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Abstract. We revisit the question of what should be the definition of
bit security, previously answered by Micciancio-Walter (Eurocrypt 2018)
and Watanabe-Yasunaga (Asiacrypt 2021). Our new definition is simple,
but (i) captures both search and decision primitives in a single frame-
work like Micciancio-Walter, and (ii) has a firm operational meaning like
Watanabe-Yasunaga. It also matches intuitive expectations and can be
easily well-estimated in terms of Kullback-Leibler divergence. Along the
way of defining bit security and justifying our definition, we raise under-
valued concepts such as allowing aborts in security games, considering
partial adversaries, and verifiability in security games.
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1 Introduction

Bit security (a.k.a. security level) is a central concept in cryptography, which
bridges asymptotic and concrete regimes. Bit security summarizes complex secu-
rity descriptions of a concrete instantiation of a cryptographic scheme in a single
number, being a simple enough measure for level of security. Whereas asymp-
totic approach does not provide any guidance on concrete parameter selection,
bit security helps us to choose an appropriate set of parameters to guarantee a
certain level of security when deploying cryptographic schemes.

Despite its importance, we still do not have a well-accepted formal definition
of bit security. Nonetheless, when we say a scheme has λ-bit security, we roughly
expect that it costs more than 2λ resources to break the scheme1 or the scheme
is as secure as its idealized version with a λ-bit secret key.

Conventional Definition. For search primitives (e.g. one-way function, signa-
ture), it is common to define bit security as min log(T/ε). Here, the minimum

⋆ According to Aigner-Ziegler in their eminent book entitled Proofs from THE BOOK
[AZ99]: “Paul Erdős liked to talk about The Book, in which God maintains the
perfect proofs for mathematical theorems, following the dictum of G. H. Hardy that
there is no permanent place for ugly mathematics.”

1 An ambiguity here is how we define the word break.
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is taken over all possible attacks A, T is the cost (e.g. runtime) of A, and ε is
success probability (or advantage) of A. The definition captures the tradeoff be-
tween cost and success probability for an idealized search primitive with a λ-bit
secret key. Two trivial extreme attacks are (i) brute-force search with T = 2λ

and ε = 1 (ii) guessing at random with T = 1 and ε = 1/2λ. Another logic
behind here is that the definition is consistent with probability amplification.
Running an adversary A (with cost T and advantage ε) for N times, we have
an adversary with cost N · T and advantage 1− (1− ε)N ≈ N · ε, which yields
essentially the same bit security.

On the other hand, for decision primitives (e.g. pseudorandom number gener-
ator, encryption), cryptography literature quantify the advantage of an adversary
as ε = |2P − 1|, where P is the success probability.2 Defining bit security of de-
cision primitives analogously as min log(T/ε), where ε is now the distinguishing
advantage, sounds quite reasonable. This is the definition used implicitly in a
number of cryptography literature. However, this conventional definition led to
the following paradoxical situations.

Paradox One: Linear Test against PRG. It is a folklore, which goes back
at least to [AGHP90], that there is a non-uniform attack (linear tests) against
pseudorandom number generators (PRG) with λ-bit seed, which achieves advan-
tage 2−λ/2 in time O(λ). Thus, according to the conventional definition of bit
security, a PRG with λ-bit seed can guarantee no more than λ/2-bit security.
This is contrary to our expectation that λ-bit security of a PRG reflects the se-
curity of the ideal PRG with λ-bit seed. We note that the situation is not solely
due to non-uniformity.3 Non-uniform attacks on one-way functions (OWFs) can
be handled if we choose a different cost measure, unlike the case of PRGs.4 To
resolve the mismatch, one might want to define bit security of decision primitives
as min log(T/ε2). We remark that this alternative definition was considered by
a few previous works [GL89, HILL99], but received little attention.

Paradox Two: Approximate Samplers. When constructing cryptographic
schemes (especially in lattice-based cryptography [Reg05, Pei16]), we often make
use of certain distributions (e.g. discrete Gaussian). That is, sampling from a
particular distribution is often an important part of executing cryptographic
schemes. And their security proofs assume an ideal situation where we can sample
the distributions exactly. However, in real implementations, we can only sample
from an approximated distribution due to limited resources.

2 In decision primitives, guessing at random already achieves attack probability of 1/2.
3 We inform that there is some arguments on whether (e.g. [KM13]) and how
(e.g. [BL13]) non-uniform adversaries should be considered in cryptography.

4 De-Trevisan-Tulsiani [DTT10] proved the following lower bounds in the generic ora-
cle setting, where T is the runtime, S is the amount of advice, ε is the corresponding
advantage, and λ is the length of input or seed: (i) for OWFs, S · T = Ω̃(ε · 2λ),
and (ii) for PRGs, S · T = Ω̃(ε2 · 2λ). Using S · T as the cost measure, non-uniform
attacks on OWFs can be well-addressed. However, this is not the case for PRGs.
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The question to be answered is how does these approximations affect the
security of the schemes. In terms of statistical distance (a.k.a. total variation
distance), the standard measure in cryptography, it is an easy fact that λ-bit
precision is required to achieve λ-bit security. While this sounds quite natural
already, ambitious researchers have proved that it is enough to achieve roughly
λ/2-bit closeness with respect to other nice divergences (e.g. Rényi [PDG14,
BLL+15], max-log [MW17]), yielding much better parameters for practical uses.

