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Abstract. We present a quantum augmented variant of the dual lat-
tice attack on the Learning with Errors (LWE) problem, using classical
memory with quantum random access (QRACM). Applying our results
to lattice parameters from the literature, we find that our algorithm out-
performs previous algorithms, assuming unit cost access to a QRACM.
On a technical level, we show how to obtain a quantum speedup on
the search for Fast Fourier Transform (FFT) coefficients above a given
threshold by leveraging the relative sparseness of the FFT and using
quantum amplitude estimation. We also discuss the applicability of the
Quantum Fourier Transform in this context. Furthermore, we give a more
rigorous analysis of the classical and quantum expected complexity of
guessing part of the secret vector where coefficients follow a discrete
Gaussian (mod q).
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1 Introduction

The Learning With Errors (LWE) problem was introduced by Regev [Reg05] and
has since become a major ingredient for constructing basic and more advanced
cryptographic primitives. It asks to find s given (A,b) with b ≡ A · s + e mod q
where both s and e have small entries. Its conjectured hardness against quan-
tum computers further makes all these constructions supposedly post-quantum.
In NIST’s Post Quantum Standardization Process, three of the six finalists
rely on the conjectured hardness of algebraic variants of Learning With Er-
rors [SSTX09,LPR10] and its variant Learning With Rounding (LWR) [BPR12]
problem.

From the perspective of a cryptanalyst equipped with a quantum computer,
lattice problems such as LWE are frustrating. Known quantum speedups to solv-
ing these problems are tenuous at best [AGPS20]. That is, while Grover’s search
offers a near quadratic quantum speedup for breaking, say, AES [JNRV20] the
gains against lattice problems are significantly more modest. This is due to the
rich structure of the search space in a lattice reduction algorithm that has given
rise to refined structured search algorithms for these problems, e.g. [BDGL16].
As a consequence of this, the current state-of-the-art is that quantum algorithms
on lattice problems can effectively be ignored when setting parameters.



The most efficient cryptanalysis techniques against LWE(-like) problems are
“primal” and “dual” lattice attacks, named after whether lattice reduction is
performed on the “primal” lattice related to A or the “dual” lattice related to
{x ∈ Zmq | x · A ≡ 0 mod q}. Up until recently, dual attacks were generally
considered less efficient for secrets s drawn from a sufficiently wide distribution.
Recent developments [GJ21,MAT22] of dual attacks, however, have shown their
ability to surpass primal attacks. These performance improvements are derived
from combining lattice reduction on the scaled dual of a target lattice with
an exhaustive search on a space related to the underlying secret s. Roughly
speaking, spending more resources on the exhaustive search part allows us to
spend fewer resources on the lattice reduction part of the overall algorithm and
vice versa.

In [GJ21] the search over part of the secret vector is realised using a Fast
Fourier Transform style algorithm and the search space is significantly reduced
by roughly considering only the most significant bits of this part of the secret.
In [MAT22] this last step is replaced by “modulus switching” which further pro-
vides significant performance gains. These newer iterations of the dual attack re-
late the search space to the underlying secret in such a way that large dimensions
can now be covered even when the norm of the secret vector is not very small
(previous versions of the dual attack relied on, say, coefficients si ∈ {−1, 0, 1}).

Thus, with this new generation of dual attacks, unstructured search starts
again to play a bigger role in costing attacks on LWE. It is therefore natural
to ask what performance gains can be obtained by tackling this unstructured
search using a Grover-like quantum algorithm. More precisely, [MAT22] relies
on two different kinds of unstructured search:

– Secret guessing: part of the secret is exhaustively searched until a match is
found. Since the secret is generated according to a discrete Gaussian of small
width, a significant speedup can be obtained by starting the search with the
most likely values of the secret first. The expected complexity of this step is
known as the guessing complexity.

– FFT threshold: given a list of values in a n-dimensional array, and a thresh-
old, the problem is to decide whether one of the coefficients of the Fourier
transform of the array is above the threshold. This problem arises when
trying to determine whether the secret guess was correct by distinguishing
between a uniform distribution and a gaussian one.

Contributions. After some preliminaries in Section 2, we provide a quantum
version of the dual attack of [MAT22]. Specifically, our improvements are twofold.

First, in Section 3 we show how to obtain a quantum speedup on the search
for Fast Fourier Transform (FFT) coefficients above a given threshold. This was
left as an open problem in [MAT22]. Here, we leverage the relative sparseness of
the FFT and use amplitude estimation to estimate the Fourier coefficients.

Second, in Section 4 we give a more rigorous analysis of the (classical and
quantum) expected complexity of guessing a vector (whose coefficients are)
drawn from a modular discrete Gaussian. In [MAT22], the authors estimated
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this complexity as the exponential of the entropy which is known not to be cor-
rect in general [Mas94]. We show that this complexity is indeed related to the
entropy in the case of a (modular) discrete Gaussian, albeit up to a non-negligible
exponential factor in the dimension.

In Section 5, we then measure the impact of our algorithm on the cost of
solving lattice parameters from the literature. Following the literature, we eval-
uate the complexity of our algorithm under the assumption of unit-cost access to
a classical memory with quantum random access (QRACM). Our algorithm pro-
vides a significant performance improvement over previous work in this model,
but does not achieve a quadratic speedup overall. As a consequence, security
parameters do not need to be updated in response to our findings.

In Section 6, we discuss the FFT threshold problem and its quantum com-
plexity. Any significant speedup on this problem would yield major improvements
in the complexity of the dual attack. We argue that the Quantum Fourier Trans-
form (QFT) does not seem applicable in this context, despite being the natural
approach.

2 Preliminaries

Recall that eix = cos(x) + i sin(x). We write [x, y] for the interval {x, x +
1, . . . , y} ⊂ Z. We denote matrices by bold uppercase letters, e.g. A, and vectors
by bold lowercase letters, e.g. v. We treat vectors as column matrices. We write
vT for the transpose of v.

2.1 Lattices

A lattice L is a discrete subgroup of Rd. We can represent it as {
∑
xi ·bi|xi ∈ Z}

and where bi are the columns of a matrix B, we may write L(B). If B has full
column rank, we call B a basis.

While the central object of this work, the dual attack, critically relies on
lattice reduction, such as the BKZ algorithm, we mostly make blackbox use
of these algorithms here. Thus, we refer the reader to e.g. [GJ21,MAT22] for
details. In particular, the blackbox use we make of lattice reduction algorithms
and, critically, lattice sieving algorithms is captured in Algorithm 1.

In Algorithm 1 the BKZ-β0 call performs lattice reduction with parameter
β0 where the cost of the algorithm scales at least exponentially with β0. The
BKZ algorithm proceeds by making polynomially many calls to an SVP ora-
cle. In this work, this oracle is instantiated using a lattice sieving algorithm
which is also called explicitly in Algorithm 1 with parameter β1. Such a siev-
ing algorithm outputs Nsieve(β1) many short vectors in the lattice L(B) and
has a cost exponential in β1. The magnitude Nsieve(β1) also grows exponen-
tially with β1 but slower than the cost of sieving. We may instantiate the lattice
sieve with a classical algorithm [BDGL16] which has a cost of 20.292 β1+o(β1).
We may also instantiate the lattice sieve with a quantum augmented variant of
sieving [LMv13,Laa15,AGPS20,CL21] which as a cost of 20.257 β1+o(β1).
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Algorithm 1: Short Vectors Sampling Procedure [GJ21]

Input: A basis B =
[
b0 . . . bd−1

]
for a lattice and integers β0, β1 6 d and D.

Output: A list of D vectors from the lattice.
1 Let Nsieve(·) denote a function that returns the number of vectors returned by

one call to a lattice sieving oracle.
2 for i ∈ [0, dD/Nsieve(β1)e − 1] do
3 Randomise the basis B.
4 Run BKZ-β0 to obtain a reduced basis b′0, . . . ,b

′
d−1.

5 Run a sieve in dimension β2 on the sublattice spanned by b′0, . . . ,b
′
β1−1 to

obtain a list of Nsieve(β1) vectors and add them to L.

6 return L

2.2 Learning with Errors

The Learning with Errors problem (LWE) is defined as follows.

Definition 1 (LWE). Let n,m, q ∈ N, and let χs, χe be distributions over Zq.
Denote by LWEn,m,χs,χe the probability distribution on Zm×nq × Zmq obtained by
sampling the coordinates of the matrix A ∈ Zm×nq independently and uniformly
over Zq, sampling the coordinates of s ∈ Znq , e ∈ Zmq independently from χs and
χe respectively, and outputting (A,A · s + e).

We define two problems:

– Decision-LWE. Distinguish the uniform distribution over Zm×nq × Zmq from
LWEn,m,χs,χe .

– Search-LWE. Given a sample from LWEn,m,χs,χe , recover s.

Dual Attack. Dual-lattice attacks, or simply “dual attacks” on LWE and re-
lated problems were introduced in [MR09]. In its simplest form it proceeds as
follows. Given either (A,A · s + e) or A,u where (A,u) are uniform and wlog
s, e are short [ACPS09], the attack finds short x s.t. xT ·A ≡ 0. Then, we either
obtain xT ·A ·s+ 〈x, e〉 = 〈x, e〉 or 〈x,u〉. The former follows a distribution with
small elements, the latter follows a uniform distribution.

In [ADPS16], the “normal form” of the dual attack was introduced which
finds short x such that xT ·A ≡ y mod q with y short. We then obtain xT ·A ·
s + 〈x, e〉 = 〈y, s〉+ 〈x, e〉, which follows a distribution with small entries when
y, s,x and e are short.

In [Alb17] a composition of the dual attack with a guessing phase (and some
scaling) was introduced with a focus on vectors s that are sparse and small
compared to e. The idea is to split A = [A0|A1] such that b ≡ A0 · s0 + A1 ·
s1 + e mod q. Then the dual attack is run on A0 s.t.

〈x,b〉 ≡ xT ·A0 · s0 + xT ·A1 · s1 + 〈x, e〉 = 〈y, s0〉+ xT ·A1 · s1 + 〈x, e〉 .

Thus, guessing s1 and computing 〈x,v〉 − xT ·A1 · s1 produces a elements that
follow a distribution with small elements. In [EJK20] this was generalised to
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more general secret distributions paired with additional improvements on the
exhaustive search over s1.

In [GJ21] further improvements were presented. In particular, the search over
s1 is realised using a Fast Fourier Transform style algorithm and the search space
is significantly reduced by roughly considering only the most significant bits of
s1. In [MAT22] this last step is replaced by “modulus switching” [BV11,AFFP14]
which provides significant performance gains.1

2.3 Discrete Gaussian distribution

Let σ > 0. For any x ∈ Rd, we let ρσ(x) = exp(−‖x‖2 /2σ2). Note that this
different from the other, also commonly used definition where 1

2 is replaced by
π in the exponent. This change is inconsequential to our results. For any lattice
L ⊂ Rd, we denote by DL,σ the discrete Gaussian distribution over L, define by
DL,σ(x) = ρσ(x)/ρσ(L) for all x ∈ L.

We will also make use of the modular discrete Gaussian. For any q ∈ N, we
denote by DZdq ,σ the modular discrete Gaussian distribution over Zdq , defined by

DZdq ,σ(x) =
ρσ(x + qZd)
ρσ(Zd)

.

Note that the distribution DZdq ,σ is isomorphic to the distribution Dd
Zq,σ, a fact

that will use often implicitly.

2.4 Quantum Computing

Quantum Circuit Model. In the quantum circuit model, the time complexity
is the circuit size, which is the total number of elementary quantum gates. The
space complexity is the number of qubits used. We will assume that the elemen-
tary quantum gates come from a fixed universal set. Up to constant factors, the
complexity does not depend on the universal set that we have chosen. Since all
unitary transforms are invertible, any quantum circuit A is reversible and we
denote by A† its inverse, which is also equal to its conjugate transpose when
viewed as a matrix.

Given a function f : {0, 1}n → {0, 1}m, we say that a quantum circuit, imple-
menting a unitary U that acts on n+`+m qubits, computes f with probability α
if for every x, a measurement on the last m qubits of U |x〉 |0`〉 |0m〉 outputs f(x)
with probability at least α. The exact location of the qubits that we measure
for the output actually does not matter, since we can also apply SWAP gates
(implementable by elementary gates) to swap them to the m last positions. The
extra ` qubits that are not part of the input/output are called ancilla qubits (or
work space).

1 Another significant gain reported in [MAT22] is due to an improvement to the lattice
sieving algorithm from [BDGL16] but discussing this is out of scope of this work.
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Quantum Query Model. We use the standard form of the quantum query
model : given a unitary O, we say that a circuit computes f with oracle access
to O if by augmenting the model with the unitary O, we can construct a circuit
computing f . The number of queries on O is the number of unitary O in the
circuit. If we find an efficient algorithm for a problem in query complexity and we
are given an explicit circuit realizing the black-box transformation of the oracle
O, we will have an efficient algorithm for an explicit computational problem.

