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Abstract. Private set union (PSU) allows two parties to compute the union of their sets without
revealing anything else. It has found numerous applications in practice. Recently, some computationally
efficient PSU protocols have been designed for the balanced case, but a limitation with these protocols
is the communication complexity, which scales (super)-linear in the size of the larger set. This is of
particular concern when performing PSU in the unbalanced case, where one party is a constrained
device holding a small set, and another is a large service provider holding a large set.
In this work, we propose a generic construction of unbalanced PSU from leveled fully homomorphic
encryption (FHE) and a newly introduced protocol called permuted matrix Private EQuality Test
(pm-PEQT). By instantiating the generic construction, we obtain two secure and fast unbalanced PSU
protocols, whose communication complexity is linear in the size of the smaller set, and logarithmic in
the larger set.
We implement our protocols and compare them with the state-of-the-art PSU. Experiments show that
our protocols are more efficient than all previous protocols in the unbalanced case. Especially, the larger
difference between the size of two sets, the better our protocols perform. For input sets of size 210

and 220 with 128-bit length items, our PSU takes 2.767 MB of communication to compute the union.
Compared with the state-of-the-art PSU proposed by Zhang et al. [ZCL+22], there are 37× reduction
in communication and roughly 10− 35× reduction in computational overhead depending on network
environments.

1 Introduction

PSU is a cryptographic protocol that allows two parties, a sender and a receiver with respective input sets X
and Y , to compute the union X ∪Y , without revealing anything else. It has become considerably efficient and
has been deployed in practice, such as cyber risk assessment [LV04, HLS+16, KRTW19], privacy-preserving
data aggregation [BSMD10], and private ID [GMR+21] etc. However, most PSU [KS05, Fri07, BA12, DC17,
KRTW19, GMR+21] are designed in the balanced case. These protocols typically perform only marginally
better when one of the sets is much smaller than the other. In particular, their communication cost scales at
least linear in the size of the larger set.

In most real world applications, the sender’s set might be much smaller than the receiver’s, such as the
sender (client) might be a mobile device with limited battery, computing power, and storage, whereas the
receiver (server) is a high-end computing device. Meanwhile, the bandwidth between two parties might be
limited. As shown in [ZCL+22, JSZ+22, KRTW19], blacklist aggregation is a typical application of PSU.
According to [RMY20], they collect around 176 million blacklisted IP addresses over 23,483 autonomous
systems, where the size of IP blacklist varies greatly (large blacklists listing more than 500,000 IP addresses
and small blacklists listing fewer than 1,000 IP addresses). Therefore, the aggregation of IP blacklists with
large size differences constitutes a representative use case of unbalanced PSU. However, most existing PSU
protocols are not very efficient in dealing with the unbalanced case.

Over the last decade, there has been a significant amount of work on private set intersection (PSI) including
both balanced [PRTY19a, PSTY19, CO18, FNO19, CCS18, HV17, RR17, PSZ18, PSZ14, DCW13, HEK12,
KMP+17] and unbalanced case [CLR17, PSWW18, CHLR18, CMdG+21, RdFA21], but little attention has



been paid on PSU, especially in the unbalanced case. Recently, Jia et al. [JSZ+22] propose an unbalanced
PSU∗4 that uses a shuffling technique, but their PSU∗ suffers from two primary drawbacks. First, their PSU∗

does not satisfy standard security, since it leaks the information of the intersection size to the sender. Such
information leakage could be critical for PSU. Consider the extreme case, in which the sender can get the
intersection item if it inputs a one-element set. Second, the communication complexity of their PSU∗ is linear
in the size of the larger set. Another closely related work is that of Chen et al. [CZZD22], which shows how to
tweak FHE-based PSI [CLR17] to an unbalanced PSU protocol. As noted by the authors, their PSU protocol
only serves as a proof of concept since it reveals intersection size to the sender, and straightforward application
of the optimization tricks due to [CLR17] will compromise the semi-honest security of the receiver. They
left the standard security and efficient FHE-based PSU protocol in the unbalanced setting as a challenging
problem.

Motivated by the above discussions, we ask the following question:
Is it possible to design a secure and fast unbalanced PSU protocol which has a communication overhead

linear in the smaller set and logarithmic in the larger set?

1.1 Contributions

In this paper, we give an affirmative answer to the above question. Our contributions are summarized as
follows:

1. We first propose a basic unbalanced PSU protocol based on leveled FHE. Then, we use an array of
optimization techniques following [CLR17, CHLR18, CMdG+21] to optimize the basic protocol, while
the optimization might leak some information of the intersection.

2. We introduce a new cryptographic protocol named permuted matrix private equality test (pm-PEQT)
to avoid the information leakage. Then, we give two constructions of pm-PEQT. The first is based on
Permute + Share and multi-point oblivious pseudorandom function (mp-OPRF). The second is based on
the decisional Diffie-Hellman (DDH) assumption.

3. We present a generic construction of unbalanced PSU in the semi-honest model from leveled FHE and
pm-PEQT. By instantiating the generic construction, we obtain two secure and fast unbalanced PSU
protocols whose communication complexity linear in the size of the smaller set, and logarithmic in the
larger set. Our protocols are particularly powerful when the set size of one party is much larger than that
of the other.

4. We implement our PSU protocols and compare them with the state-of-the-art PSU. Experiments show that
our protocols are more efficient than all previous protocols in the unbalanced case. For unbalanced sets size
(|X| = 210, |Y | = 220) with 128-bit length items, our PSU protocol takes 2.767 MB of communication and
about 18 seconds of computation to compute the union with a single thread in LAN settings. Compared
with the state-of-the-art PSU [ZCL+22], there are roughly 37× reduction in communication and 21×
reduction in computational overhead. In particular, the performance of our PSU protocols improve
significantly in the case of low bandwidth. Our PSU requires 24.75 seconds which is about 35× faster
than PSU [ZCL+22] in 1Mbps bandwidth.

1.2 Related Works

We revisit recent PSU protocols [KRTW19, GMR+21, JSZ+22, ZCL+22] with good efficiency. Table 1 provides
a brief comparison of our protocols with the prior highest-performing PSU protocols. The performance results
and comparisons are reported in Section 7.

Kolesnikov et al. [KRTW19] propose a PSU protocol based on the reverse private membership test
(RPMT). In RPMT, a sender with input x interacts with a receiver holding a set Y , and the receiver can
learn a bit indicating whether x ∈ Y , while the sender learns nothing. Then, the receiver runs OT with the
sender to obtain {x} ∪ Y . For n = |X| = |Y |, the protocol runs RPMT n times independently and requires

4 In this paper, we use PSU∗ to indicate a PSU protocol with information leakage.
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Protocols Communication Computation Security
PSU∗ [KRTW19] O(n log n) O(n log n) Leaky
PSU [GMR+21] O(n log n) O(n log n) Standard
PSU [ZCL+22] O(n) O(n) Standard
PSU [JSZ+22] O(n log n) O(n log n) Standard
PSU∗ [JSZ+22] O(n+m logm) O(n) Leaky

Our PSU O(m log n) O(n) Standard
Table 1: Comparisons of PSU in the semi-honest setting. n and m denote the size of the large set and the
small set, respectively. The information of some subsets holding the intersection items is leaked to the receiver
in PSU∗ [KRTW19]. The information of the intersection size is leaked to the sender in PSU∗ [JSZ+22].

O(n2) communication and O(n2 log2 n) computation. By using the bucketing technique, two parties hash their
sets in β bins and each bin consists of ρ items. A large (n, n)-PSU5 is divided into β small (ρ, ρ)-PSU. The
complexity is reduced to O(n log n) communication and O(n log n log log n) computation. However, [JSZ+22]
points out that the bucketing technique leaks the information to R. More precisely, R learns that some
subsets (size ρ) hold the intersection items with high probability.

Garimella et al. [GMR+21] give a PSU protocol based on permuted characteristic functionality which
in turn can be built from oblivious switching. Simply speaking, a sender holding a set X interacts with a
receiver holding a set Y . As a result, the sender gets a random permutation π and the receiver obtains a
vector e ∈ {0, 1}n, where if ei = 1, xπ(i) ∈ Y , else xπ(i) /∈ Y . Then, the receiver runs OT protocol with the
sender to obtain the set union. Their protocol requires O(n log n) complexity.

Zhang et al. [ZCL+22] recently give a generic framework of PSU based on the multi-query reverse private
membership test (mq-RPMT). In mq-RPMT, a sender holding a set X interacts with a receiver holding
a set Y . As a result, the sender gets nothing and the receiver gets b ∈ {0, 1}n, satisfying that bi = 1 if
and only if xi ∈ Y . Then, two parties runs OT protocol to let the receiver get the set union. To construct
mq-RPMT, they combine the oblivious key-value store (OKVS) and the vector decryption-then-matching
(VODM). By instantiating OKVS and VODM, they obtain two concrete mq-RPMT. The first is based on
the symmetric-key encryption and general 2PC. The second is based on the re-randomizable public-key
encryption. Both constructions achieve O(n) complexity.

Jia et al. [JSZ+22] propose a PSU with the shuffling technique. Simply speaking, a receiver hashes
a set Y into Yc by Cuckoo hash and a sender hashes a set X by the simple hash. The receiver shuffles
Yc by a permutation π chosen by the sender. The sender and the receiver obtain shuffled shares {sπ(i)}
and {s′π(i)}, respectively, where Yc[π(i)] = sπ(i) ⊕ s′π(i). Two parties run mp-OPRF to compute all PRF
values and the sender sends its PRF values to the receiver. The receiver tests which items belong to the
union and runs OT with the sender to get the union. Their PSU requires O(n log n) communication and
O(n log n) computation. They also consider the unbalanced case and give an unbalanced PSU∗ which requires
O(n+m logm) communication and O(n) computation.

