
Fast Unbalanced Private Set Union from Fully Homomorphic
Encryption

Binbin Tu1, Yu Chen1, Qi Liu1, and Cong Zhang2,3

1 School of Cyber Science and Technology, Shandong University
2 State Key Laboratory of Information Security, Institute of Information Engineering, Chinese Academy of Sciences

3 School of Cyber Security, University of Chinese Academy of Sciences
tubinbin@mail.sdu.edu.cn;yuchen@sdu.edu.cn;zhangcong@iie.ac.cn

Abstract. Private set union (PSU) allows two parties to compute the union of their sets without
revealing anything except the union and it has found numerous applications in practice. Recently,
some computationally efficient PSU protocols have been designed in the balanced case, but a potential
limitation with these approaches is the communication complexity, which scales linearly with the size of
the larger set. This is of particular concern when performing PSU in the unbalanced case, where one
party is a constrained device (cellphone) holding a small set, and another is a large service provider.
In this work, we propose a generic framework of using the leveled fully homomorphic encryption and a
newly introduced protocol called permute matrix Private EQuality Test (pm-PEQT) to construct the
unbalanced PSU that is secure against semi-honest adversaries. By instantiating the pm-PEQT, we obtain
fast unbalanced PSU protocols with a small communication overhead. Our protocol has communication
complexity linear in the size of the smaller set, and logarithmic in the larger set. More precisely, if the
set sizes are |X| � |Y |, our protocol achieves a communication overhead of O(|X| log |Y |).
Finally, we implement our protocols that can compare with the state-of-the-art PSU. Experiments show
that our protocols are more efficient than all previous protocols in the unbalanced case, especially, the
larger the difference of two set sizes, the better our protocols perform. Our running-time-optimized
benchmarks show that it takes 18.782 seconds of computation and 2.179 MB of communication to
compute the union between 210 strings and 219 strings. Compared to prior secure PSU proposed by Jia
et al. (Usenix Security 2022), this is roughly a 300× reduction in communication and 20× reduction in
computational overhead with a single thread in WAN/LAN settings.

1 Introduction

PSU is a cryptographic technique that allows two parties holding sets X and Y respectively, to compute the
union X ∪ Y , without revealing anything else. Recently, some works have been made on PSU, which have
become considerably efficient and been deployed in practice, such as cyber risk assessment and management
via joint IP blacklists and joint vulnerability data [23,18,22], privacy-preserving data aggregation [4], private
ID [14] etc. However, most of the works on PSU are designed in the balanced case. These protocols typically
perform only marginally better when one of the sets is much smaller than the other. In particular, their
communication cost scales at least linearly with the size of the larger set. In some certain applications, the
sender’s set may be much smaller than the receiver’s. The sender may be a mobile device with limited battery,
computing power and storage, whereas the receiver is a high-end computing device. Moreover, the bandwidth
between two parties might be limited. Most existing PSU protocols are not very efficient in dealing with
above unbalanced case.

The unbalanced PSU (uPSU) can be seen as a special case of PSU, where (1) the set size of one side is
significantly smaller than another’s, and (2) the side (with the smaller set) has a low-power device. Chen et
al. [9,7] first consider unbalanced case and design an efficient unbalanced private set intersection (uPSI) based
on the leveled fully homomorphic encryption (FHE). Their fast uPSI breaks the bound of communication
complexity linear with the size of the larger set and achieves the communication complexity linear in the
size of the smaller set, and logarithmic in the larger set. However, they only realize uPSI without consid-
ering the construction of the uPSU. Recently, Jia et al. [21] give a construction of uPSU∗4 with shuffling

4 In this paper, we use PSU∗ to denote a PSU protocol with information leakage.

technique, but their uPSU∗ protocol is not entirely satisfactory. On one hand, their uPSU∗ cannot achieve
full security of PSU, it leaks the information of the size of set intersection to the sender. This is a critical
information leakage for uPSU. When the set size of one side is very small, the probability of guessing the
intersection elements is higher, in particular, the protocol leaks the intersection element when the sender
inputs one-element set. On the other hand, the communication overhead of their uPSU∗ is not ideal and
still requires at least linearly with the size of the larger set. Furthermore, their uPSU∗ does not support
for arbitrary length items, because of using Permute + Share instead of OT protocol. Therefore, how to de-
sign a secure and fast uPSU is an open problem. Based on the above discussions, we ask the following question:

Is it possible to design a secure and fast unbalanced PSU protocol which breaks the bound of communication
complexity linear with the size of the larger set, meanwhile, it supports for arbitrary length items?

1.1 Contributions and Roadmap

In this paper, we give an affirmative answer to above question. We construct secure and fast unbalanced PSU
protocols which have communication complexity linear in the size of the smaller set, and logarithmic in the
larger set, meanwhile, they can support for arbitrary length items. Our protocols are particularly powerful
when the receiver’s set is much larger than the sender’s set. In detail, our contributions and roadmap can be
summarized as follows:

1. We first give a basic uPSU protocol based on fully homomorphic encryption with communication linear
in the smaller set, achieving optimal communication that is on par with the naive solution. However, the
basic protocol requires a high computational cost and a deep homomorphic circuit.

2. We use an array of optimizations following [9,7,10] to get an uPSU∗ with optimizations which
significantly reduces computational cost and the depth of the homomorphic circuit. However, we observe
that using these optimizations directly in uPSU could lead to information leakage.

3. We introduce a new cryptographic protocol named permute matrix private equality test (pm-PEQT).
In the pm-PEQT, the sender with a matrix R′ and a matrix permutation π interacts with a receiver
holding a matrix R. As a result, the receiver learns (only) a bit matrix B indicating that some elements
in permuted positions are equal or not, while the sender learns nothing about the matrix R. Compare
with the private equality test (PEQT), pm-PEQT can provide private equality test of all elements in the
matrix with positions permutation. Then, we give a generic framework of uPSU protocol based on
our uPSU∗ with optimizations, pm-PEQT and OT protocol.

4. We instantiate our pm-PEQT efficiently in two methods. The first is based on Permute + Share [14,21]
and multi-point oblivious pesudorandom function (mp-OPRF) [28,6]. Another is based on the decisional
Diffie-Hellman (DDH) assumption.
Then, we obtain secure and fast uPSU protocols with communication complexity linear in the size of the
smaller set and logarithmic in the larger set. We show the communication and security comparison of
PSU in the table 1.

5. Finally, we implement our uPSU protocols and compare with the state-of-the-art PSU [21], uPSU∗ [21]
and PSU∗ [22] in terms of runtime and communication in the same environment. Experiments show that
our protocols are more efficient than all previous protocols in the unbalanced case, especially, the larger
the difference of two set sizes, the better our protocols perform. Our running-time-optimized benchmarks
show that it takes 18.782 seconds of computation and 2.179 MB of communication to compute the union
between 210 strings and 219 strings. Compared to prior secure PSU [21], this is roughly a 300× reduction
in communication and 20× reduction in computational overhead with a single thread in WAN/LAN
settings.

1.2 Related Works

We revisit some recent private set operation protocols including uPSU [21], PSU [22,14,21,32] and uPSI
protocols [9], with particular emphasis on the semi-honest model.

2

Table 1: Communication and security comparison of PSU
Protocols Communication Security

PSU∗ [22] O(n logn) X−
PSU [14] O(n logn) X
PSU [32] O(n) X
PSU [21] O(n logn) X

uPSU∗ [21] O(n+m logm) X=
Our uPSU O(m logn) X

‡ n denotes the size of the large set, and m denotes the size of the small set. PSU∗ denotes it is not full secure. X− denotes the PSU
leaks the information of some subsets have the items in the set intersection. X= denotes the PSU leaks the information of the size of the
set intersection.

uPSU protocol. Jia et al. [21] propose an uPSU∗ with the shuffling technique. The sender S inputs a set X
and the receiver R inputs a set Y , where |X| � |Y |. As a result, S gets the size of set intersection X ∩ Y
and R gets the set union X ∪ Y . Informally, S inserts X into the Cuckoo hash table and the item in i-th
bin denotes as Xc[i], i ∈ [mc]. R inserts Y into the simple hash table and the set of items in the i-th bin
denotes as Yb[i], i ∈ [mc], and the bin size is ρ. And then, they use shuffling technique to permute and share
Xc by a permutation π chosen by R. S gets shuffled shares {aπ(1), aπ(2), · · · , aπ(mc)}, and R gets shuffled
shares {a′π(1), a

′
π(2), · · · , a

′
π(mc)

}, where Xc[π(i)] = aπ(i) ⊕ a′π(i). R permutes Yb[i] to Yb[π(i)], i ∈ [mc], and

for all yπ(i) ∈ Yb[π(i)], computes yπ(i) ⊕ a′π(i). As we can see, if Xc[π(i)] ∈ Yb[π(i)], there exists an item

yπ(i) ∈ Yb[π(i)], s.t yπ(i) ⊕ a′π(i) = aπ(i). Then, both parties run mp-OPRF to let S get all PRF values

Fk(aπ(i)) of aπ(i) and let R get the key k. For each bin, R can compute Fk(yπ(i)⊕ a′π(i)) and sends them to S.

S tests whether the item in each bin belongs to the union by checking Fk(aπ(i)) =? Fk(yπ(i) ⊕ a′π(i)), for all

yπ(i) ∈ Yb[π(i)]. S obtains a bit vector b = (b1, · · · , bmc), if bi = 1, Xc[π(i)] /∈ Yb, else, Xc[π(i)] ∈ Yb. Then, two
parties run shuffling technique to permute and share {a′π(1), a

′
π(2), · · · , a

′
π(mc)

} by a permutation π′ chosen by

S. S obtains {sπ′(1), sπ′(2), · · · , sπ′(mc)}, and R gets {s′π′(1), s
′
π′(2), · · · , s

′
π′(mc)

}, where sπ′(i) ⊕ s′π′(i) = a′π′(i),

{a′π′(1), · · · , a
′
π′(mc)

} = π′({a′π(1), · · · , a
′
π(mc)

}). Finally, S computes {bπ′(1), · · · , bπ′(mc)} = π′({b1, · · · , bmc})
and sets zπ′(i) = ⊥ if bπ′(i) = 0, else, zπ′(i) = aπ′(i) ⊕ sπ′(i) and sends (zπ′(1), · · · , zπ′(mc)) to R. For all
i ∈ [mc], R checks zπ′(i) 6= ⊥ and zπ′(i) ⊕ s′π′(i) is not dummy item, and outputs Y ∪ {zπ′(i) ⊕ s′π′(i)}.

As mentioned in [21], compared with their balanced PSU [21], their uPSU∗ described above is efficient
in unbalanced case, because of replacing OT related to the large set with Permute + Share related to the
small set to obtain the items of the set union. The communication overhead in this phase drops from O(n) to
O(m logm), where m = |X| � n = |Y |. However, this part leaks the set intersection size to the sender, since
the sender gets the bit vector b, and knows the number of zero in the b. Meanwhile, by using Permute +
Share instead of OT, the sender needs to send its shuffled shares which are the shares of the union items, such
that the receiver can combine the union items. So both parties need to inserts their items into hash tables
rather than hash values. This leads to their uPSU∗ does not support for arbitrary length items. Moreover,
the receiver needs to send all PRF values of the large set to the sender, so the communication overhead in
this phase is O(n) that requires at least linearly with the size of the large set Y .

