∗π−1(i)}

n2
i=1

Figure 11: mqRPMT∗ from Sigma-mqPMT

Theorem 7.1. The above mqRPMT∗ protocol depicted in Figure 11 is secure in the semi-honest model
assuming the semi-honest security of the starting Sigma-mqPMT protocol.

Proof. We exhibit simulators SimP1
and SimP2

for simulating corrupt server P1 and corrupt client P2

respectively. Let |X ∩ Y | = m.

Security against corrupt client. SimP2 simulates the view of corrupt client P2, which consists of P2’s
randomness, input, output and received messages.

We argue that the output of SimP2
is indistinguishable from the real execution. We formally show

SimP2
’s simulation is indistinguishable from the real execution via a sequence of hybrid transcripts.

Hybrid0: P2’s view in the real protocol.
Hybrid1: SimP2 chooses the randomness for P1, and simulates with the knowledge of Y . Clearly, SimP2 ’s
simulation is identical to the real view of P2.
Hybrid2: SimP2

does not choose the randomness for P1, and simulates without the knowledge of Y .
Instead, it invokes the Sigma-mqPMT’s simulator for P2 on his private input X and output e⃗∗ to
emulate the view (a, z⃗∗) in the following manner:

• for 1 ≤ i ≤ n2, run Sim′(e∗i ; ri)→ z∗i , obtaining z⃗∗ = (z∗1 , . . . , z
∗
n).

• run Sim′′({(e∗i , ri)}i∈[n2]; s)→ a.

By the locality and order invariance properties, the simulated view in Hybrid2 and Hybrid1 are compu-
tationally indistinguishable based on semi-honest security of mqPMT on P2 side.
Security against corrupt server. SimP1 simulates the view of corrupt server P1, which consists
of P1’s randomness, input, output and received messages. We formally show SimP1

’s simulation is
indistinguishable from the real execution via a sequence of hybrid transcripts.
Hybrid0: P1’s view in the real protocol.
Hybrid1: SimP1 chooses the randomness for P2, and simulates with the knowledge of X. Clearly, SimP1 ’s
simulation is identical to the real view of P1.
Hybrid2: SimP1

does not choose the randomness for P2, and simulates without the knowledge of X.
Instead, given (Y, e⃗) it first invokes the Sigma-mqPMT’s simulator for P1 on input Y to generate q⃗, then
picks a random permutation π over [n2] and computes e⃗∗ = π−1(e⃗), outputs (q⃗, e⃗∗).
Clearly, the view in Hybrid1 and Hybrid2 are computationally indistinguishable based on the semi-honest
security of Sigma-mqPMT on P1’s side.

This proves the theorem.

19

Remark 7.1. As a byproduct, we note that if P1 only permutes and sends the last move message in
Sigma-mqPMT, then we obtain a standard PSI-card protocol. From this perspective, it is fair to say
Sigma-mqPMT distills sufficient characteristics of what kind of PSI protocols can be converted to PSI-
card with no extra overhead.

8 Applications of mqRPMT
8.1 PSO Framework from mqRPMT
We show how to build a PSO framework centering around mqRPMT in Figure 12.

Parameters: The receiver P1’s set size n1 and the client P2’s set size n2.
Inputs: The receiver P1 inputs a set Y = {y1, . . . , yn1}, where yi ∈ {0, 1}ℓ. The sender P2 inputs a
set X = {x1, . . . , xn2

} and V = {v1, . . . , vn2
}, where xi ∈ {0, 1}ℓ and vi ∈ Zp. Let q be a big integer

greater than n2 · p.
Protocol:

0. P2 shuffles the set (x1, . . . , xn2
) and (v1, . . . , vn2

) according to the same random permutation
over [n2]. For simplicity, we still use the original notation to denote the vector after permuta-
tion.

1. P1 (playing the role of server) with Y and P2 (playing the role of client) with X = {x1, . . . , xn2}
invoke FmqRPMT. P1 obtains an indication bit vector e⃗ = (e1, . . . , en2

). P2 obtains nothing.

• cardinality: P1 learns the cardinality by calculating the Hamming weight of e⃗.

2. P1 and P2 invoke n2 instances of OT via FOT. P1 uses e⃗ as the choice bits.

• intersection: P1 holding ei and P2 holding (⊥, xi) invoke one-sided OT n2 times. P1

learns {xi | ei = 1}i∈[n2] = X ∩ Y .
• union: P1 holding ei and P2 holding (xi,⊥) invoke one-sided OT n2 times. P1 learns
{xi | ei = 0}i∈[n2] = X\Y , and outputs {X\Y } ∪ Y = X ∪ Y .

• card-sum: P2 randomly picks ri ∈ Zq and computes r′ =
∑n2

i=1 ri mod q. Subsequently,
P1 holding ei and P2 holding (ri, ri + vi) invoke 1-out-of-2 OT n2 times. P1 learns
S′ = {

∑n2

i=1 vi | ei = 1}i∈[n2] + {
∑n2

i=1 ri}i∈[n2] mod q, then sends S′ and the Hamming
weight of e⃗ to P2. P2 computes S = (S′ − r′) mod q.

• card-secret-sharing: P2 randomly picks ri ∈ Zq. Subsequently, P1 holding ei and P2

holding (ri, ri + xi) invoke 1-out-of-2 OT n2 times. P1 learns {zi}i∈[n2]. {(zi, ri)}ei=1

constitutes the shares of intersection.

Figure 12: PSO from mqRPMT

We prove the security of the above PSO framework by the case of PSU. The security proof of other
functionality is similar.

Theorem 8.1. The PSU derived from the above framework described in Figure 12 is semi-honest secure
by assuming the semi-honest security of mqRPMT and OT.

Proof. We exhibit simulators SimP1
and SimP2

for simulating corrupt P1 and P2 respectively, and argue
the indistinguishability of the produced transcript from the real execution. Let |X ∩ Y | = m.

Security against corrupt sender. SimP2
simulates the view of corrupt sender P2, which consists

of P2’s randomness, input, output and received messages. We formally show SimP2 ’s simulation is
indistinguishable from the real execution via a sequence of hybrid transcripts.

20

Hybrid0: P2’s view in the real protocol. Note that P2’s view consists of two parts, i.e., the mqRPMT
part of view (stage 1) and the OT part of view (stage 2).
Hybrid1: SimP2

first invokes the simulator for client in the mqRPMT with X as input to generate the
stage 1’s part of view, then invokes the simulator for sender in the OT with {(xi,⊥)}i∈[n2] as input to
generate stage 2’s part of view. By the semi-honest security of mqRPMT on the client side and the
semi-honest security for OT on the sender side, the simulation is indistinguishable to the real view via
standard hybrid argument.

