
Private Set Operations from Multi-Query Reverse Private
Membership Test

Yu Chen ∗ Min Zhang∗ Cong Zhang † Minglang Dong∗ Weiran Liu ‡

Abstract

Private set operations allow two parties to perform secure computation on their private sets,
including intersection, union and functions of intersection/union. In this paper, we put forth a
framework to perform private set operations. The technical core of our framework is the multi-query
reverse private membership test (mqRPMT) protocol (Zhang et al., USENIX Security 2023), in which
a client with a vector X = (x1, . . . , xn) interacts with a server holding a set Y , and eventually the
server learns only a bit vector (e1, . . . , en) indicating whether xi ∈ Y without learning the value of xi,
while the client learns nothing. We present two constructions of mqRPMT from newly introduced
cryptographic notions, one is based on commutative weak pseudorandom function (cwPRF), and the
other is based on permuted oblivious pseudorandom function (pOPRF). Both cwPRF and pOPRF
can be realized from the decisional Diffie-Hellman (DDH)-like assumptions in the random oracle
model. We also introduce a slightly weaker version of mqRPMT dubbed mqRPMT∗, in which the
client also learns the cardinality of X ∩Y . We show that mqRPMT∗ can be built from a category of
multi-query private membership test (mqPMT) called Sigma-mqPMT, which in turn can be realized
from DDH-like assumptions or oblivious polynomial evaluation. This makes the first step towards
establishing the relation between mqPMT and mqRPMT.

We demonstrate the practicality of our framework with implementations. By plugging our
cwPRF-based mqRPMT into the framework, we obtain various PSO protocols that are superior
or competitive to the state-of-the-art protocols. For intersection functionality, our protocol is faster
than the most efficient one for small sets. For cardinality functionality, our protocol achieves a
2.4− 10.5× speedup and a 10.9− 14.8× reduction in communication cost. For cardinality-with-sum
functionality, our protocol achieves a 28.5 − 76.3× speedup and 7.4× reduction in communication
cost. For union functionality, our protocol is the first one that achieves strictly linear complexity,
and requires the lowest concrete computation and communication costs in all settings, achieving a
2.7−17× speedup and about 2× reduction in communication cost. Specifically, for input sets of size
220, our PSU protocol requires roughly 100 MB of communication and 16 seconds using 4 threads
on a laptop in the LAN setting. Our improvement on PSU also translates to related functional-
ity, yielding the most efficient private-ID protocol to date. Moreover, by plugging our FHE-based
mqRPMT∗ to the general framework, we obtain a PSU∗ protocol (the sender additionally learns the
intersection size) suitable for unbalanced setting, whose communication complexity is linear in the
size of the smaller set and logarithmic in the larger set.

Keywords: PSO, PSU, multi-query RPMT, commutative weak PRF, permuted OPRF

∗Shandong University. Email: yuchen.prc@gmail.com, {zm_min, minglang_dong}@mail.sdu.edu.cn
†SKLOIS, IIE, Chinese Academy of Sciences. Email: zhangcong@iie.ac.cn
‡Alibaba Group. Email: weiran.lwr@alibaba-inc.com



Contents
1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Our Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Technical Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Preliminaries 6
2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 MPC in the Semi-honest Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Private Set Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Protocol Building Blocks 7
3.1 Oblivious Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Multi-Query Reverse Private Membership Test . . . . . . . . . . . . . . . . . . . . . . . . 8

4 Review of Pseudorandom Function 9
4.1 Weak PRF from the DDH Assumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.2 PRF from the DDH Assumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

5 The First Generic Construction of mqRPMT 11
5.1 Definition of Commutative Weak PRF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.2 Construction of Commutative Weak PRF . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.3 mqRPMT from Commutative Weak PRF . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

6 The Second Generic Construction of mqRPMT 15
6.1 Definition of Permuted OPRF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
6.2 Construction of Permuted OPRF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
6.3 mqRPMT from Permuted OPRF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

7 Connection Between mqRPMT and mqPMT 20
7.1 Sigma-mqPMT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
7.2 mqRPMT∗ from Sigma-mqPMT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

8 Applications of mqRPMT 22
8.1 PSO Framework from mqRPMT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
8.2 Private-ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

9 Performance 26
9.1 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
9.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
9.3 Evaluation of mqRPMT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
9.4 Benchmark Comparison of PSO Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
9.5 Tips For ECC-based Implementations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

10 Summary and Perspective 31

A Missing Definitions 35
A.1 Weak Pseudorandom EGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

B Instantiations of Sigma-mqPMT 35
B.1 Sigma-mqPMT from DDH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
B.2 Sigma-mqPMT from FHE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

C Missing Security Proofs 37
C.1 Proof of Permuted OPRF Based on the DDH Assumption . . . . . . . . . . . . . . . . . . 37

2



1 Introduction
Consider several parties, each with a private set of items, want to perform computation on their private
sets without revealing any other information to each other. Private set operation (PSO) refers to such
family of interactive cryptographic protocols that fulfill this task, which take private sets as inputs and
compute the desired function, delivering the result to the participants. In this work, we focus on two-
party PSO protocols with semi-honest security. In what follows, we briefly review related works in terms
of typical functionalities.

Private set intersection (PSI). PSI allows two parties, the sender and the receiver, to compute the
intersection of their private sets X and Y , such that the receiver only learns X ∩Y and the sender learns
nothing. PSI has found numerous applications including privacy-preserving location sharing [NTL+11],
private contact discovery [DRRT18], DNA testing and pattern matching [TKC07]. Due to its importance
and wide applications, in the past two decades PSI has been extensively studied in a long sequence of
works and has become truly practical with extremely fast implementations. The most efficient PSI
protocols [KKRT16, PRTY19, CM20, GPR+21, RS21] mainly rely on symmetric-key operations, except
O(κ) public-key operations (where κ is a computational security parameter) in base OT used in the OT
extension protocol. We refer to [PSZ18] for a good survey of different PSI paradigms.
Private computing on set intersection (PCSI). Certain real-world application scenarios only require
partial/aggregated information about the intersection. In this setting fine-grained private computation on
set intersection (PCSI) is needed, such as PSI-card for intersection cardinality [HFH99, AES03, CGT12],
PSI-card-sum for intersection cardinality and sum [IKN+20, GMR+21]. For general-purpose PCSI (also
known as circuit-PSI) [HEK12, PSTY19], the parties learn secret shares of elements in the set intersection,
which can be further fed into generic 2PC to compute g(X ∩ Y ) for arbitrary function g.
Private set union (PSU). PSU allows two parties, the sender and the receiver, to compute the
union of their private sets X and Y , such that the receiver only learns X ∪ Y and the sender learns
nothing. Like PSI, PSU also has many applications in practice, such as cyber risk assessment and
management [LV04], IP blacklist and vulnerability data aggregation [HLS+16], private DB supporting
full join [KRTW19] and private ID [GMR+21]. Existing PSU protocols can be broadly divided into two
categories based on the underlying cryptographic techniques used. The first category mainly relies on
public-key techniques [KS05, Fri07, HN10, DC17], while the second category mainly relies on symmetric-
key techniques [KRTW19, GMR+21, JSZ+22]. We refer to [ZCL+23] for a comprehensive survey of
existing PSU protocols.

Among PSO protocols, PSI has been extensively studied. Numerous PSI protocols achieve linear
complexity, and the current state-of-the-art PSI [RR22] is almost as efficient as the naive insecure hash-
based protocol. In contrast, the study of PCSI and PSU is less satisfactory. In the case of PCSI, while
a few protocols [PSTY19, IKN+20] achieve linear complexity, their practical performance is poor. As
shown in [GMR+21], even in the simplest case of semi-honest PCSI – like PSI-card – is concretely about
20× slower and requires over 30× more communication than PSI. In the case of PSU, no protocol with
linear complexity in either balanced or unbalanced setting is known for a long time being. It is until very
recently, Zhang et al. [ZCL+23] make a breakthrough by proposing the first PSU with linear complexity.
However, their work does not close this issue. Their concrete PSU protocols have a large constant term
in computation complexity, incurring a significant efficiency gap compared with PSI: roughly 25× slower
and requires at least 3× more communication than PSI.

It is somewhat surprising that different PSO protocols have significantly different efficiency. One
may wonder: what is the reason for this discrepancy? Observe that PSI can be essentially viewed as
multi-query private membership test (mqPMT), which has efficient realizations in both balanced and
unbalanced settings. However, mqPMT generally does not imply PCSI or PSU. The reason is that
mqPMT reveals information about the intersection, which should be hidden from the receiver in PCSI
and PSU.

1.1 Motivation
Our motivation of this work is threefold. First, the above discussion indicates that the most efficient PSI
protocols may not be easily adapted to PCSI and PSU protocols. Consequently, constructions of different

1



PSO protocols differ vastly in the types of techniques they employ, requiring significant engineering effort
and making it difficult to deploy PSO systematically. This calls for a modular approach that allows for
an easier navigation in the huge design space. We are thus motivated to seek for a common principal
that enables all private set operations through a unified framework. Second, given the large efficiency
gap between PSI and other related protocols, we are also motivated to give efficient instantiations of
the framework to narrow the gap. Last but not least, it is worth noting that the seminal PSI protocol,
DH-PSI [Mea86] (related ideas were appeared in [Sha80, HFH99]), which was derived from the Diffie-
Hellman key-exchange protocol, based on the decisional Diffie-Hellman (DDH) assumption, is still the
most easily understood and implemented one among many PSI protocols for over four decades. Somewhat
surprisingly, no PSU counterpart of DH-PSI has been discovered yet. It is curious to know whether the
DDH assumption is also useful in the PSU setting. In sum, our work focus on the following questions:

Is there a central building block that enables a unified framework for all private set operations? If so,
can we give efficient instantiations with optimal asymptotic complexity and good concrete efficiency?

And finally, can the DDH assumption be used to construct efficient PSU protocols?

1.2 Our Contribution
We provide affirmative answers to the aforementioned questions. Our main results are summarized as
below.

A framework of PSO. We identify that multi-query reverse private membership test (mqRPMT) [ZCL+23]
is actually a “Swiss Army Knife” for various private set operations. mqRPMT already implies PSI-card
by itself; by coupling with OT, mqRPMT implies PSI and PSU; by additionally coupling with simple
secret sharing, mqRPMT implies PSI-card-sum and PSI-card-secret-sharing, where the latter further
admits general-purpose PCSI with cardinality. Therefore, mqRPMT enables a unified PSO framework,
which can perform a variety of private set operations in a flexible manner.
Efficient construction of mqRPMT. We present two generic constructions of mqRPMT. The first is
based on a newly formalized cryptographic primitive called commutative weak PRF (cwPRF), while the
second is based on a newly introduced secure protocol called permuted oblivious PRF (pOPRF). Both
of them can be realized from DDH-like assumptions in the random oracle model, yielding incredibly
simple mqRPMT constructions with linear communication and computation complexity. Note that the
complexity of our PSO framework is dominated by the underlying mqRPMT. Therefore, all resulting
PSO protocols inherit optimal linear complexity. Notably, the obtained PSU protocol is arguably the
most simple and efficient one among existing PSU protocols.
Connection to mqPMT. mqRPMT is of great theoretical interest since it is the core building block of
the PSO framework. It is thus interesting to investigate the relationship between mqRPMT and mqPMT,
where the latter is equivalent to PSI. Towards this goal, we put forward a variant of mqRPMT called
mqRPMT with cardinality (denoted by mqRPMT∗ hereafter). Compared to the standard mqRPMT,
mqRPMT∗ additionally reveals the intersection size to the client. We show that mqRPMT∗ can be
built from a broad class of mqPMT called Sigma-mqPMT in a black-box manner via the “permute-then-
test” approach. This makes the initial step towards establishing the connection between mqRPMT and
mqPMT. Though mqRPMT∗ deviates from the standard mqRPMT in that it reveals intersection size
to the client, this could be a desirable feature in the application scenarios where both parties want to
learn intersection size, for example, PSI-card-sum [IKN+20]. We leave the investigation of the general
connection between mqPMT and mqRPMT as a challenging open problem.
Evaluations. We give efficient instantiation of our generic framework from the cwPRF-based mqRPMT
protocol, and provide C++ implementations. The experimental results demonstrate that almost all
PSO protocols derived from our generic framework are superior or competitive to the state-of-the-art
corresponding protocols.

1.3 Technical Overview
PSO from mqRPMT. As discussed above, mqPMT (equivalent to PSI) is generally not applicable for
computing PCSI and PSU. We examine the reverse direction, i.e., whether the core protocol underlying

2



PSU can be used for computing PSI and PCSI. We identify that the recently emerged mqRPMT proto-
col [ZCL+23], which is a generalization of RPMT formalized in [KRTW19], is actually a central protocol
underlying all the existing PSU protocols. Roughly speaking, mqRPMT is a two-party protocol between
a server holding a set Y and a client holding a vector X = (x1, . . . , xn). After the execution, the server
learns an indication bit vector (e1, . . . , en) such that ei = 1 if and only if xi ∈ Y but without knowing
xi, while the client learns nothing. Superficially, mqRPMT is similar to mqPMT, except that it is the
server but not the client learns the test results. This subtle difference turns out to be crucial. To see
this, note that in mqRPMT the intersection information (i.e. xi and ei) is shared between two parties,
while in mqPMT the intersection information is entirely known by the client. In light of this difference,
mqRPMT is not only particularly suitable for functionalities that have to keep intersection private, but
also retains the necessary information to compute the intersection.

More precisely, we can build a family of PSO protocols from mqRPMT in a modular fashion. PSI-card
protocol is immediate since the cardinality of intersection is exactly the Hamming weight of indication
vector. PSI (resp. PSU) protocol can be created by having the receiver (playing the role of server) and
the sender (playing the role of client) invoke a mqRPMT protocol in the first place, then carry out n
one-sided OTs with 1− ei (resp. ei) and xi. PSI-card-sum and PSI-card-secret-sharing protocols can be
constructed by additionally coupling with OT and simple secret-sharing trick. We defer the construction
details to Section 8.

Next, we give two generic constructions of mqRPMT. For clarity, we explicitly parameterize RPMT
and PMT with two parameters n1 and n2, namely (n1, n2)-(R)PMT, where n1 is the size of server’s set
Y , n2 is the length of client’s vector X, a.k.a. the number of membership test queries.
mqRPMT from cwPRF. Observe that private equality test (PEQT) protocol [PSZ14] not only can
be viewed as an extreme case of mqPMT, but also can be viewed as an extreme case of mqRPMT. Under
the parameterized notions, PEQT is essentially (1, 1)-PMT and (1, 1)-RPMT. We choose PEQT as the
starting point of our first mqRPMT construction.

The basic idea of building (1, 1)-RPMT protocol amenable to extension is using oblivious joint en-
coding, by which an element can only be encoded to a codeword by two parties in a joint manner, while
the process reveals nothing to the party without the element. To implement this idea, we formalize a
new cryptographic primitive called commutative weak PRF (cwPRF). Let F : K ×D → R be a family
of weak PRF, where R ⊆ D. F is commutative if Fk1(Fk2(x)) = Fk2(Fk1(x)) for any k1, k2 ∈ K and any
x ∈ D. In other words, the two composite functions Fk1 ◦ Fk2 and Fk2 ◦ Fk1 are essentially the same
function, denoted by F̂ .

Now we are ready to describe the construction of (1, 1)-RPMT from cwPRF. The server P1 holding
y and the client P2 holding x can conduct PEQT functionality via the following steps: (1) P1 and P2

generate cwPRF key k1 and k2 respectively, and map their items to domain D of F using a common
cryptographic hash function H, which will be modeled as a random oracle; (2) P1 computes and sends
Fk1(H(y)) to P2; (3) P2 computes and sends Fk2(H(x)) and Fk2(Fk1(H(y))) to P1; (4) P1 then learns the
test result by comparing Fk1

(Fk2
(H(x))) =?Fk2

(Fk1
(H(y))). The commutative property of F ensures the

correctness. The weak pseudorandomness of F guarantees that P2 learns nothing and P1 learns nothing
more than the test result. In the above construction, Fk2

(Fk1
(H(·))) = Fk1

(Fk2
(H(·))) = F̂k(H(·)) serves

as a pseudorandom encoding function in the joint view, while Fk1
(H(·)) and Fk2

(H(·)) serve as a partial
encoding function in the individual views of the server and client respectively.