2 Overview of Our Techniques

We provide the high-level intuition for our unbalanced PSU protocol. First, we propose a basic PSU
protocol based on leveled FHE. Our basic protocol is easy to understand, but it is not efficient due to the
deep depth of homomorphic circuits. Then, we try to improve the basic PSU by applying optimization
techniques following [CLR17, CHLR18, CMdG+21] to reduce the depth of homomorphic circuits. However,
straightforward application leaks the information of the intersection. To remedy the leakage, we introduce a
new cryptographic protocol called permuted matrix private equality test (pm-PEQT). Finally, we manage

5 In this paper, we use (m,n)-PSU to indicate a PSU protocol where the sender’s set size is m and the receiver’s set
size is n.
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to give a generic construction of standardly secure unbalanced PSU from leveled FHE and pm-PEQT. By
instantiating the generic construction, we obtain a secure and fast unbalanced PSU protocol. We describe the
ideal functionality of PSU in Figure 1.

Parameters: Set sizes m and n are public.
Functionality:

1. Wait for an input X = {x1, · · · , xm} ⊆ {0, 1}∗ from the sender, and an input Y = {y1, · · · , yn} ⊆ {0, 1}∗
from the receiver.

2. Give output X ∪ Y to the receiver.

Fig. 1: Ideal functionality Fm,nPSU for private set union

2.1 Notation

We denote the parties in our PSU as the sender (S) and the receiver (R), and their respective input sets
as X and Y with m = |X| � n = |Y |. For n ∈ N, [n] denotes the set {1, 2, · · · , n}. 1λ denotes the string
of λ ones. We use κ and λ to indicate the computational and statistical security parameters, respectively.
If S is a set, s← S indicates sampling s from S at random. We denote vectors by lower-case bold letters,
e.g., s. We denote matrices by upper-case bold letters, e.g., S. We write S = [sij ] to denote each element of
S, where sij denotes the element in i-th row and j-th column. For a permutation π over n items, we write
{sπ(1), · · · , sπ(n)} to denote π({s1, · · · , sn}), where sπ(i) indicates the i-th element after the permutation. For
a column permutation πc (or, row permutation πr) on a matrix S = [sij ], we write Sπc (or, Sπr) to denote
that πc(S) = [sπc(ij)] (or, πr(S) = [sπr(ij)]) is the permuted matrix, where sπc(ij) (or, sπr(ij)) indicates the
i-th row and j-th column element after the permutation.

2.2 Our Basic PSU Protocol

Our starting point is the FHE-based basic PSI protocol [CLR17]. New, we review the protocol as follows.

Basic PSI protocol of Chen et al revisit. Chen et al. [CLR17] give a basic unbalanced PSI protocol,
in which R holding an item y interacts with S holding a large set X, and R can get the intersection
{y} ∩ X. Informally, R encrypts its item y, and sends the ciphertext c ← FHE.Enc(y) to S; S chooses
random non-zero plaintexts r and homomorphically computes c′ ← FHE.Enc(r · f(y)), where the polynomial
f(x) = Πxi∈X(x− xi), and then returns c′ to R; R decrypts c′: if rf(y) = 0, it knows y ∈ X and outputs
{y}, else, it gets a random value and outputs ∅. The protocol requires communication linear in the smaller
set, achieving optimal communication that is on par with the naive solution, but it has high computational
costs and deep homomorphic circuits, since the degree of f(x) is related to the large set size.

Basic PSU protocol. The functionality adjustment (PSI → PSU) doesn’t seem to be straightforward,
since the randomized product rf(y) = 0 leaks the information of the intersection to the receiver. The main
challenge is to find a new randomization method that hides the information of the intersection and admits
to check which items belong to the union. We solve the problem by adding a random value r to randomize
the polynomial value. In this way, the randomized value r + f(y) leaks nothing to R. Meanwhile, R sends

the result r + f(y) to S and S checks whether the item y belongs to the union by verifying r
?
= r + f(y)

and gets the union by OT protocol. In order to let the receiver output the results (requirements of the ideal
functionality of PSU), we consider the dual structure of [CLR17]. In our PSU, the receiver holding a large set
interacts with the sender holding a small set and gets the union.
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S(X) R(y)

y c = Enc(y)
cx1 x2 · · · xn

f f(x) = Πn
i=1(x− xi)

c′ = Enc(r · f(y)) c′
r′ = Dec(c′)

?
= 0

S(X) R(Y )
H CH

ym· · ·y2y1

ci = Enc(yi)

cix11 x12 · · · x1m

· · · · · · · · · · · ·
f11

fα1

B′

B′
B

α

· · · · · · · · · · · ·

xB1 xB2 · · · xBm

e.g., f11(x) = ΠB′

i=1(x− xi1)

c′ij = Enc(rij · fij(y))

c′ij
r′11 r′12 · · · r′1m
· · · · · · · · · · · ·

r′α1 r′α2 · · · r′αm

r′ij = Dec(c′ij)
?
= 0

Fig. 2: The basic PSI and its optimizations [CLR17]

We start with a special case. Suppose that S has only one item x and R holding a large set Y gets the
resulting union {x} ∪ Y . We show our basic unbalanced PSU based on leveled FHE as follows: S uses its
public key to encrypt the item x and sends the ciphertext c = FHE.Enc(x) to R; R chooses random non-zero
value r, and homomorphically computes c′ = FHE.Enc(r+ f(x)), where the polynomial f(x) = Πyi∈Y (x− yi)
and returns the new ciphertext to S; S decrypts c′ and gets the plaintext r′ = r + f(x), then it returns r′

back to R; R checks r′
?
= r, if r′ = r, it sets b = 0 indicating x ∈ Y , else b = 1. Finally, R invokes the OT

protocol with S to obtain the union {x}∪Y . We give in detail the construction of the basic PSU in Figure 13.
The key different step between our basic PSU and the basic PSI [CLR17] is using different randomization

methods. We compute the sum of a random value r and the polynomial value f(x). S obtains the random
plaintext r′ = r + f(x) which leaks nothing and R getting r′ = r + f(x) can checks whether r′ = r or not. If
r′ = r, x ∈ Y , else x /∈ Y . Then R can get the union by OT protocol. This will leak some information of
x /∈ Y , but such leakage does not cause any harm to the PSU, since the PSU protocol releases that value at
last.

2.3 Optimized PSU with Leakage

We first review optimized unbalanced PSI as follows. Chen et al. [CLR17] use an array of optimization
techniques such as hashing, batching, windowing, partitioning, and modulus switching to optimize their basic
protocol and obtain a fast unbalanced PSI. Informally, R inserts the small set Y into Cuckoo hash table Yc
by Cuckoo hash and each bin Yc[i] consists of one item. S inserts the large set X into hash table Xb by simple
hash, where the i-th bin indicates Xb[i] and each bin consists of B items6. S partitions each bin Xb[i] into α
subsets and each subset consists of B′ = B/α items. Therefore, the large (n,m)-PSI is divided into many
small (B′, 1)-PSI. For each small PSI, S encodes each subset (B′ items) into a polynomial and randomizes it

6 In the PSI [CLR17], they use cuckoo hashing with no stash and three simple hash functions. For each same bins in
hash tables Yc and Xb, if the item Yc[i] ∈ Xb[i], that is, the item belongs to the intersection.
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S(x) R(Y )

xc = Enc(x)
c yn· · ·y2y1

ff(x) = Πn
i=1(x− yi)

c′ = Enc(r + f(x))c′r′ = Dec(c′)

r′
r′ = r + f(x)

?
= r

S(X) R(Y )
CH H

x1 x2 · · · xm
cj = Enc(xj), j ∈ [m]

cj
y1m· · ·y12y11

· · ·· · ·· · ·· · ·
f1m

B′

· · ·· · ·· · ·· · ·

yBm· · ·yB2yB1
fαm

B′

e.g., f1m(x) = ΠB′

i=1(x− yim)

c′ij = Enc(rij + fij(xj))
r′ij = Dec(c′ij)

c′ij
r′1m· · ·r′12r′11
· · ·· · ·· · ·· · ·

r′αm· · ·r′α2r′α1

r1m· · ·r12r11

· · ·· · ·· · ·· · ·
rαm· · ·rα2rα1

B

α

Fig. 3: The basic PSU (omit OT) and its optimizations

by multiplying a random value, then it homomorphically computes and sends the new ciphertexts to R. R
then decrypts the ciphertexts and gets the set intersection. Since the degree of the polynomial is related to
the small subset size B′, each small PSI has a low homomorphic circuit. We review the basic PSI protocol
and its optimizations in Figure 2.

According to the requirements of the ideal functionality of PSU, we consider the dual structure of [CLR17].
In our PSU, the receiver holds a large set Y and the sender holds a small set X. It is tempting to use the
same optimization techniques [CLR17] to improve our basic PSU. Roughly, S hashes the small set X into
Xc by Cuckoo hash and each bin Xc[i] consists of one item. R hashes the large set Y into hash table Yb
and each bin Yb[i] consists of B items. Then R partitions each bin Yb[i] into α subsets and each subset
consists of B′ = B/α items. The large (m,n)-PSU is divided into many small (1, B′)-PSU. For each small
PSU, R encodes each subset (B′ items) into a polynomial and randomizes it by adding a random value, then
it homomorphically computes and sends new ciphertexts to S. S decrypts the ciphertexts and sends the
plaintexts back. R checks which items belong to the set union, and invokes OT with S to get them. We show
our basic PSU (omit OT) and its optimizations in Figure 3.