Security against corrupt receiver. SimP1
simulates the view of corrupt receiver P1, which consists

of P1’s randomness, input, output and received messages. We formally show SimP1
’s simulation is

indistinguishable from the real execution via a sequence of hybrid transcripts.
Hybrid0: P1’s view in the real protocol. Note that P1’s view also consists of two parts, i.e., the mqRPMT
part of view (stage 1) of and the OT part of view (stage 2).
Hybrid1: Given P1’s input Y = (y1, . . . , yn1

) and output X ∪ Y , SimP1
creates the simulated view as

below:

• pick a random indication vector e⃗ = (e1, . . . , en2
) with Hamming weight m = |X∩Y |, then generate

the output vector z⃗ = (z1, . . . , zn2) from e⃗ and X ∪ Y in the following manner: randomly shuffle
the (n2 −m) elements in X\Y , and assign them to zi if ei = 0, then assign zi = ⊥ iff ei = 1; then
invoke the simulator for OT receiver with input e⃗ and output z⃗ and generate stage 2’s view.

• invoke the simulator for mqRPMT server with input Y and output e⃗ = (e1, . . . , en2
) to generate

stage 1’s view.

It is easy to check that the distribution of e⃗ and z⃗ is identical to that (induced by the distribution of
mqRPMT’s input vector (x1, . . . , xn2)) in the real protocol. By the semi-honest security of mqRPMT on
the server side and the semi-honest security for OT on the receiver side, the simulation is indistinguishable
to the real view via standard hybrid argument.

This proves the theorem.

We compare our PSI-card-sum protocol with closely related protocols [IKN+20, GMR+21] as below.
As mentioned in the introduction part, the PSI-card-sum protocols presented in [IKN+20] are built
from concrete primitives (e.g. DH-protocol, ROT-protocol, Phasing+OPPRF etc.) with general 2PC
techniques or AHE schemes. This renders their protocols less general and efficient. The protocol pre-
sented in [GMR+21] is built from permuted characteristic (permuted mqRPMT under our terminology)
and secret sharing. Our protocol is similar to their protocol but with the following differences. First,
mqRPMT underlying our protocol is conceptually simpler than its permuted version. More importantly,
mqRPMT admits instantiations with optimal linear complexity, while the current best instantiation of
permuted mqRPMT requires superlinear complexity. Second, as we pointed out in the introduction part,
the protocol due to [GMR+21] deviates from the standard functionality of PSI-card-sum. In contrast,
our protocol meets the standard functionality of PSI-card-sum as defined in [IKN+20]. We do so by
simply removing the constraint

∑n
i=1 ri = 0 on the receiver side (as did in [GMR+21]), and having the

sender send back the masked sum value to the receiver, and the receiver finally recovers the intersection
sum by unmasking.

We also briefly discuss the differences between our card-secret-sharing protocol with related work.
The most related functionality is circuit-PSI [HEK12, PSTY19, RS21]. The only difference between our
card-secret-sharing and circuit-PSI is that our protocol additionally leaks the cardinality to the receiver.
However, as pointed out by Garimella et al. [GMR+21], in many applications of interest, the functions
that need to be computed indeed imply such leakage. Garimella et al. [GMR+21] also proposed a similar
functionality named secret-shared intersection, in which the parties only get the sharing of intersection
elements. As a result, their protocol leaks the cardinality to both the sender and the receiver.

21

8.2 Private-ID
Recently, Buddhavarapu et al. [BKM+20] proposed a two-party functionality called private-ID, which
assigns two parties, each holding a set of items, a truly random identifier per item (where identical items
receive the same identifier). As a result, each party obtains identifiers to his own set, as well as identifiers
associated with the union of their input sets. With private-ID, two parties can sort their private set with
respect to a global set of identifiers, and then can proceed any desired private computation item by item,
being assured that identical items are aligned. Buddhavarapu et al. [BKM+20] also gave a concrete DDH-
based private-ID protocol. Garimella et al. [GMR+21] showed how to build private-ID from oblivious
PRF and PSU. Roughly speaking, their approach proceeds in two phases. In phase 1, P1 holding X and
P2 holding Y run an OPRF twice by switching the roles, so that first P1 learns k1 and P2 learns Fk1

(yi),
and second P2 learns k2 and P1 learns Fk2

(xi). The random identifier of an item z is thus defined as
idz = Fk1

(z)⊕Fk2
(z). After phase 1, both parties can compute identifiers for their own items. In phase

2, they simply engage a PSU protocol on their sets id(X) and id(Y) to finish private-ID.
Our method is largely inspired by the approach presented in [GMR+21]. We first observe that in

phase 1, two parties essentially need to engage a distributed OPRF protocol, as we formally depict in
Figure 13. The random identifier of an item z is defined as Gk1,k2

(z), where G is a PRF determined
by key (k1, k2). Furthermore, note that id(X) and id(Y) are pseudorandom, which means in phase 2
a distributional PSU protocol suffices, whose semi-honest security is additionally defined on the input
distribution. Looking ahead, such relaxation may lead to nice efficiency improvement.

In this work, we instantiate the generic private-ID construction as below: (1) realize the distributed
OPRF protocol by running the multi-point OPRF [CM20] twice in reverse order; (2) run the PSU
protocol from cwPRF-based mqRPMT with the obtained two sets of pseudorandom identifiers as inputs
to fulfill the private-ID functionality.

Parameters: PRF G : K ×D → R, where K = K1 ×K2.
Inputs: P1 inputs a set X = {x1, . . . , xn1}, where xi ∈ D. P2 inputs a set Y = {y1, . . . , yn2}, where
yi ∈ D.
Output: P1 gets {Gk1,k2

(xi)}i∈[n1] and k1. P2 gets {Gk1,k2
(yi)}i∈[n2] and k2,

Figure 13: Ideal functionality for distributed OPRF

Distributional PSU. Standard security notions for MPC are defined w.r.t. any private inputs. This
treatment facilitates secure composition of different protocols. We find that in certain settings it is
meaningful to consider a weaker security notion by allowing the real-ideal indistinguishability to also
base on the distribution of private inputs. This is because such relaxed security suffices if the protocol’s
input is another protocol’s output which obeys some distribution, and the relaxation may admit efficiency
improvement. Suppose choosing the DDH-based distributed OPRF and DDH-based PSU in the same
elliptic curve (EC) group as ingredients, faithful implementation according to the above recipe requires
4n hash-to-point operations. Observe that the output of distributed DDH-based OPRF are already
pseudorandom EC points. In this case, it suffices to use distributional DDH-based PSU instead, and
thus can save 2n hash-to-point operations, which are costly in the real-world implementation.

9 Performance
We describe details of our implementation and report the performance of the following set operations:
(1) psi: intersection of the sets; (2) psi-card: cardinality of the intersection; (3) psi-card-sum: sum of
the associated values for every item in the intersection with cardinality; (4) psu: union of the sets; (5)
private-ID: a universal identifier for every item in the union. We compare our work with the current
fastest known protocol implementation for each functionality.

