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Abstract. We present a quantum augmented variant of the dual lat-
tice attack on the Learning with Errors (LWE) problem, using classical
memory with quantum random access (QRACM). Applying our results
to lattice parameters from the literature, we find that our algorithm out-
performs previous algorithms, assuming unit cost access to a QRACM.
On a technical level, we show how to obtain a quantum speedup on
the search for Fast Fourier Transform (FFT) coefficients above a given
threshold by leveraging the relative sparseness of the FFT and using
quantum amplitude estimation. We also discuss the applicability of the
Quantum Fourier Transform in this context. Furthermore, we give a more
rigorous analysis of the classical and quantum expected complexity of
guessing part of the secret vector where coefficients follow a discrete
Gaussian (mod q).
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1 Introduction

The Learning With Errors (LWE) problem was introduced by Regev [Reg05] and
has since become a major ingredient for constructing basic and more advanced
cryptographic primitives. It asks to find s given (A,b) with b ≡ A · s + e mod q
where both s and e have small entries. Its conjectured hardness against quan-
tum computers further makes all these constructions supposedly post-quantum.
In NIST’s Post Quantum Standardization Process, two out of four selected algo-
rithms rely on the conjectured hardness of algebraic variants of Learning With
Errors [SSTX09, LPR10] problem.

From the perspective of a cryptanalyst equipped with a quantum computer,
lattice problems such as LWE are frustrating. Known quantum speedups to solve
these problems [LMv13, Laa15, CL21] are tenuous at best [AGPS20]. That is,
while Grover’s search offers a near quadratic quantum speedup for breaking,
say, AES [JNRV20] the gains against lattice problems are significantly more
modest. This is due to the rich structure of the search space in lattice reduction
algorithms that has given rise to refined structured search algorithms for these
problems, e.g. [BDGL16]. As a consequence of this, the current state-of-the-art
is that quantum algorithms on lattice problems can effectively be ignored when
setting parameters.



The most efficient cryptanalysis techniques against LWE(-like) problems are
“primal” and “dual” lattice attacks, named after whether lattice reduction is
performed on the “primal” lattice related to A or the “dual” lattice related to
{x ∈ Zmq | x · A ≡ 0 mod q}. Up until recently, dual attacks were generally
considered less efficient for secrets s drawn from a sufficiently wide distribution.
Recent developments [GJ21, MAT22] of dual attacks, however, have shown their
ability to surpass primal attacks. These performance improvements are derived
from combining lattice reduction on the scaled dual of a target lattice with
an exhaustive search on a space related to the underlying secret s. Roughly
speaking, spending more resources on the exhaustive search part allows us to
spend fewer resources on the lattice reduction part of the overall algorithm and
vice versa.

In [GJ21] the search over part of the secret vector is realised using a Fast
Fourier Transform style algorithm and the search space is significantly reduced
by roughly considering only the most significant bits of this part of the secret.
In [MAT22] this last step is replaced by “modulus switching” [BV11, AFFP14,
KF15, GJS15] which further provides significant performance gains. Overall,
these newer iterations of the dual attack relate the search space to the underlying
secret in such a way that large dimensions can now be covered even when the
norm of the secret vector is not very small (previous versions of the dual attack
relied on, say, coefficients si ∈ {−1, 0, 1}).

Thus, with this new generation of dual attacks, unstructured search starts
again to play a bigger role in costing attacks on LWE. It is therefore natural
to ask what performance gains can be obtained by tackling this unstructured
search using a Grover-like quantum algorithm. More precisely, [MAT22] relies
on two different kinds of unstructured search:

– Secret guessing: part of the secret is exhaustively searched until a match is
found. Since the secret is generated according to a discrete Gaussian of small
width, a significant speedup can be obtained by starting the search with the
most likely values of the secret first. The expected complexity of this step is
known as the guessing complexity.

– FFT threshold: given a list of values in a n-dimensional array, and a thresh-
old, the problem is to decide whether one of the coefficients of the Fourier
transform of the array is above the threshold. This problem arises when
trying to determine whether the secret guess was correct by distinguishing
between a uniform distribution and a Gaussian one.

Contributions. After some preliminaries in Section 2, we provide a quantum
version of the dual attack of [MAT22]. Specifically, our improvements are twofold.

In Section 3 we give a more rigorous analysis of the (classical and quan-
tum) expected complexity of guessing a vector (whose coefficients are) drawn
from a modular discrete Gaussian. In [MAT22], the authors estimated this com-
plexity as the exponential of the entropy which is known not to be correct in
general [Mas94]. We show that this complexity is indeed related to the entropy
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in the case of a (modular) discrete Gaussian, albeit up to an exponential factor
in the dimension.

In Section 4 we show how to obtain a quantum speedup on the search for
Fast Fourier Transform (FFT) coefficients above a given threshold. This was left
as an open problem in [MAT22]. Here, we leverage the relative sparseness of the
FFT and use amplitude estimation to estimate the Fourier coefficients.

In Section 5 we provide and analyse a quantum augmented dual attack util-
ising our guessing and mean estimation results.

In Section 6, we then estimate the impact of our algorithm on the cost of
solving instances of lattice-based schemes with parameters taken from the liter-
ature. We will refer to such parameters as “lattice parameters” going forward.
Following the literature, we evaluate the complexity of our algorithm under the
assumption of unit-cost access to a classical memory with quantum random ac-
cess (QRACM).

In Section 7, we discuss the FFT threshold problem and its quantum com-
plexity. Any significant speedup on this problem would yield major improvements
in the complexity of the dual attack. We argue that the Quantum Fourier Trans-
form (QFT) does not seem applicable in this context, despite being the natural
approach.

Discussion. On the one hand, we analyse our algorithm in the same “cost
model” as prior work such as [LMv13, Laa15, CL21] and in this cost model we
obtain significant speed-ups over previous work. These are mostly derived from
our new algorithm for finding FFT coefficients above a given threshold and its
composition with other known quantum algorithms from the literature such as
Grover’s search for a secret and quantum versions of lattice-reduction attacks.

On the other hand, the cost model adopted here and prior work assume unit
cost for quantum operations including accessing classical RAM in superposition
(QRACM). As discussed in e.g. [AGPS20], this is a very strong assumption.

Furthermore, even in this model our algorithm falls short of the quadratic
speed-up we would need to “force” a revision of lattice parameters. This is be-
cause the resistance of post-quantum algorithms to quantum computers is rou-
tinely, e.g. in the NIST PQC Standardization Process, compared to that of the
AES family of block ciphers (or other symmetric-key primitives). Here, the state
of the art is that AES-λ resists classical attacks of cost ≈ 2λ and quantum at-
tacks of cost ≈ 2λ/2, the latter being due to Grover’s algorithm, see [JNRV20]
for more detailed cost estimates. Thus, parameters for post-quantum schemes
are chosen such that they resist known classical attacks of cost ≈ 2λ and known
quantum attacks of cost ≈ 2λ/2 and any quantum algorithm with complexity
� 2λ/2 will not affect the claimed security level. Our algorithm has cost� 2λ/2,
whatever the cost model.
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2 Preliminaries

Recall that eix = cos(x) + i sin(x). For any z ∈ C, we write <(z) for its real
part. We write [x, y] for the interval {x, x + 1, . . . , y} ⊂ Z. We denote matrices
by bold uppercase letters, e.g. A, and vectors by bold lowercase letters, e.g. v.
We treat vectors as column matrices. We write vT for the transpose of v.

For any x ∈ Zq, denote by x̃ ∈ x+qZ the unique integer such that |x̃| 6 q−1
2 .

We extend this notion to vectors in x ∈ Znq componentwise. In other words, x̃ is
the lift from Zq to Z centered on 0. We define ‖x‖ for x ∈ Znq as ‖x̃‖.

2.1 Lattices

A lattice L is a discrete subgroup of Rd. We can represent it as {
∑
xi ·bi|xi ∈ Z}

where bi are the columns of a matrix B, we may write L(B). If B has full column
rank, we call B a basis.

While the central object of this work, the dual attack, critically relies on
lattice reduction, such as the BKZ algorithm, we mostly make blackbox use
of these algorithms here. Thus, we refer the reader to e.g. [GJ21, MAT22] for
details. In particular, the blackbox use we make of lattice reduction algorithms
and, critically, lattice sieving algorithms is captured in Algorithm 1.

Algorithm 1: Short Vectors Sampling Procedure [GJ21]

Input: A basis B =
[
b0 . . . bd−1

]
for a lattice and 2 ≤ β0, β1 ∈ Z 6 d and D.

Output: A list of D vectors from the lattice.
1 L={}.
2 for i ∈ [0, dD/Nsieve(β1)e − 1] do
3 Randomise the basis B.
4 Run BKZ-β0 to obtain a reduced basis b′0, . . . ,b

′
d−1.

5 Run a sieve in dimension β1 on the sublattice spanned by b′0, . . . ,b
′
β1−1 to

obtain a list of Nsieve(β1) vectors and add them to L.

6 return L

In Algorithm 1 the BKZ-β0 call performs lattice reduction with parameter
β0 where the cost of the algorithm scales at least exponentially with β0. The
BKZ algorithm proceeds by making polynomially many calls to an SVP oracle.
In this work, this oracle is instantiated using a lattice sieving algorithm which is
also called explicitly in Algorithm 1 with parameter β1. Such a sieving algorithm
outputs Nsieve(β1) short vectors in the lattice L(B) and has a cost exponential
in β1. The magnitude Nsieve(β1) also grows exponentially with β1 but slower
than the cost of sieving. We will write TBKZ(d, β0) for the cost of running BKZ-
β0 in dimension d and Tsieve(β1) for the cost of sieving in dimension β1. We
may instantiate the lattice sieve with a classical algorithm [BDGL16] which
has a cost of 20.292 β1+o(β1). We may also instantiate the lattice sieve with a
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quantum augmented variant of sieving [LMv13, Laa15, AGPS20, CL21] which
has a cost of 20.257 β1+o(β1). Thus, according to the best known algorithms we
have TBKZ(d, β0) ∈ poly(d) · 2Θ(β0) and Tsieve(β1) ∈ 2Θ(β1).

2.2 Learning with Errors

The Learning with Errors problem (LWE) is defined as follows.

Definition 1 (LWE). Let n,m, q ∈ N, and let χs, χe be distributions over Zq.
Denote by LWEn,m,χs,χe the probability distribution on Zm×nq × Zmq obtained by
sampling the coordinates of the matrix A ∈ Zm×nq independently and uniformly
over Zq, sampling the coordinates of s ∈ Znq , e ∈ Zmq independently from χs and
χe respectively, setting b := A · s + e mod q and outputting (A,b).

We define two problems:

– Decision-LWE. Distinguish the uniform distribution over Zm×nq × Zmq from
LWEn,m,χs,χe .

– Search-LWE. Given a sample from LWEn,m,χs,χe , recover s.

Dual Attack. Dual-lattice attacks, or simply “dual attacks”, on LWE and
related problems were introduced in [MR09]. In its simplest form it proceeds as
follows. Given either (A,A ·s+e) or (A,u) where (A,u) are uniform and w.l.o.g
s, e are short [ACPS09], the attack finds short xj s.t. xTj ·A ≡ 0. Then, we either

obtain xTj ·A · s + 〈xj , e〉 = 〈xj , e〉 or 〈xj ,u〉. The former follows a distribution
with small entries, i.e. the distribution of |ej | for ej := 〈xj , e〉 is biased towards
elements < q/2, and the latter follows a uniform distribution mod q.

In [ADPS16], the “normal form” of the dual attack was introduced which
finds short xj such that xTj ·A ≡ yj mod q with yj short. We then obtain

xTj ·A · s + 〈xj , e〉 = 〈yj , s〉+ 〈xj , e〉 ,

which follows a distribution with small entries when yj , s,xj and e are short.
In [Alb17] a composition of the dual attack with a guessing stage (and some

scaling) was introduced with a focus on vectors s that are sparse and small
compared to e. The idea is to split A = [A0 A1] such that

b ≡ A0 · s0 + A1 · s1 + e mod q.

Then the dual attack is run on A0 s.t.

〈xj ,b〉 ≡ xTj ·A0 · s0 + xTj ·A1 · s1 + 〈xj , e〉 = 〈yj , s0〉+ xTj ·A1 · s1 + 〈xj , e〉 .

Thus, guessing the correct s1 and computing 〈xj ,b〉−xT ·A1 ·s1 produces a value
that follows a distribution with small entries. In [EJK20] this was generalised
to more general secret distributions paired with additional improvements on the
exhaustive search over s1. In [GJ21] further improvements were presented. In
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particular, the search over s1 is realised using a Fast Fourier Transform style
algorithm and the search space is significantly reduced by roughly considering
only the most significant bits of s1. In [MAT22] this last step is replaced by
“modulus switching” [BV11, AFFP14, KF15, GJS15] which provides significant
performance gains.1

2.3 Discrete Gaussian Distribution

Let σ > 0. For any x ∈ Rd, we let ρσ(x) := exp(−‖x‖2 /2σ2). Note that this is
different from the other (also commonly used) definition, where 1

2 is replaced by
π in the exponent. This change is inconsequential to our results. We extend the
definition of ρσ(·) to sets of vectors S by letting ρσ(S) :=

∑
x∈S ρσ(x). For any

lattice L ⊂ Rd, we denote by DL,σ the discrete Gaussian distribution over L,
defined by DL,σ(x) = ρσ(x)/ρσ(L) for all x ∈ L. Observing that DZn,σ(x) only
depends on ‖x‖, we abuse notation and for ` = ‖x‖ write ρσ(`) = exp(−`2/2σ2)
and DZn,σ(`) = ρσ(`)/ρσ(Zn).

We will also make use of the modular discrete Gaussian. For any q ∈ N, we
denote by DZdq ,σ the modular discrete Gaussian distribution over Zdq defined by

DZdq ,σ(x) =
ρσ(x + qZd)
ρσ(Zd)

.

Note that the distribution DZdq ,σ is isomorphic to the distribution Dd
Zq,σ, a fact

that we will use often implicitly.
We let Φ(x) = 1√

2π

∫ x
−∞ exp(−t2/2) dt be the cumulative distribution func-

tion (cdf) of the standard normal distribution and Φ−1(x) : [0, 1)→ R its inverse.

2.4 Quantum Computing

Quantum Circuit Model. In the quantum circuit model, the time complexity
is the circuit size, which is the total number of elementary quantum gates. The
space complexity is the number of qubits used. We will assume that the elemen-
tary quantum gates come from a fixed universal set. Up to constant factors, the
complexity does not depend on the universal set that we have chosen. Since all
unitary transforms are invertible, any quantum circuit A is reversible and we
denote by A† its inverse, which is also equal to its conjugate transpose when
viewed as a matrix.

Given a function f : {0, 1}n → {0, 1}m, we say that a quantum circuit, imple-
menting a unitary U that acts on n+`+m qubits, computes f with probability α
if for every x, a measurement on the last m qubits of U |x〉 |0`〉 |0m〉 outputs f(x)
with probability at least α. The exact location of the qubits that we measure
for the output actually does not matter, since we can also apply SWAP gates
(implementable by elementary gates) to swap them to the m last positions. The
extra ` qubits that are not part of the input/output are called ancilla qubits (or
work space).

