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ABSTRACT
Fully Homomorphic Encryption (FHE) allows for secure compu-

tation on encrypted data. It enables a variety of theoretical and

practical applications, but is still several orders of magnitudes too

slow to be practical. We present BASALISC, an architecture family

of FHE hardware accelerators that aims to substantially accelerate

FHE computations in the cloud. BASALISC implements Brakerski,
Gentry, and Vaikuntanathan’s (BGV) scheme and supports a range

of parameter sets. In contrast to many prior studies, we directly

support and implement BGV bootstrapping – the noise removal

capability necessary to support arbitrary-depth computation.

BASALISC exploits data representation in residue number sys-

tems and number-theoretic transforms to realize massive FHE par-

allelism. We propose a new generalized version of bootstrapping

that can be implemented with optimized Montgomery multipli-

ers that cost 46% less in silicon area and 40% less in power con-

sumption versus traditional approaches. BASALISC is a Reduced
Instruction Set Computing (RISC) architecture with a four-layer

memory hierarchy, including a two-dimensional conflict-free in-

ner memory layer that enables 32 Tb/s radix-256 number-theoretic

transform (NTT) computations without pipeline stalls. Our conflict-

resolution data permutation hardware is re-used to compute BGV

automorphisms without additional hardware and without through-

put penalty. BASALISC additionally includes a custom multiply-

accumulate unit familiar in Digital Signal Processing (DSP) archi-

tectures, with which we accelerate tight BGV key switching loops.

The BASALISC computation units and inner memory layers are

designed in asynchronous logic, allowing them to run at differ-

ent speeds to optimize each function. BASALISC is designed for

Application-Specific Integrated Circuit (ASIC) implementation with

∗
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a 1 GHz operational frequency, and is already underway toward

tape-out with a 150mm
2
die size in a 12nm Global Foundries pro-

cess.

The BASALISC toolchain comprises both a custom compiler

and a joint performance and correctness simulator. We evaluate

BASALISC in multiple ways: we study its physical realizability; we

emulate and formally verify its core functional units; and we study

its performance on a single iteration of logistic regression training

over encrypted data. For this application, comprising from up to

900K high-level BASALISC instructions (including 513 bootstraps)

down to 27B low-level instructions, we show a speedup of at least

2,025× over HElib - a popular software FHE library - running on a

Xeon-class processor.
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1 MOTIVATION
Fully Homomorphic Encryption (FHE) [3, 18, 39] offers the promise

of confidentiality-preserving computation over sensitive data in a

variety of theoretical and practical applications, ranging from new

cryptographic primitives to machine learning as a service. Unfor-

tunately, the utility of FHE is severely limited by twin challenges

of inefficient memory use and high computational overhead. The

typical result - computation that runs many orders of magnitude

slower than insecure computation - prevents broad adoption. Al-

though new schemes have markedly improved FHE performance

[6, 7, 11, 12], and highly optimized FHE libraries [1, 13, 22, 33, 43]

are now available, FHE still remains orders of magnitude beyond

acceptable performance limits for most potential applications.
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In other computational domains where performance on gen-

eral purpose processors is problematic, innovation has turned to

purpose-built accelerators, tuned to exploit domain-specific charac-

teristics of computation. DSP accelerators, arguably starting with

the Texas Instruments TMS320 DSP family [28] in 1983, are perhaps

the first example of this approach. More recently, Graphics Pro-

cessing Units (GPUs) have become popular for accelerating video

stream processing and hash function computation. Our FHE ac-

celerator, BASALISC, follows this approach in pursuit of bringing

the throughput of FHE computation within an order of magnitude

relative to cleartext computation. In doing so, BASALISC employs

many of the computational principles from both DSP and GPU

accelerators.

We summarize the key contributions of BASALISC as follows:

• BASALISC accelerates BGV arithmetic for a range of param-

eters. BASALISC is a comprehensive RISC-like architecture

with a three-level instruction set architecture (ISA) that al-

lows for reasoning at diverse levels of executive abstraction.

In contrast to prior architectures, BASALISC supports and

implements bootstrapping to enable unlimited-depth FHE

computations.

• We propose a novel version of bootstrapping that is compat-

ible with Montgomery-friendly primes. In contrast to prior

work, BASALISC instantiates its multipliers exclusively to

these Montgomery-friendly primes, which saves 46% logic

area and 40% power consumption.