22

9.1 Implementation Details
Our protocols are written in C++ with detailed documentations, which can be found at https://
github.com/yuchen1024/Kunlun/mpc. In consistency with our paper, our implementation is organized
in a modular and unified fashion: first implement the core mqRPMT protocol, then build various PSO
protocols upon it. Besides, it only build upon the OpenSSL library [Opea], and can smoothly run on
both Linux and x86_64 MacOS platforms.

9.2 Experimental Setup
We run all our protocols and related protocols on Ubuntu 20.04 with a single Intel i7-11700 2.50 GHz CPU
(8 physical cores) and 16 GB RAM. We simulate the network connection using Linux tc command. For
the WAN setting, we set the average RTT to be 80 ms and bandwidth to be 50 Mbps. We use iptables
command to calculate the communication cost, and use running time to compute the computation
complexity, which is the maximal time from protocol begin to end, including the messages transmission
time.

For a fair comparison, we stick to the following setting for all protocols being evaluated:

• We set the computational security parameter κ = 128 and the statistical security parameter λ = 40.

• We test the balanced scenario by setting the input set size n1 = n2 (our implementation supports
unbalanced scenario as well), and randomly generate two input sets with 128 bits item length
conditioned on the intersection size being roughly 0.5n. The exception is the protocol in [GMR+21],
whose item length is set as 61 bits in default and cannot exceed 64 bits.

• The PSI-card-sum protocol [IKN+20] and the private-id protocol [BKM+20] are two of the related
works we are going to compare. The former implementation is built upon NIST P-256 (also known
as secp256r1 and prime256v1), while the latter implementation relies on special elliptic curve
Curve25519 realized in the highly-optimized Dalek library. For a fair and comprehensive compari-
son, we implement our protocols under both standard elliptic curve NIST P-256 and special elliptic
curve Curve25519. For protocols based on NIST P-256, we denote the one not using or using point
compression technique with ♦ and ▼ respectively. For protocols based on Curve25519, we denote
with ⋆.

9.3 Evaluation of Our Core Protocol
We first report the performances of our core protocol cwPRF-based mqRPMT described in Section 5.3,
which dominates the communication and computation overheads of its enabling PSO protocols. We test
our protocol up to 4 threads, since both the server and the client run on a single CPU with 8 physical
cores. Our cwPRF-based mqRPMT achieves optimal linear complexity, and thus is scalable, which is
demonstrated by the experimental results in Table 2. Moreover, the computation tasks on both sides in
our cwPRF-based mqRPMT are highly parallelable, thus we can effortlessly using OpenMP [Opeb] to
make the program multi-threaded.

23

https://github.com/yuchen1024/Kunlun/mpc
https://github.com/yuchen1024/Kunlun/mpc

Table 2: The computation and communication complexity of mqRPMT.

Protocol T
Running time (s) Commu. (MB)

LAN WAN total
212 216 220 212 216 220 212 216 220

mqRPMT♦
1 0.50 7.20 114.16 1.39 9.68 136.27

0.52 8.35 133.62 0.31 3.89 62.09 1.14 6.54 86.60
4 0.22 2.37 40.41 1.11 5.08 62.77

Speedup 1.6-2.3× 1.9-3.0× 1.8-2.8× 1.2-1.3× 1.5-1.9× 1.6-2.2× – – –

mqRPMT▼
1 0.50 8.00 128.00 1.35 10.15 141.52

0.27 4.35 69.62 0.32 5.05 80.69 1.18 7.11 94.19
4 0.23 3.54 58.40 1.08 5.54 71.26

Speedup 1.6-2.2× 1.6-2.3× 1.6-2.2× 1.1-1.3× 1.4-1.8× 1.5-2× – – –

mqRPMT⋆
1 0.26 3.51 54.85 0.81 5.41 68.68

0.26 4.23 67.662 0.15 1.79 28.24 0.75 3.83 41.38
4 0.10 1.07 15.32 0.72 3.09 28.31

Speedup 1.7-2.6× 2.0-3.3× 1.9-3.6× 1.1-1.1× 1.4-1.8× 1.7-2.4× – – –

9.4 Benchmark Comparison
We derive all kinds of PSO protocols from cwPRF-based mqRPMT protocol, and compare them with
the state-of-the-art related protocols. We report the performances for 3 input sizes n = {212, 216, 220}
all executed over a single thread for LAN and WAN configurations. When testing the PSI-card, PSI-
card-sum and PSU protocols in [GMR+21], we set the number of mega-bins as {1305, 16130, 210255}
and the number of items in each mega-bin as {51, 62, 72} for set sizes n = {212, 216, 220} respectively.
These parameter choices have been tested to be much more optimal than their default ones.

PSI. We compare our mqRPMT-based PSI protocol to the classical DH-PSI protocol reported in [PRTY19]
and re-implemented by ourselves. We remark that the PSI protocols in comparison are not competitive
with the state-of-the-art PSI protocol. We include them merely for illustrative purposes. PSI protocols
from public-key techniques are thought to be very inefficient. Our experiment demonstrates that by
carefully choosing modern crypto library with optimized parameters they could be pretty practical. Our
mqRPMT-based PSI protocol is more than an order of magnitude faster than the DH-PSI protocol3
implemented in [PRTY19]. By leveraging the features of Curve25519 in important ways (see Section 9.5
in details), our re-implemented DH-PSI protocol (denoted by DH-PSI⋆) achieves 26× speedup, which is
arguably the most efficient implementation known to date.

Table 3: Communication cost and running time of PSI protocol.

PSI
Running time (s) Comm. (MB)

LAN WAN total
212 216 220 212 216 220 212 216 220

[PRTY19]⋆ 5.51 88.64 1418.20 5.82 90.79 1498.67 0.30 4.74 76.60
Our PSI♦ 0.50 7.24 114.66 1.71 10.50 142.45 0.67 10.38 165.77
Our PSI▼ 0.55 8.04 128.18 1.73 11.02 148.18 0.41 6.38 101.63
Our PSI⋆ 0.29 3.56 55.11 1.19 6.38 75.56 0.40 6.25 99.71
DH-PSI⋆ 0.22 3.39 54.79 0.92 5.57 69.31 0.28 4.57 74.1

Recently, Rosulek and Trieu [RT21] propose a PSI protocol based on Diffie-Hellman key agreement,
which requires the least time and communication of any known PSI protocols for small sets. Somewhat

3We remark that except inefficiency, their implementation also has a severe security issue. More precisely, they realize
the hash-to-point function {0, 1}∗ → G as x 7→ gH(x), where H is some cryptographic hash function. However, such hash-
to-point function cannot be modeled as random oracle anymore since it exposes the algebra structure of output in the clear,
and hence totally compromise security. Similar issue also appears in libPSI.

24

surprisingly, Table 4 shows that for small sets our mqRPMT-based PSI protocol is faster than their
protocol in LAN setting, and our re-implemented DH-PSI is faster than their protocol in all settings.