Quantum Algorithms. We say that a quantum algorithm computes a func-
tion F : {0, 1}∗ → {0, 1}∗ with probability α if there is a classical algorithm A
with quantum evaluation that outputs F (w) with probability α on input w. By
quantum evaluation we mean that the algorithm can, any number of times dur-
ing the computation, build a quantum circuit and evaluate it, that is measure
the state U |0〉 where U is the unitary implemented by the circuit. The time
complexity T (n) is the classical time complexity of A plus the time complex-
ity of the circuits (that is the number of gates). The classical space complexity
S(n) is the space complexity of A (ignoring quantum evaluations). The quantum
space complexity Q(n) is the maximal space complexity of all circuits (that is the
maximum number of qubits used). In the natural way, we say that a quantum
algorithm has oracle access to O if it produces circuits with oracle access to O.
The query complexity of the algorithm is the sum of the query complexity of
the circuits. Now that the quantum model of computation is properly defined,
we can express the fact that every classical computation can be implemented by
a quantum computer, although at a non-negligible cost.

Theorem 1 ([Ben89,LS90]). Given any ε > 0 and any classical computa-
tion with running time T and space complexity S, there exists an equivalent
reversible classical computation with running time O(T 1+ε/Sε) and space com-
plexity O(S(1 + ln(T/S))).

Corollary 1. Given any ε > 0 and any classical computation with running
time T and space complexity S, there exists an equivalent quantum circuit of
size O(T 1+ε/Sε) using O(S(1 + ln(T/S))) qubits.

In principle, it is always possible to turn a classical computation into a quan-
tum one (Corollary 1) and combine all quantum algorithms into one quantum
circuit by postponing all measurements until the very end of the computation,
using the so-called the principle of deferred measurement [NC11]. We will use
this fact implicitly in the rest of the paper and just assume that we can take any
classical algorithm and turn into a quantum one with the same complexity.

Quantum Search. One of the most well-known quantum algorithms is Grover’s
unstructured search algorithm [Gro96]. Suppose we have a set of objects named
{0, 1, . . . , N−1}, of which some are targets. We say that an oracle O identifies the
targets if, in the classical (resp. quantum) setting, O(i) = 1 (resp. O |i〉 = − |i〉)
when i is a target and O(i) = 0 (resp. O |i〉 = |i〉) otherwise. Given such an
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oracle O, the goal is to find a target j ∈ {0, 1, . . . , N − 1} by making queries to
the oracle O.

In the search problem, one tries to minimise the number of queries to the ora-
cle. In the classical case, one needs O(N) queries to solve such a problem. Grover,
on the other hand, provides a quantum algorithm, that solves the search prob-
lem with only O(

√
N) queries [Gro96] when there is one target, and O(

√
N/t)

when there are exactly t targets. We present here a generalisation of Grover’s
algorithm called amplitude amplification [BHMT02a].

Theorem 2 (Amplitude Amplification [BHMT02a]). Suppose we have a
set of N objects of which some are targets. Let O be a quantum oracle that identi-
fies the targets. Let A be a quantum circuit using no intermediate measurements,
ie A is reversible. Let a be the initial success probability of A, that is the prob-
ability that a measurement of A |0〉 outputs a target. There exists a quantum

algorithm that calls O
(√

1/a
)

times A, A† and O, uses as many qubits as A
and O, and outputs a target with probability greater than 1− a.

Grover’s algorithm is a particular case of this theorem where A produces a
uniform superposition of all objects, in which case a = 1

N . The theorem then

states that we can find a target with probability 1 − 1
N using O(

√
N) calls to

the oracle Of .

Theorem 3 (Amplitude Estimation [BHMT02b], Theorem 12). Given
natural number M and access to an (n+ 1)-qubit unitary U satisfying

U |0n〉 |0〉 =
√
a |φ1〉 |1〉+

√
1− a |φ0〉 |0〉 ,

where |φ1〉 and |φ0〉 are arbitrary n-qubit states and 0 < a < 1, there exists
a quantum algorithm that uses M applications of U and U†, and outputs an
estimate ã that with probability ≥ 2/3 satisfies

|a− ã| ≤
6π
√
a(1− a)

M
+

9π2

M2
≤ 15π2

M
.

We will have to search for a marked element in a collection but the oracle
that identifies the targets may be probabilistic and return a wrong result with
small probability.

Theorem 4 ([HMdW03]). Given n algorithms, quantum or classical, each
computing some bit-value with bounded error probability, there is a quantum
algorithm that uses O(

√
n) queries and with constant probability: returns the

index of a “1”, if there are at least one “1” among the n values; returns ⊥ if
there are no “1”.

This algorithm can easily be used to find the index of the first algorithm that
returns 1, see e.g. [KKM+21]
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Lemma 1. There exists a quantum algorithm A with the following property. Let
N be an integer and f : [0, N −1]→ {0, 1} a (classical or quantum with bounded
error) function. Let n0 be the first index such that f(n0) = 1, or let n0 = ⊥ if
no such index exists. Then Af (N) returns i ∈ [0, N − 1] such that f(i) = 1, or
⊥. With constant probability, Af (N) = n0. The algorithm runs in expected time
T = O(

√
n0) (or O(

√
N) if n0 = ⊥), uses a polynomial number of qubits and

makes an expected number T of calls to f . Furthermore, if the algorithm returns
i ∈ [0, N − 1], then it only queries f on values in [0,min(N − 1, 2i)].

Access to Memory “Baseline” quantum circuits are simply built using a uni-
versal quantum gate set. A requirement for many quantum algorithms to process
data efficiently is to be able to access classical data in quantum superposition.
Such algorithms use quantum random-access memory, often denoted as qRAM,
and require the circuit model to be augmented with the so-called “qRAM gate”.
These qRAM gates are assumed to have a time complexity polylogarithmic in
the amount of classical data stored, so that each call is not time consuming. This
model is inspired by the classical RAM model where we usually assume memory
access in time O(1).2

Given an input register 0 ≤ i ≤ r−1, which represents the index of a memory
cell, and many quantum registers |x0, . . . xr−1〉, which represent stored data, the
qRAM gate fetches the data from register xi, possibly in superposition:

|i〉 |x0, . . . xr−1〉 |y〉 7→ |i〉 |x0, . . . xr−1〉 |y ⊕ xi〉 .

Following the terminology of [Kup13], three are types of qRAMs:

– If the input i is classical, then this is the plain quantum circuit model. We
can implement it using a universal quantum gate set.

– If the xj are classical, we have classical memory with quantum random access
(QRACM). The qRAM gate becomes

|i〉 |y〉 7→ |i〉 |y ⊕ xi〉 .
– In general, we have quantum memory with quantum random access (QRAQM).

This is the most powerful quantum memory model where the data are also
in superposition.

In our algorithm for the dual attack, we will be using QRACM. It is possible
to implement a QRACM using a universal quantum gate set, albeit at a consid-
erable cost. Given a classical data set {x0, · · · , xr−1}, one can construct, in time
Õ(r), a circuit using Õ(r) qubits that implements a QRACM for this data set.
The obtained circuit then allows query in the form |i〉 |y〉 7→ |i〉 |y ⊕ xi〉 and has
circuit depth O(polylog(r)) [GLM08,KP20,MGM20,HLGJ20]. Note that even
low depth implementation of QRACM has at least Ω(r) gates, hence has time
complexity at least Ω(r) by our definition. Therefore, the assumption that the
qRAM gates have time complexity polylog(r) is very strong and corresponds to
parallel evaluation of the circuit.

2 The validity of this assumption in the context of lattice reduction is hotly debated,
but this assumption is commonly made.
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2.5 The Classical Algorithm of [GJ21,MAT22]

In this section, we give an overview of the algorithm in [MAT22]. Our quantum
algorithm will be a modified version that rely essentially on the same analysis
for the correctness but a new analysis for the quantum complexity.

We are given a sample from LWEn,m,χs,χe , where χs and χe have small
variance σ2

s and σ2
e respectively. We partition s into three components:

s =

senum

sfft

slat


where senum has kenum coordinates, sfft has kfft coordinates, and slat has klat =
n − kenum − kfft coordinates. We spit A into three components accordingly as
well:

A = [Aenum|Afft|Alat]

so that A · s = Aenum · senum + Afft · sfft + Alat · slat.
We define the matrix:

B =

(
αIm 0
AT

lat qIklat

)
,

where α is a constant equal to σe
σs

and is used for normalization in the case that
s, e have different distributions. We find D short vectors in the column space of
B using some short vectors sampling procedure (see Algorithm 1).

Given a list L of D vectors

(
α · xj
yj,lat

)
, let yj,fft = xTj · Afft and yj,enum =

xTj ·Aenum. We can then define the function FL(s̃enum, s̃fft) =

<

(
1

ψ(s̃fft)

∑
j

exp

((⌊
p

q
· yj,fft

⌉T
· s̃fft +

p

q
· yTj,enum · s̃enum −

p

q
· xTj · b

)
· 2iπ

p

))

for all s̃enum ∈ Zkenum
q and s̃fft ∈ Zkfftp , where ψ is a complex factor of norm 1

defined in [MAT22, p. 25, proof of Lemma 5.4] and easily computable. The func-
tion FL essentially performs an FFT on values drawn from a certain distribution.
Via an analysis that we do not reproduce, one can show that the function FL
above has the following properties (with high probability on the choice of the
elements in L, assuming sufficiently many vectors):

– If s̃enum 6= senum then FL(s̃enum, s̃fft) < C for all s̃fft ∈ Zkfftp .
– FL(senum, sfft) > C
– There might be s̃fft 6= sfft such that FL(senum, s̃fft) > C.

The first point corresponds to a wrong guess. In this case, values on which
the FFT is performed follow a uniform distribution and the expected value of
FL(s̃enum, s̃fft) is 0. The second point corresponds to the correct guess. In this
case, values on which the FFT is performed essentially follow a normal distri-
bution with nonzero mean and therefore the expected value of FL(senum, sfft)
is nonzero. By carefully choosing the value of C, and taking sufficiently many
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samples in the list, we can ensure that those properties holds with high prob-
ability. The third point follows from the fact that [MAT22] performs a modulo
switching operation that can introduce some errors and makes the analysis of
FL(senum, s̃fft) with s̃fft 6= sfft more difficult. Consequently, it is simpler to assume
that one can only recover senum with certainty.

We can therefore reformulate the algorithm of [MAT22] as looking for s̃enum

such that there exists s̃fft such that FL(s̃enum, s̃fft) > C. We will rely on the
following lemma in our analysis below.

Lemma 2 (Adapted from Theorem 5.2 in [MAT22]). Let (n,m, q, χs, χe)
be LWE parameters, let (β0, β1, kenum, kfft, klat, p, µ) be parameters for Algorithm 2.
Let σe be the standard deviate of χe, σs be the standard deviation of χs and
α = σe/σs. Denote by ` the expected Euclidean length of the vectors returned by
Algorithm 1. Then, Algorithm 2 succeeds with probability at least 1− µ for

C = φfp(µ) ·
√
Darg ·D and D ≥ Deq ·Dround ·Darg ·Dfpfn(µ)

where

Deq = e4(πτq )
2

for τ2 =
α−2 · ‖e‖2 + ‖slat‖2

m+ klat
`2,

Dround =

kfft−1∏
t=0
st 6=0

 sin
(
πst
p

)
πst
p



−2

for sfft = (s0, . . . , skfft−1),

Darg =
1

2
+ e−8(πτq )

2

,

Dfpfn(µ) =

(
Φ−1

(
1− µ

2 ·Nenum (senum) · pkfft

)
+ Φ−1

(
1− µ

2

))2

.

3 Quantum Augmented Dual Attack

We now modify the algorithm of [MAT22] to obtain a quantum speedup. At a
high-level, Algorithm 3 works in the same way. First, we run a sampling algo-
rithm to obtain short vectors in the dual. Here, we can take advantage of the
existing quantum speedups for sieving [LMv13,Laa15,AGPS20,CL21].

Next, we can obtain a quadratic speedup on the search for senum. Indeed, the
algorithm simply enumerates them one by one until the correct one is found. By
carefully choosing the order and applying a variant of Grover’s search algorithm,
we can obtain a quadratic speedup (see Section 4). In our case, the quantum
search will call an oracle that is probabilistic so care must be taken. We use the
improved version of Grover’s search in Theorem 4 that can handle bounded-error
inputs.
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Algorithm 2: Dual Attack of [MAT22]

Input: LWE parameters (n,m, q, χs, χe), integers β0, β1 6 d, integers
kenum, kfft, klat such that kenum + kfft + klat = n, an integer p 6 q, an
integer D, a real number C, and an LWE pair (A,b) ∈ Zm×nq × Zmq .

Output: The first kenum coordinates of s.
1 Decompose A as

[
Aenum Afft Alat

]
of respective dimensions m× kenum, m× kfft

and m× klat.

2 Compute the matrix B =

[
αIm 0
AT

lat qIklat

]
where α = σe

σs

3 Run Algorithm 1 on the basis B with parameters β0, β1, D to get a list L of D
short vectors.

4 for every value s̃enum in descending order of probability according to the secret
distribution do

5 Initialise a table T of dimensions p× p× · · · p︸ ︷︷ ︸
kfft times

6 for every short vector (αxj ,ylat) in L do
7 Compute yj,fft = xTj ·Afft.