Recent balanced PSU protocol. Kolesnikov et al. [22] propose a PSU protocol based on the reverse
private membership test (RPMT) and OT. In RPMT, the sender with input x interacts with a receiver
holding a set Y , and the receiver can learn a bit indicating whether x ∈ Y , while the sender learns nothing.
After that, both parties run OT protocol to let the receiver obtain {x} ∪ Y . RPMT requires O(n log2 n)
computation, and O(n) communication, where |Y | = n. If the size of the sender’s set is |X| = n, for computing
the set union, the protocol runs RPMT n times independently, which requires O(n2) communication and
O(n2 log2 n) computation. By using the bucketing technique, two parties can hash each set X or Y in m

3

bins, each bin consists of ρ items. Computing a large (n, n)-PSU5 can be divided into computing m small
(ρ, ρ)-PSU. The complexity can be reduced to O(n log n) communication and O(n log n log log n) computation.
However, the bucketing technique leads to information leakage about the items in the set intersection. In the
ideal (n, n)-PSU, from the view of receiver, any item in Y could be an item in X ∩ Y . But in each (ρ, ρ)-PSU,
the receiver knows that some subsets with size ρ have items in X ∩ Y .

Garimella et al. [14] give a PSU protocol based on oblivious switching and OT. They first propose
the permuted characteristic functionality and give a construction based on oblivious switching, in which
the sender inputs the set X = {x1, · · · , xn} and get a random permutation π, the receiver inputs the set
Y = {y1, · · · , yn} and gets a vector e ∈ {0, 1}n, where ei = 1 if xπ(i) ∈ Y , else, ei = 0. Then two parties run
OT protocol to let the receiver obtain the set union. Their protocol requires O(n log n) communication and
O(n log n) computation.

Jia et al. [21] propose a PSU with the shuffling technique and oblivious transfer. They use Cuckoo hash
technique to hash receiver’s set Y into mc bins and each bin consists of one item, and hash sender’s set X
into mc bins and each bin consists of ρ items. And then, they use shuffling technique to permute and share
receiver’s bins, in which the sender inputs a permutation π and get the shuffled shares {sπ(1), · · · , sπ(mc)}, and
the receiver inputs its bins {a1, · · · , amc} and gets another shuffled shares {sπ(1)⊕aπ(1), · · · , sπ(mc)⊕aπ(mc)}.
That is, for same bin i, if xπ(i) ⊕ sπ(i) = sπ(i) ⊕ aπ(i), xπ(i) belongs to Y . Then, the sender and receiver run
mp-OPRF to compute PRF values of xπ(i) ⊕ sπ(i) and sπ(i) ⊕ aπ(i). For each bin, the sender sends its PRF
values to the receiver. And the receiver can test whether the item belongs to the union. Finally, two parties
runs OT protocol to let the receiver the set union. Their protocol requires O(n log n) communication and
O(n log n) computation, where |X| = |Y | = n.

Zhang et al. [32] recently give a generic framework of PSU based on multi-query reverse private membership
test (mq-RPMT) and OT. In the mq-RPMT, the sender inputs X = {x1, · · · , xn} and get nothing, and
the receiver inputs Y = {y1, · · · , yn} and gets a bit vector b ∈ {0, 1}n , satisfying bi = 1 if and only if
xi ∈ Y, i ∈ [n]. And then two parties runs OT protocol to let the receiver the set union. They give two
concrete PSU protocols based on symmetric-key encryption and general 2PC techniques, and re-randomizable
public-key encryption techniques respectively. Both constructions lead to PSU with linear computation O(n)
and communication O(n) complexity.

uPSI protocol. To our knowledge, Chen et al. [9] propose the first unbalanced PSI based on FHE. In
their uPSI [9], the sender S inputs a set X and the receiver R inputs a set Y , where m = |Y | � n = |X|.
They first give a strawman protocol as follows: the receiver R encrypts its item yi, i ∈ [|Y |] and send all
ciphertexts ci ← FHE.Enc(yi) to the sender S; S chooses random non-zero plaintexts ri and homomorphically
computes ri ·Πx∈X(c− x) and gets new ciphertexts c′i ← FHE.Enc(ri · f(yi)), i ∈ [|Y |], where the polynomial
f(y) = Πx∈X(y − x), and then returns c′i to R; R decrypts all ciphertexts c′i: if ri · f(yi) = 0, it knows
yi ∈ X ∩ Y , else, it gets a random item. The protocol requires communication linear in the smaller set, but it
has a high computational cost and a deep homomorphic circuit.

Then they use cuckoo hashing, batching, windowing, partitioning, modulus switching, etc to optimize the
strawman protocol and give a fast uPSI. More precisely, R inserts set Y into the Cuckoo hash table and
denotes the filled Cuckoo hash table as Yc and the item in i-th bin as yi, i ∈ [mc] and each bin consists of
one item. S inserts set X into the simple hash table and denotes the set of items in the i-th bin as Xb[i] and
each bin consists of B items. For same bin i, if yi ∈ Xb[i], yi ∈ X ∩ Y , else, yi /∈ X ∩ Y . Then the sender
partitions each bin Xb[i] into α subsets. For i-th bin, each subset consists of B′ = B/α items. Therefore,
the large (n,m)-PSI can be divided into many small (B′, 1)-PSI, and each small PSI has low homomorphic
circuit and low computational cost. Moreover, both parties can compress their strings with an agreed-upon
hash function to a fixed length, so this uPSI supports for arbitrary length items. Chen et al. [7] and Cong et
al. [10] based on the above framework and give fast labeled unbalanced PSI.

5 In this paper, we use (n,m)-PSU to denote a PSU protocol where the sender’s set size is n and the receiver’s set
size is m

4

2 Overview of Our Techniques

We start with a special case and give our basic uPSU protocol based on leveled FHE. Then, we develop a new
cryptographic protocol named permute matrix private equality test (pm-PEQT). Finally, by instantiating our
pm-PEQT and using some optimization techniques on the basic uPSU protocol, we give a secure and fast
uPSU protocol that satisfies the ideal functionality of PSU in Figure 1.

Parameters: Two parties: the sender S with set X and receiver R with set Y .
Functionality:

1. Wait for an input X = {x1, x2, · · · , xm} ⊂ {0, 1}∗ from sender S, and an input Y = {y1, y2, · · · , yn} ⊂ {0, 1}∗
from receiver R.

2. Give output X ∪ Y to the receiver R.

Fig. 1: Ideal functionality Fm,nPSU for private set union with one-sided output

S(X) R(Y)
H CH

y1 y2 · · · ym1

ci = Enc(yi)

ci
B′

B

f11 f12 · · · f1m

f21 f22 · · · f2m

· · · · · · · · · · · ·

fα1 fα2 · · · fαm

cf = Enc(r · f(y)) r′ = r · f(y)
cf

r′11 r′12 · · · r′1m

r′21 r′22 · · · r′2m
· · · · · · · · · · · ·

r′α1 r
′
α2 · · · r′αm

r′ij = rijfij(y) =? 0

S(X) R(Y)
CH H

x1 x2 · · · xm1

ci = Enc(xi)

ci
B′

B

f11 f12 · · · f1m

f21 f22 · · · f2m

· · · · · · · · · · · ·

fα1 fα2 · · · fαm

cf = Enc(r + f(x))r′ = r + f(x)
cf

r′11 r′12 · · · r′1m

r′21 r′22 · · · r′2m
· · · · · · · · · · · ·

r′α1 r
′
α2 · · · r′αm

r11 r12 · · · r1m

r21 r22 · · · r2m

· · · · · · · · · · · ·

rα1 rα2 · · · rαm

r′ij = rij + f(x) =? rij

Fig. 2: Comparison of uPSI [9] (left) and our basic uPSU with optimizations (right)

2.1 Our basic uPSU based on FHE

Suppose that the sender has only one item x in its set X and the receiver holding the set Y gets the resulting
union {x} ∪ Y . We show our basic uPSU based on FHE as follows: The sender S uses its FHE public key
to encrypt x and sends c = FHE.Enc(x) to the receiver R; R chooses random non-zero number r, and
homomorphically computes r+Πy∈Y (c− y), and returns the new ciphertext c′ = FHE.Enc(r+Πy∈Y (x− y))
to S; S decrypts c′ and get r′ = r +Πy∈Y (x− y), then it returns r′ back to R; R checks r′ =? r, if r′ = r, it
sets b = 0 denoted x ∈ X ∩ Y , else b = 1 denoted x /∈ X ∩ Y . Finally, the receiver and the sender invoke the
OT protocol to let the receiver obtain and output the union {x} ∪ Y .

5

Compare with the basic uPSI [9]. The key different step between our basic uPSU and the basic uPSI [9]
is using the different randomization methods. In the uPSI [9], they compute the product of randomness r and
the polynomial value f(y), where f(y) = Πx∈X(y−x). If f(y) = 0, rf(y) = 0 denotes y ∈ X, else y /∈ X, and
the receiver only gets a randomness rf(y) 6= 0 which hides the information of X. In our uPSU, we compute
the sum of randomness r and the polynomial value f(x), the sender decrypts the ciphertext and gets the
plaintext r + f(x) which hides the information of Y . Then the sender sends the plaintext r + f(x) to the
receiver, if f(x) = 0, r + f(x) = r denotes x ∈ Y , else x /∈ Y , and the receiver can get f(x). This method
will leak some information of x /∈ Y , but this leakage does not cause any harm to the PSU, since the PSU
protocol releases that value at last.

In the uPSI, Chen et al. [9] uses some optimization techniques to divide a large (n,m)-PSI into many
small (B′, 1)-PSI to reduce the depth of homomorphic circuit. Intuitively, we can use same optimization
techniques in our basic uPSU to develop a efficient full uPSU protocol. We emphasize that, unlike PSI, using
above optimization techniques is not very natural for PSU. This is because a large PSI can be divided into
many small PSI, and the receiver can combine all small set intersection into the output securely. However,
in the PSU, a large (n,m)-PSU is divided into many small (B′, 1)-PSU directly, this leads to information
leakage about the items in the set intersection. The receiver knows that some subsets with size B′ have items
in X ∩Y . In the ideal (n,m)-PSU, from the view of receiver, any item in the set Y could be an item in X ∩Y .
Furthermore, if the sender returns its decrypted results back directly for the receiver checks which items of X
belong to the union like the basic uPSU, this will leaks the information of X ∩ Y , because there are many
subset with size B′ in one bin, if corresponding polynomial f(x) = 0 of one subset, the receiver can get other
subset in same bin, such that f ′(x) 6= 0 which leaks the information of X ∩ Y , even the receiver can compute
the intersection items, if the number of polynomial values is sufficient. Therefore, the sender cannot sends its
decrypted results to the receiver directly, meanwhile, the receiver checks the items are equal without knowing
the position information. We show the comparison of uPSI [9] and our basic uPSU with optimizations in
Figure 2.