Table 4: Communication cost and running time of PSI protocol on small sets.

PSI
Running time (ms) Comm. (KB)

LAN WAN total
28 29 210 28 29 210 28 29 210

[RT21]⋆ 50.0 71.0 147.3 224.1 260.2 457.9 17.9 34.1 66.3
Our PSI⋆ 41.9 69.5 99.3 577.0 582.9 646.1 38.6 63.5 113.3
DH-PSI⋆ 16.49 31.80 56.91 210.42 227.33 252.32 18.48 36.68 72.8

PSI-card. We compare our mqRPMT-based PSI-card protocol to the PSI-card protocol in [GMR+21].
Our protocol achieves a 2.4− 10.5× speedup in running time, and reduces the communication cost by a
factor 10.9− 14.8×.

Table 5: Communication cost and running time of PSI-card protocol.

PSI-card
Running time (s) Comm. (MB)

LAN WAN total
212 216 220 212 216 220 212 216 220

[GMR+21] 1.00 8.41 126.01 8.60 27.46 323.52 2.93 55.49 1030
Our PSI-card♦ 0.49 7.20 114.31 1.30 9.68 136.06 0.52 8.36 133.71
Our PSI-card▼ 0.53 8.00 128.00 1.35 10.16 141.31 0.27 4.35 69.6
Our PSI-card⋆ 0.27 3.51 54.89 0.82 5.42 68.31 0.26 4.23 67.70

PSI-card-sum. We compare our mqRPMT-based PSI-card-sum protocol to the PSI-card-sum protocol
(the most efficient and also the deployed one based on DH-protocol+Paillier) in [IKN+20]. We do not
compare the protocol described in [GMR+21] since its functionality is not the standard one, as we
discussed in the introduction. Our protocol is more advantageous than the protocol of [GMR+21] due to
our random masking trick is much simpler and efficient than the AHE-based technique. Particularly, the
upper bound of intersection sum in [GMR+21] is closely tied to the AHE scheme in use, which requires
sophisticated parameter tuning and ciphertext packing techniques. In our protocol, the upper bound
of intersection sum can be flexibly adjusted according to applications. As shown in Table 6, compared
with the protocol presented in [IKN+20], our protocol is roughly 28.5 − 76.3× faster and reduces the
communication cost by a factor 7.4×.

Table 6: Communication cost and running time of PSI-card-sum protocol.

PSI-card-sum
Running time (s) Comm. (MB)

LAN WAN total
212 216 220 212 216 220 212 216 220

[IKN+20]▼ (deployed) 23.64 176.34 – 30.10 186.29 – 2.72 43.24 –
Our PSI-card-sum♦ 0.51 7.22 113.66 1.46 9.68 136.27 0.64 9.89 157.80
Our PSI-card-sum▼ 0.57 8.12 129.66 1.94 11.83 157.66 0.38 5.87 93.74
Our PSI-card-sum⋆ 0.31 3.73 57.44 1.36 6.53 76.16 0.37 5.75 91.70

Communication cost and running time of PSI-card-sum protocol. We assume each associated value is a non-
negative integer in [0, 232) conditioned on the upper bound of intersection sum being 232. We note that
the implementation of [IKN+20] only works in our environment at set sizes 212 and 216. For set size 220, we
encounter a run time error reported in [Pri], which has not been fixed yet. The corresponding cells are marked
with “–”.

25

PSU. We compare our mqRPMT-based PSU protocol to the state-of-the-art PSU protocols in [GMR+21,
ZCL+23, JSZ+22]. The work [ZCL+23] provides two PSU protocols from public-key and symmetric-key
respectively. The work [JSZ+22] also provides two PSU protocols called PSU-R and PSU-S. We choose
the most efficient PKE-PSU [ZCL+23] and PSU-S [JSZ+22] for comparison. Among all the mentioned
PSU protocols, only the PSU protocols in [ZCL+23] and our PSU protocol achieve strict linear communi-
cation and computation complexity. The experimental results in Table 7 indicate that our PSU protocol
is the most superior one. Comparing to the state-of-the-art PSU protocol of [ZCL+23], our protocol is
2× smaller in terms of communication cost, and achieves a 2.7− 17× speedup.

Table 7: Communication cost and running time of PSU protocol.

PSU
Running time (s) Comm. (MB)

LAN WAN total
212 216 220 212 216 220 212 216 220

[GMR+21] 1.16 10.06 151.34 10.34 38.52 349.43 3.85 67.38 1155
[ZCL+23]♦ 4.87 12.19 141.38 5.78 15.75 182.88 1.35 21.41 342.38
[ZCL+23]▼ 5.10 15.13 187.29 5.82 17.37 210.06 0.77 12.20 195.17
[JSZ+22] 2.29 8.50 516.04 5.33 27.00 736.30 3.59 70.37 1341.55

Our PSU♦ 0.52 7.27 114.44 1.70 10.56 143.29 0.68 10.38 165.77
Our PSU▼ 0.57 8.04 128.20 1.76 10.92 148.15 0.41 6.38 101.63
Our PSU⋆ 0.30 3.55 55.48 1.19 6.38 74.96 0.40 6.25 99.71

Private-ID. We compare our concrete private-ID protocol described in Section 8.2 to the state-of-the-
art protocols in [BKM+20, GMR+21]. The experimental results in Table 8 show that our private-ID
protocol achieves a 2.7 − 4.9× speedup comparing to the existing most computation efficient private-
ID protocol of [GMR+21], while its bandwidth is only marginally larger than the most communication
efficient private-ID protocol [BKM+20]. Thereby, our protocol is arguably the most efficient one in terms
of monetary cost. By instantiating the distributed OPRF from the current best OPRF due to [RR22],
we will obtain a private-ID protocol with better performance.

Table 8: Communication cost and running time of private-ID protocol.

Private-ID
Running time (s) Comm. (MB)

LAN WAN total
212 216 220 212 216 220 212 216 220

[GMR+21] 1.65 11.023 158.76 13.82 43.00 385.12 4.43 76.57 1293
[BKM+20]⋆ 2.21 37.56 671.75 7.98 46.97 710.94 1.00 15.97 226.70

Our Private-ID♦ 0.77 8.40 114.45 2.91 13.62 148.48 1.46 20.52 330.40
Our Private-ID▼ 0.89 9.57 146.73 3.07 14.53 186.98 1.13 16.43 266.31
Our Private-ID⋆ 0.61 5.11 71.57 2.83 10.06 114.66 1.13 16.31 265.15

9.5 Tips For ECC-based Implementations
In what follows, we summarize the lessons we learned during the implementation of ECC-based protocols,
with the hope to uncover some dark details and correct imprecise impressions.