However, all mentioned results apply only to search primitives5, and a cor-
responding result for decision primitives has eluded researchers. The paradox is
that it is generally believed that the security of encryption schemes (decision
primitives) is more robust against approximation errors than that of signature
schemes (search primitives).6

Previous Approaches. Micciancio-Walter [MW18] pointed out the paradoxes,
and provided a general formal definition of bit security; their definition resolves
the paradoxes and captures both search and decision primitives in a single frame-
work. The main point of Micciancio-Walter is to consider a general cryptographic
game in which an adversary has to guess an n-bit string, and define a general
advantage of an adversary that captures both search (for large n) and decision
(for n = 1) games, building on concepts from information theory.7 However, in
the definition, they introduce a hypothetical random variable that lacks intu-
itive meaning without a satisfactory explanation. (Refer to the original paper or
Appendix B.2 for details.)

Watanabe-Yasunaga [WY21] pointed out this weakness of Micciancio-Walter
as a lack of operational meaning, and provided another definition as cost for win-
ning certain games with high probability — which also resolves the paradoxes
mentioned and has an operational meaning by nature. However, they defined the
games qualitatively differently for search and decision primitives, losing general-
ity that Micciancio-Walter sought. (Refer to the original paper or Appendix B.3
for details.)

1.1 Our Contributions

Our main result is a new definition of bit security (Definition 3.6). Our def-
inition is so simple that it can be expressed in plain language: we define bit
security as the cost to observe advantage of adversaries (with high probabil-
ity). Our simple definition (i) captures both search and decision primitives in a
single framework like Micciancio-Walter [MW18] and (ii) has a firm operational
meaning like Watanabe-Yasunaga [WY21]. Of course, our definition also resolves

5 We excluded [BLL+15], which also considers decision primitives, because the result
requires decision problems to satisfy a specific property called public sampleability.

6 See, e.g., Section 4 of [ADPS16].
7 Another point — considering adversaries that may explicitly declare failure of the
attack (⊥) — is discussed later in Section 4.4.
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the paradoxes (Section 4.3 and 4.4), matching the intuitive expectations. More-
over, our bit security provides a simple and tight estimation of itself in terms of
Kullback-Leibler divergence (Section 3.2), suggesting practical usability of our
definition. Besides, we:

– define a general framework which captures essentially all security games
(Definition 3.1).

– introduce the trick of allowing adversaries to abort (Definition 3.1), in order
to make it easier to resolve Paradox One (Section 4.2 and 4.3). This modi-
fication was also used in [MW18], but we use it in a more crucial way. (See
Section 4.4.)

– point out yet another paradox in previous definitions of bit security (includ-
ing [MW18, WY21]) and explain how our definition go past this paradox
(Section 4.1).

– raise undervalued concepts such as:

• allowing aborts in security games (Definition 3.1 and Section 4.2),

• considering partial adversaries (Definition 3.6 and Section 4.5),

• and verifiability in security games (Section 4.1).

Main messages from our work are the followings.

– Cryptography literature somehow overlooked the concept of verifiability in
security games, although it is a significant concept in security definitions.

– The quadratic gap in Paradox One, which is the starting point of [MW18,
WY21] and our work, is not from difference in size but from difference in
verifiability.

– Allowing adversaries to abort might enable more handy security arguments
in some cases.

1.2 Organization

This paper is divided into two main parts. The more technical and formal part,
definitions, is presented in Section 3, and the more conceptual and informal part,
discussions, is presented in Section 4.

After a short introduction on our notations and terminologies (Section 2),
our new definition of bit security as cost to observe advantage (Definition 3.6) is
presented in Section 3.1. Along the way, we also define a general framework to
abstract all security games (Definition 3.1) and extend the traditional definition
of advantage into our framework which allows adversaries to abort (Definition 3.3
and 3.4). In Section 3.2, we prove that our bit security can be well-approximated
in terms of Kullback-Leibler divergence (Corollary 3.1). This suggests practical
usability of our definition of bit security.

In Section 4, various level of discussions are presented. In Section 4.1, we
point out yet another paradox in previous definitions of bit security, including
[MW18, WY21]. Then, we claim that the paradox arises because the cryptogra-
phy community have overlooked the concept of verifiability, and explain how our
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definition go past this paradox. In Section 4.2, we try to convey our intuition
behind our definition of (generalized) advantage (Definition 3.4) and explain the
utility of allowing adversaries to abort. In Section 4.3, we perform case studies
on our definition of bit security in order to resolve the Paradox One presented in
Section 1. In Section 4.4, we compare our definition of security game and bit secu-
rity with those of Micciancio-Walter [MW18] and Watanabe-Yasunaga [WY21]8,
and eventually resolve the Paradox Two (Section 1). In Section 4.5, our hum-
ble opinion on the practice of considering partial adversaries is presented. In
Appendix A, some marginal discussions are noted.