We emphasize that, unlike PSI [CLR17], the optimization techniques for PSI is not suitable for our PSU.
This is because a large PSI can be divided into many small PSI, and the receiver can combine all small set
intersections into the output securely. However, if we divide a large (m,n)-PSU into many small (1, B′)-PSU
directly, this causes information leakage about the intersection. We show the comparison of PSI [CLR17] and
our optimized PSU (omit OT) with leakage in Figure 4. Note that in the standardly secure (m,n)-PSU, from
the view of R, any item in the set Y could be an item in X ∩ Y . However, in the above optimized PSU∗,
R learns some subsets with size B′ have the item in X ∩ Y . Moreover, if S returns its decrypted results r′

to R directly. R can check which items of X belong to the set union. This also leaks the information of
X ∩ Y . Because there are α subsets with size B′ in one bin, if f(x) = 0 in one subset, R gets f ′(x) 6= 0 in
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S(X) R(Y )
H CH

y1 y2 · · · ym1

cj = Enc(yj), j ∈ [m]

cj
B′

B

f11 f12 · · · f1m

f21 f22 · · · f2m

· · · · · · · · · · · ·

fα1 fα2 · · · fαm

c′ij = Enc(rijfij(yj)) r′ij = rij · fij(yj)
c′ij

r′11 r′12 · · · r′1m
· · · · · · · · · · · ·

r′α1 r′α2 · · · r′αm

α

S(X) R(Y )
CH H

x1 x2 · · · xm1

cj = Enc(xj), j ∈ [m]

cj
B′

B

f11 f12 · · · f1m

f21 f22 · · · f2m

· · · · · · · · · · · ·

fα1 fα2 · · · fαm

c′ij = Enc(rij + fij(xj))r′ij = rij + fij(xj)
c′ij

r′11 r′12 · · · r′1m
· · · · · · · · · · · ·

r′α1 r′α2 · · · r′αm

r11 r12 · · · r1m

· · · · · · · · · · · ·
rα1 rα2 · · · rαm

α

Fig. 4: Comparison of PSI [CLR17] (left) and optimized PSU (omit OT) with leakage (right)

other subsets, which causes R could compute the intersection items with sufficient polynomial values. For
example, in Figure 4 (right), in the first column, if r11 = r′11, this means x1 ∈ Y 7 and x1 ∈ {y11, · · · , yB′1},
but x1 /∈ {y(B′+1)1, · · · , yB1}. R gets the rest nonzero polynomial values f21(x1), · · · , fα1(x1) and it could
compute x1 from them.

Based on the above analysis, the main challenge is how to optimize our basic PSU without causing
information leakage. More precisely, for S holds a matrix R′ = [r′ij ] and R holds a matrix R = [rij ],
i ∈ [α], j ∈ [m], we need to overcome the following two difficulties:

– The receiver is able to check rij
?
= r′ij for all i ∈ [α], j ∈ [m] without knowing r′ij .

– The receiver is able to check rij
?
= r′ij for all i ∈ [α], j ∈ [m] without knowing i, j.

We address the difficulties by introducing a cryptographic protocol named permuted matrix private
equality test (pm-PEQT) that enables the receiver to check whether the values in permuted positions are
equal without knowing the values and permutation.

2.4 Permuted Matrix Private Equality Test

Here, we introduce a new cryptographic protocol named permuted matrix private equality test (pm-PEQT)
which can be seen as an extension of private equality test (PEQT). In the PEQT, a receiver who has an
input string x interacts with a sender holding an input string y, and the result is that the receiver learns a
bit indicating whether x = y merely, whereas the sender learns nothing. In our pm-PEQT, a sender holding
a matrix R′α×m and a matrix permutation π = (πc, πr) interacts with a receiver holding a matrix Rα×m.
As a result, the receiver learns (only) the bit matrix Bα×m indicating that if bij = 1, rπ(ij) = r′π(ij), else,

rπ(ij) 6= r′π(ij), i ∈ [α], j ∈ [m], while the sender learns nothing about R. Compared with PEQT, pm-PEQT
admits a matrix private equality test with positions permutation. We show the ideal functionality of pm-PEQT
in Figure 5.

Constructions of pm-PEQT. pm-PEQT can not be easily built from PEQT by running many PEQT
instances in parallel. This is because it is difficult to shuffle the receiver’s items without knowing the
permutation of the sender. We give two constructions of pm-PEQT as follows.

The first construction is based on Permute + Share [GMR+21, JSZ+22] and mp-OPRF [PRTY19b, CM20].
Informally, S and R invoke the ideal Permute + Share functionality Fsym twice: First, both parties permute

7 In j-th column, as long as there is a position i, such that rij = r′ij , xj ∈ Y . Meanwhile, at most one position is
equal in each column.
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Parameters: Two parties: The receiver with a matrix Rα×m. The sender with a matrix R′α×m and a matrix
permutation π = (πc, πr), where πc (over [m]) is a column permutation and πr (over [α]) is a row permutation.
α and m are public.
Functionality:

1. Wait for an input R′ = [rij ], i ∈ [α], j ∈ [m] and a permutation π = (πc, πr) from S, and an input
R = [rij ], i ∈ [α], j ∈ [m] from R.

2. Give the bit matrix Bα×m to R, where rπ(ij) = r′π(ij), bij = 1, else, bij = 0, for all i ∈ [α], j ∈ [m].

Fig. 5: Permuted matrix private equality test Fpm-PEQT

and share the columns of R. R inputs each column of R and S inputs a permutation πc over [m]. As a result, R
gets shuffled share Sπc = [sπc(ij)] and S gets S′πc = [s′πc(ij)], where sπc(ij)⊕s′πc(ij) = rπc(ij). Then both parties

permute and share the rows of Sπc .R inputs each row of Sπc and S inputs a permutation πr over [α]. As a result,
R gets Sπr = [sπr(ij)] and S gets S′πr = [s′πr(ij)], where sπr(ij)⊕s′πr(ij) = sπc(ij). R defines the shuffled matrix

shares Sπ = Sπr and S defines the shuffled matrix shares S′π = πr(S
′
πc)⊕ S′πr , where sπ(ij) ⊕ s′π(ij) = rπ(ij),

i ∈ [α], j ∈ [m]. Then, both parties invoke mp-OPRF functionality Fmp-OPRF. R inputs shuffled shares Sπ
and obtains Fk(sπ(ij)), i ∈ [α], j ∈ [m], and S gets the key k of a PRF. Furthermore, S permutes the matrix
R′ by π = (πc, πr) and gets R′π = [r′π(ij)], then S computes all PRF values Fk(r′π(ij) ⊕ s

′
π(ij)), i ∈ [α], j ∈ [m]

and sends them to R. Finally, R sets bij = 1, if Fk(sπ(ij)) = Fk(r′π(ij) ⊕ s
′
π(ij)), else, sets bij = 0. R lets

the bit matrix B = [bij ], i ∈ [α], j ∈ [m]. We give in detail this construction in Figure 11. Note that the
Permute + Share [GMR+21, JSZ+22] and mp-OPRF [PRTY19b, CM20] are fast cryptographic tools. The
communication complexity of our pm-PEQT based on Permute + Share and mp-OPRF is O(αm logαm).

The second construction is based on the DDH assumption [Bon98]. Let G be a cyclic group with order
q, where the DDH problem is hard. Informally, R and S choose random values a, b ← Zq and compute
vij = H(rij)

a, v′ij = H(r′ij)
b for all i ∈ [α], j ∈ [m], respectively, where the output of H() is a group element

in G. Let V = [vij ] and V′ = [v′ij ], i ∈ [α], j ∈ [m]. R sends V to S. Then S computes v′′ij = (vij)
b and lets

V′′ = [v′′ij ], i ∈ [α], j ∈ [m]. S shuffles V′′ and V′ by same permutation π = (πc, πr) and gets V′′π = π(V′′),
V′π = π(V′), where v′′π(ij) = π(v′′ij), v

′
π(ij) = π(v′ij). S sends permuted matrices V′′π and V′π to R. Finally,

for i-th row and j-column in V′′π and V′π, if v′′π(ij) = v′aπ(ij), R lets bij = 1, else, bij = 0. R gets a bit matrix

B = [bij ], i ∈ [α], j ∈ [m]. We give in detail this construction in Figure 12. The communication complexity of
our DDH-based pm-PEQT is O(αm).

2.5 Our Full PSU Protocol

Now, we are ready to describe our full PSU protocol. We provide the high-level technical overview for our
generic construction of PSU in Figure 6 and the details are as follows.

First, we construct a semi-finished FHE-based optimized PSU∗ in which S does not send its decrypted
results R′α×m to R. S holding a small set X interacts with R holding a large set Y . The result is that R
outputs a matrix Rα×m = [rij ], and S outputs a matrix R′α×m = [r′ij ], where α denotes the number of
partitions, m denotes the number of bins, rij denotes the random values used to hide each polynomial and r′ij
denotes the decrypted results, i ∈ [α], j ∈ [m]. Note that for all i ∈ [α] in same j-th column, if all r′ij 6= rij ,
xj /∈ Y , else, xj ∈ Y .

Then, by using pm-PEQT, S inputs R′ and a permutation π = (πc, πr)
8 and R inputs R. As a result, R

gets a bit matrix B = [bij ], where if bij = 1, i ∈ [α], j ∈ [m], rπ(ij) = r′π(ij), else rπ(ij) 6= r′π(ij). R computes a

8 Each column of the matrix Rα×m corresponds to the same item, so the permutation for the matrix requires that
the columns are consistent.
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Optimized (semi)-PSU∗

from Leveled FHE

S(X) R(Y )

X

R′α×m

Y

Rα×m

pm-PEQT

R′α×m, π

⊥

Rα×m

Bα×m

OT

(⊥, xπ(j))

⊥

bj

xπ(j) or ⊥

Fig. 6: Core design idea of our full PSU protocol

bit vector b = [bj ], j ∈ [m], for all i ∈ [α], if bij = 0, sets bj = 1, else, sets bj = 0. S permutes the Cuckoo hash
table Xc by πc and gets πc(Xc) = [xπc(1), · · · , xπc(m)]. We note that if bj = 1, xπc(j) /∈ Y , else xπc(i) ∈ Y ,
j ∈ [m].