We first highlight the following two caveats when implementing with standard elliptic curves:

• Pros and cons of point compression technique. Point compression is a standard trick in elliptic-curve
cryptography (ECC), which can roughly reduce the storage cost of EC point by half, at the cost of
performing decompression when needed. Point decompression was empirically thought to be cheap,
but experiment indicates that it could be as expensive as point multiplication. Our perspective
is that point compression offers a natural trade-offs between communication and computation.
The above experimental results demonstrate that the total running time gives a large weight to

26

communication cost in bandwidth constrained scenarios. Therefore, in the WAN setting (involving
parties cannot be co-located) we recommend not to apply point compression trick, while in the
LAN setting (involving parties are co-located) we recommend to apply point compression trick. A
quick take-away is that point compression trick pays off in setting where communication is much
more expensive than computation.

• Tricky hash-to-point operation. The hash to point operation is very tricky in ECC. So far, there
is no universal method to securely map arbitrary bit strings to points on elliptic curves. Here,
the vague term “securely” indicates the hash function could be modeled as a random oracle. A
folklore method is the “try-and-increment” algorithm [BLS01], which is also the method adopted
in this work. Nevertheless, even such simple hash-to-point operation could be as expensive as point
multiplication, which should be avoid if possible.

Regarding to the two caveats discussed above, the following questions arise: (1) it is possible to get
the best of two worlds of point compression; (2) could the hash-to-point operation be cheaper. Luckily,
the answers are yes under some circumstance.

With the aim to avoid many potential implementation pitfalls, Bernstein [Ber06] designed an elliptic
curve dedicated to ECDH function known as Curve25519 in 2005. Due to its many efficiency/security
advantages, it has been widely deployed in numerous applications and has become the de facto alter-
native to NIST P-256. Here, we highlight its two nice features that are particularly beneficial for our
cwPRF-based mqRPMT protocol: (i) it allows efficient scalar multiplication in compressed form (only
X coordinates); (ii) by design, any 32-byte bit string (interpreting as X coordinate) can be ambiguously
identified as a valid point on curve. Feature (i) brings us the best of two worlds of point compression,
without making trade-off anymore, while feature (ii) makes the hash-to-point operation almost free, sim-
ply hashing the input to a 32-byte bit string via cryptographic hash function. Naturally, Curve25519
has deficiencies coming with its nice features. All the known implementations of Curve25519 that sup-
port efficient scalar multiplication in X-coordinate compressed form do not provide interfaces for point
addition, subtraction, and scalar inverse multiplication. The reason is that (a) point addition and sub-
traction operations cannot be performed using only X coordinates, thus in turn requiring expensive
decompression operation; (b) giving any 32-byte integer value as the scalar, existing implementations
would automatically “clamp” it before scalar multiplication, thus requiring complicated treatment to
support scalar inverse multiplication.

Luckily, our cwPRF-based mqRPMT protocol only requires scalar multiplication and hash-to-point
operations, and thus can enjoy the nice features without being affected by the deficiencies. This explains
the advantages our cwPRF-based mqRPMT protocol based on Curve25519 over that based on NIST
P-256. To the best of our knowledge, this is also the first time that Curve25519 fully unleashes its
advantages in the area of private set operations. Prior to this work, Rosulek and Tireu [RT21] employed
Curve25519 to build a PSI protocol from Diffie-Hellman key agreement (DHKA) with strongly uni-
form property [FMV19], whose instantiation inherently requires the elligator encoding/decoding mecha-
nism [BHKL13]. Henceforth, the optimizations originated from feature (i) and (ii) does not apply to their
construction because it requires encoding/decoding EC points to bit strings (thus points cannot only be
represented by X coordinates), rather than hashing elements to EC points. In summary, for protocols
that are not involved with point addition/subtraction and scalar inverse multiplication, Curve25519
would be a good choice.

Public-key operations are always rushy thought to be much expensive than symmetric-key operations,
and thus the design philosophy of many practical protocols opts to avoid public-key operations. Our
experimental results demonstrates this impression is not precise anymore after rapid advances on ECC-
based cryptography in recent years. By leveraging optimized implementation, public-key operations
could be as efficient as symmetric-key operations. As a concrete example, in EC group with 128 bit
security level one EC point scalar operation takes 0.026 ms and one EC point addition takes 0.00028 ms
on a laptop.

10 Summary
In this work, we show that mqRPMT protocol is complete for most private set operations. By coupling
with OT, we create a unified PSO framework from mqRPMT, which can greatly reduce the deployment

27

and maintaining costs of PSO in the real world. We build the core mqRPMT protocol from two newly
introduced cryptographic primitives, namely cwPRF and pOPRF respectively. By instantiating cwPRF
and pOPRF from DDH-like assumptions, we obtain mqRPMT protocols with linear complexity. The
significance of this result is two folds. The first is of practical interest, namely providing a simple
PSO framework. Particularly, we view the simplicity as a great merit since it yields a family of PSO
protocols that are competitive or superior to existing ones. The second is of more theoretical interest,
namely introducing cwPRF and pOPRF. The notion of cwPRF can be viewed as the right cryptographic
abstraction of the celebrated DH functions, which not only demonstrates that the DDH assumption is
complete for PSO, but also opens the door for possible new instantiations beyond DDH-like assumptions.
The notion of pOPRF is of independent interest. It enriches the OPRF family, and help us to understand
which OPRF-based PSI protocols can (or cannot) be adapted to PCSI/PSU protocols. We left more
applications and efficient constructions of pOPRF as an interesting problem.

In addition, we present a semi-generic conversion from a category mqPMT protocols called Sigma-
mqPMT to mqRPMT, making the first step towards investigating relations between the two core proto-
cols. As an application of such conversion, we obtain a mqRPMT protocol from FHE which is suitable
in the unbalanced setting. However, the resulting mqRPMT is a slightly weak version in the sense that
the intersection size is leaked to the sender. We left the construction of standard mqRPMT in the
unbalanced setting as an open problem.

To demonstrate the efficiency of our framework, we opensource our C++ implementation with de-
tailed documentations. When conducting performance comparison, we find that quite a few PSO im-
plementations suffer from one or more of the following deficiencies: (i) rely on multiple libraries, but
configurations are not well documented; (ii) require sophisticated parameters tuning, but optimized pa-
rameters are not explicitly given; (iii) codes are not faithful to protocols described in paper, such as
insecure random oracle instantiation, incorrect thread number counting etc. Sometimes, even making
these programs successfully running would require tremendous efforts. We are thus expect a high-quality
MPC platform that admits easy and fair benchmarking of all PSO protocols.

References
[AES03] Rakesh Agrawal, Alexandre V. Evfimievski, and Ramakrishnan Srikant. Information sharing across

private databases. In 2003 ACM SIGMOD International Conference on Management of Data, pages
86–97. ACM, 2003.

[AFMP20] Navid Alamati, Luca De Feo, Hart Montgomery, and Sikhar Patranabis. Cryptographic group
actions and applications. In Advances in Cryptology - ASIACRYPT 2020, volume 12492 of LNCS,
pages 411–439. Springer, 2020.