2 Notations and Terminologies

We denote the logarithm to the base 2 by log(·) and the one to the base e
by ln(·). We use standard arithmetic over extended non-negative real numbers
[0,∞] (e.g. a

0 = ∞ and a
∞ = 0 for a ∈ (0,∞)), but with an additional rule

0
0 = 0. In particular, the conditional probability Pr[ ∅ | ∅ ] is defined to be zero.
We denote the Kullback-Leibler divergence between the Bernoulli distributions
with parameters p and q as DKL(p||q) = p · log p

q + (1 − p) · log 1−p
1−q . We note

that DKL(p||1) =∞ in our convention. We do not strictly distinguish the terms
hardness and security, and often use them interchangeably.

3 Definitions

3.1 Bit Security as Cost to Observe Advantage

We first formally define a generic framework to clarify the scope of our new
definition of bit security. However, we believe our framework is abstract enough
to capture every security definitions in the cryptography literature.

Definition 3.1 (Security Game). A security game G = (X,A,R) is played
by an adversary A interacting with a challenger X. At the end of game, A outputs
some value a ∈ A ∪ {⊥}, where ⊥ is a predefined symbol to indicate the abort.9

The adversary A wins the game if (viewX , a) ∈ R, where viewX ∈ {0, 1}∗ is
the view of the game from the perspective of the challenger X and the target
relation R ⊂ {0, 1}∗ ×A is a binary relation. We call the game a decision game
if |A| = 2, and a search game if |A| > 2.

At first glance, it may not seem like much, but the role of ⊥ is crucial in this
paper. (See Section 4.2 and 4.4.) We acknowledge that considering ⊥ is highly
influenced by Micciancio-Walter [MW18].

Going back to the basics and in the spirit of Watanabe-Yasunaga [WY21],
which defines bit security as cost for winning certain games with high probability,
we define bit security as the following.

8 For readers who are not familiar with the previous definitions of [MW18, WY21],
we summarize their definitions and some results in Appendix B.

9 That is, ⊥ can never be in A.
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Definition 3.2 (Bit Security). For any security game G, we denote and
define its bit hardness (with respect to error probability 0 < δ < 1/2) as the
following, where TA is the cost of the adversary A.10

BSδ(G) = min
A
{log TA : Pr[A wins G] ≥ 1− δ}

The bit security of a cryptographic scheme ΠG, whose security is defined by the
game G, is defined as the bit hardness of G.

We call this definition of bit security the primary version to distinguish it from
a later definition (Definition 3.6). The definition is more or less an implemen-
tation of our intuition on bit security by formally defining what is to break a
cryptographic scheme, in terms of winning the security game with high proba-
bility. We remark that the definition indeed has a firm operational meaning and
is independent of types of security games (e.g. decision or search).

But, now what?

While the primary version of bit security (Definition 3.2) only considers full
adversaries, all the controversies on the definitions of bit security are about par-
tial adversaries. That is, the central question in the line of works is, for example,
how should the existence of an adversary with small but non-negligible success
probability affect bit security. (See Section 4.5 for discussions on considering par-
tial adversaries.) In the rest of this paper, we convey our answer to the question
by a new definition of bit security generalizing Definition 3.2. We begin by refin-
ing the traditional definition of advantage of an adversary into our framework
(Definition 3.1).

Definition 3.3 (Normalized Success Probability). Let G be a security
game and A be an adversary against G. We denote and define the normalized
success probability of A against G as the following.

PG
A = Pr

[
A wins G

∣∣ A does not abort
]

We denote and define the output probability of A against G as the following.

αG
A = Pr

[
A does not abort

]
Definition 3.4 (Advantage). Let G be a security game. An adversary A
against G is called a dummy if the output of A is independent of any inputs
during the game. We denote and define the baseline probability of G as the
following.

PG
0 = max

A:dummy
PG
A

We denote and define the advantage of A against G as the following.

advG(A) = max
{
PG
A − PG

0 , 0
}

10 In this paper, we fix a cost function T which maps an adversary to a non-negative
integer. We expect T to be linear under repetition, i.e. TAN = N · TA where AN

denotes the N -repetition of A. While our definition is still valid when T is not linear,
this results the definition to have less operational meaning.
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It is easy to see that our definition matches with the traditional definition of
advantage, when A never aborts. Our contribution and possibly a controversial
point here is how well we extended the traditional definition into our framework
which allows to abort. For discussions on this issue, refer to Section 4.2.

Next, we define an event, which we call the observation of advantage. It
tries to capture the situation where the adversary demonstrates its advantage
empirically, i.e. A wins significantly many games when the security game is
repeated several times. We believe this is a very natural concept to consider
when a partial adversary is given.

Definition 3.5 (Observation of Advantage). Let G be a security game, A
be an adversary against G, and N be a positive integer. When G is repeated N
times independently and A wins more than PG

0 fraction of non-aborted games,
we say the advantage of A is observed in GN . We denote the probability of
observing advantage of A in GN as PG

obs(A, N). That is,

PG
obs(A, N) = Pr

[
# of games A wins in N -repeated Gs

# of games A does not abort in N -repeated Gs
> PG

0

]
.