8 Compute yj,enum = xTj ·Aenum.

9 Add exp
(

(xTj · b− yTj,enum · s̃enum) · 2iπ
q

)
to cell b p

q
yj,ffte of T .

10 Perform FFT on T
11 if for any s̃fft, the real part of 1

ψ(s̃fft)
T [s̃fft] is larger than C then

12 return s̃enum.

13 return ⊥

We now move to the most interesting part of our quantum speedup. In their
algorithm [MAT22], the authors first fill a large array T, perform an FFT and
then look at all the entries to check if one is larger than a given threshold C.
While it is tempting to use the quantum Fourier transform (QFT), which runs
in polynomial time, we do not know how to implement the second step (checking
each entry) efficiently. Indeed, the QFT works on the amplitudes and, therefore,
simply extracting a coefficient of the result is a nontrivial task (see Section 6).
We work around this issue by observing two points:

1. The input array of the FFT is relatively sparse: it has D nonzero entries
(out of pkfft).

2. We can obtain a quadratic speedup on the task of evaluating a sum of cosine
(Theorem 5).

Since every entry of the output of the FFT is a sum of cosine that we can evaluate
efficiently, and since the sum only has D terms, we can evaluate each coefficient
in reasonable time. By turning this algorithm into a quantum oracle, we can use
Grover’s search to obtain a further quadratic speedup on the inner part of the
algorithm that looks for an entry above the threshold C.

A crucial detail of this algorithm is our use of a QRACM. Indeed, in order
to apply Theorem 5 and obtain a quadratic speedup when evaluating the sums,

11



we need a quantum oracle access to the short vectors stored in L. Since those
vectors are obtained by a classical algorithm, we store them in a QRACM to
build this oracle.3

3.1 A Quantum Algorithm for Mean Estimation

We provide here a quantum algorithm which estimates the mean value of

cos(2π(〈wi,b〉)/q)

used in the dual attack. The idea is inspired by [ACKS20, Theorem 47] and can
be seen as a special case of quantum speedup of Monte Carlo methods [Mon15].

Theorem 5. Let N be a positive integer, W = w0, . . . ,wN−1 be the list of N

vectors. Let fW (b) = 1
N

∑N−1
i=0 cos(2π(〈wi,b〉)/q). Let OW : |j〉 |0〉 7→ |j〉 |wj〉.

For any ε, δ > 0, there exists a quantum algorithm A that given b ∈ Znq and

oracle access to OW , outputs AOW (b) which satisfy |AOW (b)−fW (b)| ≤ ε with
probability 1− δ. The algorithm make O(ε−1 · log 1

δ ) queries to OW , and requires
ε−1 · log 1

δ · poly(log n) elementary quantum gates.

Proof. We define the positive controlled rotation oracle as, for any a ∈ R

OCR+ : |a〉 |0〉 →

{
|a〉 (
√
a |1〉+

√
1− a |0〉), if a ≥ 0

|a〉 |0〉 , otherwise,

which can be implemented up to negligible error by poly(log n) quantum elemen-
tary gates. Also, we define the cosine inner product oracle as for any b,w ∈ Zn

Ocos : |w〉 |b〉 |0〉 → |w〉 |b〉 |cos(2π〈w,b〉/q)〉 ,

which can also be implemented by poly(log n) quantum elementary gates. Pre-

pare the state 1√
N

N−1∑
j=0

|j〉 |0〉 |b〉 |0〉 |0〉, and then we apply OW on the first and

second registers (storing wj there), apply Ocos on the second, third, fourth reg-
isters (storing cos(2π〈w,b〉/q) there), and apply OCR+ on the fourth and fifth
registers. Writing γj := cos(2π〈wj ,b〉/q) and letting sums run over j ∈ [0, N−1],
we have

1√
N

∑
γj≥0

|j〉 |wj〉 |b〉 |γj〉
(√
γj |1〉+

√
1− γj |0〉

)
+

1√
N

∑
γj<0

|j〉 |wj〉 |b〉 |γj〉 |0〉 .

By rearranging, we obtain

1√
N

∑
γj≥0

√
γj |j〉 |wj〉 |b〉 |γj〉 |1〉

3 Note that quantum augmented sieving procedures still output classical lists of short
vectors.
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Algorithm 3: Quantum Augmented Dual Attack

Input: LWE parameters (n,m, q, χs, χe), integers β0, β1 6 d, integers
kenum, kfft, klat such that kenum + kfft + klat = n, an integer p 6 q, an
integer D, a real number C, a coefficient η ∈ [0, 1] and an LWE pair
(A,b) ∈ Zm×nq × Zmq .

Output: The first kenum coordinates of s.
1 Decompose A as

[
Aenum Afft Alat

]
of respective dimensions m× kenum, m× kfft

and m× klat.

2 Compute the matrix B =

[
qIklat AT

lat

0 αIm

]
where α = σe

σs

3 Run Algorithm 1 on the basis B with parameters β0, β1, D to get a list L of D
short vectors.

4 Create a QRAM OW
5 for every short vector (α · xj ,yj,lat) in L do
6 Add vector xj to OW at index j

7 Use Theorem 5 to create an algorithm A with δ = 1
10

, ε = C
D
η and “q”=p

8 create oracle O(s̃enum):

9 create oracle Ô(s̃fft):

10 Compute θ such that ψ(s̃fft) = e
− 2iπ

p
θ

(recall that |ψ(s̃fft)| = 1)
11 create oracle O′W (j):
12 Get xj from OW at index j

13 Compute yj,fft = xTj ·Afft

14 Compute yj,enum = xTj ·Aenum

15 return vector
(
p
q
· yj,enum,

⌊
p
q
· yj,fft

⌉
, θ − p

q
· xTj · b

)
16 if AO

′
W ((s̃enum, s̃fft, 1)) > (1 + η) · C

D
then

17 return 1
18 else
19 return 0

20 Use Theorem 4 to find, with probability 9
10

, i such that Ô(i) = 1 or let
i = ⊥ if none exists

21 if i 6= ⊥ then
22 return 1
23 else
24 return 0

25 create oracle Õ(i):

26 Compute the ith most probable s̃enum according to the distribution χs
27 return O(s̃enum)

28 Find, with probability 9
10

, s̃enum such that O(s̃enum) = 1 using Lemma 1 with

oracle Õ, or let s̃enum = ⊥ if none is found
29 return s̃enum.
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+
1√
N

( ∑
γj≥0

√
1− γj |j〉 |wj〉 |b〉 |γj〉+

∑
γj<0

|j〉 |wj〉 |b〉 |γj〉
)
|0〉

=
√
a+ |φ1〉 |1〉+

√
1− a+ |φ0〉 |0〉 ,

where a+ =
∑
γj≥0

γj
N . By applying Theorem 3, we can estimate a+ with addi-

tive error ε/2 by using O(ε−1) applications of OW , O†W , and ε−1 · poly(log n)
elementary quantum gates. Following the same strategy, we can also estimate
a− =

∑
γj<0

γj
N with same additive error and by using same amount of queries

and quantum elementary gates. Therefore, we can estimate

a+ + a− ± ε =
∑
j

cos(2π〈wj ,b〉/q)
N

.

By repeating the procedure Θ(log 1
δ ) times and take the median among them,

we finish the proof. ut

3.2 Analysis of the Quantum Augmented Dual Attack

We now analyse the quantum augmented dual attack given in Algorithm 3.

Theorem 6. Let (n,m, q, χs, χe) be LWE parameters, let

(β0, β1, kenum, kfft, klat, p,D,C,A, b, η)

be the input of Algorithm 3. Let L be the list of vectors obtained at Line 3 of
Algorithm 3. For any x > 0, let SLx = { s̃enum : ∃s̃fft, FL(s̃enum, s̃fft) > x }. With
probability at least 9/10, the algorithm returns a value in SLC∪{⊥}. Furthermore,
if SL(1+2η)C 6= ∅ then the algorithm returns a value in SLC with probability at least

9/10.

Proof. Below, we will establish the following claims:

(1) For all s̃enum, the oracle Ô inside O(s̃enum) is such that, for all s̃fft, with
probability at least 1 − δ, if FL(s̃enum, s̃fft) > (1 + 2η) · C then Ô(s̃fft) = 1
and if FL(s̃enum, s̃fft) 6 C then Ô(s̃fft) = 0.

(2) For all s̃enum, with probability at least 9/10, if there exists s̃fft such that
FL(s̃enum, s̃fft) > (1 + 2η) · C then O(s̃enum) = 1.

(3) For all s̃enum, with probability at least 9/10, if FL(s̃enum, s̃fft) 6 C for all
s̃enum then O(s̃enum) = 0.

(4) With probability at least 9/10, if the algorithm returns s̃enum 6= ⊥ then there
exists s̃fft such that FL(s̃enum, s̃fft) > C.

We start by establishing the result as following from the claims and then establish
these claims below. Let x be the output of the algorithm. By claim (4), if x 6= ⊥
then, with probability at least 9/10, there exist s̃fft such that F (s̃enum, s̃fft) > C.
Therefore, x ∈ SC . Hence, this proves that x ∈ SC ∪ {⊥} with probability at
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least 9/10. Now assume that S(1+2η)C 6= ∅ and let s̃enum ∈ S(1+2η)C . Then by
claim (2), with probability at least 9/10, O(s̃enum) = 1 so the algorithm will not
return ⊥, i.e. x 6= ⊥.
Proof of claim (1). Fix s̃enum and check that Ô(s̃fft) returns 1 if and only if

AO
′
W ((s̃enum, s̃fft, 1)) > (1 + η) · CD .

Now OW is defined in such a way that

O′W (j) =
(
p
q · yi,enum,

[
p
q · yi,fft

]
, θ − p

q · x
T
j · b

)
where yj,enum and yj,fft are defined as expected. Therefore, by Theorem 5, with
probability at least 1− δ,∣∣∣AO′

W ((s̃enum, s̃fft, 1))− fW ((s̃enum, s̃fft, 1))
∣∣∣ 6 ε.

But one checks that

〈OW (j), (s̃enum, s̃fft, 1)〉 =

〈(
p

q
· yi,enum,

⌊
p

q
· yi,fft

⌉
, θ − p

q
· xTj · b

)
, (s̃enum, s̃fft, 1)

〉
=
p

q
· yTi,enum · s̃enum +

⌊
p

q
· yi,fft

⌉T
· s̃fft + θ − p

q
· xTj · b.

Therefore, fW ((s̃enum, s̃fft, 1))

=
1

D

∑
j

cos

(
2π

p
〈OW (j), (s̃enum, s̃fft, 1)〉

)

=
1

D

∑
j

cos

(
2π

p

(
p

q
· yTi,enum · s̃enum +

⌊
p

q
· yi,fft

⌉T
· s̃fft + θ − p

q
· xTj · b

)
+

2π

p
· θ

)

=
1

D
<

(∑
j

exp

(
2iπ

p

(
p

q
· yTi,enum · s̃enum +

⌊
p

q
· yi,fft

⌉T
s̃fft −

p

q
· xTj · b

)
+

2iπ

p
· θ

))

=
1

D
<

(
e

2iπ
p
θ
∑
j

exp

(
2iπ

p

(
p

q
· yTi,enum · s̃enum +

⌊
p

q
· yi,fft

⌉T
· s̃fft −

p

q
· xTj · b

)))

=
1

D
FL(s̃enum, s̃fft)

since θ was computed so that ψ(s̃fft) = e
− 2iπ

p θ
. It follows that, with probability

at least 1− δ,∣∣∣∣AO′
W ((s̃enum, s̃fft, 1))− 1

D
FL(s̃enum, s̃fft)

∣∣∣∣ 6 ε =
C

D
· η.

Assume that this inequality holds.

– If FL(s̃enum, s̃fft) > (1+2η)·C thenAO′
W ((s̃enum, s̃fft, 1)) > (1+2η)·CD−

C
D ·η =

(1 + η) · CD so Ô(s̃fft) = 1.
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– If FL(s̃enum, s̃fft) 6 C then AO′
W ((s̃enum, s̃fft, 1)) 6 C

D + C
Dη = (1 + η)CD so

Ô(s̃fft) = 0.

Proof of claim (2). Fix s̃enum. If there exists s̃fft such that FL(s̃enum, s̃fft) >
(1 + 2η) · C then by claim (1), with probability at least 1 − δ, Ô(s̃fft) = 1. It
follows by Theorem 4 that the search will, with probability at least 9/10, return
i 6= ⊥ and therefore O(s̃enum) will return 1.
Proof of claim (3). For O(s̃enum) to return 0, it is sufficient to have Ô(s̃fft) =
0 for all s̃fft. By claim (1), Ô(s̃fft) = 0 with probability at least 1 − δ when
FL(s̃enum, s̃fft) 6 C. Hence, by Theorem 4, the search algorithm will return ⊥
with probability 9/10 and O(s̃enum) = 0. Note here that there is no need for a
union bound because of Theorem 4.
Proof of claim (4). For the algorithm to return s̃enum, with probability 9/10,
we must have O(s̃enum) = 1. By claim (3), with probability at least 9/10, this can
only happen if FL(s̃enum, s̃fft) > C for some s̃fft. Therefore the probability that
the algorithm returns s̃enum such that FL(s̃enum, s̃fft) 6 C for all s̃fft is bounded
by 1/10, by Lemma 1 This finishes the proof. ut

Lemma 3. Let (n,m, q, χs, χe) be LWE parameters, (β0, β1, kenum, kfft, klat, p)
be a partial tuple of parameters for Algorithm 3, and let 0 < ν < 1. Fix (s, e) ∈
Znq × Zmq . Choosing the parameters C,D according to Lemma 2 with µ = ν/2,

and η 6
√

2πµ
8φfp

, with probability at least 1− ν the algorithm returns senum.