Finally, by using OT protocol, S inputs (⊥, xπ(j)), j ∈ [m], and R inputs bj , j ∈ [m]. R gets xπc(j), if
bj = 1, else, gets ⊥. After that, R outputs the union Y ∪ {xπc(j)}.

In this way, we complete our constructions of secure and fast unbalanced PSU protocols.

3 Preliminaries

3.1 Building Blocks

We briefly review the main cryptographic tools including simple hashing, Cuckoo hashing, leveled fully
homomorphic encryption, oblivious transfer, multi-point oblivious PRF, and Permute + Share.

Simple hashing. In the simple hashing [PSZ14], the hash table consists of m bins B1, · · · , Bm. Hashing is
done by mapping each element x to a bin Bh(x) using a hash function h : {0, 1}∗ → [m] that was chosen
uniformly at random and independently of the input elements. According to the following inequality [MR95],
the maximum bin size B can be set to ensure that no bin will contain more than B items except with
probability 2−λ when hashing n items into m bins.

Pr[∃ bin size ≥ B] ≤ m

[
n∑
i=B

(
n
i

)
·
(

1

m

)i
·
(

1− 1

m

)n−i]

Cuckoo hashing. Cuckoo hashing [PR01, DM03, FPSS03, PSZ18] can be used to build dense hash tables
by many hash functions. Following [CLR17], we use three hash functions and adjust the number of items and
table size to reduce the stash size to 0 while achieving a hashing failure probability of 2−λ.

Leveled fully homomorphic encryption. The leveled fully homomorphic encryption supports circuits
of a certain bounded depth. Following [CLR17], our protocols require the leveled FHE satisfies IND-CPA
secure with circuit privacy [BPMW16], but we can use oblivious pseudorandom function (OPRF) to avoid the
requirement of circuit privacy as [CHLR18]. We refer the reader to [CLR17, CHLR18, CMdG+21, BPMW16]
for more details. We use an array of optimization techniques of FHE as [CLR17, CHLR18, CMdG+21], such as
batching, windowing, partitioning, and modulus switching to significantly reduce the depth of the homomorphic
circuit. We review the optimizations in appendix A. For the implementation, we use the homomorphic
encryption library SEAL which implements the BFV scheme [FV12] following [CLR17, CHLR18, CMdG+21].
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Oblivious transfer. Oblivious transfer [Rab05] is a central cryptographic primitive in the area of secure
computation. In the 1-out-of-2 OT, a sender with two input strings (x0, x1) interacts with a receiver who has
an input choice bit b. The result is that the receiver learns xb without learning anything about x1−b, while
the sender learns nothing about b. Ishai et al. [IKNP03] introduced the OT extension that allows for a large
number of OT executions at the cost of computing a small number of public-key operations. We recall the
1-out-of-2 oblivious transfer functionality FOT in Figure 7.

Parameters: Two parties: S and R.
Functionality:

1. Wait for input {x0, x1} from S. Wait for input b ∈ {0, 1} from R.
2. Give xb to R.

Fig. 7: 1-out-of-2 oblivious transfer functionality FOT

Multi-point oblivious pseudorandom function. An oblivious pseudorandom function (OPRF) allows a
receiver to input x and learns the PRF value Fk(x), where F is a PRF, and the key k is known to a sender.
Pinkas et al. [PRTY19b] propose multi-point OPRF (mp-OPRF) and realize efficient PSI protocols. Recently,
Chase and Miao [CM20] propose a more efficient mp-OPRF based on oblivious transfer extension. In the
mp-OPRF, the receiver inputs {x1, x2, · · · , xn} and learns all PRF values {Fk(x1), Fk(x2), · · · , Fk(xn)}, and
the sender gets the key k. We recall the mp-OPRF functionality Fmp-OPRF in Figure 8.

Parameters: A PRF F . Two parties: S and R.
Functionality:

1. Wait for input {x1, · · · , xn} from R.
2. Sample a random PRF key k and give it to S. Give {Fk(x1), · · · , Fk(xn)} to R.

Fig. 8: mp-OPRF functionality Fmp-OPRF

Permute + Share. We recall the Permute + Share (PS) functionality Fsym defined by Chase et al. [CGP20]
in Figure 9. Roughly speaking, in the Permute + Share protocol, P0 inputs a set X = {x1, · · · , xn} of size n
and P1 chooses a permutation π on n items. The result is that P0 learns the shuffled shares {sπ(1), · · · , sπ(n)}
and P1 learns the other shuffled shares {s′π(1), · · · , s

′
π(n)}, where xπ(i) = sπ(i) ⊕ s′π(i), i ∈ [n].

4 The Basic PSU Protocol

We describe our basic PSU protocol in Figure 10 as a strawman protocol. In this protocol, if r+ f(x) 6= r,
the receiver can get f(x) which leaks some information of x /∈ Y , but this leakage does not cause any harm to
the PSU, since the PSU protocol releases that value at last. We prove its semi-honest security in the following
theorem.
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Parameters: Two parties: P0 and P1. Set size n for P0.
Functionality:

1. Wait for input X = {x1, · · · , xn} from P0, abort if |X| 6= n. Wait for input a permutation π from P1,
abort if π is not a permutation on n items.

2. Give output shuffled shares {sπ(1), · · · , sπ(n)} to P0, and another shuffled shares {s′π(1), · · · , s
′
π(n)} to P1,

where xπ(i) = sπ(i) ⊕ s′π(i), i ∈ [n].

Fig. 9: Permute + Share functionality Fsym

Input: The sender inputs set X of size m = |X| and the receiver inputs set Y of size n = |Y |. m and n are
public.
Output: The receiver outputs X ∪ Y . The sender outputs ⊥.

1. [Setup] S generates a public-secret key pair for the scheme and keeps the secret key itself.
2. [Set encryption] S encrypts each item xi ∈ X, ci = FHE.Enc(xi), i ∈ [m] and sends (c1, · · · , cm) to R.
3. [Computation] For each ci, R

(a) samples a random non-zero value ri;
(b) homomorphically computes c′i = FHE.Enc (f(xi) +ri), where f(x) = Πyi∈Y (x− yi).
(c) sends c′i, i ∈ [m] to S.

4. [Decryption] S decrypts c′i, i ∈ [m] to r′i = f(xi) + ri and sends them to R.
5. [Output] R checks all plaintexts and sets a bit vector b = [bi], i ∈ [m]. If r′i = ri, it sets bi = 0, otherwise,

sets bi = 1. Then, both parties invoke OT protocol, R inputs the bit bi and S inputs (⊥, xi), i ∈ [m]. For
all i ∈ [m], R gets xi, if bi = 1, else gets ⊥. Finally, R outputs X ∪ Y .

Fig. 10: Basic PSU protocol

Theorem 1. The PSU protocol described in Figure 10 is secure in the FOT-hybrid model, in the presence of
semi-honest security adversaries, provided that the fully homomorphic encryption scheme is IND-CPA secure
with circuit privacy.

Proof. We construct SimS and SimR to simulate the views of corrupt S and corrupt R respectively, and
argue the indistinguishability of the produced transcript from the real execution.

Corrupt Sender. SimS(X) simulates the view of corrupt S as follows: It encrypts m random values.
Then, it invokes SimSOT(⊥, xi), i ∈ [m] and appends the output to the view. Now we argue that the view
output by SimS is indistinguishable from the real one. The plaintexts are randomized in the real view which
is indistinguishable from the random values in the simulated view. The FHE satisfies the circuit privacy
which hides the computational circuit in step 3. The view produced by the underlying OT simulator is
indistinguishable from the real view. Thus, the simulation is indistinguishable from the real view.

Corrupt Receiver. SimR(Y,X ∪ Y ) simulates the view of corrupt R as follows: It simulates the
ciphertexts by encrypting m random values. SimR sets X̂ = (X ∪ Y )\Y and pads X̂ with ⊥ into m items
and permutes all items randomly. It computes the polynomial f(y) = Πyi∈Y (y − yi) and the random values
r = [ri], i ∈ [m] used to randomize the polynomial. Then, for x̂i 6= ⊥, SimR defines r′i := f(x̂i) + ri, else, it
defines r′i := ri, and appends r′ = [r′i],i ∈ [m] to the view. If x̂i = ⊥, it sets bi = 0, else, bi = 1. Then SimR
invokes SimROT(bi, x̂i) for i ∈ [m] and appends the output to the view.

We argue that the outputs of SimR are indistinguishable from the real view of R by the following hybrids:

Hyb0: R’s view in the real protocol.
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Hyb1: Same as Hyb0 except that the ciphertexts in the step 2 are replaced by encrypting m random values
generated by SimR. Since the fully homomorphic encryption scheme is IND-CPA secure, the above simulation
is indistinguishable from the real view.
Hyb2: Same as Hyb1 except that SimR runs the FOT simulator to produce the simulated view for R. The
security of OT protocol guarantees the view in simulation is computationally indistinguishable from the view
in the real protocol. The hybrid is the view output by SimR.

5 Permuted Matrix Private Equality Test

We give two efficient constructions of pm-PEQT in the semi-honest model. The functionality is specified in
Figure 5.

5.1 pm-PEQT from Permute + Share and mp-OPRF

The first construction of pm-PEQT is based on the Permute + Share [GMR+21, JSZ+22] and mp-OPRF [CM20]
as described in Figure 11. For notational convenience, we let pm-PEQTsym denote pm-PEQT based on the
Permute + Share and mp-OPRF.

Input: The receiver inputs a matrix Rα×m. The sender inputs a matrix R′α×m, and a permutation π = (πc, πr),
where πc (over [m]) and πr (over [α]) are two sub-permutations for columns and rows.
Output: The receiver outputs a bit matrix B. The sender outputs ⊥.