We then extend the above (1, 1)-RPMT protocol to (n1, 1)-RPMT. Note that naive repetition by
sending back Fk2(Fk1(H(yi))) for each yi ∈ Y in the same order of the server’s first move message
Fk1

(H(yi)) does not lead to a secure (n1, 1)-RPMT. This is because {F̂k(H(yi))}i∈[n1] constitutes an
order-preserving pseudorandom encoding of (y1, . . . , yn1

), and as a consequence, the server will learn the
exact value of x if x ∈ Y . The idea to perform the membership test in an oblivious manner is making the
pseudorandom encoding of (y1, . . . , yn1

) independent of the order known by the server. A straightforward
approach is to shuffle {F̂k(H(yi))}. This yields a (n1, 1)-RPMT protocol from cwPRF, which can be
batched to a full-fledged (n1, n2)-RPMT protocol by reusing the encoding key k2. A simple calculation
shows that for a (n1, n2)-RPMT protocol, the computation cost is (n1 + n2) mappings, (2n1 + n2)
evaluations of F , n2 lookups and one shuffling, and the communication cost is (2n1 + n2) elements in
the range of F . The resulting mqRPMT protocol is optimal in the sense that both computation and
communication complexity are linear to the set size. To further reduce the communication cost, we can
insert {F̂ (H(yi))} into an order-hiding data structure such as a Bloom filter [Blo70] instead of shuffling

3



them.
In Section 5.2, we show that cwPRF can be realized from DDH-like assumptions. Combining this

with the above results, DDH implies all PSO protocols. Remarkably, it strikes back with an incredibly
simple PSU protocol, once again demonstrating that the DDH assumption is truly a golden mine in
cryptography.
mqRPMT from permuted OPRF. We choose (n, 1)-RPMT as the starting point of our second
mqRPMT construction. The idea is oblivious permuted encoding, in which only one party say P2 is able
to encode, and the other party say P1 learns the codewords of its elements (y1, . . . , yn) in a permuted
order, while both parties learn nothing more. A tempting approach to implement this idea is using multi-
point OPRF that underlies many PSI protocols [PRTY19, CM20]. More precisely, having P1 (acts as the
OPRF’s client) and P2 (acts as the OPRF’s server) engage in an OPRF protocol. Eventually, P1 obtains
PRF values of (y1, . . . , yn) as encodings, and P2 obtains a PRF key k. However, OPRF does not readily
enable oblivious permuted encoding, because the standard OPRF functionality always gives the PRF
values with the same order of inputs. To remedy this issue, we introduce a new cryptographic protocol
called permuted OPRF (pOPRF). pOPRF can be viewed as a generalization of OPRF. The difference is
that the server additionally obtains a random permutation π over [n] besides PRF key k, while the client
obtains PRF values in a permuted order as per π. pOPRF immediately implies a (n, 1)-RPMT protocol:
The server P1 with Y = (y1, . . . , yn) (acts as the pOPRF’s client) and the client P2 with X = {x} (acts
as the pOPRF’s server) first engage in a pOPRF protocol. As a result, P1 obtains {Fk(yπ(i))}i∈[n], and
P2 obtains a PRF key k and a permutation π over [n]. P2 then computes and sends Fk(x) to the server
as an RPMT query for x. Finally, P1 learns if x ∈ Y by testing whether Fk(x) ∈ {Fk(yπ(i))}i∈[n], but
learns nothing more since its received PRF values are of permuted order. At a high level, Fk(·) serves
as an encoding function in mqRPMT-client’s view, while Fk(π(·)) serves as a permuted pseudorandom
encoding function in mqRPMT-server’s view. Extending the above (n, 1)-RPMT to full-fledged (n1, n2)-
RPMT is straightforward by having the client reuse k and send {Fk(xi)}i∈[n2] as RPMT queries.

Given the above, it remains to investigate how to build pOPRF. Recall that a common approach
to build OPRF is “mask-then-unmask”, we choose OPRF along this line as the starting point. The
rough idea is exploiting the input homomorphism to mask inputs1, then unmask the outputs. If the
mask procedure is different per input, then different unmask procedure must be carried out accordingly.
For this reason, OPRF protocols of this case cannot be easily adapted to pOPRF, since the receiver is
unable to perform the unmask procedure over permuted masked outputs correctly, namely, to recover
outputs in permuted order. The above analysis indicates us that if the masking procedure can be done
via a universal manner, then the client might be able to unmask the permuted masked outputs correctly.
Observe that the simplest way to perform unified masking is to apply a weak pseudorandom function
Fs to the intermediate input H(x), where H is a cryptographic hash function that maps input x to
the domain of Fs. To enable efficient unmasking, we further require that Fs is a permutation and
commutative with respect to Fk. This yields a simple pOPRF construction from commutative weak
pseudorandom permutation. More precisely, to build pOPRF, the server picks a random PRP key k for
F , while the client with input X = (x1, . . . , xn) picks a random PRP key s for F . The client then sends
{Fs(H(xi))}i∈[n] to the server. Upon receiving the masked intermediate inputs, the server applies Fk to
them, then sends the results in permuted order, a.k.a. {Fk(Fs(H(xπ(i))))}i∈[n]. Finally, the client applies
F−1
s to the permuted masked outputs, and will obtain {Fk(H(xπ(i)))}i∈[n] by the commutative property.

Note that many efficient OPRF constructions [PRTY19, CM20, RS21] seem not amenable to pOPRF
due to the lack of nice algebra structures. This somehow explains the efficiency gap between the state-
of-the-art PSI and PCSI/PSU.
mqRPMT∗ from Sigma-mqPMT. To investigate the connection between mqRPMT and mqPMT,
we first abstract a category of mqPMT protocols called Sigma-mqPMT, which is composed from Sigma-
PMT. Roughly speaking, Sigma-PMT is a three-move protocol, which proceeds as below: (1) in the
first move, the server holding a set Y sends a message a to the client, where a is best interpreted as
an encoding of Y ; (2) in the second move, the client makes a test query q of its item x; (3) in the last
move, the server responds with z, and eventually the client can decide if x ∈ Y by running the algo-
rithm Test(a, q, x, z). To facilitate efficient parallel composition, Sigma-PMT may satisfy the following
three properties: (i) reusable property, which ensures the first move message can be safely reused over

1Standard pseudorandomness denies input homomorphism. Rigorously speaking, we utilize the homomorphism over
intermediate input.

4



multi-instance; (ii) context-independent property, which means the test query only depends on the item
in test; (iii) stateless testing property, which means the Test algorithm can be done without learning
(q, x). By running multiple instances of Sigma-PMT with the above three properties in parallel, we ob-
tain a three-move mqPMT protocol without increasing round complexity, called Sigma-mqPMT, which
captures the common form of several PSI protocols [Mea86, FIPR05, CLR17]. By utilizing the stateless
property, Sigma-mqPMT can be tweaked to mqRPMT∗ through the “shuffle-then-test” approach, with-
out incurring computation and communication overhead. Therefore, a series of results in PSI setting
can be translated to PSO setting, on the premise that revealing intersection size is acceptable. Notably,
by applying the conversion to fully homomorphic encryption (FHE) based Sigma-mqPMT, we obtain
an efficient mqRPMT∗ in the unbalanced setting, which gives rise to the first PSU∗ protocol whose
communication complexity is sublinear to the size of the large set X.

In Figure 1, we give a pictorial overview of our main results.

mqRPMTSection 8

commutative
weak PRF

permuted
oblivious PRF

enhanced version
Section 5 Section 6

PSI/PSU PSI-card-[sum/secret-sharing] PSI-card

OT OT+SS

Sigma-mqPMT

permuted
mqPMT

shuffle-then-test

mqRPMT∗

Section 7

Figure 1: Summary of our main results. The rectangles with solid lines denote notions newly in this
work. The rectangles with dotted lines denote notions from previous work.

1.4 Related Works
We review previous PSI-card, PSI-card-sum and PSU protocols that are relevant to our work. Ion et
al. [IKN+20] showed how to transform single-point OPRF-based [PSZ14, KKRT16], garbled Bloom filter-
based [DCW13, RR17], and DDH-based [HFH99] PSI protocols into ones for computing PSI-card-sum
by leveraging additively homomorphic encryption (AHE). However, their conversions are inefficient due
to the usage of AHE, and as noted by the authors, detailed conversions to each category of protocols
differ significantly, especially in the way of making use of the underlying AHE. In contrast, we distill
Sigma-mqPMT from a broad class of PSI protocols, then show how to tweak it to mqRPMT∗ in a
generic and black-box manner, without relying on any additional cryptographic tools. Our abstraction
of Sigma-mqPMT is more broadly applicable, and our conversion works at a higher level. Miao et
al. [MPR+20] put forward shuffled distributed oblivious PRF as a central tool to build PSI-card-sum
with malicious security. Compared to shuffled distributed OPRF, our notion of permuted OPRF is much
simpler and should be best viewed as a useful extension of standard OPRF. The conceptual simplicity
lends it to be easily built from commutative weak pseudorandom permutation and find more potential
applications. For example, permuted OPRF immediately implies permuted matrix private equality
test, which is a key tool in building FHE-based PSU [TCLZ23]. Davidson and Cid [DC17] proposed a
framework for constructing PSI, PSU, and PSI-card. Their protocols have linear complexity, but both
the computation and communication complexity additionally rely on the statistical security parameter
λ (a typical concrete choice is 40), resulting in low performance in practice. Kolesnikov et al. [KRTW19]
proposed the notion of reverse private membership test (RPMT), then used it to build a PSU protocol
whose performance is much better than [DC17]. Garimella et al. [GMR+21] proposed a framework for
all private set operations from permuted characteristic, which could be viewed as a variant of RPMT.
Nevertheless, the oblivious shuffle in permuted characteristic functionality is not necessary for PSO,

5



but seems unavoidable due to the use of oblivious switching networks, which in turn incurs superlinear
complexity to permuted characteristic protocol and all the enabling PSO protocols. Besides, we note
that the PSI-card-sum functionality defined in [GMR+21] differs from the original functionality defined
in [IKN+20]. The distinction is that in the original functionality of PSI-card-sum, both parties are
given the cardinality of intersection, and the party initially holding values is also given the intersection
sum, while in the functionality described in [GMR+21], the party without holding values is given the
cardinality and sum of the intersection. To distinguish this subtle difference, we refer to the functionality
presented in [GMR+21] as reverse PSI-card-sum.

Very recently, Zhang et al. [ZCL+23] extended the notion of RPMT [KRTW19] to multi-query
RPMT (mqRPMT), and proposed a generic construction of mqRPMT from oblivious key-value store
(OKVS) [GPR+21], set-membership encryption and oblivious vector decryption-then-test protocol. By
instantiating their generic construction from symmetric-key and public-key encryption respectively, they
obtained two concrete mqRPMT protocols with linear complexity. However, their two mqRPMT proto-
cols have a large multiplicative constant (the statistical security parameter) in computation complexity,
and so does the resulting PSU protocol. Besides, as noted by the authors, their more efficient PKE-
based mqRPMT protocol is leaky, failing to meet the standard security. Compared with their work,
our generic construction of mqRPMT is much simpler, and our two concrete instantiations meet the
standard definition yet achieve strict linear complexity.2 Moreover, we identify mqRPMT as a central
building block for a family of private set operations, while their focus is limited to PSU.

Other related works. PSO protocols are primarily designed for the balanced scenario, where the
sizes of two sets are approximately the same. Recently, a line of research has started considering the
unbalanced scenario, where one set is much larger than the other. Hereafter, let the sizes of small and large
sets be m and n, respectively. [CLR17, CHLR18, CMdG+21] showed how to leverage fully homomorphic
encryption (FHE) to build PSI protocols suitable for unbalanced scenario with communication complexity
O(m log n), which is linear to the size of small set but logarithmic to the size of large set. A body of
follow-up works achieved the same complexity for other functionalities. [CHLR18] proposed circuit-PSI,
PSI-card and PSI-card-sum protocols based on generic 2PC technique, and then [SJ23, WY23] provided
the associated implementations. [TCLZ23] created the first unbalanced PSU protocol by tweaking the
technique due to [CLR17]. Another line of research extended PSO protocols to multi-party settings:
[KMP+17, NTY21] for PSI, [CDGB22] for PSI-card(-sum), and [LG23] for PSU.

2 Preliminaries
2.1 Notation
We use κ and λ to denote the computational and statistical parameter respectively. Let Zn be the set
{0, 1, . . . , n−1}, Z∗

n = {x ∈ Zn | gcd(x, n) = 1}. We use [n] to denote the set {1, . . . , n}, and use Perm[n]
to denote all the permutations over the set {1, . . . , n}. We assume that every set X has a default order
(e.g. lexicographical order), and write it as X = {x1, . . . , xn}. For a set X, we use |X| to denote its size
and use x

R←− X to denote sampling x uniformly at random from X. We use (x1, . . . , xn) to denote a
vector, and its i-th element is xi. A function is negligible in κ, written negl(κ), if it vanishes faster than
the inverse of any polynomial in κ. A probabilistic polynomial time (PPT) algorithm is a randomized
algorithm that runs in polynomial time.

2.2 MPC in the Semi-honest Model
We use the standard notion of security in the presence of semi-honest adversaries. Let Π be a two-party
protocol for computing the function f(x1, x2), where party Pi has input xi, and output(x1, x2) be the
output of both parties in the protocol. For each party Pi where i ∈ {1, 2}, let ViewPi

(x1, x2) denote
the view of party Pi during an honest execution of Π on inputs x1 and x2, which consists of Pi’s input,
random tape, and all messages Pi received in the protocol.

2In the context of PSO, strict linear complexity means that the complexity grows linearly only to the sets sizes.

6



Definition 2.1. Two-party protocol Π securely realizes f in the presence of semi-honest adversaries if
there exists a simulator Sim such that for all inputs x1, x2 and all i ∈ {1, 2}:

{ViewPi(x1, x2), output(x1, x2)} ≈c {Sim(i, xi, f(x1, x2)), f(x1, x2)}

Roughly speaking, a protocol is secure if Pi with xi learns no more information other than f(x1, x2)
and xi.

2.3 Private Set Operation
PSO is a special case of secure two-party computation. We call the two parties engaging in PSO the
sender and the receiver. The sender holds a set X of size n1, and the receiver holds a set Y of size n2

(we set n1 = n2 = n in the balanced setting). Figure 2 formally defines the ideal functionality for PSO
that computes the intersection, union, cardinality, intersection sum with cardinality and intersection
secret-sharing with cardinality.

Parameters: The receiver P1’s input size n1 and the sender P2’s input size n2.
Inputs: The receiver P1 inputs a set of elements Y = {y1, . . . , yn1} where yi ∈ {0, 1}ℓ. The sender
P2 inputs a set of elements X = {x1, . . . , xn2

} where xi ∈ {0, 1}ℓ and possibly a set of values
V = {v1, . . . , vn2

} where vi ∈ Zp for some integer modular p.
Output:

• intersection: The receiver P1 gets X ∩ Y .

• union: The receiver P1 gets X ∪ Y .

• union∗: The receiver P1 gets X ∪ Y . The sender P2 gets |X ∩ Y |.

• card: The receiver P1 gets |X ∩ Y |.

• card-sum: The receiver P1 gets |X ∩ Y |. The sender P2 gets |X ∩ Y | and S =
∑

i:xi∈Y vi.

• card-secret-sharing: The receiver P1 gets |X ∩ Y | and {z1i }i∈[n2]. The sender P2 gets
{z2i }i∈[n2]. For each (z1i , z

2
i ), z1i ⊕ z2i = xi if xi ∈ Y and z1i ⊕ z2i = 0 otherwise.

Figure 2: Ideal functionality FPSO for PSO

In this work, we restrict ourselves to two-party PSO with semi-honest security in the balanced sce-
nario.

3 Protocol Building Blocks
3.1 Oblivious Transfer
Oblivious Transfer (OT) [Rab05] is a central cryptographic primitive in the area of secure computation.
In the most common 1-out-of-2 OT, a sender with two input strings (m0,m1) interacts with a receiver
with an input choice bit b ∈ {0, 1}, and finally the receiver only learns mb while the sender learns nothing.
In some cases, it suffices to use a “one-sided” version of OT, which conditionally transfers the only item
of the sender or nothing to the receiver depending on the choice bit.

Though expensive public-key operations are unavoidable for a single OT, a powerful technique called
OT extension [IKNP03, KK13, ALSZ15] allows one to carry out n OTs by only performing O(κ) public-
key operations and O(n) fast symmetric-key operations. Figure 3 formally defines the ideal functionality
for OT that provides n parallel instances of OT.

7



Parameters: Number of OT instances n and message length ℓ.
Inputs: The sender P1 inputs {(mi,0,mi,1)}i∈[n], where each mi,bs ∈ {0, 1}ℓ. The receiver P2 inputs
a bit vector (b1, . . . , bn) ∈ {0, 1}n.
Output: The sender P1 gets nothing. The receiver P2 gets {mi,bi}i∈[n].

Figure 3: Ideal functionality FOT for OT

3.2 Multi-Query Reverse Private Membership Test
Multi-query reverse private membership test (mqRPMT) [ZCL+23] is a protocol where the client with
input vector (x1, . . . , xn) interacts with a server holding a set Y . As a result, the server learns only a
bit vector (e1, . . . , en) in which ei indicates that whether xi ∈ Y . Figure 4 formally defines the ideal
functionality for mqRPMT. We also consider a relaxed version of mqRPMT called mqRPMT∗, in which
the client is also given |X ∩ Y |.

Parameters: The server P1’s set size n1 and number of RPMT queries n2 by the client P2.
Inputs: The server P1 inputs a set Y = (y1, . . . , yn1

), where yi ∈ {0, 1}ℓ. The client P2 inputs a set
X = (x1, . . . , xn2) (should be interpreted as a vector), where xi ∈ {0, 1}ℓ.
Output: The server P1 gets a vector e⃗ = (e1, . . . , en2) ∈ {0, 1}n2 , where ei = 1 if xi ∈ Y and ei = 0
otherwise. The client P2 gets nothing.