Now we are ready to define bit security against partial adversaries. Our
definition tries to capture the cost to experience the advantage of an adversary
with high probability, leveraging Definition 3.5.

Definition 3.6 (Bit Security against Partial Adversaries). For any se-
curity game G, we denote and define its bit hardness against partial adversaries
(with respect to error probability 0 < δ < 1/2) as the following, where TA is the
cost of the adversary A.

BSδ
Part(G) = min

A,N

{
log (N · TA) : P

G
obs(A, N) ≥ 1− δ

}
The bit security against partial adversaries of a cryptographic scheme ΠG, whose
security is defined by the game G, is defined as the bit hardness of G against
partial adversaries.

Again, we remark that the definition is independent of types of security games
(e.g. decision or search). We believe the definition also has a very firm and natural
operational meaning.

The following proposition and its proof assert that our definition of bit secu-
rity against partial adversaries is indeed a generalization of the primary defini-
tion. Although the bit security of Definition 3.6 does not exactly match that of
Definition 3.2 in general, we can say that it is a more conservative measure to
use, at least.

Proposition 3.1. For any security game G and error probability 0 < δ < 1/2,
the following inequality holds.

BSδ
Part(G) ≤ BSδ(G)

Proof. Easily follows from the fact that Pr[A wins G] = PG
obs(A, 1). ⊓⊔
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3.2 Bit Security in terms of KL Divergence

Even if we agree on the plausibility of Definition 3.6, there remains question on
its practical usability. In this regard, we show that bit security against partial
adversaries can be well-approximated in terms of Kullback-Leibler divergence
(a.k.a. KL divergence, Rényi divergence of order one).

Proposition 3.2 (Estimation of Observation Probability). Let G be a
security game, A be an adversary against G, and N be a positive integer. Assume

that PG
0 < PG

A < 1. Then, the probability of observing advantage of A in GN

satisfies the following approximate bounds, where D = DKL(P
G
0 ||PG

A ).

e−αG
A·D·N√

8 · αG
A · PG

0 (1− PG
0 ) ·N

⪅ 1− PG
obs(A, N) ⪅ e−αG

A·D·N

Proof. These are straightforward applications of a standard concentration bound
(a.k.a. tail bound), namely the Chernoff bound, and an anti -concentration bound
for binomial distributions (See e.g. [Ash12]), after approximating the number of
non-aborted games as αG

A ·N . ⊓⊔

Corollary 3.1 (Estimation of Bit Security against Partial Adversaries).
For any security game G and 0 < δ < 1/2, bit hardness of G against partial
adversaries with respect to error probability δ can be estimated as the following.

BSδ
Part(G) ≈ min

A
log

(
Nδ

A · TA
)

Here, Nδ
A is defined as follows.

Nδ
A =

1

αG
A

·max

 ln(1/δ)

DKL

(
PG
0 ||PG

A

) , 1


Proof. From Proposition 3.2, we have that Nδ

A ≈ min
{
N : PG

obs(A, N) ≥ 1− δ
}
.

Then, apply it to the following trivial reformulation of BSδ
Part(G).

BSδ
Part(G) = min

A
log

(
TA ·min

{
N : PG

obs(A, N) ≥ 1− δ
})

⊓⊔

Inspired from Corollary 3.1, we suggest yet another definition of bit security,
namely KL-bit security. We believe the definition of KL-bit security (i) is as gen-
eral as possible (as it is independent of types of games), (ii) is practically useful
(as it is easily computable and its dependency on error probability is dropped),
and (iii) also well-reflects the reality of security level (as it is an approximate
version of Definition 3.6 which has a very firm operational meaning).
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Definition 3.7 (KL-Advantage). For any security game G and adversary
A against G, we denote and define the KL-advantage of A against G as the
following.

advGKL(A) = αG
A ·min

{
DKL

(
PG
0 ||PG

A

)
, 1

}
Definition 3.8 (KL-Bit Security). For any security game G, we denote and
define its KL-bit hardness as the following, where TA denotes the cost of the
adversary A.

BSKL(G) = min
A

log

(
TA

advGKL(A)

)
The KL-bit security of a cryptographic scheme ΠG, whose security is defined by
the game G, is defined as the KL-bit hardness of G.

The following proposition asserts that our definition of KL-bit security is at
least a conservative measure to use.

Proposition 3.3. For any security game G and error probability 0 < δ ≤ 1/e,
the following (approximate) inequalities holds.

BSKL(G) ⪅ BSδ
Part(G) ≤ BSδ(G)

Proof. A straightforward combination of Proposition 3.1 and Corollary 3.1. ⊓⊔

4 Discussions

4.1 Verifiability

Paradox Three: Uniform Random Adversaries. Consider a decision game,
in which the answer is uniformly distributed, and a dummy adversary which
outputs a uniform random answer. The advantage of this adversary (in the tra-
ditional sense) is defined to be zero, and it makes perfect sense. Now, let us
consider a search game, in which the answer is again uniformly distributed over
a finite set, and again an adversary which outputs a uniform random answer.
According to the conventional definition of bit security as min log(T/ε) (Sec-
tion 1 and Definition B.1), surprisingly, this uniform random adversary is not a
dummy anymore in the search game: existence of such uniform random adver-
sary already implies a finite bit security. A philosophy behind this work is that
we can interpret decision games as search games with extremely small answer
space. If this is true, something strange is happening here.

