
Fast Unbalanced Private Set Union from Fully Homomorphic
Encryption

Binbin Tu1, Yu Chen1, Qi Liu1, and Cong Zhang2,3

1 School of Cyber Science and Technology, Shandong University
2 State Key Laboratory of Information Security, Institute of Information Engineering, Chinese Academy of Sciences

3 School of Cyber Security, University of Chinese Academy of Sciences
{tubinbin,liuqicst}@mail.sdu.edu.cn;yuchen@sdu.edu.cn;zhangcong@iie.ac.cn

Abstract. Private set union (PSU) allows two parties to compute the union of their sets without
revealing anything else. It has found numerous applications in practice. Recently, some computationally
efficient PSU protocols have been designed for the balanced case, but a limitation with these protocols
is the communication complexity, which scales (super)-linearly with the size of the larger set. This is
of particular concern when performing PSU in the unbalanced case, where one party is a constrained
device holding a small set, and another is a large service provider holding a large set.
In this work, we propose a generic construction of unbalanced PSU from leveled fully homomorphic
encryption (FHE) and a newly introduced protocol called permuted matrix Private EQuality Test
(pm-PEQT). By instantiating the generic construction, we obtain two secure and fast unbalanced PSU
protocols, whose communication complexity is linear in the size of the smaller set, and logarithmic in
the larger set.
We implement our protocols. Experiments show that our protocols are more efficient than all previous
protocols in the unbalanced case. Especially, the larger difference between the size of two sets, the better
our protocols perform. For input sets of size 210 and 219 with 128-bit length items, our PSU takes 2.242
MB of communication to compute the union. Compared with the state-of-the-art PSU proposed by
Jia et al. (Usenix Security 2022), there are 300× reduction in communication and roughly 30 - 120×
reduction in computational overhead in WAN/LAN settings.

1 Introduction

PSU is a cryptographic protocol that allows two parties, a sender and a receiver with respective input
sets X and Y , to compute the union X ∪ Y , without revealing anything else. It has become considerably
efficient and has been deployed in practice, such as cyber risk assessment [34,27,33], privacy-preserving data
aggregation [6], and private ID [23] etc. However, most PSU [31,22,1,16,33,23] are designed in the balanced
case. These protocols typically perform only marginally better when one of the sets is much smaller than the
other. In particular, their communication cost scales at least linearly with the size of the larger set. In most
real world applications, the sender’s set might be much smaller than the receiver’s, such as the sender (client)
might be a mobile device with limited battery, computing power, and storage, whereas the receiver (server) is
a high-end computing device. Meanwhile, the bandwidth between two parties might be limited. Most existing
PSU protocols are not very efficient in dealing with the above unbalanced case.

Over the last decade, there has been a significant amount of work on private set intersection (PSI)
including both balanced [37,39,14,19,7,26,46,42,41,18,28,32] and unbalanced case [12,40,10,15,45], but little
attention has been paid on PSU, especially in unbalanced case. Recently, Jia et al. [30] propose an unbalanced
PSU∗4 with shuffling technique, but their PSU∗ suffers the following drawbacks. First, their PSU∗ dose not
satisfy standard security, since it leaks the information of the intersection size to the sender. Such information
leakage could be critical for PSU. Consider the extreme case, the sender can get the intersection item if it
inputs a one-element set. Second, the communication complexity of their PSU∗ is linearly with the size of the
larger set. Another closely related work is that of Chen et al. [13], which shows how to tweak FHE-based

4 In this paper, we use PSU∗ to indicate a PSU protocol with information leakage.

PSI [12] to an unbalanced PSU protocol. As noted by the authors, their PSU protocol only serves as a proof
of concept since it reveals intersection size to the sender, and straightforward applying the optimization tricks
due to [12] will compromise the semi-honest security of the receiver. They left the standardly secure and
efficient FHE-based PSU protocol in the unbalanced setting as a challenging problem.

Motivated by the above discussions, we ask the following question:
Is it possible to design a secure and fast unbalanced PSU protocol which has a communication overhead

linear in the smaller set and logarithmic in the larger set?

1.1 Contributions

In this paper, we give an affirmative answer to the above question. We summarize our contributions as follows:

1. We first propose a basic unbalanced PSU protocol based on leveled FHE. Then, we use an array of
optimization techniques following [12,10,15] to optimize the basic protocol, while the optimization might
leak some information of the intersection.

2. We introduce a new cryptographic protocol named permuted matrix private equality test (pm-PEQT)
to avoid the information leakage. Then, we give two constructions of pm-PEQT. The first is based on
Permute+ Share and multi-point oblivious pseudorandom function (mp-OPRF). The second is based on
the decisional Diffie-Hellman (DDH) assumption.

3. We present a generic construction of unbalanced PSU in the semi-honest model from leveled FHE and
pm-PEQT. By instantiating the generic construction, we obtain two secure and fast unbalanced PSU
protocols which have communication complexity linear in the size of the smaller set, and logarithmic in
the larger set. Our protocols are particularly powerful when the set size of one party is much larger than
that of the other.

4. We implement our PSU protocols. Experiments show that our protocols are more efficient than all
previous protocols in the unbalanced case. For unbalanced sets size (|X| = 210, |Y | = 219) with 128-bit
length items, our PSU protocol takes 2.242 MB of communication and 12 seconds of computation to
compute the union with a single thread in LAN settings. Compared with the state-of-the-art PSU [30],
there are roughly 300× reduction in communication and 30× reduction in computational overhead. In
particular, the performance of our PSU protocols improve significantly in the case of low bandwidth. Our
PSU requires 7.79 seconds which is about 120× faster than PSU [30] in 10Mbps bandwidth.

1.2 Related Works

We revisit recent PSU protocols [33,23,30,48] with good efficiency. Table 1 provides a brief comparison of our
protocols to the prior highest-performing PSU protocols. We report in detail the performance results and
comparisons in Section 7.

Protocols Communication Computation Security

PSU∗ [33] O(n logn) O(n logn) Leaky

PSU [23] O(n logn) O(n logn) Standard

PSU [48] O(n) O(n) Standard

PSU [30] O(n logn) O(n logn) Standard

PSU∗ [30] O(n+m logm) O(n) Leaky

Our PSU O(m logn) O(n) Standard

Table 1: Comparisons of PSU in the semi-honest setting. n and m denote the size of the large set and the
small set, respectively. PSU∗ [33] leaks the information to the receiver (the receiver learns some subsets have
the intersection items). PSU∗ [30] leaks the information to the sender (the sender learns the intersection size).

2

Kolesnikov et al. [33] propose a PSU protocol based on the reverse private membership test (RPMT).
In RPMT, the sender (S) with input x interacts with the receiver (R) holding a set Y , and R can learn
a bit indicating whether x ∈ Y , while S learns nothing. Then, R runs OT with S to obtain {x} ∪ Y . For
n = |X| = |Y |, the protocol runs RPMT n times independently and requires O(n2) communication and
O(n2 log2 n) computation. By using the bucketing technique, two parties hash their sets in β bins and each
bin consists of ρ items. A large (n, n)-PSU5 is divided into β small (ρ, ρ)-PSU. The complexity is reduced to
O(n log n) communication and O(n log n log log n) computation. However, [30] points out that the bucketing
technique leaks the information to R. More precisely, R learns that some subsets (size ρ) hold the intersection
items with high probability.

Garimella et al. [23] give a PSU protocol based on permuted characteristic functionality which in turn can
be built from oblivious switching. Simply speaking, the sender S holding a set X interacts with the receiver
R holding a set Y . As a result, S gets a random permutation π and R gets a vector e ∈ {0, 1}n, where if
ei = 1, xπ(i) ∈ Y , else xπ(i) /∈ Y . Then, R runs OT protocol with S to obtain the set union. Their protocol
requires O(n log n) communication and O(n log n) computation.

Zhang et al. [48] recently give a generic framework of PSU based on the multi-query reverse private
membership test (mq-RPMT). In mq-RPMT, the sender S holding a set X interacts with the receiver R
holding a set Y . As a result, S gets nothing and R gets b ∈ {0, 1}n, satisfying bi = 1 if and only if xi ∈ Y .
Then, two parties runs OT protocol to let R get the set union. To construct mq-RPMT, they combine the
oblivious key-value store (OKVS) and vector decryption-then-matching (VODM). By instantiating OKVS and
VODM, they obtain two concrete mq-RPMT. The first is based on symmetric-key encryption and general 2PC.
The second is based on re-randomizable public-key encryption. Both constructions achieve linear computation
O(n) and communication O(n).

Jia et al. [30] propose a PSU with the shuffling technique. Simply speaking, the receiver R hashes a set Y
into Yc by Cuckoo hash and the sender S hashes a set X by simple hash. R shuffles Yc by a permutation π
chosen by S. S and R get shuffled shares {sπ(i)} and {s′π(i)}, where Yc[π(i)] = sπ(i) ⊕ s′π(i), respectively. Two
parties run mp-OPRF to compute all PRF values and S sends its PRF values to R. R tests which items
belong to the union and runs OT with S to get the union. Their PSU requires O(n log n) communication
and O(n log n) computation. They also consider the unbalanced case and give an unbalanced PSU∗ which
requires O(n+m logm) communication and O(n) computation.

Parameters: Set sizes m and n are public. Two parties: sender S and receiver R.
Functionality:

1. Wait for an input X = {x1, · · · , xm} ⊆ {0, 1}∗ from S, and an input Y = {y1, · · · , yn} ⊆ {0, 1}∗ from R.
2. Give output X ∪ Y to R.

Fig. 1: Ideal functionality Fm,n
PSU for private set union

2 Overview of Our Techniques

We provide the high-level intuition for our unbalanced PSU protocol. First, we propose a basic PSU protocol
based on leveled FHE. Our basic protocol is easy to understand, but it is not efficient due to the depth of
homomorphic circuits is deep. Then, we try to improve the basic PSU by applying optimization techniques
following [12,10,15] to reduce the depth of homomorphic circuits. However, straightforward application leaks
the information of the intersection. To remedy the leakage, we introduce a new cryptographic protocol called

5 In this paper, we use (m,n)-PSU to indicate a PSU protocol where the sender’s set size is m and the receiver’s set
size is n.