Figure 4: Ideal functionality FmqRPMT for multi-query RPMT

Family of PMT protocols. For completeness and fixing terminology, we explore the whole family of
PMT protocols in a systematical way. We identify two characteristics of PMT protocols. One is direction,
which consists of two options, namely forward or reverse. Forward option means the indication bits are
finally known by the client, while reverse option means the indication bits are known by the server.
The other is order, which also consists of two options, namely ordered and permuted. The ordered
option means the indication bits are of the right order known by the client. The permuted option means
the indication bits are of the permuted order unknown to the client. By mixing-and-matching the two
characteristics, we obtain four types PMT protocols, shown in Table 1.

Table 1: The family of PMT protocols

Protocol Direction Order Direct usageforward reverse ordered permuted
mqPMT ✓ ✓ PSI

mqRPMT ✓ ✓ PSI-card
permuted mqPMT ✓ ✓ PSI-card

permuted mqRPMT ✓ ✓ PSI-card

mqPMT and PSI are the same protocol under different names. mqRPMT is formalized in [KRTW19,
ZCL+23]. Permuted mqRPMT is introduced in [GMR+21] under the name of permuted characteris-
tic. To the best of our knowledge, the notion of permuted mqPMT is new to this work, which could
be viewed as a high-level abstraction of the DH-based PSI-card protocol due to [HFH99].

8



4 Review of Pseudorandom Function
In this section, we recap the standard notions of PRF, as well as the canonical construction from the
DDH assumption. Looking ahead, we will build more advanced variants of PRF with richer properties
on these basis. We first recall the notion of standard pseudorandom functions (PRFs) [GGM86].

Definition 4.1 (PRF). A family of PRFs consists of three polynomial-time algorithms as follows:

• Setup(1κ): on input a security parameter κ, outputs public parameter pp. pp specifies a family of
keyed functions F : K ×D → R, where K is the key space, D is domain, and R is range.

• KeyGen(pp): on input pp, outputs a secret key k
R←− K.

• Eval(k, x): on input k ∈ K and x ∈ D, outputs y ← F (k, x). For notation convenience, we will
write F (k, x) as Fk(x) interchangeably.

The standard security requirement for PRF is pseudorandomness.

Pseudorandomness. Let A be an adversary against PRF and define its advantage as:

AdvA(κ) = Pr

β′ = β :

pp← Setup(1κ);
k ← KeyGen(pp);
β ← {0, 1};
β′ ← AOror(β,·)(κ);

− 1

2
,

where Oror(β, ·) denotes the real-or-random oracle controlled by β, i.e., Oror(0, x) = Fk(x), Oror(1, x) =
H(x) (here H is chosen uniformly at random from all the functions from D to R3). A can adaptively
access the oracle Oror(β, ·) polynomial many times. We say that F is pseudorandom if for any PPT
adversary AdvA(κ) is negligible in κ. We refer to such security as full PRF security.

Sometimes the full PRF security is not needed and it is sufficient if the function cannot be dis-
tinguished from a uniform random one when challenged on random inputs. The formalization of such
relaxed requirement is weak pseudorandomness, which is defined the same way as pseudorandomness
except that the inputs of oracle Oror(b, ·) are uniformly chosen from D by the challenger instead of
adversarially chosen by A. PRF that satisfy weak pseudorandomness are referred to as weak PRF.

4.1 Weak PRF from the DDH Assumption
We recall the weak PRF from the DDH assumption (implicitly presented in [NPR99]) as below.

• Setup(1κ): runs GroupGen(1κ)→ (G, g, p), outputs pp = (G, g, p). pp defines a family of functions
from Zp ×G to G, a.k.a. on input k ∈ Zp and x ∈ G outputs Fk(x) = xk.

• KeyGen(pp): outputs k
R←− Zp.

• Eval(k, x): on input k ∈ Zp and x ∈ D, outputs y ← xk.

The following theorem establishes its pseudorandomness based on the DDH assumption.

Theorem 4.1. Fk(x) is a family of weak pseudorandom functions assuming the hardness of the DDH
problem holds w.r.t. GroupGen(1κ)→ (G, g, p).

Proof. DDH assumption states that DDH tuple (ga, gb, gab) and random tuple (ga, gb, gc) are computa-
tionally indistinguishable. By exploiting the random self-reducibility of the DDH problem [NR95], the
standard DDH assumption implies that the n-fold DDH tuple (ga, gb1 , . . . , gbn , gab1 , . . . , gabn) and the n-
fold random tuple (ga, gb1 , . . . , gbn , gc1 , . . . , gcn) are computationally indistinguishable, where a, bi, ci

R←−
Zp. We are now ready to reduce the weak pseudorandomness of Fk(·) based on the DDH assump-
tion. Let B be an adversary against the DDH assumption. Given a n-fold DDH challenge instance
(ga, gb1 , . . . , gbn , gc1 , . . . , gcn), B interacts with an adversary A in the weak pseudorandomness experi-
ment, with the aim to determine if ci = abi or ci is a random value.

3To efficiently simulate access to a uniformly random function H from D to R, one may think of a process in which
the adversary’s queries to Oror(1, ·) are “lazily” answered with independently and randomly chosen elements in R, while
keeping track of the answers so that queries made repeatedly are answered consistently.

9



Setup: B sends pp = (G, g, p) to A. B implicitly sets a as the key of PRF.
Real-or-random query: Upon receiving the i-th query to oracle Oror, B sets the i-th random input xi :=

gbi , computes yi = gci , then sends (xi, yi) to A.
Guess: A makes a guess β′ ∈ {0, 1} for β, where ‘0’ indicates real mode and ‘1’ indicates random mode.
B forwards β′ to its own challenger.

Clearly, if ci = abi for all i ∈ [n], then A simulates the real oracle. If ci is random, then A simulates
the random oracle. Thereby, B breaks the DDH assumption with the same advantage as A breaks the
pseduorandomness of Fk(·).

Remark 4.1. We note that Fk(x) = xk is actually a permutation over G, and it is efficiently invertible
with the knowledge of k.

4.2 PRF from the DDH Assumption
Naor et al. [NPR99] showed how to convert a distributed weak PRF into a standard distributed PRF
using random oracle heuristic. Actually, their approach can be generalized to bootstrap any weak PRF
with dense domain to a standard PRF via the “hash-then-evaluate” formula. Concretely, to build a
standard PRF with domain D from the DDH-based weak PRF described above, we first map the input
element from D to G via a cryptographic hash function H : D → G, then apply Fk in a cascade way,
yielding a composite function Fk ◦ H : D → G. Assuming H is a random oracle, the pseudorandomness
of the composite function Fk ◦ H can be reduced to the weak pseudorandomness of Fk by leveraging
the programmability of H. In other words, random oracle amplifies weak pseudorandomness to standard
pseudorandomness.

For completeness, we provide the details as below.

• Setup(1κ): runs GroupGen(1κ) → (G, g, p), picks a cryptographic hash function H from domain D
to G, outputs pp = (G, g, p,H). pp defines a family of functions from Zp × D to G, which takes
k ∈ Zp and x ∈ D as input and outputs Fk(H(x)) = H(x)k.

• KeyGen(pp): outputs k
R←− Zp.

• Eval(k, x): on input k ∈ Zp and x ∈ D, outputs H(x)k.

The following theorem establishes its pseudorandomness based on the DDH assumption.

Theorem 4.2. Fk(H(x)) is a family of PRF assuming H is a random oracle and the DDH assumption
holds w.r.t. GroupGen(1κ)→ (G, g, p).

Proof. We now reduce the pseudorandomness of Fk(H(·)) to the hardness of DDH problem. Let B be
an adversary against the DDH problem. Given a DDH challenge instance (ga, gb1 , . . . , gbn , gc1 , . . . , gcn),
B interacts with an adversary A in the pseudorandomness experiment, with the aim to determine if
ci = abi or ci is a random value. B simulates the random oracle H and real-or-random oracle as below:

• Setup: B sends pp = (G, g, p,H) to A, and implicitly sets a as the key of PRF.

• Random oracle query: for random oracle (RO) query 〈xi〉, B programs H(xi) := gbi .

• Real-or-random query: without loss of generality, it is safe to assume adversary has already made
the corresponding RO queries before making the evaluation queries. For evaluation query 〈xi〉, B
returns yi := gci to A.

• Guess: A makes a guess β ∈ {0, 1}, where ‘0’ indicates real mode and ‘1’ indicates random mode.
B forwards β to its own challenger.

Clearly, if ci = abi for all i ∈ [n], then A simulates the real oracle. If ci is random, then A simulates
the random oracle. Thereby, B breaks the DDH assumption with the same advantage as A breaks the
pseduorandomness of Fk(H(·)).

10



Remark 4.2 (Post-quantum PRF Construction). The above PRF construction is not post-quantum se-
cure since it is based on the DDH assumption. Weak pseudorandom group action (c.f. Definition in
Appendix A.1) naturally implies weak PRF, and thus in turn gives rise to standard PRF via the afore-
mentioned “hash-then-evaluate” formula. So far, weak pseudorandom group action is still considered
to be secure against quantum algorithms. Therefore, it provides an alternative post-quantum PRF
construction besides the ones [BPR12, BP14, Kim20] from lattices.

5 The First Generic Construction of mqRPMT
5.1 Definition of Commutative Weak PRF
We first formally define two standard properties for keyed functions.

Composable. For a family of keyed functions F : K ×D → R, F is 2-composable if R ⊆ D, namely,
for any k1, k2 ∈ K, the function Fk1

(Fk2
(·)) is well-defined. In this work, we are interested in a special

case namely R = D.
Commutative. For a family of composable keyed functions, we say it is commutative if:

∀k1, k2 ∈ K, ∀x ∈ D : Fk1
(Fk2

(x)) = Fk2
(Fk1

(x))

It is easy to see that the standard pseudorandomness denies commutative property. Consider the
following attack against the standard pseudorandomness of Fk as below: the adversary A picks k′ R←− K,
x

R←− D, and then queries the real-or-random oracle at point Fk′(x) and point x respectively, receiving
back responses y′ and y. A then outputs ‘1’ iff Fk′(y) = y′. Clearly, A breaks the pseudorandomness
with advantage 1/2. Provided commutative property exists, the best security we can expect is weak
pseudorandomness. Looking ahead, weak pseudorandomness and commutative property may co-exist
based on some well-studied assumptions.

Definition 5.1 (Commutative Weak PRF). Let F be a family of keyed functions K×D → D. F is called
commutative weak PRF if it satisfies weak pseudorandomness and commutative property simultaneously.
If F is a permutation, we say F is a commutative weak pseudorandom permutation (cwPRP).

Further generalization. Instead of sticking to one family of keyed functions, commutative property
can be defined over two families of keyed functions. Let F be a family of weak PRFs from K ×D to D,
G be a family of weak PRFs S ×D to D. If the following equation holds,

∀k ∈ K, s ∈ S, ∀x ∈ D : Fk(Gs(x)) = Gs(Fk(x))

we say (F,G) is a pair of cwPRF.

Remark 5.1 (cwPRF vs. Commutative Encryption). We note that our notion of cwPRF is similar to but
strictly weaker than a previous notion called commutative encryption [AES03]. The difference is that
cwPRF neither requires Fk be a permutation nor F−1

k be efficiently computable.

5.2 Construction of Commutative Weak PRF
We observe that the weak PRF construction presented in Section 4.1 already satisfies commutative
property. This gives us a simple cwPRF construction from the DDH-like assumption. It is still interesting
to know if cwPRF can be built from other assumptions. Note that cwPRF naturally yields a non-
interactive key exchange (NIKE) protocol, while the recent result of Guo et al. [GKRS22] indicated
that it would be difficult to construct NIKE from lattice-based assumptions. Therefore, giving lattice-
based cwPRF or proving impossibility will lead to progress on some other well-studied questions in
cryptography.

11



Parameters: The server P1’s set size n1 and the client P2’s set size n2, cwPRF F : K ×D → D,
and hash function H : {0, 1}ℓ → D.
Inputs: The server P1 inputs a set Y = {y1, . . . , yn1}, where yi ∈ {0, 1}ℓ. The client P2 inputs a
set X = {x1, . . . , xn2

} (should be interpreted as a vector), where xi ∈ {0, 1}ℓ.
Protocol:

1. P1 picks k1
R←− K, then computes and sends {Fk1

(H(yi))}i∈[n1] to P2.

2. P2 picks k2
R←− K, then:

(a) computes and sends {Fk2
(H(xi)))}i∈[n2] to P1.

(b) computes {Fk2(Fk1(H(yi)))}i∈[n1], picks a random permutation π over [n1], then sends
{Fk2(Fk1(H(yπ(i))))}i∈[n1] to P1. Instead of explicit shuffling, an alternative choice is
inserting {Fk2

(Fk1
(H(yi)))}i∈[n1] to a Bloom filter and then sending the filter to P1. We

slightly abuse the notation, and still use Ω to denote the Bloom filter.

3. P1 computes {Fk1
(Fk2

(H(xi)))}i∈[n2], then sets ei = 1 iff Fk1
(Fk2

(H(xi))) ∈ Ω.

F : K ×D → D, H : {0, 1}ℓ → D

P1 (server)
Y = (y1, . . . , yn1

)
P2 (client)

X = (x1, . . . , xn2
)

k1
R←− K

{Fk1
(H(yi))}i∈[n1]

π
R←− Perm[n1]

k2
R←− K

{Fk2
(H(xi))}i∈[n2]

Ω← {Fk2
(Fk1

(H(yπ(i))))}i∈[n1]

Ω← BloomFilter({Fk2
(Fk1

(H(yπ(i))))}i∈[n1])

set ei = 1 iff
Fk1

(Fk2
(H(xi))) ∈ Ω

Figure 5: Multi-query RPMT from commutative weak PRF

12



5.3 mqRPMT from Commutative Weak PRF
In Figure 5, we show how to build mqRPMT from cwPRF F : K × D → D and cryptographic hash
function H : {0, 1}ℓ → D.
Remark 5.2. We observe that thanks to the nice properties of cwPRF, the same cwPRF-based mqRPMT
protocol can also be tweaked to permuted mqPMT by checking if F̂k(H(yπ(i))) ∈ {F̂k(H(xi))}i∈[n2].

Correctness. The above protocol is correct except the event E that Fk1
(Fk2

(H(x))) = Fk1
(Fk2

(H(y)))
for some x 6= y occurs. In what follows, we fix a tuple (x, y) such that x 6= y. Let E0 be the event
H(x) = H(y). By the collision resistance of H, we have Pr[E0] = 2−κ. Let E1 be the event that
H(x) 6= H(y) but Fk1(Fk2(H(x))) = Fk1(Fk2(H(y))), which can further be divided into sub-cases E10—
Fk2(H(x)) = Fk2(H(y)) and E11—Fk2(H(x)) 6= Fk2(H(y)) but Fk1(Fk2(H(x))) = Fk1(Fk2(H(y))). By the
weak pseudorandomness of F , we have Pr[E10] = (1− Pr[E0]) · 1/|D|, and Pr[E11] = (1− Pr[E0]) · (1−
1/|D|) · 1/|D|. If |D| = ω(κ), then both Pr[E0], Pr[E10] and Pr[E11] are negligible in κ. Therefore, by
union bound we have Pr[E] ≤ n1n2 · (Pr[E0] + Pr[E10] + Pr[E11]) = negl(κ).

Theorem 5.1. The multi-query RPMT protocol described in Figure 5 is secure in the semi-honest model
assuming H is a random oracle and F is a family of cwPRFs.

Proof. We exhibit simulators SimP1
and SimP2

for simulating corrupt P1 and P2 respectively, and argue
the indistinguishability of the simulated transcript from the real execution. Let |X ∩ Y | = m.

Security against corrupt client. SimP2
simulates the view of corrupt client P2, which consists of P2’s

randomness, input, output and received messages. We formally show SimP2
’s simulation is indistinguish-

able from P2’s view in the real protocol via a sequence of hybrid transcripts.
Hybrid0: P2’s view in the real protocol.
Hybrid1: Given P2’s input X, SimP2 simulates with the knowledge of Y as follows:

• chooses the randomness for P1 (i.e., picks k1
R←− K).

• emulates the random oracle H honestly: for each query 〈zi〉, picks αi
R←− D and assigns H(zi) := αi.

• outputs (Fk1
(H(y1)), . . . , Fk1

(H(yn1
))).

X ∩ Y

Y X

for zi ∈ D, H(zi) := αi
R←− D

Clearly, SimP2 ’s simulated view in Hybrid1 is identical to P2’s view in real protocol.
Hybrid2: SimP2 does not choose the randomness for P1 (i.e., picks k1

R←− K), and simulates without the
knowledge of Y . It emulates the random oracle H honestly as before, and only changes the simulation
of P1’s message as below:

• outputs (η1, . . . , ηn1) where ηi
R←− D.

We argue that the simulated views in Hybrid1 and Hybrid2 are computationally indistinguishable.
Let A be a PPT adversary against the weak pseduorandomness of Fk(·). More precisely, given n tuples
(γi, ηi) where γi

R←− D, A is asked to distinguish if ηi = Fk(γi) or ηi is random. To do so, A creates a
simulated view with the knowledge of X and Y as follows:

• implicitly sets P1’s randomness k1 := k.

• for each random oracle query 〈zi〉: if zi /∈ Y , picks αi
R←− D and sets H(zi) := αi; if zi ∈ Y , sets

H(zi) := γi.

• outputs (η1, . . . , ηn1).