1 Another significant gain reported in [MAT22] is due to an improvement to the lattice
sieving algorithm from [BDGL16] but discussing this is out of scope of this work.
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Quantum Query Model. We use the standard form of the quantum query
model : given a unitary O, we say that a circuit computes f with oracle access
to O if by augmenting the model with the unitary O, we can construct a circuit
computing f . The number of queries on O is the number of unitary O in the
circuit. If we find an efficient algorithm for a problem in query complexity and we
are given an explicit circuit realizing the black-box transformation of the oracle
O, we will have an efficient algorithm for an explicit computational problem.

Quantum Algorithms. We say that a quantum algorithm computes a function
F : {0, 1}∗ → {0, 1}∗ with probability α if there is a classical algorithm A with
quantum evaluation that outputs F (w) with probability α on input w. By quan-
tum evaluation we mean that the algorithm can, any number of times during
the computation, build a quantum circuit and evaluate it, that is measure the
state U |0〉 where U is the unitary implemented by the circuit.

For a family of algorithms parameterised by n, the time complexity T (n) is
the classical time complexity ofA plus the time complexity of the circuits, i.e. the
number of gates. The classical space complexity S(n) is the space complexity of
A (ignoring quantum evaluations). The quantum space complexity Q(n) is the
maximal space complexity of all circuits, i.e. the maximum number of qubits
used. In the natural way, we say that a quantum algorithm has oracle access
to O if it produces circuits with oracle access to O. The query complexity of
the algorithm is the sum of the query complexity of the circuits. Now that the
quantum model of computation is properly defined, we can express the fact that
every reversible classical computation can be implemented by a quantum com-
puter, although at a non-negligible cost. Here reversible classical computation
means that there is a one-to-one mapping between the inputs and the outputs
and that a transform exists to return from the output to the input.

Theorem 1 ([Ben89, LS90]). Given any ε > 0 and any classical computa-
tion with running time T and space complexity S, there exists an equivalent
reversible classical computation with running time O(T 1+ε/Sε) and space com-
plexity O(S(1 + ln(T/S))).

Corollary 1. Given any ε > 0 and any classical computation with running
time T and space complexity S, there exists an equivalent quantum circuit of
size O(T 1+ε/Sε) using O(S(1 + ln(T/S))) qubits.

In principle, it is always possible to turn a classical computation into a quan-
tum one (Corollary 1) and combine all quantum algorithms into one quantum
circuit by postponing all measurements until the very end of the computation,
using the so-called principle of deferred measurement [NC11]. We will use this
fact implicitly in the rest of this work and just assume that we can take any
classical algorithm and turn it into a quantum one with the same complexity.

Quantum Search. One of the most well-known quantum algorithms is Grover’s
unstructured search algorithm [Gro96]. Suppose we have a set of objects named
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{0, 1, . . . , N−1}, of which some are targets. We say that an oracle O identifies the
targets if, in the classical (resp. quantum) setting, O(i) = 1 (resp. O |i〉 = − |i〉)
when i is a target and O(i) = 0 (resp. O |i〉 = |i〉) otherwise. Given such an
oracle O, the goal is to find a target j ∈ {0, 1, . . . , N − 1} by making queries to
the oracle O.

In the search problem, we try to minimise the number of queries to the oracle.
In the classical case, we need O(N) queries to solve such a problem. Grover, on
the other hand, provided a quantum algorithm that solves the search problem
with only O(

√
N) queries [Gro96] when there is one target, and O(

√
N/t) when

there are exactly t targets. We here present a generalisation of Grover’s algorithm
called amplitude amplification [BHMT02].

Theorem 2 (Amplitude Amplification [BHMT02]). Suppose we have a
set of N objects of which some are targets. Let O be a quantum oracle that
identifies the targets. Let A be a quantum circuit using no intermediate mea-
surements, ie A is reversible. Let a be the initial success probability of A, that is
the probability that a measurement of A |0〉 outputs a target. There exists a quan-

tum algorithm that calls O
(√

1/a
)

times A, A† and O, uses as many qubits as

A and O, and outputs a target with probability greater than 1− a.

Grover’s algorithm is a particular case of this theorem where A produces a
uniform superposition of all objects, in which case a = 1

N . The theorem then

states that we can find a target with probability 1 − 1
N using O(

√
N) calls to

the oracle Of .

Theorem 3 (Amplitude Estimation [BHMT02], Theorem 12). Given a
natural number M and access to an (n+ 1)-qubit unitary U satisfying

U |0n〉 |0〉 =
√
a |φ1〉 |1〉+

√
1− a |φ0〉 |0〉 ,

where |φ1〉 and |φ0〉 are arbitrary n-qubit states and 0 < a < 1, there exists
a quantum algorithm that uses M applications of U and U†, and outputs an
estimate ã that with probability ≥ 2/3 satisfies

|a− ã| ≤
6π
√
a(1− a)

M
+

9π2

M2
≤ 15π2

M
.

We will have to search for a marked element in a collection but the oracle
that identifies the targets may be probabilistic and return a wrong result with
small probability. The following result generalises Grover search in this setting.
We say that a (probabilistic) Boolean function f has bounded error if there
exists b ∈ {0, 1} such that f() returns b with probability at least 9/10.

Theorem 4 ([HMdW03]). Given n algorithms, quantum or classical, each
computing some bit-value with bounded error probability, there is a quantum
algorithm that uses O(

√
n) queries and with constant probability: returns the

index of a “1”, if there is at least one “1” among the n values; returns ⊥ if there
is no “1”.
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This algorithm can easily be used to find the index of the first algorithm that
returns 1, see e.g. [KKM+21].

Lemma 1. Let N be an integer and f : [0, N − 1] → {0, 1} a function. Let
O be a (classical or quantum with bounded error) algorithm computing f . Let
n0 be the first index such that f(n0) = 1, or let n0 = ⊥ if no such index
exists. There exists a quantum algorithm AO with the following property. AO(N)
returns i ∈ [0, N − 1] such that f(i) = 1, or ⊥. With constant probability,
AO(N) = n0. The algorithm runs in expected time T = O(

√
n0) (or O(

√
N) if

n0 = ⊥), uses a polynomial number of qubits and makes an expected number T
of calls to O. Furthermore, if the algorithm returns i ∈ [0, N − 1], then it only
queries O on values in [0,min(N − 1, 2i)].

Memory Access. “Baseline” quantum circuits are simply built using a univer-
sal quantum gate set. A requirement for many quantum algorithms to process
data efficiently is to be able to access classical data in quantum superposition.
Such algorithms use quantum random-access memory, often denoted as qRAM,
and require the circuit model to be augmented with the so-called “qRAM gate”.
These qRAM gates are assumed to have a time complexity polylogarithmic in
the amount of classical data stored, so that each call is not time consuming. This
model is inspired by the classical RAM model where we usually assume memory
access in time O(1).

Given an input integer 0 ≤ i ≤ r−1, which represents the index of a memory
cell, and many quantum registers |x0, . . . xr−1〉, which represent stored data, the
qRAM gate fetches the data from register xi, possibly in superposition:

|i〉 |x0, . . . xr−1〉 |y〉 7→ |i〉 |x0, . . . xr−1〉 |y ⊕ xi〉 .

Following the terminology of [Kup13], there are three types of qRAMs:

– If the input i is classical, then this is the plain quantum circuit model. We
can implement it using a universal quantum gate set.

– If the xj are classical, we have classical memory with quantum random access
(QRACM). The qRAM gate becomes

|i〉 |y〉 7→ |i〉 |y ⊕ xi〉 .

– In general, we have quantum memory with quantum random access (QRAQM).
This is the most powerful quantum memory model where the data are also
in superposition.

In our algorithm for the dual attack, we will be using QRACM. It is possible
to implement a QRACM using a universal quantum gate set, albeit at a consid-
erable cost. Given a classical data set {x0, · · · , xr−1}, one can construct, in time
Õ(r), a circuit using Õ(r) qubits that implements a QRACM for this data set.
The obtained circuit then allows query in the form |i〉 |y〉 7→ |i〉 |y ⊕ xi〉 and has
circuit depth O(polylog(r)) [GLM08, KP20, MGM20, HLGJ20]. Note that even
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low depth implementation of QRACM has at least Ω(r) gates, hence has time
complexity at least Ω(r) by our definition. Therefore, the assumption that the
qRAM gates have time complexity polylog(r) is very strong and corresponds to
parallel evaluation of the circuit. The feasibility of constructing efficient QRACM
is further discussed in e.g. [AGPS20].

2.5 The Classical Algorithm of [GJ21, MAT22]

In this section, we give an overview of the algorithm in [MAT22], reproduced
in Algorithm 2. Our quantum algorithm will be a modified version that relies
essentially on the same analysis for the correctness but a new analysis for the
quantum complexity. We give an overview of the involved parameters in Table 1.

Table 1. Dual attack parameters.

parameters explanation

n, m, χs, χe LWE parameters as in Definition 1
β0, β1 BKZ block size β0 and sieving dimension β1

p modulus switching target modulus
µ the target success probability 0 < µ < 1
σ2
s , σ2

e variances of χs and χe respectively
senum, sfft, slat components of s covered by exhaustive search, FFT and lattice

reduction
s̃enum, s̃fft guesses for senum mod q and sfft mod p
Nenum(senum) number of guesses with s̃enum with probabilities larger than the

probability of senum when drawing s from χs.
kenum, kfft, klat dimension of senum, sfft or slat respectively
Aenum,Afft,Alat A · s = Aenum · senum + Afft · sfft + Alat · slat

α scaling/normalisation factor α := σe/σs
L,D list/number of short vectors returned by sieving oracle D := |L|
ψ (sfft) = exp(

2πicq′
p

∑
t st) where q′ = q/ gcd(p, q), cq′ := 0 when q′ is

odd and cq′ := 1/2q′ when q′ is even
C FFT cutoff value for scoring function
Φ defined in Section 2.3

φfp(µ), φfn(µ) = Φ−1
(

1− µ

2·Nenum(senum)·pkfft

)
, Φ−1

(
1− µ

2

)
Deq exponential factor coming from the clean Fourier coefficient of

the error in the dual attack equations for required samples
Dround exponential factor coming from the rounding when modulus

switching for required samples
Darg ≈ 1/2, improvement factor coming from considering the complex

argument of the Fourier coefficient rather than only the magni-
tude.

Dfpfn a polynomial factor controlling false positives and negatives
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We are given a sample from LWEn,m,χs,χe , where χs and χe have small
variance σ2

s and σ2
e respectively. We partition s into three components:

s =

senum

sfft

slat


where senum has kenum coordinates, sfft has kfft coordinates, and slat has klat =
n − kenum − kfft coordinates. We split A into three components accordingly as
well:

A = [Aenum Afft Alat]

so that A · s = Aenum · senum + Afft · sfft + Alat · slat. We define the matrix:

B =

(
αIm 0
AT

lat qIklat

)
,

where α is a constant equal to σe
σs

and is used for normalisation in the case that

s, e have different distributions. We find D short vectors of the form

(
α · xj
yj,lat

)
in the column space of B using some short vectors sampling procedure (see Al-
gorithm 1). Then, given a list L of D such vectors let yj,fft := xTj · Afft and

yj,enum := xTj ·Aenum. We can then define the function FL(s̃enum, s̃fft) =

<

(
1

ψ(s̃fft)

∑
j

exp

((⌊
p

q
· yj,fft

⌉T
· s̃fft +

p

q
· yTj,enum · s̃enum −

p

q
· xTj · b

)
· 2iπ

p

))

for all s̃enum ∈ Zkenum
q and s̃fft ∈ Zkfftp . First, note that s̃fft is mod p � q rather

than q meaning that only up to pkfft candidates have to be considered rather
than qkfft . Applying modulus switching here is the key innovation of [MAT22],
but since its details do not matter for us here, we refer the reader to [MAT22]
for details. Second, here ψ(s̃fft) is a complex factor of norm 1 defined in [MAT22,
p. 25, proof of Lemma 5.4] and easily computable (cf. Table 1). The function FL
essentially performs an FFT on values drawn from a certain distribution.

Via an analysis that we do not reproduce, one can show that the function
FL above has the following properties with respect to some cutoff parameter C
(computed below):

– If s̃enum 6= senum then FL(s̃enum, s̃fft) < C for all s̃fft ∈ Zkfftp .
– FL(senum, sfft) > C
– There might be s̃fft 6= sfft such that FL(senum, s̃fft) > C.

The first point corresponds to a wrong guess. In this case, values on which
the FFT is performed follow a uniform distribution and the expected value of
FL(s̃enum, s̃fft) is 0. The second point corresponds to the correct guess. In this
case, values on which the FFT is performed essentially follow a normal distri-
bution with nonzero mean and therefore the expected value of FL(senum, sfft)
is nonzero. By carefully choosing the value of C, and taking sufficiently many
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samples in the list, we can ensure that these properties hold with high proba-
bility. The third point follows from the fact that [MAT22] performs a modulo
switching operation that can introduce some errors and makes the analysis of
FL(senum, s̃fft) with s̃fft 6= sfft more difficult. Consequently, it is simpler to assume
that we can only recover senum with certainty. We can therefore reformulate the
algorithm of [MAT22] as looking for s̃enum such that there exists s̃fft such that
FL(s̃enum, s̃fft) > C.

The claimed relationships hold with high probability over the choice of the
elements in L, assuming sufficiently many vectors. Here “sufficiently many” de-
pends on the input LWE parameters as well as parameters of the dual attack
algorithm. In particular, this magnitude depends on (a) Deq which is an expo-
nential factor coming from the LWE error, (b) Dround which is an exponential
factor coming from the rounding when modulus switching and (c) Dfpfn is a
polynomial factor controlling false positives and negatives. The following lemma
formally states the required magnitudes.

Lemma 2 (Adapted from Theorem 5.2 in [MAT22]). Let (n,m, q, χs, χe)
be LWE parameters and (β0, β1, kenum, kfft, klat, p) be parameters for Algorithm 2.
Let 0 < µ < 1 be the targeted failure probability. Let σe be the standard devia-
tion of χe, σs be the standard deviation of χs and α = σe/σs. Denote by ` the
expected Euclidean length of the vectors returned by Algorithm 1. Then, Algo-
rithm 2 succeeds with probability at least 1− µ for

C = φfp(µ) ·
√
Darg ·D and D ≥ Deq ·Dround ·Darg ·Dfpfn(µ)

where

φfp(µ), φfn(µ) = Φ−1

(
1− µ

2 ·Nenum (senum) · pkfft

)
, Φ−1

(
1− µ

2

)
Deq = exp

(
4

(
πτ

q

)2
)

for τ2 =
α−2 · ‖e‖2 + ‖slat‖2

m+ klat
`2,

Dround =

kfft−1∏
t=0
st 6=0

 sin
(
πst
p

)
πst
p



−2

for sfft = (s0, . . . , skfft−1),

Darg =
1

2
+ exp

(
−8

(
πτ

q

)2
)

and Dfpfn(µ) = (φfp(µ) + φfn(µ))
2
.

Remark 1. In [MAT22] two theorems are given establishing costs: Theorem 5.2
(essentially reproduced above), which is with respect to a fixed tuple (s, e) and
Theorem 5.9 which is with respect to distributions χs, χe and which will be
restated in Lemma 6.