Verifiability. Our claim is that the key to this paradox is the concept of veri-
fiability. We call a security game verifiable if adversaries have the access to an
oracle which verifies whether the input satisfies the target relation of the game
and outputs the result11 (or there is a trivial way for adversaries to verify by

11 It is required that the target relation is independent of verification queries.
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oneself with negligible costs). If not, we call the game non-verifiable. That is,
a verifiable game is a security game where adversaries have power to recognize
their success and failure.

Of course, for decision games, verifiability is not a meaningful concept, as all
nontrivial decision game is non-verifiable. If a decision game is verifiable, an ad-
versary can always win the game with only two verifications. On the other hand,
for search games, both verifiable and non-verifiable games seem considerable.

Verifiability as a Gift: Paradox Three Resolved. However, the cryptog-
raphy literature somehow overlooked the concept of verifiability, took verifiable
search games for granted, and neglected non-verifiable search games. The con-
ventional definition of bit security (Section 1) apparently demonstrates the situa-
tion: brute-force search and (linear) probability amplification, which are intuition
behind the definition, are only possible when the security game is verifiable.

Our claim is that, instead of taking verifiability for granted, if we consider the
verifiability as a bonus, then we can resolve the above paradox. More technically,
we defined dummy adversaries (Definition 3.4) so that they cannot perform
verifications (even in a verifiable game). Then an adversary who has an access to
verification deserves to be said having non-zero advantage, resolving the paradox.
Our work suggests that the classification of verifiable versus non-verifiable games
is much more fundamental than that of search versus decision games. This will
be further supported in the scene where the Paradox One (Section 1) is resolved
(Section 4.3).

Verifiability in Previous Works. The situation of oversight is not so different
in the previous works which provide new definitions of bit security [MW18,
WY21]. In particular, they are not concerned much about non-verifiable search
games. Watanabe-Yasunaga [WY21] implicitly presumed verifiability of search
games in their definition of bit security (Appendix B.3) and wrote “By definition,
the bit security of search primitives has a finite value ... In contrast to this
fact, decision games can have infinite bit security. For example, since the one-
time pad (OTP) has perfect secrecy, the bit security should be unbounded.”
However, this phrase is very mistaken, as we can also define a proper one-wayness
game for OTP, which is unarguably expected to be an ∞-bit hard search game.
Even though non-verifiable search games were explicitly considered in [MW18,
Section 5.2], Micciancio-Walter do not seem to be aware of their significance in
security definitions. According to their definition of advantage for search games,
an adversary has zero advantage only if it always either aborts or outputs a
wrong answer.

We remark that non-verifiable search games are not pathological counterex-
amples devised just to tackle existing definitions. These include not only security
games for primitives with information theoretic security (e.g. one-wayness game
for OTP) but also the computational Diffie-Hellman problem (CDH), in which
verification corresponds to solving the decisional Diffie-Hellman problem.
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4.2 Power to Say “I Don’t Know (⊥)”

If we agree on the power of verifiability, the next step would be to quantitatively
study the power. Our starting point is to ask: what is the most distinct feature
a partial adversary of a verifiable game have? We claim that it is the power
to verify its answer just before the submission. If its answer is correct, nothing
special happens: the adversary will output its original answer. However, if it is
wrong, the adversary will definitely do something.

Let us first consider the setting where aborts are not allowed. In this case, the
adversary will output another random answer.12 Then, the success probability
will be slightly amplified, but the resulting output distribution has no significant
structural difference from that of non-verifiable adversaries. This makes it hard
to study verifiable adversaries apart from non-verifiable ones.

So we use a trick: we allow adversaries to abort (Definition 3.1). Notice that
outputting another random answer is essentially a dummy action whose success
probability is very close to the baseline probability. In this regard, it seems fair
enough to not take the aborted game into account (Definition 3.3), in order to
give appropriate favors to adversaries who admitted their ignorance instead of
guessing at random. In this way, we can implement the power of verifiability
into the power to say “I Don’t Know (⊥)”, which gives significant structural
difference on output distributions of verifiable versus non-verifiable adversaries.
(See Footnote 13.)

4.3 Paradox One Resolved

In order to investigate how our definition (Definition 3.6 and 3.8) resolves the
Paradox One (Section 1), we examine the following two cases.

First Case: PG
A = 1. This case of adversaries are considered to capture the

behavior of adversaries against verifiable (search) games. In this case, we have
the following equalities.

advGKL(A) = αG
A ·min

{
DKL

(
PG
0 || 1

)
, 1

}
= αG

A

If we admit that running verification before outputting an answer (and abort
if it is not a valid answer) is the best strategy13 for verifiable games, then we

12 We believe this is the hidden intuition behind the definition of the hypothetical
random variable of [MW18] (Definition B.4), which explains why their definition of
bit security works so well for verifiable search games.