3

S(X) R(y)

y c = Enc(y)
c

x1 x2 · · · xn

f f(x) = Πn
i=1(x− xi)

c′ = Enc(r · f(y)) c′
r′ = Dec(c′)

?
= 0

S(X) R(Y)
H CH

ym· · ·y2y1

ci = Enc(yi)

cix11 x12 · · · x1m

· · · · · · · · · · · ·
f11

fα1

B′

B′
B

α

· · · · · · · · · · · ·

xB1 xB2 · · · xBm

e.g., f11(x) = ΠB′

i=1(x− xi1)

c′ij = Enc(rij · fij(y))

c′ij
r′11 r′12 · · · r′1m
· · · · · · · · · · · ·

r′α1 r′α2 · · · r′αm

r′ij = Dec(c′ij)
?
= 0

Fig. 2: The basic PSI and its optimizations [12]

permuted matrix private equality test (pm-PEQT). Finally, we manage to give a generic construction of
standardly secure unbalanced PSU from leveled FHE and pm-PEQT. By instantiating the generic construction,
we obtain a secure and fast unbalanced PSU protocol. We describe the ideal functionality of PSU in Figure 1.

2.1 Our Basic PSU Protocol

Our starting point is the FHE-based basic PSI protocol [12] and we review the protocol as follows.

Basic PSI protocol of Chen et al revisit. Chen et al. [12] give a basic unbalanced PSI protocol, in which
the receiver (R) with input an item y interacts with the sender (S) holding a large set X, and R can get the
intersection {y} ∩X. Informally, R encrypts its item y, and sends the ciphertext c← FHE.Enc(y) to S; S
chooses random non-zero plaintexts r and homomorphically computes c′ ← FHE.Enc(r · f(y)), where the
polynomial f(x) = Πxi∈X(x − xi), and then returns c′ to R; R decrypts c′: if rf(y) = 0, it knows y ∈ X
and outputs {y}, else, it gets a random value and outputs ∅. The protocol requires communication linear
in the smaller set, achieving optimal communication that is on par with the naive solution, but it has high
computational costs and deep homomorphic circuits, because the degree of f(x) is related to the large set
size.

Basic PSU protocol. The functionality adjustment (PSI → PSU) doesn’t seem to be straightforward,
since the randomized product rf(y) = 0 leaks the information of the intersection to the receiver. The main
challenge is to find a new randomization method that hides the information of the intersection and admits
to check which items belong to the union. We solve the problem by adding a random value r to randomize
the polynomial value. In this way, the randomized value r + f(y) leaks nothing to R. Meanwhile, R sends

the result r + f(y) to S and S checks whether the item y belongs to the union by verifying r
?
= r + f(y)

and gets the union by OT protocol. In order to let the receiver output the results (requirements of the ideal

4

S(x) R(Y)

xc = Enc(x)
c

yn· · ·y2y1

ff(x) = Πn
i=1(x− yi)

c′ = Enc(r + f(x))c′r′ = Dec(c′)

r′
r′ = r + f(x)

?
= r

S(X) R(Y)
CH H

x1 x2 · · · xm

cj = Enc(xj), j ∈ [m]

cj
y1m· · ·y12y11

· · ·· · ·· · ·· · ·
f1m

B′

· · ·· · ·· · ·· · ·

yBm· · ·yB2yB1
fαm

B′

e.g., f1m(x) = ΠB′

i=1(x− yim)

c′ij = Enc(rij + fij(xj))
r′ij = Dec(c′ij)

c′ij
r′1m· · ·r′12r′11
· · ·· · ·· · ·· · ·

r′αm· · ·r′α2r′α1

r1m· · ·r12r11

· · ·· · ·· · ·· · ·
rαm· · ·rα2rα1

B

α

Fig. 3: The basic PSU (omit OT) and its optimiza-
tions

functionality of PSU), we consider the dual structure of [12]. Thus, in our PSU, the receiver holding a large
set interacts with the sender holding a small set and the receiver gets the union.

We start with a special case. Suppose that the sender S has only one item x and the receiver R holding a
large set Y gets the resulting union {x} ∪ Y . We show our basic unbalanced PSU based on leveled FHE as
follows: S uses its public key to encrypt the item x and sends the ciphertext c = FHE.Enc(x) to R; R chooses
random non-zero value r, and homomorphically computes c′ = FHE.Enc(r + f(x)), where the polynomial
f(x) = Πyi∈Y (x− yi) and returns the new ciphertext to S; S decrypts c′ and gets the plaintext r′ = r+ f(x),

then it returns r′ back to R; R checks r′
?
= r, if r′ = r, it sets b = 0 indicating x ∈ Y , else b = 1. Finally, R

invokes the OT protocol with S to obtain the union {x} ∪ Y .
The key different step between our basic PSU and the basic PSI [12] is using different randomization

methods. We compute the sum of a random value r and the polynomial value f(x). S obtains the random
plaintext r′ = r + f(x) which leaks nothing and R getting r′ = r + f(x) can checks r′ = r or not. If r′ = r,
x ∈ Y , else x /∈ Y . Then R can get the union by OT protocol. This will leak some information of x /∈ Y , but
this leakage does not cause any harm to the PSU, since the PSU protocol releases that value at last.

2.2 Optimized PSU with Leakage

We first review optimized unbalanced PSI as follows. Chen et al. [12] use an array of optimization techniques
such as hashing, batching, windowing, partitioning and modulus switching to optimize their basic protocol
and obtain a fast unbalanced PSI. Informally, the receiver R inserts the small set Y into Cuckoo hash table Yc

by Cuckoo hash and each bin Yc[i] consists of one item. The sender S inserts the large set X into hash table

5

S(X) R(Y)
H CH

y1 y2 · · · ym1

cj = Enc(yj), j ∈ [m]

cj
B′

B

f11 f12 · · · f1m

f21 f22 · · · f2m

· · · · · · · · · · · ·

fα1 fα2 · · · fαm

c′ij = Enc(rijfij(yj)) r′ij = rij · fij(yj)
c′ij

r′11 r′12 · · · r′1m
· · · · · · · · · · · ·

r′α1 r′α2 · · · r′αm

α

S(X) R(Y)
CH H

x1 x2 · · · xm1

cj = Enc(xj), j ∈ [m]

cj
B′

B

f11 f12 · · · f1m

f21 f22 · · · f2m

· · · · · · · · · · · ·

fα1 fα2 · · · fαm

c′ij = Enc(rij + fij(xj))r′ij = rij + fij(xj)
c′ij

r′11 r′12 · · · r′1m
· · · · · · · · · · · ·

r′α1 r′α2 · · · r′αm

r11 r12 · · · r1m

· · · · · · · · · · · ·
rα1 rα2 · · · rαm

α

Fig. 4: Comparison of PSI [12] (left) and optimized PSU (omit OT) with leakage (right)

Xb by simple hash, where the i-th bin indicates as Xb[i] and each bin consists of B items6. S partitions each
bin Xb[i] into α subsets and each subset consists of B′ = B/α items. Therefore, the large (n,m)-PSI is divided
into many small (B′, 1)-PSI. For each small PSI, S encodes each subset (B′ items) into a polynomial and
randomizes it by multiplying a random value, then it homomorphically computes and sends new ciphertexts
to R. R decrypts the ciphertexts and gets the set intersection. Since the degree of the polynomial is related
to the small subset size B′, each small PSI has a low homomorphic circuit. We review the basic PSI protocol
and its optimizations in Figure 2.

According to the requirements of the ideal functionality of PSU, we consider the dual structure of [12].
In our PSU, the receiver holds a large set Y and the sender holds a small set X. It is tempting to use the
same optimization techniques [12] to improve our basic PSU. Roughly, the sender S hashes the small set X
into Xc by Cuckoo hash and each bin Xc[i] consists of one item. The receiver R hashes the large set Y into
hash table Yb and each bin Yb[i] consists of B items. Then R partitions each bin Yb[i] into α subsets and each
subset consists of B′ = B/α items. The large (m,n)-PSU is divided into many small (1, B′)-PSU. For each
small PSU, R encodes each subset (B′ items) into a polynomial and randomizes it by adding a random value,
then it homomorphically computes and sends new ciphertexts to S. S decrypts the ciphertexts and sends the
plaintexts back. R checks which items belong to the set union, and invokes OT with S to get them. We show
our basic PSU (omit OT) and its optimizations in Figure 3.

We emphasize that, unlike PSI [12], the optimization techniques for PSI is not suitable for our PSU.
This is because a large PSI can be divided into many small PSI, and the receiver can combine all small set
intersections into the output securely. However, if we divide a large (m,n)-PSU into many small (1, B′)-PSU
directly, this causes information leakage about the intersection. We show the comparison of PSI [12] and
our optimized PSU (omit OT) with leakage in Figure 4. Note that in the standardly secure (m,n)-PSU,
from the view of R, any item in the set Y could be an item in X ∩ Y . However, in above optimized PSU∗,
R learns some subsets with size B′ have the item in X ∩ Y . Moreover, if S returns its decrypted results r′

to R directly. R can check which items of X belong to the set union. This also leaks the information of
X ∩ Y . Because there are α subsets with size B′ in one bin, if f(x) = 0 in one subset, R gets f ′(x) ̸= 0 in
other subsets, which causes R could compute the intersection items with sufficient polynomial values. For
example, in Figure 4 (right), in the first column, if r11 = r′11, this means x1 ∈ Y 7 and x1 ∈ {y11, · · · , yB′1},
but x1 /∈ {y(B′+1)1, · · · , yB1}. R gets the rest nonzero polynomial values f21(x1), · · · , fα1(x1) and it could
compute x1 from them.

6 In the PSI [12], they use cuckoo hashing with no stash and three simple hash functions. For each same bins in hash
tables Yc and Xb, if the item Yc[i] ∈ Xb[i], that is, the item belongs to the intersection.