Remark 2. In Line 4 the algorithm asks to enumerate candidates for s̃enum in
decreasing order of likelihood. A technique for achieving this enumeration is
discussed in [MAT22, Section 5.4]. Roughly, this is accomplished by enumerating
with increasing bounds on log-likelihoods for candidates, see [MAT22] for details.
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Algorithm 2: Dual Attack of [MAT22]

Input: LWE parameters (n,m, q, χs, χe), integers β0, β1 6 d, integers
kenum, kfft, klat such that kenum + kfft + klat = n, an integer p 6 q, an
integer D, a real number C, and an LWE pair (A,b) ∈ Zm×nq × Zmq .

Output: (Guess of) the first kenum coordinates of s or ⊥.
1 Decompose A as

[
Aenum Afft Alat

]
of respective dimensions m× kenum, m× kfft

and m× klat.

2 Compute the matrix B =

[
αIm 0
AT

lat qIklat

]
where α = σe

σs

3 Run Algorithm 1 on the basis B with parameters β0, β1, D to get a list L of D
short vectors.

4 for every value s̃enum in decreasing order of likelihood according to the secret
distribution do

5 Initialise a table T of dimensions p× p× · · · p︸ ︷︷ ︸
kfft times

6 for every short vector (αxj ,ylat) in L do
7 Compute yj,fft = xTj ·Afft.

8 Compute yj,enum = xTj ·Aenum.

9 Add exp
(

(xTj · b− yTj,enum · s̃enum) · 2iπ
q

)
to cell b p

q
yj,ffte of T .

10 Perform FFT on T
11 if for any s̃fft, the real part of 1

ψ(s̃fft)
T [s̃fft] is larger than C then

12 return s̃enum.

13 return ⊥

3 Quantum Guessing

In this section, we give a more rigorous analysis of the classical and quantum
guessing complexity for targets following a discrete Gaussian distribution. In
more detail, let X be a random variable on a finite or countable set. We consider
the problem of guessing the value taken by X by asking questions of the form
“Is X equal to x?” until the answer is yes. This problem arises when we must
find the secret senum in the dual attack by asking the question “is the secret
equal to s̃enum?”. Let N be the number of guesses used in the guessing strategy
that minimises E[N ]. It can be shown that the best strategy is to try values of
X in decreasing order of probability. Without loss of generality, we can identify
the possible values of X with N in such a way that p0 ≥ p1 ≥ p2 ≥ · · · where
pi = Pr[X = i]. The expected number of guesses of the optimal strategy is
therefore

G(X) =
∑
i

i · pi.

It is well-known that a lower bound on G(X) is given by the entropy of X. More
precisely, Massey showed in [Mas94] that

G(X) ≥ 1
4 · 2

H(X) + 1
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provided that H(X) ≥ 2 bits, where H denotes Shannon’s entropy (i.e. in base
2). On the other hand, the same work shows that it is not, in general, possible
to bound G(X) in terms of H(X) only. In Lemma 4, we heuristically show
that G(X) ≈ ( 2√

e
)
n · 2H(X) when X is distributed according to a n-dimensional

discrete Gaussian.
In this work, we are interested in the quantum complexity of guessing. Monta-

naro showed [Mon11] that the expected number of guesses in this case becomes,

Gqc(X) =
∑
i

√
i · pi

and that this is the best possible. However, [Mon11] only deals with the case
where the oracle (which answers the question “is X equal to x?”) always returns
the correct answer. Using Lemma 1, a variant of Grover search that can handle
two-sided errors, we extend this algorithm to deal with bounded error oracles.

Lemma 3. Let X be a random variable taking values in some (effectively de-
scribable) set E. Assume that there is an efficiently computable bijective function
σ : N→ E such that for all i 6 j, PrX [X = σ(i)] > PrX [X = σ(j)], i.e. σ orders
E by non-increasing probability according to X. Let (Ox)x∈E be a collection of
oracles such that for any x ∈ E, Ox(x) returns 1 with probability at least 9/10
and for all y 6= x, Ox(y) returns 0 with probability at least 9/10. Then there is
a quantum algorithm A, with quantum oracle access to σ and Ox such that for
all x ∈ E, Aσ,Ox() = x with constant probability, and

EX [T (X)] = O(Gqc(X)), EX [Q(X)] = O(Gqc(X)),

where T (x) is the running time complexity of Aσ,Ox(), and Q(x) its query com-
plexity.

Proof. See Appendix A.

We now study the guessing complexity of a n-dimensional discrete Gaussian,
its modular version and also relate these quantities to the entropy. The reason
why we also study the (non-modular) Gaussian is that it is not clear how to
order the elements by decreasing probability in the modular case, whereas it
is easy in the non-modular one. Therefore we study the discrete Gaussian first
and then show that its guessing complexity is an upper bound on the guessing
complexity of the modular Gaussian.

Lemma 4. Let n > 4. Then

1 6
ρσ(Zn)

(σ
√

2π)n
6 coth(π2σ2), G(DZn,σ) 6

2nρσ(Zn)

1− e−1/2σ2 ,

and

−n 8π2σ2e−2π2σ2

log(2) coth(π2σ2)
6 H(DZn,σ)−

1
2 + log(σ

√
2π)

log(2)
n 6 n log2(coth(π2σ2)).
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Furthermore, if σ > 4

√
2

27π2 ≈ 0.294 then

Gqc(DZn,σ) 6
7

6
·
(

3

2

)3n/4 √
ρσ(Zn)

(1− e−1/3σ2)3/2
.

Furthermore,

G(DZn,σ) 6
1

1− e−1/2σ2

(
2a(σ)√

e

)n
· 2H(DZn,σ),

Gqc(DZn,σ) 6
7

6
· 1

(1− e−1/3σ2)3/2

(
27a(σ)2

√
8e

)n/4
· 2H(DZn,σ)/2

where a(σ) = e8π2σ2e−2π2σ2 tanh(π2σ2) is plotted on Figure 1 and

a(σ) = 1 + 8π2σ2e−2π2σ2

+ o(σ2e−π
2σ2

), σ →∞.

Finally, for all n and σ,

G(DZnq ,σ) 6 2G(DZn,σ), Gqc(DZnq ,σ) 6
3

2
Gqc(DZn,σ).

Proof. See Appendix B.

In Lemma 4, we have identified upper bounds which we believe to be tight
up to polynomial factors in the dimension. It is not clear that the same method
can be used to obtain lower bounds. The bounds we obtained suggest (but do
not conclusively show) that the quantum guessing complexity is exponentially
smaller than the square root of the classical guessing complexity, for the discrete
Gaussian over Zn. Obtaining lower bounds on these quantities would confirm
that this is indeed the case. The situation is the same for the modular discrete
Gaussian since we also only obtained upper bounds for this distribution.

0.5 0.6 0.7 0.8 0.9 1

1

1.04

1.08

1.12

1.16

σ

value of a(σ)

Fig. 1. Value of the extra factor a(α) in Lemma 4.
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4 A Quantum Algorithm for Mean Estimation

We provide a quantum algorithm which estimates the mean value of

cos(2π(〈wi,b〉)/q)

used in the dual attack. The idea is inspired by [ACKS20, Theorem 47] and can
be seen as a special case of quantum speedup of Monte Carlo methods [Mon15].

Definition 2 (QRACM Oracle). Let N be a positive integer and W be a list
of N vectors w0, . . . ,wN−1 ∈ Zn. The QRACM oracle for W is

OW : |j〉 |0〉 7→ |j〉 |wj〉 .

Definition 3 (Positive Controlled Rotation Oracle). The positive con-
trolled rotation oracle for any a ∈ R is

OCR+ : |a〉 |0〉 →

{
|a〉 (
√
a |1〉+

√
1− a |0〉), if a ≥ 0

|a〉 |0〉 , otherwise,

which can be implemented up to negligible error by poly(log n) quantum elemen-
tary gates.

Definition 4 (Cosine Inner Product Oracle). The cosine inner product
oracle for any b,w ∈ Zn is

Ocos : |w〉 |b〉 |0〉 → |w〉 |b〉 |cos(2π〈w,b〉/q)〉 ,

which can be implemented by poly(log n) quantum elementary gates.

Theorem 5. Let N be a positive integer and W be a list of N vectors ∈ Zn:
w0, . . . ,wN−1. Let fW (b) = 1

N

∑N−1
i=0 cos(2π(〈wi,b〉)/q), where b ∈ Znq . For

any ε, δ > 0, there exists a quantum algorithm A that given b ∈ Znq and or-

acle access to OW as defined in Definition 2, outputs AOW (b) which satisfies
|AOW (b)−fW (b)| ≤ ε with probability 1−δ. The algorithm makes O(ε−1 · log 1

δ )
queries to OW , and requires ε−1 · log 1

δ · poly(log n) elementary quantum gates.

Proof. Prepare the state 1√
N

N−1∑
j=0

|j〉 |0〉 |b〉 |0〉 |0〉, and then apply OW on the

first and second registers (storing wj there), apply Ocos on the second, third,
fourth registers (storing cos(2π〈w,b〉/q) there), and apply OCR+ on the fourth
and fifth registers. Writing γj := cos(2π〈wj ,b〉/q) and letting sums run over
j ∈ [0, N − 1], we have

1√
N

∑
γj≥0

|j〉 |wj〉 |b〉 |γj〉
(√
γj |1〉+

√
1− γj |0〉

)
+

1√
N

∑
γj<0

|j〉 |wj〉 |b〉 |γj〉 |0〉 .
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By rearranging, we obtain

1√
N

∑
γj≥0

√
γj |j〉 |wj〉 |b〉 |γj〉 |1〉

+
1√
N

( ∑
γj≥0

√
1− γj |j〉 |wj〉 |b〉 |γj〉+

∑
γj<0

|j〉 |wj〉 |b〉 |γj〉
)
|0〉

=
√
a+ |φ1〉 |1〉+

√
1− a+ |φ0〉 |0〉 ,

where a+ =
∑
γj≥0

γj
N . By applying Theorem 3, we can estimate a+ with addi-

tive error ε/2 by using O(ε−1) applications of OW , O†W , and ε−1 · poly(log n)
elementary quantum gates. Following the same strategy, we can also estimate
a− =

∑
γj<0

γj
N with same additive error and by using same amount of queries

and quantum elementary gates. Therefore, we can estimate

a+ + a− ± ε =
∑
j

cos(2π〈wj ,b〉/q)
N

.

By repeating the procedure Θ(log 1
δ ) times and taking the median among them,

we finish the proof. ut

5 Quantum Augmented Dual Attack

We now modify the algorithm of [MAT22] to obtain a quantum speedup. At a
high-level, Algorithm 3 works in the same way. First, we run a sampling algo-
rithm to obtain short vectors in the dual. Here, we can take advantage of the
existing quantum speedups for sieving [LMv13, Laa15, AGPS20, CL21].

Next, we can obtain an (at least) quadratic speedup on the search for senum.
The original algorithm enumerates them one by one until the correct one is
found. By carefully choosing the order in which elements are enumerated, one
can show that the expected complexity of this search is related to the guessing
complexity (see Section 3). In the quantum setting, we can apply a variant of
Grover’s search algorithm to obtain a speed-up on this search. The complexity
of this search is now related to the quantum guessing complexity which is not
necessarily related to the (classical) guessing complexity. Indeed, this quantity
is always smaller than the square root of the classical one and our calculations
suggest that it is strictly smaller than the square root for the discrete Gaussian.
In our case, the quantum search will call an oracle that is probabilistic so care
must be taken. We use the improved version of Grover’s search in Theorem 4
that can handle bounded-error inputs.

We now move to the most interesting part of our quantum speedup. In their
algorithm [MAT22], the authors first fill a large array T, perform an FFT and
then look at all the entries to check if one is larger than a given threshold C.
While it is tempting to use the quantum Fourier transform (QFT), which runs
in polynomial time, we do not know how to implement the second step (checking
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each entry) efficiently. Indeed, the QFT works on the amplitudes and, therefore,
simply extracting a coefficient of the result is a nontrivial task (see Section 7).
We work around this issue by observing two points:

1. The input array of the FFT is relatively sparse: it has D nonzero entries
(out of pkfft).

2. We can obtain a quadratic speedup on the task of evaluating a sum of cosine
(Theorem 5).

Since every entry of the output of the FFT is a sum of cosine that we can evaluate
efficiently, and since the sum only has D terms, we can evaluate each coefficient
in reasonable time. By turning this algorithm into a quantum oracle, we can use
Grover’s search to obtain a further quadratic speedup on the inner part of the
algorithm that looks for an entry above the threshold C.

A crucial detail of this algorithm is our use of a QRACM. Indeed, in order
to apply Theorem 5 and obtain a quadratic speedup when evaluating the sums,
we need a quantum oracle access to the short vectors stored in L. Since those
vectors are obtained by a classical algorithm, we store them in a QRACM to
build this oracle.2

5.1 Correspondance between the classical and quantum algorithms

Before delving into the analysis of Algorithm 3, we start by explaining the major
steps of the algorithm. This is best done by giving the correspondence between
our algorithm, and the original algorithm from [MAT22] (Algorithm 2).

– Steps 1-3 are exactly the same for the two algorithms.

– Steps 4-6 create and initialise the QRACM that contains all the short dual
vectors. This step is not needed in the original algorithm since the vectors
are simply stored in an array.

– Step 7 instantiates the quantum estimation algorithm with certain parame-
ters. This step is only here for readability.

– Steps 8-24 roughly correspond to Steps 5-12 of Algorithm 2. Specifically,
our algorithm will perform a quantum search using those steps as an oracle,
whereas Algorithm 2 uses those steps as a body of a search loop. The result
is the same in the sense that our oracle O essentially produces the same
result as the body of the loop in Algorithm 2. The details on how this result
is obtained are different however:

• Step 10 is used to compute the phase of the normalisation factor in the
FFT sum. This factor is needed at Step 11 of Algorithm 2 but we need
to put it in the search oracle because of the way the search algorithm
works.

2 Note that quantum augmented sieving procedures still output classical lists of short
vectors.
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Algorithm 3: Quantum Augmented Dual Attack

Input: LWE parameters (n,m, q, χs, χe), integers β0, β1 6 d, integers
kenum, kfft, klat such that kenum + kfft + klat = n, an integer p 6 q, an
integer D, a real number C, a coefficient η ∈ [0, 1] and an LWE pair
(A,b) ∈ Zm×nq × Zmq .

Output: (Guess of) the first kenum coordinates of s or ⊥.
1 Decompose A as

[
Aenum Afft Alat

]
of respective dimensions m× kenum, m× kfft

and m× klat.