• BASALISC implements a massively parallel radix-256 NTT

architecture, using a conflict-free layout, a corresponding

layout permutation unit, and a twiddle factor generator.

These units are deeply interleavedwith the on-chipmemory

and provide a total 32 Tb/s NTT throughput. In addition,

we show that we can efficiently generalize the required

layout permutation unit to compute BGV automorphisms

without additional silicon area.
• BASALISC adopts a four-level memory hierarchy purpose-

built to address common FHE memory bottlenecks, includ-

ing a mid-level 64 MB on-chip ciphertext buffer (CTB). At

the lowest level, a massively parallel multiply-accumulate

unit with integrated 16-entry register file allows acceler-

ating tight BGV key switching loops, asynchronously and

independently of the CTB.

• BASALISC is placed and routed with 150mm
2
die size and

1 GHz operational frequency in a 12nm low-power Global

Foundries process. Critical hardware logic is emulated and

formally verified for correctness. We evaluate BASALISC

on a bootstrapping benchmark and a logistic regression ap-

plication, showing respectively 4,000× and 2,025× speedup

over an HElib software reference.

2 PRELIMINARIES
2.1 Fully Homomorphic Encryption
Fully Homomorphic Encryption (FHE) provides a simple use model

to securely outsource computation on sensitive data to a third party.

Informally, the FHE model enables a user to encrypt its data 𝑚

into a ciphertext 𝑐 = Enc(𝑚), then send it to a third party, who

can compute on 𝑐 . The third party produces another ciphertext 𝑐 ′

m

f(m)sk, pk

pk

Figure 1: FHE used in a typical commercial application.

encrypting 𝑓 (𝑚) for some desired function 𝑓 . We say that 𝑓 was

computed homomorphically.

In FHE, the third party receives only ciphertexts and the public

key, but never the secret key that allows decryption. As a result, the

sensitive inputs are protected under the security of the encryption

scheme. Because the result of the computation remains encrypted,

the output also remains unknown to the third party: only the holder

of the secret key can decrypt and access it. This scenario is illus-

trated in Figure 1: the client generates a key pair, and shares the

public key with the cloud server. Then the client sends an encryp-

tion of its data, which is processed homomorphically by the server,

and finally sent back to the client.

To achieve security, the ciphertexts of all FHE schemes are noisy:

during encryption, a small noise term is added to the input data.

Decryption can still recover the correct result, provided that the

noise is small enough. To evaluate a function homomorphically, we

represent the function in terms of the operations provided by the

scheme, typically addition and multiplication, and compute these

operations on the encrypted inputs. Each operation increases the

noise in the resulting ciphertext, so we can compute only a limited

number of homomorphic operations before we reach the limit of

decryption failure.

Because multiplications increase ciphertext noise much more

than additions, we usually model noise growth by the number of

sequential multiplications only. If we compute the product

∏𝐿
𝑖=1𝑚𝑖

homomorphically, then we say that the computation requires mul-

tiplicative depth

⌈
log

2
(𝐿)

⌉
. This is accomplished by writing the

product in a tree structure, with each leaf node representing one of

the factors. In general, there is a trade-off between computational

cost and tolerating a larger 𝐿: we can increase the parameters used

to instantiate the scheme so that we obtain more multiplicative

depth, but in doing so wemake the homomorphic operations slower

and the size of ciphertexts larger.

To support the computation of functions regardless of their mul-

tiplicative depth, FHE uses bootstrapping. This is an operation that

reduces ciphertext noise by decrypting it homomorphically. Un-

fortunately, bootstrapping is very expensive, so its use if often

minimized in practical applications. There are several techniques in

the FHE literature to slow down the noise growth, and thus delay

bootstrapping. In this work, we employ key switching and modulus
switching [7]. We note that bootstrapping and key switching tend

to heavily dominate computation and data movement costs of an

application: in a simple 1,024-point, 10-feature logistic regression,
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we see that these tasks account for over 95% of the computational

effort and the vast majority of data movement.

The key challenges in designing an efficient FHE scheme are the

high complexity of computation, the large ciphertext expansion

factor (large polynomials with integer coefficients of 1000 bits or

more), and the proportion of effort needed in bootstrapping (or

delaying it) in sufficiently complex programs. In the remainder of

this paper, we examine the magnitude of these challenges and how

they impact our FHE accelerator.