Proof. Recall that for any list L and any x > 0, we let

SLx = { s̃enum : ∃s̃fft, FL(s̃enum, s̃fft) > x } .

In the proof of [MAT22, Theorem 5.2], it is shown that for any threshold4 X,

Pr
L

[FL(senum, sfft) > X] ≥ Φ

(
φfp + φfn −

X√
Darg ·D

)
.

and that for any s̃enum 6= senum, any s̃fft and any threshold Y ,

Pr
L

[FL(s̃enum, s̃fft) > Y ] 6 1− Φ

(
Y√

Darg ·D

)
.

We are going to apply those inequalities to X = (1 + 2η) · C and Y = C. The
second inequality, by the choice of C, gives that

Pr
L

[FL(s̃enum, s̃fft) > C] 6 1− Φ

(
C√

Darg ·D

)
=

µ

2Nenum(senum) · pkfft
.

The number of guesses of s̃enum before reaching senum is Nenum(senum) in the
classical case. However note that Lemma 1 may call the oracle on more entries

4 The proof assume a particular value of C but the first three lines of the derivation
in [MAT22, Theorem 5.2] holds for any value of C, which we call X here.
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than Nenum(senum). Specifically, Lemma 1 guarantees that the oracle will only
call the oracle on the first 2Nenum(senum) entries (with constant probability).
Therefore, by a union bound,

Pr
L

[FL(s̃enum, s̃fft) 6 C for the first 2Nenum(senum) values of s̃enum] ≥ 1−µ. (1)

On the other hand,

Pr
L

[FL(senum, sfft) > (1 + 2η)C] ≥ Φ

(
φfp + φfn − (1 + 2η)

C√
Darg ·D

)
= Φ (φfp + φfn − (1 + 2η)φfp)

= Φ (φfn − 2ηφfp) .

It is easy to check by taking the derivative that Φ satisfies the following inequality
for all y ≥ 0:

Φ(y) ≥ 1− e−y
2/2

√
π

.

Furthermore, Φ is an increasing function so Φ−1 is also increasing. Hence,

Φ−1(1− x) 6
√
−2 ln(πx)

for all x 6 1√
π

. Now recall that

φfp = Φ−1

(
1− µ

2Nenum(senum)pkfft

)
, φfn = Φ−1

(
1− µ

2

)
.

Therefore,

φfp 6
√
−2 ln

πµ

2Nenum(senum)pkfft
.

From this we get that φfp is a polynomial factor in all the relevant parameters.
Now observe that by the integral definition of Φ,

Φ (φfn − 2ηφfp) = Φ (φfn)− 1√
2π

∫ φfn

φfn−2ηφfp

e−t
2/2dt

≥ 1− µ

2
− 2η√

2π
φfp

≥ 1− 3µ

4

when

η 6

√
2πµ

8φfp
.

Therefore, by Theorem 6, with probability at least 1− 3µ
4 , we have that SL(1+2η)C 6=

∅ so the algorithm returns an element from SLC . Furthermore, by Equation (1),
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with probability at least 1−µ, this element must be senum because all the other
elements satisfy FL(s̃enum, s̃fft) 6 C. Therefore, by a union bound, the probabil-
ity that the algorithm returns senum is at least 1− 3µ

4 −µ ≥ 1−2µ ≥ 1−ν. This
concludes the proof. ut

Lemma 4. Let (n,m, q, χs, χe) be LWE parameters, (β0, β1, kenum, kfft, klat, p)

be a partial tuple of parameters for Algorithm 3, and let 0 < ν < 1. Let η 6
√

2πµ
8φfp

,

and C,D as in Lemma 2 with µ = ν/2 and replace 2kenum·H(χs) in the formula
by G(χkenum

s ). Then, with probability at least 1− ν the algorithm returns senum.

Proof. The proof is exactly the same except that we replace the inequality

E[Nenum(senum)] 6 2kenumH(χs)

by

E[Nenum(senum)] = G(χkenums ).

The reason for this replacement is that the first inequality does not appear to
be justified in [MAT22] and does not hold in general. See Section 4 for more
details.

Theorem 7. Let (n,m, q, χs, χs) be LWE parameters, (β0, β1, kenum, kfft, klat, p)
be a partial tuple of parameters for Algorithm 3, and let 0 < ν < 1. Choosing
the parameters C,D according to Lemma 2, Algorithm 3 outputs senum with
probability at least 1− ν in time

O

(⌈
D

(
√

4/3)β1+o(β1)

⌉
· (TBKZ(d, β0) + Tsieve(β1)) +Gqc(χkenum

s ) · pkfft/2 ·
√
D

)

Proof. The time complexity is clear as we need O(Gqc(χkenums )) time to guess the

correct value of senum by Lemma 5, O(pkfft/2) times to call the oracle Ô. Each

call to Ô makes O(ε−1 log 1
δ ) queries to O′W (defined inside Ô(s̃fft)) which take

a polynomial time. Therefore each call to Ô takes
√
D times. Hence, the total

complexity is (up to constant asymptotic factors)

Gqc(χkenum
s ) · pkfft/2

(
C

D
η

)−1

log(10) = Gqc(χkenums ) · pkfft/2
(
φfp

√
Dargη

)−1

log(10)

where Darg ≈ 1/2, and φfp and η are polynomial factors. Hence, the complexity,
up to polynomials factors is

Gqc(χkenums ) · pkfft/2 ·
√
D.

This completes the proof. ut
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4 Quantum Guessing

Let X be a random variable on a finite or countable set. We consider the problem
of guessing the value taken by X by asking questions of the form “Is X equal
to x?” until the answer is yes. This problem arises when we must find the secret
senum in the dual attack by asking the question “is the secret equal to s̃enum?”.
Let N be the number of guesses used in the guessing strategy that minimises
E[N ]. It is clear that the best strategy is to try values of X is decreasing order
of probability. Without loss of generality, we can identify the possible values of
X with N in such a way that p0 ≥ p1 ≥ p2 ≥ · · · where pi = Pr[X = i]. The
expected number of guesses of the optimal strategy is therefore

G(X) =
∑
i

i · pi.

It is well-known that a lower bound on G(X) is given by the entropy of X. More
precisely, Massey showed in [Mas94] that

G(X) ≥ 1
4 · 2

H(X) + 1

provided that H(X) ≥ 2 bits, where H denote Shannon’s entropy (i.e. in base
2). On the other hand, the same paper shows that it is not, in general, possible
to bound G(X) in terms of H(X) only. In Lemma 6, we heuristically show
that G(X) ≈ ( 2√

e
)n · 2H(X) when X is distributed according to a n-dimensional

discrete Gaussian. In this paper, we are interested in the quantum complexity of
guessing. It can be shown (Lemma 5) that the expected number of guess in this
case becomes, up to a constant factor,

Gqc(X) =
∑
i

√
i · pi.

Lemma 5. Let X be a random variable taking values in some (effectively de-
scribable) set E. Assume that there is an efficiently computable bijective function
σ : N→ E such that for all i 6 j, PrX [X = σ(i)] > PrX [X = σ(j)], i.e. σ orders
E by decreasing probability according to X. Given x ∈ E, define the oracle Ox
by

Ox(x) = 1 and Ox(y) = 0, ∀y ∈ E \ {x } .

Then there is a quantum algorithm A, with quantum oracle access to σ and Ox
such that for all x ∈ E, Aσ,Ox() = x with constant probability, and

EX [T (X)] = O(Gqc(X)), EX [Q(X)] = O(Gqc(X)),

where T (x) is the running time complexity of Aσ,Ox(), and Q(x) its query com-
plexity.

Proof. Consider the following algorithm, assuming oracle access to σ and Ox
(for some unknown x). It first builds the oracle O′(i) = Ox(σ(i)). It then sets
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n = 1 and repeats the following until success. Call the algorithm from Lemma 1
to find the first i such that O′(i) = 1. If none is found, double n and repeat.
Otherwise return i.

It is not hard to see that this algorithm returns x with constant probability.
Indeed, σ is surjective so there exists i such that σ(i) = x and then O′(i) = 1.
Since, σ is injective, σ(j) 6= x for j 6= i so O′(j) = 0. Hence, when the algorithm
has doubled n sufficiently many times, we have i < n and the algorithm finds i
with constant probability.

We now analyse its complexity. Let i be such that σ(i) = x. Let p be such
that 2p < i 6 2p+1. During the first p iterations of the algorithm, we have n 6 2p

so O′(j) = 0 for all j ∈ [1, 2p], hence the algorithm from Lemma 1 returns ⊥ so
the algorithm continues. Each of those p calls has time/query complexity O(

√
n),

so overall this phase has complexity

O

(
p∑
k=1

√
2k

)
= O(

√
2p).

On the (p + 1)th iteration, the algorithm will return i with constant proba-

bility (say 9/10) and has time/query complexity O(
√

2p+1). If the algorithm
fails (which happens with probability 1/10), the algorithm will run again on
[1, 2p+2]. It then will, with probability 9/10, return i and has time/query com-

plexity O(
√

2p+2). More generally, at the (p + 1 + k)th iteration, which only
happen with probability (1/10)k, the algorithm will return i with probability at

least 9/10 and has time/query complexity O(
√

2p+k+1). Hence, this part of the
algorithm has expected time/query complexity

O

( ∞∑
k=0

10−k
9

10

√
2p+k+1

)
= O

(
√

2p+1

∞∑
k=0

10−k
√

2k

)
= O

(√
2p+1

)
= O

(√
i
)
.

Now recall that this analysis holds when the algorithm is called with an oracle
Ox for a given x. We now let x be chosen by X. Then every x is chosen with
probability PrX [X = x] and, when this is the case, the returned index is i =
σ−1(x). Hence, the expected time/query complexity of the algorithm when given
OX is

O

(∑
x∈E

Pr
X

[X = x]
√
σ−1(x)

)
= O

( ∞∑
i=0

Pr
X

[X = σ(i)]
√
i

)
= O(Gqc(X)).

since we assumed that σ orders the elements by decreasing probability. ut

Now we study the guessing complexity of a n-dimensional discrete Gaussian
and its modular version. We also related those quantities to the entropy. The
reason why we also study the (non-modular) Gaussian is that it is not clear how
to order the elements by decreasing probability in the modular case, whereas it
is easy in the non-modular one. Therefore we study the discrete Gaussian first
and then show that its guessing complexity is an upper bound on the guessing
complexity of the modular Gaussian.
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Lemma 6. Let n ∈ N large, σ > 0.5 and X = DZn,σ. Then

G(X) ≈ n! · (σ
√

2π)
n

2Γ (n2 + 1)
2 , H(X) ≈ n log2(σ

√
2eπ), G(X) ≈ n! · 2H(X) · e−n/2

2Γ (n2 + 1)2

and

Gqc(X) ≈
n · (2πσ2)

n/4 · Γ ( 3n
4 )

2Γ (n2 + 1)
3/2

.

Furthermore,

G(X) ∼n→∞
1√
2πn
·
(

2√
e

)n
·2H(X), Gqc(X) ∼n→∞

√
6

3(πn)
1
4

·
(

27

8e

)n
4

·2H(X)/2.

Finally, for all n and σ,

G(DZnq ,σ) 6 2G(X), Gqc(DZnq ,σ) 6
3

2
Gqc(X).

Proof. See Appendix A.

5 Application

In this section we measure the impact of our algorithm on the cost of solving
lattice parameters from the literature. In particular, we consider NIST PQC
Round 3 candidates Kyber and Saber [SAB+20,DKR+20] and some TFHE pa-
rameters [CGGI20]. Such a measurement is complicated by two major obstacles.

– The cost given in Theorem 7 is the sum of two costs: lattice reduction and a
quantum search. Roughly speaking, lowering the first summand increases the
second and vice versa. In other words, the final cost is obtained by balancing
the two summands. For the first summand cost estimates in various cost
models are available. In particular, estimates in quantum circuit models are
available [AGPS20]. Thus, to give precise cost estimates we require quantum
circuit costs for the oracles in Algorithm 3. It is clear that such costs would
be substantial when compared with e.g. [AGPS20]. In the latter, the costed
circuit is essentially an XOR followed by an adder. Here, we have to imple-
ment matrix vector products mod q which will cost significantly more. We
consider designing and costing quantum circuits for these elementary opera-
tions beyond the scope of this paper. For this reason, we cost our algorithm
in the quantum query model only, both for the oracle inside lattice reduction
and our search. In this model, all oracle queries are assigned unit cost. As
just outlined, this is unrealistic but gives a “best case” estimate from the
perspective of an attacker.