1. S and R invoke the ideal Permute + Share functionality Fsym twice. First, both parties permute and
share the columns of R, where each column of R can be seen as an item. R inputs each column of R
and S inputs the permutation πc. As a result, R gets Sπc = [sπc(ij)] and S gets S′πc = [s′πc(ij)], where

sπc(ij) ⊕ s′πc(ij) = rπc(ij). Then, both parties permute and share the rows of Sπc , where each row of Sπc
can be seen as an item. R inputs each row of Sπc and S inputs the permutation πr. As a result, R
gets Sπr = [sπr(ij)] and S gets S′πr = [s′πr(ij)], where sπr(ij) ⊕ s′πr(ij) = sπc(ij). Finally, R defines the

shuffled matrix shares Sπ = Sπr and S defines the shuffled matrix shares S′π = πr(S
′
πc) ⊕ S′πr , where

sπ(ij) ⊕ s′π(ij) = rπ(ij), i ∈ [α], j ∈ [m].
2. Both parties invoke mp-OPRF functionality Fmp-OPRF. R inputs shuffled shares Sπ and obtains the

outputs Fk(sπ(ij)), i ∈ [α], j ∈ [m]. S obtains the key k.
3. S computes Fk(r′π(ij) ⊕ s

′
π(ij)), i ∈ [α], j ∈ [m] and sends them to R.

4. R sets bij = 1, if Fk(sπ(ij)) = Fk(r′π(ij) ⊕ s′π(ij)), else, bij = 0, and gets a bit matrix B = [bij ],

i ∈ [α], j ∈ [m].

Fig. 11: pm-PEQT from Permute + Share and mp-OPRF

Theorem 2. The construction of Figure 11 securely implements functionality Fpm-PEQT in the (Fsym,
Fmp-OPRF)-hybrid model, in the presence of semi-honest adversaries.

Proof. We exhibit simulators SimR and SimS for simulating corrupt R and S respectively, and argue the
indistinguishability of the produced transcript from the real execution.

Corrupt Sender. SimS(R′, π = (πc, πr)) simulates the view of corrupt S as follows: SimS randomly
chooses S′πc and invokes SimSsym(πc,S

′
πc) and appends the output to the view. SimS randomly chooses S′πr

and invokes SimSsym(πr,S
′
πr) and appends the output to the view. Then, SimS randomly selects a key k of

PRF and invokes SimSmp-OPRF(k) and appends the output to the view.
We argue that the outputs of SimS are indistinguishable from the real view of S by the following hybrids:
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Hyb0: S’s view in the real protocol.

Hyb1: Same as Hyb0 except that the output of Fsym is replaced by S′πc , S′πr chosen by SimS , and SimS runs
the Fsym simulator to produce the simulated view for S. The security of Permute + Share guarantees the
view in simulation is computationally indistinguishable from the view in the real protocol.

Hyb2: Same as Hyb1 except that the output key of Fmp-OPRF is replaced by the k chosen by SimS , and SimS
runs the Fmp-OPRF simulator to produce the simulated view for S. The security of mp-OPRF guarantees the
view in simulation is computationally indistinguishable from the view in the real protocol. The hybrid is the
view output by SimS .

Corrupt Receiver. SimR(R, B = [bij ]) simulates the view of corrupt R as follows: SimR chooses Sπc and
invokes SimRsym(R,Sπc) and appends the output to the view. SimR chooses Sπr and invokes SimRsym(Sπc ,Sπr )

and appends the output to the view. SimR randomly selects uij , i ∈ [α], j ∈ [m] and invokes SimRmp-OPRF(uij)
and appends the output to the view. Finally, for all i ∈ [α], j ∈ [m], SimR sets vij = uij if bij = 1, else, it
chooses vij randomly and appends all vij to the view.

The view generated by SimR is indistinguishable from a real view of R by the following hybrids:

Hyb0: R’s view in the real protocol.

Hyb1: Same as Hyb0 except that the output of Fsym is replaced by Sπc , Sπr chosen by SimR, and SimR runs
the Fsym simulator to produce the simulated view for R. The security of Permute + Share guarantees the
view in simulation is computationally indistinguishable from the view in the real protocol.

Hyb2: Same as Hyb1 except that the output PRF values of Fmp-OPRF is replaced by uij , i ∈ [α], j ∈ [m],
and all PRF values in the last step is replaced by the vij , chosen by SimR randomly, and SimR runs the
Fmp-OPRF simulator to produce the simulated view for R. The security of mp-OPRF and PRF guarantees
the view in simulation is computationally indistinguishable from the view in the real protocol.

5.2 pm-PEQT based on DDH

The second construction of pm-PEQT is based on DDH as described in Figure 12. For notational convenience,
we let pm-PEQTpub denote DDH-based pm-PEQT.

Input: The receiver inputs a matrix Rα×m. The sender inputs a matrix R′α×m, and a permutation π = (πc, πr)
where πc (over [m]) and πr (over [α]) are two sub-permutation for columns and rows. G is a cyclic group
with order q.
Output: The receiver outputs a bit matrix B. The sender outputs ⊥.

1. R chooses a random value a← Zq and computes vij = H(rij)
a for all i ∈ [α], j ∈ [m], where H(·) denotes

hash functions which output the elements of group G. Let V = [vij ], i ∈ [α], j ∈ [m]. R sends V to S.
2. S chooses a random value b ← Zq and computes v′ij = H(r′ij)

b for all i ∈ [α], j ∈ [m], where H(·)
denotes hash functions which output the elements of group G. Let V′ = [v′ij ], i ∈ [α], j ∈ [m]. Then S
computes v′′ij = (vij)

b and lets V′′ = [v′′ij ]. S shuffles V′′ and V′ by same permutation π = (πc, πr) and
gets V′′π = π(V′′), V′π = π(V′), where v′′π(ij) = π(v′′ij), v

′
π(ij) = π(v′ij). S sends V′′π, V′π to R.

3. For i-th row and j-column in V′′π and V′π, if v′′π(ij) = v′aπ(ij), R sets bij = 1, else, bij = 0. R sets a bit

matrix B = [bij ], i ∈ [α], j ∈ [m].

Fig. 12: Instantiation of pm-PEQT based on DDH

Theorem 3. The construction of Figure 12 securely implements functionality Fpm-PEQT based on DDH in
the random oracle model, in the presence of semi-honest security adversaries.
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Proof. We exhibit simulators SimR and SimS for simulating corrupt R and corrupt S respectively, and argue
the indistinguishability of the produced transcript from the real execution.

Corrupt Sender. SimS(R′, π = (πc, πr)) simulates the view of corrupt S as follows: It chooses ran-
dom group elements vij , i ∈ [α], j ∈ [m] to simulate the view. We argue that the outputs of SimS are
indistinguishable from the real view of S by the following hybrids:
Hyb0: S’s view in the real protocol consists of H(rij)

a, i ∈ [α], j ∈ [m], where a← Zq.
Hyb1: Same as Hyb0 except that SimS chooses random group elements vij , i ∈ [α], j ∈ [m] instead of H(rij)

a,
i ∈ [α], j ∈ [m], where a← Zq. The hybrid is the view output by SimS .

We argue that the views in Hyb0 and Hyb1 are computationally indistinguishable. Let A be a probabilistic
polynomial-time (PPT) adversary against the DDH assumption. Given the DDH challenge gx, gyij , gzij , where
x, yij ← Zq, A is asked to distinguish if zij = x · yij or random values. A implicitly sets a = x, and simulates
(with the knowledge of R) the view as below:

– RO queries: SimS honestly emulates random oracle H. For queries rij , if rij /∈ R, it picks a random group
element to assign H(rij), otherwise, it assigns H(rij) = gyij .

– Outputs gzij , i ∈ [α], j ∈ [m].

Clearly, if zij = x · yij , A simulates Hyb0. Else, it simulates Hyb1 (without the knowledge of R), because
it responds to all RO queries with random group elements without knowing that the inputs belong to R or
not. Therefore, the outputs of SimS are computationally indistinguishable from the real view based on the
DDH assumption.

Corrupt Receiver. SimR(R, B = [bij ]) simulates the view of corrupt R as follows: SimR chooses a← Zq
randomly and simulates the first round message as real protocol. For bij = 0, i ∈ [α], j ∈ [m], it chooses
random group elements vij and uij to simulate the view. For bij 6= 0, i ∈ [α], j ∈ [m], it chooses random
group elements vij and sets uij = vaij to simulate the view.

We argue that the outputs of SimR are indistinguishable from the real view of R by the following hybrids:
Hyb0: R’s view in the real protocol consists of H(r′π(ij))

b and H(rπ(ij))
ab, i ∈ [α], j ∈ [m], where a, b ← Zq.

Hyb1: Same as Hyb0 except that for bij = 0, that is rπ(ij) 6= r′π(ij), SimR chooses random group elements vij

and uij instead of H(r′π(ij))
b and H(rπ(ij))

ab.

Hyb2: Same as Hyb1 except that for bij = 1, that is rπ(ij) = r′π(ij), SimR chooses random group elements vij

and sets uij = vaij , i ∈ [α], j ∈ [m] instead of H(r′π(ij))
b and H(rπ(ij))

ab. The hybrid is the view output by
SimR.

We argue that the view in Hyb0 and Hyb1 are computationally indistinguishable based on the DDH

assumption. Given the DDH challenge gx, gyij , gy
′
ij , gzij , gz

′
ij , where x, yij , y

′
ij ← Zq, A is asked to distinguish

if zij = x · yij , z′ij = x · y′ij or random values. A implicitly sets b = x, and simulates (with the knowledge of
R′ and π) the view as below:

– RO queries: SimR honestly emulates random oracle H. For queries rij and r′ij , if rij /∈ R, r′ij /∈ R′, it

assigns H(rπ(ij)), H(r′π(ij)) with random group elements. If rij ∈ R, r′ij ∈ R′, it assigns H(rij) = ga
−1yij ,

H(r′ij) = gy
′
ij .

– Outputs gzij , gz
′
ij .

Clearly, if zij = x · yij , z′ij = x · y′ij , A simulates Hyb0. Else, it simulates Hyb1. In the Hyb1, SimR needs
not to know the R′ and π in these positions with bij = 0, because in these positions, it responds to all random
oracle queries with random group elements.