7 In j-th column, as long as there is a position i, such that rij = r′ij , xj ∈ Y . Meanwhile, at most one position is
equal in each column.

6

Based on above analysis, the main challenge is how to optimize our basic PSU without causing information
leakage. More precisely, we need to overcome the following two difficulties:

– The receiver is able to check rij
?
= rij + fij(x) at all positions without knowing rij + fij(x).

– The receiver is able to check rij = rij + fij(x) in same positions without knowing the positions i, j.

We address the difficulties by introducing a cryptographic protocol named permuted matrix private
equality test (pm-PEQT) that enables the receiver check whether the values in permuted positions are equal
without knowing the values and permutation.

2.3 Permuted Matrix Private Equality Test

We introduce a new cryptographic protocol named permuted matrix private equality test (pm-PEQT)
which can be seen as an extension of private equality test (PEQT). In the PEQT, a receiver who has an
input string x interacts with a sender holding an input string y, and the result is that the receiver learns a
bit indicating whether x = y and nothing else, whereas the sender learns nothing. In our pm-PEQT, the
sender holding a matrix R′

α×m and a matrix permutation π = (πc, πr) interacts with a receiver holding
a matrix Rα×m. As a result, the receiver learns (only) the bit matrix Bα×m indicating that if bij = 1,
rπ(ij) = r′π(ij), else, rπ(ij) ̸= r′π(ij), i ∈ [α], j ∈ [m], while the sender learns nothing about R. Compared
with PEQT, pm-PEQT admits a matrix private equality test with positions permutation. We show the ideal
functionality of pm-PEQT in Figure 5.

Parameters: Two parties: The receiver with a matrix Rα×m. The sender with a matrix R′
α×m and a matrix

permutation π = (πc, πr), where πc (over [m]) is a column permutation and πr (over [α]) is a row permutation. α
and m are public.
Functionality:

1. Wait for an input R′ = [rij], i ∈ [α], j ∈ [m] and a permutation π = (πc, πr) from the sender, and an input
R = [rij], i ∈ [α], j ∈ [m] from the receiver.

2. Give the bit matrix Bα×m to the receiver, where rπ(ij) = r′π(ij), bij = 1, else, bij = 0, for all i ∈ [α], j ∈ [m].

Fig. 5: Permuted matrix private equality test Fpm-PEQT

Constructions of pm-PEQT. pm-PEQT can not be easily built from PEQT by running many PEQT
instances in parallel. This is because it is difficult to shuffle the receiver’s items without knowing the
permutation of the sender. We give two constructions of pm-PEQT as follows.

The first construction is based on Permute+ Share [23,30] and mp-OPRF [38,9]. Informally, S and R
invoke the ideal Permute + Share functionality FPS twice: First, both parties permute and share the columns
of R. R inputs each column of R and S inputs a permutation πc over [m]. As a result, R gets shuffled share
Sπc

= [sπc(ij)] and S gets S′
πc

= [s′πc(ij)
], where sπc(ij) ⊕ s′πc(ij)

= rπc(ij). Then both parties permute and

share the rows of Sπc
. R inputs each row of Sπc

and S inputs a permutation πr over [α]. As a result, R
gets Sπr

= [sπr(ij)] and S gets S′
πr

= [s′πr(ij)
], where sπr(ij) ⊕ s′πr(ij)

= sπc(ij). R defines the shuffled matrix

shares Sπ = Sπr and S defines the shuffled matrix shares S′
π = πr(S

′
πc
)⊕ S′

πr
, where sπ(ij) ⊕ s′π(ij) = rπ(ij),

i ∈ [α], j ∈ [m]. Then, both parties invoke mp-OPRF functionality Fmp-OPRF. R inputs shuffled shares Sπ

and obtains Fk(sπ(ij)), i ∈ [α], j ∈ [m], and S gets the key k of a PRF. Furthermore, S permutes the matrix
R′ by π = (πc, πr) and gets R′

π = [r′π(ij)], then S computes all PRF values Fk(r
′
π(ij) ⊕ s′π(ij)), i ∈ [α], j ∈ [m]

and sends them to R. Finally, R sets bij = 1, if Fk(sπ(ij)) = Fk(r
′
π(ij) ⊕ s′π(ij)), else, sets bij = 0. R lets

7

the bit matrix B = [bij], i ∈ [α], j ∈ [m]. Note that the Permute + Share [23,30] and mp-OPRF [38,9] are
fast cryptographic tools. The communication complexity of our pm-PEQT based on Permute + Share and
mp-OPRF is O(αm logαm).

The second construction is based on the DDH assumption [2]. Let G be a cyclic group with order q, where
the DDH problem is hard. Informally, R and S choose random value a, b← Zq and compute vij = H(rij)

a,
v′ij = H(r′ij)

b for all i ∈ [α], j ∈ [m], respectively, where the output of H() is a group element in G. Let

V = [vij] and V′ = [v′ij], i ∈ [α], j ∈ [m]. R sends V to S. Then S computes v′′ij = (vij)
b and lets V′′ = [v′′ij],

i ∈ [α], j ∈ [m]. S shuffles V′′ and V′ by same permutation π = (πc, πr) and gets V′′
π = π(V′′), V′

π = π(V′),
where v′′π(ij) = π(v′′ij), v

′
π(ij) = π(v′ij). S sends permuted matrices V′′

π and V′
π to R. Finally, for i-th row and

j-column in V′′
π and V′

π, if v
′′
π(ij) = v′aπ(ij), R lets bij = 1, else, bij = 0. R gets a bit matrix B = [bij], i ∈ [α],

j ∈ [m]. The communication complexity of our DDH-based pm-PEQT is O(αm).

2.4 Our Full PSU Protocol

Now, we are ready to describe our full PSU protocol. We provide the high-level technical overview for our
generic construction of PSU in Figure 6 and the details are as follows.

Optimized (semi)-PSU∗

from Leveled FHE

S(X) R(Y)

X

R′
α×m

Y

Rα×m

pm-PEQT

R′
α×m, π

⊥

Rα×m

Bα×m

OT

(⊥, xπ(j))

⊥

bj

xπ(j) or ⊥

Fig. 6: Core design idea of our full PSU protocol

First, we construct a semi-finished FHE-based optimized PSU∗ in which the sender S dose not send its
decrypted results R′

α×m to the receiver R. S holding a small set X interacts with R holding a large set Y .
The result is R outputs a matrix Rα×m = [rij], and S outputs a matrix R′

α×m = [r′ij], where α denotes
the number of partitions, m denotes the number of bins, rij denotes the random value used to hide each
polynomial and r′ij denotes the decrypted results, i ∈ [α], j ∈ [m]. Note that for all i ∈ [α] in same j-th
column, if all r′ij ̸= rij , xj /∈ Y , else, xj ∈ Y .

Then, by using pm-PEQT, S inputs R′ and a permutation π = (πc, πr)
8 and R inputs R. As a result, R

gets a bit matrix B = [bij], where if bij = 1, i ∈ [α], j ∈ [m], rπ(ij) = r′π(ij), else rπ(ij) ≠ r′π(ij). R computes a

bit vector b = [bj], j ∈ [m], for all i ∈ [α], if bij = 0, sets bj = 1, else, sets bj = 0. S permutes the Cuckoo hash
table Xc by πc and gets πc(Xc) = [xπc(1), · · · , xπc(m)]. We note that if bj = 1, xπc(j) /∈ Y , else xπc(i) ∈ Y ,
j ∈ [m].

Finally, by using OT protocol, S inputs (⊥, xπ(j)), j ∈ [m], and R inputs bj , j ∈ [m]. R gets xπc(j), if
bj = 1, else, gets ⊥. After that, R outputs the union Y ∪ {xπc(j)}.

In this way, we complete our construction of secure and fast unbalanced PSU protocol.

8 Each column of the matrix Rα×m corresponds to the same item, so the permutation for the matrix requires that
the columns are consistent.

8

3 Preliminaries

3.1 Notation

We denote the parties in our PSU as sender (S) and receiver (R), and their respective input sets as X
and Y with m = |X| ≪ n = |Y |. For n ∈ N, [n] denotes the set {1, 2, · · · , n}. 1λ denotes the string of λ
ones. We use κ and λ to indicate the computational and statistical security parameters, respectively. If S
is a set, s← S indicates sampling s from S at random. We denote vectors by lower-case bold letters, e.g.,
s. We denote matrices by upper-case bold letters, e.g., S. We write S = [sij] to denote each element of S,
where sij denotes the element in i-th row and j-th column. For a permutation π over n items, we write
{sπ(1), · · · , sπ(n)} to denote π({s1, · · · , sn}), where sπ(i) indicates the i-th element after the permutation. For
a column permutation πc (or, row permutation πr) on a matrix S = [sij], we write Sπc (or, Sπr) to denote
πc(S) = [sπc(ij)] (or, πr(S) = [sπr(ij)]) be the permuted matrix, where sπc(ij) (or, sπr(ij)) indicates the i-th
row and j-th column element after the permutation.

3.2 Building Blocks

We briefly review the main cryptographic tools including Cuckoo hashing, leveled fully homomorphic
encryption, oblivious transfer, multi-point oblivious PRF, and Permute + Share.

Cuckoo hashing. Cuckoo hashing [36,17,21,43] can be used to build dense hash tables by many hash
functions. Following [12], we use three hash functions and adjust the number of items and table size to reduce
the stash size to 0 while achieving a hashing failure probability of 2−λ.

Leveled fully homomorphic encryption. The leveled fully homomorphic encryption supports circuits of a
certain bounded depth. Following [12], our protocols require the leveled FHE satisfies IND-CPA secure with
circuit privacy [3], but we can use oblivious pseudorandom function (OPRF) to avoid the requirement of circuit
privacy as [10]. We refer the reader to [12,10,15,3] for more details. We use an array of optimization techniques
of FHE as [12,10,15], such as batching, windowing, partitioning and modulus switching to significantly reduce
the depth of the homomorphic circuit. We review the optimizations in appendix A. For the implementation,
we use the homomorphic encryption library SEAL which implements the BFV scheme [20] following [12,10,15].