2 Compute the matrix B =

[
qIklat AT

lat

0 αIm

]
where α = σe

σs

3 Run Algorithm 1 on the basis B with parameters β0, β1, D to get a list L of D
short vectors.

4 Create a QRACM OW
5 for every short vector (α · xj ,yj,lat) in L do
6 Add vector xj to OW at index j

7 Use Theorem 5 to create an algorithm A with δ = 1
10

, ε = C
D
η and “q”=p

8 create oracle O(s̃enum):

9 create oracle Ô(s̃fft):

10 Compute θ such that ψ(s̃fft) = e
− 2iπ

p
θ

(recall that |ψ(s̃fft)| = 1)
11 create oracle O′W (j):
12 Get xj from OW at index j

13 Compute yj,fft = xTj ·Afft

14 Compute yj,enum = xTj ·Aenum

15 return vector
(
p
q
· yj,enum,

⌊
p
q
· yj,fft

⌉
, θ − p

q
· xTj · b

)
16 if AO

′
W ((s̃enum, s̃fft, 1)) > (1 + η) · C

D
then

17 return 1

18 else
19 return 0

20 Use Theorem 4 to find, with probability 9
10

, i such that Ô(i) = 1 or let
i = ⊥ if none exists

21 if i 6= ⊥ then
22 return 1
23 else
24 return 0

25 create oracle Õ(i):

26 Compute the ith most probable s̃enum according to the distribution χkenums

27 return O(s̃enum)

28 Find, with probability 9
10

, s̃enum such that O(s̃enum) = 1 using Lemma 3 with

oracle Õ, or let s̃enum = ⊥ if none is found
29 return s̃enum.
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• Steps 11-15 roughly correspond to Steps-6-10. As explained at the begin-
ning of Section 5 and also in Section 7, our quantum algorithm does not
perform the FFT in the same way as the original algorithm. Contrary
to the classical algorithm where all the output coefficients are computed
“at once” by a single FFT computation, our algorithm computes each
individual output FFT coefficient on demand and check whether it is
above the threshold (this is what Ô does). To do so, given a specified
output coefficient s̃fft, we define an oracle O′W which (essentially) re-
turns the (input) coefficients of the FFT and use Theorem 3 to estimate
the output coefficient. We note that the steps 12-14 could have been in
the oracle OW instead, this would be completely equivalent (and save a
small polynomial factor in the overall complexity). Step 16 corresponds
to Step 11 of Algorithm 2. The difference between the thresholds comes
from the way Theorem 3 works (C vs C/D) and also because of the
two-sided errors made by the oracle (factor η). See Theorem 6 for more
details.

– Steps 25-28 correspond to Step 5 of Algorithm 2. Specifically, the classical
algorithm performs a sequential search by decreasing probability of s̃enum.
Our algorithm uses Lemma 3 to obtain a quantum speedup on this search
which requires to create an oracle.

5.2 Analysis of the Quantum Augmented Dual Attack

We now analyse the quantum augmented dual attack given in Algorithm 3. In-
formally, we first establish that with constant probability the algorithm outputs
a guess for senum where the corresponding FFT scoring function’s score is above
the chosen threshold C. Below, we will instantiate this theorem with appropri-
ate choices of thresholds C (and number of samples D). Note that like [MAT22,
Thm. 5.2], the following theorem is with respect to a fixed tuple (s, e).

Theorem 6. Let (n,m, q, χs, χe) be LWE parameters, let

(β0, β1, kenum, kfft, klat, p,D,C,A,b, η)

be the input of Algorithm 3. Let L be the list of vectors obtained at Line 3 of
Algorithm 3. For any x > 0, let SLx = { s̃enum : ∃s̃fft, FL(s̃enum, s̃fft) > x }. With
probability at least 9/10, the algorithm returns a value in SLC∪{⊥}. Furthermore,
if SL(1+2η)C 6= ∅ then the algorithm returns a value in SLC with probability at least

9/10.

Proof. See Appendix C.

Next, we establish that the parameter choices of C,D in Lemma 2 for Al-
gorithm 2 allow us to also instantiate Algorithm 3 such that it succeeds with a
comparable probability.
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Lemma 5. Let (n,m, q, χs, χe) be LWE parameters, let (β0, β1, kenum, kfft, klat, p,
C,D, η) be a tuple of parameters for Algorithm 3, and let 0 < ν < 1. Fix
(s, e) ∈ Znq × Zmq . By choosing the parameters C,D according to Lemma 2 with

µ = ν/2, and η 6
√

2πµ
8φfp(µ) , Algorithm 3 returns senum with probability at least

1− ν.

Proof. See Appendix C.

Next, we state the analogous result as [MAT22, Thm. 5.9] for our setting,
i.e. express the success probability with respect to χs, χe rather than a fixed
tuple (s, e). The only difference compared to [MAT22, Thm. 5.9] is that we re-
place the Shannon entropy H(X) by the guessing complexity G(X), as discussed
in Section 3.

Lemma 6. Let (n,m, q, χs, χe) be LWE parameters, (β0, β1, kenum, kfft, klat, p,

D,C, η) be parameters for Algorithm 3. Let 0 < ν < 1, µ = ν/2, η 6
√

2πµ
8φfp(µ) .

Denote by ` the expected Euclidean length of the vectors returned by Algorithm 1.
Let G(X) as in Lemma 4. Let D ≥ Deq · Dround · Darg · Dfpfn(µ) and C =

φ̃fp(µ)
√
Darg ·D with

Deq = exp

(
4

(
πσs`

q

)2
)
, Dround =

∏
s̄6=0

 sin
(
πs̄
p

)
πs̄
p

−2kfftχs(s̄)

Darg =
1

2
exp

(
2

(
χe(0) + e

− 8π2α−2`2

q2 (m+klat)

)m
·
(
χs(0) + e

− 8π2`2

q2(m+klat)

)klat)
≈ 1

2

Dfpfn(µ) = (φfp(µ) + φfn(µ))
2 · µ

φfp(µ) = Φ−1

(
1− µ

2 ·G (χs) · pkfft

)
and φ̃fn(µ) = Φ−1

(
1− µ

2

)
.

Then, with probability at least 1− ν the algorithm returns senum.

The proof is exactly the same as in [MAT22, Theorem 5.9] except that we replace
the inequality

E[Nenum(senum)] 6 2kenumH(χs)

by
E[Nenum(senum)] = G(χkenums ).

The reason for this replacement is that the first inequality does not appear to
be justified in [MAT22] and does not hold in general. See Section 3 for more
details. We can now state our main theorem which gives the complexity of our
quantum augmented dual attack.

Theorem 7. Let (n,m, q, χs, χs) be LWE parameters, (β0, β1, kenum, kfft, klat, p)
be a partial tuple of parameters for Algorithm 3, and let 0 < ν < 1. Let
TBKZ(d, β0) denote the cost of running BKZ-β0 in dimension d, let Tsieve(β1)
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be the cost of sieving in dimension β1 and let Gqc(X) be the quantum guessing
complexity. Choosing the parameters C,D according to Lemma 6, Algorithm 3
outputs senum with probability at least 1− ν in expected time

O

(⌈
D

(
√

4/3)β1+o(β1)

⌉
· (TBKZ(d, β0) + Tsieve(β1)) +Gqc(χkenums ) · pkfft/2 ·

√
D

)
up to polynomial factors.

Proof. The correctness follows directly from Lemma 6. We now analyse the com-
plexity. In this proof, we will neglect all polynomials factors in n and m.

First, the cost of Step 3 is that of Algorithm 1, which is⌈
D

Nsieve(β1)

⌉
· (TBKZ(d, β0) + Tsieve(β1)) (1)

and Nsieve(β1) = (
√

4/3)β1+o(β1) (this was justified in [GJ21]). Next, the cost
of creating (Step 4) and filling (Steps 5-the QRACM is D (up to polynomial
factors), by the assumption of the QRACM model (see Section 2.4), which is
negligible compared to (1). The cost of Step 7 is zero (all the cost of the algorithm
is when A is run), this step is just for the readability of the algorithm.

We now analyse the complexity of each call to the oracle O. On input s̃enum,
the algorithm starts by creating the oracle Ô. This creation cost is negligible,
all the cost is incurred when the oracle is run. We need to analyse the cost of
each call to Ô. The cost of computing θ (Step 10) is negligible (polynomial).
The creation of oracle O′W is also negligible and each call to O′W takes time
polynomial since in our model, getting an entry from the QRACM OW is O(1).
Therefore, the cost of each call to Ô is, up to polynomial factors, the cost of
running AO′W . By Theorem 5, this algorithm makes O(ε−1 log 1

δ ) queries to O′W
(which runs in polynomial time) and takes time O(ε−1 log( 1

δ )poly(log n)). Recall

that by Step 7, we have δ = 1
10 and ε = C

Dn. Furthermore, recall that we chose
the parameter C according to Lemma 2, that is

C = φfp(µ) ·
√
Darg ·D, Darg =

1

2
+ exp

(
−8

(
πτ

q

)2
)

It is immediate that Darg > 1/2 by definition, and φfp(µ) is a constant factor (it

only depends µ = ν
2 which is fixed). Therefore, each call to Ô takes time

O

(
D

C
poly(log n)

)
= O

(√
Dpoly(log n)

)
. (2)

We can now finish the analysis of the cost of running O. The cost of the search
for an FFT coefficient above the threshold (Step 20) is given by Theorem 4: it
makes O(

√
M) calls to Ô where M is the size of the search space, which is Zkfftp .

Hence, the total cost of each call to O is

O(
√
pkfft) = O

(
pkfft/2

√
Dpoly(log n)

)
(3)
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It remains to analyse the final cost: creating the oracle Õ takes polynomial
time. The cost of each call to the oracle is (3) plus a polynomial cost. Indeed,
finding the ith most probably vector according to χkenums can easily be done in
polynomial time for all reasonable choices of χs such as the discrete Gaussian.
Finally, the final search (Step 28), given by Lemma 3, takes an expected time
Gqc(χkenum

s ) and makes an expected Gqc(χkenums ) calls to O. Therefore the overall
cost of this step is

O(Gqc(χkenum
s ) · (3)) = O

(√
Dpkfft/2Gqc(χkenums )poly(log n)

)
. (4)

To conclude the proof, just note that the total cost of the algorith, up to
polynomial factors is (1) + (4). ut

6 Application

In this section we give rough estimates for the impact of our algorithm on the cost
of solving lattice parameters from the literature. In particular, we consider NIST
PQC Round 3 candidate Saber [DKR+20] and NIST PQC to-be-standardised
candidate Kyber [SAB+20] and some TFHE parameters [CGGI20].3 Such a mea-
surement is complicated by two major obstacles.

– The cost given in Theorem 7 is the sum of two costs: lattice reduction and a
quantum search. Roughly speaking, lowering the first summand increases the
second and vice versa. In other words, the final cost is obtained by balancing
the two summands. For the first summand cost estimates in various cost
models are available. In particular, estimates in quantum circuit models are
available [AGPS20]. Thus, to give precise cost estimates we require quantum
circuit costs for the oracles in Algorithm 3. It is clear that such costs would
be substantial when compared with e.g. [AGPS20]. In the latter, the costed
circuit is essentially an XOR followed by an adder. Here, we have to imple-
ment matrix vector products mod q which will cost significantly more. We
consider designing and costing quantum circuits for elementary operations
such as linear algebra mod q beyond the scope of this paper. For this reason,
we cost our algorithm in the quantum query model only, both for the oracle
inside lattice reduction and our quantum search. In this model, all oracle
queries are assigned unit cost. As just outlined, this is unrealistic but gives
a “best case” estimate from the perspective of an attacker. Similarly, in the
same spirit as the “Core-SVP” model, we cost algorithms by simply drop-
ping the O() around cost estimates, which means our estimates may over-
or underestimate the true cost; however, all evidence so far points towards
underestimating the costs.

– A second major obstacle is that our algorithm critically relies on QRACM, a
possibly unrealistic resource as already pointed out in e.g. [AGPS20]. Thus,

3 These schemes do not use discrete Gaussians as secret distributions. However, we
simply ignore this difference here.

23



even armed with a quantum circuit for our oracle, we would have to assume
a QRACM oracle (for which we, following previous work [AGPS20], assign
unit cost for querying). This would not permit us to draw conclusions about
realistic costs of solving instances of lattice problems.

Table 2. Dual attack cost estimates. All costs are logarithms to base two.

Scheme CC CN C0 GE19 QN Q0 This work This work
(QN) (Q0)

Kyber 512 139.2 134.4 115.4 139.5 124.4 102.7 113.3 95.0
Kyber 768 196.1 190.6 173.7 191.9 175.3 154.6 158.6 141.5
Kyber 1024 262.4 256.1 241.8 252.0 234.5 215.0 211.6 195.7
LightSaber 138.5 133.1 113.7 138.4 122.7 101.1 113.0 94.4
Saber 201.4 195.9 179.2 196.2 179.9 159.4 164.6 147.1
FireSaber 263.5 258.2 243.8 253.1 235.9 216.7 214.7 198.6
TFHE630 118.2 113.3 93.0 120.2 105.2 83.0 95.2 76.6
TFHE630 122.0 117.2 95.4 123.9 108.5 84.8 101.3 80.2

We give the source code and the results of the comparison in Appendix D and
Table 2. In our table, for each set of parameters, we give the following cost
estimates.

CC Classical cost estimates in a classical circuit model [AGPS20, SAB+20,
MAT22] for Algorithm 2 using [BDGL16] as the sieving oracle. We derive
these estimates by implementing the cost estimates from [MAT22], those
tagged “asymptotic” cf. [MAB+22].4 This is the most detailed cost estimate
available in the literature. However, we caution that these estimates, too,
ignore the cost of memory access and thus may significantly underestimate
the true cost. That is, while RAM access is expected to be considerably
cheaper than QRACM it is still not “free”, cf. [MAB+22]. This cost model
is called “list decoding-classical” in [AGPS20]. We naturally do not cost our
algorithm in this cost model.

CN Classical cost estimates in a query model for Algorithm 2 using [BDGL16]
as the sieving oracle. We include this cost model for completeness and for
interpreting our quantum query cost model estimates. This cost model is
called “list decoding-naive classical” in [AGPS20]. We naturally do not cost
our algorithm in this cost model.

C0 Classical cost estimates in the “Core-SVP” cost model [ADPS16] for Algo-
rithm 2 using [BDGL16] as the sieving oracle. This model assumes a single
SVP call suffices to reduce a lattice. It furthermore assumes that all lower-
order terms in the exponent are zero. This is to enable comparison with
“Q0” below.

4 This explains the minor differences in numerical results compared to [MAT22]. In
particular, we have an additional exponential factor for the guessing complexity,
cf. Lemma 4.
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GE19 Quantum costs in a circuit model based on [GE19] for Algorithm 2 us-
ing [BDGL16]. This is the most detailed quantum cost model available in
the literature but we recall that here we still assume unit cost QRACM. This
cost model is called “list decoding-ge19” in [AGPS20]. We do not cost our
algorithm in this cost model due to the lack of a quantum circuit design for
our oracles.5

QN Quantum costs in the quantum query model for Algorithm 2 using the
quantum version of [BDGL16] as the sieving oracle; all other steps are clas-
sical. This cost model is called “list decoding-naive quantum” in [AGPS20].

Q0 Quantum cost estimates in the “Core-SVP” cost model [ADPS16] for Algo-
rithm 2 using [CL21] as the sieving oracle; all other steps are classical. This
is the asymptotically fastest quantum sieving algorithm but no estimates
exist in the literature for lower-order terms; hence, we only consider it in the
Core-SVP model.

This work (QN) The cost of Algorithm 3 in the quantum query model as-
suming the quantum version [Laa15, AGPS20] of [BDGL16]. Thus, the most
natural comparison is to the column labelled “CN”.

This work (Q0) The cost of Algorithm 3 in the Core-SVP model assuming [CL21].
Thus, the most natural comparison is to the column labelled “C0”.

On the one hand, comparing the column labelled “QN” and the last column
shows that our algorithm offers a significant improvement of between 10 and
20 “bits” in complexity in the query model. On the other hand, even in this –
arguably unrealistic – model our improvements do not lower the cost of solving
below a square-root of the targeted security level. That is, to force a revision
of lattice parameters, a quantum algorithm would have to obtain a quadratic
speed-up over the classical cost given as “CN”.