– A second major obstacle is that our algorithm critically relies on QRACM, a
possibly unrealistic resource as already pointed out in e.g. [AGPS20]. Thus,
even armed with a quantum circuit for our oracle, we would have to assume
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Scheme CC CN C0 GE19 QN Q0 This work This work
(QN) (Q0)

Kyber 512 139.1 134.3 115.2 139.4 124.1 102.4 118.6 94.2
Kyber 768 195.8 191.1 173.5 191.7 174.9 154.5 167.8 140.7
Kyber 1024 262.1 255.9 241.4 251.7 234.3 214.8 224.9 195.0
LightSaber 138.2 133.0 113.4 138.2 122.6 101.0 112.1 93.3
Saber 201.6 195.6 178.9 196.1 179.6 159.3 173.3 146.1
FireSaber 264.3 257.9 243.5 253.5 235.6 216.7 213.8 197.6
TFHE630 117.3 112.8 92.8 119.5 104.9 83.0 95.0 76.3
TFHE1024 121.9 117.1 95.4 123.5 108.4 84.8 101.2 80.0

Table 1. Dual attack cost estimates. All costs are logarithms to base two.

a QRACM oracle (for which we, following previous work [AGPS20], assign
unit cost for querying). This would not permit us to draw conclusions about
realistic costs of solving instances of lattice problems.

We give the source code for and results of the comparison in Appendix B and
Table 1. In our table, for each set of parameters, we give the following cost
estimates.

CC Classical cost estimates in a classical circuit model [AGPS20,SAB+20,MAT22]
for Algorithm 2 using [BDGL16] as the sieving oracle. We derive these esti-
mates by implementing the cost estimates from [MAT22].5 This is the most
detailed cost estimate available in the literature. However, we caution that
these estimates, too, ignore the cost of memory access and thus may signif-
icantly underestimate the true cost. That is, while RAM access is expected
to be considerably cheaper than QRACM it is still not “free”, cf. [MAB+22].
This cost model is called “list decoding-classical” in [AGPS20]. We naturally
do not cost our algorithm in this cost model.

CN Classical cost estimates in a query model for Algorithm 2 using [BDGL16]
as the sieving oracle. We include this cost model for completeness and for
interpreting our quantum query cost model estimates. This cost model is
called “list decoding-naive classical” in [AGPS20]. We naturally do not cost
our algorithm in this cost model.

C0 Classical cost estimates in the “Core-SVP” cost model [ADPS16] for Algo-
rithm 2 using [BDGL16] as the sieving oracle. This model assumes a single
SVP call suffices to reduce a lattice. It furthermore assumes that all lower-
order terms in the exponent are zero. This is to enable comparison with
“Q0” below.

GE19 Quantum costs in a circuit model based on [GE19] for Algorithm 2 us-
ing [BDGL16]. This is the most detailed quantum cost model available in
the literature but we recall that here we still assume unit cost QRACM. This

5 This explains the minor differences in numerical results compared to [MAT22]. In
particular, we have an additional exponential factor for the guessing complexity,
cf. Lemma 6.
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cost model is called “list decoding-ge19” in [AGPS20]. We do not cost our
algorithm in this cost model due to the lack of a quantum circuit design for
our oracles.

QN Quantum costs in the quantum query model for Algorithm 2 using the
quantum version of [BDGL16] as the sieving oracle. This cost model is called
“list decoding-naive quantum” in [AGPS20].

Q0 Quantum cost estimates in the “Core-SVP” cost model [ADPS16] for Algo-
rithm 2 using [CL21] as the sieving oracle. This is the asymptotically fastest
quantum sieving algorithm but no estimates exist in the literature for lower-
order terms; hence, we only consider it in the Core-SVP model.

This work (QN) The cost of Algorithm 3 in the quantum query model as-
suming the quantum version [Laa15,AGPS20] of [BDGL16]. Thus, the most
natural comparison is to the column labelled “CN”.

This work (Q0) The cost of Algorithm 3 in the Core-SVP model assuming [CL21].
Thus, the most natural comparison is to the column labelled “C0”.

On the one hand, comparing the column labelled “QN” and the last column
shows that our algorithm offers a significant improvement of between 10 and
20 “bits” in complexity in the query model. On the other hand, even in this –
arguably unrealistic – model our improvements do not lower the cost of solving
below a square-root of the targeted security level. That is, to force a revision
of lattice parameters, a quantum algorithm would have to obtain a quadratic
speed-up over the classical cost given as “CN”.

6 Open Problem

The crux of our quantum improvement is Section 3. Here we formalise the prob-
lem that this algorithm solves and a promise variant. We introduce some minor
notation first. Given a finite group G = Znq and a list

L = {(u0, w0), . . . , (uk−1, wk−1)}

where the ui are distinct, we let fL : G → C be defined by fL(ui) = wi and

fL(u) = 0 for all u ∈ G \ {u0, . . . ,uk−1 }. Recall that f̂L denotes the Fourier
transform of fL. We now introduce two problems, which we call “input sparse
FFT” to avoid confusion with “sparse FFT” where the sparseness refers to the
number of nonzero Fourier coefficient, not the number of nonzero inputs coeffi-
cients.
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INPUT-SPARSE-FFT-THRESHOLD:

– input: G = Znq a finite group,
– input: δ > 0 a threshold,
– input: L = {(u0, w0), . . . , (uk−1, wk−1)} where the ui are distinct,

– output: decide whether ∃u ∈ G such that <(f̂L(u)) > δ, or ⊥ if none exists.

PROMISE-INPUT-SPARSE-FFT-THRESHOLD:

– input: G = Znq a finite group,
– input: δ+ > δ− > 0 two thresholds,
– input: f : G→ C an efficiently computable function,
– input: L = {(u0, w0), . . . , (uk−1, wk−1)} where the ui are distinct,

– promise: <(f̂L(u)) /∈ [δ−, δ+] for all u ∈ G,

– output: decide whether ∃u ∈ G such that <(f̂L(u)) > δ+, or ⊥ if none
exists.

Remark 1. To map this formulation back to our task consider Line 9 of Algo-
rithm 2. The ui correspond to bpq · yj,ffte and wi := fL(ui) is the sum over

all exp
(

(xTj · b− yTj,enum · s̃enum) · 2iπ
q

)
that are stored in the cell bpqyj,ffte of

T , i.e. wi = T
[
bpqyj,ffte

]
= fL(ui). We then seek to decide if there is some

u = s̃fft ∈ G = Zkfftp s.t. <(f̂L(u)) > δ = C, i.e. the entry in the FFT’d table T .

Our quantum (with QRACM) algorithm from Section 3 solve PROMISE-INPUT-
SPARSE-FFT-THRESHOLD as follows. For every u ∈ G, it compute an approximation

of <(f̂L(u)) with error at most 1
2 (δ+ − δ−) and then compare it to δ+. By

the promise, this suffices to solve the problem. We then leverage two facts to
obtain a quantum speedup: the search over u ∈ G can be done using Grover’s
algorithm, and the approximation is done by amplitude estimation (Theorem 5).
The running time of our algorithm is

√
|G|/(δ+ − δ−), and it outputs a correct

index with constant probability. In the dual algorithm, it turns out that the
interesting set of parameters for this algorithm is δ+− δ− = O(k−1/2), therefore
our algorithm has running time roughly O(

√
k|G|) which is always better than

O(|G|) and potentially much better if k is much smaller than |G|.
In the classical case, to the best of our knowledge, the best algorithm is

to perform a complete FFT on the |G| coefficients, which therefore takes time
O(|G| log |G|). While there are algorithms for “sparse” FFT (see e.g. [HIKP12]),
it is not clear that their approximation guarantees would be sufficient. Indeed,

the sparseness in such algorithm refers to the number of output coefficients f̂L(u)
which is assumed small. Since we expect all the output coefficients of our FFT
to be small and the threshold δ to be exponentially close to 0, it is unlikely that
such an approximation would be sufficient.

In the quantum case, the situation depends on the availability of quantum
memories (QRACM). Our algorithm relies on the use of a QRACM in a crucial
way. In fact, without a QRACM, we are not aware of any algorithm better than
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the classical one. This is surprising in light of the fact that QFT can be done in
polynomial time: we now explain why this fact alone is not sufficient.

Let L = {(u0, w0), . . . , (uk−1, wk−1)} be a list. In order to apply the QFT,
we would need to create the superposition

|ψ〉 =
1

Z

∑
i

wi |ui〉 (2)

where Z is a normalisation factor. We could then perform a QFT on |ψ〉 to
obtain

|ψ̂〉 =
1

Z

∑
u∈G

f̂L(u) |u〉 .

We now would like to decide if there is some u ∈ G such that f̂L(u) > δ.
Unfortunately, there are two problems with this approach:

– it is not clear how to create the superposition in Equation (2) efficiently,
– it is not clear that we can efficiently detect whether there is an amplitude in

front of some |u〉 which is above the threshold.

The first problem is the most serious one: while we can create the superposition
Equation (2) in time O(k), any algorithm for the second step would probably
need to repeat this step many times (see below). This would make the algorithm
essentially worse than the classical one. With the use of a QRACM and some
elementary operations, we could create a superposition of the form∑

i

wi |ui〉 |wi〉

in time O(1) after the QRACM is created (which takes time O(k) once). However
note that we cannot apply the QFT on this state: we first need to “uncompute”
|wi〉 from the state to obtain Equation (2), which is not possible in general.

The second problem may be less serious: if we could create Equation (2), a

possible strategy would be to measure |ψ̂〉 and obtain one u. By repeating this
algorithm a very large number of times, we can approximation the probability of
the most likely u and therefore recover whether there is some sufficiently large

f̂L(u). Indeed, this strategy recovers u. In order to approximate this quantity
within ε, we would need 1/ε2 samples. Since ε = 1/

√
k in the dual attack, such

an algorithm would take time at least Ω(k). It is not clear if there is a better
strategy that merely decides on the presence of some u without recovering it.

In conclusion, the complexity of solving INPUT-SPARSE-FFT-THRESHOLD and
PROMISE-INPUT-SPARSE-FFT-THRESHOLD is unclear in the quantum setting. We have
shown how to solve the promise problem in O(

√
|G|/(δ+ − δ−)) with QRACM,

and Ω(k) is a clear lower bound on the complexity since the algorithm needs to
read the input in any case. Of particular relevance in the context of dual attacks
are the following two questions regarding PROMISE-INPUT-SPARSE-FFT-THRESHOLD:

– When (δ+ − δ−)
−1

= Θ(
√
k), is the quantum complexity O(

√
k|G|) optimal

with QRACM?
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– When (δ+ − δ−)
−1

= Θ(
√
k), can we achieve any quantum complexity better

than O(|G| log |G|) without QRACM?
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CL21. André Chailloux and Johanna Loyer. Lattice sieving via quantum ran-
dom walks. In Mehdi Tibouchi and Huaxiong Wang, editors, Advances in
Cryptology - ASIACRYPT 2021 - 27th International Conference on the
Theory and Application of Cryptology and Information Security, Singa-
pore, December 6-10, 2021, Proceedings, Part IV, volume 13093 of Lecture
Notes in Computer Science, pages 63–91. Springer, 2021.

DKR+20. Jan-Pieter D’Anvers, Angshuman Karmakar, Sujoy Sinha Roy, Frederik
Vercauteren, Jose Maria Bermudo Mera, Michiel Van Beirendonck, and
Andrea Basso. SABER. Technical report, National Institute of Standards
and Technology, 2020. available at https://csrc.nist.gov/projects/
post-quantum-cryptography/round-3-submissions.

EJK20. Thomas Espitau, Antoine Joux, and Natalia Kharchenko. On a du-
al/hybrid approach to small secret LWE - A dual/enumeration technique
for learning with errors and application to security estimates of FHE
schemes. In Karthikeyan Bhargavan, Elisabeth Oswald, and Manoj Prab-
hakaran, editors, INDOCRYPT 2020, volume 12578 of LNCS, pages 440–
462. Springer, Heidelberg, December 2020.

GE19. Craig Gidney and Martin Eker̊a. How to factor 2048 bit rsa integers in 8
hours using 20 million noisy qubits, 2019. arXiv:1905.09749.

GJ21. Qian Guo and Thomas Johansson. Faster dual lattice attacks for solving
LWE with applications to CRYSTALS. In Mehdi Tibouchi and Huaxiong
Wang, editors, Advances in Cryptology - ASIACRYPT 2021, Part IV, vol-
ume 13093 of Lecture Notes in Computer Science, pages 33–62. Springer,
2021.

GLM08. Vittorio Giovannetti, Seth Lloyd, and Lorenzo Maccone. Quantum random
access memory. Phys. Rev. Lett., 100:160501, Apr 2008.

Gro96. Lov K. Grover. A fast quantum mechanical algorithm for database search.
In Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory
of Computing, STOC ’96, page 212–219, New York, NY, USA, 1996. As-
sociation for Computing Machinery.