2.2 Permute Matrix Private Equality Test

We develop a new cryptographic protocol named permute matrix private equality test (pm-PEQT) and give
corresponding tailored efficient construction, which we believe to be of independent interest. The pm-PEQT is
related to the traditional private equality test (PEQT), which is a two-party protocol in which a receiver who
has an input string x interacts with a sender holding an input string y. The result is that the receiver learns
a bit indicating whether x = y and nothing else, whereas the sender learns nothing. In the pm-PEQT, the
sender with a matrix R′α×m and a permutation π = (πc, πr) interacts with a receiver holding a matrix Rα×m.
As a result, the receiver learns (only) the bit matrix Bα×m indicating that if bij = 1, rπ(ij) = r′π(ij), else,

rπ(ij) 6= r′π(ij), i ∈ [α], j ∈ [m], while the sender learns nothing about the vector R. Compare with the private

equality test (PEQT), pm-PEQT can provide matrix private equality test with positions permutation.
We show the ideal functionality of pm-PEQT in Figure 3.

This seemingly simple functionality adjustment (PEQT → pm-PEQT) doesn’t seem to be fixable by a
small tweak of parallel many PEQT with permutation. This is because it is difficult to permute the receiver’s
item with the permutation of the sender.

Instantiation of pm-PEQT. We give two constructions of pm-PEQT. The first construction is based
on Permute + Share functionality [14,21] and mp-OPRF [28,6]. We review the Permute + Share in Figure 5.
S and R invoke the ideal Permute + Share functionality FPS twice: first, both parties permute and share
the columns of R, where each column of R can be seen as an item. R inputs each column rj, j ∈ [m] of
R and S inputs the permutation πc. As a result, R gets Sπc = [sπc(ij)] and S gets S′πc = [s′πc(ij)], where

sπc(ij)⊕s′πc(ij) = rπc(ij). Then both parties permute and share the rows of Sπc , where each rows of Sπc can be

seen as an item. R inputs each rows of Sπc and S inputs the permutation πr. As a result, R gets Sπr = [sπr(ij)]
and S gets S′πr = [s′πr(ij)], where sπr(ij) ⊕ s′πr(ij) = sπc(ij). R gets the shuffled matrix shares Sπ = Sπr

6

Parameters: Two parties: P1 with a matrix R, P0 with a matrix R′ and a matrix permutation π = (πc, πr), where
πc (over [m]) is a column permutation and πr (over [α]) is a row permutation,

R =

 r11 · · · r1m...
. . .

...
rα1 · · · rαm

 ,R′ =

 r
′
11 · · · r′1m
...

. . .
...

r′α1 · · · r′αm

Functionality:

1. Wait for an input R′ and a permutation π from P0, and an input R from P1.
2. Give the bit matrix B to P1, where

B =

 b11 · · · b1m...
. . .

...
bα1 · · · bαm

 ,
if rπ(ij) = r′π(ij), bij = 1, else, bij = 0, for i ∈ [α], j ∈ [m].

Fig. 3: permute matrix private equality test Fpm-PEQT

and S gets the shuffled matrix shares S′π = πr(S
′
πc) ⊕ S′πr , where sπ(ij) ⊕ s′π(ij) = π(rij), i ∈ [α], j ∈ [m].

Then, R acts as P0 with shuffled shares S, and obtains the outputs Fk(sπ(ij)), i ∈ [α], j ∈ [m], and S
obtain the key k. Furthermore, S permute the matrix R′ by π = (πc, πr) and gets R′π = [r′π(ij)], and then

computes all PRF values Fk(r′π(ij) ⊕ s
′
π(ij)), i ∈ [α], j ∈ [m] and sends them to R. Finally, R sets bij = 1, if

Fk(sπ(ij)) = Fk(r′π(ij) ⊕ s
′
π(ij)), else, bij = 0, and gains a bit matrix B = [bij], i ∈ [α], j ∈ [m]. We note that

Permute + Share [14,21] and mp-OPRF [28,6] are fast cryptographic tools, and the communication overhead
of our pm-PEQT based on Permute + Share and mp-OPRF is equal to O(m logm).

The second construction is based on DDH. R and S choose random number a, b and compute Hij =
H(rij)

a, H ′ij = H(r′ij)
b for i ∈ [α], j ∈ [m], where H = H(·) are (multiplicative) group elements output by

hash functions H. R sends Hij = H(rij)
a to S. Then S computes H ′′ij = (H(rij)

a)b and uses the permutation
π = (πc, πr) and computes H ′′π(ij) = π(H ′′ij), H

′
π(ij) = π(H ′ij) and sends them to R. Finally, R set bij = 1,

if H ′′π(ij) = H ′aπ(ij), else bij = 0, and gains a bit matrix B = [bij], i ∈ [α], j ∈ [m]. We note that the

communication overhead of our pm-PEQT based DDH is equal to O(m).

2.3 Our Full uPSU protocol

We start with our basic uPSU protocol based on FHE and using optimization techniques [9,7,10] to divide a
large PSU into many small PSU to reduce the depth of homomorphic circuit. Then, by using pm-PEQT and
OT protocol, we can obtain secure and fast uPSU protocols that is secure against semi-honest adversaries.
We note that the communication cost of our basic uPSU protocol with optimization is O(|Y | log |X|), the
communication cost of pm-PEQT is O(|Y | log |Y |) (based on Permute + Share [14,21] and mp-OPRF [28,6])
or O(|Y |) (based on DDH), and the communication cost of OT is O(|Y |). Therefore, our full uPSU requires
the communication cost O(|Y | log |X|). We provide the high-level technical overview for our framework of
uPSU in Figure 4 and the details are as follows.

First, we use basic uPSU protocol with optimizations to divide the large PSU, where the sender inputs a
small set X and the receiver inputs a large set Y . As a result, the receiver outputs a matrix Rα×m, and the
sender outputs a matrix R′α×m, where α denotes the number of partitions, m denotes the number of bins, rij
denotes the random number used to hiding each small subset and r′ij denotes the plaintext. We note that if
for all i ∈ [α], r′ij 6= rij , xj /∈ Y , else, xj ∈ Y .

Then, by using pm-PEQT, the sender inputs R′ and a permutation π = (πc, πr) and the receiver inputs
R. As a result, the receiver gets a bit matrix B = [bij], where if bij = 1, i ∈ [α], j ∈ [m], rπ(ij) = r′π(ij), else

7

rπ(ij) 6= r′π(ij). The receiver set a bit vector b = [bj], j ∈ [m], if for all i ∈ [α], bij = 0, bπ(j) = 1, else, bj = 0.

The sender permutes the set X by πc and gets πc(X) = [xπc(1), xπc(2), · · · , xπc(m)]. We note that if bj = 1,
xπc(j) /∈ Y , else xπ(i) ∈ Y , j ∈ [m].

Basic uPSU
with Optimization

S(X) R(Y)

Xm

R′α×m

Yn

Rα×m

pm-PEQT

R′α×m, π

⊥

Rα×m

Bα×m

OT

(⊥, xπ(j))

⊥

bj

(⊥, xπ(j))

Fig. 4: Core design idea of Our full uPSU protocol

Finally, by using OT protocol, the sender inputs (xπ(j),⊥), j ∈ [m], and the receiver inputs bj , j ∈ [m]. If
bj = 1, the receiver gets xπ(j), else, the receiver gets ⊥. After that, the receiver outputs the union Y ∪{xπ(j)}.

3 Preliminaries

3.1 Notation

For n ∈ N, [n] denotes the set {1, 2, · · · , n}. 1λ denotes the string of λ ones. We use κ and λ to denote the
computational and statistical security parameters, respectively. A function is negligible in λ, written negl(λ),
if it vanishes faster than the inverse of any polynomial in λ. We denote a probabilistic polynomial-time
algorithm by PPT. If S is a set then s ← S denotes the operation of sampling an item s of S at random,
and ST denotes its transpose. For any permutations π on n items, we set {sπ(1), sπ(2), · · · , sπ(n)} = π({s1,
s2, · · · , sn}), where sπ(i) denotes the i-th element after the permutation. For any column permutations πc on
a matrix S = [sij], we set Sπc = πc(S) = [sπc(ij)], where sπc(ij) denotes the i-th row and j-th column element
after the permutation. For any row permutations πr on a matrix S = [sij], we set Sπr = πr(S) = [sπr(ij)],
where sπr(ij) denotes the i-th row and j-th column element after the permutation. We denote the parties as
the sender S and the receiver R, and their respective input sets as X and Y , set sizes |X| and |Y |. In the
unbalanced setting, we assume that |X| � |Y |.

3.2 Hashing

As mentioned in [9], two parties hash the items in their sets into two hash tables using some agreed-upon
deterministic hash function, and they only perform a PSI for each bin, since items in different bins are
necessarily different. We also use some hash techniques in our PSU and review them here.

Simple Hashing. There are some hash functions H1, · · · , Hh : {0, 1}∗ → [m] used to map n items into m
bins B1, · · · ,Bm. Following [26], the maximum bin size B can be set to ensure that no bin will contain more
than B items except with probability 2−λ when hashing n items into m bins.

8

Pr[∃ bin size > B] ≤ m

[
n∑

i=B+1

(
n
i

)
·
(

1

m

)i
·
(

1− 1

m

)n−i]

By using simple hash, both parties can compress their items with an agree-upon hash function to a fixed
length, and execute the PSU protocol on these hashed strings.

Cuckoo hashing. Cuckoo hashing [27,11,13] can be used to build dense hash tables by many hash functions.
There are h hash functions H1, · · · , Hh used to map n items into m = εn bins and a stash, where each bin at
most one item. For an item x, we choose a random index i from [h], and insert the tuple (x, i) at location
Hi(x) in the table. If this location was already occupied by a tuple (y, j), we replace (y, j) with (x, i), choose
a random j′ from [h]\{j}, and recursively re-insert (y, j′) into the table. The above procedure is repeated
until no more evictions are necessary, or until the number of evictions has reached a threshold. In the latter
case, the last item will be put in the stash. According to the analysis in [29], we can adjust the values of m
and ε to reduce the stash size to 0 while achieving a hashing failure probability of 2−λ.

Note that following [9], we also let the sender perform cuckoo hashing with m ≥ |X| bins. The receiver
inserts each of its items into a two-dimensional hash table using three hash functions.

3.3 Fully Homomorphic Encryption

Fully homomorphic encryption (FHE) [15] is a form of encryption schemes that allow arbitrary operations to
be performed on encrypted data without requiring access to the decryption key. For improved performance,
the encryption parameters are typically chosen to support only circuits of a certain bounded depth (leveled
fully homomorphic encryption), and we use this in our implementation following [9,7,10]. There are several
FHE implementations that are publicly available. We use the homomorphic encryption library SEAL, which
implements the variant of [1] of the Brakerski/FanVercauteren (BFV) scheme [12]. We also need some
optimization techniques of FHE following [9,7,10], such as batching, windowing, partitioning, modulus
switching, etc, and review them here.

Batching. Batching is a well-known and powerful technique in fully homomorphic encryption to enable
SIMD (Single Instruction, Multiple Data) operations on ciphertexts [16,2,31,8,17]. The batching technique
allows the sender to operate on n items from the receiver simultaneously, resulting in n-fold improvement in
both the computation and communication. Since in typical cases n has size of several thousand, this results
in a significant improvement over the basic protocol.

Windowing. We use a standard windowing technique to lower the depth of the arithmetic circuit that
the sender needs to evaluate on the receiver’s homomorphically encrypted data, resulting in a valuable
computation-communication trade-off.