2.2 The BGV Cryptosystem
BASALISC targets the homomorphic encryption scheme known as

BGV [7]. Plaintexts and ciphertexts are represented by elements in

the ring R = Z[𝑋 ]/(𝑋𝑁 + 1) with 𝑁 a power of 2. Those elements

are thus polynomials reduced modulo 𝑋𝑁 + 1, and this modular

reduction is implicit in our notation. BGV guarantees finite data

structures by also reducing the coefficients: the plaintext space

is computed modulo 𝑡 (denoted R𝑡 ), and the ciphertext space is

a pair of elements modulo 𝑞 (denoted R2𝑞). Reduction modulo𝑚

(with𝑚 = 𝑡 or 𝑞) is explicitly denoted by [·]𝑚 . It is always done

symmetrically around 0, i.e., in the set [−𝑚/2,𝑚/2) ∩ Z.
As with traditional ciphers, BGV has encryption and decryption

procedures to move between the plaintext space and the ciphertext
space. These operations are never executed by the server doing out-

sourced computation and therefore not implemented by BASALISC.

However, it is necessary to explain the ciphertext format in or-

der to understand homomorphic operations. A BGV ciphertext

(𝒄0, 𝒄1) ∈ R2𝑞 is said to encrypt plaintext 𝒎 ∈ R𝑡 under secret key
𝒔 (which has small coefficients) if

𝒄0 + 𝒄1 · 𝒔 = 𝒎 + 𝑡𝒆 (mod 𝑞) (1)

for some element 𝒆 that also has small coefficients. The term 𝒆 is
called the noise, and it determines if decryption returns the correct

plaintext: as long as 𝒆 has coefficients roughly smaller than 𝑞/2𝑡 ,
the expression𝒎+𝑡𝒆 does not overflowmodulo 𝑞. We can therefore

recover the plaintext uniquely as 𝒎 = [[𝒄0 + 𝒄1 · 𝒔]𝑞]𝑡 .

2.2.1 Basic Homomorphic Operations. Smart and Vercauteren ob-

served that for 𝑡 = 𝑝𝑟 with 𝑝 an odd prime, the plaintext space R𝑡
is equivalent to Zℓ𝑡 for some ℓ that divides 𝑁 [47]. This technique is

referred to as packing, and it allows us to encode ℓ numbers into one

plaintext simultaneously. Addition and multiplication over tuples

in Zℓ𝑡 are then performed component-wise. As a result, one cipher-

text can encrypt and operate on an entire tuple, which leads to

significant performance gains and memory reductions in practice.

When BGV is used in conjunction with packing, we can define

three basic homomorphic operations. Let (𝒄0, 𝒄1) and (𝒄 ′
0
, 𝒄 ′

1
) be

two ciphertexts encrypting the tuples (𝑚1, ...,𝑚ℓ ) and (𝑚′
1
, ...,𝑚′

ℓ
).

• Addition: we compute ( [𝒄0 + 𝒄 ′
0
]𝑞, [𝒄1 + 𝒄 ′

1
]𝑞). The en-

crypted plaintext is (𝑚1 +𝑚′
1
, ...,𝑚ℓ +𝑚′ℓ ).

• Multiplication: we compute ( [𝒄0 · 𝒄 ′
0
]𝑞, [𝒄0 · 𝒄 ′

1
+ 𝒄1 · 𝒄 ′

0
]𝑞,

[𝒄1 · 𝒄 ′
1
]𝑞). The resulting ciphertext is a vector of three

elements, but this can be reduced back to two with a post-

processing step called key switching (see later). The en-

crypted plaintext is (𝑚1 ·𝑚′
1
, ...,𝑚ℓ ·𝑚′ℓ ).

• Permutation: we compute (𝜙𝑘 (𝒄0), 𝜙𝑘 (𝒄1)), where the

map 𝜙𝑘 is called an automorphism. It is parameterized by an

odd integer 𝑘 , and defined as 𝜙𝑘 : 𝑐 (𝑋 ) ↦→ 𝑐 (𝑋𝑘 ). Gentry
et al. [20] show that these automorphisms induce a permu-

tation on the elements of the encoded tuple, so the output

encrypts some permutation of (𝑚1, ...,𝑚ℓ ). Although the

resulting ciphertext only has two elements, we still need

post-processing by means of key switching.