Oblivious transfer. Oblivious transfer [44] is a central cryptographic primitive in the area of secure
computation. In the 1-out-of-2 OT, a sender with two input strings (x0, x1) interacts with a receiver who
has an input choice bit b. The result is that the receiver learns xb without learning anything about x1−b,
while the sender learns nothing about b. Ishai et al. [29] introduced the OT extension that allows for a large
number of OT executions at the cost of computing a small number of public-key operations. We recall the
1-out-of-2 oblivious transfer functionality FOT in Figure 7.

Parameters: Two parties: sender S and receiver R.
Functionality:

1. Wait for input {x0, x1} from S. Wait for input b ∈ {0, 1} from R.
2. Give xb to R.

Fig. 7: 1-out-of-2 oblivious transfer functionality FOT

9

Multi-point oblivious pseudorandom function. An oblivious pseudorandom function (OPRF) allows
the receiver to input x and learns the PRF value Fk(x), where F is a PRF, and k is known to the sender.
Pinkas et al. [38] propose multi-point OPRF (mp-OPRF) and realize efficient PSI protocols. Recently, Chase
and Miao [9] propose a more efficient mp-OPRF based on oblivious transfer extension. In the mp-OPRF, the
receiver inputs {x1, x2, · · · , xn} and learns all PRF values {Fk(x1), Fk(x2), · · · , Fk(xn)}, and the sender gets
the key k. We recall the mp-OPRF functionality Fmp-OPRF in Figure 8.

Parameters: A PRF F . Two parties: sender S and receiver R.
Functionality:

1. Wait for input {x1, · · · , xn} from R.
2. Sample a random PRF key k and give it to S. Give {Fk(x1), · · · , Fk(xn)} to R.

Fig. 8: mp-OPRF functionality Fmp-OPRF

Permute + Share. We recall the Permute+ Share (PS) functionality FPS defined by Chase et al. [8] in
Figure 9. Roughly speaking, in the Permute+ Share protocol, P0 inputs a set X = {x1, · · · , xn} of size n and
P1 chooses a permutation π on n items. The result is that P0 learns the shuffled shares {sπ(1), · · · , sπ(n)}
and P1 learns the other shuffled shares {s′π(1), · · · , s

′
π(n)}, where xπ(i) = sπ(i) ⊕ s′π(i), i ∈ [n].

Parameters: Two parties: P0 and P1. Set size n for P0.
Functionality:

1. Wait for input X = {x1, · · · , xn} from P0, abort if |X| ̸= n. Wait for input a permutation π from P1, abort if π
is not a permutation on n items.

2. Give output shuffled shares {sπ(1), · · · , sπ(n)} to P0, and another shuffled shares {s′π(1), · · · , s′π(n)} to P1, where
xπ(i) = sπ(i) ⊕ s′π(i), i ∈ [n].

Fig. 9: Permute+ Share functionality FPS

4 The Basic PSU Protocol

We describe our basic PSU protocol in Figure 10 as a strawman protocol. In this protocol, if r+ f(x) ̸= r, the
receiver can get f(x) which leaks some information of x /∈ Y , but this leakage does not cause any harm to the
PSU, since the PSU protocol releases that value at last. We prove its semi-honest security in the following
theorem.

Theorem 1. The PSU protocol described in Figure 10 is secure in the FOT-hybrid model, in the presence of
semi-honest security adversaries, provided that the fully homomorphic encryption scheme is IND-CPA secure
with circuit privacy.

Proof. We construct SimS and SimR to simulate the views of corrupted sender S and corrupted receiver R
respectively, and argue the indistinguishability of the produced transcript from the real execution.

10

Input: The sender S inputs set X of size m = |X| and the receiver R inputs set Y of size n = |Y |. m and n are
public.
Output: The receiver outputs X ∪ Y . The sender outputs ⊥.

1. [Setup] S generates a public-secret key pair for the scheme and keeps the secret key itself.
2. [Set encryption] S encrypts each item xi ∈ X, ci = FHE.Enc(xi), i ∈ [m] and sends (c1, · · · , cm) to R.
3. [Computation] For each ci, R

(a) samples a random non-zero value ri;
(b) homomorphically computes c′i = FHE.Enc (f(xi) +ri), where f(x) = Πyi∈Y (x− yi).
(c) sends c′i, i ∈ [m] to S.

4. [Decryption] S decrypts c′i, i ∈ [m] to r′i = f(xi) + ri and sends them to R.
5. [Output] R checks all plaintexts and sets a bit vector b = [bi], i ∈ [m]. If r′i = ri, it sets bi = 0, otherwise,

sets bi = 1. Then, both parties invoke OT protocol, R inputs the bit bi and S inputs (⊥, xi), i ∈ [m]. For all
i ∈ [m], R gets xi, if bi = 1, else gets ⊥. Finally, R outputs X ∪ Y .

Fig. 10: Basic PSU protocol

Corrupt Sender. SimS(X) simulates the view of corrupt S as follows: It encrypts m random values.
Then, it invokes SimS

OT(⊥, xi), i ∈ [m] and appends the output to the view. Now we argue that the view
output by SimS is indistinguishable from the real one. The plaintexts are randomized in the real view which
is indistinguishable from the random values in the simulated view. The FHE satisfies the circuit privacy
which hides the computational circuit in step 3. The view produced by the underlying OT simulator is
indistinguishable from the real view. Thus, the simulation is indistinguishable from the real view.

Corrupt Receiver. SimR(Y,X∪Y) simulates the view of corruptR as follows: It simulates the ciphertexts
by encrypting m random value. SimR sets X̂ = (X ∪ Y)\Y and pads X̂ with ⊥ into m items and permutes
all items randomly. It computes the polynomial f(y) = Πyi∈Y (y− yi) and the random values r = [ri], i ∈ [m]
used to randomize the polynomial. Then, for x̂i ̸= ⊥, SimR defines r′i := f(x̂i)+ri, else, it defines r

′
i := ri, and

appends r′ = [r′i],i ∈ [m] to the view. If x̂i = ⊥, it sets bi = 0, else, bi = 1. Then SimR invokes SimR
OT(bi, x̂i)

for i ∈ [m] and appends the output to the view.
We argue that the outputs of SimR are indistinguishable from the real view of R by the following hybrids:

Hyb0: R’s view in the real protocol.
Hyb1: Same as Hyb0 except that the ciphertexts in the step 2 are replaced by encrypting m random values
generated by SimR. Since the fully homomorphic encryption scheme is IND-CPA secure, the above simulation
is indistinguishable from the real view.
Hyb2: Same as Hyb1 except that SimR runs the FOT simulator to produce the simulated view for R. The
security of OT protocol guarantees the view in simulation is computationally indistinguishable from the view
in the real protocol. The hybrid is the view output by SimR.

5 Permuted Matrix Private Equality Test

We give two efficient constructions of pm-PEQT in the semi-honest model. The functionality is specified in
Figure 5.

5.1 pm-PEQT from Permute + Share and mp-OPRF

The first construction of pm-PEQT is based on the Permute + Share [23,30] and mp-OPRF [9] as described
in Figure 11.

Theorem 2. The construction of Figure 11 securely implements functionality Fpm-PEQT in the (FPS,
Fmp-OPRF)-hybrid model, in the presence of semi-honest adversaries.

11

Input: The receiver R inputs a matrix Rα×m. The sender S inputs a matrix R′
α×m, and a permutation π = (πc, πr),

where πc (over [m]) and πr (over [α]) are two sub-permutation for columns and rows.
Output: The receiver outputs a bit matrix B. The sender outputs ⊥.

1. S and R invoke the ideal Permute+ Share functionality FPS twice. First, both parties permute and share the
columns of R, where each column of R can be seen as an item. R inputs each column of R and S inputs the
permutation πc. As a result, R gets Sπc = [sπc(ij)] and S gets S′

πc
= [s′πc(ij)

], where sπc(ij) ⊕ s′πc(ij)
= rπc(ij).

Then, both parties permute and share the rows of Sπc , where each rows of Sπc can be seen as an item. R inputs
each rows of Sπc and S inputs the permutation πr. As a result, R gets Sπr = [sπr(ij)] and S gets S′

πr
= [s′πr(ij)

],
where sπr(ij) ⊕ s′πr(ij)

= sπc(ij). Finally, R defines the shuffled matrix shares Sπ = Sπr and S defines the
shuffled matrix shares S′

π = πr(S
′
πc
)⊕ S′

πr
, where sπ(ij) ⊕ s′π(ij) = rπ(ij), i ∈ [α], j ∈ [m].

2. Both parties invoke mp-OPRF functionality Fmp-OPRF. R inputs shuffled shares Sπ and obtains the outputs
Fk(sπ(ij)), i ∈ [α], j ∈ [m]. S obtains the key k.

3. S computes Fk(r
′
π(ij) ⊕ s′π(ij)), i ∈ [α], j ∈ [m] and sends them to R.

4. R sets bij = 1, if Fk(sπ(ij)) = Fk(r
′
π(ij) ⊕ s′π(ij)), else, bij = 0, and gets a bit matrix B = [bij], i ∈ [α], j ∈ [m].

Fig. 11: pm-PEQT from Permute + Share and mp-OPRF

Proof. We exhibit simulators SimR and SimS for simulating corrupt R and S respectively, and argue the
indistinguishability of the produced transcript from the real execution.

Corrupt Sender. SimS(R
′, π = (πc, πr)) simulates the view of corrupt S as follows: SimS randomly

chooses S′
πc

and invokes SimS
PS(πc,S

′
πc
) and appends the output to the view. SimS randomly chooses S′

πr

and invokes SimS
PS(πr,S

′
πr
) and appends the output to the view. Then, SimS randomly selects a key k of

PRF and invokes SimS
mp-OPRF(k) and appends the output to the view.