If the sender only has an encryption of y, it samples a random element r in Zt\{0} and homomorphically
computes r +Πx∈X(y − x). The sender needs to compute at worst the product y|X|, which requires a circuit
of depth dlog2(|X| + 1)e. If the receiver sends encryptions of extra powers of y, the sender can use these
powers to evaluate the same computation with a much lower depth circuit. More precisely, for a window size

of l bits, the receiver computes and sends c(i, j) = FHE.Enc(yi·2
lj

) to the sender for all 1 ≤ i ≤ 2l − 1, and
all 0 ≤ j ≤ blog2(|X|)/lc. For example, when l = 1, the receiver sends encryptions of y, y2, y4, · · · , y2blog2 |X|c.
This technique results in a significant reduction in the circuit depth. To see this, we write

r +Πx∈X(y − x) = r + a0 + a1y + · · ·+ a|X|−1y
|X|−1 + y|X|.

The cost of windowing is in increased communication. The communication from the receiver to the sender
is increased by a factor of (2l − 1)(blog2(|X|)/lc+ 1), and the communication back from the sender to the
receiver does not change.

9

Partitioning. Another way to reduce circuit depth is to let the sender partition its set into α subsets. In the
basic protocol, this reduces sender’s circuit depth from dlog2(|X|+ 1)e to dlog2(|X|/α+ 1)e, at the cost of
increasing the return communication from sender to receiver by a factor of α. In the PSU, the sender needs
to compute encryptions of all powers y, · · · , y|X| for each of the receiver’s items y. With partitioning, the
sender only needs to compute encryptions of y, · · · , y|X|/α, which it can reuse for each of the α partitions.
Thus, with both partitioning and windowing, the sender’s computational cost reduces by a factor of α.

Modulus switching. We can employ modulus switching [3], which effectively reduces the size of the response
ciphertexts. Modulus switching is a well-known operation in lattice-based fully homomorphic encryption
schemes. It is a public operation, which transforms a ciphertext with encryption parameter q into a ciphertext
encrypting the same plaintext, but with a smaller parameter q′ < q. As long as q′ is not too small, correctness
of the encryption scheme is preserved. Note that the security of the protocol is trivially preserved as long as
the smaller modulus q′ is determined at setup.

3.4 Building Blocks

Permute + Share. We recall the Permute + Share (PS) functionality FPS defined by Chase et al. [5] in
Figure 5. Roughly speaking, in the Permute + Share protocol, P0 inputs a set X = {x1, · · · , xn} of size n and
P1 chooses a permutation π on n items. The result is that P0 learn the shares {sπ(1), sπ(2), · · · , sπ(n)} and
P1 learn nothing but the other shares {xπ(1) ⊕ sπ(1), xπ(2) ⊕ sπ(2), · · · , xπ(n) ⊕ sπ(n)}. As mentioned in [5],
some works [19,25] can also be used to realize FPS.

Parameters: Two parties: P0 and P1; Set size n for P0;
Functionality:

1. Wait for input X = {x1, · · · , xn} from P0, abort if |X| 6= n; Wait for input a permutation π from P1, abort if π is
not a permutation on n items;

2. Give output shuffled shares {sπ(1), sπ(2), · · · , sπ(n)} to P0, and another shuffled shares {xπ(1) ⊕ sπ(1), xπ(2) ⊕
sπ(2), · · · , xπ(n) ⊕ sπ(n)} to P1.

Fig. 5: Permute + Share functionality FPS

Multi-Point Oblivious Pesudorandom Function. An oblivious pesudorandom function (OPRF) allows
the receiver to input x and learns the PRF value Fk(x), where F is a PRF , and k is known to the sender.
Pinkas et al. [28] proposes multi-point OPRF (mp-OPRF) and realizes efficient PSI protocols. Recently, Chase
et al. [6] develop a more efficient mp-OPRF based on oblivious transfer (OT) extension. In the mp-OPRF, P0

inputs {x1, x2, · · · , xn}n>1 and learns all PRF values {Fk(x1), Fk(x2), · · · , Fk(xn)}, and P1 gets the key k.
We recall the mp-OPRF functionality Fmp-OPRF in Figure 6.

Oblivious Transfer. Oblivious Transfer (OT), introduced by Rabin [30] is a central cryptographic primitive
in the area of secure computation. In the 1-out-of-2 OT, a sender with two input strings (x0, x1) interacts
with a receiver who has an input choice bit b. The result is that the receiver learns xb without learning
anything about x1−b, while the sender learns nothing about b. Ishai et al. [20] introduced OT extension that
allows for a large number of OT executions at the cost of computing a small number of public-key operations.
We recall the 1-out-of-2 oblivious transfer functionality FOT in Figure 7.

10

Parameters: A PRF F , and two parties: P0 and P1;
Functionality:

1. Wait for input {x1, · · · , xn} from P0

2. Sample a random PRF seed k and give it to P1. Give {Fk(x1), Fk(x2), · · · , Fk(xn)} to P1.

Fig. 6: mp-OPRF functionality Fmp-OPRF

Parameters: Two parties: P0 and P1.
Functionality:

1. Wait for input {x0, x1} from P0; Wait for input b ∈ {0, 1} from P1;
2. Give xb to P1.

Fig. 7: 1-out-of-2 oblivious transfer functionality FOT

4 The Basic Protocol

We describe our basic uPSU protocol in Figure 8 as a strawman protocol. The sender encrypts each of its
items x, and sends the ciphertexts c = FHE.Encpk(x) to the receiver. For each yi, the receiver then evaluates
homomorphically the product of differences of x with all of the receiver’s items yi (computing a function
f = (x− y1) · · · (x− y|Y |), s.t. f(yi) = 0 for all yi ∈ Y), randomizes the product by adding it with differences
uniformly random non-zero plaintext r, and sends the ciphertext c′ = FHE.Encpk(f(x) + r) back to the
sender. The sender decrypts c′ to r + f(x) and sends r + f(x) to the receiver. The receiver checks the results,
if r + f(x) = r, x ∈ Y , otherwise, x /∈ Y . Finally, The receiver and the sender invoke OT protocol to let the
receiver get the union. This method leaks some information of x /∈ Y , but this leakage does not cause any
harm to the PSU, since the PSU protocol releases that value at last.

Input: The sender S inputs set X of size |X| and the receiver R inputs set Y of size |Y |.
Output: The receiver outputs X ∪ Y and the sender outputs ⊥.

1. [Setup] Both parties agree on a fully homomorphic encryption scheme: S generates a public-secret key pair for
the scheme and keeps the secret key itself.

2. [Set encryption] S encrypts each item xi ∈ X, ci = FHE.Enc(xi), i ∈ [|X|] and sends (c1, · · · , c|X|) to R.
3. [Computation] For each ci, R

(a) samples a random non-zero plaintext item ri;
(b) homomorphically computes c′i = FHE.Enc(f(xi) + ri), i ∈ [|X|] where for all y ∈ Y , s.t. f(y) = 0.
(c) sends c′i, i ∈ [|X|] to S.

4. [Decryption] S decrypts c′i, i ∈ [|X|] to mi = f(xi) + ri and sends them to R.
5. [Output] R checks all plaintexts and sets a bit vector B = [bi], i ∈ [|X|]. If mi = ri, i ∈ [|X|], xi ∈ Y and sets

bi = 0, otherwise, xi /∈ Y and sets bi = 1. R inputs the bit vector B and S inputs (xi,⊥), i ∈ [|X|], then both
parties invoke the ideal functionality FOT . For i ∈ [|X|], R gets xi, if bi = 1, else gets ⊥. Finally, R outputs
X ∪ Y .

Fig. 8: Basic uPSU protocol

11

We proceed to show the semi-honest security of the basic uPSU protocol in Figure 8 in the FOT-hybrid
model.

Theorem 1. The uPSU protocol described in Figure 8 is secure in the FOT-hybrid model, in the presence of
semi-honest security adversaries, provided that the fully homomorphic encryption scheme is IND-CPA secure
with circuit privacy.

Proof. We construct SimS and SimR to simulate the views of corrupted sender S and corrupted receiver R
respectively.

Corrupt Sender. SimS(X) simulates the view of corrupt S by encrypting |X| randomness to simulate
|X| ciphertexts. As for the FOT, A does not need to obtain outputs from it, thus SimS does nothing. Since
the fully homomorphic encryption scheme satisfies the circuit privacy, above simulation is indistinguishable
from the real view.

Corrupt Receiver. SimR(Y,X ∪ Y) simulates the view of corrupt R as follows: SimR computes
X̂ = X ∪ Y \X and randomly chooses z = |X| − |X̂| items yi1 , · · · , yiz ∈ Y to pad X̂ to |X| items and
permutes these items randomly. Then SimR inputs X̂ to run the real protocol. SimR encrypts all items in
X̂ and sends the ciphertexts to A. It waits for new ciphertexts from A and decrypts them and sends the
plaintexts back. When receiving the input bi of FOT from A, if bi = 0, SimR sends x̂i to A, otherwise, it
sends ⊥.

We argue that the outputs of SimR are indistinguishable from the real view of R by the following hybrids:

Hyb0: R’s view in the real protocol.
Hyb1: Same as Hyb0 except that the ciphertexts in the first round are replaced by by ĉi = FHE.Enc(x̂i), i ∈
[|X|], generated by SimR. Since the fully homomorphic encryption scheme is IND-CPA secure, above
simulation is indistinguishable from the real view.
Hyb2: Same as Hyb1 except that SimR runs the FOT simulator to produce the simulated view for R. The
security of OT protocol guarantees the view in simulation is computationally indistinguishable from the
view in the real protocol. The hybrid is the view output by SimR.

5 Permute Matrix Private Equality Test

Our pm-PEQT protocol is described in Figure 3. The formal protocol follows the intuition presented in the
first part of Section 2.2. We describe two efficient instantiations of pm-PEQT, which is a semi-honest secure
protocol for the functionality specified in Figure 3. And then, we prove the security properties of the protocol.

5.1 pm-PEQT from Permute + Share and mp-OPRF

We give the first construction of pm-PEQT from the Permute + Share [14,21] and mp-OPRF [6] in Figure 9,
and its communication overhead is equal to O(m logm).

Theorem 2. The construction of Figure 9 securely implements functionality Fpm-PEQT in the {FPS, Fmp-OPRF}-
hybrid model, in the presence of semi-honest adversaries.

Proof. We exhibit simulators SimR and SimS for simulating corrupt R and S respectively, and argue the
indistinguishability of the produced transcript from the real execution.

Corrupt Sender. SimS(R′, π = (πc, πr)) simulates the view of corrupt S as follows. When receiving a
permutation πc from A, SimS randomly chooses S′πc as shuffled shares, and simulates FPS sending them to A.
When receiving a permutation πr from A, SimS randomly chooses S′πr as shuffled shares, and simulates FPS

sending them to A. Then, SimS randomly selects a key k of PRF and sends it to A to simulate Fpm-PEQT.
We argue that the outputs of SimS are indistinguishable from the real view of S by the following hybrids:

Hyb0: S’s view in the real protocol.

12

Input: The receiver R inputs a matrix R = [rij], i ∈ [α], j ∈ [m]; the sender S inputs a matrix R′ = [r′ij], i ∈ [α],
j ∈ [m] and a permutation π = (πc, πr) where πc (over [m]) and πr (over [α]).
Output: The receiver outputs a bit matrix B; the sender outputs ⊥.