[ALSZ15] Gilad Asharov, Yehuda Lindell, Thomas Schneider, and Michael Zohner. More efficient oblivious
transfer extensions with security for malicious adversaries. In Advances in Cryptology - EURO-
CRYPT 2015, volume 9056 of Lecture Notes in Computer Science, pages 673–701. Springer, 2015.

[Ber06] Daniel J. Bernstein. Curve25519: New diffie-hellman speed records. In Public Key Cryptography -
PKC 2006, volume 3958 of Lecture Notes in Computer Science, pages 207–228. Springer, 2006.

[BHKL13] Daniel J. Bernstein, Mike Hamburg, Anna Krasnova, and Tanja Lange. Elligator: elliptic-curve
points indistinguishable from uniform random strings. In 2013 ACM SIGSAC Conference on Com-
puter and Communications Security, CCS 2013, pages 967–980. ACM, 2013.

[BKM+20] Prasad Buddhavarapu, Andrew Knox, Payman Mohassel, Shubho Sengupta, Erik Taubeneck, and
Vlad Vlaskin. Private matching for compute. 2020. https://eprint.iacr.org/2020/599.

[BLS01] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the weil pairing. In Advances
in Cryptology - ASIACRYPT 2001, volume 2248 of LNCS, pages 514–532, 2001.

[CHLR18] Hao Chen, Zhicong Huang, Kim Laine, and Peter Rindal. Labeled PSI from fully homomorphic en-
cryption with malicious security. In Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2018, pages 1223–1237. ACM, 2018.

[CLR17] Hao Chen, Kim Laine, and Peter Rindal. Fast private set intersection from homomorphic encryption.
In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security,
CCS 2017, pages 1243–1255. ACM, 2017.

[CM20] Melissa Chase and Peihan Miao. Private set intersection in the internet setting from lightweight
oblivious PRF. In Advances in Cryptology - CRYPTO 2020, volume 12172 of Lecture Notes in
Computer Science, pages 34–63. Springer, 2020.

28

https://eprint.iacr.org/2020/599

[CMdG+21] Kelong Cong, Radames Cruz Moreno, Mariana Botelho da Gama, Wei Dai, Ilia Iliashenko, Kim
Laine, and Michael Rosenberg. Labeled PSI from homomorphic encryption with reduced com-
putation and communication. In CCS ’21: 2021 ACM SIGSAC Conference on Computer and
Communications Security, pages 1135–1150. ACM, 2021.

[DC17] Alex Davidson and Carlos Cid. An efficient toolkit for computing private set operations. In Infor-
mation Security and Privacy - 22nd Australasian Conference, ACISP 2017, volume 10343 of Lecture
Notes in Computer Science, pages 261–278. Springer, 2017.

[DCW13] Changyu Dong, Liqun Chen, and Zikai Wen. When private set intersection meets big data: an
efficient and scalable protocol. In CCS 2013, pages 789–800, 2013.

[FIPR05] Michael J. Freedman, Yuval Ishai, Benny Pinkas, and Omer Reingold. Keyword search and oblivious
pseudorandom functions. In Theory of Cryptography, Second Theory of Cryptography Conference,
TCC 2005, volume 3378 of Lecture Notes in Computer Science, pages 303–324. Springer, 2005.

[FMV19] Daniele Friolo, Daniel Masny, and Daniele Venturi. A black-box construction of fully-simulatable,
round-optimal oblivious transfer from strongly uniform key agreement. In Theory of Cryptography
- 17th International Conference, TCC 2019, volume 11891 of Lecture Notes in Computer Science,
pages 111–130. Springer, 2019.

[Fri07] Keith B. Frikken. Privacy-preserving set union. In Applied Cryptography and Network Security, 5th
International Conference, ACNS 2007, volume 4521 of Lecture Notes in Computer Science, pages
237–252. Springer, 2007.

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions. J. ACM,
33(4):792–807, 1986.

[GMR+21] Gayathri Garimella, Payman Mohassel, Mike Rosulek, Saeed Sadeghian, and Jaspal Singh. Private
set operations from oblivious switching. In Public-Key Cryptography - PKC 2021, volume 12711 of
Lecture Notes in Computer Science, pages 591–617. Springer, 2021.

[GPR+21] Gayathri Garimella, Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai. Oblivious key-value
stores and amplification for private set intersection. In Advances in Cryptology - CRYPTO 2021,
volume 12826 of Lecture Notes in Computer Science, pages 395–425. Springer, 2021.

[HEK12] Yan Huang, David Evans, and Jonathan Katz. Private set intersection: Are garbled circuits better
than custom protocols? In 19th Annual Network and Distributed System Security Symposium, NDSS
2012, 2012.

[HFH99] Bernardo A. Huberman, Matthew K. Franklin, and Tad Hogg. Enhancing privacy and trust in
electronic communities. In Proceedings of the First ACM Conference on Electronic Commerce (EC-
99), pages 78–86. ACM, 1999.

[HN10] Carmit Hazay and Kobbi Nissim. Efficient set operations in the presence of malicious adversaries.
In Public Key Cryptography - PKC 2010, volume 6056 of Lecture Notes in Computer Science, pages
312–331. Springer, 2010.

[IKN+20] Mihaela Ion, Ben Kreuter, Ahmet Erhan Nergiz, Sarvar Patel, Shobhit Saxena, Karn Seth, Mariana
Raykova, David Shanahan, and Moti Yung. On deploying secure computing: Private intersection-
sum-with-cardinality. In IEEE European Symposium on Security and Privacy, EuroS&P 2020, pages
370–389. IEEE, 2020.

[IKNP03] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending oblivious transfers efficiently.
In Advances in Cryptology - CRYPTO 2003, volume 2729 of Lecture Notes in Computer Science,
pages 145–161. Springer, 2003.

[JSZ+22] Yanxue Jia, Shi-Feng Sun, Hong-Sheng Zhou, Jiajun Du, and Dawu Gu. Shuffle-based private set
union: Faster and more secure. In USENIX 2022, 2022.

[KK13] Vladimir Kolesnikov and Ranjit Kumaresan. Improved OT extension for transferring short secrets.
In Advances in Cryptology - CRYPTO 2013, volume 8043 of Lecture Notes in Computer Science,
pages 54–70. Springer, 2013.

[KKRT16] Vladimir Kolesnikov, Ranjit Kumaresan, Mike Rosulek, and Ni Trieu. Efficient batched oblivi-
ous PRF with applications to private set intersection. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2016, pages 818–829. ACM, 2016.

[KRTW19] Vladimir Kolesnikov, Mike Rosulek, Ni Trieu, and Xiao Wang. Scalable private set union from
symmetric-key techniques. In Advances in Cryptology - ASIACRYPT 2019, volume 11922 of Lecture
Notes in Computer Science, pages 636–666. Springer, 2019.