7 Open Problems

The crux of our quantum improvement is Section 5. Here we formalise the prob-
lem that this algorithm solves and a promise variant. We introduce some minor
notation first. Given a finite group G = Znq and a list

L = {(u0, w0), . . . , (uk−1, wk−1)}

where the uj are distinct, we let fL : G → C be defined by fL(uj) = wj

and fL(u) = 0 for all u ∈ G \ {u0, . . . ,uk−1 }. Recall that f̂L denotes the
Fourier transform of fL. We now introduce two problems, which we call “input
sparse FFT” to avoid confusion with “sparse FFT” where the sparseness refers
to the number of nonzero Fourier coefficient, not the number of nonzero inputs
coefficients.

5 Note that the quantum costs in this cost model may be higher than classical costs
because the crossover between classical and quantum computing under these cost
models is in higher dimensions.
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INPUT-SPARSE-FFT-THRESHOLD:

– input: G = Znq a finite group,
– input: δ > 0 a threshold,
– input: L = {(u0, w0), . . . , (uk−1, wk−1)} where the uj are distinct,

– output: decide whether ∃u ∈ G such that <(f̂L(u)) > δ.

PROMISE-INPUT-SPARSE-FFT-THRESHOLD:

– input: G = Znq a finite group,
– input: δ+ > δ− > 0 two thresholds,
– input: fL : G→ C an efficiently computable function,
– input: L = {(u0, w0), . . . , (uk−1, wk−1)} where the uj are distinct,

– promise: <(f̂L(u)) /∈ [δ−, δ+] for all u ∈ G,

– output: decide whether ∃u ∈ G such that <(f̂L(u)) > δ+.

Remark 3. To map this formulation back to our task consider Line 9 of Algo-
rithm 2. The uj correspond to bpq · yj,ffte and wj := fL(uj) is the sum over

all exp
(

(xTj · b− yTj,enum · s̃enum) · 2iπ
q

)
that are stored in the cell bpqyj,ffte of

T , i.e. wj = T
[
bpqyj,ffte

]
= fL(uj). We then seek to decide if there is some

u = s̃fft ∈ G = Zkfftp s.t. <(f̂L(u)) > δ = C, i.e. the entry in the FFT’d table T .

Our quantum (with QRACM) algorithm from Section 5 solves PROMISE-
INPUT-SPARSE-FFT-THRESHOLD as follows. For every u ∈ G, it computes an ap-

proximation of <(f̂L(u)) with error at most 1
2 (δ+− δ−) and then compares it to

δ+. By the promise, this suffices to solve the problem. We then leverage two facts
to obtain a quantum speedup: the search over u ∈ G can be done using Grover’s
algorithm, and the approximation is done by amplitude estimation (Theorem 5).
The running time of our algorithm is

√
|G|/(δ+ − δ−), and it outputs a correct

index with constant probability. In the dual algorithm, it turns out that the
interesting set of parameters for this algorithm is δ+− δ− = O(k−1/2), therefore
our algorithm has running time roughly O(

√
k|G|) which is always better than

O(|G|) and potentially much better if k is much smaller than |G|.
In the classical case, to the best of our knowledge, the best algorithm is

to perform a complete FFT on the |G| coefficients, which therefore takes time
O(|G| log |G|). While there are algorithms for “sparse” FFT (see e.g. [HIKP12]),
it is not clear that their approximation guarantees would be sufficient. Indeed,

the sparseness in such algorithm refers to the number of output coefficients f̂L(u)
which is assumed small. Since we expect all the output coefficients of our FFT
to be small and the threshold δ to be exponentially close to 0, it is unlikely that
such an approximation would be sufficient.

In the quantum case, the situation depends on the availability of quantum
memories (QRACM). Our algorithm relies on the use of a QRACM in a crucial
way. In fact, without a QRACM, we are not aware of any algorithm better than
the classical one. This is surprising in light of the fact that QFT can be done in
polynomial time: we now explain why this fact alone is not sufficient.
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Let L = {(u0, w0), . . . , (uk−1, wk−1)} be a list. In order to apply the QFT,
we would need to create the superposition

|ψ〉 =
1

Z

∑
j

wj |uj〉 (5)

where Z is a normalisation factor. We could then perform a QFT on |ψ〉 to
obtain

|ψ̂〉 =
1

Z

∑
u∈G

f̂L(u) |u〉 .

We now would like to decide if there is some u ∈ G such that f̂L(u) > δ.
Unfortunately, there are two problems with this approach:

1. it is not clear how to create the superposition in Equation (5) efficiently
without a QRACM,

2. it is not clear that we can efficiently detect whether there is an amplitude in
front of some |u〉 which is above the threshold.

The first point is not a problem in our setting since we consider QRACM as
part of our model of computation. Indeed, by storing the wj in a QRACM
and applying some elementary operations, one can produce such a state with
high probability (see e.g. [MKF19, Theorem 1]). Regarding the second point, a

possible strategy would be to measure |ψ̂〉 and obtain one u. By repeating this
algorithm a very large number of times, we can approximate the probability of
the most likely u and therefore recover whether there is some sufficiently large

f̂L(u). Indeed, this strategy recovers u. In order to approximate this quantity
within ε, we would need 1/ε2 samples. Since ε = 1/

√
k in the dual attack, such

an algorithm would take time at least Ω(k). It is not clear if there is a better
strategy that merely decides on the presence of some u without recovering it.

In conclusion, regarding these problems, the complexity of solving INPUT-
SPARSE-FFT-THRESHOLD and PROMISE-INPUT-SPARSE-FFT-THRESHOLD is unclear in
the quantum setting. We have shown how to solve the promise problem in
O(
√
|G|/(δ+ − δ−)) with QRACM, and Ω(k) is a clear lower bound on the com-

plexity since the algorithm needs to read the input in any case. Of particular
relevance in the context of dual attacks are the following two questions regarding
PROMISE-INPUT-SPARSE-FFT-THRESHOLD:

– When (δ+ − δ−)
−1

= Θ(
√
k), is the quantum complexity O(

√
k|G|) optimal

with QRACM?

– When (δ+ − δ−)
−1

= Θ(
√
k), can we achieve any quantum complexity better

than O(|G| log |G|) without QRACM?

Another open problem is to prove a matching lower bound for the (classical
and quantum) guessing complexity of a discrete Gaussian. See Lemma 4 and the
remark below for more details.

27



Acknowledgements
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Appendix

A Proof of Lemma 3

We intuitively want to call the algorithm from Lemma 1 directly but there is
a small issue. Indeed, with small probability, the algorithm might not find the
marked element and run in time

√
|E| which will make average execution time

bigger than what we want. Instead, we search in a subset of the array that we
double at each failure. This ensures that the “worst-case” cost remains under
control.

Algorithm 4: Quantum guessing algorithm with bounded error oracle

Input: size N of E, order σ and bounded-error oracle O
Output: (guess for) i such that O(i) = 1, or ⊥

1 create oracle O′(i):
2 return O(σ(i))
3 n← 1
4 while n < 2N do
5 Use Lemma 1 to find i ∈ [1,min(n,N)] such that O′(i) = 1, or i = ⊥
6 if i 6= ⊥ then
7 Call 1 + 2 log(n) times O′(i) and let b ∈ {0, 1} be the majority answer
8 if b = 1 then
9 return i

10 n← 2n

11 return ⊥

Consider Algorithm 4, which we call with σ and Ox for some fixed x ∈ E.
Note that σ is surjective so there exists i such that σ(i) = x and then O′(i) = 1
with probability at least 9/10. Since σ is injective, σ(j) 6= x for j 6= i so O′(j) = 0
with probability at least 9/10. Therefore, O′ computes, with bounded error at
most 1/10, the function fx(x) = 1 and fx(y) = 0 for all y 6= x. Let ix be such
that σ(ix) = x, and px such that 2px−1 < ix 6 2px .

Let k < px and let us analyse the kth iteration of the loop. During the
iteration, n = 2k−1 so n < ix and therefore, fx(j) = 0 for all j ∈ [1, n]. It follows
that Lemma 1 will return ⊥ with probability at least 9/10 and then the loop
will continue to its next iteration. With probability at most 1/10, it will return
a (wrong) index i 6= ⊥. But fx(i) = 0 so each call to O′(i) will return 0 with
probability at least 9/10. Therefore with probability at most 10−k, a majority of
the 1 + 2k calls will return 0 and the loop with continue. In summary, the loop
will return a wrong index only with probability at most 10−k−1. In all cases, the
cost of this iteration is O(

√
2k) queries/time for the search, plus an extra 1 + 2k

calls to the oracle.
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It follows that with probability at most
∑px−1
k=1 10−k−1 6 1/9, the algorithm

will stop during on the first px iterations and return a wrong answer. Hence,
with probability at least 8/9, the algorithm reaches the pthx iterations.

Now assume that the algorithm has reached the pthx iteration. Let px 6 k 6
1+log2(N) and let us analyse the kth iteration of the loop. During the iteration,
n = 2k−1 so ix ∈ [1,min(n,N)] and fx(j) = 0 for all j 6= ix. It follows that
Lemma 1 will return ix with probability at least 9/10. Since fx(ix) = 1, each call
to O′(ix) will return 1 with probability at least 9/10. Therefore with probability
at least 1 − 10−k > 9/10, a majority of the 1 + 2k calls will return 1 and the
algorithm will return ix. In summary, with probability at least (9/10)2 > 4/5,
the algorithm stops and return ix during the kth iteration. Conversely, with
probability at most 1/5, the algorithm will either return a wrong answer or
continue to the next iteration.

This analysis shows that the algorithm is correct since already with probabil-
ity at least 8/9 the algorithm will reach pthx iteration and then with probability at
least 4/5 it will return ix during that iteration, so it returns ix with probability
at least 32/45.

We now analyse the complexity: the cost of the kth iteration is the cost of
the search and (maybe) the 1 + 2k calls to the oracle, which overall is

O(
√

2k−1 + 1 + 2k) = O(
√

2k)

queries/time. To simplify the analysis, we can always assume that the first px−1
iterations are done in all cases (this is clearly an upper bound in the case where
the algorithm stops too early). We can also assume that the while loop does
not stop at n < 2N but instead goes on forever (again this is clearly an upper
bound on the real cost). For each k > px, the kth iteration only occurs with
probability at most 5−(k−px+1) by the analysis above. Therefore, the expected
running time/number of queries of the algorithm is bounded by

O

px−1∑
k=1

√
2k +

∞∑
k=px

5−(k−px+1)
√

2k

 = O

(
√

2px +
√

2px
∞∑
k=0

(
√

2/5)k

)

= O
(√

2px
)

= O
(√
ix
)
.

Now recall that this analysis holds when the algorithm is called with an
oracle Ox for a given x. We now let x be drawn from X. Then every x is chosen
with probability PrX [X = x] and, when this is the case, the returned index is
ix = σ−1(x). Hence, the expected time/query complexity of the algorithm when
given OX is

O

(∑
x∈E

Pr
X

[X = x]
√
σ−1(x)

)
= O

( ∞∑
i=0

Pr
X

[X = σ(i)]
√
i

)
= O(Gqc(X)).

since we assumed that σ orders the elements by decreasing probability. ut
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B Proof of Lemma 4

For reasons that will be clear in the proof of the bounds, we introduce for all
s > 0 and n ∈ N,

gn,s(σ) :=

∞∑
`=0

ρσ(
√
`)

ρσ(Zn)
·N(`)s

where N(`) := Nn(`) =
∣∣∣{x ∈ Zn : ‖x‖2 6 ` }

∣∣∣. Note that N(−1) = 0. We also

bound ρσ(Zn) by using the Poisson summation formula as follows:

ρσ(Zn) = (ρσ(Z))
n

=
(
σ
√

2πρ1/2πσ(Z)
)n

> (σ
√

2π)
n

(6)

and

ρ1/2πσ(Z) = 1 + 2

∞∑
n=1

e−2π2σ2n2

6 1 + 2

∞∑
n=1

e−2π2σ2n = coth(π2σ2). (7)

Also recall [Ban93] that
ρs(L) 6 sn · ρ(L) (8)

for any s > 1 and lattice L ⊂ Rn.

B.1 Generic bounds on gn,k(σ) for k integer

We start by obtaining a general relationship between the gn,k and gn,1 where

k is an integer. A simple counting argument shows that N(`)
k 6 Nkn(k`). In-

deed, the map φ : (x1, . . . ,xk) ∈ (Zn)k →
(
x1, · · · ,xk

)
∈ Zkn is injective and

if ‖x1‖2 , . . . , ‖xk‖2 6 ` then ‖φ(x1, . . . ,xk)‖2 = ‖x1‖2 + · · · + ‖xk‖2 6 k`.
Therefore,

gn,k(σ) 6
∞∑
`=0

Nkn(k`)
e−

`
2σ2

ρσ(Zn)
=

1

ρσ(Zn)
H0
kn(e−1/2σ2

)

where

Hi
n(x) =

∞∑
`=0

Nn(k`+ i)x`.

Furthermore,

H0
n(xk) + xH1

n(xk) + · · ·+ xk−1Hk−1
n (xk) =

∞∑
`=0

Nn(`) · x`.

Since Nn(`) is increasing with `, we immediately have that H0
n(x) 6 Hi

n(x) for
all i so

H0
n(x) 6

1

1 + x1/k + · · ·+ x(k−1)/k

∞∑
`=0

Nn(`) · k
√
x
`
.
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In particular,

gn,k(σ) 6
1

ρσ(Zn)

1∑k−1
i=0 e

−i/2kσ2

∞∑
`=0

Nkn(`) · e−`/2kσ
2

=
ρ√kσ(Zkn)

ρσ(Zn)

1∑k−1
i=0 e

−i/2kσ2

∞∑
`=0

Nkn(`)

ρ√kσ(Zkn)
· e−`/2(

√
kσ)2

=
ρ√kσ(Zkn)

ρσ(Zn)

1∑k−1
i=0 e

−i/2kσ2
· gkn,1(

√
kσ).

It is well-known (check by developing (1− x)−1 into its series) that

∞∑
`=0

Nn(`) · x` =
1

1− x

∞∑
`=0

SLn (`) · x`, SLn (`) =
∣∣∣{x ∈ Zn : ‖x‖2 = ` }

∣∣∣ .
On the other hand, for x = e−1/2σ2

,
∑∞
`=0 S

L
n (`) · x` = ρσ(Zn). Therefore,

gn,1(σ) =
1

1− e−1/2σ2 (9)

Therefore

gn,k(σ) 6

√
k
kn
ρσ(Z)(k−1)n∑k−1

i=0 e
−i/2kσ2

· gkn,1(
√
kσ) by (8)

=

√
k
kn
ρσ(Z)(k−1)n∑k−1

i=0 e
−i/2kσ2

· 1

1− e−1/2(
√
kσ)2

by (9)

=

√
k
kn
ρσ(Z)(k−1)n

1− e−1/2σ2 . (10)

Note that this equation also holds for k = 1 by (9). In fact, it even holds for
k = 0, with the convention that 00 = 1. since

gn,0(σ) =
1

ρσ(Zn)

∞∑
`=0

e−`/2σ
2

=
1

ρσ(Zn)

1

1− e−1/2σ2 . (11)

B.2 Bound on G(DZn,σ)

Observing that DZn,σ decreases with ‖x‖, we rewrite the guessing complexity as

G(DZn,σ) =

∞∑
`=0

ρσ(
√
`)

ρσ(Zn)

N(`)∑
i=N(`−1)+1

i.