1. [Permute + Share functionality] S and R invoke the ideal Permute + Share functionality FPS twice: first, both
parties permute and share the columns of R, where each column of R can be seen as an item. R inputs each column
rj , j ∈ [m] of R and S inputs the permutation πc. As a result, R gets Sπc = [sπc(ij)] and S gets S′πc = [s′πc(ij)],
where sπc(ij)⊕ s

′
πc(ij)

= rπc(ij). Then both parties permute and share the rows of Sπc , where each rows of Sπc can
be seen as an item. R inputs each rows of Sπc and S inputs the permutation πr. As a result, R gets Sπr = [sπr(ij)]
and S gets S′πr = [s′πr(ij)], where sπr(ij) ⊕ s

′
πr(ij)

= sπc(ij). Finally, R gets the shuffled matrix shares Sπ = Sπr
and S gets the shuffled matrix shares S′π = πr(S

′
πc)⊕ S′πr , where sπ(ij) ⊕ s′π(ij) = π(rij), i ∈ [α], j ∈ [m].

2. [mp-OPRF functionality] R acts as P0 with shuffled shares Sπ, and obtains the outputs Fk(sπ(ij)), i ∈ [α], j ∈ [m],
and S obtain the key k.

3. S computes Fk(r′π(ij) ⊕ s′π(ij)), i ∈ [α], j ∈ [m] and sends them to R.
4. R sets bij = 1, if Fk(sπ(ij)) = Fk(r′π(ij) ⊕ s′π(ij)), else, bij = 0, and gains a bit matrix B = [bij], i ∈ [α], j ∈ [m].

Fig. 9: pm-PEQT from Permute + Share and mp-OPRF

Hyb1: Same as Hyb0 except that the output of FPS is replaced by S′πc , S
′
πr chosen by SimS , and SimS

runs the FPS simulator to produce the simulated view for S. The security of Permute + Share guarantees
the view in simulation is computationally indistinguishable from the view in the real protocol.
Hyb2: Same as Hyb1 except that the output key of Fpm-PEQT is replaced by the k chosen by SimS , and
SimS runs the Fpm-PEQT simulator to produce the simulated view for S. The security of mp-OPRF
guarantees the view in simulation is computationally indistinguishable from the view in the real protocol.
The hybrid is the view output by SimS .

Corrupt Receiver. SimR(R, B = [bij]) simulates the view of corrupt R as follows. When receiving all
columns of R from A, SimR randomly chooses Sπc as shuffled shares, and simulates FPS sending them to
A. When receiving all rows of Sπc from A, SimR randomly chooses Sπr as shuffled shares, and simulates
FPS sending them to A. When receiving Sπr , SimR randomly selects a key k of PRF and sends Fk(sπ(ij)),
i ∈ [α], j ∈ [m] to A. Finally, SimR sets vπ(ij) = Fk(sπ(ij)) if Bij = 1, else, it chooses vπ(ij) randomly and it
sends all vπ(ij), i ∈ [α], j ∈ [m] to A.

The view generated by SimR in indistinguishable from a real view of R by the following hybrids:

Hyb0: R’s view in the real protocol.
Hyb1: Same as Hyb0 except that the output of FPS is replaced by Sπc , Sπr chosen by SimR, and SimR
runs the FPS simulator to produce the simulated view for R. The security of Permute + Share guarantees
the view in simulation is computationally indistinguishable from the view in the real protocol.
Hyb2: Same as Hyb1 except that the output key of Fpm-PEQT is replaced by the k chosen by SimR, and
SimR runs the Fpm-PEQT simulator to produce the simulated view for R. The security of mp-OPRF
guarantees the view in simulation is computationally indistinguishable from the view in the real protocol.
Hyb3: Same as Hyb2 except that the PRF values is replaced by the vij chosen by SimR. The security of
PRF guarantees the view in simulation is computationally indistinguishable from the view in the real
protocol. The hybrid is the view output by SimR.

5.2 pm-PEQT based on DDH

We give the second construction of pm-PEQT based on DDH described in Figure 10. We note that the
communication overhead of our DDH-based pm-PEQT is equal to O(m).

Theorem 3. The construction of Figure 10 securely implements functionality Fpm-PEQT based on DDH in
the random oracle model, in the presence of semi-honest security adversaries.

13

Input: The receiver inputs a matrix R = [rij], i ∈ [α], j ∈ [m]; the sender inputs a matrix R′ = [r′ij], i ∈ [α], j ∈ [m]
and a permutation π = (πc, πr) where πc (over [m]) and πr (over [α]).
Output: The receiver outputs a bit matrix B; the sender outputs ⊥.

1. R and S choose random number a, b and compute Hij = H(rij)
a, H ′ij = H(r′ij)

b for i ∈ [α], j ∈ [m], where H(·)
denotes hash functions which output (multiplicative) group elements. R sends Hij = H(rij)

a to S.
2. S computes H ′′ij = (Hij)

b and uses the permutation π = (πc, πr) and computes H ′′π(ij) = π(H ′′ij), H
′
π(ij) = π(H ′ij)

and sends them to R.
3. R sets bij = 1, if H ′′π(ij) = H ′aπ(ij), else bij = 0, and gains a bit matrix B = [bij], i ∈ [α], j ∈ [m].

Fig. 10: Instantiation of pm-PEQT based on DDH

Proof. We exhibit simulators SimR and SimS for simulating corrupt R and S respectively, and argue the
indistinguishability of the produced transcript from the real execution.

Corrupt Sender. SimS(R′, π = (πc, πr)) simulates the view of corrupt S as follows: It chooses ran-
dom group elements vij , i ∈ [α], j ∈ [m] to simulate the view. We argue that the outputs of SimS are
indistinguishable from the real view of S by the following hybrids:

Hyb0: S’s view in the real protocol consists of H(rij)
a, i ∈ [α], j ∈ [m], where a← Zq.

Hyb1: Same as Hyb0 except that SimS chooses random group elements vij , i ∈ [α], j ∈ [m] instead of
H(rij)

a, i ∈ [α], j ∈ [m], where a← Zq. The hybrid is the view output by SimS .

We argue that the view in Hyb0 and Hyb1 are computationally indistinguishable. Let A be a PPT
adversary against the DDH assumption. Given the DDH challenge gx, gyij , gzij , where x, yij ← Zq, A is asked
to distinguish if zij = x · yij or random values. A implicitly sets randomness a = x, and simulates (with the
knowledge of R) the view as below:

– RO queries: SimS honestly emulates random oracle H. For every query rij , if rij /∈ R, it picks a random
group element tij and assigns H(rij) = tij . If rij ∈ R, it assigns H(rij) = gyij .

– Outputs gzij , i ∈ [α], j ∈ [m].

Clearly, if zij = x · yij , A simulates Hyb0. Else, it simulates Hyb1 (without the knowledge of R), because
it responds all RO queries with random group elements without knowing that the inputs belong to R or not.
Therefore, the outputs of SimS are computationally indistinguishable from the real view based on the DDH
assumption.

Corrupt Receiver. SimR(R, B) simulates the view of corrupt R as follows: SimR chooses a ← Zq
randomly and simulates the first round message as real protocol. For bij = 0, i ∈ [α], j ∈ [m], it chooses
random group elements vij and uij to simulate the view. For bij 6= 0, i ∈ [α], j ∈ [m], it chooses random
group elements vij and sets uij = vaij to simulate the view.

We argue that the outputs of SimR are indistinguishable from the real view of R by the following hybrids:

Hyb0: R’s view in the real protocol consists of H(r′π(ij))
b, H(rπ(ij))

ab, i ∈ [α], j ∈ [m], where a, b ← Zq.
Hyb1: Same as Hyb0 except that for bij = 0, that is rπ(ij) 6= r′π(ij), SimR chooses random group elements

vij and uij instead of H(r′π(ij))
b, H(rπ(ij))

ab.

Hyb2: Same as Hyb1 except that for bij = 1, that is rπ(ij) = r′π(ij), SimR chooses random group elements

vij and sets uij = vaij , i ∈ [α], j ∈ [m] instead of H(r′π(ij))
b, H(rπ(ij))

ab. The hybrid is the view output
by SimR.

We argue that the view in Hyb0 and Hyb1 are computationally indistinguishable based on the DDH

assumption. Given the DDH challenge gx, gyij , gzij , and gy
′
ij , gz

′
ij where x, yij , y

′
ij ← Zq, A is asked to

distinguish if zij = x · yij , z′ij = x · y′ij or random values. A implicitly sets randomness b = x, and simulates
(with the knowledge of R′ and π) the view as below:

14

– RO queries: SimR honestly emulates random oracle H. For every query rπ(ij) and r′π(ij), if rπ(ij) /∈ R,

r′π(ij) /∈ R′, it picks a random group element tπ(ij), t
′
π(ij), and assigns H(rπ(ij)) = tπ(ij), H(r′π(ij)) = t′π(ij).

If rπ(ij) ∈ R, r′π(ij) ∈ R′, it assigns H(rπ(ij)) = gyπ(ij) , H(r′π(ij)) = gy
′
π(ij) .

– Outputs ga·zπ(ij) , gz
′
π(ij) .

Clearly, if zij = x · yij , z′ij = x · y′ij , A simulates Hyb0. Else, it simulates Hyb1. In the Hyb1, SimR needs
not to know the R′ and π in these positions with bij = 0, because in these positions, it responds all RO
queries with random group elements.

We argue that the view in Hyb1 and Hyb2 are computationally indistinguishable based on the DDH
assumption. Given the DDH challenge gx, gyij , gzij where x, yij ← Zq, A is asked to distinguish if zij = x · yij
or random values. A implicitly sets randomness b = x, and simulates (with the knowledge of R′ and π for all
positions with bij = 1) the view as below:

– RO queries: SimR honestly emulates random oracle H. For every query rπ(ij), r
′
π(ij), if rπ(ij) /∈ R,

r′π(ij) /∈ R′, it picks a random group element tπ(ij), t
′
π(ij), and assigns H(rπ(ij)) = tπ(ij), H(r′π(ij)) = t′π(ij).

If rπ(ij) = r′π(ij) ∈ R, it assigns H(rπ(ij)) = H(r′π(ij)) = gyπ(ij) .
– Outputs ga·zπ(ij) , gzπ(ij) .

Clearly, if zij = x · yij , A simulates Hyb1. Else, it simulates Hyb2. In the Hyb2, SimR needs not to know
the R′ and π in these positions with bij = 1, because in these positions, it responds all RO queries with
random group elements. Therefore, the outputs of SimR are computationally indistinguishable from the real
view based on the DDH assumption.

6 Full Unbalanced PSU and Security Proof

In this section, We start from our basic uPSU protocol described in Figure 8 and use some optimization
techniques following [9,7,10] to reduce the homomorphic circuits, and then we give a full uPSU based on
pm-PEQT 6 and OT protocol 7.

6.1 Full uPSU Protocol

We detail our full uPSU protocol in Figure 11, given a secure fully homomorphic encryption scheme with
circuit privacy and secure pm-PEQT and OT protocols.