We argue that the view in Hyb1 and Hyb2 are computationally indistinguishable based on the DDH
assumption. Given the DDH challenge gx, gyij , gzij where x, yij ← Zq, A is asked to distinguish if zij = x · yij
or random values. A implicitly sets b = x, and simulates (with the knowledge of R′ and π for all positions
with bij = 1) the view as below:

– RO queries: SimR honestly emulates random oracle H. For queries rij , r
′
ij , if rij /∈ R, r′ij /∈ R′, it assigns

H(rij), H(r′ij) with random group elements. If rij = r′ij ∈ R, it assigns H(rij) = H(r′ij) = gyij .
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– Outputs ga·zij , gzij .

Clearly, if zij = x · yij , A simulates Hyb1. Else, it simulates Hyb2. In the Hyb2, SimR needs not to know
the R′ and π in these positions with bij = 1, because in these positions, it responds to all random oracle
queries with random group elements. Therefore, the outputs of SimR are computationally indistinguishable
from the real view based on the DDH assumption.

Comparisons of two pm-PEQT instantiations. pm-PEQTpub based on DDH assumption is not post-
quantum secure, while pm-PEQTsym based on symmetric cryptographic primitives is potentially post-quantum
secure. The comprehensive comparison of the two pm-PEQT instantiations is given in Table 2, 3. As shown
in Table 3, for a large matrix, pm-PEQTsym is more efficient than pm-PEQTpub in a high bandwidth
environment, while the communication overhead of pm-PEQTpub is lower than that of pm-PEQTsym, which
is more efficient in a low bandwidth environment.

Remark. We note that our pm-PEQT can be generalized to multi-query private equality test with permutation,
which in turn can be built from permuted OPRF [CZZD22] in a general manner.

Protocols Communication Computation Post-quantum security
pm-PEQTpub O(m) O(m) ×
pm-PEQTsym O(m logm) O(m logm)

√

Table 2: Comparisons of two pm-PEQT instantiations. m denotes the number of elements in the matrix.

m Protocols
Comm.
(MB)

Total running time (s)
10Gbps 10Mbps

T = 1 T = 8 T = 1 T = 8

210
pm-PEQTpub 1.902 0.139 0.004 0.43 0.352
pm-PEQTsym 0.6938 0.133 0.164 1.097 1.008

215
pm-PEQTpub 6.093 4.41 1.261 7.479 5.217
pm-PEQTsym 24.74 0.338 0.261 19.86 20.153

220
pm-PEQTpub 195 141.126 40.28 297.116 196.454
pm-PEQTsym 1063.067 20.988 18.451 882.452 881.329

Table 3: Comparisons of concrete communication (in MB) and runtime (in seconds) between two pm-PEQT
instantiations. Threads: T ∈ {1, 8}. Bandwidth: 10 Gbps and 10 Mbps. The best results are marked in cyan.

6 Full PSU Protocol

In this section, we detail our full PSU protocol in Figure 13. The main optimization idea of our protocol is as
follows.

Offline/online. Following [CLR17, CHLR18, CMdG+21], the pre-processing of the receiver in our PSU can
be done entirely offline without involving the sender. Specifically, given an upper bound on the sender’s set
size, the receiver can locally choose parameters and perform the pre-processing. Upon learning the sender’s
actual set size, the receiver sends the parameters to the sender, and the sender pads the same dummy items
like ⊥ which are known two both parties.

15



Input: The receiver inputs set Y ⊂ {0, 1}∗ of size n = |Y | and the sender inputs set X ⊂ {0, 1}∗ of size
m = |X|, where m� n. m and n are public.
Output: The receiver outputs X ∪ Y . The sender outputs ⊥.

1. [Setup] R and S agree on the hashing, FHE scheme, mp-PEQT and OT parameters.
2. [Hashing] S hashes the set X into table Xc by Cuckoo hash, where Xc consists of mc bins and each

bin has only one item. R hashes the set Y into table YB×mc by the same simple hash, where YB×mc
consists of mc bins and each bin has B items.

3. [Pre-process Y]
(a) [Partitioning] R partitions YB×mc by rows into α subtables Y1, · · · ,Yα. Each subtable has B′ = B/α

rows and m columns. Let i-th subtable be Yi = [yi,1, · · · ,yi,B′ ]T , i ∈ [α], where yi,k, k ∈ [B′] indicates
k-th row of Yi.

(b) [Computing coefficients] For j-th columns of i-th subtable y′i,j = [yi,j,1, · · · , yi,j,B′ ]T , i ∈ [α], j ∈ [mc],
where yi,j,k, k ∈ [B′] indicates k-th item of y′i,j , R computes the coefficients of the polynomial

fi,j(y) = ΠB′

k=1(y − yi,j,k) = a′i,j,0 + ai,j,1y + · · · + ai,j,B′y
B′ . R computes the coefficient matrix

A as follows: R chooses a random matrix Rα×mc = [ri,j ], and sets j-th columns of i-th subtable
Ai,j = [ai,j,0, ai,j,1, · · · , ai,j,B′ ]T , i ∈ [α], j ∈ [mc], where ai,j,0 = a′i,j,0 + ri,j .

(c) [Batching] For each subtable obtained from the previous step, R interprets each of its row as a vector
of length mc with elements in Zt. Then R batches each vector into β = mc/γ plaintext polynomials.

As a result, each row of i-th subtable Ai is transformed into β polynomials denoted Âi,j , i ∈ [α],
j ∈ [β].

4. [Encrypt X]
(a) [Batching] S interprets Xc as a vector of length mc with items in Zt. It batches this vector into

β = mc/γ plaintext polynomials X̂1, · · · , X̂β .

(b) [Windowing] For each batched plaintext polynomial X̂, S computes the component-wise i · 2j-th
powers X̂i·2lj , for 1 ≤ i ≤ 2l − 1 and 0 ≤ j ≤ dlog2(B′)/le.

(c) [Encrypt] S uses FHE scheme to encrypt each such power, obtaining β collections of ciphertexts
Cj , j ∈ [β], and each collection consists of the ciphertexts [ci,j ], 1 ≤ i ≤ 2l−1 and 0 ≤ j ≤ dlog2(B′)/le.
S sends these ciphertexts to R.

5. [Computation]
(a) [Homomorphically compute encryptions of all powers] For each collection Cj , j ∈ [β], R homo-

morphically computes encryptions of all powers Cj = [cj,0, · · · , cj,B′ ], where cj,k, 0 ≤ k ≤ B′ is a

homomorphic ciphertext encrypting X̂k
j .

(b) [Homomorphically evaluate the dot product] R homomorphically evaluates C′i,j = CjÂi,j , i ∈ [α],
j ∈ [β], performs modulus switching on C′i,j , i ∈ [α], j ∈ [β] to reduce sizes, and sends the ciphertexts
to S.

6. [Decrypt] S gets and decrypts all ciphertexts and concatenates the results into the matrix R′α×mc .
7. [pm-PEQT] R inputs the matrix Rα×mc , and S inputs the permutation π = (πc, πr) and the matrix

R′α×mc . Both parties invoke the pm-PEQT functionality. As a result, R gets a bit matrix Bα×mc , where
if bij = 1, rπ(ij) = r′π(ij), else rπ(ij) 6= r′π(ij), i ∈ [α], j ∈ [mc].

8. [Output] R sets a bit vector b = [bj ], j ∈ [mc], where if for all i ∈ [α], bij = 0, it sets bj = 1, else bj = 0.
Then, R and S invoke the OT functionality, in which R inputs bj , j ∈ [mc] and S inputs (⊥, Xc[πc(j)]). If
bj = 1, R gets Xc[πc(j)], else, it gets ⊥. Finally, R outputs the set union Y ∪{Xc[πc(j)]}, for all j ∈ [mc].

Fig. 13: Full PSU protocol
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OPRF Pre-processing. We use the dual structure of [CLR17] in our PSU and prove the security based
on FHE with circuit privacy following [CLR17]. This leads to performing a noise flooding operation on the
result ciphertexts, as is necessary in [CLR17]. Following [CHLR18, CMdG+21], we can use an OPRF to
compute the items on both sides before engaging in the PSU. This ensures that the receiver’s items Y \X are
pseudorandom in the sender’s view, preventing the sender from learning anything about the original items,
even if it learns full PRF values. Thus, our PSU can be proven secure without circuit privacy and utilize more
efficient FHE parameters as [CHLR18, CMdG+21], which improves our performance and adds flexibility to
the parametrization.

Low circuit depth. The steps 1-6 in our full PSU protocol can be seen as the dual structure of unbalanced
PSI [CLR17, CHLR18, CMdG+21]. Therefore, the optimizations used in [CLR17, CHLR18, CMdG+21], such
as batching, windowing, partitioning, and modulus switching, are suitable for the steps 1-6 to significantly
reduce the depth of the homomorphic circuit. We review the optimizations in appendix A.

We show the correctness of our PSU protocol and prove its security as follows.

Correctness. The correctness of our PSU protocol is conditioned on the hashing succeeding, which happens
with overwhelming probability 1− 2−λ.

Theorem 4. The protocol in Figure 13, is a secure protocol for FPSU in the (Fpm-PEQT, FOT)-hybrid
model, in the presence of semi-honest adversaries, provided that the fully homomorphic encryption scheme is
IND-CPA secure with circuit privacy.

Proof. The correctness of our PSU protocol is conditioned on the hashing succeeding, which happens with
overwhelming probability 1− 2−λ.

For ease of exposition, we will assume that all parameters are fixed and public. We exhibit simulators SimS
and SimR for simulating corrupt S and R respectively, and argue the indistinguishability of the produced
transcript from the real execution.