It follows that, for n > 4 (we need every number to be a sum of n squares so
that N(`) > N(`− 1)):

G(DZn,σ) =

∞∑
`=0

ρσ(
√
`)

ρσ(Zn)
· (N(`)−N(`− 1))(N(`− 1) +N(`) + 1)

2
(12)
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6
∞∑
`=0

ρσ(
√
`)

ρσ(Zn)
· (N(`)−N(`− 1)) ·N(`)

6 gn,2(σ)

6
2nρσ(Z)n

1− e−1/2σ2 by (10). (13)

B.3 Bound on Gqc(DZn,σ)

For the quantum guessing complexity, we use the same approach to get that

Gqc(DZn,σ) =

∞∑
`=0

ρσ(
√
`)

ρσ(Zn)

N(`)∑
i=N(`−1)+1

√
i. (14)

Now check by induction on b that

b∑
i=0

√
i 6 2

3n
3/2 + 1

2

√
n.

It follows that

Gqc(DZn,σ) 6
2

3

∞∑
`=0

ρσ(
√
`)

ρσ(Zn)
N(`)3/2 +

1

2

∞∑
`=0

ρσ(
√
`)

ρσ(Zn)

√
N(`)

= 2
3gn,3/2(σ) + 1

2gn,1/2(σ).

Now check, that for α = 2/3,

gn,3/2(σ) =

∞∑
`=0

ρσ(
√
`)

ρσ(Zn)
N(`)3/2

=
1

ρσ(Zn)

∞∑
`=0

√
ρσ(
√
`)αN(`)

3

6
1

ρσ(Zn)

√√√√ ∞∑
`=0

ρσ(
√
`)αN(`)

3

by Cauchy–Schwarz

=
1

ρσ(Zn)

√√√√ ∞∑
`=0

ρσ/
√
α(
√
`)N(`)

3

=
1

ρσ(Zn)

√
ρσ/
√
α(Zn)gn,1( σ√

α
)
3

=
ρσ/
√
α(Zn)3/2

ρσ(Zn)

1

(1− e−1/3σ2)3/2
by (9)

6
ρσ(Zn)3/2

√
α

3n/2
ρσ(Zn)

1

(1− e−1/3σ2)3/2
by (8) since 1/

√
α > 1
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=

(
3

2

)3n/4 √
ρσ(Zn)

(1− e−1/3σ2)3/2
(15)

Similarly,

gn,1/2(σ) =

∞∑
`=0

ρσ(
√
`)

ρσ(Zn)
N(`)1/2

=

∞∑
`=0

√
ρσ(
√
`)

ρσ(Zn)
N(`) ·

√
ρσ(
√
`)

ρσ(Zn)

6

√√√√ ∞∑
`=0

ρσ(
√
`)

ρσ(Zn)
N(`)

√√√√ ∞∑
`=0

ρσ(
√
`)

ρσ(Zn)

=
√
gn,1(σ)gn,0(σ)

=
1

1− e−1/2σ2

1√
ρσ(Zn)

by (9) and (11).

It follows by (15) that

Gqc(DZn,σ) 6
2

3
·
(

3

2

)3n/4 √
ρσ(Zn)

(1− e−1/3σ2)3/2
+

1

2
· 1

1− e−1/2σ2

1√
ρσ(Zn)

=
2

3
·
(

3

2

)3n/4 √
ρσ(Zn)

(1− e−1/3σ2)3/2

×

(
1 +

3

4
·
(

2

3

)3n/4
(1− e−1/3σ2

)3/2

1− e−1/2σ2

1

ρσ(Zn)

)

6
2

3
·
(

3

2

)3n/4 √
ρσ(Zn)

(1− e−1/3σ2)3/2

(
1 +

3

4
·
(

2

3

)3n/4
1

ρσ(Zn)

)

6
2

3
·
(

3

2

)3n/4 √
ρσ(Zn)

(1− e−1/3σ2)3/2

(
1 +

3

4
·
(

21/4

33/4σ
√
π

)n)
by (6)

6
7

6
·
(

3

2

)3n/4 √
ρσ(Zn)

(1− e−1/3σ2)3/2
when σ > 4

√
2

27π2
. (16)

B.4 Bound on H(DZn,σ)

Finally, we estimate the entropy of this distribution as follows:

H(DZn,σ) = −
∑
x∈Zn

DZn,σ(x) log2(DZn,σ(x))

=
1

2σ2 log(2)ρσ(Z)

∑
x∈Zn

ρσ(x) · ‖x‖2 +
log2 ρσ(Zn)

ρσ(Zn)

∑
x∈Zn

ρσ(x)
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=
1

2σ2 log(2)ρσ(Zn)

∑
x∈Zn

ρσ(x) · ‖x‖2 + log2 ρσ(Zn).

Now note that

∑
x∈Zn

ρσ(x) · ‖x‖2 =

n∑
k=1

∑
x∈Zn

x2
k

k∏
j=1

ρσ(xj)

=

n∑
k=1

(∑
x∈Z

ρσ(x)

)n−1∑
x∈Z

x2ρσ(x)

= nρσ(Z)
n−1

∑
x∈Z

fσ(x)

where fσ(x) = x2ρσ(x). Hence, since ρs(Zn) = ρs(Z)n,

H(DZn,σ) =
n

2σ2 log(2)ρσ(Z)

∑
x∈Z

fσ(x) + n log2 ρσ(Z). (17)

It is not hard to check that the Fourier transform of fσ is

f̂σ(x) = e−2π2σ2x2

σ3
√

2π
(
1− 4π2σ2x2

)
.

Therefore, by the Poisson summation formula

∑
x∈Z

fσ(x) = σ3
√

2π

(∑
x∈Z

e−2π2σ2x2

− 4π2σ2
∑
x∈Z

e−2π2σ2x2

x2

)

= σ3
√

2π

(
ρ1/2πσ(Z)− 4π2σ2

∑
x∈Z

e−2π2σ2x2

x2

)

= σ3
√

2π

(
1

σ
√

2π
ρσ(Z)− 4π2σ2

∑
x∈Z

e−2π2σ2x2

x2

)
by (6)

= σ2ρσ(Z)− 4
√

2ππ2σ5
∑
x∈Z

e−2π2σ2x2

x2 (18)

Hence, we have that

H(DZn,σ) 6
n

2 log(2)
+ n log2 ρσ(Z) by (17) and (18)

6
n

2 log(2)
+ n log2(σ

√
2π coth(π2σ2)) by (6) and (7). (19)

Now check that for any α > 0,

∑
x∈Z

e−αx
2

x2 6 2

∞∑
n=1

e−αnn2 =
2eα(1 + eα)

(eα − 1)3
6 4e−α.
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Hence, for α = 2π2σ2,

4
√

2ππ2σ5
∑
x∈Z

e−2π2σ2x2

x2 6 16
√

2ππ2σ5e−2π2σ2

.

From this, (17) and (18) we conclude that,

H(DZn,σ) >
n

2 log(2)
+ n log2 ρσ(Z)− n · 16

√
2ππ2σ5e−2π2σ2

2σ2 log(2)ρσ(Z)

=
n

2 log(2)
+ n log2 ρσ(Z)− n8

√
2ππ2σ3e−2π2σ2

log(2)ρσ(Z)

>
n

2 log(2)
+ n log2 ρσ(Z)− n 8

√
2ππ2σ3e−2π2σ2

log(2)σ
√

2π coth(π2σ2)
by (7)

=
n

2 log(2)
+ n log2 ρσ(Z)− n 8π2σ2e−2π2σ2

log(2) coth(π2σ2)
.

Therefore,

2H(DZn,σ) > en/2ρσ(Z)ne
−n 8π2σ2e−2π2σ2

coth(π2σ2) . (20)

B.5 Relation between H(DZn,σ), G(DZn,σ) and Gqc(DZn,σ)

Recall that by (13),

G(DZn,σ) 6
2nρσ(Z)n

1− e−1/2σ2 .

Therefore, by (20),

2H(DZn,σ)

G(DZn,σ)
> (1− e−1/2σ2

)

( √
e

2a(σ)

)n
, a(σ) = e8π2σ2e−2π2σ2 tanh(π2σ2).

All asymptotics in what follows are as σ → ∞. We introduce α = 2π2σ2 to
simplify calculations. Recall that tanh(π2σ2) = 1− 2e−α + o(e−α). Hence,

8π2σ2e−2π2σ2

tanh(π2σ2) = 4αe−α(1− 2e−α + o(e−α)).

Note that this quantity goes to 0 as α→∞. It follows that

a(σ) = e4αe−α(1−2e−α+o(e−α))

= 1 + 4αe−α(1− 2e−α + o(e−α)) + o(αe−α)

= 1 + 4αe−α + o(αe−α).

A similar analysis holds for Gqc(DZn,σ). Recall that for σ > 4

√
2

27π2 ,

Gqc(DZn,σ) 6
7

6
·
(

3

2

)3n/4 √
ρσ(Zn)

(1− e−1/3σ2)3/2
.
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Therefore, for σ > 4

√
2

27π2 , by (20),

2H(DZn,σ)/2

Gqc(DZn,σ)
>

6

7
(1− e−1/3σ2

)3/2

(
8e

27a(σ)
2

)n/4
where a(σ) was defined above.

B.6 Bounds on G(DZn
q ,σ

) and Gqc(DZn
q ,σ

)

We now consider the case of the modular discrete Gaussian. We do not know
how to order the elements of Znq by decreasing probability so we will instead
consider one possible order and bound the complexity of this order. This will
prove an upper bound on G(DZnq ,σ). Our proof strategy is to relate the guessing
complexity of DZnq ,σ to that of DZn,σ and use the results proven in the previous
subsections.

Let τ : Znq → N be an ordering of Znq such that for all x,y ∈ Znq , if ‖x̃‖ < ‖ỹ‖
then τ(x) < τ(y). In other words, we order points of Znq according to the norm

of their “lift” in { q−1
2 , . . . , q−1

2 }. Intuitively, when σ is much smaller than q, this
will be the optimal order but we were not able to show this result. We, however,
do not require an optimal order to obtain an upper bound. We now have that

G(DZnq ,σ) 6
∑
x∈Znq

DZnq ,σ(x) · τ(x)

=
1

ρσ(Zn)
·
∑
x∈Znq

τ(x) ·
∑
y∈Zn

ρσ(x + q · y)

=
1

ρσ(Zn)

∑
x∈Znq

∑
y∈Zn

ρσ(x + q · y)τ( ˜x + q · y) since ˜x + q · y = x̃

=
1

ρσ(Zn)
·
∑
x∈Zn

ρσ(x) · τ(x̃).

Now fix x ∈ Zn. We now observe that by definition of the order τ , τ(x̃) < τ(ỹ)
for any y ∈ Znq such that ‖ỹ‖ > ‖x̃‖. In particular, choose y such that ‖ỹ‖ = ‖x̃‖
and τ(y) is the largest possible among all such y. Then

τ(ỹ) = | { z ∈ Znq : ‖z̃‖ 6 ‖x̃‖ } |
6 | { z ∈ Zn : ‖z‖ 6 ‖x̃‖ } |
= N(‖x̃‖2)

where we recall that we defined N(`) = {x ∈ Zn : ‖x‖ 6
√
` } and N(−1) = 0

at the beginning of the proof. Therefore,

G(DZnq ,σ) 6
1

ρσ(Zn)

∑
x∈Zn

ρσ(x)N(‖x̃‖2)
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=
1

ρσ(Zn)

∞∑
`=0

∑
x∈Zn:‖x‖2=`

ρσ(x)N(‖x̃‖2)

=
1

ρσ(Zn)

∞∑
`=0

ρσ(
√
`) ·N(`)

∑
x∈Zn:‖x‖2=`

1

=
1

ρσ(Zn)

∞∑
`=0

ρσ(
√
`) ·N(`) · (N(`)−N(`− 1))

6 2G(DZn,σ) by (12).

We now consider the case of the quantum guessing complexity. Virtually the
same argument yields that

Gqc(DZnq ,σ) 6
1

ρσ(Zn)

∑
x∈Zn

ρσ(x)
√
N(‖x̃‖2)

=
1

ρσ(Zn)

∞∑
`=0

ρσ(
√
`) ·
√
N(`)

∑
x∈Zn:‖x‖2=`

1

=
1

ρσ(Zn)

∞∑
`=1

ρσ(
√
`) ·
√
N(`) · (N(`)−N(`− 1)).

Now recall by (14) that

Gqc(DZn,σ) =

∞∑
`=0

ρσ(
√
`)

ρσ(Zn)

N(`)∑
i=N(`−1)+1

√
i.

Furthermore, since
√
· is an increasing function, it is not hard to see that for all

a, b ∈ N,
b∑

i=a+1

√
i >

∫ b

a

√
xdx =

2

3
(b3/2 − a3/2).

Therefore, for any ` ∈ N,

N(`)∑
i=N(`−1)+1

√
i >

2

3

(
N(`)3/2 −N(`− 1)3/2

)
.

But check that N(`− 1) 6 N(`) so that

√
N(`)(N(`)−N(`− 1)) 6 N(`)

3/2 −N(`− 1)
3/2 6

3

2

N(`)∑
i=N(`−1)+1

√
i.

It then easily follows that

Gqc(DZnq ,σ) 6
3

2

1

ρσ(Zn)

∞∑
`=1

ρσ(
√
`)

N(`)∑
i=N(`−1)+1

√
i =

3

2
Gqc(DZn,σ).

This finishes the proof. ut
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C Proofs for Section 5

C.1 Proof of Theorem 6

Below, we will establish the following claims:

(1) For all s̃enum, the oracle Ô inside O(s̃enum) is such that, for all s̃fft, with
probability at least 9/10, if FL(s̃enum, s̃fft) > (1 + 2η) · C then Ô(s̃fft) = 1
and if FL(s̃enum, s̃fft) 6 C then Ô(s̃fft) = 0.

(2) For all s̃enum, with probability at least 9/10, if there exists s̃fft such that
FL(s̃enum, s̃fft) > (1 + 2η) · C then O(s̃enum) = 1.

(3) For all s̃enum, with probability at least 9/10, if FL(s̃enum, s̃fft) 6 C for all s̃fft

then O(s̃enum) = 0.
(4) With probability at least 9/10, if the algorithm returns s̃enum 6= ⊥ then there

exists s̃fft such that FL(s̃enum, s̃fft) > C.

We start by establishing the result as following from the claims and then establish
these claims below. Let x be the output of the algorithm. By claim (4), if x 6= ⊥
then, with probability at least 9/10, there exist s̃fft such that FL(s̃enum, s̃fft) > C.
Therefore, x ∈ SLC . Hence, this proves that x ∈ SLC ∪ {⊥} with probability at
least 9/10. Now assume that SL(1+2η)C 6= ∅ and let s̃enum ∈ SL(1+2η)C . Then by

claim (2), with probability at least 9/10, O(s̃enum) = 1 so the algorithm will not
return ⊥, i.e. x 6= ⊥.
Proof of claim (1). Fix s̃enum and check that Ô(s̃fft) returns 1 if and only if

AO
′
W ((s̃enum, s̃fft, 1)) > (1 + η) · CD .