The validity of these three operations can simply be verified by

observing their effect on Equation 1. We refer to Zucca [51] for a

more detailed analysis, including noise growth of each operation.

2.2.2 Auxiliary Homomorphic Operations. Basic homomorphic op-

erations lead to ciphertext expansion and noise growth. Take for

example a product ciphertext: it consists of three elements and

it is encrypted under (𝒔, 𝒔2) instead of 𝒔. The same problem oc-

curs during permutation: the automorphism 𝜙𝑘 has a side effect

on the secret key, so the resulting ciphertext is encrypted under

𝜙𝑘 (𝒔). Also noise growth is an issue: the noise term in a product

ciphertext, for example, has increased to 𝑡𝒆 · 𝒆′.
To prevent ciphertext expansion, switch between keys and slow

down noise growth, BGV defines two auxiliary procedures:

• Modulus switching: given a ciphertext (𝒄0, 𝒄1) ∈ R2𝑞 and

a new modulus 𝑞′, we compute a ciphertext (𝒄 ′
0
, 𝒄 ′

1
) ∈ R2

𝑞′

that decrypts with respect to 𝑞′. Modulus switching also

scales the noise by a factor of 𝑞′/𝑞.
• Key switching: given a key switching matrix (−→𝒌0,

−→
𝒌1) and

either a product ciphertext (𝒄0, 𝒄1, 𝒄2) ∈ R3𝑞 or a permuted

ciphertext (𝒄0, 𝒄1) ∈ R2𝑞 , we compute a ciphertext (𝒄 ′
0
, 𝒄 ′

1
) ∈

R2𝑞 that decrypts under Equation 1. Thus key switching

brings the ciphertext back to its original format.

In summary, modulus switching is run before each multiplication

to reduce the noise to its minimum level. Key switching is run

after each permutation or multiplication to keep the ciphertext

format consistent. Again we refer to Zucca [51] for a more detailed

analysis.

2.2.3 Bootstrapping. When the entire noise budget of a cipher-

text is consumed (equivalently, when the modulus 𝑞 is depleted

to its minimum value by successive modulus switchings), further

homomorphic operations are no longer immediately possible. We

can overcome this problem by means of a bootstrapping procedure

that reduces the noise back to a lower level [18]. Bootstrapping

“refreshes” a ciphertext by running decryption homomorphically:
we first evaluate an adapted version of Equation 1, followed by

coefficient-wise rounding. The currently most efficient bootstrap-

ping technique for BGV is implemented in the HElib library [23].

2.2.4 Supported Parameter Sets. As a nod to Amdahl’s Law (“make

the common case fast”), hardware optimization gains throughput

benefits by supporting only a limited range of commonly used pa-

rameters. We start with the realization that at least 128-bit security

must be supported if BASALISC is to be interesting to real-world

users. Based on this observation, we choose a range of parameters

that allows for an efficient implementation, while still retaining

sufficient freedom for application design.

Some potential customers have indicated a desire for 256-bit security.
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Table 1: BASALISC parameter ranges and examples.

Parameter Range Example

Security parameter N/A 128 bits

Ring dimension 𝑁 512 − 65536 65536

Plaintext modulus 𝑝𝑟 ⩾ 2 127
3

Ciphertext packing ℓ 1 − 65536 64 slots

Max log
2
(𝑄𝑃 ) for key switching 20 − 1782 1782 bits

Max log
2
(𝑄) for ciphertext 20 − 1263 1263 bits

Max multiplicative depth 𝐿 N/A 31

Recall that FHE has a trade-off between implementation cost

and supported complexity of computation: we can increase the

multiplicative depth 𝐿 and the plaintext modulus 𝑝𝑟 by taking suffi-

ciently high 𝑁 and 𝑞, but this makes the homomorphic operations

inherently slower. A typical range for the ring dimension 𝑁 , still

offering sufficient flexibility, is between 2
14

and 2
16
. BASALISC

settles on a maximum value of 𝑁 = 2
16
. This allows us to choose

ciphertext moduli up to 𝑞 = 2
1782

at 128-bit security level. We get an

acceptable number of multiplicative levels, even at a high-precision

plaintext space (e.g., 31 levels at plaintext modulus 𝑝𝑟 = 127
3
with-

out bootstrapping; with bootstrapping, we get an arbitrary number

of levels).