13 This is almost equivalent to the assumption that the cost for verification is negligible,
under our definition of advantage (Definition 3.3 and 3.4). This is the point where
our introduction of abort (Definition 3.1) and definition of advantage take effect.
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have the following equalities for a verifiable search game G.

BSKL(G) = min
PG

A=1
log

(
TA

advGKL(A)

)
= min

PG
A=1

log

(
TA

αG
A · PG

A

)
Notice that αG

A ·PG
A is the success probability in the traditional sense. There-

fore, our KL-bit security is consistent with the conventional definition of bit
security (Definition B.1), for verifiable search games.

Second Case: PG
0 = 1/2. This case of games includes balanced decision

games, where the correct answer is uniformly distributed. In this case, we have
the following (approximate) equalities, where the approximation comes from the
Taylor expansion at PG

A = 1/2. Hence, the approximation holds only when PG
A

is close to 1/2.

advGKL(A) = αG
A ·min

{
DKL

(
1/2||PG

A

)
, 1

}
= αG

A ·min

{
1

2
log

(
1

PG
A (1− PG

A )

)
− 1, 1

}
≈ 2

ln(2)
· αG

A

(
PG
A −

1

2

)2

=
2

ln(2)
· αG

A ·
(
advG(A)

)2

If we neglect the constant term and admit that, in (non-verifiable) decision
games, aborting is not a good idea, then we have the following equalities for a
balanced decision game G.

BSKL(G) = min
αG

A=1
log

(
TA

advGKL(A)

)

= min
αG

A=1
log

 TA(
advG(A)

)2


Notice that this is the alternative definition of bit security (Definition B.1) for

decision primitives, which was suggested to avoid paradoxical situation of linear
tests against PRG (Section 1). Therefore, our KL-bit security is consistent with
the expectation of the community, for balanced decision games, resolving the
Paradox One (Section 1).

Opinion. We remark that our definition is not consistent with the conventional
(resp. alternative) definition for all search (resp. decision) games in general.
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Namely, our definition differs from the conventional (resp. alternative) defini-
tion for non-verifiable search games (resp. unbalanced decision games, where the
distribution of the correct answer is unbalanced). However, we do not think this
is a drawback of our definition. Instead, we believe this indicates that the con-
ventional definition and the alternative definition neglected non-verifiable search
games and unbalanced decision games. (See also Section 4.1 for discussions on
verifiability.)

4.4 Comparison with Previous Definitions

Definition of Security Game. The principal feature of Definition 3.1 is that it
allows adversaries to abort. The idea of considering abort (⊥) is highly influenced
by the previous definition of Micciancio-Walter [MW18], whereas Watanabe-
Yasunaga [WY21] do not consider these aborts. However, we believe our work
employs the concept of abort in a much more significant way than [MW18]. This
is because Micciancio-Walter seem to be using this powerful concept only in
relatively minor parts (e.g. tightness of security reductions) of the discourse. (See
also Section 4.1 for their oversight on the concept of verifiability.) In particular,
the quadratic gap between bit security of search and decision game, which is the
main question of [MW18] and our work, is explained in terms of the size of the
secrets and not by allowing aborts. On the other hand, allowing abort is crucial
in our definitions and we explain the quadratic gap leveraging this concept of
abort (See Section 4.3).

Aiming to be as abstract and general as possible, our definition of security
games does not restrict anything (except the ability to abort), and target rela-
tions are defined as relations between the view of the challenger and the answer
of the adversary. On the other hand, previous works [MW18, WY21] define se-
curity games to begin with the challenger choosing a secret, and define target
relations as relations between this secret and the answer of the adversary. We
regard this as an unnatural and restrictive formulation, since we often consider
security games where the secret (answer) is chosen during the game, i.e. the tar-
get relation is affected by the queries of an adversary (e.g. IND-CPA game for
public key encryption schemes, EUF-CMA game for signature schemes). That
is, previous definitions do not capture even the IND-CPA game without modifi-
cations, while ours seem to capture all existing security definitions.

Another difference is that we classify decision versus search games according
to the size of the answer space, whereas previous works classify according to
the size of the secret space. We believe our criteria is closer to reality, although
distinction between decision and search games is not crucial in our work.

Bit Security of [WY21]. Our definition of bit security against partial ad-
versaries (Definition 3.6) is highly influenced by Watanabe-Yasunaga [WY21].
It is defined as cost for an event to happen with high probability, with firm
operational meaning, as in Watanabe-Yasunaga.

The biggest difference between [WY21] and our work is generality. Although
they defined bit security for both search and decision primitives as computational
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cost for winning games with high probability, the designated games for search
and decision primitives differs qualitatively. On the other hand, our definition
has a simple and natural description which is totally independent of game types.
Moreover, our definition has a tight approximation in terms of KL-divergence
(Proposition 3.1), which is a single formula independent of game types. Oversight
of [WY21] on non-verifiable search games (Section 4.1) may also be stated as an
issue of generality.