HIKP12. Haitham Hassanieh, Piotr Indyk, Dina Katabi, and Eric Price. Nearly op-
timal sparse fourier transform. In Proceedings of the Forty-Fourth Annual
ACM Symposium on Theory of Computing, STOC ’12, page 563–578, New
York, NY, USA, 2012. Association for Computing Machinery.

27

https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions


HLGJ20. C. Hann, G. Lee, S. Girvin, and Liang Jiang. The resilience of quantum
random access memory to generic noise. arXiv: Quantum Physics, 2020.

HMdW03. Peter Høyer, Michele Mosca, and Ronald de Wolf. Quantum search on
bounded-error inputs. In Jos C. M. Baeten, Jan Karel Lenstra, Joachim
Parrow, and Gerhard J. Woeginger, editors, Automata, Languages and
Programming, pages 291–299, Berlin, Heidelberg, 2003. Springer Berlin
Heidelberg.

JNRV20. Samuel Jaques, Michael Naehrig, Martin Roetteler, and Fernando Virdia.
Implementing grover oracles for quantum key search on AES and LowMC.
In Anne Canteaut and Yuval Ishai, editors, EUROCRYPT 2020, Part II,
volume 12106 of LNCS, pages 280–310. Springer, Heidelberg, May 2020.

KKM+21. Ruslan Kapralov, Kamil Khadiev, Joshua Mokut, Yixin Shen, and Maxim
Yagafarov. Fast classical and quantum algorithms for online k-server prob-
lem on trees. In Claudio Sacerdoti Coen and Ivano Salvo, editors, Pro-
ceedings of the 22nd Italian Conference on Theoretical Computer Science,
Bologna, Italy, September 13-15, 2021, volume 3072 of CEUR Workshop
Proceedings, pages 287–301. CEUR-WS.org, 2021.

KP20. Iordanis Kerenidis and Anupam Prakash. Quantum gradient descent for
linear systems and least squares. Phys. Rev. A, 101:022316, Feb 2020.

Kup13. Greg Kuperberg. Another subexponential-time quantum algorithm for the
dihedral hidden subgroup problem. In Simone Severini and Fernando G.
S. L. Brandão, editors, 8th Conference on the Theory of Quantum Compu-
tation, Communication and Cryptography, TQC 2013, May 21-23, 2013,
Guelph, Canada, volume 22 of LIPIcs, pages 20–34. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2013.

Laa15. Thijs Laarhoven. Search problems in cryptography: From fingerprinting to
lattice sieving. PhD thesis, Eindhoven University of Technology, 2015.

LMv13. Thijs Laarhoven, Michele Mosca, and Joop van de Pol. Solving the shortest
vector problem in lattices faster using quantum search. In Philippe Ga-
borit, editor, Post-Quantum Cryptography - 5th International Workshop,
PQCrypto 2013, pages 83–101. Springer, Heidelberg, June 2013.

LPR10. Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices
and learning with errors over rings. In Henri Gilbert, editor, EURO-
CRYPT 2010, volume 6110 of LNCS, pages 1–23. Springer, Heidelberg,
May / June 2010.

LS90. Robert Y. Levin and Alan T. Sherman. A note on bennett’s time-space
tradeoff for reversible computation. SIAM J. Comput., 19(4):673–677,
1990.

MAB+22. Matzov, Daniel Apon, Daniel J. Bernstein, Carl Mitchell, Léo Ducas, Mar-
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Appendix

A Proof of Lemma 6

First observe that DZn,σ(x) only depends on ‖x‖ and decreases with ‖x‖. For-
mally, DZn,σ(x) = ρσ(‖x‖)/ρσ(Zn). Therefore, we can rewrite the guessing com-
plexity as

G(DZn,σ) =

∞∑
`=0

ρσ(
√
`)

ρσ(Zn)

N(`)∑
i=N(`−1)+1

i

where N(`) = {x ∈ Zn : ‖x‖ 6
√
` }. We let N(−1) = 0 by convention. It follows

that, for n > 4 (we need every number to be a sum of n squares so that N(`) >
N(`− 1)):

G(X) =

∞∑
`=0

ρσ(
√
`)

ρσ(Zn)
· (N(`)−N(`− 1)) · (N(`− 1) +N(`) + 1)

2
(3)

6
∞∑
`=0

ρσ(
√
`)

ρσ(Zn)
· (N(`)−N(`− 1)) ·N(`)

=
1

ρσ(Zn)

∞∑
`=0

ρσ(
√
`) · (N(`)−N(`− 1)) ·N(`).

By a standard estimate6, we have that (this only works for n > 3):

N(`) = vol(Bn) · `n/2 +O(`n/2−1)

where Bn := Bn(1) and Bn(r) denotes the unit ball of Rn for the Euclidean
norm. Therefore, for ` > 1,

N(`)−N(`− 1) = vol(Bn) · (`n/2 − (`− 1)
n/2

) +O(`n/2−1)

= vol(Bn) · n
2
· `n/2−1 +O(`n/2−1)

= (vol(Bn) +O(1)) · n
2
· `n/2−1.

We note that the approximation above only depends on the dimension and not
on σ. We now obtain that

G(DZn,σ) .
1

ρσ(Zn)
+

vol(Bn)
2

ρσ(Zn)
·
∞∑
`=1

ρσ(
√
`) · n

2
· `n−1

=
1

ρσ(Zn)
+
n · vol(Bn)

2

2ρσ(Zn)
·
∞∑
`=1

ρσ(
√
`) · `n−1.

6 Place a unit cube centred on each integer point: the resulting body contains Bn(
√
`−√

n/2) and is contained in Bn(
√
`+
√
n/2).
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We can approximate the sum by an integral and get that

∞∑
`=1

ρσ(
√
`) · `n−1 ≈

∫ ∞
1

ρσ(
√
t) · tn−1 dt (4)

6
∫ ∞

0

e−
t

2σ2 · tn−1 dt

= (n− 1)! · (2σ2)
n
.

We also bound ρσ(ZN ) by using the Poisson summation formula as follows:

ρσ(Zn) = (ρσ(Z))
n

=
(
σ
√

2πρ1/
√

2πσ(Z)
)n

> (σ
√

2π)
n

which is a good approximation for large σ. Using the standard asymptotic (in
n) estimate for vol(Bn), we have that

G(DZn,σ) .
n! (2σ2)

n

2 · (σ ·
√

2π)
n ·
(

πn/2

Γ (n2 + 1)

)2

=
n! (2πσ2)

n/2

2Γ (n2 + 1)
2 .

We now argue that this formula should be relatively accurate for large n and
σ at least 1 (with a precise that increases as σ gets larger). Recall that the
approximation of N(`) only depend on the dimension n and not σ. Therefore,
the only approximation step that depends on σ is (4) where we approximate
the sum by an integral. Let f(t) = ρσ(

√
t) · tn−1. One easily checks that f is

increasing on [0, N ] and decreasing on [N,∞] where N = 2(n − 1)σ2. Assume
for simplicity that σ is an integer. Then,

∞∑
`=1

f(`) =

N−1∑
`=1

f(`)f(N) +

∞∑
N+1

f(`)

6
N−1∑
`=1

∫ `+1

`

f(t)dt+ f(N) +

∞∑
N+1

∫ `

`−1

f(t)dt

= f(N) +

∫ ∞
1

f(t)dt

6 f(N) +

∫ ∞
0

f(t)dt

= f(N) + (n− 1)! · (2σ2)
n
.

Similarly,

∞∑
`=1

f(`) =

N∑
`=1

f(`)− f(N) +

∞∑
N

f(`)

>
N∑
`=1

∫ `

`−1

f(t)dt− f(N) +

∞∑
N

∫ `+1

`

f(t)dt
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= −f(N) +

∫ ∞
0

f(t)dt

= −f(N) + (n− 1)! · (2σ2)
n
.

Hence, we see that the error introduced by the sum/integral approximation in
(4) is ±f(N). This term is then divided by ρσ(Zn) which is at least (σ

√
2π)n.

Finally, this term should be compared to the approximation to obtain a relative
error. Hence, the approximation’s relative error is at most

ρσ(
√

2(n− 1)σ) · (2(n− 1)σ2)n−1

(σ
√

2π)n · (n− 1)!(2σ2)
n =

ρσ(
√

2(n− 1)σ) · (n− 1)n−1

(σ
√

2π)n · (n− 1)!(2σ2)

=
e−(n−1) · (n− 1)n−1

(σ
√

2π)n · (n− 1)!(2σ2)

=
1

2σ(σ
√

2π)n(n− 1)!

(
n− 1

e

)n−1

∼n→∞
1

2σ(σ
√

2π)n
1√

2π(n− 1)
.

Looking at this formula, we see that it is very close to 0 (for large n) as long as
σ
√

2π > 1. Since
√

2π ≈ 2.5, this means that any value of σ above 0.5 ensures a
very good approximation.

For the quantum guessing complexity, we use the same approach to get that

Gqc(DZn,σ) =

∞∑
`=0

ρσ(
√
`)

ρσ(Zn)

N(`)∑
i=N(`−1)+1

√
i. (5)

We now note that

n∑
i=a+1

√
i ≈

∫ b

a+1

√
tdt =

2

3

(
b3/2 − (a+ 1)3/2

)
.

This approximation can be made formal easily since the square root function is
increasing, but for brevity we omit this step. Therefore,

Gqc(DZn,σ) ≈ 1

ρσ(Zn)
+

2

3

∞∑
`=1

ρσ(
√
`)

ρσ(Zn)
·
(
N(`)

3/2 − (N(`− 1) + 1)
3/2
)

≈ 1

ρσ(Zn)
+

2

3

∞∑
`=1

ρσ(
√
`)

ρσ(Zn)
vol(Bn)

3/2 ·
(
`3n/4 − (`− 1)

3n/4
)

≈ 1

ρσ(Zn)
+

2

3

∞∑
`=1

ρσ(
√
`)

ρσ(Zn)
· vol(Bn)

3/2 · 3n

4
· `3n/4−1

=
1

ρσ(Zn)
+
n · vol(Bn)

3/2

2ρσ(Zn)
·
∞∑
`=1

ρσ(
√
`) · `3n/4−1.
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We can approximate the sum by an integral again and get that

∞∑
`=1

ρσ(
√
`) · `3n/4−1 ≈

∫ ∞
1

ρσ(
√
t) · t3n/4−1 dt

6
∫ ∞

0

e−
t

2σ2 t3n/4−1 dt

= (2σ2)
3n/4 · Γ ( 3n

4 ).

One can analyse the sum/integral approximation as above and conclude that it
is sound for σ above 0.5. Therefore,

Gqc(X) .
n · vol(Bn)

3/2

2ρσ(Zn)
· (2σ2)

3n/4 · Γ ( 3n
4 )

.
n

2 (σ
√

2π)
n ·
(

πn/2

Γ (n2 + 1)

)3/2

· (2σ2)
3n/4 · Γ ( 3n

4 )

=
n · (2πσ2)

n/4 · Γ ( 3n
4 )

2Γ (n2 + 1)
3/2

.

Finally, we estimate the entropy of this distribution as follows:

H(DZn,σ) = −
∑
x∈Zn

DZn,σ(x) · log2(DZn,σ(x))

=
1

2σ2 log(2) · ρσ(Z)
·
∑
x∈Zn

ρσ(x) · ‖x‖2 +
log2 ρσ(Zn)

ρσ(Zn)

∑
x∈Zn

ρσ(x)

=
1

2σ2 log(2) · ρσ(Zn)

∑
x∈Zn

ρσ(x) · ‖x‖2 + log2 ρσ(Zn)

By approximating the sum with the integral, we have that

H(DZn,σ) ≈ 1

2σ2 · log(2) · ρσ(Zn)

∫
Rn
ρσ(x) · ‖x‖2 dx + log2(ρσ(Zn))

=
n · σ2 · (σ

√
2π)

n

2 · σ2 log(2)ρσ(Zn)
+ log2 ρσ(Zn)

≈ n · σ2 · (σ
√

2π)
n

2σ2 · log(2) · (σ
√

2π)
n + log2(σ

√
2π)n

=
n

2 log(2)
+ n log2(σ

√
2π)

= n log2(σ
√

2eπ).

Hence, we have that, for large n,

G(DZn,σ) ≈ n! (σ
√

2π)
n

2Γ (n2 + 1)
2
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∼n→∞

√
2πn

(
n
e

)n
2
(√

2π n2
(
n
2e

)n/2)2 · (σ
√

2π)
n

∼
√

2πn
(
n
e

)n
2πn

(
n
2e

)n · (σ√2π)
n

∼ 2n√
2πn

· (σ
√

2π)
n

∼ 1√
2πn

·
(

2√
e

)n
· (σ
√

2eπ)
n

∼ 1√
2πn

·
(

2√
e

)n
· 2H(X)

and that

Gqc(DZn,σ) ≈
n · (2πσ2)

n/4 · Γ ( 3n
4 )

2Γ (n2 + 1)3/2

=
n · Γ ( 3n

4 )

2Γ (n2 + 1)
3/2 · en/4

· 2H(X)/2

∼n→∞
n ·
√

2π 3n
4

(
3n
4 −1

e

) 3n
4 −1

2
(√

2π n2 ·
(
n
2e

)n/2) 3
2 · en/4

· 2H(X)/2

∼
n
√

2π 3n
4

(
3n
4e

) 3n
4 −1

2e
(√

2π n2
(
n
2e

)n/2) 3
2 · en/4

2H(X)/2

∼
√

6

3(πn)
1
4

(
27

8e

)n
4

· 2H(X)/2

We now consider the case of the modular discrete Gaussian. We do not know
how to order the elements of Znq by decreasing probability so we will instead
consider one possible order and bound the complexity of this order. This will
prove an upper bound on G(Y ).