13



X ∩ Y

Y X

for zi /∈ Y , H(zi) := αi
R←− D

for zi ∈ Y , H(zi) := γi
R←− D

If ηi = Fk(γi) for i ∈ [n1], then A’s simulated view is identical to Hybrid1. If ηi is random, then
A’s simulated view is identical to Hybrid2. This reduces the computational indistinguishability of the
simulated views in Hybrid1 and Hybrid2 to the weak pseudorandomness of Fk(·).

Security against corrupt server. SimP1
simulates the view of corrupt server P1, which consists

of P1’s randomness, input, output and received messages. We formally show SimP1
’s simulation is

indistinguishable from P1’s view in the real protocol via a sequence of hybrid transcripts.
Hybrid0: P1’s view in the real protocol.
Hybrid1: Given P1’s input Y and output (e1, . . . , en1

), SimP1
simulates with the knowledge of X as

follows:

• chooses the randomness for P2 (i.e., picks k2
R←− K and π

R←− Perm[n1]).

• emulates the random oracle H honestly: for each query 〈zi〉, picks αi
R←− D and assigns H(zi) := αi.

• outputs {Fk2
(H(xi))}i∈[n1] and Ω← {Fk2

(Fk1
(H(yπ(i))))}i∈[n1].

X ∩ Y

Y X

for zi ∈ D, H(zi) := αi
R←− D

Clearly, SimP1
’s simulated view in Hybrid1 is identical to P1’s view in the real protocol.

Hybrid2: SimP1
does not choose randomness for P2, and simulates without the knowledge of X. Let m

be the Hamming weight of (e1, . . . , en1
). It simulates the random oracle H honestly as before, and only

changes its simulation of P2’s message.

• picks vi
R←− D for i ∈ [n2] (associated with Fk2

(H(xi)) where xi ∈ X), outputs {vi}i∈[n2]; picks
wj

R←− D for j ∈ [n1 −m] (associated with Fk2(H(yj)) where yj ∈ Y −X ∩ Y ), outputs a random
permutation of ({Fk1

(vi)}ei=1, {Fk1
(wj)}j∈[n1−m]).

X ∩ Y

Y X
Fk2(H(xi)) := vi

Fk2(H(yi)) := wj

We argue that the views in Hybrid1 and Hybrid2 are computationally indistinguishable. Let A be a
PPT adversary against the weak pseudorandomness of Fk(·). More precisely, given n1 + n2 −m tuples
(γi, ηi) where γi

R←− D, A is asked to determine if ηi = Fk(γi) or random values. To do so, A creates a
simulated view with the knowledge of X and Y as below:

• implicitly sets P2’s randomness k2 := k, and picks k1
R←− K.

• for each random oracle query 〈zi〉: if zi /∈ X ∪ Y , picks αi
R←− D and assigns H(zi) := αi; if

zi ∈ X ∪ Y , assigns H(zi) := γi.

• for each zi ∈ X, picks out the associated ηi to form {vj}j∈[n2]; for each zi ∈ Y −X ∩ Y , picks out
the associated ηi to form {wℓ}ℓ∈[n1−m]. Finally, outputs {vj}j∈[n2] and a random permutation of
({Fk1(vj)}xj∈X∩Y , {Fk1(wℓ)}ℓ∈[n1−m]).

X ∩ Y

Y X

for zi /∈ X ∪ Y , H(zi) := αi
R←− D

for zi ∈ X ∪ Y , H(zi) := γi
R←− D

Fk2
(H(xj)) := vj

Fk2
(H(yℓ)) := wℓ

14



If ηi = Fk(γi), then A’s simulated view is identical to Hybrid1. If ηi is random, then A’s simulated
view is identical to Hybrid2. This reduces the computational indistinguishability of the simulated views
in Hybrid1 and Hybrid2 to the weak pseudorandomness of Fk(·).

This proves the theorem.

Performance analysis. We now analyze the performance of the above (n1, n2)-mqRPMT protocol.
Simple calculation shows that the total computation cost is (n1 + n2) hashings, (2n1 + 2n2) evaluations
of cwPRF F , n2 lookups whose complexity is O(1), and one shuffling whose complexity is O(n1), while
the total communication cost is (2n1+n2) elements in range D. In summary, both the computation and
communication complexities are strictly linear in set sizes.
Optimization. The protocol can be further improved by inserting {Fk2

(Fk1
(H(yi)))}i∈[n1] to a Bloom

filter instead of explicitly shuffling them in the last move. In this way, the length of last message can be
reduced from to n1 group elements to 1.44λ ·n1 bits (with false positive probability 2−λ), where λ is the
statistical security parameter and the typical choice is 40.

It is worth to highlight that our usage of Bloom filter is novel here since we additionally exploit its
order-hiding property to ensure security4. To the best of knowledge, Bloom filter merely serves as a
space-efficient data structure in previous works [KLS+17, RA18] to reduce communication cost.

6 The Second Generic Construction of mqRPMT
6.1 Definition of Permuted OPRF
An oblivious pseudorandom function (OPRF) [FIPR05] is a two-party protocol in which the server learns
(or chooses) a PRF key k and the client learns Fk(x1), . . . , Fk(xn), where F is a pseudorandom function
(PRF) and (x1, . . . , xn) are the client’s inputs. Nothing about the client’s inputs is revealed to the server
and nothing more about the key k is revealed to the client.

We consider an extension of OPRF which we called permuted OPRF (pOPRF). Roughly speaking,
the server additionally picks a random permutation π over [n], and the client learns its PRF values in
permuted order, namely, yi = Fk(xπ(i)). Figure 6 formally defines the ideal functionality for pOPRF.

Parameters: Number of OPRF queries n.
Inputs: The server P1 inputs nothing. The client P2 inputs a set X = (x1, . . . , xn), where xi ∈
{0, 1}ℓ.
Output: The server P1 gets a random PRF key k and a random permutation π over [n]. The client
P2 gets yi = Fk(xπ(i)).

Figure 6: Ideal functionality FpOPRF for permuted OPRF

6.2 Construction of Permuted OPRF
As we sketched in the introduction part, we can create a permuted OPRF from cwPRP F with the help
of random oracle. At a high level, the universal masking procedure is done by applying a weak PRF
Fs(·) to H(x), and the unmasking process is enabled by the commutative property of F and the fact that
Fs(·) is an efficiently invertible permutation. We depict the construction in Figure 7.
Remark 6.1. We note that it suffices to build permuted OPRF from a tuple of cwPRF (Fk, Gs) where
Gs is a weak permutation.

4Formally, order-hiding property means that the data structure does not reveal the adding order of elements. Recall
that an empty Bloom filter is a bit array of m bits (all set to 0), and adding an element x is done by setting the bits at
positions {h1(x), . . . , hk(x)} to be 1, where {hi}ki=1 are k distinct hash functions. Clearly, Bloom filter satisfies order-hiding
property since the resulting Bloom filter is independent of the adding order. We also stress that the choice of Bloom filter
is not arbitrary here, cause other filters such as Cuckoo filter and Vacuum filter do not satisfy order-hiding property.

15



F : K ×D → D, H : {0, 1}ℓ → D

P1 (server) P2 (client)
X = (x1, . . . , xn)

s
R←− K

{Fs(H(xi))}i∈[n]

k
R←− K, π R←− Perm[n]

{Fk(Fs(H(xπ(i))))}i∈[n]
Fk(H(xπ(i)))← F−1

s (Fk(Fs(H(xπ(i))))

Figure 7: Permuted OPRF from cwPRP

Theorem 6.1. The above permuted OPRF protocol described in Figure 7 is secure in the semi-honest
model assuming H is a random oracle and F is a family of cwPRPs.

Proof. We exhibit simulators SimP1 and SimP2 for simulating corrupt P1 and P2 respectively, and argue
the indistinguishability of produced transcript from the view in the real protocol.

Security against corrupt server. SimP1
simulates the view of corrupt server P1, which consists

of P1’s randomness, input, output and received messages. We formally show SimP1
’s simulation is

indistinguishable from the real protocol via a sequence of hybrid transcripts.
Hybrid0: P1’s view in the real protocol.
Hybrid1: Given P1’s output k and π, SimP1

simulates with the knowledge of X = (x1, . . . , xn) as follows:

• chooses the randomness for P2 (i.e., picks s
R←− K).

• emulates the random oracle H honestly: for each query 〈zi〉, picks αi
R←− D and assigns H(zi) := αi.

• outputs (Fs(β1), . . . , Fs(βn)), where H(xi) = βi.

Clearly, SimP1
’s simulated view in Hybrid1 is identical to P1’s view in the real protocol.

Hybrid2: SimP1 does not choose the randomness for P2, and simulates without the knowledge of X. It
honestly emulates random oracle H as in Hybrid1, and only changes the simulation of P2’s message.

• outputs (η1, . . . , ηn) where ηi
R←− D.

We argue that the views in Hybrid1 and Hybrid2 are computationally indistinguishable. Let A be
a PPT adversary against the weak pseudorandomness of Fs(·). More precisely, given n tuples (γi, ηi)

where γi
R←− D, A is asked to distinguish if ηi = Fs(γi) or ηi is random. To do so, A creates a simulated

view with the knowledge of X as follows:

• implicitly sets P2’s randomness as s.

• for each random oracle query 〈zi〉, if zi /∈ X, picks αi
R←− D and assigns H(zi) := αi; if zi ∈ X,

assigns H(xi) := γi.

• outputs (η1, . . . , ηn).

If ηi = Fs(γi), then A’s simulated view is identical to Hybrid1. If ηi is random, then A’s simulated view
is identical to Hybrid2. This reduces the computational indistinguishability of the simulated views in
Hybrid1 and Hybrid2 to the weak pseudorandomness of Fs(·).
Security against corrupt client. SimP2 simulates the view of corrupt client P2, which consists of
P2’s randomness, input, output and received messages. We formally show SimP2 ’s simulated view is
indistinguishable from P2’s view in the real protocol via a sequence of hybrid transcripts.
Hybrid0: P2’s view in the real protocol.

16



Hybrid1: Given P2’s input X = (x1, . . . , xn) and output {Fk(H(xπ(i)))}i∈[n], SimP2 emulates the random
oracle H honestly, picks s

R←− Zp, simulates message from P1 as {Fs(Fk(H(xπ(i))))}i∈[n].

According to the commutative property of cwPRF, SimP2
’s simulated view is identical to the real

view. This proves the theorem.

Observe that the cwPRF construction presented in Section 5.2 is actually a family of cwPRPs.
Plugging it to the above generic construction, we obtain a concrete pOPRF protocol as described in
Figure 8. The security of the above pOPRF protocol is guaranteed by Theorem 6.1 and the security
of the underlying cwPRP, which is in turn based on the DDH assumption. For completeness, we also
provide a direct security proof based on the DDH assumption in Appendix C.1.

Parameters: hash function H : {0, 1}ℓ → G.
Inputs: The server P1 inputs nothing. The client P2 inputs a set X = {x1, . . . , xn}, where xi ∈
{0, 1}ℓ.
Protocol:

1. P2 picks s
R←− Zp, then sends (H(x1)

s, . . . ,H(xn)
s) to the sender P1.

2. P1 picks k
R←− Zp and computes (H(x1)

sk, . . . ,H(xn)
sk), then picks π

R←− [n] and sends y′i =
H(xπ(i))

sk for i ∈ [n] to P2.

3. P1 outputs k and π.

4. P2 outputs yi = (y′i)
s−1 for each i ∈ [n].

Figure 8: Permuted OPRF based on the DDH assumption

6.3 mqRPMT from Permuted OPRF
In Figure 9, we show how to build mqRPMT from permuted OPRF for F : K ×D → R. For simplicity,
we assume that {0, 1}ℓ ⊆ D. Otherwise, we can always map {0, 1}ℓ to D using a collision resistant hash
function.

Correctness. The above protocol is correct except the case E = ∨i,jEij occurs, where Eij denotes
Fk(xi) = Fk(yj) but xi 6= yj . By pseudorandomness of F , we have Pr[Eij ] = 2−ℓ. Apply the union
bound, we have Pr[E] ≤ n1n2 · Pr[Eij ] = n1n2/2

ℓ = negl(λ).

Theorem 6.2. The above mqRPMT protocol described in Figure 9 is secure in the semi-honest model
assuming the security of permuted OPRF.

Proof. We exhibit simulators SimP1
and SimP2

for simulating corrupt P1 and P2 respectively, and argue
the indistinguishability of the produced transcript from the real execution. Let |X ∩ Y | = m.

Security against corrupt client. SimP2 simulates the view of corrupt client P2, which consists of
P2’s randomness, input, output and received messages. We formally show SimP2 ’s simulated view is
indistinguishable from P2’s view in the real protocol via a sequence of hybrid transcripts.
Hybrid0: P2’s view in the real protocol.
Hybrid1: SimP2

chooses the randomness for P2 (i.e., picks k
R←− K and π

R←− Perm[n1]), then invokes the
simulator for P2 of the permuted OPRF sub-protocol with (k, π) as output. By the semi-honest security
of permuted OPRF on P2’s side, the simulated view is indistinguishable to P2’ view in the real protocol.

Security against corrupt server. SimP1 simulates the view of corrupt server P1, which consists of
P1’s randomness, input, output and received messages. We formally show SimP1 ’s simulated view is
indistinguishable from P1’s view in the real protocol via a sequence of hybrid transcripts.

17



Parameters: The server P1’s set size n1 and the client P2’s set size n2, a permuted OPRF for
F : K ×D → R.
Inputs: The server P1 inputs a set Y = {y1, . . . , yn1

}, where yi ∈ {0, 1}ℓ. The client P2 inputs a
set X = {x1, . . . , xn2}, where xi ∈ {0, 1}ℓ.
Protocol:

1. P1 with inputs Y = {y1, . . . , yn1
} and P2 engage in a permuted OPRF protocol. P1 acts as the

pOPRF’s client, while P2 acts as the pOPRF’s server. At the end of the protocol, P1 obtains
{Fk(yπ(i))}i∈[n1], P2 obtains a PRF key k and a random permutation π over [n1].

2. P2 computes and sends (Fk(x1), . . . , Fk(xn1)) to P1.

3. P1 sets ei = 1 iff Fk(xi) ∈ {Fk(yπ(i))}i∈[n1].

F : K ×D → R

P1 (server)
Y = (y1, . . . , yn1)

P2 (client)
X = (x1, . . . , xn2)

permuted OPRF
(y1, . . . , yn1)

(Fk(yπ(1)), . . . , Fk(yπ(n1)))
k

R←− K, π R←− Perm[n1]

{Fk(xi)}i∈[n2]set ei = 1 iff
Fk(xi) ∈ {Fk(yπ(i))}i∈[n1]

Figure 9: mqRPMT from permuted OPRF

18



Hybrid0: P1’s view in the real protocol. Note that P1’s view consists of its view in stage 1 (the permuted
OPRF part) and its view in stage 2.
Hybrid1: Given P1’s input Y = (y1, . . . , yn1) and output (e1, . . . , en2), SimP1 creates the simulated view
with the knowledge of P2’s input X as below:

• chooses the randomness for P1 (i.e., picks k
R←− K and π

R←− Perm[n1]).

• generates stage 1’s view by invoking the simulator for P1 of the permuted OPRF sub-protocol with
input (y1, . . . , yn1

) and computing (Fk(yπ(1)), . . . , Fk(yπ(n1))) with k.

• generates stage 2’s view by computing (Fk(x1), . . . , Fk(xn2
)) with k.

The simulated stage 2’s view is identical to the real one. By the semi-honest security of permuted OPRF
on P1’s side, the stage 1’s simulated view is computationally indistinguishable to the real one. Thereby,
SimP1

’s simulated view in Hybrid1 is computationally indistinguishable to P1’s view in the real protocol.
Hybrid2: SimP1

creates the simulated view without the knowledge of X:

• does not explicitly pick k
R←− K and π

R←− Perm[n1].

• generates stage 2’s view by outputting (η1, . . . , ηn2
), where ηi

R←− R; this implicitly sets Fk(xi) := ηi.

• for each ei = 1, picks out the associated ηi to form {vj}j∈[m]; for each ei = 0, picks random values
to form {wℓ}ℓ∈[n1−m]; then applies a random permutation τ to ({vj}j∈[m], {wℓ}ℓ∈[n1−m]), treats the
result as (Fk(yπ(1)), . . . , Fk(yπ(n1))) (note that the real permutation π is unknown to the simulator
since it does not know X ∩Y ); then generates its stage 1’s view by invoking the simulator for P1 of
permuted OPRF sub-protocol with input (y1, . . . , yn1) and outputting (Fk(yπ(1)), . . . , Fk(yπ(n1))).

X ∩ Y

Y X
Fk(xi) := ηi

{Fk(yπ(i))}i∈[n1] := τ({vj}j∈[m], {wℓ}ℓ∈[n1−m])

We argue that the simulated views in Hybrid1 and Hybrid2 are computationally indistinguishable.
Let A be an adversary against the pseudorandomness of Fk(·). More precisely, given access to a real-
or-random oracle Oror(·), A is asked to decide Oror(·) works in real mode or random mode. To do so, A
creates a simulated view with the knowledge of X and Y as follows:

• picks π R←− Perm[n1], queries Oror(·) with (yπ(1), . . . , yπ(n1)) and obtains (ζ1, . . . , ζn1) in return; then
generates stage 1’s view by invoking the simulator for P1 of permuted OPRF sub-protocol with
input (y1, . . . , yn1

) and outputting (ζ1, . . . , ζn1
).