Now OW is defined in such a way that

O′W (j) =
(
p
q · yj,enum,

⌊
p
q · yj,fft

⌉
, θ − p

q · x
T
j · b

)
where yj,enum and yj,fft are defined as expected. Therefore, by Theorem 5, with
probability at least 1− δ,∣∣∣AO′W ((s̃enum, s̃fft, 1))− fW ((s̃enum, s̃fft, 1))

∣∣∣ 6 ε.

But one checks that

〈OW (j), (s̃enum, s̃fft, 1)〉 =

〈(
p

q
· yj,enum,

⌊
p

q
· yj,fft

⌉
, θ − p

q
· xTj · b

)
, (s̃enum, s̃fft, 1)

〉
=
p

q
· yTj,enum · s̃enum +

⌊
p

q
· yj,fft

⌉T
· s̃fft + θ − p

q
· xTj · b.

Therefore, fW ((s̃enum, s̃fft, 1))

=
1

D

∑
j

cos

(
2π

p
〈OW (j), (s̃enum, s̃fft, 1)〉

)
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=
1

D

∑
j

cos

(
2π

p

(
p

q
· yTj,enum · s̃enum +

⌊
p

q
· yj,fft

⌉T
· s̃fft + θ − p

q
· xTj · b

)
+

2π

p
· θ

)

=
1

D
<

(∑
j

exp

(
2iπ

p

(
p

q
· yTj,enum · s̃enum +

⌊
p

q
· yj,fft

⌉T
· s̃fft −

p

q
· xTj · b

)
+

2iπ

p
· θ

))

=
1

D
<

(
e

2iπ
p
θ
∑
j

exp

(
2iπ

p

(
p

q
· yTj,enum · s̃enum +

⌊
p

q
· yj,fft

⌉T
· s̃fft −

p

q
· xTj · b

)))

=
1

D
FL(s̃enum, s̃fft)

since θ was computed so that ψ(s̃fft) = e
− 2iπ

p θ
. It follows that, with probability

at least 1− δ,∣∣∣∣AO′W ((s̃enum, s̃fft, 1))− 1

D
FL(s̃enum, s̃fft)

∣∣∣∣ 6 ε =
C

D
· η.

Assume that this inequality holds.

– If FL(s̃enum, s̃fft) > (1+2η)·C thenAO′W ((s̃enum, s̃fft, 1)) > (1+2η)·CD−
C
D ·η =

(1 + η) · CD so Ô(s̃fft) = 1.

– If FL(s̃enum, s̃fft) 6 C then AO′W ((s̃enum, s̃fft, 1)) 6 C
D + C

Dη = (1 + η)CD so

Ô(s̃fft) = 0.

Proof of claim (2). Fix s̃enum. If there exists s̃fft such that FL(s̃enum, s̃fft) >
(1 + 2η) · C then by claim (1), with probability at least 1 − δ, Ô(s̃fft) = 1. It
follows by Theorem 4 that the search will, with probability at least 9/10, return
i 6= ⊥ and therefore O(s̃enum) will return 1.

Proof of claim (3). For O(s̃enum) to return 0, it is sufficient to have Ô(s̃fft) =
0 for all s̃fft. By claim (1), Ô(s̃fft) = 0 with probability at least 1 − δ when
FL(s̃enum, s̃fft) 6 C. Hence, by Theorem 4, the search algorithm will return ⊥
with probability 9/10 and O(s̃enum) = 0. Note here that there is no need for a
union bound because of Theorem 4.

Proof of claim (4). For the algorithm to return s̃enum, with probability 9/10,
we must have O(s̃enum) = 1. By claim (3), with probability at least 9/10, this can
only happen if FL(s̃enum, s̃fft) > C for some s̃fft. Therefore the probability that
the algorithm returns s̃enum such that FL(s̃enum, s̃fft) 6 C for all s̃fft is bounded
by 1/10, by Lemma 1. This finishes the proof. ut

C.2 Proof of Lemma 5

Recall that for any list L and any x > 0, we defined

SLx = { s̃enum : ∃ s̃fft, FL(s̃enum, s̃fft) > x } .
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In the proof of [MAT22, Theorem 5.2], it is shown that for any threshold6 X,

Pr
L

[FL(senum, sfft) > X] ≥ Φ

(
φfp(µ) + φfn(µ)− X√

Darg ·D

)
.

and that for any s̃enum 6= senum, any s̃fft and any threshold Y ,

Pr
L

[FL(s̃enum, s̃fft) > Y ] 6 1− Φ

(
Y√

Darg ·D

)
.

We are going to apply those inequalities to X = (1 + 2η) · C and Y = C. The
second inequality, by the choice of C, gives that

Pr
L

[FL(s̃enum, s̃fft) > C] 6 1− Φ

(
C√

Darg ·D

)
=

µ

2Nenum(senum) · pkfft
.

The number of guesses of s̃enum before reaching senum is Nenum(senum) in the
classical case. However note that Lemma 1 may call the oracle on more entries
than Nenum(senum). Specifically, Lemma 1 guarantees that the oracle will only
call the oracle on the first 2Nenum(senum) entries (with constant probability).
Therefore, by a union bound,

Pr
L

[FL(s̃enum, s̃fft) 6 C for the first 2Nenum(senum) values of s̃enum] ≥ 1− µ.
(21)

On the other hand,

Pr
L

[FL(senum, sfft) > (1 + 2η)C] ≥ Φ

(
φfp(µ) + φfn(µ)− (1 + 2η)

C√
Darg ·D

)
= Φ (φfp(µ) + φfn(µ)− (1 + 2η)φfp(µ))

= Φ (φfn(µ)− 2ηφfp(µ)) .

It is easy to check by taking the derivative that Φ, the cdf of the normal distri-
bution, satisfies the following inequality for all y ≥ 0:

Φ(y) ≥ 1− e−y
2/2

√
π

.

Furthermore, Φ is an increasing function so Φ−1 is also increasing. Hence,

Φ−1(1− x) 6
√
−2 ln(πx)

for all x 6 1√
π

. Now recall that

φfp(µ) = Φ−1

(
1− µ

2Nenum(senum)pkfft

)
, φfn(µ) = Φ−1

(
1− µ

2

)
.

6 The proof assumes a particular value of C but the first three lines of the derivation
in [MAT22, Theorem 5.2] hold for any value of C, which we call X here.
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Therefore,

φfp(µ) 6
√
−2 ln

πµ

2Nenum(senum)pkfft
.

From this we get that φfp(µ) is a polynomial factor in all the relevant parameters.
Now observe that by the integral definition of Φ(),

Φ (φfn(µ)− 2ηφfp(µ)) = Φ (φfn(µ))− 1√
2π

∫ φfn(µ)

φfn(µ)−2ηφfp(µ)

e−t
2/2dt

≥ 1− µ

2
− 2η√

2π
φfp(µ)

≥ 1− 3µ

4

when

η 6

√
2πµ

8φfp(µ)
.

Therefore, by Theorem 6, with probability at least 1− 3µ
4 , we have that SL(1+2η)C 6=

∅ so the algorithm returns an element from SLC . Furthermore, by Equation (21),
with probability at least 1−µ, this element must be senum because all the other
elements satisfy FL(s̃enum, s̃fft) 6 C. Therefore, by a union bound, the probabil-
ity that the algorithm returns senum is at least 1− 3µ

4 −µ ≥ 1−2µ ≥ 1−ν. This
concludes the proof. ut

D Source code

Our code relies on the modified LWE Estimator from [APS15] available at
https://github.com/malb/lattice-estimator/. We also as
an attachment to this PDF. Not all PDF viewers support this feature. If the
reader’s PDF reader does not then e.g. pdfdetach can be used to extract the
source code without having to copy and paste it by hand. To run our code,
run git clone https://github.com/malb/lattice-estimator/ in the directory where estimates.py

is located.

# -*- coding: utf -8 -*-
"""
Run like this::

sage: attach (" estimates.py")
sage: %time results = runall ()
sage: save(results , "../ data/estimates.sobj")
sage: print(results_table(results ))

"""
from sage.all import sqrt , log , exp , tanh , coth , e, pi, RR, ZZ

from estimator.estimator.cost import Cost
from estimator.estimator.lwe_parameters import LWEParameters
from estimator.estimator.reduction import delta as deltaf
from estimator.estimator.reduction import RC, ReductionCost
from estimator.estimator.conf import red_cost_model as red_cost_model_default
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# -*- coding: utf-8 -*-
"""
Run like this::

    sage: attach("estimates.py")
    sage: %time results = runall()
    sage: save(results, "../data/estimates.sobj")
    sage: print(results_table(results))

"""
from sage.all import sqrt, log, exp, tanh, coth, e, pi, RR, ZZ

from estimator.estimator.cost import Cost
from estimator.estimator.lwe_parameters import LWEParameters
from estimator.estimator.reduction import delta as deltaf
from estimator.estimator.reduction import RC, ReductionCost
from estimator.estimator.conf import red_cost_model as red_cost_model_default
from estimator.estimator.util import local_minimum, early_abort_range
from estimator.estimator.io import Logging
from estimator.estimator.schemes import (
    Kyber512,
    Kyber768,
    Kyber1024,
    LightSaber,
    Saber,
    FireSaber,
)
from estimator.estimator.schemes import TFHE630, TFHE1024


class ChaLoy21(ReductionCost):

    __name__ = "ChaLoy21"
    short_vectors = ReductionCost._short_vectors_sieve

    def __call__(self, beta, d, B=None):
        """
        :param beta: Block size ≥ 2.
        :param d: Lattice dimension.
        :param B: Bit-size of entries.
        """

        return ZZ(2) ** RR(0.2570 * beta)


class MATZOV:
    """ """

    C_prog = 1.0 / (1 - 2.0 ** (-0.292))  # p.37
    C_mul = 32**2  # p.37
    C_add = 5 * 32  # guessing based on C_mul

    @classmethod
    def T_fftf(cls, k, p):
        """
        The time complexity of the FFT in dimension `k` with modulus `p`.

        :param k: Dimension
        :param p: Modulus ≥ 2

        """
        return cls.C_mul * k * p ** (k + 1)  # Theorem 7.6, p.38

    @classmethod
    def T_tablef(cls, D):
        """
        Time complexity of updating the table in each iteration.

        :param D: Number of nonzero entries

        """
        return 4 * cls.C_add * D  # Theorem 7.6, p.39

    @classmethod
    def Nf(cls, params, m, beta_bkz, beta_sieve, k_enum, k_fft, p):
        """
        Required number of samples to distinguish with advantage.

        :param params: LWE parameters
        :param m:
        :param beta_bkz: Block size used for BKZ reduction
        :param beta_sieve: Block size used for sampling
        :param k_enum: Guessing dimension
        :param k_fft: FFT dimension
        :param p: FFT modulus

        """
        mu = 0.5
        k_lat = params.n - k_fft - k_enum  # p.15

        # p.39
        lsigma_s = (
            params.Xe.stddev ** (m / (m + k_lat))
            * (params.Xs.stddev * params.q) ** (k_lat / (m + k_lat))
            * sqrt(4 / 3.0)
            * sqrt(beta_sieve / 2 / pi / e)
            * deltaf(beta_bkz) ** (m + k_lat - beta_sieve)
        )

        # p.29, we're ignoring O()
        N = (
            exp(4 * (lsigma_s * pi / params.q) ** 2)
            * exp(k_fft / 3.0 * (params.Xs.stddev * pi / p) ** 2)
            * (k_enum * cls.Hf(params.Xs) + k_fft * log(p) + log(1 / mu))
        )

        return RR(N)

    @staticmethod
    def Hf(Xs):
        return RR(
            1 / 2
            + log(sqrt(2 * pi) * Xs.stddev)
            + log(coth(pi**2 * Xs.stddev**2))
        ) / log(2.0)

    @classmethod
    def cost(
        cls,
        beta,
        params,
        m=None,
        p=2,
        k_enum=0,
        k_fft=0,
        beta_sieve=None,
        red_cost_model=red_cost_model_default,
    ):
        """
        Theorem 7.6

        """

        if m is None:
            m = params.n

        k_lat = params.n - k_fft - k_enum  # p.15

        # We assume here that β_sieve ≈ β
        N = cls.Nf(
            params,
            m,
            beta,
            beta_sieve if beta_sieve else beta,
            k_enum,
            k_fft,
            p,
        )
        rho, T_sample, _, beta_sieve = red_cost_model.short_vectors(
            beta, N=N, d=k_lat + m, sieve_dim=beta_sieve
        )

        H = cls.Hf(params.Xs)

        coeff = 1 / (1 - exp(-1 / 2 / params.Xs.stddev**2))
        tmp_alpha = pi**2 * params.Xs.stddev**2
        tmp_a = exp(8 * tmp_alpha * exp(-2 * tmp_alpha) * tanh(tmp_alpha)).n(30)
        T_guess = coeff * (
            ((2 * tmp_a / sqrt(e)) ** k_enum)
            * (2 ** (k_enum * H))
            * (cls.T_fftf(k_fft, p) + cls.T_tablef(N))
        )

        cost = Cost(rop=T_sample + T_guess, problem=params)
        cost["red"] = T_sample
        cost["guess"] = T_guess
        cost["beta"] = beta
        cost["p"] = p
        cost["zeta"] = k_enum
        cost["t"] = k_fft
        cost["beta_"] = beta_sieve
        cost["N"] = N
        cost["m"] = m

        cost.register_impermanent(
            {"β'": False, "ζ": False, "t": False}, rop=True, p=False, N=False
        )
        return cost

    def __call__(
        self,
        params: LWEParameters,
        red_cost_model=red_cost_model_default,
        log_level=1,
    ):
        """
        Optimizes cost of dual attack as presented in [Matzov22]_.

        :param params: LWE parameters
        :param red_cost_model: How to cost lattice reduction

        The returned cost dictionary has the following entries:

        - ``rop``: Total number of word operations (≈ CPU cycles).
        - ``red``: Number of word operations in lattice reduction and
                   short vector sampling.
        - ``guess``: Number of word operations in guessing and FFT.
        - ``β``: BKZ block size.
        - ``ζ``: Number of guessed coordinates.
        - ``t``: Number of coordinates in FFT part mod `p`.
        - ``d``: Lattice dimension.