For any x ∈ Zq, denote by x̃ ∈ x+qZ the unique integer such that |x| 6 q−1
2 .

We extend this notion to vectors in x ∈ Znq componentwise. In other words, x̃ is
the lift from Zq to Z centered on 0.

Let τ : Znq → N be an ordering of Znq such that for all x,y ∈ Znq , if ‖x̃‖ < ‖ỹ‖
then τ(x) < τ(y). In other words, we order points of Znq according to the norm

of their “lift” in { q−1
2 , . . . , q−1

2 }. Intuitively, when σ is much smaller than q,
this will be the optimal order but we were not able to show this result. We now
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have that

G(DZnq ,σ) 6
∑
x∈Znq

DZnq ,σ(x) · τ(x)

=
1

ρσ(Zn)
·
∑
x∈Znq

τ(x) ·
∑
y∈Zn

ρσ(x + q · y)

=
1

ρσ(Zn)

∑
x∈Znq

∑
y∈Zn

ρσ(x + q · y)τ( ˜x + q · y) since ˜x + q · y = x̃

=
1

ρσ(Zn)
·
∑
x∈Zn

ρσ(x) · τ(x̃).

Now fix x ∈ Zn. We now observe that by definition of the order τ , τ(x̃) < τ(ỹ)
for any y ∈ Znq such that ‖ỹ‖ > ‖x̃‖. In particular, choose y such that ‖ỹ‖ = ‖x̃‖
and τ(y) is the largest possible among all such y. Then

τ(ỹ) = | { z ∈ Znq : ‖z̃‖ 6 ‖x̃‖ } |
6 | { z ∈ Zn : ‖z‖ 6 ‖x̃‖ } |
= N(‖x̃‖2)

where recall that we defined N(`) = {x ∈ Zn : ‖x‖ 6
√
` } and N(−1) = 0 at

the beginning of the proof. Therefore,

G(DZnq ,σ) 6
1

ρσ(Zn)

∑
x∈Zn

ρσ(x)N(‖x̃‖2)

=
1

ρσ(Zn)

∞∑
`=0

∑
x∈Zn:‖x‖2=`

ρσ(x)N(‖x̃‖2)

=
1

ρσ(Zn)

∞∑
`=0

ρσ(
√
`) ·N(`)

∑
x∈Zn:‖x‖2=`

1

=
1

ρσ(Zn)

∞∑
`=0

ρσ(
√
`) ·N(`) · (N(`)−N(`− 1))

6 2G(DZn,σ) by (3).

We now consider the case of the quantum guessing complexity. Virtually the
same argument yields that

Gqc(DZnq ,σ) 6
1

ρσ(Zn)

∑
x∈Zn

ρσ(x)
√
N(‖x̃‖2)

=
1

ρσ(Zn)

∞∑
`=0

ρσ(
√
`) ·
√
N(`)

∑
x∈Zn:‖x‖2=`

1

=
1

ρσ(Zn)

∞∑
`=1

ρσ(
√
`) ·
√
N(`) · (N(`)−N(`− 1)).
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Now recall by (5) that

Gqc(DZn,σ) =

∞∑
`=0

ρσ(
√
`)

ρσ(Zn)

N(`)∑
i=N(`−1)+1

√
i.

Furthermore, since
√
· is an increasing function, it is not hard to see that for all

a, b ∈ N,
b∑

i=a+1

√
i >

∫ b

a

√
xdx =

2

3
(b3/2 − a3/2).

Therefore, for any ` ∈ N,

N(`)∑
i=N(`−1)+1

√
i >

2

3

(
N(`)3/2 −N(`− 1)3/2

)
.

But check that N(`− 1) 6 N(`) so that

√
N(`)(N(`)−N(`− 1)) 6 N(`)

3/2 −N(`− 1)
3/2 6

3

2

N(`)∑
i=N(`−1)+1

√
i.

It then follows easily that

Gqc(DZnq ,σ) 6
3

2

1

ρσ(Zn)

∞∑
`=1

ρσ(
√
`)

N(`)∑
i=N(`−1)+1

√
i =

3

2
Gqc(DZn,σ).

This finishes the proof. ut

B Source code

Our code relies on the modified LWE Estimator from [APS15] available at
https://github.com/malb/lattice-estimator/. We also as
an attachment to this PDF. Not all PDF viewers support this feature. If the
reader’s PDF reader does not then e.g. pdfdetach can be used to extract the
source code without having to copy and paste it by hand.

# -*- coding: utf -8 -*-
"""
Run like this::

sage: attach (" estimates.py")
sage: %time results = runall ()
sage: save(results , "../ data/estimates.sobj")
sage: print(results_table(results ))

"""
from sage.all import sqrt , log , exp , e, pi , RR, ZZ

from estimator.estimator.cost import Cost
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# -*- coding: utf-8 -*-
"""
Run like this::

    sage: attach("estimates.py")
    sage: %time results = runall()
    sage: save(results, "../data/estimates.sobj")
    sage: print(results_table(results))

"""
from sage.all import sqrt, log, exp, e, pi, RR, ZZ

from estimator.estimator.cost import Cost
from estimator.estimator.lwe_parameters import LWEParameters
from estimator.estimator.reduction import delta as deltaf
from estimator.estimator.reduction import RC, ReductionCost
from estimator.estimator.conf import red_cost_model as red_cost_model_default
from estimator.estimator.util import local_minimum, early_abort_range
from estimator.estimator.io import Logging
from estimator.estimator.schemes import (
    Kyber512,
    Kyber768,
    Kyber1024,
    LightSaber,
    Saber,
    FireSaber,
)
from estimator.estimator.schemes import TFHE630, TFHE1024


class ChaLoy21(ReductionCost):

    __name__ = "ChaLoy21"
    short_vectors = ReductionCost._short_vectors_sieve

    def __call__(self, beta, d, B=None):
        """
        :param beta: Block size ≥ 2.
        :param d: Lattice dimension.
        :param B: Bit-size of entries.
        """

        return ZZ(2) ** RR(0.2570 * beta)


class MATZOV:
    """ """

    C_prog = 1.0 / (1 - 2.0 ** (-0.292))  # p.37
    C_mul = 32**2  # p.37
    C_add = 5 * 32  # guessing based on C_mul

    @classmethod
    def T_fftf(cls, k, p):
        """
        The time complexity of the FFT in dimension `k` with modulus `p`.

        :param k: Dimension
        :param p: Modulus ≥ 2

        """
        return cls.C_mul * k * p ** (k + 1)  # Theorem 7.6, p.38

    @classmethod
    def T_tablef(cls, D):
        """
        Time complexity of updating the table in each iteration.

        :param D: Number of nonzero entries

        """
        return 4 * cls.C_add * D  # Theorem 7.6, p.39

    @classmethod
    def Nf(cls, params, m, beta_bkz, beta_sieve, k_enum, k_fft, p):
        """
        Required number of samples to distinguish with advantage.

        :param params: LWE parameters
        :param m:
        :param beta_bkz: Block size used for BKZ reduction
        :param beta_sieve: Block size used for sampling
        :param k_enum: Guessing dimension
        :param k_fft: FFT dimension
        :param p: FFT modulus

        """
        mu = 0.5
        k_lat = params.n - k_fft - k_enum  # p.15

        # p.39
        lsigma_s = (
            params.Xe.stddev ** (m / (m + k_lat))
            * (params.Xs.stddev * params.q) ** (k_lat / (m + k_lat))
            * sqrt(4 / 3.0)
            * sqrt(beta_sieve / 2 / pi / e)
            * deltaf(beta_bkz) ** (m + k_lat - beta_sieve)
        )

        # p.29, we're ignoring O()
        N = (
            exp(4 * (lsigma_s * pi / params.q) ** 2)
            * exp(k_fft / 3.0 * (params.Xs.stddev * pi / p) ** 2)
            * (k_enum * cls.Hf(params.Xs) + k_fft * log(p) + log(1 / mu))
        )

        return RR(N)

    @staticmethod
    def Hf(Xs):
        return RR(1 / 2 + log(sqrt(2 * pi) * Xs.stddev)) / log(2.0)

    @classmethod
    def cost(
        cls,
        beta,
        params,
        m=None,
        p=2,
        k_enum=0,
        k_fft=0,
        beta_sieve=None,
        red_cost_model=red_cost_model_default,
    ):
        """
        Theorem 7.6

        """

        if m is None:
            m = params.n

        k_lat = params.n - k_fft - k_enum  # p.15

        # We assume here that β_sieve ≈ β
        N = cls.Nf(
            params,
            m,
            beta,
            beta_sieve if beta_sieve else beta,
            k_enum,
            k_fft,
            p,
        )
        rho, T_sample, _, beta_sieve = red_cost_model.short_vectors(
            beta, N=N, d=k_lat + m, sieve_dim=beta_sieve
        )

        H = cls.Hf(params.Xs)
        T_guess = (
            ((2 / sqrt(e)) ** k_enum)
            * (2 ** (k_enum * H))
            * (cls.T_fftf(k_fft, p) + cls.T_tablef(N))
        )
        cost = Cost(rop=T_sample + T_guess, problem=params)
        cost["red"] = T_sample
        cost["guess"] = T_guess
        cost["beta"] = beta
        cost["p"] = p
        cost["zeta"] = k_enum
        cost["t"] = k_fft
        cost["beta_"] = beta_sieve
        cost["N"] = N
        cost["m"] = m

        cost.register_impermanent(
            {"β'": False, "ζ": False, "t": False}, rop=True, p=False, N=False
        )
        return cost

    def __call__(
        self,
        params: LWEParameters,
        red_cost_model=red_cost_model_default,
        log_level=1,
    ):
        """
        Optimizes cost of dual attack as presented in [Matzov22]_.

        :param params: LWE parameters
        :param red_cost_model: How to cost lattice reduction

        The returned cost dictionary has the following entries:

        - ``rop``: Total number of word operations (≈ CPU cycles).
        - ``red``: Number of word operations in lattice reduction and
                   short vector sampling.
        - ``guess``: Number of word operations in guessing and FFT.
        - ``β``: BKZ block size.
        - ``ζ``: Number of guessed coordinates.
        - ``t``: Number of coordinates in FFT part mod `p`.
        - ``d``: Lattice dimension.

        """
        params = params.normalize()

        for p in early_abort_range(2, params.q):
            for k_enum in early_abort_range(0, params.n, 5):
                for k_fft in early_abort_range(0, params.n - k_enum[0], 5):
                    with local_minimum(
                        40, params.n, log_level=log_level + 4
                    ) as it:
                        for beta in it:
                            cost = self.cost(
                                beta,
                                params,
                                p=p[0],
                                k_enum=k_enum[0],
                                k_fft=k_fft[0],
                                red_cost_model=red_cost_model,
                            )
                            it.update(cost)
                        Logging.log(
                            "dual",
                            log_level + 3,
                            f"t: {k_fft[0]}, {repr(it.y)}",
                        )
                        k_fft[1].update(it.y)
                Logging.log(
                    "dual", log_level + 2, f"ζ: {k_enum[0]}, {repr(k_fft[1].y)}"
                )
                k_enum[1].update(k_fft[1].y)
            Logging.log("dual", log_level + 1, f"p:{p[0]}, {repr(k_enum[1].y)}")
            p[1].update(k_enum[1].y)
        Logging.log("dual", log_level, f"{repr(p[1].y)}")
        return p[1].y


class QMATZOV(MATZOV):
    @classmethod
    def cost(
        cls,
        beta,
        params,
        m=None,
        p=2,
        k_enum=0,
        k_fft=0,
        beta_sieve=None,
        red_cost_model=red_cost_model_default,
    ):
        """
        Theorem 7.6

        """

        if m is None:
            m = params.n

        k_lat = params.n - k_fft - k_enum  # p.15

        # We assume here that β_sieve ≈ β
        N = cls.Nf(
            params,
            m,
            beta,
            beta_sieve if beta_sieve else beta,
            k_enum,
            k_fft,
            p,
        )
        rho, T_sample, _, beta_sieve = red_cost_model.short_vectors(
            beta, N=N, d=k_lat + m, sieve_dim=beta_sieve
        )