Bit Security of [MW18]. Our work and Micciancio-Walter [MW18] both seek
for generality, under the belief that, since a decision game can be understood as a
search game with extremely small answer space, there must not be a binary dis-
tinction between decision and search games. The solution of Micciancio-Walter
was to devise an advantage which interpolates two extreme cases of n = 1 for
decision games and n≫ 1 for search games. On the other hand, our work shows
that there is a binary distinction but this distinction, in fact, stems from verifi-
ability and not from decision/search types (Section 4.3).

However, in the aspect of naturality and interpretability, Micciancio-Walter
introduces a hypothetical random variable in the definition, which lacks intuitive
meaning without a sufficient explanation. On the other hand, our definition is
based on the simple and natural concept of observing advantage (Definition 3.5)
which has firm operational meaning by nature. Nonetheless, it is very surprising
that the resulting bit security from two different approaches of [MW18] and ours
are exactly the same (Section 4.3 and Theorem B.1). We believe there are some
hidden operational meaning behind the random variable (See Footnote 12).

Paradox Two Resolved. As we mentioned above, the resulting bit security
from the definitions of Micciancio-Walter [MW18] and ours are the same, if we
restrict our interest to verifiable search games and balanced decision games.
Thus, all security reductions proved in [MW18] can trivially translated into our
framework. In particular, we obtain a version of the theorem which resolved
the Paradox Two (Section 1) in [MW18] for free, resolving the paradox also in
our framework. For the sake of completeness, we state the theorem adapted to
our results, without a proof. The theorem roughly says approximating employed
distributions upto λ/2-bit closeness (with respect to a nice divergence) is enough
for λ-bit security, also in the case of decision primitives.

Theorem 4.1 ([MW18, Theorem 8 (Adapted)]). Let GP be a balanced
decision game G instantiated with black-box access to a probability ensemble P,
GQ be the similar, and D be a c-efficient measure14 for any c ≤ 1

4 . If G
P is

λ-bit hard and D(P,Q) ≤ 2−λ/2, then GQ is (λ−α)-bit hard, where α is a small
constant.

14 For the definition, refer to [MW17] or [MW18].
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4.5 Practical Reality of Partial Adversaries

A fundamental question one can ask is:

Do we really need to consider partial adversaries?

Our honest answer is “I Don’t Know (⊥)”.15
The NO-aspect of our opinion is that, in theory, we do not have to. Our

primary definition of bit security (Definition 3.2), which considers only full ad-
versaries, seems to be the most natural definition one can think of. The main
point is that we cannot extend a partial adversary to a full adversary in a black-
box manner, in most of the security games. This is because, in most security
games, the challenger chooses the challenge only once and the target relation is
affected by the queries of an adversary. That is, resetting the game and starting
from the beginning is not allowed in security games, in general. These games in-
clude very basic examples of IND-CPA game for public key encryption schemes
and EUF-CMA game for signature schemes. Moreover, this limited access to the
challenger might be crucial in some applications.

The YES-aspect of our opinion is that, in practice, the community actu-
ally cares about partial adversaries. Many researchers consider existence of par-
tial adversaries as a harm to security, and essentially the goal of prior works
by Micciancio-Walter [MW18] and Watanabe-Yasunaga [WY21] was to well-
quantify this harm. Moreover, this unlimited access to the challenger seems to
be reasonable in many situations.

Resettable Game. A radical opinion of ours is that these two aspects might
indicate that our theory does not reflect our practice sufficiently. In this regard,
we cautiously suggest to use security notions defined in a resettable manner,
generally, and use non-resettable security games only when the limited access to
the challenger is crucial in the scenario.

Then, another natural question rises: what should be the winning criteria for
resettable security games, where the adversary may reset the inner security game
and output answers multiple times? Our claim is that the concept of observation
of advantage (Definition 3.5) is the most natural criteria one can think of. In
this aspect, our work can be also understood as a work aiming to answer the
questions of (i) how should the security of resettable games be formally defined,
and (ii) how does bit security of a resettable game relate to the bit security of
its inner security game.

References
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infeld. Improved security proofs in lattice-based cryptography: Using the
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A More Discussions

Cost Functions. There are controversies over which is the most proper measure
of cost, especially in the non-uniform setting, e.g. [KM13, BL13]. This is indeed
related to our work and is an interesting question to investigate. Nonetheless, we
believe the issue is orthogonal to our work, as we are concerned with the question
of defining security after a cost function is fixed. At least, the most commonly
used cost functions (e.g. time complexity, circuit size [DTT10], S · T defined in
Footnote 4) meet our expectation of being linear under repetition (Footnote 10).

Definition of Bit Security. Our definition of bit security (Definition 3.2) can
be understood as a straightforward average-concrete-interactive-search analogue
of the computational complexity class BPP. That is, whereas (♠) BPP consists
of decision problems solvable by a probabilistic polynomial time algorithm with
a worst-case error probability bounded away from 0 < δ < 1/2, (♣) the set of
security games which are not λ-hard consists of decision and search games solv-
able by a probabilistic algorithm whose cost is less than 2λ with an average-case
error probability bounded away from 0 < δ < 1/2.