In the setup phase, the sender and the receiver agree on the hashing parameters and the FHE scheme
parameters. Then, the sender and the receiver take advantage of the optimization techniques [7,10]to pre-
process the set X and Y offline, respectively. After offline pre-processing phase, the sender and the receiver
begin the efficient online phase: First, the sender sends the ciphertexts to the receiver, and the receiver
homomorphically computes ciphertexts and returns them back, and then the sender decrypts the new
ciphertexts and run pm-PEQT with the receiver and let the receiver obtains a bit vector which denotes the
elements at the corresponding positions (with permutation) belong to the union. Last, the sender and the
receiver run the OT protocol together to let the receiver obtains the union X ∪ Y and outputs it.

6.2 Security Proof

We prove security in the standard semi-honest simulation-based paradigm [24].

Theorem 4. The protocol in Figure 11, is a secure protocol for FPSU in the semi-honest setting.

Proof. It is easy to see that the protocol correctly computes the union conditioned on the hashing succeeding,
which happens with overwhelming probability 1 − 2−λ. For easy of exposition, we will assume that the
simulator/protocol is parameterized by (h,m,B, n, q, t, α, l, {Hi}1≤i≤h), which are fixed and public.

15

Input: The receiver R inputs set Y ⊂ {0, 1}∗ of size |Y |. The sender S inputs set X ⊂ {0, 1}∗ of size |X|. Output:
The receiver outputs X ∪ Y ; the sender outputs ⊥.

1. [Setup] R and S agree on the hashing, FHE scheme, mp-PEQT and OT parameters.
2. [Hashing] S hashes the set X into Xc[i], i ∈ [mc] by Cuckoo hash and R hashes the set Y into YB×mc by simple

hash, where each row denotes yi = [yi,1, · · · , yi,mc], i ∈ [B].
3. [Pre-process Y]

(a) [Partitioning] R partitions YB×mc by rows into α subtables Y1,Y2, · · · ,Yα. Each subtable has B′ = B/α
rows and m columns. Let i-th subtable be Yi = [yi,1, · · · ,yi,B′]T , i ∈ [α], where yi,k, k ∈ [B′] denotes k-th
row of Yi.

(b) [Computing coefficients] R chooses a random matrix Rα×mc . For j-th columns of i-th subtable Yi,j =
[yi,j,1, yi,j,2, · · · , yi,j,B′]T , i ∈ [α], j ∈ [mc], where yi,j,k, k ∈ [B′] denotes k-th item of Yi,j , R computes the

coefficients of the polynomial fi,j(y) = ΠB′
k=1(y − yi,j,k) = a′i,j,0 + ai,j,1y + · · ·+ ai,j,B′−1y

B′−1 + ai,j,B′y
B′ ,

and then replaces each column Yi,j , with coefficients of the polynomial fi,j(y), where the leading coefficient
adds a randomness in Rα×mc , to get the coefficient matrix Ai,j = [ai,j,0, ai,j,1, · · · , ai,j,B′]T , i ∈ [α], j ∈ [m],
where ai,j,0 = a′i,j,0 + ri,j .

(c) [Batching] For each subtable obtained from the previous step, R interprets each of its row as a vector of
length m with elements in Zt. Then R batches each vector into β = m/n plaintext polynomials. As a result,
each row of i-th subtable Ai is transformed into β polynomials denoted âi,j , i ∈ [α], j ∈ [β], âi,j = [âi,j,k],
k ∈ [0, B′].

4. [Encrypt X]
(a) [Batching] S interprets Xc as a vector of length mc with items in Zt. It batches this vector into β = m/n

plaintext polynomials X̂1, · · · , X̂β .
(b) [Windowing] For each batched plaintext polynomial X̂, S computes the component-wise i · 2j-th powers

X̂i·2lj , for 1 ≤ i ≤ 2l − 1 and 0 ≤ j ≤ dlog2(B′)/le.
(c) [Encrypt] S uses FHE scheme to encrypt each such power, obtaining β collections of ciphertexts Cj , j ∈ [β],

and each collection consists of the ciphertexts [ci,j], 1 ≤ i ≤ 2l − 1 and 0 ≤ j ≤ dlog2(B′)/le. S sends these
ciphertexts to R.

5. [Computation]
(a) [Homomorphically compute encryptions of all powers] For each collection Cj , j ∈ [β], R homomorphically

computes encryptions of all powers Cj = [cj,0, · · · , cj,B′]T , where cj,k, 0 ≤ k ≤ B′ is a homomorphic ciphertext

encrypting X̂k
j .

(b) [Homomorphically evaluate the dot product] R homomorphically evaluates C′i,j = Âi,jCj =∑B′

k=0 âi,j,kcj,k, i ∈ [α], j ∈ [β], performs modulus switching on C′i,j , i ∈ [α], j ∈ [β] to reduce sizes, and
sends them to S.

6. [Decrypt] For each i ∈ [α], j ∈ [β], S decrypts ciphertexts and concatenates the resulting β matrixes into one
matrix R′α×mc .

7. [pm-PEQT] R inputs the matrix Rα×mc , and S inputs a permutation π = (πc, πr) where πc (over [mc]) and πr
(over [α]) and the matrix R′α×mc . As a result, R gains a bit matrix Bα×mc , where if bij = 1, rπ(ij) = r′π(ij), else
rπ(ij) 6= r′π(ij), i ∈ [α], j ∈ [mc].

8. [Output] R sets a bit vector b = [bj], j ∈ [mc], where if for all i ∈ [α], bij = 0, it sets bj = 1, else bj = 0. Then,
R and S invoke the OT protocol, in which R inputs bj , j ∈ [mc] and S inputs (Xc[πc(j)],⊥). If bj = 1, R gets
Xc[πc(j)], else, it gets ⊥. Finally, R outputs the set union Y ∪X = Y ∪ {Xc[πc(j)]}, j ∈ [mc].

Fig. 11: Full uPSU protocol

16

We exhibit simulators SimS and SimR for simulating corrupt S and R respectively, and argue the
indistinguishability of the produced transcript from the real execution.

Corrupt Sender. The case of a corrupt sender is straightforward. SimS(X) simulates the view of corrupt
S as follows. SimS generates new encryptions of randomness in place of the encryptions in step 5. As for the
Fpm-PEQT and FOT, A does not need to obtain outputs from them, and thus SimS does nothing. Since the
fully homomorphic encryption scheme satisfies the circuit privacy, above simulation is indistinguishable from
the real view.

Corrupt Receiver. SimR (Y,X ∪ Y) simulates the view of corrupt semi-honest receiver. It executes as
follows: SimR computes X∗ = X ∪Y \X and randomly chooses |X| − |X∗| items yi1 , · · · , yiz ∈ Y to pad X̂ to
|X| items and permutes these items randomly. Let X̂ = {x̂1, · · · , x̂|X|}. Next it runs step 1-5 as real protocol.
When receiving the ciphertexts (X) in step 6, it can decrypt the ciphertexts and get the plaintexts R′. When
receiving an input R of Fpm-PEQT from A, SimR chooses a random matrix permutation π = (πc, πr) to
permutes R, R′ and gets π(R), π(R′). It sets bij = 1, if r′π(ij) = rπ(ij), otherwise, sets bij = 0. Then, SimR
sends the bit matrix B = [bij] to A. When receiving a bit bi of FOT from A, SimR permutes the Xc by πc, if
bi = 1, it sends Xc[πc(i)], otherwise, it sends ⊥.

The view generated by SimR in indistinguishable from a real view of R by the following hybrids:

Hyb0: R’s view in the real protocol.
Hyb1: Same as Hyb0 except that the ciphertexts in the first round are replaced by by ĉi = FHE.Enc(x̂i), i ∈
[|X|], generated by SimR. Since the fully homomorphic encryption scheme is IND-CPA secure, the
simulation is indistinguishable from the real view.
Hyb2: Same as Hyb1 except that the output of Fpm-PEQT is replaced by B generated by SimR, and SimR
runs the Fpm-PEQT simulator to produce the simulated view for R. The security of pm-PEQT protocol
guarantees the view in simulation is computationally indistinguishable from the view in the real protocol.
Hyb3: Same as Hyb2 except that SimR runs the FOT simulator to produce the simulated view for R. The
security of OT protocol guarantees the view in simulation is computationally indistinguishable from the
view in the real protocol. The hybrid is the view output by SimR.

When sender holds the larger set. We have made the assumption that the receiver’s set size is much
smaller than the sender’s set size. Follows [9], our uPSU protocol can also handle the opposite case, where the
sender holds the larger set, by switching their roles. This protocol is still secure in the semi-honest setting,
and the communication remains linear in the smaller set and logarithmic in the larger set.

7 Implementation and Performance

In this section, we experimentally evaluate our two uPSU protocols uPSUFHE
PS and uPSUFHE

DDH, we will refer to
them as:

– uPSUFHE
PS : uPSU protocol with FHE, pm-PEQT and OT where pm-PEQT are instantiated with

Permute + Share and mp-OPRF.
– uPSUFHE

DDH: uPSU protocol with FHE, DDH-based pm-PEQT and OT.

We first give our experimental environment. Then we compare our protocols with the state-of-the-art
works in terms of communication and runtime on different networks.

7.1 Experimental Setup

We run our experiments on an Intel(R) Core(TM) i7-9700 CPU @ 3.00GHz RAM 8G Ubuntu 22.04. We
perform all tests using this single machine, and simulate network latency and bandwidth using the Linux tc
command. Specifically, we consider a LAN setting, where the two parties are connected via local host with
10Gbps throughput, and a 0.2ms round-trip time (RTT). We also consider two WAN settings with 100Mbps,
and 10Mbps bandwidth, each with an 80ms RTT.

17

Table 2: Communication (in MB) and runtime (in seconds) of uPSUFHE
PS and uPSUFHE

PS for small set X and
large set Y with unrestricted bandwidth

Parameters Protocols Comm. size (MB)
Runtime (seconds), T = 1 Runtime (seconds), T = 4

Sender
Receiver

total Sender
Receiver

total|X| |Y | S →R R → S total offline online offline online

210

218 uPSUFHE
DDH 1.963 0.216 2.179 1.347 4.600 1.347 7.294 0.682 1.971 0.682 3.336

uPSUFHE
PS 2.14 0.793 2.933 1.392 3.571 1.392 6.355 0.916 1.987 0.917 3.821

220 uPSUFHE
DDH 2.223 0.428 2.651 2.274 2.275 33.652 38.201 1.086 1.087 12.275 14.449

uPSUFHE
PS 2.45 1.8482 4.2982 2.031 2.030 34.202 38.263 1.311 1.312 11.888 14.512

222 uPSUFHE
DDH 3.24 1.33 4.57 5.746 5.746 159.275 170.768 2.071 2.071 56.919 61.062

uPSUFHE
PS 4.11 6.82 10.93 4.315 4.333 159.466 168.114 2.140 2.142 55.377 59.659

211

218 uPSUFHE
DDH 3.063 0.436 3.499 2.325 3.029 2.315 7.670 0.889 1.500 0.880 3.270

uPSUFHE
PS 3.56 1.85 5.41 2.079 3.021 2.071 7.171 1.057 1.472 1.048 3.578

220 uPSUFHE
DDH 3.3435 0.4363 3.7798 3 2.984 32.585 38.569 1.206 1.196 11.141 13.543

uPSUFHE
PS 3.56 1.85 5.41 2.668 2.660 32.168 37.497 1.321 1.465 11.083 13.870

222 uPSUFHE
DDH 4.51 1.55 6.06 6.883 6.873 157.499 171.255 2.644 2.649 51.156 56.450

uPSUFHE
PS 5.69 7.64 13.33 5.363 5.357 152.236 162.957 2.411 2.416 52.404 57.231

Table 3: Communication (in MB) and runtime (in seconds) comparing our uPSUFHE
DDH and uPSUFHE