• queries Oror(·) with (x1, . . . , xn2), and obtains (η1, . . . , ηn2) in return; then generates stage 2’s view
by outputting (η1, . . . , ηn2).

If Oror(·) works in the real mode, then A’s simulated view is identical to Hybrid1. If Oror(·) works in the
random mode, then A’s simulated view is identical to Hybrid2. This reduces the computational indis-
tinguishability of simulated views in Hybrid1 and Hybrid2 to the pseudorandomness of Fk(·). Therefore,
SimP1

’s simulated view is indistinguishable to P1’s view in the real protocol.

This proves the theorem.

Performance analysis. We analyze the performance the above (n1, n2)-mqRPMT protocol based on
the cwPRP-based permuted OPRF. Simple calculation shows that the total computation cost is (n1+n2)
hashings, 2n1 + n2 evaluations, n1 inversions, n2 lookups whose complexity is O(1), and one shuffling
whose complexity is O(n1), while the total communication cost is (2n1+n2) group elements in range D.
In summary, both the computation and communication complexities are strictly linear in set sizes.

Comparison of the two constructions of mqRPMT. We have presented two generic constructions
of mqRPMT, the first is from cwPRF, while the second is from pOPRF. We summarize their differences
as below.

19



• cwPRF-based construction admits fast implementation from the NIKE protocol called X25519
based on Curve25519 (since X25519 implies a cwPRF), and can further utilize the Bloom filter to
reduce communication cost as well as improve efficiency.

• Compared with the cwPRF-based construction, the pOPRF-based construction does not admit fast
implementation from X25519 anymore (since X25519 does not imply a cwPRP and thus further
a pOPRF), and the Bloom filter optimization is not applicable (since the set is already fixed
in pOPRF phase). Nevertheless, the pOPRF-based mqRPMT construction can be viewed as a
counterpart of OPRF-based mqPMT construction, and thus is more of theoretical interest. So far,
we only know how to build pOPRF based on assumptions with nice algebra structure, but not from
efficient symmetric-key primitives. This somehow explains the efficiency gap between mqPMT and
mqRPMT.

7 Connection Between mqRPMT and mqPMT
7.1 Sigma-mqPMT
Private membership test (PMT) protocol [PSZ14] is a two-party protocol in which the client with input
x learns whether or not its item is in the input set Y of the server. PMT can be viewed as a special
case of private keyword search protocol [FIPR05] by setting the payload as any indication string. We
consider three-move PMT, which we refer to Sigma-PMT hereafter.

Sigma-PMT proceeds via the following pattern.

1. The server P1 sends the first round message a to client P2, which is best interpreted as an encoding
of Y .

2. The client P2 sends query q w.r.t. his item x.

3. The server P1 responds with z.

After receiving z, the client P2 can decide if x ∈ Y by running Test(a, x, q, z). The basic notion
of Sigma-PMT allows the client P2 to test for a single item. While this procedure can be repeated
several times, one may seek for more efficient protocol allowing the client to test n items at reduced
communication cost and round complexity. To this end, we introduce the following two properties for
Sigma-PMT:

• Reusable: The first round message is performed by the server P1 once and for all.

• Context-independent: Each test query qi is only related to a, the element xi under test and the
randomness of P2.

The first property helps to reduce communication cost, while the second property admits parallelization,
hence the round complexity is unchanged even when handling multiple items. Sigma-PMT may enjoy
an additional property:

• Stateless: For any xi and associated (qi, zi), Test(a, xi, qi, zi) can work in a memoryless way,
namely, without looking at (xi, qi). In this case, the test algorithm can be simplified as Test(a, zi).

By running Sigma-PMT with reusable, context-independent, and stateless properties in parallel, we
obtain mqPMT with three-move pattern (depicted in Figure 10), which we refer to as Sigma-mqPMT.

Looking ahead, to reduce the semi-honest security of mqRPMT∗ to that of Sigma-mqPMT, we assume
the simulator Sim(X, e⃗) for the client P2 in mqRPMT∗ is composed of two sub-routines (Sim′, Sim′′), and
satisfies the following properties:

• Locality: zi ≈ Sim′(ei; ri), a.k.a. the i-th response can be emulated via invoking a sub-routine
Sim′(ei) with independent random coins ri;

• Order invariance: a ≈ Sim′′({eπ(i), rπ(i)}i∈[n2]; s), where π could be an arbitrary permutation
over [n2], s is the random coins.

20



P1 (server)
Y = (y1, . . . , yn1)

P2 (client)
X = (x1, . . . , xn2)

a← Encode(Y )
a

qi ← GenQuery(a, xi)
q⃗ = {q1, . . . , qn2}

z⃗ = {z1, . . . , zn2}
zi ← Response(qi) ei ← Test(a, zi)

Figure 10: Sigma-mqPMT

7.2 mqRPMT∗ from Sigma-mqPMT
Next, we show a generic construction of mqRPMT∗ from Sigma-mqPMT. With the nice properties of
Sigma-mqPMT, the construction is pretty simple, a.k.a. having the server P1 shuffle the last move
message in Sigma-mqPMT (yielding permuted mqPMT upon this step), then having the client P2 send
the test results back to P1, and finally P1 recovers the indication bits in the right order. We formally
describe the construction in Figure 11.

P1 (server)
Y = (y1, . . . , yn1

)
P2 (client)

X = (x1, . . . , xn2
)

a← mqPMT.Encode(Y )
a

qi ← mqPMT.GenQuery(a, xi)
q⃗ = {q1, . . . , qn2

}

π
R←− Perm[n2]

z⃗∗ = {zπ(1), . . . , zπ(n2)}

e∗i ← mqPMT.Test(a, z∗i )
e⃗∗ = {e∗1, . . . , e∗n2

}
e⃗ = {e∗π−1(i)}

n2
i=1

Figure 11: mqRPMT∗ from Sigma-mqPMT

Theorem 7.1. The above mqRPMT∗ protocol depicted in Figure 11 is secure in the semi-honest model
assuming the semi-honest security of the starting Sigma-mqPMT protocol.

Proof. We exhibit simulators SimP1 and SimP2 for simulating corrupt server P1 and corrupt client P2

respectively. Let |X ∩ Y | = m.

Security against corrupt client. SimP2
simulates the view of corrupt client P2, which consists of

P2’s randomness, input, output and received messages. We formally show SimP2
’s simulated view is

indistinguishable from P2’s view in the real protocol via a sequence of hybrid transcripts.
Hybrid0: P2’s view in the real protocol.
Hybrid1: SimP2

chooses the randomness for P1, and simulates with the knowledge of P1’s private input
Y . Clearly, SimP2

’s simulation is identical to the real view of P2.
Hybrid2: SimP2

does not choose the randomness for P1, and simulates without the knowledge of P1’s
private input Y . Instead, it invokes the Sigma-mqPMT’s simulator for P2 on its private input X and
output e⃗∗ to emulate the view (a, z⃗∗) in the following manner:

21



• for 1 ≤ i ≤ n2, runs Sim′(e∗i ; ri)→ z∗i and obtains z⃗∗ = (z∗1 , . . . , z
∗
n2
).

• runs Sim′′({(e∗i , ri)}i∈[n2]; s)→ a.

By the locality and order invariance properties, the simulated views in Hybrid2 and Hybrid1 are compu-
tationally indistinguishable based on semi-honest security of mqPMT on P2’s side. Therefore, SimP2

’s
simulated view is computationally indistinguishable to P2’s view in the real protocol.
Security against corrupt server. SimP1 simulates the view of corrupt server P1, which consists of
P1’s randomness, input, output and received messages. We formally show SimP1

’s simulated view is
indistinguishable from P1’s view in the real protocol via a sequence of hybrid transcripts.
Hybrid0: P1’s view in the real protocol.
Hybrid1: SimP1 chooses the randomness for P2, and simulates with the knowledge of P2’s private input
X. Clearly, SimP1 ’s simulated view is identical to P1’s view in the real protocol.
Hybrid2: SimP1

does not choose the randomness for P2, and simulates without the knowledge of P2’s
private input X. Instead, it invokes the Sigma-mqPMT’s simulator for P1 on its private input Y and
output e⃗ to generate q⃗, then picks a random permutation π over [n2] and computes e⃗∗ = π−1(e⃗), outputs
(q⃗, e⃗∗).
The computational indistingishability of the simulated views in Hybrid1 and Hybrid2 follows the semi-
honest security of Sigma-mqPMT on P1’s side. Therefore, SimP1 ’s simulated view is computationally
indistinguishable to P1’s view in the real protocol.

This proves the theorem.

Remark 7.1 (Other Application of Sigma-mqPMT). As a byproduct, we note that if P1 only permutes
and sends the last move message in Sigma-mqPMT, then we obtain a standard PSI-card protocol. From
this perspective, it is fair to say Sigma-mqPMT distills sufficient characteristics of what kind of PSI
protocols can be converted to PSI-card with no extra overhead.

8 Applications of mqRPMT
8.1 PSO Framework from mqRPMT
In Figure 12, we show how to build a PSO framework centering around mqRPMT.

We prove the security of the above PSO framework by the case of PSU. The security proof of other
functionality is similar.

Theorem 8.1. The PSU derived from the above framework described in Figure 12 is semi-honest secure
by assuming the semi-honest security of mqRPMT and OT.

Proof. We exhibit simulators SimP1
and SimP2

for simulating corrupt P1 and P2 respectively, and argue
the indistinguishability of the produced transcript from the real execution. Let |X ∩ Y | = m.

Security against corrupt sender. SimP2 simulates the view of corrupt sender P2, which consists of
P2’s randomness, input, output and received messages. We formally show SimP2 ’s simulated view is
indistinguishable from P2’s view in the real protocol via a sequence of hybrid transcripts.
Hybrid0: P2’s view in the real protocol. Note that P2’s view consists of two parts, i.e., the mqRPMT
part of view (stage 1) and the OT part of view (stage 2).
Hybrid1: SimP2 first invokes the simulator for client in the mqRPMT with P2’s input X = {x1, . . . , xn2}
as input to generate the stage 1’s part of view, then invokes the simulator for sender in the OT with
{(xi,⊥)}i∈[n2] as input to generate stage 2’s part of view. By the semi-honest security of mqRPMT on the
client side and the semi-honest security for OT on the sender side, the simulated view is indistinguishable
to the real view via standard hybrid argument.

Security against corrupt receiver. SimP1 simulates the view of corrupt receiver P1, which consists
of P1’s randomness, input, output and received messages. We formally show SimP1 ’s simulated view is
indistinguishable from P1’s view in the real protocol via a sequence of hybrid transcripts.

22



Parameters: The receiver P1’s set size n1 and the client P2’s set size n2.
Inputs: The receiver P1 inputs a set Y = {y1, . . . , yn1

}, where yi ∈ {0, 1}ℓ. The sender P2 inputs a
set X = {x1, . . . , xn2

} and V = {v1, . . . , vn2
}, where xi ∈ {0, 1}ℓ and vi ∈ Zp. Let q be a big integer

greater than n2 · p.
Protocol:

0. P2 shuffles the set {x1, . . . , xn2
} and {v1, . . . , vn2

} using a same random permutation over
[n2]. For simplicity, we still use the original notation to denote the resulting vectors after
permutation.

1. P1 (playing the role of server) with Y and P2 (playing the role of client) with X = {x1, . . . , xn2}
invoke FmqRPMT. P1 obtains an indication bit vector e⃗ = (e1, . . . , en2

). P2 obtains nothing.

• cardinality: P1 learns the cardinality by calculating the Hamming weight of e⃗.

2. P1 and P2 invoke n2 instances of OT via FOT. P1 uses e⃗ as the choice bits.

• intersection: P1 holding ei and P2 holding (⊥, xi) invoke one-sided OT n2 times. P1

learns {xi | ei = 1}i∈[n2] = X ∩ Y .
• union: P1 holding ei and P2 holding (xi,⊥) invoke one-sided OT n2 times. P1 learns
{xi | ei = 0}i∈[n2] = X\Y , and outputs {X\Y } ∪ Y = X ∪ Y .

• card-sum: P2 randomly picks ri ∈ Zq and computes r′ =
∑n2

i=1 ri mod q. Subsequently,
P1 holding ei and P2 holding (ri, ri + vi) invoke 1-out-of-2 OT n2 times. P1 learns
S′ =

∑n2

i=1 ri + ei · vi mod q, then sends S′ and the Hamming weight of e⃗ to P2. P2

computes S = (S′ − r′) mod q.
• card-secret-sharing: P2 randomly picks ri ∈ {0, 1}ℓ. Subsequently, P1 holding ei and

P2 holding (ri, ri ⊕ xi) invoke 1-out-of-2 OT n2 times. P1 learns {zi}i∈[n2], and thus
{(zi, ri ⊕ xi)}ei=1 constitutes the shares of intersection values.

Figure 12: PSO from mqRPMT

23



Hybrid0: P1’s view in the real protocol. Note that P1’s view also consists of two parts, i.e., the mqRPMT
part of view (stage 1) and the OT part of view (stage 2).
Hybrid1: SimP1 simulates with P1’s input Y = (y1, . . . , yn1) and output X ∪ Y as below:

• picks a random indication vector e⃗ = (e1, . . . , en2
) with Hamming weight m = |X ∩ Y |, then

generates the output vector z⃗ = (z1, . . . , zn2
) from e⃗ and X ∪Y by randomly shuffling the (n2−m)

elements in X\Y and assigning them to zi if ei = 0 or assigning ⊥ to zi if ei = 1; then invokes the
simulator for OT receiver with input e⃗ and output z⃗ and generates stage 2’s view.

• invokes the simulator for mqRPMT server with input Y and output e⃗ = (e1, . . . , en2
) to generate

stage 1’s view.
It is easy to check that the distributions of e⃗ and z⃗ are identical to that (induced by the distribution

of mqRPMT’s input vector (x1, . . . , xn2
)) in the real protocol. By the semi-honest security of mqRPMT

on the server side and the semi-honest security for OT on the receiver side, SimP1
’s simulated view

in Hybrid1 is computationally indistinguishable to P1’s view in the real protocol via standard hybrid
argument.

This proves the theorem.

In what follows, we compare the protocols derived from our framework to existing protocols with
focus on conceptual differences, and defer the performance comparisons to Section 9.

We first briefly compare our PSU protocol to prior PSU protocols. [KS05, Fri07, DC17] proposed
the first three PSU protocols from public-key techniques, with the complexity gradually dropping from
quadratic to linear. Later, [KRTW19, GMR+21, JSZ+22] proposed three PSU protocols from symmetric-
key techniques. Despite their protocols achieve much better performance than previous ones based on
public-key techniques, all of them require superlinear complexity. Recently, Zhang et al. [ZCL+23]
created a more efficient PSU protocol with linear complexity. Both our protocol and their protocol
are derived from the same core protocol—mqRPMT, but with different instantiations. Our concrete
mqRPMT protocols are much simpler and efficient, yielding the first PSU protocols with strict linear
complexity.

We then discuss the relationship between our PSI-card protocol and prior related protocols. Huber-
man et al. [HFH99] proposed the first PSI-card protocol but did not provided security proof. Agrawal
et al. [AES03] explained and proved the classic protocol via the notion of “commutative encryption”.
Later, De Cristofaro et al. [CGT12] gave a close variant of the classic protocol. Our PSI-card protocol
is generically derived from the more abstract mqRPMT, which in turn can be built from cwPRF or
pOPRF. By instantiating the underlying cwPRF and pOPRF from the DDH assumption, we recover
the PSI-card protocols in [HFH99, CGT12] respectively. In a nutshell, our generic mqRPMT-based
PSI-card construction not only encompasses existing concrete protocols at a high level, but also readily
profits from the possible improvements on the underlying mqRPMT (e.g., Bloom filter optimization and
post-quantum secure realization based on the EGA assumption).

We continue to compare our PSI-card-sum protocol with closely related protocols [IKN+20, GMR+21].
As mentioned in the introduction part, the PSI-card-sum protocols presented in [IKN+20] are built from
concrete primitives (e.g. DH-protocol, ROT-protocol, Phasing+OPPRF etc.) with generic 2PC tech-
niques or AHE schemes. Compared to [IKN+20], our protocol is built from mqRPMT and lightweight
OT, which is more general and efficient. The protocol presented in [GMR+21] is built from permuted
characteristic (permuted mqRPMT under our terminology) and secret sharing. Compared to [GMR+21],
our protocol has the following differences: (i) mqRPMT underlying our protocol is conceptually simpler
than permuted characteristic. More importantly, mqRPMT admits instantiations with optimal linear
complexity, while the current best instantiation of permuted characteristic requires superlinear complex-
ity. (ii) The protocol in [GMR+21] deviates from the standard functionality (as mentioned earlier in
the introduction part), while our protocol meets the standard functionality of PSI-card-sum as defined
in [IKN+20]. We do so by removing the constraint

∑n
i=1 ri = 0 on the receiver side (as did in [GMR+21]),

and having the sender send back the masked sum value to the receiver, and the receiver finally recovers
the intersection sum by unmasking.