[KS05] Lea Kissner and Dawn Xiaodong Song. Privacy-preserving set operations. In Advances in Cryptology
- CRYPTO 2005, volume 3621 of Lecture Notes in Computer Science, pages 241–257. Springer, 2005.

[Mea86] Catherine A. Meadows. A more efficient cryptographic matchmaking protocol for use in the absence

29

of a continuously available third party. In Proceedings of the 1986 IEEE Symposium on Security
and Privacy, pages 134–137. IEEE Computer Society, 1986.

[MPR+20] Peihan Miao, Sarvar Patel, Mariana Raykova, Karn Seth, and Moti Yung. Two-sided malicious
security for private intersection-sum with cardinality. In Advances in Cryptology - CRYPTO 2020,
volume 12172 of Lecture Notes in Computer Science, pages 3–33. Springer, 2020.

[NPR99] Moni Naor, Benny Pinkas, and Omer Reingold. Distributed pseudo-random functions and kdcs. In
Advances in Cryptology - EUROCRYPT 1999, volume 1592 of Lecture Notes in Computer Science,
pages 327–346. Springer, 1999.

[NR95] Moni Naor and Omer Reingold. Synthesizers and their application to the parallel construction of
psuedo-random functions. In 36th Annual Symposium on Foundations of Computer Science, FOCS
1995, pages 170–181. IEEE Computer Society, 1995.

[Opea] https://github.com/openssl.
[Opeb] OpenMP. https://www.openmp.org/resources/openmp-compilers-tools/.
[Pri] https://github.com/google/private-join-and-compute/issues/16.
[PRTY19] Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai. Spot-light: Lightweight private set

intersection from sparse OT extension. In Advances in Cryptology - CRYPTO 2019, volume 11694
of Lecture Notes in Computer Science, pages 401–431. Springer, 2019.

[PSTY19] Benny Pinkas, Thomas Schneider, Oleksandr Tkachenko, and Avishay Yanai. Efficient circuit-based
PSI with linear communication. In Advances in Cryptology - EUROCRYPT 2019, volume 11478 of
Lecture Notes in Computer Science, pages 122–153. Springer, 2019.

[PSZ14] Benny Pinkas, Thomas Schneider, and Michael Zohner. Faster private set intersection based on OT
extension. In Proceedings of the 23rd USENIX Security Symposium, 2014, pages 797–812. USENIX
Association, 2014.

[PSZ18] Benny Pinkas, Thomas Schneider, and Michael Zohner. Scalable private set intersection based on
OT extension. ACM Trans. Priv. Secur., 21(2):7:1–7:35, 2018.

[Rab05] Michael O. Rabin. How to exchange secrets with oblivious transfer. 2005. http://eprint.iacr.
org/2005/187.

[RR17] Peter Rindal and Mike Rosulek. Improved private set intersection against malicious adversaries. In
Advances in Cryptology - EUROCRYPT 2017, volume 10210 of LNCS, pages 235–259, 2017.

[RR22] Srinivasan Raghuraman and Peter Rindal. Blazing fast PSI from improved OKVS and subfield
VOLE. In ACM CCS 2022, 2022.

[RS21] Peter Rindal and Phillipp Schoppmann. VOLE-PSI: fast OPRF and circuit-psi from vector-ole. In
Advances in Cryptology - EUROCRYPT 2021, volume 12697 of Lecture Notes in Computer Science,
pages 901–930. Springer, 2021.

[RT21] Mike Rosulek and Ni Trieu. Compact and malicious private set intersection for small sets. In CCS
’21: 2021 ACM SIGSAC Conference on Computer and Communications Security, pages 1166–1181.
ACM, 2021.

[Sha80] Adi Shamir. On the power of commutativity in cryptography. In ICALP 1980, volume 85 of Lecture
Notes in Computer Science, pages 582–595. Springer, 1980.

[TCLZ22] Binbin Tu, Yu Chen, Qi Liu, and Cong Zhang. Fast unbalanced private set union from fully
homomorphic encryption, 2022. https://eprint.iacr.org/2022/653.

[ZCL+23] Cong Zhang, Yu Chen, Weiran Liu, Min Zhang, and Dongdai Lin. Optimal private set union from
multi-query reverse private membership test. In USENIX 2023, 2023. https://eprint.iacr.org/
2022/358.

A Missing Definitions
A.1 Weak Pseudorandom EGA
We begin by recalling the definition of a group action.

Definition A.1 (Group Actions). A group G is said to act on a set X if there is a map ⋆ : G×X → X
that satisfies the following two properties:

1. Identity: if e is the identity element of G, then for any x ∈ X, we have e ⋆ x = x.

2. Compatibility: for any g, h ∈ G and any x ∈ X, we have (gh) ⋆ x = g ⋆ (h ⋆ x).

30

https://github.com/openssl
https://www.openmp.org/resources/openmp-compilers-tools/
https://github.com/google/private-join-and-compute/issues/16
http://eprint.iacr.org/2005/187
http://eprint.iacr.org/2005/187
https://eprint.iacr.org/2022/653
https://eprint.iacr.org/2022/358
https://eprint.iacr.org/2022/358

From now on, we use the abbreviated notation (G, X, ⋆) to denote a group action. If (G, X, ⋆) is a
group action, for any g ∈ G the map ϕg : x 7→ g ⋆ x defines a permutation of X.

We then define an effective group action (EGA) [AFMP20] as follows.

Definition A.2 (Effective Group Actions). A group action (G, X, ⋆) is effective if the following properties
are satisfied:

1. The group G is finite and there exist PPT algorithms for:

(a) Membership testing, i.e., to decide if a given bit string represents a valid group element in G.
(b) Equality testing, i.e., to decide if two bit strings represent the same group element in G.
(c) Sampling, i.e., to sample an element g from a uniform (or statistically close to) distribution

on G.
(d) Operation, i.e., to compute gh for any g, h ∈ G.
(e) Inversion, i.e., to compute g−1 for any g ∈ G.

2. The set X is finite and there exist PPT algorithms for:

(a) Membership testing, i.e., to decide if a bit string represents a valid set element.
(b) Unique representation, i.e., given any set element x ∈ X, compute a string x̂ that canonically

represents x.

3. There exists a distinguished element x0 ∈ X, called the origin, such that its bit-string representation
is known.

4. There exists an efficient algorithm that given (some bit-string representations of) any g ∈ G and
any x ∈ X, outputs g ⋆ x.

Definition A.3 (Weak Pseudorandom EGA). A group action (G,X, ⋆) is weakly pseudorandom if the
family of efficiently commutable permutation {ϕg : X → X}g∈G is weakly pseudorandom, i.e., there is
no PPT adversary that can distinguish tuples of the form (xi, g ⋆xi) from (xi, ui) where g

R←− G and each
xi, ui

R←− X.