PS to
PSU [21], uPSU∗ [21] and PSU∗ [22]

Parameters
Protocols

Comm.
Size (MB)

Runtime (seconds)
10 Gbps 100 Mbps 10 Mbps

|X| |Y | T=1 T=4 T=8 T=1 T=4 T=8 T=1 T=4 T=8

210

218

uPSUFHE
DDH 2.179 7.294 3.336 3.097 10.394 6.407 6.136 10.303 6.415 5.994

uPSUFHE
PS 2.933 6.355 3.821 3.310 11.992 8.242 8.132 11.997 8.258 8.015

PSU [21] 326.313 113.184 100.600 98.621 151.469 139.903 139.930 626.365 627.132 626.731
uPSU∗ [21] 117.931 43.959 11.548 7.463 57.105 25.330 21.709 226.297 193.665 188.333
PSU∗ [22] 600.62 37.953 10.940 14.024 71.938 49.301 47.698 498.366 505.892 499.343

219

uPSUFHE
DDH 2.179 18.772 7.296 3.238 21.901 10.464 7.865 21.766 10.438 8.910

uPSUFHE
PS 2.933 18.782 7.838 6.159 23.421 12.276 10.616 23.153 12.332 10.684

PSU [21] 683.001 406.630 380.477 378.820 498.873 471.702 471.697 1499.081 1531.532 1502.059
uPSU∗ [21] 117.931 69.344 18.065 11.859 83.974 31.985 24.388 251.667 200.054 199.629
PSU∗ [22] 2470.1 112.409 31.804 40.653 233.787 207.859 207.862 2080.189 2077.877 2079.402

211

218

uPSUFHE
DDH 3.499 7.670 3.270 3.238 11.254 7.175 6.898 11.163 7.121 7.007

uPSUFHE
PS 5.41 7.171 3.578 3.338 12.485 9.036 8.573 11.693 9.069 8.941

PSU [21] 326.386 113.130 100.478 98.818 151.606 139.888 140.112 626.555 628.775 627.690
uPSU∗ [21] 235.966 61.717 16.215 10.383 95.090 49.959 43.907 440.023 400.135 399.277
PSU∗ [22] 600.62 37.994 10.665 14.458 71.842 49.229 49.370 505.802 505.717 499.411

219

uPSUFHE
DDH 3.499 14.297 5.745 5.045 17.819 9.670 8.590 17.585 9.625 8.987

uPSUFHE
PS 5.41 13.782 6.054 5.164 15.255 10.584 10.658 17.795 11.401 10.736

PSU [21] 683.001 407.864 381.286 378.067 496.140 470.493 471.833 1501.041 1511.784 1500.811
uPSU∗ [21] 117.931 86.566 22.913 14.662 119.895 56.619 46.706 465.878 400.293 399.243
PSU∗ [22] 2470.1 37.861 31.704 44.334 232.716 207.870 207.996 2081.052 2078.273 2080.110

18

7.2 Implementation details

Our protocols are built on FHE, Permute + Share, mp-OPRF, and OT extension. We implement Permute + Share
with the design in [25] and OT extension [20] using libOTe library. For FHE, we use the source code from
SEAL and APSI library. For mp-OPRF, we use the source code from [6]. For concrete analysis we set the
computational security parameter κ = 128 and the statistical security parameter λ = 40. Our protocols are
written in C++ and we use the following libraries in our implementation.

– FHE: SEAL https://github.com/microsoft/SEAL.git and APSI https://github.com/microsoft/APSI.git
– Permute + Share: https://github.com/dujiajun/PSU.git
– mp-OPRF: https://github.com/peihanmiao/OPRF-PSI and https://github.com/yuchen1024/Kunlun.git
– OT: https://github.com/osu-crypto/libOTe.git

7.3 Performance Comparisons

In this section, we implement our uPSUFHE
PS and uPSUFHE

DDH and show the results in Table 2. Then, We compare
our uPSU protocols with PSU [21], uPSU∗ [21] and PSU∗ [22] in terms of runtime and communication, and
the results are reported in Table 3. We stress that we used the same environment to compute all the reported
costs in this section. Experiments show that our protocols are more efficient than all previous protocols in
the unbalanced case, especially, the larger the difference of two set sizes, the better our protocols perform.
Our running-time-optimized benchmarks show that it takes 18.782 seconds of computation and 2.179 MB of
communication to compute the union between 210 strings and 219 strings. Compared to prior secure PSU [21],
this is roughly a 300× reduction in communication and 20× reduction in computational overhead with a
single thread in WAN/LAN settings.

References

1. Bajard, J., Eynard, J., Hasan, M.A., Zucca, V.: A full RNS variant of FV like somewhat homomorphic encryption
schemes. In: Avanzi, R., Heys, H.M. (eds.) Selected Areas in Cryptography - SAC 2016 - 23rd International
Conference, St. John’s, NL, Canada, August 10-12, 2016, Revised Selected Papers. Lecture Notes in Computer
Science, vol. 10532, pp. 423–442. Springer (2016). https://doi.org/10.1007/978-3-319-69453-5 23, https://doi.
org/10.1007/978-3-319-69453-5_23

2. Brakerski, Z., Gentry, C., Halevi, S.: Packed ciphertexts in lwe-based homomorphic encryption. In: Kurosawa,
K., Hanaoka, G. (eds.) Public-Key Cryptography - PKC 2013 - 16th International Conference on Practice
and Theory in Public-Key Cryptography, Nara, Japan, February 26 - March 1, 2013. Proceedings. Lecture
Notes in Computer Science, vol. 7778, pp. 1–13. Springer (2013). https://doi.org/10.1007/978-3-642-36362-7 1,
https://doi.org/10.1007/978-3-642-36362-7_1

3. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (leveled) fully homomorphic encryption without bootstrapping. In:
Goldwasser, S. (ed.) Innovations in Theoretical Computer Science 2012, Cambridge, MA, USA, January 8-10,
2012. pp. 309–325. ACM (2012). https://doi.org/10.1145/2090236.2090262, https://doi.org/10.1145/2090236.
2090262

4. Burkhart, M., Strasser, M., Many, D., Dimitropoulos, X.A.: SEPIA: privacy-preserving aggregation of multi-
domain network events and statistics. In: 19th USENIX Security Symposium, Washington, DC, USA, August
11-13, 2010, Proceedings. pp. 223–240. USENIX Association (2010), http://www.usenix.org/events/sec10/
tech/full_papers/Burkhart.pdf

5. Chase, M., Ghosh, E., Poburinnaya, O.: Secret-shared shuffle. In: Moriai, S., Wang, H. (eds.) Advances in
Cryptology - ASIACRYPT 2020 - 26th International Conference on the Theory and Application of Cryptology
and Information Security, Daejeon, South Korea, December 7-11, 2020, Proceedings, Part III. Lecture Notes
in Computer Science, vol. 12493, pp. 342–372. Springer (2020). https://doi.org/10.1007/978-3-030-64840-4 12,
https://doi.org/10.1007/978-3-030-64840-4_12

6. Chase, M., Miao, P.: Private set intersection in the internet setting from lightweight oblivious PRF. In: Micciancio,
D., Ristenpart, T. (eds.) Advances in Cryptology - CRYPTO 2020 - 40th Annual International Cryptology
Conference, CRYPTO 2020, Santa Barbara, CA, USA, August 17-21, 2020, Proceedings, Part III. Lecture
Notes in Computer Science, vol. 12172, pp. 34–63. Springer (2020). https://doi.org/10.1007/978-3-030-56877-1 2,
https://doi.org/10.1007/978-3-030-56877-1_2

19

https://github.com/microsoft/SEAL.git
https://github.com/microsoft/APSI.git
https://github.com/dujiajun/PSU.git
https://github.com/peihanmiao/OPRF-PSI
https://github.com/yuchen1024/Kunlun.git
https://github.com/osu-crypto/libOTe.git
https://doi.org/10.1007/978-3-319-69453-5_23
https://doi.org/10.1007/978-3-319-69453-5_23
https://doi.org/10.1007/978-3-319-69453-5_23
https://doi.org/10.1007/978-3-642-36362-7_1
https://doi.org/10.1007/978-3-642-36362-7_1
https://doi.org/10.1145/2090236.2090262
https://doi.org/10.1145/2090236.2090262
https://doi.org/10.1145/2090236.2090262
http://www.usenix.org/events/sec10/tech/full_papers/Burkhart.pdf
http://www.usenix.org/events/sec10/tech/full_papers/Burkhart.pdf
https://doi.org/10.1007/978-3-030-64840-4_12
https://doi.org/10.1007/978-3-030-64840-4_12
https://doi.org/10.1007/978-3-030-56877-1_2
https://doi.org/10.1007/978-3-030-56877-1_2

7. Chen, H., Huang, Z., Laine, K., Rindal, P.: Labeled PSI from fully homomorphic encryption with malicious
security. In: Lie, D., Mannan, M., Backes, M., Wang, X. (eds.) Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security, CCS 2018, Toronto, ON, Canada, October 15-19, 2018. pp. 1223–1237.
ACM (2018). https://doi.org/10.1145/3243734.3243836, https://doi.org/10.1145/3243734.3243836

8. Chen, H., Laine, K., Player, R.: Simple encrypted arithmetic library - SEAL v2.1. In: Brenner, M., Rohloff, K.,
Bonneau, J., Miller, A., Ryan, P.Y.A., Teague, V., Bracciali, A., Sala, M., Pintore, F., Jakobsson, M. (eds.) Financial
Cryptography and Data Security - FC 2017 International Workshops, WAHC, BITCOIN, VOTING, WTSC, and
TA, Sliema, Malta, April 7, 2017, Revised Selected Papers. Lecture Notes in Computer Science, vol. 10323, pp. 3–18.
Springer (2017). https://doi.org/10.1007/978-3-319-70278-0 1, https://doi.org/10.1007/978-3-319-70278-0_1

9. Chen, H., Laine, K., Rindal, P.: Fast private set intersection from homomorphic encryption. In: Thuraisingham,
B.M., Evans, D., Malkin, T., Xu, D. (eds.) Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2017, Dallas, TX, USA, October 30 - November 03, 2017. pp. 1243–1255. ACM
(2017). https://doi.org/10.1145/3133956.3134061, https://doi.org/10.1145/3133956.3134061

10. Cong, K., Moreno, R.C., da Gama, M.B., Dai, W., Iliashenko, I., Laine, K., Rosenberg, M.: Labeled PSI from
homomorphic encryption with reduced computation and communication. In: Kim, Y., Kim, J., Vigna, G., Shi,
E. (eds.) CCS ’21: 2021 ACM SIGSAC Conference on Computer and Communications Security, Virtual Event,
Republic of Korea, November 15 - 19, 2021. pp. 1135–1150. ACM (2021). https://doi.org/10.1145/3460120.3484760,
https://doi.org/10.1145/3460120.3484760