        H = cls.Hf(params.Xs)
        T_guess = ((27 / 8 / e) ** (k_enum / 4)) * sqrt(
            2 ** (k_enum * H) * p ** (k_fft / 2.0) * cls.T_tablef(N)
        ) + N
        cost = Cost(rop=T_sample + T_guess, problem=params)
        cost["red"] = T_sample
        cost["guess"] = T_guess
        cost["beta"] = beta
        cost["p"] = p
        cost["zeta"] = k_enum
        cost["t"] = k_fft
        cost["beta_"] = beta_sieve
        cost["N"] = N
        cost["m"] = m

        cost.register_impermanent(
            {"β'": False, "ζ": False, "t": False}, rop=True, p=False, N=False
        )
        return cost


def runall(
    schemes=(
        Kyber512,
        Kyber768,
        Kyber1024,
        LightSaber,
        Saber,
        FireSaber,
        TFHE630,
        TFHE1024,
    ),
    # schemes=(Kyber512, Kyber768, Kyber1024, LightSaber, Saber, FireSaber),
    nns=(
        "list_decoding-naive_classical",
        "list_decoding-classical",
        "list_decoding-naive_quantum",
        "list_decoding-ge19",
    ),
):

    results = {}

    for scheme in schemes:
        results[scheme] = {}
        print(f"{repr(scheme)}")
        for nn in nns:
            cost = MATZOV()(scheme, red_cost_model=RC.MATZOV.__class__(nn=nn))
            results[scheme][(nn, "classical")] = cost
            print(f" nn: {nn},  cost: {repr(cost)}")
            cost = QMATZOV()(scheme, red_cost_model=RC.MATZOV.__class__(nn=nn))
            print(f" nn: {nn}, qcost: {repr(cost)}")
            results[scheme][(nn, "quantum")] = cost

        cost = MATZOV()(scheme, red_cost_model=RC.ADPS16)
        print(f" C0, cost: {repr(cost)}")
        results[scheme][("C0", "classical")] = cost

        cost = MATZOV()(scheme, red_cost_model=ChaLoy21())
        print(f" Q0, cost: {repr(cost)}")
        results[scheme][("Q0", "classical")] = cost

        cost = QMATZOV()(scheme, red_cost_model=ChaLoy21())
        print(f"Q0, qcost: {repr(cost)}")
        results[scheme][("Q0", "quantum")] = cost

    return results


def results_table(results, fmt=None):
    import tabulate

    rows = []

    def pp(cost):
        return round(log(cost["rop"], 2), 1)

    for scheme, costs in results.items():
        row = [
            scheme.tag,
            pp(costs[("list_decoding-classical", "classical")]),
            pp(costs[("list_decoding-naive_classical", "classical")]),
            pp(costs[("C0", "classical")]),
            pp(costs[("list_decoding-ge19", "classical")]),
            pp(costs[("list_decoding-naive_quantum", "classical")]),
            pp(costs[("Q0", "classical")]),
            pp(costs[("list_decoding-naive_quantum", "quantum")]),
            pp(costs[("Q0", "quantum")]),
        ]
        rows.append(row)
    if fmt is None:
        return rows
    else:
        return tabulate.tabulate(
            results_table(results),
            headers=[
                "Scheme",
                "CC",
                "CN",
                "C0",
                "GE19",
                "QN",
                "Q0",
                "This work (QN)",
                "This work (Q0)",
            ],
            tablefmt="latex_booktabs",
            floatfmt=".1f",
        )
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from estimator.estimator.lwe_parameters import LWEParameters
from estimator.estimator.reduction import delta as deltaf
from estimator.estimator.reduction import RC, ReductionCost
from estimator.estimator.conf import red_cost_model as red_cost_model_default
from estimator.estimator.util import local_minimum , early_abort_range
from estimator.estimator.io import Logging
from estimator.estimator.schemes import (

Kyber512 ,
Kyber768 ,
Kyber1024 ,
LightSaber ,
Saber ,
FireSaber ,

)
from estimator.estimator.schemes import TFHE630 , TFHE1024

class ChaLoy21(ReductionCost ):

__name__ = "ChaLoy21"
short_vectors = ReductionCost._short_vectors_sieve

def __call__(self , beta , d, B=None):
"""
:param beta: Block size ≥ 2.
:param d: Lattice dimension.
:param B: Bit -size of entries.
"""

return ZZ(2) ** RR (0.2570 * beta)

class MATZOV:
""" """

C_prog = 1.0 / (1 - 2.0 ** ( -0.292)) # p.37
C_mul = 32**2 # p.37
C_add = 5 * 32 # guessing based on C_mul

@classmethod
def T_fftf(cls , k, p):

"""
The time complexity of the FFT in dimension ‘k‘ with modulus ‘p‘.

:param k: Dimension
:param p: Modulus ≥ 2

"""
return cls.C_mul * k * p ** (k + 1) # Theorem 7.6, p.38

@classmethod
def T_tablef(cls , D):

"""
Time complexity of updating the table in each iteration.

:param D: Number of nonzero entries

"""
return 4 * cls.C_add * D # Theorem 7.6, p.39

@classmethod
def Nf(cls , params , m, beta_bkz , beta_sieve , k_enum , k_fft , p):

"""
Required number of samples to distinguish with advantage.

:param params: LWE parameters
:param m:
:param beta_bkz: Block size used for BKZ reduction
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:param beta_sieve: Block size used for sampling
:param k_enum: Guessing dimension
:param k_fft: FFT dimension
:param p: FFT modulus

"""
mu = 0.5
k_lat = params.n - k_fft - k_enum # p.15

# p.39
lsigma_s = (

params.Xe.stddev ** (m / (m + k_lat))
* (params.Xs.stddev * params.q) ** (k_lat / (m + k_lat))
* sqrt(4 / 3.0)
* sqrt(beta_sieve / 2 / pi / e)
* deltaf(beta_bkz) ** (m + k_lat - beta_sieve)

)

# p.29, we’re ignoring O()
N = (

exp(4 * (lsigma_s * pi / params.q) ** 2)
* exp(k_fft / 3.0 * (params.Xs.stddev * pi / p) ** 2)
* (k_enum * cls.Hf(params.Xs) + k_fft * log(p) + log(1 / mu))

)

return RR(N)

@staticmethod
def Hf(Xs):

return RR(1 / 2 + log(sqrt(2 * pi) * Xs.stddev )) / log (2.0)

@classmethod
def cost(

cls ,
beta ,
params ,
m=None ,
p=2,
k_enum=0,
k_fft=0,
beta_sieve=None ,
red_cost_model=red_cost_model_default ,

):
"""
Theorem 7.6

"""

if m is None:
m = params.n

k_lat = params.n - k_fft - k_enum # p.15

# We assume here that β_sieve ≈ β
N = cls.Nf(

params ,
m,
beta ,
beta_sieve if beta_sieve else beta ,
k_enum ,
k_fft ,
p,

)
rho , T_sample , _, beta_sieve = red_cost_model.short_vectors(

beta , N=N, d=k_lat + m, sieve_dim=beta_sieve
)

H = cls.Hf(params.Xs)
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T_guess = (
((2 / sqrt(e)) ** k_enum)
* (2 ** (k_enum * H))
* (cls.T_fftf(k_fft , p) + cls.T_tablef(N))

)
cost = Cost(rop=T_sample + T_guess , problem=params)
cost["red"] = T_sample
cost["guess"] = T_guess
cost["beta"] = beta
cost["p"] = p
cost["zeta"] = k_enum
cost["t"] = k_fft
cost["beta_"] = beta_sieve
cost["N"] = N
cost["m"] = m

cost.register_impermanent(
{"β’": False , "ζ": False , "t": False}, rop=True , p=False , N=False

)
return cost

def __call__(
self ,
params: LWEParameters ,
red_cost_model=red_cost_model_default ,
log_level=1,

):
"""
Optimizes cost of dual attack as presented in [Matzov22]_.

:param params: LWE parameters
:param red_cost_model: How to cost lattice reduction

The returned cost dictionary has the following entries:

- ‘‘rop ‘‘: Total number of word operations (≈ CPU cycles ).
- ‘‘red ‘‘: Number of word operations in lattice reduction and

short vector sampling.
- ‘‘guess ‘‘: Number of word operations in guessing and FFT.
- ‘‘β‘‘: BKZ block size.
- ‘‘ζ ‘‘: Number of guessed coordinates.
- ‘‘t‘‘: Number of coordinates in FFT part mod ‘p‘.
- ‘‘d‘‘: Lattice dimension.

"""
params = params.normalize ()

for p in early_abort_range (2, params.q):
for k_enum in early_abort_range (0, params.n, 5):

for k_fft in early_abort_range (0, params.n - k_enum [0], 5):
with local_minimum(

40, params.n, log_level=log_level + 4
) as it:

for beta in it:
cost = self.cost(

beta ,
params ,
p=p[0],
k_enum=k_enum [0],
k_fft=k_fft[0],
red_cost_model=red_cost_model ,

)
it.update(cost)

Logging.log(
"dual",
log_level + 3,
f"t: {k_fft [0]}, {repr(it.y)}",

)
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k_fft [1]. update(it.y)
Logging.log(

"dual", log_level + 2, f"ζ: {k_enum [0]}, {repr(k_fft [1].y)}"
)
k_enum [1]. update(k_fft [1].y)

Logging.log("dual", log_level + 1, f"p:{p[0]}, {repr(k_enum [1].y)}")
p[1]. update(k_enum [1].y)

Logging.log("dual", log_level , f"{repr(p[1].y)}")
return p[1].y

class QMATZOV(MATZOV ):
@classmethod
def cost(

cls ,
beta ,
params ,
m=None ,
p=2,
k_enum=0,
k_fft=0,
beta_sieve=None ,
red_cost_model=red_cost_model_default ,

):
"""
Theorem 7.6

"""

if m is None:
m = params.n

k_lat = params.n - k_fft - k_enum # p.15

# We assume here that β_sieve ≈ β
N = cls.Nf(

params ,
m,
beta ,
beta_sieve if beta_sieve else beta ,
k_enum ,
k_fft ,
p,

)
rho , T_sample , _, beta_sieve = red_cost_model.short_vectors(

beta , N=N, d=k_lat + m, sieve_dim=beta_sieve
)

H = cls.Hf(params.Xs)
T_guess = ((27 / 8 / e) ** (k_enum / 4)) * sqrt(

2 ** (k_enum * H) * p ** (k_fft / 2.0) * cls.T_tablef(N)
) + N
cost = Cost(rop=T_sample + T_guess , problem=params)
cost["red"] = T_sample
cost["guess"] = T_guess
cost["beta"] = beta
cost["p"] = p
cost["zeta"] = k_enum
cost["t"] = k_fft
cost["beta_"] = beta_sieve
cost["N"] = N
cost["m"] = m

cost.register_impermanent(
{"β’": False , "ζ": False , "t": False}, rop=True , p=False , N=False

)
return cost
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def runall(
schemes =(

Kyber512 ,
Kyber768 ,
Kyber1024 ,
LightSaber ,
Saber ,
FireSaber ,
TFHE630 ,
TFHE1024 ,

),
# schemes =(Kyber512 , Kyber768 , Kyber1024 , LightSaber , Saber , FireSaber),
nns=(

"list_decoding -naive_classical",
"list_decoding -classical",
"list_decoding -naive_quantum",
"list_decoding -ge19",

),
):

results = {}

for scheme in schemes:
results[scheme] = {}
print(f"{repr(scheme )}")
for nn in nns:

cost = MATZOV ()(scheme , red_cost_model=RC.MATZOV.__class__(nn=nn))
results[scheme ][(nn, "classical")] = cost
print(f" nn: {nn}, cost: {repr(cost)}")
cost = QMATZOV ()(scheme , red_cost_model=RC.MATZOV.__class__(nn=nn))
print(f" nn: {nn}, qcost: {repr(cost)}")
results[scheme ][(nn, "quantum")] = cost

cost = MATZOV ()(scheme , red_cost_model=RC.ADPS16)
print(f" C0, cost: {repr(cost)}")
results[scheme ][("C0", "classical")] = cost

cost = MATZOV ()(scheme , red_cost_model=ChaLoy21 ())
print(f" Q0, cost: {repr(cost)}")
results[scheme ][("Q0", "classical")] = cost

cost = QMATZOV ()(scheme , red_cost_model=ChaLoy21 ())
print(f"Q0, qcost: {repr(cost)}")
results[scheme ][("Q0", "quantum")] = cost

return results

def results_table(results , fmt=None):
import tabulate

rows = []

def pp(cost):
return round(log(cost["rop"], 2), 1)

for scheme , costs in results.items ():
row = [

scheme.tag ,
pp(costs[("list_decoding -classical", "classical")]),
pp(costs[("list_decoding -naive_classical", "classical")]),
pp(costs[("C0", "classical")]),
pp(costs[("list_decoding -ge19", "classical")]),
pp(costs[("list_decoding -naive_quantum", "classical")]),
pp(costs[("Q0", "classical")]),
pp(costs[("list_decoding -naive_quantum", "quantum")]),
pp(costs[("Q0", "quantum")]),
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]
rows.append(row)

if fmt is None:
return rows

else:
return tabulate.tabulate(

results_table(results),
headers =[

"Scheme",
"CC",
"CN",
"C0",
"GE19",
"QN",
"Q0",
"This work (QN)",
"This work (Q0)",

],
tablefmt="latex_booktabs",
floatfmt=".1f",

)
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