We argue that the outputs of SimS are indistinguishable from the real view of S by the following hybrids:
Hyb0: S’s view in the real protocol.
Hyb1: Same as Hyb0 except that the output of FPS is replaced by S′

πc
, S′

πr
chosen by SimS , and SimS runs

the FPS simulator to produce the simulated view for S. The security of Permute + Share guarantees the view
in simulation is computationally indistinguishable from the view in the real protocol.
Hyb2: Same as Hyb1 except that the output key of Fpm-PEQT is replaced by the k chosen by SimS , and SimS
runs the Fpm-PEQT simulator to produce the simulated view for S. The security of mp-OPRF guarantees the
view in simulation is computationally indistinguishable from the view in the real protocol. The hybrid is the
view output by SimS .

Corrupt Receiver. SimR(R, B = [bij]) simulates the view of corrupt R as follows: SimR chooses Sπc
and

invokes SimR
PS(R,Sπc) and appends the output to the view. SimR chooses Sπr and invokes SimR

PS(Sπc ,Sπr)
and appends the output to the view. SimR randomly selects uij , i ∈ [α], j ∈ [m] and invokes SimR

mp-OPRF(uij)
and appends the output to the view. Finally, for all i ∈ [α], j ∈ [m], SimR sets vij = uij if bij = 1, else, it
chooses vij randomly and appends all vij to the view.

The view generated by SimR is indistinguishable from a real view of R by the following hybrids:
Hyb0: R’s view in the real protocol.
Hyb1: Same as Hyb0 except that the output of FPS is replaced by Sπc , Sπr chosen by SimR, and SimR runs
the FPS simulator to produce the simulated view for R. The security of Permute + Share guarantees the view
in simulation is computationally indistinguishable from the view in the real protocol.
Hyb2: Same as Hyb1 except that the output PRF values of Fmp-OPRF is replaced by uij , i ∈ [α], j ∈ [m],
and all PRF values in the last step is replaced by the vij , chosen by SimR randomly, and SimR runs the
Fmp-OPRF simulator to produce the simulated view for R. The security of mp-OPRF and PRF guarantees
the view in simulation is computationally indistinguishable from the view in the real protocol.

5.2 pm-PEQT based on DDH

The second construction of pm-PEQT is based on DDH as described in Figure 12.

12

Input: The receiver R inputs a matrix Rα×m. The sender S inputs a matrix R′
α×m, and a permutation π = (πc, πr)

where πc (over [m]) and πr (over [α]) are two sub-permutation for columns and rows. G is a cyclic group with order
q.
Output: The receiver outputs a bit matrix B. The sender outputs ⊥.

1. R choose random value a← Zq and compute vij = H(rij)
a for all i ∈ [α], j ∈ [m], where H(·) denotes hash

functions which output the elements of group G. Let V = [vij], i ∈ [α], j ∈ [m]. R sends V to S.
2. S choose random value b ← Zq and compute v′ij = H(r′ij)

b for all i ∈ [α], j ∈ [m], where H(·) denotes hash
functions which output the elements of group G. Let V′ = [v′ij], i ∈ [α], j ∈ [m]. Then S computes v′′ij = (vij)

b

and lets V′′ = [v′′ij]. S shuffles V′′ and V′ by same permutation π = (πc, πr) and gets V′′
π = π(V′′), V′

π = π(V′),
where v′′π(ij) = π(v′′ij), v

′
π(ij) = π(v′ij). S sends V′′

π, V
′
π to R.

3. For i-th row and j-column in V′′
π and V′

π, if v
′′
π(ij) = v′aπ(ij), R lets bij = 1, else, bij = 0. R sets a bit matrix

B = [bij], i ∈ [α], j ∈ [m].

Fig. 12: Instantiation of pm-PEQT based on DDH

Theorem 3. The construction of Figure 12 securely implements functionality Fpm-PEQT based on DDH in
the random oracle model, in the presence of semi-honest security adversaries.

Proof. We exhibit simulators SimR and SimS for simulating corrupt R and S respectively, and argue the
indistinguishability of the produced transcript from the real execution.

Corrupt Sender. SimS(R
′, π = (πc, πr)) simulates the view of corrupt S as follows: It chooses ran-

dom group elements vij , i ∈ [α], j ∈ [m] to simulate the view. We argue that the outputs of SimS are
indistinguishable from the real view of S by the following hybrids:
Hyb0: S’s view in the real protocol consists of H(rij)

a, i ∈ [α], j ∈ [m], where a← Zq.
Hyb1: Same as Hyb0 except that SimS chooses random group elements vij , i ∈ [α], j ∈ [m] instead of H(rij)

a,
i ∈ [α], j ∈ [m], where a← Zq. The hybrid is the view output by SimS .

We argue that the views in Hyb0 and Hyb1 are computationally indistinguishable. Let A be a probabilistic
polynomial-time (PPT) adversary against the DDH assumption. Given the DDH challenge gx, gyij , gzij , where
x, yij ← Zq, A is asked to distinguish if zij = x · yij or random values. A implicitly sets a = x, and simulates
(with the knowledge of R) the view as below:

– RO queries: SimS honestly emulates random oracle H. For queries rij , if rij /∈ R, it picks a random group
element to assign H(rij), otherwise, it assigns H(rij) = gyij .

– Outputs gzij , i ∈ [α], j ∈ [m].

Clearly, if zij = x · yij , A simulates Hyb0. Else, it simulates Hyb1 (without the knowledge of R), because
it responds to all RO queries with random group elements without knowing that the inputs belong to R or
not. Therefore, the outputs of SimS are computationally indistinguishable from the real view based on the
DDH assumption.

Corrupt Receiver. SimR(R, B = [bij]) simulates the view of corrupt R as follows: SimR chooses a← Zq

randomly and simulates the first round message as real protocol. For bij = 0, i ∈ [α], j ∈ [m], it chooses
random group elements vij and uij to simulate the view. For bij ̸= 0, i ∈ [α], j ∈ [m], it chooses random
group elements vij and sets uij = vaij to simulate the view.

We argue that the outputs of SimR are indistinguishable from the real view of R by the following hybrids:
Hyb0: R’s view in the real protocol consists of H(r′π(ij))

b and H(rπ(ij))
ab, i ∈ [α], j ∈ [m], where a, b ← Zq.

Hyb1: Same as Hyb0 except that for bij = 0, that is rπ(ij) ̸= r′π(ij), SimR chooses random group elements vij

and uij instead of H(r′π(ij))
b and H(rπ(ij))

ab.

Hyb2: Same as Hyb1 except that for bij = 1, that is rπ(ij) = r′π(ij), SimR chooses random group elements vij

and sets uij = vaij , i ∈ [α], j ∈ [m] instead of H(r′π(ij))
b and H(rπ(ij))

ab. The hybrid is the view output by
SimR.

13

We argue that the view in Hyb0 and Hyb1 are computationally indistinguishable based on the DDH

assumption. Given the DDH challenge gx, gyij , gy
′
ij , gzij , gz

′
ij , where x, yij , y

′
ij ← Zq, A is asked to distinguish

if zij = x · yij , z′ij = x · y′ij or random values. A implicitly sets b = x, and simulates (with the knowledge of
R′ and π) the view as below:

– RO queries: SimR honestly emulates random oracle H. For queries rij and r′ij , if rij /∈ R, r′ij /∈ R′, it

assigns H(rπ(ij)), H(r′π(ij)) with random group elements. If rij ∈ R, r′ij ∈ R′, it assigns H(rij) = ga
−1yij ,

H(r′ij) = gy
′
ij .

– Outputs gzij , gz
′
ij .

Clearly, if zij = x · yij , z′ij = x · y′ij , A simulates Hyb0. Else, it simulates Hyb1. In the Hyb1, SimR needs
not to know the R′ and π in these positions with bij = 0, because in these positions, it responds to all random
oracle queries with random group elements.

We argue that the view in Hyb1 and Hyb2 are computationally indistinguishable based on the DDH
assumption. Given the DDH challenge gx, gyij , gzij where x, yij ← Zq, A is asked to distinguish if zij = x · yij
or random values. A implicitly sets b = x, and simulates (with the knowledge of R′ and π for all positions
with bij = 1) the view as below:

– RO queries: SimR honestly emulates random oracle H. For queries rij , r
′
ij , if rij /∈ R, r′ij /∈ R′, it assigns

H(rij), H(r′ij) with random group elements. If rij = r′ij ∈ R, it assigns H(rij) = H(r′ij) = gyij .
– Outputs ga·zij , gzij .

Clearly, if zij = x · yij , A simulates Hyb1. Else, it simulates Hyb2. In the Hyb2, SimR needs not to know
the R′ and π in these positions with bij = 1, because in these positions, it responds to all random oracle
queries with random group elements. Therefore, the outputs of SimR are computationally indistinguishable
from the real view based on the DDH assumption.

Remark. We note that our pm-PEQT can be generalized to multi-query private equality test with permutation,
which in turn can be built from permuted OPRF [13] in a general manner.

6 Full PSU Protocol

In this section, we detail our full PSU protocol in Figure 13. The main optimization idea of our protocol is as
follows.

Offline/online. Following [12,10,15], the pre-processing of the receiver in our PSU can be done entirely
offline without involving the sender. Specifically, given an upper bound on the sender’s set size, the receiver
can locally choose parameters and perform the pre-processing. Upon learning the sender’s actual set size, the
receiver can send the parameters to the sender, and the sender can pad the same dummy items like ⊥ which
are known two both parties.

OPRF Pre-processing. We use dual structure of [12] in our PSU and prove the security based on FHE
with circuit privacy following [12]. This leads to perform a noise flooding operation on the result ciphertexts,
as was necessary in [12]. Following [10,15], we can use an OPRF to compute the items on both sides before
engaging in the PSU. This ensures that the receiver’s items Y \X are pseudorandom in the sender’s view,
preventing the sender from learning anything about the original items, even if it learns full PRF values. Thus,
our PSU can be proven security without circuit privacy and utilize more efficient FHE parameters as [10,15],
which improves our performance and adds flexibility to the parametrization.

Low circuit depth. The steps 1-6 in our full PSU protocol can be seen as the dual structure of unbalanced
PSI [12,10,15]. Therefore, the optimizations used in [12,10,15], such as batching, windowing, partitioning and
modulus switching, are suitable for the steps 1-6 to significantly reduce the depth of the homomorphic circuit.
We review the optimizations in appendix A.