Corrupt Sender. SimS(X) simulates the view of corrupt S as follows. SimS hashes X into Xc as the real
protocol, and encrypts random values in place of the ciphertexts in step 5. Then it decrypts the ciphertexts as
R′ and chooses randomly permutation π = (πc, πr). It invokes SimSpm-PEQT(R′, π) and SimSOT(⊥, Xc[πc(j)]),
j ∈ [mc] appends the output to the view. Now we argue that the view output by SimS is indistinguishable
from the real one. The plaintexts are randomized in the real view which is indistinguishable from the random
values in the simulated view. The FHE satisfies the circuit privacy which hides the computational circuit.
The views of the underlying pm-PEQT and OT simulator are indistinguishable. Thus, the simulation is
indistinguishable from the real view.

Corrupt Receiver. SimR (Y,X ∪ Y ) simulates the view of corrupt receiver as follows: SimR encrypts
random value in place of the ciphertexts in step 4. It chooses the random matrix R in step 3. SimR computes
X̂ = (X ∪ Y )\Y and pads X̂ with ⊥ to mc items and permutes these items randomly. For all items in X̂,
if x̂i 6= ⊥, it sets bi = 1, else bi = 0. And then it generates Bα×mc , for all columns bi, if bi = 1, all items
in bi are set to 0, else, one random position in bi is set to 1 and all other positions are set to 0. SimR
invokes SimRpm-PEQT(R,B) appends the output to the view. Then, for all i ∈ [mc], it invokes SimROT(bi, x̂i)
and appends the output to the view.

The view generated by SimR is indistinguishable from a real view of R by the following hybrids:
Hyb0: R’s view in the real protocol.
Hyb1: Same as Hyb0 except that the ciphertexts are replaced by encrypting random values generated by
SimR. Since the fully homomorphic encryption scheme is IND-CPA secure, the simulation is indistinguishable
from the real view.
Hyb2: Same as Hyb1 except that the output of Fpm-PEQT is replaced by B generated by SimR, and SimR
runs the Fpm-PEQT simulator to produce the simulated view for R. The security of the pm-PEQT protocol
guarantees the view in simulation is computationally indistinguishable from the view in the real protocol.
Hyb3: Same as Hyb2 except that SimR runs the FOT simulator to produce the simulated view for R. The
security of OT protocol guarantees the view in simulation is computationally indistinguishable from the view
in the real protocol. The hybrid is the view output by SimR.
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We show our communication complexity as follow. In step 1-6, the communication requires O(m log n); the
communication of the pm-PEQT requires O(m logm) (based on Permute + Share and mp-OPRF) or O(m)
(based on DDH), since we omit the parameter α which is used to make trade-off between the computation
and communication of our PSU; the communication of OT requires O(m). In summary, the communication
of our PSU is O(m log n).

Parameters
Protocols

Comm.
(MB)

Total running time (s)
10Gbps 100Mbps 10Mbps 1Mbps

|X| |Y | T = 1 T = 2 T = 4 T = 8 T = 1 T = 2 T = 4 T = 8 T = 1 T = 2 T = 4 T = 8 T = 1 T = 2 T = 4 T = 8

210

210

PSU [ZCL+22] 0.229 0.63 0.36 0.29 0.24 0.8 0.593 0.538 0.492 0.795 0.589 0.53 0.497 0.798 0.59 0.528 0.491
PSU [JSZ+22] 0.899 0.047 0.041 0.042 0.057 1.562 1.476 1.397 1.245 1.565 1.48 1.405 1.247 1.565 1.425 1.399 1.249
Our PSUpub 1.614 0.916 0.716 0.615 0.565 2.824 2.624 2.525 2.475 2.825 2.625 2.524 2.524 6.392 14.482 14.084 14.489
Our PSUsym 2.423 0.866 0.716 0.666 0.665 3.731 3.48 3.429 3.378 3.731 3.479 3.329 3.278 22.369 22.474 24.676 26.681

211

PSU [ZCL+22] 0.331 1.12 0.486 0.379 0.306 1.276 0.648 0.537 0.465 1.188 0.652 0.542 0.471 1.178 0.643 0.537 0.477
PSU [JSZ+22] 1.823 0.056 0.046 0.046 0.06 1.649 1.686 1.483 1.33 1.566 1.686 1.481 1.366 13.983 17.065 18.322 20.684
Our PSUpub 1.604 0.916 0.716 0.616 0.565 2.826 2.625 2.525 2.526 2.825 2.625 2.525 2.525 14.183 14.432 14.186 14.185
Our PSUsym 2.423 0.866 0.716 0.666 0.615 3.781 3.48 3.42 3.38 3.731 3.48 3.429 3.379 22.367 22.768 24.333 26.893

212

PSU [ZCL+22] 0.534 1.723 0.755 0.584 0.475 1.921 0.918 0.737 0.643 1.918 0.927 0.747 0.648 1.916 0.909 1.189 0.638
PSU [JSZ+22] 3.766 0.073 0.06 0.053 0.066 1.73 2.05 1.809 1.571 3.064 3.121 3.124 3.473 33.102 33.818 34.793 38.5
Our PSUpub 1.614 0.967 0.716 0.616 0.565 2.825 2.625 2.525 2.525 2.825 2.526 2.526 2.525 14.132 14.432 14.185 14.538
Our PSUsym 2.423 0.867 0.716 0.666 0.616 3.73 3.479 3.429 3.379 3.731 3.581 3.379 3.279 21.97 22.827 24.184 26.838

213

PSU [ZCL+22] 0.941 3.268 1.357 1.015 0.818 3.491 1.577 1.199 0.981 3.51 1.55 1.198 0.996 5.423 1.515 1.18 1.027
PSU [JSZ+22] 7.904 0.103 0.081 0.071 0.08 1.857 2.299 2.381 2.055 6.599 6.615 6.823 7.252 67.678 68.388 70.609 75.37
Our PSUpub 1.614 0.968 0.717 0.617 0.567 2.825 2.625 2.525 2.525 2.825 2.625 2.625 2.476 14.538 14.137 14.124 14.525
Our PSUsym 2.423 0.817 0.717 0.667 0.617 3.731 3.53 3.38 3.279 3.93 3.528 3.38 3.279 13.731 22.83 24.538 26.653

214

PSU [ZCL+22] 1.755 6.299 2.729 2.008 1.617 6.53 2.987 2.379 1.948 6.744 3.126 2.424 1.978 10.41 7.147 7.209 7.194
PSU [JSZ+22] 16.638 0.177 0.132 0.114 0.124 2.149 2.634 2.475 2.398 14.104 14.15 14.19 14.798 141.584 142.459 144.862 146.415
Our PSUpub 2.681 1.22 0.818 0.718 0.768 4 3.548 3.44 3.39 3.58 3.329 3.179 3.179 11.136 19.072 19.679 19.629
Our PSUsym 3 1.169 0.818 0.718 0.818 4.43 4.03 3.93 3.83 4.58 4.18 3.98 3.93 27.21 27.75 29.41 31.21

215

PSU [ZCL+22] 3.382 12.229 4.963 3.63 2.898 12.665 5.262 3.895 3.087 12.862 5.284 3.934 3.277 21.578 26.489 26.572 26.519
PSU [JSZ+22] 35.07 0.331 0.25 0.208 0.197 3.318 3.333 3.188 3.057 29.574 29.664 29.894 30.802 296.704 296.927 299.866 304.638
Our PSUpub 2.681 1.272 0.971 0.87 0.77 3.48 3.23 3.034 3.035 3.632 3.331 3.181 3.132 18.807 19.113 19.367 19.364
Our PSUsym 3 1.117 0.92 0.87 0.86 4.38 4.03 3.93 3.88 4.53 4.23 4.09 4.03 27.1 28.01 29.7 31.27

216

PSU [ZCL+22] 6.253 24.093 9.675 7.075 5.623 25.299 10.253 7.64 6.155 24.813 10.248 7.464 6.098 44.336 53.332 53.333 53.319
PSU [JSZ+22] 73.859 0.665 0.486 0.405 0.38 6.41 6.406 6.256 6.173 62.288 62.35 62.511 63.384 622.804 654.807 626.968 629.705
Our PSUpub 2.681 1.475 1.176 1.076 1.026 3.481 3.181 3.031 2.981 3.634 3.383 3.235 3.184 18.957 19.661 19.407 19.412
Our PSUsym 3 1.374 1.126 1.076 1.126 4.39 4.088 3.888 3.888 4.54 4.33 4.09 3.98 26.7 27.45 29.71 31.52

217

PSU [ZCL+22] 12.388 48.778 19.997 16.774 12.152 50.007 20.123 14.865 12.437 55.58 21.656 16.09 13.954 115.579 108.053 107.998 108.044
PSU [JSZ+22] 155.589 1.401 1.043 0.874 0.807 13.383 13.296 13.26 13.192 131.162 131.819 131.609 131.947 1311.533 1311.735 1315.518 1319.699
Our PSUpub 2.195 1.99 1.489 1.337 1.237 3.429 3.179 3.029 3.029 4.149 3.749 3.547 3.549 19.302 19.354 19.411 19.16
Our PSUsym 3 1.889 1.439 1.386 1.337 4.905 4.404 4.3 4.25 5.15 4.604 4.45 4.3 18.92 27.77 29.43 31.54

218

PSU [ZCL+22] 26.167 96.827 39.012 28.268 22.787 98.22 39.853 29.768 23.785 105.787 42.572 31.508 30.798 218.057 213.494 213.427 213.465
PSU [JSZ+22] 326.313 3.227 2.486 2.186 2.221 28.446 28.304 28.321 28.262 276.011 275.668 276.009 276.486 2746.869 2769.363 2752.628 2763.214
Our PSUpub 2.367 3.723 2.584 2.172 1.972 5.833 4.833 4.179 3.931 6.137 5.134 4.534 4.232 19.384 20.095 20.851 20.661
Our PSUsym 3.188 3.625 2.72 2.17 1.87 6.738 5.789 5.035 4.684 7.14 6.886 5.837 5.185 26.787 29.261 31.569 32.987