Finally, we compare our PSI card-secret-sharing protocol to the closely related circuit-PSI [HEK12,
PSTY19, RS21]. The only difference on functionality is that our protocol additionally leaks the cardinal-
ity to the receiver. Nevertheless, as pointed out by Garimella et al. [GMR+21], in many applications of

24



interest the functions that need to be computed already contain such leakage. Garimella et al. [GMR+21]
proposed a similar functionality called secret-shared intersection, in which the parties get the shares of
intersection elements. As a result, their functionality leaks the cardinality to both the sender and the
receiver.

Malicious security. Our PSO framework is secure against semi-honest adversaries. To attain malicious
security, there are two main challenges. First, the underlying mqRPMT and OT must be secure in the
malicious setting. Second, even if both mqRPMT and OT satisfy malicious security, the resulting PSO
protocols still fail to satisfy malicious security, because a malicious adversary may cause the output
of mqRPMT inconsistent with the input of OT. For example, in the PSU protocol, regardless of the
output of mqRPMT, a malicious adversary could set the selection bits for all OT instances to be ‘0’,
and thus obtains all the elements of the sender. To boost mqRPMT from semi-honest security to
malicious security and ensure output-input consistency, it seems that there is no better way than using
zero-knowledge proofs, which would greatly affect the efficiency. We left efficient PSO framework with
malicious security as an interesting open problem.

8.2 Private-ID
Recently, Buddhavarapu et al. [BKM+20] proposed a two-party functionality called private-ID, which
assigns two parties, each holding a set of items, a truly random identifier per item (where identical items
receive the same identifier). As a result, each party obtains identifiers to his own set, as well as identifiers
associated with the union of their input sets. With private-ID, two parties can sort their private set with
respect to a global set of identifiers, and then can proceed any desired private computation item by item,
being assured that identical items are aligned. Buddhavarapu et al. [BKM+20] also gave a concrete DDH-
based private-ID protocol. Garimella et al. [GMR+21] showed how to build private-ID from OPRF and
PSU. Roughly speaking, their approach proceeds in two phases. In phase 1, P1 holding X and P2

holding Y run an OPRF twice by switching the roles, so that first P1 learns k1 and P2 learns Fk1
(yi),

and second P2 learns k2 and P1 learns Fk2
(xi). The random identifier of an item z is thus defined as

idz = Fk1
(z)⊕Fk2

(z). After phase 1, both parties can compute identifiers for their own items. In phase
2, they simply engage a PSU protocol on their sets id(X) and id(Y ) to finish private-ID.

Our method is largely inspired by the approach presented in [GMR+21]. We first observe that in
phase 1, two parties essentially need to engage a distributed OPRF protocol, as we formally depict in
Figure 13. The random identifier of an item z is defined as Gk1,k2

(z), where G is a PRF determined
by key (k1, k2). Furthermore, note that id(X) and id(Y ) are pseudorandom, which means in phase 2
a distributional PSU protocol suffices, whose semi-honest security is additionally defined over the input
distribution. Such relaxation may lead to remarkable efficiency improvement.

In this work, we instantiate the generic private-ID construction as below: (1) realize the distributed
OPRF protocol by running currently the most efficient multi-point OPRF of [RR22] built from VOLE
and improved OKVS twice in reverse order; (2) run the PSU protocol from cwPRF-based mqRPMT
with the obtained two sets of pseudorandom identifiers as inputs to fulfill the private-ID functionality.

Parameters: PRF G : K ×D → R, where K = K1 ×K2.
Inputs: P1 inputs a set X = {x1, . . . , xn1

}, where xi ∈ D. P2 inputs a set Y = {y1, . . . , yn2
}, where

yi ∈ D.
Output: P1 gets {Gk1,k2

(xi)}i∈[n1] and k1. P2 gets {Gk1,k2
(yi)}i∈[n2] and k2.

Figure 13: Ideal functionality for distributed OPRF

Distributional PSU. Standard security notions for MPC are defined w.r.t. any private inputs. This
treatment facilitates secure composition of different protocols. We find that in certain settings it is
meaningful to consider a weaker security notion by allowing the real-ideal indistinguishability to also
base on the distribution of private inputs. This is because such relaxed security suffices if the protocol’s
input is another protocol’s output which obeys some distribution, and the relaxation may admit efficiency

25



improvement. Suppose choosing the DDH-based distributed OPRF and DDH-based PSU in the same
elliptic curve (EC) group as ingredients, faithful implementation according to the above recipe requires
4n hash-to-point operations. Observe that the output of distributed DDH-based OPRF are already
pseudorandom EC points. In this case, it suffices to use distributional DDH-based PSU instead, and
thus can save 2n hash-to-point operations, which are costly in the real-world implementation.

9 Performance
We describe details of our implementation and report the performance of the following set operations:
(1) psi: intersection of the sets; (2) psi-card: cardinality of the intersection; (3) psi-card-sum: sum of
the associated values for every item in the intersection with cardinality; (4) psu: union of the sets; (5)
private-ID: a universal identifier for every item in the union. We compare our work with the current
fastest known protocol implementation for each functionality.

9.1 Implementation Details
Our protocols are written in C++ with detailed documentations, which can be found at https://
github.com/yuchen1024/Kunlun/mpc. The code is organized in a modular and unified fashion in con-
sistent with our paper: first implement the core mqRPMT protocol, then build various PSO protocols
upon it. Besides, it only requires OpenSSL [Opea] as the main 3rd party library, and can smoothly run
on both Linux and x86_64 MacOS platforms.

9.2 Experimental Setup
We run all our protocols and related protocols on Ubuntu 20.04 with a single Intel i7-11700 2.50 GHz
CPU (8 physical cores) and 16 GB RAM. We simulate the network connection using Linux tc command.
In the LAN setting, the bandwidth is set to be 10 Gbps with 0.1 ms RTT latency. In the WAN setting,
the bandwidth is set to be 50 Mbps with 80 ms RTT latency. We use iptables command to calculate
the communication cost, and use running time (the maximal time from protocol begin to end in the
sender and the receiver side, including messages transmission time) to measure the computation cost.
For a fair comparison, we stick to the following setting for all protocols being evaluated:

• We set the computational security parameter κ = 128 and the statistical security parameter λ = 40.

• We test the balanced scenario by setting the input set size n1 = n2 (our implementation supports
unbalanced scenario as well), and randomly generate two input sets with 128 bits item length
conditioned on the intersection size being roughly 0.5n. The exception is the implementation of
protocol in [GMR+21], whose item length is set as 61 bits in default and cannot exceed 64 bits
since each element is represented as a uint64_t integer.

• The PSI-card-sum protocol [IKN+20] and the private-id protocol [BKM+20] are two of the related
works we are going to compare. The former implementation is built upon NIST P-256 (also known
as secp256r1 and prime256v1), while the latter implementation is built upon Curve25519. For a
comprehensive comparison, our implementation supports flexible switching between both standard
elliptic curve NIST P-256 and special elliptic curve Curve25519. For protocols based on NIST
P-256, we denote the ones not using or using point compression technique with ♦ and ▼ respectively.
For protocols based on Curve25519, we denote them with ⋆.

9.3 Evaluation of mqRPMT
We first report the performance of our cwPRF-based mqRPMT protocol (optimized with Bloom filter)
described in Section 5.3, which dominates the communication and computation overheads of its enabling
PSO protocols. We test our protocol up to 4 threads, since both the server and the client run on a single
CPU with 8 physical cores. Our cwPRF-based mqRPMT achieves optimal linear complexity, and thus
is scalable, which is demonstrated by the experimental results in Table 2. Moreover, the computation
tasks on both sides in our cwPRF-based mqRPMT are highly parallelable, thus we can effortlessly using
OpenMP [Opeb] to make the program multi-threaded.

26

https://github.com/yuchen1024/Kunlun/mpc
https://github.com/yuchen1024/Kunlun/mpc


Table 2: Communication cost and running time of mqRPMT.

Protocol T
Running time (s) Comm. (MB)

LAN WAN total
212 216 220 212 216 220 212 216 220

mqRPMT♦
1 0.50 7.20 114.16 1.39 9.68 136.27

0.52 8.35 133.62 0.31 3.89 62.09 1.14 6.54 86.60
4 0.22 2.37 40.41 1.11 5.08 62.77

Speedup 1.6-2.3 × 1.9-3.0 × 1.8-2.8 × 1.2-1.3 × 1.5-1.9 × 1.6-2.2 × – – –

mqRPMT▼
1 0.50 8.00 128.00 1.35 10.15 141.52

0.27 4.35 69.62 0.32 5.05 80.69 1.18 7.11 94.19
4 0.23 3.54 58.40 1.08 5.54 71.26

Speedup 1.6-2.2 × 1.6-2.3 × 1.6-2.2 × 1.1-1.3× 1.4-1.8 × 1.5-2 × – – –

mqRPMT⋆
1 0.26 3.51 54.85 0.81 5.41 68.68

0.26 4.23 67.662 0.15 1.79 28.24 0.75 3.83 41.38
4 0.10 1.07 15.32 0.72 3.09 28.31

Speedup 1.7-2.6 × 2.0-3.3 × 1.9-3.6 × 1.1-1.1 × 1.4-1.8 × 1.7-2.4 × – – –

9.4 Benchmark Comparison of PSO Protocols
We derive all kinds of PSO protocols from cwPRF-based mqRPMT protocol, and compare them with the
state-of-the-art related protocols. We report the performances for three input sizes n = {212, 216, 220} all
executed over a single thread in LAN and WAN settings. When testing the PSI-card, PSI-card-sum and
PSU protocols in [GMR+21], we set the number of mega-bins as {1305, 16130, 210255} and the number
of items in each mega-bin as {51, 62, 72} for set sizes n = {212, 216, 220} respectively. These parameter
choices have been tested to be much more optimal than their default ones.

PSI. We first compare our mqRPMT-based PSI protocol to the classical DH-PSI protocol reported
in [PRTY19] and the one re-implemented by ourselves. We remark that the PSI protocols in comparison
are not competitive to the state-of-the-art PSI protocol. We include them merely for illustrative purpose
and completeness. PSI protocols build upon public-key techniques are used to be thought inefficient,
but our experiment results demonstrate that they could be practical by leveraging modern crypto li-
brary and carefully choosing optimized parameters. By using fast elliptic curve operations provided by
OpenSSL, our mqRPMT-based PSI protocol is 3.4−10.5× faster than the DH-PSI protocol5 implemented
in [PRTY19]. By further exploiting the features of Curve25519 in important ways (see Section 9.5 in
details), our re-implemented DH-PSI protocol (denoted by DH-PSI⋆) achieves a 6.3 − 26.1× speedup,
which is arguably the most efficient DH-PSI implementation known to date.

Table 3: Communication cost and running time of PSI protocol.

PSI
Running time (s) Comm. (MB)

LAN WAN total
212 216 220 212 216 220 212 216 220

[PRTY19]⋆ 5.51 88.64 1418.20 5.82 90.79 1498.67 0.30 4.74 76.60
Our PSI♦ 0.50 7.24 114.66 1.71 10.50 142.45 0.68 10.61 169.37
Our PSI▼ 0.55 8.04 128.18 1.73 11.02 148.18 0.42 6.61 105.23
Our PSI⋆ 0.29 3.56 55.11 1.19 6.38 75.56 0.41 6.48 103.31
DH-PSI⋆ 0.22 3.39 54.79 0.92 5.57 69.31 0.28 4.57 74.1

Recently, Rosulek and Trieu [RT21] proposed a PSI protocol based on Diffie-Hellman key agreement,
which requires the least time and communication of any known PSI protocols for small sets. Somewhat

5We remark that except inefficiency, their implementation also has a severe security issue. More precisely, they realize
the hash-to-point function {0, 1}∗ → G as x 7→ gH(x), where H is some cryptographic hash function. However, such hash-
to-point function cannot be modeled as random oracle anymore since it exposes the algebra structure of output in the clear,
and hence totally compromise security. Similar issue also appears in libPSI.

27



surprisingly, Table 4 shows that for small sets our mqRPMT-based PSI protocol is faster than their
protocol in the LAN setting, and our re-implemented DH-PSI protocol is much faster than their protocol
in all settings with marginally larger communication cost.

Table 4: Communication cost and running time of PSI protocol on small sets.

PSI
Running time (ms) Comm. (KB)

LAN WAN total
28 29 210 28 29 210 28 29 210

[RT21]⋆ 50.0 71.0 147.3 224.1 260.2 457.9 17.9 34.1 66.3
Our PSI⋆ 41.9 69.5 99.3 577.0 582.9 646.1 38.6 63.5 113.3
DH-PSI⋆ 16.49 31.80 56.91 210.42 227.33 252.32 18.48 36.68 72.8

PSI-card. We compare our mqRPMT-based PSI-card protocol to the PSI-card protocol in [GMR+21].
Table 5 shows that our protocol achieves a 2.4− 10.5× speedup, and reduces the communication cost by
a factor of 10.9− 14.8×.

Table 5: Communication cost and running time of PSI-card protocol.

PSI-card
Running time (s) Comm. (MB)

LAN WAN total
212 216 220 212 216 220 212 216 220

[GMR+21] 1.00 8.41 126.01 8.60 27.46 323.52 2.93 55.49 1030
Our PSI-card♦ 0.49 7.20 114.31 1.30 9.68 136.06 0.53 8.59 137.31
Our PSI-card▼ 0.53 8.00 128.00 1.35 10.16 141.31 0.28 4.58 73.20
Our PSI-card⋆ 0.27 3.51 54.89 0.82 5.42 68.31 0.27 4.46 71.30

Remark 9.1 (PSI-card from circuit PSI). It is interesting to examine if one can leverage the state-of-the-
art circuit PSI [RR22] to build an efficient PSI-card. In circuit PSI, the sender with X and the receiver
with Y obtain shares of indication bit vector e⃗ of length m, where eπ(i) = 1 if and only if yi ∈ X ∩ Y ,
and π is an injection known to the receiver, indicating the position of the i-th element yi inserted by the
receiver in the cuckoo hash table. To construct PSI-card from circuit PSI, a simple idea is to have one
party send his shares of e⃗ to the other party on the first place, then the other party can reconstruct e⃗ and
compute its Hamming weight. However, this method is not secure. If the receiver sends shares to the
sender, the sender will learn the positions of the receiver’s elements in the cuckoo hash table, which may
reveal information about receiver’s input set Y ; if the sender sends shares to the receiver, the receiver
will directly obtain the intersection since it knows the corresponding elements for each bit of e⃗. In light of
the above reasoning, general 2PC technique seems unavoidable, in which the circuit under computation
has to convert boolean inputs to arithmetic ones and sum the result, introducing considerable cost. To
the best of our knowledge, there is no known implementation of PSI-card protocol from circuit-PSI and
we leave it out of our comparison.

PSI-card-sum. We compare our mqRPMT-based PSI-card-sum protocol to the PSI-card-sum protocol
(the most efficient and also the deployed one based on DH-protocol+Paillier) in [IKN+20].6 As shown
in Table 6, compared with the protocol presented in [IKN+20], our protocol achieves a 28.5 − 76.3×
improvement in running time and a 7.4× reduction in communication cost.

6We do not compare the protocol described in [GMR+21] since its functionality is not the standard one, as we elaborated
in the introduction. Putting aside the functionality difference, our protocol is still more advantageous than the protocol
of [GMR+21] since our random masking trick is much simpler and efficient than the AHE-based technique adopted by the
latter. In more detail, the upper bound of intersection sum in [GMR+21] is closely tied to the AHE scheme in use, which
requires sophisticated parameter tuning and ciphertext packing techniques. Whereas in our protocol, the upper bound of
intersection sum can be flexibly adjusted according to applications.

28



Table 6: Communication cost and running time of PSI-card-sum protocol.

PSI-card-sum
Running time (s) Comm. (MB)

LAN WAN total
212 216 220 212 216 220 212 216 220

[IKN+20]▼ (deployed) 23.64 176.34 – 30.10 186.29 – 2.72 43.24 –
Our PSI-card-sum♦ 0.51 7.22 113.66 1.46 9.68 136.27 0.65 10.12 161.40
Our PSI-card-sum▼ 0.57 8.12 129.66 1.94 11.83 157.66 0.39 6.10 97.34
Our PSI-card-sum⋆ 0.31 3.73 57.44 1.36 6.53 76.16 0.37 5.75 95.30

We assume each associated value is a non-negative integer in [0, 232) conditioned on the upper bound of
intersection sum being 232. We note that the implementation of [IKN+20] only works in our environment at
set sizes 212 and 216. For set size 220, we encounter a run time error reported in [Pri] that has not been fixed
yet. The corresponding cells are marked with “–”.

PSU. We compare our mqRPMT-based PSU protocol to the state-of-the-art PSU protocols in [GMR+21,
ZCL+23, JSZ+22]. The work [ZCL+23] provides two PSU protocols from public-key and symmetric-key
respectively. The work [JSZ+22] also provides two PSU protocols called PSU-S and PSU-R. We choose
the most efficient PKE-PSU [ZCL+23] and PSU-R [JSZ+22] for comparison.7 Among all the mentioned
PSU protocols, only our PSU protocol achieves strict linear communication and computation complexity.
The experimental results in Table 7 indicate that our PSU protocol is the most superior one. Comparing
to the state-of-the-art PSU protocol of [ZCL+23], our protocol achieves a 2.7 − 17× improvement in
running time and a 2× reduction in communication cost.