14

Input: The receiver R inputs set Y ⊂ {0, 1}∗ of size n = |Y | and the sender S inputs set X ⊂ {0, 1}∗ of size
m = |X|, where m≪ n. m and n are public.
Output: The receiver outputs X ∪ Y . The sender outputs ⊥.

1. [Setup] R and S agree on the hashing, FHE scheme, mp-PEQT and OT parameters.
2. [Hashing] S hashes the set X into table Xc by Cuckoo hash, where Xc consists of mc bins and each bin has

only one item. R hashes the set Y into table YB×mc by same simple hash, where YB×mc consists of mc bins
and each bin has B items.

3. [Pre-process Y]
(a) [Partitioning] R partitions YB×mc by rows into α subtables Y1, · · · ,Yα. Each subtable has B′ = B/α

rows and m columns. Let i-th subtable be Yi = [yi,1, · · · ,yi,B′]T , i ∈ [α], where yi,k, k ∈ [B′] indicates
k-th row of Yi.

(b) [Computing coefficients] For j-th columns of i-th subtable y′
i,j = [yi,j,1, · · · , yi,j,B′]T , i ∈ [α], j ∈ [mc],

where yi,j,k, k ∈ [B′] indicates k-th item of y′
i,j , R computes the coefficients of the polynomial fi,j(y) =

ΠB′
k=1(y−yi,j,k) = a′

i,j,0+ai,j,1y+ · · ·+ai,j,B′yB′
. R computes the coefficient matrix A as follows: R chooses

a random matrix Rα×mc = [ri,j], and sets j-th columns of i-th subtable Ai,j = [ai,j,0, ai,j,1, · · · , ai,j,B′]T ,
i ∈ [α], j ∈ [mc], where ai,j,0 = a′

i,j,0 + ri,j .
(c) [Batching] For each subtable obtained from the previous step, R interprets each of its row as a vector of

length mc with elements in Zt. Then R batches each vector into β = mc/γ plaintext polynomials. As a
result, each row of i-th subtable Ai is transformed into β polynomials denoted Âi,j , i ∈ [α], j ∈ [β].

4. [Encrypt X]
(a) [Batching] S interprets Xc as a vector of length mc with items in Zt. It batches this vector into β = mc/γ

plaintext polynomials X̂1, · · · , X̂β .
(b) [Windowing] For each batched plaintext polynomial X̂, S computes the component-wise i · 2j-th powers

X̂i·2lj , for 1 ≤ i ≤ 2l − 1 and 0 ≤ j ≤ ⌈log2(B′)/l⌉.
(c) [Encrypt] S uses FHE scheme to encrypt each such power, obtaining β collections of ciphertexts Cj , j ∈ [β],

and each collection consists of the ciphertexts [ci,j], 1 ≤ i ≤ 2l − 1 and 0 ≤ j ≤ ⌈log2(B′)/l⌉. S sends these
ciphertexts to R.

5. [Computation]
(a) [Homomorphically compute encryptions of all powers] For each collection Cj , j ∈ [β], R homomorphically

computes encryptions of all powers Cj = [cj,0, · · · , cj,B′], where cj,k, 0 ≤ k ≤ B′ is a homomorphic

ciphertext encrypting X̂k
j .

(b) [Homomorphically evaluate the dot product] R homomorphically evaluates C′
i,j = CjÂi,j , i ∈ [α], j ∈ [β],

performs modulus switching on C′
i,j , i ∈ [α], j ∈ [β] to reduce sizes, and sends the ciphertexts to S.

6. [Decrypt] S gets and decrypts all ciphertexts and concatenates the results into the matrix R′
α×mc

.
7. [pm-PEQT] R inputs the matrix Rα×mc , and S inputs the permutation π = (πc, πr) and the matrix R′

α×mc
.

Both parties invoke the pm-PEQT functionality. As a result, R gets a bit matrix Bα×mc , where if bij = 1,
rπ(ij) = r′π(ij), else rπ(ij) ̸= r′π(ij), i ∈ [α], j ∈ [mc].

8. [Output] R sets a bit vector b = [bj], j ∈ [mc], where if for all i ∈ [α], bij = 0, it sets bj = 1, else bj = 0. Then,
R and S invoke the OT functionality, in which R inputs bj , j ∈ [mc] and S inputs (⊥, Xc[πc(j)]). If bj = 1, R
gets Xc[πc(j)], else, it gets ⊥. Finally, R outputs the set union Y ∪ {Xc[πc(j)]}, for all j ∈ [mc].

Fig. 13: Full PSU protocol

15

We give our communication complexity as follow. In step 1-6, the communication requires O(m log n); the
communication of the pm-PEQT requires O(m logm) (based on Permute+ Share and mp-OPRF) or O(m)
(based on DDH), since we omit the parameter α which is used to make trade-off between the computation
and communication of our PSU; the communication of OT requires O(m). In summary, the communication
of our PSU is O(m log n).

We show the correctness of our PSU protocol and prove its security as follows.

Correctness. The correctness of our PSU protocol is conditioned on the hashing succeeding, which happens
with overwhelming probability 1− 2−λ.

Theorem 4. The protocol in Figure 13, is a secure protocol for FPSU in the (Fpm-PEQT, FOT)-hybrid
model, in the presence of semi-honest adversaries, provided that the fully homomorphic encryption scheme is
IND-CPA secure with circuit privacy.

Proof. For ease of exposition, we will assume that all parameters are fixed and public. We exhibit simulators
SimS and SimR for simulating corrupt S and R respectively, and argue the indistinguishability of the produced
transcript from the real execution.

Corrupt Sender. SimS(X) simulates the view of corrupt S as follows. SimS hashes X into Xc as the real
protocol, and encrypts random values in place of the ciphertexts in step 5. Then it decrypts the ciphertexts as
R′ and chooses randomly permutation π = (πc, πr). It invokes Sim

S
pm-PEQT(R

′, π) and SimS
OT(⊥, Xc[πc(j)]),

j ∈ [mc] appends the output to the view. Now we argue that the view output by SimS is indistinguishable
from the real one. The plaintexts are randomized in the real view which is indistinguishable from the random
values in the simulated view. The FHE satisfies the circuit privacy which hides the computational circuit.
The views of the underlying pm-PEQT and OT simulator are indistinguishable. Thus, the simulation is
indistinguishable from the real view.

Corrupt Receiver. SimR (Y,X ∪ Y) simulates the view of corrupt receiver R as follows: SimR encrypts
random value in place of the ciphertexts in step 4. It chooses the random matrix R in step 3. SimR computes
X̂ = (X ∪ Y)\Y and pads X̂ with ⊥ to mc items and permutes these items randomly. For all items in X̂,
if x̂i ̸= ⊥, it sets bi = 1, else bi = 0. And then it generates Bα×mc

, for all columns bi, if bi = 1, it sets all
items in bi be 0, else, it sets one random position in bi be 1 and all other positions are 0. SimR invokes
SimR

pm-PEQT(R,B) appends the output to the view. Then, for all i ∈ [mc], it invokes SimR
OT(bi, x̂i) and

appends the output to the view.
The view generated by SimR is indistinguishable from a real view of R by the following hybrids:

Hyb0: R’s view in the real protocol.
Hyb1: Same as Hyb0 except that the ciphertexts are replaced by encrypting random values generated by
SimR. Since the fully homomorphic encryption scheme is IND-CPA secure, the simulation is indistinguishable
from the real view.
Hyb2: Same as Hyb1 except that the output of Fpm-PEQT is replaced by B generated by SimR, and SimR
runs the Fpm-PEQT simulator to produce the simulated view for R. The security of the pm-PEQT protocol
guarantees the view in simulation is computationally indistinguishable from the view in the real protocol.
Hyb3: Same as Hyb2 except that SimR runs the FOT simulator to produce the simulated view for R. The
security of OT protocol guarantees the view in simulation is computationally indistinguishable from the view
in the real protocol. The hybrid is the view output by SimR.

7 Implementation and Performance

In this section, we experimentally evaluate our two PSU protocols:

– PSUPS: PSU protocol based on FHE, OT and pm-PEQT, where pm-PEQT is built from Permute+ Share
and mp-OPRF.

– PSUDDH: PSU protocol based on FHE, OT and DDH-based pm-PEQT.

16

Parameters
Protocols

Comm. (MB)
Runtime (s), T = 1 Runtime (s), T = 4

Sender Receiver Total Sender Receiver Total|X| |Y | S →R R → S Total

210

218
PSUDDH 2.026 0.216 2.242 1.35 3.36 4.71 0.68 1.84 2.52
PSUPS 2.14 0.93 3.07 1.39 4.19 5.58 0.92 2.34 3.26

220
PSUDDH 2.223 0.428 2.651 2.27 20.15 22.42 1.09 8.03 9.32
PSUPS 2.45 1.848 4.298 2.03 20.25 22.28 1.19 9.09 10.28

222
PSUDDH 3.24 1.33 4.57 5.74 94.16 99.9 2.42 35.07 37.49
PSUPS 4.11 6.82 10.93 4.32 84.97 93.29 1.84 39.58 38.42

211

218
PSUDDH 3.063 0.436 3.499 2.35 4.33 6.68 0.89 2.07 2.96
PSUPS 3.56 1.85 5.41 2.1 4.09 6.19 1.06 2.25 3.31

220
PSUDDH 3.343 0.436 3.779 2.95 20.85 23.8 1.19 8.34 9.53
PSUPS 3.56 1.85 5.41 2.71 20.43 23.14 1.36 8.53 9.89

222
PSUDDH 4.51 1.55 6.06 6.8 91.18 97.98 2.37 34.21 36.58
PSUPS 5.69 7.64 13.33 5.15 89.1 94.25 2.12 33.99 36.11

Table 2: Communication (in MB) and runtime (in seconds) of PSUPS and PSUDDH for unbalanced sets size
(|X| ∈ {210, 211} and |Y | ∈ {218, 220, 222}) with threads T ∈ {1, 4}, and 10Gbps network bandwidth, 0.2ms
RTT.