        """
        params = params.normalize()

        for p in early_abort_range(2, params.q):
            for k_enum in early_abort_range(0, params.n, 5):
                for k_fft in early_abort_range(0, params.n - k_enum[0], 5):
                    with local_minimum(
                        40, params.n, log_level=log_level + 4
                    ) as it:
                        for beta in it:
                            cost = self.cost(
                                beta,
                                params,
                                p=p[0],
                                k_enum=k_enum[0],
                                k_fft=k_fft[0],
                                red_cost_model=red_cost_model,
                            )
                            it.update(cost)
                        Logging.log(
                            "dual",
                            log_level + 3,
                            f"t: {k_fft[0]}, {repr(it.y)}",
                        )
                        k_fft[1].update(it.y)
                Logging.log(
                    "dual", log_level + 2, f"ζ: {k_enum[0]}, {repr(k_fft[1].y)}"
                )
                k_enum[1].update(k_fft[1].y)
            Logging.log("dual", log_level + 1, f"p:{p[0]}, {repr(k_enum[1].y)}")
            p[1].update(k_enum[1].y)
        Logging.log("dual", log_level, f"{repr(p[1].y)}")
        return p[1].y


class QMATZOV(MATZOV):
    @classmethod
    def cost(
        cls,
        beta,
        params,
        m=None,
        p=2,
        k_enum=0,
        k_fft=0,
        beta_sieve=None,
        red_cost_model=red_cost_model_default,
    ):
        """
        Theorem 7.6

        """

        if m is None:
            m = params.n

        k_lat = params.n - k_fft - k_enum  # p.15

        # We assume here that β_sieve ≈ β
        N = cls.Nf(
            params,
            m,
            beta,
            beta_sieve if beta_sieve else beta,
            k_enum,
            k_fft,
            p,
        )
        rho, T_sample, _, beta_sieve = red_cost_model.short_vectors(
            beta, N=N, d=k_lat + m, sieve_dim=beta_sieve
        )

        H = cls.Hf(params.Xs)

        coeff = 7 / (
            ZZ(6) * (1 - exp(-1 / (3 * params.Xs.stddev**2))) ** (3 / ZZ(2))
        )
        tmp_alpha = pi**2 * params.Xs.stddev**2
        tmp_a = exp(8 * tmp_alpha * exp(-2 * tmp_alpha) * tanh(tmp_alpha)).n(30)
        T_guess = (
            coeff
            * ((27 * tmp_a**2 / sqrt(8 * e)) ** (k_enum / 4))
            * sqrt(2 ** (k_enum * H) * p ** (k_fft / 2.0) * cls.T_tablef(N))
            + N
        )

        cost = Cost(rop=T_sample + T_guess, problem=params)
        cost["red"] = T_sample
        cost["guess"] = T_guess
        cost["beta"] = beta
        cost["p"] = p
        cost["zeta"] = k_enum
        cost["t"] = k_fft
        cost["beta_"] = beta_sieve
        cost["N"] = N
        cost["m"] = m

        cost.register_impermanent(
            {"β'": False, "ζ": False, "t": False}, rop=True, p=False, N=False
        )
        return cost


def runall(
    schemes=(
        Kyber512,
        Kyber768,
        Kyber1024,
        LightSaber,
        Saber,
        FireSaber,
        TFHE630,
        TFHE1024,
    ),
    # schemes=(Kyber512, Kyber768, Kyber1024, LightSaber, Saber, FireSaber),
    nns=(
        "list_decoding-naive_classical",
        "list_decoding-classical",
        "list_decoding-naive_quantum",
        "list_decoding-ge19",
    ),
):

    results = {}

    for scheme in schemes:
        results[scheme] = {}
        print(f"{repr(scheme)}")
        for nn in nns:
            cost = MATZOV()(scheme, red_cost_model=RC.MATZOV.__class__(nn=nn))
            results[scheme][(nn, "classical")] = cost
            print(f" nn: {nn},  cost: {repr(cost)}")
            cost = QMATZOV()(scheme, red_cost_model=RC.MATZOV.__class__(nn=nn))
            print(f" nn: {nn}, qcost: {repr(cost)}")
            results[scheme][(nn, "quantum")] = cost

        cost = MATZOV()(scheme, red_cost_model=RC.ADPS16)
        print(f" C0, cost: {repr(cost)}")
        results[scheme][("C0", "classical")] = cost

        cost = MATZOV()(scheme, red_cost_model=ChaLoy21())
        print(f" Q0, cost: {repr(cost)}")
        results[scheme][("Q0", "classical")] = cost

        cost = QMATZOV()(scheme, red_cost_model=ChaLoy21())
        print(f"Q0, qcost: {repr(cost)}")
        results[scheme][("Q0", "quantum")] = cost

    return results


def results_table(results, fmt=None):
    import tabulate

    rows = []

    def pp(cost):
        return round(log(cost["rop"], 2), 1)

    for scheme, costs in results.items():
        row = [
            scheme.tag,
            pp(costs[("list_decoding-classical", "classical")]),
            pp(costs[("list_decoding-naive_classical", "classical")]),
            pp(costs[("C0", "classical")]),
            pp(costs[("list_decoding-ge19", "classical")]),
            pp(costs[("list_decoding-naive_quantum", "classical")]),
            pp(costs[("Q0", "classical")]),
            pp(costs[("list_decoding-naive_quantum", "quantum")]),
            pp(costs[("Q0", "quantum")]),
        ]
        rows.append(row)
    if fmt is None:
        return rows
    else:
        return tabulate.tabulate(
            results_table(results),
            headers=[
                "Scheme",
                "CC",
                "CN",
                "C0",
                "GE19",
                "QN",
                "Q0",
                "This work (QN)",
                "This work (Q0)",
            ],
            tablefmt="latex_booktabs",
            floatfmt=".1f",
        )
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from estimator.estimator.util import local_minimum , early_abort_range
from estimator.estimator.io import Logging
from estimator.estimator.schemes import (

Kyber512 ,
Kyber768 ,
Kyber1024 ,
LightSaber ,
Saber ,
FireSaber ,

)
from estimator.estimator.schemes import TFHE630 , TFHE1024

class ChaLoy21(ReductionCost ):

__name__ = "ChaLoy21"
short_vectors = ReductionCost._short_vectors_sieve

def __call__(self , beta , d, B=None):
"""
:param beta: Block size ≥ 2.
:param d: Lattice dimension.
:param B: Bit -size of entries.
"""

return ZZ(2) ** RR (0.2570 * beta)

class MATZOV:
""" """

C_prog = 1.0 / (1 - 2.0 ** ( -0.292)) # p.37
C_mul = 32**2 # p.37
C_add = 5 * 32 # guessing based on C_mul

@classmethod
def T_fftf(cls , k, p):

"""
The time complexity of the FFT in dimension ‘k‘ with modulus ‘p‘.

:param k: Dimension
:param p: Modulus ≥ 2

"""
return cls.C_mul * k * p ** (k + 1) # Theorem 7.6, p.38

@classmethod
def T_tablef(cls , D):

"""
Time complexity of updating the table in each iteration.

:param D: Number of nonzero entries

"""
return 4 * cls.C_add * D # Theorem 7.6, p.39

@classmethod
def Nf(cls , params , m, beta_bkz , beta_sieve , k_enum , k_fft , p):

"""
Required number of samples to distinguish with advantage.

:param params: LWE parameters
:param m:
:param beta_bkz: Block size used for BKZ reduction
:param beta_sieve: Block size used for sampling
:param k_enum: Guessing dimension
:param k_fft: FFT dimension
:param p: FFT modulus
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"""
mu = 0.5
k_lat = params.n - k_fft - k_enum # p.15

# p.39
lsigma_s = (

params.Xe.stddev ** (m / (m + k_lat))
* (params.Xs.stddev * params.q) ** (k_lat / (m + k_lat))
* sqrt(4 / 3.0)
* sqrt(beta_sieve / 2 / pi / e)
* deltaf(beta_bkz) ** (m + k_lat - beta_sieve)

)

# p.29, we’re ignoring O()
N = (

exp(4 * (lsigma_s * pi / params.q) ** 2)
* exp(k_fft / 3.0 * (params.Xs.stddev * pi / p) ** 2)
* (k_enum * cls.Hf(params.Xs) + k_fft * log(p) + log(1 / mu))

)

return RR(N)

@staticmethod
def Hf(Xs):

return RR(
1 / 2
+ log(sqrt(2 * pi) * Xs.stddev)
+ log(coth(pi**2 * Xs.stddev **2))

) / log (2.0)

@classmethod
def cost(

cls ,
beta ,
params ,
m=None ,
p=2,
k_enum=0,
k_fft=0,
beta_sieve=None ,
red_cost_model=red_cost_model_default ,

):
"""
Theorem 7.6

"""

if m is None:
m = params.n

k_lat = params.n - k_fft - k_enum # p.15

# We assume here that β_sieve ≈ β
N = cls.Nf(

params ,
m,
beta ,
beta_sieve if beta_sieve else beta ,
k_enum ,
k_fft ,
p,

)
rho , T_sample , _, beta_sieve = red_cost_model.short_vectors(

beta , N=N, d=k_lat + m, sieve_dim=beta_sieve
)

H = cls.Hf(params.Xs)
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coeff = 1 / (1 - exp(-1 / 2 / params.Xs.stddev **2))
tmp_alpha = pi**2 * params.Xs.stddev **2
tmp_a = exp(8 * tmp_alpha * exp(-2 * tmp_alpha) * tanh(tmp_alpha )).n(30)
T_guess = coeff * (

((2 * tmp_a / sqrt(e)) ** k_enum)
* (2 ** (k_enum * H))
* (cls.T_fftf(k_fft , p) + cls.T_tablef(N))

)

cost = Cost(rop=T_sample + T_guess , problem=params)
cost["red"] = T_sample
cost["guess"] = T_guess
cost["beta"] = beta
cost["p"] = p
cost["zeta"] = k_enum
cost["t"] = k_fft
cost["beta_"] = beta_sieve
cost["N"] = N
cost["m"] = m

cost.register_impermanent(
{"β’": False , "ζ": False , "t": False}, rop=True , p=False , N=False

)
return cost

def __call__(
self ,
params: LWEParameters ,
red_cost_model=red_cost_model_default ,
log_level=1,

):
"""
Optimizes cost of dual attack as presented in [Matzov22]_.

:param params: LWE parameters
:param red_cost_model: How to cost lattice reduction

The returned cost dictionary has the following entries:

- ‘‘rop ‘‘: Total number of word operations (≈ CPU cycles ).
- ‘‘red ‘‘: Number of word operations in lattice reduction and

short vector sampling.
- ‘‘guess ‘‘: Number of word operations in guessing and FFT.
- ‘‘β‘‘: BKZ block size.
- ‘‘ζ ‘‘: Number of guessed coordinates.
- ‘‘t‘‘: Number of coordinates in FFT part mod ‘p‘.
- ‘‘d‘‘: Lattice dimension.

"""
params = params.normalize ()

for p in early_abort_range (2, params.q):
for k_enum in early_abort_range (0, params.n, 5):

for k_fft in early_abort_range (0, params.n - k_enum [0], 5):
with local_minimum(

40, params.n, log_level=log_level + 4
) as it:

for beta in it:
cost = self.cost(

beta ,
params ,
p=p[0],
k_enum=k_enum [0],
k_fft=k_fft[0],
red_cost_model=red_cost_model ,

)
it.update(cost)
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Logging.log(
"dual",
log_level + 3,
f"t: {k_fft [0]}, {repr(it.y)}",

)
k_fft [1]. update(it.y)

Logging.log(
"dual", log_level + 2, f"ζ: {k_enum [0]}, {repr(k_fft [1].y)}"

)
k_enum [1]. update(k_fft [1].y)

Logging.log("dual", log_level + 1, f"p:{p[0]}, {repr(k_enum [1].y)}")
p[1]. update(k_enum [1].y)

Logging.log("dual", log_level , f"{repr(p[1].y)}")
return p[1].y

class QMATZOV(MATZOV ):
@classmethod
def cost(

cls ,
beta ,
params ,
m=None ,
p=2,
k_enum=0,
k_fft=0,
beta_sieve=None ,
red_cost_model=red_cost_model_default ,

):
"""
Theorem 7.6

"""

if m is None:
m = params.n

k_lat = params.n - k_fft - k_enum # p.15

# We assume here that β_sieve ≈ β
N = cls.Nf(

params ,
m,
beta ,
beta_sieve if beta_sieve else beta ,
k_enum ,
k_fft ,
p,

)
rho , T_sample , _, beta_sieve = red_cost_model.short_vectors(

beta , N=N, d=k_lat + m, sieve_dim=beta_sieve
)

H = cls.Hf(params.Xs)

coeff = 7 / (
ZZ(6) * (1 - exp(-1 / (3 * params.Xs.stddev **2))) ** (3 / ZZ(2))

)
tmp_alpha = pi**2 * params.Xs.stddev **2
tmp_a = exp(8 * tmp_alpha * exp(-2 * tmp_alpha) * tanh(tmp_alpha )).n(30)
T_guess = (

coeff
* ((27 * tmp_a **2 / sqrt(8 * e)) ** (k_enum / 4))
* sqrt(2 ** (k_enum * H) * p ** (k_fft / 2.0) * cls.T_tablef(N))
+ N

)

cost = Cost(rop=T_sample + T_guess , problem=params)
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cost["red"] = T_sample
cost["guess"] = T_guess
cost["beta"] = beta
cost["p"] = p
cost["zeta"] = k_enum
cost["t"] = k_fft
cost["beta_"] = beta_sieve
cost["N"] = N
cost["m"] = m

cost.register_impermanent(
{"β’": False , "ζ": False , "t": False}, rop=True , p=False , N=False

)
return cost

def runall(
schemes =(

Kyber512 ,
Kyber768 ,
Kyber1024 ,
LightSaber ,
Saber ,
FireSaber ,
TFHE630 ,
TFHE1024 ,

),
# schemes =(Kyber512 , Kyber768 , Kyber1024 , LightSaber , Saber , FireSaber),
nns=(

"list_decoding -naive_classical",
"list_decoding -classical",
"list_decoding -naive_quantum",
"list_decoding -ge19",

),
):

results = {}

for scheme in schemes:
results[scheme] = {}
print(f"{repr(scheme )}")
for nn in nns:

cost = MATZOV ()(scheme , red_cost_model=RC.MATZOV.__class__(nn=nn))
results[scheme ][(nn, "classical")] = cost
print(f" nn: {nn}, cost: {repr(cost)}")
cost = QMATZOV ()(scheme , red_cost_model=RC.MATZOV.__class__(nn=nn))
print(f" nn: {nn}, qcost: {repr(cost)}")
results[scheme ][(nn, "quantum")] = cost

cost = MATZOV ()(scheme , red_cost_model=RC.ADPS16)
print(f" C0, cost: {repr(cost)}")
results[scheme ][("C0", "classical")] = cost

cost = MATZOV ()(scheme , red_cost_model=ChaLoy21 ())
print(f" Q0, cost: {repr(cost)}")
results[scheme ][("Q0", "classical")] = cost

cost = QMATZOV ()(scheme , red_cost_model=ChaLoy21 ())
print(f"Q0, qcost: {repr(cost)}")
results[scheme ][("Q0", "quantum")] = cost

return results

def results_table(results , fmt=None):
import tabulate

rows = []
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def pp(cost):
return round(log(cost["rop"], 2), 1)

for scheme , costs in results.items ():
row = [

scheme.tag ,
pp(costs[("list_decoding -classical", "classical")]),
pp(costs[("list_decoding -naive_classical", "classical")]),
pp(costs[("C0", "classical")]),
pp(costs[("list_decoding -ge19", "classical")]),
pp(costs[("list_decoding -naive_quantum", "classical")]),
pp(costs[("Q0", "classical")]),
pp(costs[("list_decoding -naive_quantum", "quantum")]),
pp(costs[("Q0", "quantum")]),

]
rows.append(row)

if fmt is None:
return rows

else:
return tabulate.tabulate(

results_table(results),
headers =[

"Scheme",
"CC",
"CN",
"C0",
"GE19",
"QN",
"Q0",
"This work (QN)",
"This work (Q0)",

],
tablefmt="latex_booktabs",
floatfmt=".1f",

)
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