Table 7: Communication cost and running time of PSU protocol.

PSU
Running time (s) Comm. (MB)

LAN WAN total
212 216 220 212 216 220 212 216 220

[GMR+21] 1.16 10.06 151.34 10.34 38.52 349.43 3.85 67.38 1155
[ZCL+23]♦ 4.87 12.19 141.38 5.78 15.75 182.88 1.35 21.41 342.38
[ZCL+23]▼ 5.10 15.13 187.29 5.82 17.37 210.06 0.77 12.20 195.17
[JSZ+22] 2.29 8.50 516.04 5.33 27.00 736.30 3.59 70.37 1341.55

Our PSU♦ 0.52 7.27 114.44 1.70 10.56 143.29 0.69 10.61 169.37
Our PSU▼ 0.57 8.04 128.20 1.76 10.92 148.15 0.42 6.61 105.23
Our PSU⋆ 0.30 3.55 55.48 1.19 6.38 74.96 0.41 6.48 103.31

Private-ID. We compare our concrete private-ID protocol described in Section 8.2 to the state-of-
the-art protocols in [BKM+20, GMR+21]. As shown in Table 8, our private-ID protocol achieves a
2.7− 4.8× speedup comparing to the current most computation efficient private-ID protocol [GMR+21],
while requires 1.3× less communication for sufficiently large sets8 than the current most communication
efficient private-ID protocol [BKM+20]. Hence, our private-ID protocol is arguably the most computation
and communication efficient one to date.

7A recent work [BPSY23] proposed a new construction of OKVS and used it to improve the performance of the PSU
protocol in [ZCL+23] by approximately 30%. However, if suitable parameters of the new OKVS construction exist when set
sizes are less than 210 is unclear. Our PSU protocol still performs the best even comparing with their optimized protocol.

8We note that our protocol requires more communication for sets of size 212. This is because the underlying multi-
point OPRF [RR22] is built using VOLE, which has noticeable startup cost, arising relatively large constant terms in the
computation and communication complexities of multi-point OPRF.

29



Table 8: Communication cost and running time of private-ID protocol.

Private-ID
Running time (ms) Comm. (MB)

LAN WAN total
212 216 220 212 216 220 212 216 220

[GMR+21] 1.65 11.023 158.76 13.82 43.00 385.12 4.43 76.57 1293
[BKM+20]⋆ 2.21 37.56 671.75 7.98 46.97 710.94 1.00 15.97 226.70

Our Private-ID♦ 0.55 7.28 115.63 5.34 14.83 163.43 3.12 16.91 237.55
Our Private-ID▼ 0.65 8.43 134.16 5.69 15.68 169.05 2.85 12.91 173.50
Our Private-ID⋆ 0.34 3.78 59.76 5.04 10.87 94.89 2.82 12.74 171.54

9.5 Tips For ECC-based Implementations
In what follows, we summarize the lessons we learned during the implementation of ECC-based protocols,
with the hope to uncover some dark details and correct imprecise impressions.

We first highlight the following two caveats when implementing with standard elliptic curves:

• Pros and cons of point compression technique. Point compression is a standard trick in elliptic-curve
cryptography (ECC), which can roughly reduce the storage cost of EC point by half, at the cost of
performing decompression when needed. Point decompression was empirically thought to be cheap,
but experiment indicates that it could be as expensive as scalar multiplication. Our perspective
is that point compression offers a natural trade-offs between communication and computation.
The above experimental results demonstrate that the total running time gives a large weight to
communication cost in bandwidth constrained scenarios. Therefore, in the WAN setting (involving
parties cannot be co-located) we recommend not to apply point compression trick, while in the
LAN setting (involving parties are co-located) we recommend to apply point compression trick.
A quick take-away is that point compression trick pays off in the setting where communication is
much more expensive than computation.

• Tricky hash-to-point operation. The hash to point operation is very tricky in ECC. So far, there
is no universal method to securely map arbitrary bit strings to points on elliptic curves. Here,
the vague term “securely” indicates the hash function could be modeled as a random oracle. A
folklore method is the “try-and-increment” algorithm [BLS01], which is also the method adopted in
this work. Nevertheless, even such simple hash-to-point operation could be as expensive as scalar
multiplication, which should be avoided if possible.

Regarding the two caveats discussed above, the following questions arise: (1) is it possible to get the
best of two worlds of point compression; (2) could the hash-to-point operation be cheaper. Luckily, the
answers are affirmative under some circumstances.

With the aim to avoid many potential implementation pitfalls, Bernstein [Ber06] built a Montgomery
curve called Curve25519 in 2006, in which 25519 indicates that the characteristic of the base field
is 2255 − 19. Due to many efficiency/security advantages, Curve25519 has been widely deployed in
numerous applications and has become the de facto alternative to NIST P-256. Here, we highlight
two notable features of Curve25519: (i) one can perform somewhat scalar multiplication using only X
coordinate; (ii) by design, any 32-byte bit array corresponds the X coordinate of a valid EC point. Please
refer to [Lon19, Kle21] for more technique details. Exactly by leveraging these two features, Bernstein
constructed a non-interactive key exchange (NIKE) protocol called X25519 based on Curve25519, which
outperforms other EC NIKE protocols since it only depends on the X coordinate of the EC point.

Recall that our cwPRF-based mqRPMT protocol can be realized from any EC NIKE protocol and
associated hash-to-point function. Compared with standard EC curves like NIST P-256, Curve25519 is
particularly beneficial for the implementation of our protocol. More precisely, feature (i) brings us the
best of two worlds of point compression (without making trade-off anymore), while feature (ii) makes
the hash-to-point function almost free, simply hashing the input to a 32-byte bit array via standard
cryptographic hash function. To the best of our knowledge, this is the first time that Curve25519 fully
unleashes its power in the area of private set operations. In general, Curve25519 is a perfect match for
schemes/protocols enabled by cwPRF.

30



Public-key operations are always rashly thought to be much expensive than symmetric-key operations,
and thus the design discipline of many practical protocols opts to avoid public-key operations as much
as possible. Our experimental results indicate that this impression is not precise anymore after rapid
advances on ECC-based cryptography in recent years. By leveraging optimized implementation, public-
key operations could be as efficient as symmetric-key operations. As a concrete example, in EC group
with 128 bit security level one EC point scalar operation takes 0.026 ms and one EC point addition takes
0.00028 ms on a laptop.

10 Summary and Perspective
This work demonstrates that mqRPMT protocol is complete for most private set operations. In particu-
lar, we created a unified PSO framework from mqRPMT, which is rather attractive given its conceptual
simplicity and modular nature. The high level abstraction is useful for allowing us to interpret various
PSO protocols through the lens of mqRPMT, and helps to greatly reduces the deployment and main-
tenance costs of PSO in the real world. We also presented two generic constructions of mqRPMT and
instantiated them from the DDH assumption, yielding a family of PSO protocols with optimal asymptotic
complexity and good concrete efficiency that are superior or competitive to existing ones. In summary,
we regard the PSO framework from mqRPMT together with its efficient implementations as the main
contribution of this work. We emphasize that our framework does not intend to fully cover the current
state of the art, which is a rapidly moving target. Instead, it mainly aims to distill common principles
and clean abstractions that can apply broadly and systematically.

Along the way of constructing mqRPMT, we introduced cwPRF and pOPRF. The notion of cwPRF
can be viewed as the right cryptographic abstraction of the celebrated DH functions, demonstrating
the versatility of the DDH assumption. The notion of pOPRF is of independent interest. It enriches
the OPRF family, and helps us to understand which OPRF-based PSI protocols can (or cannot) be
adapted to PCSI/PSU protocols. We leave more applications and efficient constructions of pOPRF as
an interesting problem.

In addition, we presented a semi-generic conversion from a category mqPMT called Sigma-mqPMT to
mqRPMT∗ (a weaker version of mqRPMT), making the first step towards investigating relations between
mqPMT and mqRPMT. As an application of such conversion, we obtained a mqRPMT∗ protocol from
FHE which is suitable for the unbalanced setting. We leave the general connection between mqPMT
and mqRPMT as an open problem.

When conducting performance comparison, we found that a number of PSO implementations suffer
from one or more of the following deficiencies: (i) relying on multiple libraries, but configurations are
not well documented; (ii) requiring sophisticated parameters tuning, but optimized parameters are not
explicitly given; (iii) codes are not faithful to protocols described in paper, such as insecure random
oracle instantiation, incorrect thread number counting etc. Sometimes, even making these programs
successfully run requires tremendous efforts. We opensourced C++ implementation with detailed doc-
umentations. We hope our implementation is useful for a high-quality MPC platform that admits easy
and fair benchmarking of all PSO protocols.

References
[AES03] Rakesh Agrawal, Alexandre V. Evfimievski, and Ramakrishnan Srikant. Information sharing across

private databases. In 2003 ACM SIGMOD International Conference on Management of Data, pages
86–97. ACM, 2003.

[AFMP20] Navid Alamati, Luca De Feo, Hart Montgomery, and Sikhar Patranabis. Cryptographic group
actions and applications. In Advances in Cryptology - ASIACRYPT 2020, volume 12492 of LNCS,
pages 411–439. Springer, 2020.

[ALSZ15] Gilad Asharov, Yehuda Lindell, Thomas Schneider, and Michael Zohner. More efficient oblivious
transfer extensions with security for malicious adversaries. In Advances in Cryptology - EURO-
CRYPT 2015, volume 9056 of Lecture Notes in Computer Science, pages 673–701. Springer, 2015.

[Ber06] Daniel J. Bernstein. Curve25519: New diffie-hellman speed records. In Public Key Cryptography -
PKC 2006, volume 3958 of Lecture Notes in Computer Science, pages 207–228. Springer, 2006.

31



[BKM+20] Prasad Buddhavarapu, Andrew Knox, Payman Mohassel, Shubho Sengupta, Erik Taubeneck, and
Vlad Vlaskin. Private matching for compute. 2020. https://eprint.iacr.org/2020/599.

[Blo70] Burton H. Bloom. Commun. ACM, 13(7):422–426, 1970.
[BLS01] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the weil pairing. In Advances

in Cryptology - ASIACRYPT 2001, volume 2248 of LNCS, pages 514–532, 2001.
[BP14] Abhishek Banerjee and Chris Peikert. New and improved key-homomorphic pseudorandom func-

tions. In Advances in Cryptology - CRYPTO 2014, volume 8616 of Lecture Notes in Computer
Science, pages 353–370. Springer, 2014.

[BPR12] Abhishek Banerjee, Chris Peikert, and Alon Rosen. Pseudorandom functions and lattices. In
Advances in Cryptology - EUROCRYPT 2012, volume 7237 of Lecture Notes in Computer Science,
pages 719–737. Springer, 2012.

[BPSY23] Alexander Bienstock, Sarvar Patel, Joon Young Seo, and Kevin Yeo. Near-Optimal oblivious Key-
Value stores for efficient PSI, PSU and Volume-Hiding Multi-Maps. In USENIX Security 2023,
pages 301–318, 2023.

[CDGB22] You Chen, Ning Ding, Dawu Gu, and Yang Bian. Practical multi-party private set intersection
cardinality and intersection-sum under arbitrary collusion. In Inscrypt 2022, volume 13837 of Lecture
Notes in Computer Science, pages 169–191. Springer, 2022.

[CGT12] Emiliano De Cristofaro, Paolo Gasti, and Gene Tsudik. Fast and private computation of cardinality
of set intersection and union. In Cryptology and Network Security, 11th International Conference,
CANS 2012, volume 7712, pages 218–231. Springer, 2012.

[CHLR18] Hao Chen, Zhicong Huang, Kim Laine, and Peter Rindal. Labeled PSI from fully homomorphic en-
cryption with malicious security. In Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2018, pages 1223–1237. ACM, 2018.

[CLR17] Hao Chen, Kim Laine, and Peter Rindal. Fast private set intersection from homomorphic encryption.
In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security,
CCS 2017, pages 1243–1255. ACM, 2017.

[CM20] Melissa Chase and Peihan Miao. Private set intersection in the internet setting from lightweight
oblivious PRF. In Advances in Cryptology - CRYPTO 2020, volume 12172 of Lecture Notes in
Computer Science, pages 34–63. Springer, 2020.

[CMdG+21] Kelong Cong, Radames Cruz Moreno, Mariana Botelho da Gama, Wei Dai, Ilia Iliashenko, Kim
Laine, and Michael Rosenberg. Labeled PSI from homomorphic encryption with reduced com-
putation and communication. In CCS ’21: 2021 ACM SIGSAC Conference on Computer and
Communications Security, pages 1135–1150. ACM, 2021.

[DC17] Alex Davidson and Carlos Cid. An efficient toolkit for computing private set operations. In Infor-
mation Security and Privacy - 22nd Australasian Conference, ACISP 2017, volume 10343 of Lecture
Notes in Computer Science, pages 261–278. Springer, 2017.

[DCW13] Changyu Dong, Liqun Chen, and Zikai Wen. When private set intersection meets big data: an
efficient and scalable protocol. In CCS 2013, pages 789–800, 2013.

[DRRT18] Daniel Demmler, Peter Rindal, Mike Rosulek, and Ni Trieu. PIR-PSI: scaling private contact
discovery. Proc. Priv. Enhancing Technol., 2018(4):159–178, 2018.

[FIPR05] Michael J. Freedman, Yuval Ishai, Benny Pinkas, and Omer Reingold. Keyword search and oblivious
pseudorandom functions. In Theory of Cryptography, Second Theory of Cryptography Conference,
TCC 2005, volume 3378 of Lecture Notes in Computer Science, pages 303–324. Springer, 2005.

[Fri07] Keith B. Frikken. Privacy-preserving set union. In Applied Cryptography and Network Security, 5th
International Conference, ACNS 2007, volume 4521 of Lecture Notes in Computer Science, pages
237–252. Springer, 2007.

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions. J. ACM,
33(4):792–807, 1986.

[GKRS22] Siyao Guo, Pritish Kamath, Alon Rosen, and Katerina Sotiraki. Limits on the efficiency of (ring)
lwe-based non-interactive key exchange. J. Cryptol., 35(1):1, 2022.

[GMR+21] Gayathri Garimella, Payman Mohassel, Mike Rosulek, Saeed Sadeghian, and Jaspal Singh. Private
set operations from oblivious switching. In Public-Key Cryptography - PKC 2021, volume 12711 of
Lecture Notes in Computer Science, pages 591–617. Springer, 2021.

[GPR+21] Gayathri Garimella, Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai. Oblivious key-value
stores and amplification for private set intersection. In Advances in Cryptology - CRYPTO 2021,
volume 12826 of Lecture Notes in Computer Science, pages 395–425. Springer, 2021.

32

https://eprint.iacr.org/2020/599


[HEK12] Yan Huang, David Evans, and Jonathan Katz. Private set intersection: Are garbled circuits better
than custom protocols? In 19th Annual Network and Distributed System Security Symposium, NDSS
2012, 2012.

[HFH99] Bernardo A. Huberman, Matthew K. Franklin, and Tad Hogg. Enhancing privacy and trust in
electronic communities. In Proceedings of the First ACM Conference on Electronic Commerce (EC-
99), pages 78–86. ACM, 1999.

[HLS+16] Kyle Hogan, Noah Luther, Nabil Schear, Emily Shen, David Stott, Sophia Yakoubov, and Arkady
Yerukhimovich. Secure multiparty computation for cooperative cyber risk assessment. In IEEE
Cybersecurity Development, SecDev 2016, pages 75–76. IEEE Computer Society, 2016.

[HN10] Carmit Hazay and Kobbi Nissim. Efficient set operations in the presence of malicious adversaries.
In Public Key Cryptography - PKC 2010, volume 6056 of Lecture Notes in Computer Science, pages
312–331. Springer, 2010.

[IKN+20] Mihaela Ion, Ben Kreuter, Ahmet Erhan Nergiz, Sarvar Patel, Shobhit Saxena, Karn Seth, Mariana
Raykova, David Shanahan, and Moti Yung. On deploying secure computing: Private intersection-
sum-with-cardinality. In IEEE European Symposium on Security and Privacy, EuroS&P 2020, pages
370–389. IEEE, 2020.

[IKNP03] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending oblivious transfers efficiently.
In Advances in Cryptology - CRYPTO 2003, volume 2729 of Lecture Notes in Computer Science,
pages 145–161. Springer, 2003.

[JSZ+22] Yanxue Jia, Shi-Feng Sun, Hong-Sheng Zhou, Jiajun Du, and Dawu Gu. Shuffle-based private set
union: Faster and more secure. In USENIX 2022, 2022.

[Kim20] Sam Kim. Key-homomorphic pseudorandom functions from LWE with small modulus. In Advances
in Cryptology - EUROCRYPT 2020, volume 12106 of Lecture Notes in Computer Science, pages
576–607. Springer, 2020.

[KK13] Vladimir Kolesnikov and Ranjit Kumaresan. Improved OT extension for transferring short secrets.
In Advances in Cryptology - CRYPTO 2013, volume 8043 of Lecture Notes in Computer Science,
pages 54–70. Springer, 2013.

[KKRT16] Vladimir Kolesnikov, Ranjit Kumaresan, Mike Rosulek, and Ni Trieu. Efficient batched oblivious
PRF with applications to private set intersection. In CCS 2016, pages 818–829. ACM, 2016.