Parameters
Protocols

Comm.
(MB)

Total running time (s)
10Gbps 100Mbps 10Mbps

|X| |Y | T = 1 T = 4 T = 1 T = 4 T = 1 T = 4

210

218

PSU [30] 326.313 102.36 96.12 121.49 115.78 359.02 359.54
PSU∗ [30] 117.99 22.01 5.8 28.55 12.67 113.15 96.84
PSU∗ [33] 600.62 37.95 10.94 71.94 49.3 498.37 505.89
Our PSUPS 3.07 5.59 3.26 10.1 7.69 10.18 7.73
Our PSUDDH 2.242 4.71 2.52 8.53 5.89 8.48 5.86

219

PSU [30] 683.001 384.55 371.21 431.45 417.35 931.05 959.75
PSU∗ [30] 117.991 34.72 9.08 42.01 16.02 125.86 100.05
PSU∗ [33] 2470.1 112.41 31.8 233.79 208.04 2080.19 2077.88
Our PSUPS 3.07 12.03 5.97 16.64 10.42 16.55 10.54
Our PSUDDH 2.242 12.01 5.49 15.06 8.67 14.77 8.52

211

218

PSU [30] 326.386 102.31 95.99 121.63 115.73 359.11 361.03
PSU∗ [30] 235.966 30.88 8.13 47.55 24.99 220.02 200.07
PSU∗ [33] 600.62 37.99 10.67 71.84 49.23 505.8 505.72
Our PSUPS 5.41 6.9 3.31 11.46 8.85 10.64 8.7
Our PSUDDH 3.499 6.67 2.96 10.18 7.05 10.19 6.79

219

PSU [30] 683.001 385.66 372.01 429.82 416.11 932.46 937.55
PSU∗ [30] 237.864 43.33 11.79 59.98 28.34 232.97 200.176
PSU∗ [33] 2470.1 112.35 31.7 232.72 207.87 2081.05 2078.27
Our PSUPS 5.41 10.58 5.18 15.54 10.59 15.33 10.34
Our PSUDDH 3.499 10.51 4.86 14.16 8.88 14.09 8.57

Table 3: Comparisons of communication (in MB) and runtime (in seconds) between PSU [30], PSU∗ [30],
PSU∗ [33], PSUPS and PSUDDH for unbalanced sets size (|X| ∈ {210, 211}, |Y | ∈ {218, 219}) with threads
T ∈ {1, 4}, and 10Gbps bandwidth, 0.2ms RTT; 100Mbps and 10Mbps bandwidth, 80ms RTT. The best
results are marked in blue.

We first give our experimental environment, then compare our protocols with the state-of-the-art works
in terms of communication and runtime on different network environment. Our source code is available upon
request.

17

105 106

101

102

103

The size of large set Y

C
o
m
m
u
n
ic
a
ti
o
n
(i
n
M
B
),
|X
|=

2
1
0

PSUDDH

PSUPS

PSU [30]

PSU∗ [30]

PSU∗ [33]

101 102 103 104

101

102

103

The network bandwidth (Mbps)

R
u
n
ti
m
e
(s
),
|X
|=

2
1
0
,
|Y
|=

2
1
9
,
T

=
1

PSUDDH

PSUPS

PSU [30]

PSU∗ [30]

PSU∗ [33]

105 106

101

102

The size of large set Y

R
u
n
ti
m
e
(s
),
|X
|=

2
1
0
,
T

=
1
,
1
0
G
b
p
s PSUDDH

PSUPS

PSU [30]

PSU∗ [30]

PSU∗ [33]

105 106

101

102

103

The size of large set Y

R
u
n
ti
m
e
(s
),
|X
|=

2
1
0
,
T

=
4
,
1
0
M
b
p
s

PSUDDH

PSUPS

PSU [30]

PSU∗ [30]

PSU∗ [33]

Fig. 14: Comparisons of communication (in MB) and runtime (in seconds) between PSU [30], PSU∗ [30],
PSU∗ [33], PSUDDH and PSUPS

7.1 Experimental Setup

We run our experiments on a single Intel Core i7-9700 CPU @ 3.00GHz with 8 physical cores and 8GB of
RAM. We simulate network latency and bandwidth by using the Linux tc command. Specifically, we consider
the following LAN setting, where the two parties are connected via a local host with 10Gbps throughput, and
a 0.2ms round-trip time (RTT). We also consider two WAN settings with 100Mbps and 10Mbps bandwidth,
each with an 80ms RTT.

7.2 Implementation Details

We use the FHE scheme in [20], Permute+ Share in [35], mp-OPRF in [9] and OT extension in [29]. For
concrete analysis, we set the computational security parameter κ = 128 and the statistical security parameter
λ = 40. Our implementation is written in C++, and we use the following libraries in our implementation.

– FHE: SEAL https://github.com/microsoft/SEAL and APSI https://github.com/microsoft/APSI
– Permute+ Share: https://github.com/dujiajun/PSU
– mp-OPRF: https://github.com/peihanmiao/OPRF-PSI
– OT: https://github.com/osu-crypto/libOTe

7.3 Performance Comparisons

In this section, we list the experimental results of our protocols in Table 2. Then, we compare our PSU
protocols with PSU [30], PSU∗ [30] and PSU∗ [33] in terms of runtime and communication, and the results
are reported in Table 3 and Figure 14.

18

https://github.com/microsoft/SEAL
https://github.com/microsoft/APSI
https://github.com/dujiajun/PSU
https://github.com/peihanmiao/OPRF-PSI
https://github.com/osu-crypto/libOTe

We stress that all reported costs are computed in the same environment. For comparisons of other
works [30,33], we use the parameters recommended in their open-source code and fix the item length to
128-bit.

– PSU and PSU∗ [30]: https://github.com/dujiajun/PSU
– PSU∗ [33]: https://github.com/osu-crypto/PSU

Communication comparison. Our PSUDDH achieves the lowest communication among all protocols [30,33]
in unbalanced case. For set sizes (|X| = 210, |Y | = 219), the communication of our PSUDDH requires 2.242
MB, which is about 300× lower than PSU [30] requiring 683 MB, about 50× lower than PSU∗ [30] requiring
117.9MB and 1100× lower than PSU∗ [33] requiring 2470 MB. As shown in Figure 14, the larger difference
between two set sizes, the better our protocols perform.

Runtime comparison. Our PSUPS and PSUDDH are faster than PSU [30,33] in unbalanced case. As shown
in Figure 14, the larger difference between two set sizes, the better our protocols perform. For set sizes
(|X| = 210, |Y | = 219) with T = 1 thread in LAN setting, the runtime of our PSUDDH requires 12 seconds,
while PSU [30] requires 384.55 seconds, about 30× improvement, PSU∗ [30] requires 34.72 seconds, about
2.8× improvement, PSU∗ [33] requires 112.41 seconds, about 9× improvement. The performance of our
protocols improves significantly in the case of low bandwidth. For set sizes (|X| = 210, |Y | = 219) with
T = 4 thread in 10Mbps, our PSUDDH requires 8.52 seconds, while PSU [30] requires 959.75 seconds, about
110× improvement, PSU∗ [30] requires 100.05 seconds, about 11× improvement, PSU∗ [33] requires 2077.88
seconds, about 240× improvement.

References

1. M. Blanton and E. Aguiar, “Private and oblivious set and multiset operations,” in 7th ACM Symposium on
Information, Compuer and Communications Security, ASIACCS, 2012, pp. 40–41.

2. D. Boneh, “The decision diffie-hellman problem,” in Algorithmic Number Theory, 1998, pp. 48–63.
3. F. Bourse, R. D. Pino, M. Minelli, and H. Wee, “FHE circuit privacy almost for free,” in Advances in Cryptology -

CRYPTO 2016, 2016, pp. 62–89.
4. Z. Brakerski, C. Gentry, and S. Halevi, “Packed ciphertexts in lwe-based homomorphic encryption,” in Public-Key

Cryptography - PKC 2013, 2013, pp. 1–13.
5. Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(leveled) fully homomorphic encryption without bootstrapping,”

in Innovations in Theoretical Computer Science 2012, 2012, pp. 309–325.
6. M. Burkhart, M. Strasser, D. Many, and X. A. Dimitropoulos, “SEPIA: privacy-preserving aggregation of

multi-domain network events and statistics,” in 19th USENIX Security Symposium, 2010, pp. 223–240.
7. A. Cerulli, E. D. Cristofaro, and C. Soriente, “Nothing refreshes like a repsi: Reactive private set intersection,” in

Applied Cryptography and Network Security ACNS 2018, pp. 280–300.
8. M. Chase, E. Ghosh, and O. Poburinnaya, “Secret-shared shuffle,” in Advances in Cryptology - ASIACRYPT

2020, pp. 342–372.
9. M. Chase and P. Miao, “Private set intersection in the internet setting from lightweight oblivious PRF,” in

Advances in Cryptology - CRYPTO 2020, pp. 34–63.
10. H. Chen, Z. Huang, K. Laine, and P. Rindal, “Labeled PSI from fully homomorphic encryption with malicious

security,” in Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, CCS
2018, pp. 1223–1237.

11. H. Chen, K. Laine, and R. Player, “Simple encrypted arithmetic library - SEAL v2.1,” in Financial Cryptography
and Data Security - FC 2017, 2017, pp. 3–18.

12. H. Chen, K. Laine, and P. Rindal, “Fast private set intersection from homomorphic encryption,” in Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications Security, CCS 2017, pp. 1243–1255.

13. Y. Chen, M. Zhang, C. Zhang, and M. Dong, “Private set operations from multi-query reverse private membership
test,” Cryptology ePrint Archive, Paper 2022/652, 2022, https://eprint.iacr.org/2022/652. [Online]. Available:
https://eprint.iacr.org/2022/652

14. M. Ciampi and C. Orlandi, “Combining private set-intersection with secure two-party computation,” in Security
and Cryptography for Networks - 11th International Conference, SCN 2018, 2018, pp. 464–482.