219

PSU [ZCL+22] 52.21 195.069 78.656 61.553 50.208 194.284 80.609 62.76 50.097 213.3 87.526 68.734 64.247 436.767 436.923 437.291 436.934
PSU [JSZ+22] 683.002 9.416 8.126 7.184 6.804 62 62 61.71 61.76 579.853 580.128 580.262 580.492 5840.408 5840.151 5754.497 5790.476
Our PSUpub 2.367 9.043 5.833 4.384 3.534 11.056 7.895 6.344 5.645 11.353 8.197 6.645 5.995 19.538 20.655 20.646 20.658
Our PSUsym 3.188 8.939 5.835 4.232 3.632 11.956 8.749 7.146 6.496 12.255 9.153 7.452 6.649 27.134 29.006 30.368 32.929

220

PSU [ZCL+22] 104.28 394.92 160.811 125.446 98.564 387.994 160.841 126.949 100.213 427.788 224.759 157.808 129.907 874.951 875.095 875.139 874.854
PSU [JSZ+22] 1426.855 28.137 25.432 23.716 23.039 139.148 138.854 138.346 138.324 1222.204 1221.153 1221.029 1220.607 12450.719 12210.308 12025.49 12115.414
Our PSUpub 2.767 18.465 11.682 8.321 6.71 20.995 14.19 10.879 9.234 21.297 14.488 10.98 9.577 32.253 25.792 24.746 24.751
Our PSUsym 4.341 18.428 11.513 8.263 6.756 21.696 14.884 11.375 9.924 22.146 15.39 11.783 10.429 46.729 40.956 40.681 44.508

Table 4: Comparisons of communication (in MB) and runtime (in seconds) between PSU [JSZ+22],
PSU [ZCL+22], PSUsym and PSUpub for sets size (|X| = 210, |Y | ∈ {210, · · · , 220}) with threads T ∈ {1, 2, 4},
and 10Gbps bandwidth, 0.2ms RTT; 100Mbps, 10Mbps and 1Mbps bandwidth, 80ms RTT. The best results
are marked in cyan.

7 Implementation and Performance

In this section, we experimentally evaluate our two PSU protocols:

– PSUsym: PSU protocol based on FHE, OT, and pm-PEQT, where pm-PEQT is built from Permute + Share
and mp-OPRF.

– PSUpub: PSU protocol based on FHE, OT, and DDH-based pm-PEQT.
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Fig. 14: Comparisons of communication (in MB) and runtime (in seconds) between PSU [JSZ+22],
PSU [ZCL+22], PSUpub and PSUsym. Both x and y-axis are in log scale. The upper left figure shows
the communication cost increases as the large set size increases. The upper right figure shows the runtime
decreases as the bandwidth increases. The bottom two figures show the runtime increases as the large set size
increases.

We give our experimental environment at first, then compare our protocols with the state-of-the-art works
in terms of communication and runtime in different network environments. Our source code is available upon
request.

7.1 Experimental Setup

We run our experiments on a single Intel Core i7-11700 CPU @ 2.50GHz with 16 threads and 16GB of RAM.
We simulate the network latency and bandwidth by using the Linux tc command. Specifically, we consider
the following LAN setting, where the two parties are connected via a local host with 10Gbps throughput, and
a 0.2ms round-trip time (RTT). We also consider two WAN settings with 100Mbps and 10Mbps bandwidth,
each with an 80ms RTT.

7.2 Implementation Details

We use the FHE scheme in [FV12], Permute + Share in [MS13], mp-OPRF in [CM20] and OT extension in
[IKNP03]. For concrete analysis, we set the computational security parameter κ = 128 and the statistical
security parameter λ = 40 following [JSZ+22, ZCL+22]. Our implementation is written in C++. The following
libraries are used in our implementation.

– FHE: SEAL https://github.com/microsoft/SEAL and APSI https://github.com/microsoft/APSI
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– Permute + Share: https://github.com/dujiajun/PSU
– mp-OPRF: https://github.com/peihanmiao/OPRF-PSI
– OT: https://github.com/osu-crypto/libOTe

7.3 Performance Comparisons

In this section, We compare our PSU protocols with PSU [JSZ+22] and PSU [ZCL+22] in terms of runtime
and communication, and the results are reported in Table 4 and Figure 14.

We stress that all reported costs are computed in the same environment. For comparisons of other
works [JSZ+22, ZCL+22], we use the parameters recommended in their open-source code and fix the item
length to 128-bit.

– PSU [JSZ+22]: https://github.com/dujiajun/PSU
– PSU [ZCL+22]: https://github.com/alibaba-edu/mpc4j

Communication comparison. Our PSU protocol can achieve the lowest communication among all pro-
tocols [JSZ+22, ZCL+22] in the unbalanced case. Our analysis of the unbalanced border is as below: the
communication complexity of our PSU is O(m log n), while the communication complexity of the state-of-the-
art PSU protocol due to Zhang et al. [ZCL+22] is O(n). Therefore, in the asymptotic sense the performance
border between our protocol and Zhang et al.’s protocol can be deduced from the inequality m < n

logn . Our

experimental results shown in Table 14 is consistent with our asymptotic analysis: when (n ≥ 215, m = 210),
our PSU protocols is superior than [ZCL+22]. Especially, as shown in Figure 14, the larger difference between
two set sizes, the better our protocols perform. For set sizes (|X| = 210, |Y | = 220), the communication of our
PSUpub requires 2.767 MB, which is about 37× lower than PSU [ZCL+22] requiring 104.28 MB, about 515×
lower than PSU [JSZ+22] requiring 1426.855MB.

Runtime comparison. Our PSUsym and PSUpub are faster than PSU [JSZ+22, ZCL+22] in the unbalanced
case depending on network environments. As shown in Figure 14, the larger difference between two set sizes,
the better our protocols perform. For set sizes (|X| = 210, |Y | = 220) with T = 1 thread in LAN setting,
the runtime of our PSUpub requires 18.465 seconds, while PSU [ZCL+22] requires 394.92 seconds, about
21× improvement, PSU [JSZ+22] requires 28.137 seconds, about 1.5× improvement. The performance of our
protocols improves significantly in the case of low bandwidth. For set sizes (|X| = 210, |Y | = 220) with T = 8
thread in 1 Mbps bandwidth, our PSUpub requires 24.751 seconds, while PSU [ZCL+22] requires 874.854
seconds, about 35× improvement, PSU [JSZ+22] requires 12115.414 seconds, about 489× improvement.
Somewhat surprisingly, even when two set sizes are nearly balanced, the runtime of our PSUsym protocol still
has advantages in the 10 Gbps bandwidth. For example, (m = 210, n = 211) with T = 1 thread in 10 Gbps
bandwidth, the runtime of our PSUsym requires 0.866 seconds, which is lower than PSU [ZCL+22] requiring
1.12 seconds.
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A Optimization techniques

Our PSU use the dual structure of unbalanced PSI [CLR17, CHLR18, CMdG+21]. Thus, we can take
advantage of the same optimization techniques of FHE following [CLR17, CHLR18, CMdG+21], such
as batching, windowing, partitioning, and modulus switching, to significantly reduce the depth of the
homomorphic circuit. We review the optimization techniques as follows.

Batching. Batching is a well-known and powerful technique in fully homomorphic encryption to enable Single
Instruction, Multiple Data (SIMD) operations on ciphertexts [GHS12, BGH13, SV14, CLP17, GDL+16]. The
batching technique allows the receiver to operate on γ items from the sender simultaneously, resulting in
γ-fold improvement in both the computation and communication. As an example, The sender groups its
items into vectors of length γ, encrypts them, and sends m/γ ciphertexts to the receiver. Upon receiving
each ciphertext ci, the receiver samples a vector ri = (ri1, · · · , riγ) ∈ (Zt\{0})n at random, homomorphically
computes ri + Πy∈Y (ci − y), and sends it back to the sender. Note that these modifications do not affect
correctness or security, since the exact same proof can be applied to per each vector coefficient.

Windowing. We use a standard windowing technique [CLR17], to lower the depth of the circuit. In our
PSU, the receiver needs to evaluate the sender’s encrypted data. If the receiver only has an encryption
c← FHE.Enc(x), it samples a random r in Zt\{0} and homomorphically computes r +Πyi∈Y (c− yi). The
receiver computes at worst the product xn, which requires a circuit of depth dlog2 ne. To see this, we write

r +Πyi∈Y (x− yi) = r + a0 + a1x+ · · ·+ an−1x
n−1 + xn.

If the sender sends encryptions of extra powers of x, the receiver could use these powers to evaluate
the same computation with a much lower-depth circuit. More precisely, for a window size of l bits, the

sender computes and sends cij = FHE.Enc(xi·2
lj

) to the receiver for all 1 ≤ i ≤ 2l − 1, 0 ≤ j ≤ blog2(n)/lc.
For example, when l = 1, the receiver sends encryptions of x, x2, · · · , x2blog2 nc . This technique results in a
significant reduction in the circuit depth.

Partitioning. Another way to reduce circuit depth is to let the receiver partition its set into α subsets [CLR17,
CHLR18, CMdG+21]. In our PSU, the receiver needs to compute encryptions of all powers x, · · · , xn for each
of the sender’s items x. With partitioning, the receiver only needs to compute encryptions of x, · · · , xn/α,
which can be reused for each of the α partitions.

Modulus switching. We employ modulus switching as [CLR17, CHLR18, CMdG+21, BGV12] to effectively
reduce the size of the response ciphertexts. Modulus switching is a well-known operation in lattice-based fully
homomorphic encryption schemes. It is a public operation, which transforms a ciphertext with encryption
parameter q into a ciphertext encrypting the same plaintext, but with a smaller parameter q′ < q. Note that
the security of the protocol is trivially preserved as long as the smaller modulus q′ is determined at setup.
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