[Kle21] Martin Kleppmann. Implementing curve25519/x25519: A tutorial on elliptic curve cryptography,
2021. https://www.cl.cam.ac.uk/teaching/2122/Crypto/curve25519.pdf.

[KLS+17] Ágnes Kiss, Jian Liu, Thomas Schneider, N. Asokan, and Benny Pinkas. Private set intersection
for unequal set sizes with mobile applications. Proc. Priv. Enhancing Technol., (4):177–197, 2017.

[KMP+17] Vladimir Kolesnikov, Naor Matania, Benny Pinkas, Mike Rosulek, and Ni Trieu. Practical multi-
party private set intersection from symmetric-key techniques. In ACM CCS 2017, pages 1257–1272.
ACM, 2017.

[KRTW19] Vladimir Kolesnikov, Mike Rosulek, Ni Trieu, and Xiao Wang. Scalable private set union from
symmetric-key techniques. In Advances in Cryptology - ASIACRYPT 2019, volume 11922 of Lecture
Notes in Computer Science, pages 636–666. Springer, 2019.

[KS05] Lea Kissner and Dawn Xiaodong Song. Privacy-preserving set operations. In Advances in Cryptology
- CRYPTO 2005, volume 3621 of Lecture Notes in Computer Science, pages 241–257. Springer, 2005.

[LG23] Xiang Liu and Ying Gao. Scalable multi-party private set union from multi-query secret-shared
private membership test. In Advances in Cryptology - ASIACRYPT 2023. Springer, 2023.

[Lon19] A deep dive into x25519, 2019. https://coinexsmartchain.medium.com/
a-deep-dive-into-x25519-7a926e8a91c7.

[LV04] Arjen K. Lenstra and Tim Voss. Information security risk assessment, aggregation, and mitigation.
In Information Security and Privacy: 9th Australasian Conference, ACISP 2004, volume 3108 of
Lecture Notes in Computer Science, pages 391–401. Springer, 2004.

[Mea86] Catherine A. Meadows. A more efficient cryptographic matchmaking protocol for use in the absence
of a continuously available third party. In Proceedings of the 1986 IEEE Symposium on Security
and Privacy, pages 134–137. IEEE Computer Society, 1986.

[MPR+20] Peihan Miao, Sarvar Patel, Mariana Raykova, Karn Seth, and Moti Yung. Two-sided malicious
security for private intersection-sum with cardinality. In Advances in Cryptology - CRYPTO 2020,
volume 12172 of Lecture Notes in Computer Science, pages 3–33. Springer, 2020.

[NPR99] Moni Naor, Benny Pinkas, and Omer Reingold. Distributed pseudo-random functions and kdcs. In
Advances in Cryptology - EUROCRYPT 1999, volume 1592 of Lecture Notes in Computer Science,
pages 327–346. Springer, 1999.

33

https://www.cl.cam.ac.uk/teaching/2122/Crypto/curve25519.pdf
https://coinexsmartchain.medium.com/a-deep-dive-into-x25519-7a926e8a91c7
https://coinexsmartchain.medium.com/a-deep-dive-into-x25519-7a926e8a91c7


[NR95] Moni Naor and Omer Reingold. Synthesizers and their application to the parallel construction of
psuedo-random functions. In 36th Annual Symposium on Foundations of Computer Science, FOCS
1995, pages 170–181. IEEE Computer Society, 1995.

[NTL+11] Arvind Narayanan, Narendran Thiagarajan, Mugdha Lakhani, Michael Hamburg, and Dan Boneh.
Location privacy via private proximity testing. In Proceedings of the Network and Distributed System
Security Symposium, NDSS 2011. The Internet Society, 2011.

[NTY21] Ofri Nevo, Ni Trieu, and Avishay Yanai. Simple, fast malicious multiparty private set intersection.
In ACM CCS 2021, pages 1151–1165. ACM, 2021.

[Opea] https://github.com/openssl.
[Opeb] OpenMP. https://www.openmp.org/resources/openmp-compilers-tools/.
[Pri] https://github.com/google/private-join-and-compute/issues/16.
[PRTY19] Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai. Spot-light: Lightweight private set

intersection from sparse OT extension. In Advances in Cryptology - CRYPTO 2019 - 39th Annual
International Cryptology Conference, volume 11694 of Lecture Notes in Computer Science, pages
401–431. Springer, 2019.

[PSTY19] Benny Pinkas, Thomas Schneider, Oleksandr Tkachenko, and Avishay Yanai. Efficient circuit-based
PSI with linear communication. In Advances in Cryptology - EUROCRYPT 2019, volume 11478 of
Lecture Notes in Computer Science, pages 122–153. Springer, 2019.

[PSZ14] Benny Pinkas, Thomas Schneider, and Michael Zohner. Faster private set intersection based on OT
extension. In Proceedings of the 23rd USENIX Security Symposium, 2014, pages 797–812. USENIX
Association, 2014.

[PSZ18] Benny Pinkas, Thomas Schneider, and Michael Zohner. Scalable private set intersection based on
OT extension. ACM Trans. Priv. Secur., 21(2):7:1–7:35, 2018.

[RA18] Amanda Cristina Davi Resende and Diego F. Aranha. Faster unbalanced private set intersection.
In Financial Cryptography and Data Security - 22nd International Conference, FC 2018, volume
10957 of Lecture Notes in Computer Science, pages 203–221, 2018.

[Rab05] Michael O. Rabin. How to exchange secrets with oblivious transfer. 2005. http://eprint.iacr.
org/2005/187.

[RR17] Peter Rindal and Mike Rosulek. Improved private set intersection against malicious adversaries. In
Advances in Cryptology - EUROCRYPT 2017, volume 10210 of LNCS, pages 235–259, 2017.

[RR22] Srinivasan Raghuraman and Peter Rindal. Blazing fast PSI from improved OKVS and subfield
VOLE. In ACM CCS 2022, 2022.

[RS21] Peter Rindal and Phillipp Schoppmann. VOLE-PSI: fast OPRF and circuit-psi from vector-ole. In
Advances in Cryptology - EUROCRYPT 2021, volume 12697 of Lecture Notes in Computer Science,
pages 901–930. Springer, 2021.

[RT21] Mike Rosulek and Ni Trieu. Compact and malicious private set intersection for small sets. In CCS
’21: 2021 ACM SIGSAC Conference on Computer and Communications Security, pages 1166–1181.
ACM, 2021.

[Sha80] Adi Shamir. On the power of commutativity in cryptography. In ICALP 1980, volume 85 of Lecture
Notes in Computer Science, pages 582–595. Springer, 1980.

[SJ23] Yongha Son and Jinhyuck Jeong. PSI with computation or circuit-psi for unbalanced sets from
homomorphic encryption. In ASIA CCS 2023, pages 342–356. ACM, 2023.

[TCLZ23] Binbin Tu, Yu Chen, Qi Liu, and Cong Zhang. Fast unbalanced private set union from fully
homomorphic encryption, 2023.

[TKC07] Juan Ramón Troncoso-Pastoriza, Stefan Katzenbeisser, and Mehmet Utku Celik. Privacy preserving
error resilient dna searching through oblivious automata. In Proceedings of the 2007 ACM Conference
on Computer and Communications Security, CCS 2007, pages 519–528. ACM, 2007.

[WY23] Mingli Wu and Tsz Hon Yuen. Efficient unbalanced private set intersection cardinality and user-
friendly privacy-preserving contact tracing. In USENIX Security 2023. USENIX Association, 2023.

[ZCL+23] Cong Zhang, Yu Chen, Weiran Liu, Min Zhang, and Dongdai Lin. Optimal private set union from
multi-query reverse private membership test. In USENIX 2023, 2023. https://eprint.iacr.org/
2022/358.

34

https://github.com/openssl
https://www.openmp.org/resources/openmp-compilers-tools/
https://github.com/google/private-join-and-compute/issues/16
http://eprint.iacr.org/2005/187
http://eprint.iacr.org/2005/187
https://eprint.iacr.org/2022/358
https://eprint.iacr.org/2022/358


A Missing Definitions
A.1 Weak Pseudorandom EGA
We begin by recalling the definition of a group action.

Definition A.1 (Group Actions). A group G is said to act on a set X if there is a map ⋆ : G×X → X
that satisfies the following two properties:

1. Identity: if e is the identity element of G, then for any x ∈ X, we have e ⋆ x = x.

2. Compatibility: for any g, h ∈ G and any x ∈ X, we have (gh) ⋆ x = g ⋆ (h ⋆ x).

From now on, we use the abbreviated notation (G, X, ⋆) to denote a group action. If (G, X, ⋆) is a
group action, for any g ∈ G the map ϕg : x 7→ g ⋆ x defines a permutation of X.

We then define an effective group action (EGA) [AFMP20] as follows.

Definition A.2 (Effective Group Actions). A group action (G, X, ⋆) is effective if the following properties
are satisfied:

1. The group G is finite and there exist PPT algorithms for:

(a) Membership testing, i.e., to decide if a given bit string represents a valid group element in G.
(b) Equality testing, i.e., to decide if two bit strings represent the same group element in G.
(c) Sampling, i.e., to sample an element g from a uniform (or statistically close to) distribution

on G.
(d) Operation, i.e., to compute gh for any g, h ∈ G.
(e) Inversion, i.e., to compute g−1 for any g ∈ G.

2. The set X is finite and there exist PPT algorithms for:

(a) Membership testing, i.e., to decide if a bit string represents a valid set element.
(b) Unique representation, i.e., given any set element x ∈ X, compute a string x̂ that canonically

represents x.

3. There exists a distinguished element x0 ∈ X, called the origin, such that its bit-string representation
is known.

4. There exists an efficient algorithm that given (some bit-string representations of) any g ∈ G and
any x ∈ X, outputs g ⋆ x.

Definition A.3 (Weak Pseudorandom EGA). A group action (G,X, ⋆) is weakly pseudorandom if the
family of efficiently commutable permutation {ϕg : X → X}g∈G is weakly pseudorandom, i.e., there is
no PPT adversary that can distinguish tuples of the form (xi, g ⋆xi) from (xi, ui) where g

R←− G and each
xi, ui

R←− X.

B Instantiations of Sigma-mqPMT
B.1 Sigma-mqPMT from DDH
By plugging in DDH-based OPRF to the above generic construction, we get an instantiation of Sigma-
mqPMT based on the DDH assumption (as shown in Figure 14).

35



P1 (server)
Y = (y1, . . . , yn1

)
P2 (client)

X = (x1, . . . , xn2
)

k
R←− Zp

a← {H(y1)k, . . . ,H(yn1
)k}

r
R←− Zp, qi ← H(xi)

r
q⃗ = {q1, . . . , qn2

}

z⃗ = {z1, . . . , zn2
}

zi ← (H(xi)
r)k ei := zi

?
∈ a

Figure 14: Sigma-mqPMT based on the DDH assumption

P1 (server)
Y = (y1, . . . , yn1

)
P2 (client)

X = (x1, . . . , xn2
)

a← ⊥
⊥

qi ← FHE.Enc(pk, xi)
q⃗ = {q1, . . . , qn2

}

z⃗ = {z1, . . . , zn2
}f(x) =

∏
y∈Y (yj − x)

ri
R←− F, fi(x)← rif(x)

zi ← FHE.Eval(pk, fi, qi)

ei := FHE.Dec(dk, zi)
?
= 0

Figure 15: Sigma-mqPMT based on FHE

36



B.2 Sigma-mqPMT from FHE
We then present an instantiation of Sigma-mqPMT (shown in Figure 15) based on oblivious polynomial
evaluation (OPE), which in turn efficiently built from FHE. The obtained Sigma-mqPMT is actually the
backbone of the unbalanced PSI protocol [CLR17].

Alternatively, we can realize OPE from additively homomorphic encryption. The change is that each
qi now consists of n1 ciphertexts of the following form: {AHE.Enc(pk, x1

i ), . . . ,AHE.Enc(pk, x
n1
i )}.

Remark B.1. As noted in [CLR17], the above protocol only serves as a toy example to illustrate the idea
of how to using FHE to build PSI, which is impractical. They also show how to make the basic protocol
efficient. However, the optimizing techniques destroy structure and properties of Sigma-mqPMT. As
a consequence, so far the transformation from Sigma-mqPMT to mqRPMT∗ does not have efficient
instantiation in the unbalanced setting, and only serves as a proof of concept.

C Missing Security Proofs
C.1 Proof of Permuted OPRF Based on the DDH Assumption
Theorem C.1. The permuted OPRF protocol described in Figure 8 is secure in the semi-honest model
assuming H is a random oracle and the DDH assumption holds.

Proof. We exhibit simulators SimP1 and SimP2 for simulating corrupt P1 and P2 respectively, and argue
the indistinguishability of produced transcript from the real execution.

Security against corrupt receiver. SimP2
simulates the view of corrupt receiver P2, which consists

of P2’s randomness, input, output and received messages. We formally show SimP2
’s simulation is

indistinguishable from P2’s view in the real protocol via a sequence of hybrid transcripts.
Hybrid0: P2’s view in the real protocol.
Hybrid1: Given P2’s input X = (x1, . . . , xn) and output {yπ(1), . . . , yπ(n)}, SimP2

emulates the random
oracle H honestly, picks s

R←− Zp, simulates message from P1 as {ysπ(1), . . . , ysπ(n)}.

Clearly, SimP2
’s simulated view is identical to P2’s view in the real execution.

Security against corrupt sender. SimP1
simulates the view of corrupt sender P1, which consists

of P1’s randomness, input, output and received messages. We formally show SimP1
’s simulation is

indistinguishable from P1’s view in the real protocol via a sequence of hybrid transcripts.
Hybrid0: P1’s view in the real protocol.
Hybrid1: Given P1’s output k and π, SimP1

first simulates with the knowledge of P2’s private input
X = (x1, . . . , xn) as follows:

• chooses the randomness for P2 (i.e., picks s
R←− Zp).

• honestly emulates random oracle H: for each query 〈zi〉, picks αi
R←− G and assigns H(zi) := αi.

• outputs (βs
1, . . . , β

s
n), where H(xi) = βi.

X ∩ Y

Y X

for zi ∈ {0, 1}ℓ, H(zi) := αi
R←− G

Clearly, SimP1
’s simulated view in Hybrid1 is identical to P1’s real view.

Hybrid2: SimP1
now simulates without the knowledge of P2’s private input X. It does not explicitly

choose the randomness for P2 anymore, but still honestly emulates random oracle H as in Hybrid1, and
only changes the simulation of P2’s message as follows:

• outputs (gc1 , . . . , gcn), where ci
R←− Zp.

37



We argue that the simulated views in Hybrid1 and Hybrid2 are computationally indistinguishable.
Let A be a PPT adversary against the DDH assumption. Given a n-fold DDH challenge instance
(ga, gb1 , . . . , gbn , gc1 , . . . , gcn), A is asked to determine if ci = abi or random values. To do so, A simulates
with the knowledge of X as follows:

• implicitly sets P2’s randomness s := a.

• for each random oracle query 〈zi〉, if zi /∈ X, picks αi
R←− G and assigns H(zi) := αi; if zi ∈ X,

assigns H(xi) := gbi .

• outputs (gc1 , . . . , gcn).

X ∩ Y

Y X

for zi /∈ X, H(zi) := αi
R←− G

for zi ∈ X, H(zi) := gbi

If ci = abi, A simulates Hybrid1. Else, A simulates Hybrid2. This reduces the computational
indistinguishability of views in Hybrid1 and Hybrid2 to the DDH assumption. Putting all the above
together, SimP1

’s simulated view in Hybrid2 is computationally indistinguishable to P1’s view in the real
protocol.

This proves the theorem.

Remark C.1. In the above security proof, when establishing the security against corrupt sender, we can
obtain a more modular proof by reducing the indistinguishability of simulated views in Hybrid1 and
Hybrid2 to the pseudorandomness of Fk(H(·)), which is in turn based on the DDH assumption.

38


	Introduction
	Motivation
	Our Contribution
	Technical Overview
	Related Works

	Preliminaries
	Notation
	MPC in the Semi-honest Model
	Private Set Operation

	Protocol Building Blocks
	Oblivious Transfer
	Multi-Query Reverse Private Membership Test

	Review of Pseudorandom Function
	Weak PRF from the DDH Assumption
	PRF from the DDH Assumption

	The First Generic Construction of mqRPMT
	Definition of Commutative Weak PRF
	Construction of Commutative Weak PRF
	mqRPMT from Commutative Weak PRF

	The Second Generic Construction of mqRPMT
	Definition of Permuted OPRF
	Construction of Permuted OPRF
	mqRPMT from Permuted OPRF

	Connection Between mqRPMT and mqPMT
	Sigma-mqPMT
	mqRPMT* from Sigma-mqPMT

	Applications of mqRPMT
	PSO Framework from mqRPMT
	Private-ID

	Performance
	Implementation Details
	Experimental Setup
	Evaluation of mqRPMT
	Benchmark Comparison of PSO Protocols
	Tips For ECC-based Implementations

	Summary and Perspective
	Missing Definitions
	Weak Pseudorandom EGA

	Instantiations of Sigma-mqPMT
	Sigma-mqPMT from DDH
	Sigma-mqPMT from FHE

	Missing Security Proofs
	Proof of Permuted OPRF Based on the DDH Assumption