19

https://github.com/dujiajun/PSU
https://github.com/osu-crypto/PSU
https://eprint.iacr.org/2022/652
https://eprint.iacr.org/2022/652

15. K. Cong, R. C. Moreno, M. B. da Gama, W. Dai, I. Iliashenko, K. Laine, and M. Rosenberg, “Labeled PSI
from homomorphic encryption with reduced computation and communication,” in CCS ’21: 2021 ACM SIGSAC
Conference on Computer and Communications Security, 2021, pp. 1135–1150.

16. A. Davidson and C. Cid, “An efficient toolkit for computing private set operations,” in Information Security and
Privacy - 22nd Australasian Conference, ACISP 2017, 2017, pp. 261–278.

17. L. Devroye and P. Morin, “Cuckoo hashing: Further analysis,” Inf. Process. Lett., vol. 86, no. 4, pp. 215–219, 2003.
18. C. Dong, L. Chen, and Z. Wen, “When private set intersection meets big data: an efficient and scalable protocol,”

in 2013 ACM SIGSAC Conference on Computer and Communications Security, CCS’13, 2013, pp. 789–800.
19. B. H. Falk, D. Noble, and R. Ostrovsky, “Private set intersection with linear communication from general

assumptions,” in Proceedings of the 18th ACM Workshop on Privacy in the Electronic Society, pp. 14–25.
20. J. Fan and F. Vercauteren, “Somewhat practical fully homomorphic encryption,” IACR Cryptol. ePrint Arch., p.

144, 2012.
21. D. Fotakis, R. Pagh, P. Sanders, and P. G. Spirakis, “Space efficient hash tables with worst case constant access

time,” in STACS 2003, ser. Lecture Notes in Computer Science, vol. 2607, pp. 271–282.
22. K. B. Frikken, “Privacy-preserving set union,” in Applied Cryptography and Network Security, ACNS 2007, 2007,

pp. 237–252.
23. G. Garimella, P. Mohassel, M. Rosulek, S. Sadeghian, and J. Singh, “Private set operations from oblivious

switching,” in Public-Key Cryptography - PKC 2021, pp. 591–617.
24. C. Gentry, S. Halevi, and N. P. Smart, “Homomorphic evaluation of the AES circuit,” in Advances in Cryptology -

CRYPTO 2012, 2012, pp. 850–867.
25. R. Gilad-Bachrach, N. Dowlin, K. Laine, K. E. Lauter, M. Naehrig, and J. Wernsing, “Cryptonets: Applying

neural networks to encrypted data with high throughput and accuracy,” in Proceedings of the 33nd International
Conference on Machine Learning, ICML 2016, New York City, NY, USA, June 19-24, 2016, 2016, pp. 201–210.

26. C. Hazay and M. Venkitasubramaniam, “Scalable multi-party private set-intersection,” in Public-Key Cryptography
- PKC 2017, ser. Lecture Notes in Computer Science, vol. 10174, pp. 175–203.

27. K. Hogan, N. Luther, N. Schear, E. Shen, D. Stott, S. Yakoubov, and A. Yerukhimovich, “Secure multiparty
computation for cooperative cyber risk assessment,” in IEEE Cybersecurity Development, SecDev 2016, pp. 75–76.

28. Y. Huang, D. Evans, and J. Katz, “Private set intersection: Are garbled circuits better than custom protocols?”
in 19th Annual Network and Distributed System Security Symposium, 2012.

29. Y. Ishai, J. Kilian, K. Nissim, and E. Petrank, “Extending oblivious transfers efficiently,” in Advances in Cryptology
- CRYPTO 2003, ser. Lecture Notes in Computer Science, 2003.

30. Y. Jia, S. Sun, H. Zhou, J. Du, and D. Gu, “Shuffle-based private set union: Faster and more secure,” IACR
Cryptol. ePrint Arch., p. 157, 2022.

31. L. Kissner and D. X. Song, “Privacy-preserving set operations,” in Advances in Cryptology - CRYPTO 2005, 2005,
pp. 241–257.

32. V. Kolesnikov, N. Matania, B. Pinkas, M. Rosulek, and N. Trieu, “Practical multi-party private set intersec-
tion from symmetric-key techniques,” in Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2017, pp. 1257–1272.

33. V. Kolesnikov, M. Rosulek, N. Trieu, and X. Wang, “Scalable private set union from symmetric-key techniques,”
in Advances in Cryptology - ASIACRYPT 2019, pp. 636–666.

34. A. K. Lenstra and T. Voss, “Information security risk assessment, aggregation, and mitigation,” in Information
Security and Privacy: 9th Australasian Conference, ACISP, 2004, pp. 391–401.

35. P. Mohassel and S. S. Sadeghian, “How to hide circuits in MPC an efficient framework for private function
evaluation,” in Advances in Cryptology - EUROCRYPT 2013, pp. 557–574.

36. R. Pagh and F. F. Rodler, “Cuckoo hashing,” in Algorithms - ESA 2001, pp. 121–133.
37. B. Pinkas, M. Rosulek, N. Trieu, and A. Yanai, “Spot-light: Lightweight private set intersection from sparse OT

extension,” in Advances in Cryptology - CRYPTO 2019, pp. 401–431.
38. ——, “Spot-light: Lightweight private set intersection from sparse OT extension,” in Advances in Cryptology -

CRYPTO 2019, pp. 401–431.
39. B. Pinkas, T. Schneider, O. Tkachenko, and A. Yanai, “Efficient circuit-based PSI with linear communication,” in

Advances in Cryptology - EUROCRYPT 2019, pp. 122–153.
40. B. Pinkas, T. Schneider, C. Weinert, and U. Wieder, “Efficient circuit-based PSI via cuckoo hashing,” in Advances

in Cryptology - EUROCRYPT 2018, 2018, pp. 125–157.
41. B. Pinkas, T. Schneider, and M. Zohner, “Faster private set intersection based on OT extension,” in Proceedings

of the 23rd USENIX Security Symposium, 2014, pp. 797–812.
42. ——, “Scalable private set intersection based on OT extension,” ACM Trans. Priv. Secur., no. 2, pp. 7:1–7:35,

2018.

20

43. ——, “Scalable private set intersection based on OT extension,” ACM Trans. Priv. Secur., pp. 7:1–7:35, 2018.
44. M. O. Rabin, “How to exchange secrets with oblivious transfer,” IACR Cryptol. ePrint Arch., p. 187, 2005.
45. A. C. D. Resende and D. de Freitas Aranha, “Faster unbalanced private set intersection in the semi-honest setting,”

J. Cryptogr. Eng., no. 1, pp. 21–38, 2021.
46. P. Rindal and M. Rosulek, “Improved private set intersection against malicious adversaries,” in Advances in

Cryptology - EUROCRYPT 2017, pp. 235–259.
47. N. P. Smart and F. Vercauteren, “Fully homomorphic SIMD operations,” Des. Codes Cryptogr., pp. 57–81, 2014.
48. C. Zhang, Y. Chen, W. Liu, M. Zhang, and D. Lin, “Optimal private set union from multi-query reverse private

membership test,” Cryptology ePrint Archive, Report 2022/358, 2022, https://ia.cr/2022/358.

A Optimization techniques

Our PSU use the dual structure of unbalanced PSI [12,10,15]. Thus, we can take advantage of same optimization
techniques of FHE following [12,10,15], such as batching, windowing, partitioning and modulus switching, to
significantly reduce the depth of the homomorphic circuit. We review the optimization techniques as follows.

Batching. Batching is a well-known and powerful technique in fully homomorphic encryption to enable
Single Instruction, Multiple Data (SIMD) operations on ciphertexts [24,4,47,11,25]. The batching technique
allows the receiver to operate on γ items from the sender simultaneously, resulting in γ-fold improvement in
both the computation and communication. As an example, The sender groups its items into vectors of length
γ, encrypts them, and sends m/γ ciphertexts to the receiver. Upon seeing each ciphertext ci, the receiver
samples a vector ri = (ri1, · · · , riγ) ∈ (Zt\{0})n at random, homomorphically computes ri +Πy∈Y (ci − y),
and sends it back to the sender. Note that these modifications do not affect correctness or security, since the
exact same proof can be applied per each vector coefficient.

Windowing. We use a standard windowing technique [12], to lower the depth of the circuit. In our PSU,
the receiver needs to evaluate on the sender’s encrypted data. If the receiver only has an encryption
c← FHE.Enc(x), it samples a random r in Zt\{0} and homomorphically computes r +Πyi∈Y (c− yi). The
receiver computes at worst the product xn, which requires a circuit of depth ⌈log2 n⌉. To see this, we write

r +Πyi∈Y (x− yi) = r + a0 + a1x+ · · ·+ an−1x
n−1 + xn.

If the sender sends encryptions of extra powers of x, the receiver uses these powers to evaluate the same
computation with a much lower depth circuit. More precisely, for a window size of l bits, the sender computes

and sends cij = FHE.Enc(xi·2lj) to the receiver for all 1 ≤ i ≤ 2l − 1, 0 ≤ j ≤ ⌊log2(n)/l⌋. For example, when

l = 1, the receiver sends encryptions of x, x2, · · · , x2⌊log2 n⌋
. This technique results in a significant reduction

in the circuit depth.

Partitioning. Another way to reduce circuit depth is to let the receiver partition its set into α sub-
sets [12,10,15]. In our PSU, the receiver needs to compute encryptions of all powers x, · · · , xn for each of the
sender’s items x. With partitioning, the receiver only needs to compute encryptions of x, · · · , xn/α, which it
can reuse for each of the α partitions.

Modulus switching. We employ modulus switching as [12,10,15,5] to effectively reduce the size of the
response ciphertexts. Modulus switching is a well-known operation in lattice-based fully homomorphic
encryption schemes. It is a public operation, which transforms a ciphertext with encryption parameter q into
a ciphertext encrypting the same plaintext, but with a smaller parameter q′ < q. Note that the security of
the protocol is trivially preserved as long as the smaller modulus q′ is determined at setup.

21

https://ia.cr/2022/358

	Fast Unbalanced Private Set Union from Fully Homomorphic Encryption