To the best of our knowledge, a work by Goldreich [Gol11] is the only work
which attempts to define a natural search analogue of BPP. Unfortunately, our
definition does not match the definition of [Gol11], which only considers verifiable
search problems. This is to avoid pathological halting-problem-related search
problems which can be solved by a probabilistic polynomial-time algorithm but
cannot be solved by a deterministic algorithm regardless of running time. As
such pathological examples do not appear in our concrete regime and there
are natural search problems which are conjectured to be non-verifiable (e.g.
CDH), we believe our definition is fine without the restriction to verifiable search
problems.

B Previous Definitions

In this appendix, we summarize definitions and some results from previous
works [MW18, WY21]. Some expressions are modified for sake of consistency.

B.1 Conventional and Alternative Definition

Definition B.1 (Conventional). For any security game G, we denote and
define its conventional bit hardness as the following, where TA is the cost of the
adversary A. When G is a search game, εA is defined as success probability of
A. When G is a decision game, εA is defined as distinguishing advantage of A.

BSδ
Conv(G) = min

A
log (TA/εA)

Definition B.2 (Alternative). For any security game G, we denote and de-
fine its alternative bit hardness as the following, where TA is the cost of the
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adversary A. Here, ε′A is defined as ε′A := εA when G is a search game, and
ε′A := (εA)

2 when G is a decision game.

BSδ
Conv(G) = min

A
log (TA/ε

′
A)

B.2 Micciancio-Walter [MW18]

Definition B.3 ([MW18, Definition 5]). An n-bit security game is played
by an adversary A interacting with a challenger X. At the beginning of the
game, the challenger chooses a secret x, represented by the random variable
X ∈ {0, 1}n, from some distribution DX . At the end of the game, A outputs
some value, which is represented by the random variable A. The adversary A
wins the game if it outputs a value a such that (x, a) ∈ R, where R is some
relation. A may output a special symbol ⊥ such that R(x,⊥) and R̄(x,⊥) are
both false.

Definition B.4 ([MW18, Definition 7]). For any security game G and ad-
versary A against G, we denote and define the MW-advantage of A against G
as the following.

advGMW(A) = I(X;Y )

H(X)

Here, I(·; ·) is the mutual information, H(·) is the Shannon entropy, and Y (X,A)
is the random variable with marginal distributions Yx,a = {Y |X = x,A = a} de-
fined as

1. Yx,⊥ =⊥, for all x.
2. Yx,a = x for all (x, a) ∈ R.
3. Yx,a = {x′ ← DX |x′ ̸= x}, for all (x, a) ∈ R̄.

Definition B.5 ([MW18, Definition 8]). For any security game G, we de-
note and define its MW-bit hardness as the following, where TA denotes the cost
of the adversary A.

BSMW(G) = min
A

log

(
TA

advGMW(A)

)
.

Theorem B.1 ([MW18, Theorem 1]). For any n-bit security game G with
uniform secret distribution, let A be an adversary. Then,

advGMW(A) = αG
A

(
1− (1− PG

A ) log(2n − 1) +H(PG
A )

n

)
,

where H(P ) denotes the Shannon entropy of the Bernoulli distribution with pa-
rameter P . Note that for n ≫ 1 we get advMW(A) ≈ αG

AP
G
A and for n = 1 we

get advMW(A) ≈ 2
ln(2)α

G
A(P

G
A − 1/2)2.
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B.3 Watanabe-Yasunaga [WY21]

Definition B.6 ([WY21, Security Game]). An n-bit security game G =
(X,R,O) consisting of an algorithm (challenger) X, a relation R, and an oracle
O, is played by an adversary A given oracle access to O. At the beginning of the
game, a secret u ∈ {0, 1}n is chosen uniformly at random, and the challenge x
is computed as X(u). The goal of the adversary is to output a value a such that
(u, x, a) ∈ R.

Definition B.7 ([WY21, Outer Game]). Let G be a security game and
A be an adversary against G. When G is a decision game (i.e. 1-bit security
game), the outer game of G with respect to A is played by an outer adversary B,
who wins the game if it outputs u ∈ {0, 1} given oracle access to A(X(u)). See
Figure 1a, where oracles in G are omitted. When G is a search game (i.e. n-bit
security game with n > 1), the outer game of G with respect to A is played by an
outer adversary B, who invokes G several times and wins if there was any game
A won. In other words, B has oracle access to A(X(u)), where u is uniformly
chosen from {0, 1} at the beginning of every queries. See Figure 1b, where oracles
in G are omitted. The outer game of G with respect to A is denoted as Ĝ(A).

Definition B.8 ([WY21, Bit Security]). For any security game G, we de-
note and define its WY-bit hardness (with respect to error probability 0 < δ <
1/2) as the following, where TA denotes the cost of the adversary A and NB
denotes the number of queries to A made by the outer adversary B.

BSδ
WY (G) = min

A,B

{
log(NB · TA) : Pr[B wins Ĝ(A)] ≥ 1− δ

}
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Fig. 1. Watanabe-Yasunaga