B Instantiations of Sigma-mqPMT
B.1 Sigma-mqPMT from DDH
We first present an instantiation of Sigma-mqPMT based on the DDH assumption, which is obtained by
plugging DDH-based OPRF to the above generic construction.

P1 (server)
Y = (y1, . . . , yn)

P2 (client)
X = (x1, . . . , xn)

k
R←− Zp

a← {H(y1)k, . . . ,H(yn1
)k}

r
R←− Zp, qi ← H(xi)

r
q⃗ = {q1, . . . , qn2

}

z⃗ = {z1, . . . , zn2
}

zi ← (H(xi)
r)k ei := zi ∈ a

B.2 Sigma-mqPMT from FHE
We then present an instantiation of Sigma-mqPMT based on oblivious polynomial evaluation (OPE).
By instantiating OPE from FHE, we obtain the following mqPMT protocol, which is the backbone
of [CLR17].

31

P1 (server)
Y = (y1, . . . , yn1)

P2 (client)
X = (x1, . . . , xn2)

a← ⊥
⊥

qi ← FHE.Enc(pk, xi)
q⃗ = {q1, . . . , qn2}

z⃗ = {z1, . . . , zn2}ri
R←− F

fi ← ri
∏

y∈Y (yi − x)
zi ← FHE.Eval(pk, fi, qi)

ei := FHE.Dec(dk, zi)
?
= 0

Alternatively, we can realize OPE from additively homomorphic encryption. The change is that each
qi now consists of n1 ciphertexts of the following form: {AHE.Enc(pk, x1

i), . . . ,AHE.Enc(pk, x
n1
i)}.

Remark B.1. As noted in [CLR17], the above protocol only serves as a toy example to illustrate the idea
of how to using FHE to build PSI, which is impractical. They also show how to make the basic protocol
efficient. However, the optimizing techniques destroy structure and properties of Sigma-mqPMT. As
a consequence, so far the transformation from Sigma-mqPMT to mqRPMT∗ does not have efficient
instantiation in the unbalanced setting, and only serves as a proof of concept.

C Missing Security Proofs
C.1 Proof of Permuted OPRF Based on the DDH Assumption
Theorem C.1. The permuted OPRF protocol described in Figure 7 is secure in the semi-honest model
assuming H is a random oracle and the DDH assumption holds.

Proof. We exhibit simulators SimP1
and SimP2

for simulating corrupt P1 and P2 respectively, and argue
the indistinguishability of produced transcript from the real execution.

Security against corrupt receiver. SimP2 simulates the view of corrupt receiver P2, which consists
of P2’s randomness, input, output and received messages. We formally show SimP2 ’s simulation is
indistinguishable from the real execution via a sequence of hybrid transcripts.
Hybrid0: P2’s view in the real protocol.
Hybrid1: Given P2’s input X = (x1, . . . , xn) and output {yπ(1), . . . , yπ(n)}, SimP2

emulates the random
oracle H honestly, picks s

R←− Zp, simulates message from P1 as {ysπ(1), . . . , ysπ(n)}.

Clearly, SimP2
’s simulated view is identical to the real view.

Security against corrupt sender. SimP1
simulates the view of corrupt sender P1, which consists

of P1’s randomness, input, output and received messages. We formally show SimP1 ’s simulation is
indistinguishable from the real execution via a sequence of hybrid transcripts,
Hybrid0: P1’s view in the real protocol.
Hybrid1: Given P1’s output k and π, SimP1

chooses the randomness s for P2, and simulates with the
knowledge of X = (x1, . . . , xn):

• RO queries: SimP1
honestly emulates random oracle H. For every query 〈zi〉, picks αi

R←− G and
assigns H(zi) := αi.

• SimP1
outputs (βs

1, . . . , β
s
n), where H(xi) = βi.

X ∩ Y

Y X

for zi ∈ {0, 1}ℓ, H(zi) := αi
R←− G

Clearly, SimP1
’s simulated view in Hybrid1 is identical to P1’s real view.

32

Hybrid2: SimP1 does not choose the randomness for P2, and simulates without the knowledge of X. It
honestly emulates random oracle H as in Hybrid1, and only changes the simulation of P2’s message.

• SimP1 outputs (gc1 , . . . , gcn) where ci
R←− Zp.

We argue that the view in Hybrid1 and Hybrid2 are computationally indistinguishable. Let A be
a PPT adversary against the DDH assumption. Given the DDH challenge ga, gb1 , . . . , gbn , gc1 , . . . , gcn)

where a, bi
R←− Zp, A is asked to distinguish if ci = abi or random values. A implicitly sets P2’s randomness

s := a, and simulates (with the knowledge of X) as below:

• RO queries: for each query 〈zi〉, if zi /∈ X, picks αi
R←− G and assigns H(zi) := αi; if zi ∈ X, assigns

H(xi) := gbi .

• Outputs (gc1 , . . . , gcn).

X ∩ Y

Y X

for zi /∈ X, H(zi) := αi
R←− G

for zi ∈ X, H(zi) := gbi

Clearly, if ci = abi, A simulates Hybrid1. Else, it simulates Hybrid2. Thereby, SimP1
’s simulated

view is computationally indistinguishable to P1’s real view.

This proves the theorem.

Remark C.1. In the above security proof, when establishing the security against corrupt sender, we can
obtain a more modular proof by reducing the indistinguishability of simulated views in Hybrid1 and
Hybrid2 to the pseudorandomness of Fk(H(·)), which is in turn based on the DDH assumption.

33

	Introduction
	Motivation
	Our Contribution
	Technical Overview
	Related Works

	Preliminaries
	Notation
	MPC in the Semi-honest Model
	Private Set Operation

	Protocol Building Blocks
	Oblivious Transfer
	Multi-Query RPMT

	Review of Pseudorandom Function
	Weak PRF from the DDH Assumption
	PRF from the DDH Assumption

	Commutative Weak Pseudorandom Function
	Definition of Commutative Weak PRF
	Construction of Commutative Weak PRF
	mqRPMT from Commutative Weak PRF

	Permuted Oblivious Pseudorandom Function
	Definition of Permuted OPRF
	Construction of Permuted OPRF
	mqRPMT from Permuted OPRF

	mqRPMT from Sigma-mqPMT
	Sigma-mqPMT
	Connection to Sigma-mqPMT

	Applications of mqRPMT
	PSO Framework from mqRPMT
	Private-ID

	Performance
	Implementation Details
	Experimental Setup
	Evaluation of Our Core Protocol
	Benchmark Comparison
	Tips For ECC-based Implementations

	Summary
	Missing Definitions
	Weak Pseudorandom EGA

	Instantiations of Sigma-mqPMT
	Sigma-mqPMT from DDH
	Sigma-mqPMT from FHE

	Missing Security Proofs
	Proof of Permuted OPRF Based on the DDH Assumption