11. Devroye, L., Morin, P.: Cuckoo hashing: Further analysis. Inf. Process. Lett. 86(4), 215–219 (2003).
https://doi.org/10.1016/S0020-0190(02)00500-8, https://doi.org/10.1016/S0020-0190(02)00500-8

12. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. IACR Cryptol. ePrint Arch. p. 144
(2012), http://eprint.iacr.org/2012/144

13. Fotakis, D., Pagh, R., Sanders, P., Spirakis, P.G.: Space efficient hash tables with worst case constant access time. In:
Alt, H., Habib, M. (eds.) STACS 2003, 20th Annual Symposium on Theoretical Aspects of Computer Science, Berlin,
Germany, February 27 - March 1, 2003, Proceedings. Lecture Notes in Computer Science, vol. 2607, pp. 271–282.
Springer (2003). https://doi.org/10.1007/3-540-36494-3 25, https://doi.org/10.1007/3-540-36494-3_25

14. Garimella, G., Mohassel, P., Rosulek, M., Sadeghian, S., Singh, J.: Private set operations from oblivious switching.
In: Garay, J.A. (ed.) Public-Key Cryptography - PKC 2021 - 24th IACR International Conference on Practice
and Theory of Public Key Cryptography, Virtual Event, May 10-13, 2021, Proceedings, Part II. Lecture Notes
in Computer Science, vol. 12711, pp. 591–617. Springer (2021). https://doi.org/10.1007/978-3-030-75248-4 21,
https://doi.org/10.1007/978-3-030-75248-4_21

15. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher, M. (ed.) Proceedings of the 41st
Annual ACM Symposium on Theory of Computing, STOC 2009, Bethesda, MD, USA, May 31 - June 2, 2009. pp.
169–178. ACM (2009). https://doi.org/10.1145/1536414.1536440, https://doi.org/10.1145/1536414.1536440

16. Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES circuit. In: Safavi-Naini, R., Canetti, R.
(eds.) Advances in Cryptology - CRYPTO 2012 - 32nd Annual Cryptology Conference, Santa Barbara, CA, USA,
August 19-23, 2012. Proceedings. Lecture Notes in Computer Science, vol. 7417, pp. 850–867. Springer (2012).
https://doi.org/10.1007/978-3-642-32009-5 49, https://doi.org/10.1007/978-3-642-32009-5_49

17. Gilad-Bachrach, R., Dowlin, N., Laine, K., Lauter, K.E., Naehrig, M., Wernsing, J.: Cryptonets: Applying
neural networks to encrypted data with high throughput and accuracy. In: Balcan, M., Weinberger, K.Q. (eds.)
Proceedings of the 33nd International Conference on Machine Learning, ICML 2016, New York City, NY,
USA, June 19-24, 2016. JMLR Workshop and Conference Proceedings, vol. 48, pp. 201–210. JMLR.org (2016),
http://proceedings.mlr.press/v48/gilad-bachrach16.html

18. Hogan, K., Luther, N., Schear, N., Shen, E., Stott, D., Yakoubov, S., Yerukhimovich, A.: Secure multiparty
computation for cooperative cyber risk assessment. In: IEEE Cybersecurity Development, SecDev 2016, Boston, MA,
USA, November 3-4, 2016. pp. 75–76. IEEE Computer Society (2016). https://doi.org/10.1109/SecDev.2016.028,
https://doi.org/10.1109/SecDev.2016.028

19. Huang, Y., Evans, D., Katz, J.: Private set intersection: Are garbled circuits better than custom proto-
cols? In: 19th Annual Network and Distributed System Security Symposium, NDSS 2012, San Diego, Cali-
fornia, USA, February 5-8, 2012. The Internet Society (2012), https://www.ndss-symposium.org/ndss2012/
private-set-intersection-are-garbled-circuits-better-custom-protocols

20. Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers efficiently. In: Boneh, D. (ed.) Advances
in Cryptology - CRYPTO 2003, 23rd Annual International Cryptology Conference, Santa Barbara, California,
USA, August 17-21, 2003, Proceedings. Lecture Notes in Computer Science, vol. 2729, pp. 145–161. Springer
(2003). https://doi.org/10.1007/978-3-540-45146-4 9, https://doi.org/10.1007/978-3-540-45146-4_9

21. Jia, Y., Sun, S., Zhou, H., Du, J., Gu, D.: Shuffle-based private set union: Faster and more secure. IACR Cryptol.
ePrint Arch. p. 157 (2022), https://eprint.iacr.org/2022/157

20

https://doi.org/10.1145/3243734.3243836
https://doi.org/10.1145/3243734.3243836
https://doi.org/10.1007/978-3-319-70278-0_1
https://doi.org/10.1007/978-3-319-70278-0_1
https://doi.org/10.1145/3133956.3134061
https://doi.org/10.1145/3133956.3134061
https://doi.org/10.1145/3460120.3484760
https://doi.org/10.1145/3460120.3484760
https://doi.org/10.1016/S0020-0190(02)00500-8
https://doi.org/10.1016/S0020-0190(02)00500-8
http://eprint.iacr.org/2012/144
https://doi.org/10.1007/3-540-36494-3_25
https://doi.org/10.1007/3-540-36494-3_25
https://doi.org/10.1007/978-3-030-75248-4_21
https://doi.org/10.1007/978-3-030-75248-4_21
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1007/978-3-642-32009-5_49
https://doi.org/10.1007/978-3-642-32009-5_49
http://proceedings.mlr.press/v48/gilad-bachrach16.html
https://doi.org/10.1109/SecDev.2016.028
https://doi.org/10.1109/SecDev.2016.028
https://www.ndss-symposium.org/ndss2012/private-set-intersection-are-garbled-circuits-better-custom-protocols
https://www.ndss-symposium.org/ndss2012/private-set-intersection-are-garbled-circuits-better-custom-protocols
https://doi.org/10.1007/978-3-540-45146-4_9
https://doi.org/10.1007/978-3-540-45146-4_9
https://eprint.iacr.org/2022/157

22. Kolesnikov, V., Rosulek, M., Trieu, N., Wang, X.: Scalable private set union from symmetric-key techniques. In: Gal-
braith, S.D., Moriai, S. (eds.) Advances in Cryptology - ASIACRYPT 2019 - 25th International Conference on the
Theory and Application of Cryptology and Information Security, Kobe, Japan, December 8-12, 2019, Proceedings,
Part II. Lecture Notes in Computer Science, vol. 11922, pp. 636–666. Springer (2019). https://doi.org/10.1007/978-
3-030-34621-8 23, https://doi.org/10.1007/978-3-030-34621-8_23

23. Lenstra, A.K., Voss, T.: Information security risk assessment, aggregation, and mitigation. In: Wang, H., Pieprzyk,
J., Varadharajan, V. (eds.) Information Security and Privacy: 9th Australasian Conference, ACISP 2004, Sydney,
Australia, July 13-15, 2004. Proceedings. Lecture Notes in Computer Science, vol. 3108, pp. 391–401. Springer
(2004). https://doi.org/10.1007/978-3-540-27800-9 34, https://doi.org/10.1007/978-3-540-27800-9_34

24. Lindell, Y.: How to simulate it - A tutorial on the simulation proof technique. In: Lindell, Y. (ed.) Tutorials on the
Foundations of Cryptography, pp. 277–346. Springer International Publishing (2017). https://doi.org/10.1007/978-
3-319-57048-8 6, https://doi.org/10.1007/978-3-319-57048-8_6

25. Mohassel, P., Sadeghian, S.S.: How to hide circuits in MPC an efficient framework for private function evaluation. In:
Johansson, T., Nguyen, P.Q. (eds.) Advances in Cryptology - EUROCRYPT 2013, 32nd Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques, Athens, Greece, May 26-30, 2013. Proceedings.
Lecture Notes in Computer Science, vol. 7881, pp. 557–574. Springer (2013). https://doi.org/10.1007/978-3-642-
38348-9 33, https://doi.org/10.1007/978-3-642-38348-9_33

26. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press (1995).
https://doi.org/10.1017/cbo9780511814075, https://doi.org/10.1017/cbo9780511814075

27. Pagh, R., Rodler, F.F.: Cuckoo hashing. In: auf der Heide, F.M. (ed.) Algorithms - ESA 2001, 9th Annual
European Symposium, Aarhus, Denmark, August 28-31, 2001, Proceedings. Lecture Notes in Computer Science,
vol. 2161, pp. 121–133. Springer (2001). https://doi.org/10.1007/3-540-44676-1 10, https://doi.org/10.1007/
3-540-44676-1_10

28. Pinkas, B., Rosulek, M., Trieu, N., Yanai, A.: Spot-light: Lightweight private set intersection from sparse OT
extension. In: Boldyreva, A., Micciancio, D. (eds.) Advances in Cryptology - CRYPTO 2019 - 39th Annual
International Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2019, Proceedings, Part III. Lecture
Notes in Computer Science, vol. 11694, pp. 401–431. Springer (2019). https://doi.org/10.1007/978-3-030-26954-8 13,
https://doi.org/10.1007/978-3-030-26954-8_13

29. Pinkas, B., Schneider, T., Zohner, M.: Scalable private set intersection based on OT extension. ACM Trans. Priv.
Secur. 21(2), 7:1–7:35 (2018). https://doi.org/10.1145/3154794, https://doi.org/10.1145/3154794

30. Rabin, M.O.: How to exchange secrets with oblivious transfer. IACR Cryptol. ePrint Arch. p. 187 (2005),
http://eprint.iacr.org/2005/187

31. Smart, N.P., Vercauteren, F.: Fully homomorphic SIMD operations. Des. Codes Cryptogr. 71(1), 57–81 (2014).
https://doi.org/10.1007/s10623-012-9720-4, https://doi.org/10.1007/s10623-012-9720-4

32. Zhang, C., Chen, Y., Liu, W., Zhang, M., Lin, D.: Optimal private set union from multi-query reverse private
membership test. Cryptology ePrint Archive, Report 2022/358 (2022), https://ia.cr/2022/358

21

https://doi.org/10.1007/978-3-030-34621-8_23
https://doi.org/10.1007/978-3-030-34621-8_23
https://doi.org/10.1007/978-3-030-34621-8_23
https://doi.org/10.1007/978-3-540-27800-9_34
https://doi.org/10.1007/978-3-540-27800-9_34
https://doi.org/10.1007/978-3-319-57048-8_6
https://doi.org/10.1007/978-3-319-57048-8_6
https://doi.org/10.1007/978-3-319-57048-8_6
https://doi.org/10.1007/978-3-642-38348-9_33
https://doi.org/10.1007/978-3-642-38348-9_33
https://doi.org/10.1007/978-3-642-38348-9_33
https://doi.org/10.1017/cbo9780511814075
https://doi.org/10.1017/cbo9780511814075
https://doi.org/10.1007/3-540-44676-1_10
https://doi.org/10.1007/3-540-44676-1_10
https://doi.org/10.1007/3-540-44676-1_10
https://doi.org/10.1007/978-3-030-26954-8_13
https://doi.org/10.1007/978-3-030-26954-8_13
https://doi.org/10.1145/3154794
https://doi.org/10.1145/3154794
http://eprint.iacr.org/2005/187
https://doi.org/10.1007/s10623-012-9720-4
https://doi.org/10.1007/s10623-012-9720-4
https://ia.cr/2022/358

	Fast Unbalanced Private Set Union from Fully Homomorphic Encryption