Table 1 shows the full parameter range supported by BASALISC

and an example parameter set. Note that the largest ciphertext
modulus is denoted by 𝑄 , but key switching matrices use an even

larger modulus 𝑄𝑃 . Concretely, our largest supported modulus is

𝑄𝑃 = 2
1782

(limited by the 128-bit security target). The smallest

supported modulus is 6 · 217 + 1 — the smallest prime congruent to

1 modulo 2
17

(see explanation in section 6.4).

3 DATA REPRESENTATION & ALGORITHMS
Homomorphic operations rely on arithmetic in the ring R𝑞 , which
can be implemented efficiently based on the Chinese Remainder

Theorem (CRT) [21]. For this purpose, we assume that the ciphertext

modulus is given by 𝑞 = 𝑞1 · . . . · 𝑞𝑘 , where the factors are distinct
prime numbers satisfying 𝑞𝑖 = 1 (mod 2𝑁 ). Section 3.1 explains

the operations in the coefficient ring Z𝑞 . Section 3.2 extends this to

polynomials modulo 𝑋𝑁 + 1.

3.1 Residue Number System
Arithmetic in R𝑞 can be split into many smaller rings R𝑞𝑖 simply

by applying the Chinese remainder theorem. This idea is used

commonly, and referred to as a Residue Number System (RNS). It

brings an asymptotic speedup factor of O(𝑘), but also simplifies the

architecture since each 𝑞𝑖 can be of size around 32 bits (compared

to more than 1000 bits for 𝑞).

The restriction 𝑞𝑖 = 1 (mod 2𝑁 ) that we introduced above

comes from the requirement that enables the NTT (see next section).

This puts a lower bound of 17 bits on the size of each 𝑞𝑖 since our

design employs a maximum value of 𝑁 = 2
16
. Coupled with the

requirement to have a sufficient amount of prime moduli to reach

log
2
(𝑄𝑃) of 1782 bits, we need 𝑞𝑖 of at least 26 bits. However, we

settle on 32-bit moduli, because it gives a better utilization for our

on-chip memory buffer and simplified interaction with external

More information about key switching is given in Appendix A.

memory. Furthermore, we find that both 26-bit and 32-bit moduli

result in the same complement of arithmetic units within our silicon

area budget. For the example parameter set of Table 1,𝑄 is a product

of 42 primes and 𝑃 is a product of 14 additional primes.

3.2 Number-Theoretic Transform
One of the most complex operations in FHE ciphertext arithmetic

is polynomial multiplication. With a naive schoolbook method,

multiplying two polynomials requires O(𝑁 2) operations. For the
large polynomial sizes innate to FHE, it is beneficial to resort to

techniques based on the Fast Fourier Transform (FFT), allowing

polynomial multiplications to be computed with O(𝑁 log(𝑁 )) op-
erations only. The Number-Theoretic Transform (NTT) is the gen-

eralization of the FFT to finite fields. The NTT allows to use exact

integer arithmetic, preventing round-off errors that are typical in

real-valued FFT computations. The 𝑁 -point NTT is given by

𝑋 [𝑘] =
𝑁−1∑︁
𝑛=0

𝑥 [𝑛]𝜔𝑛𝑘
𝑁 (mod 𝑞𝑖 ),

where 𝜔𝑁 denotes an 𝑁 -th primitive root of unity. It can be shown

that this root exists if and only if the modulus 𝑞𝑖 is of the special

shape 𝑞𝑖 = 1 (mod 𝑁 ).
In what follows, it will be useful to resort to the generalized

description of the Cooley-Tukey algorithm that recursively re-

expresses an NTT of size 𝑁 = 𝑁1𝑁2 as 𝑁2 inner NTTs of size

𝑁1 and 𝑁1 outer NTTs of size 𝑁2. Before the outer NTT, each

output of the inner NTT is multiplied by a twiddle factor:

𝑋 [𝑘1+𝑁1𝑘2] =
𝑁2−1∑︁
𝑛2=0

(
𝑁1−1∑︁
𝑛1=0

𝑥 [𝑁2𝑛1 + 𝑛2]𝜔𝑛1𝑘1
𝑁1

)
𝜔
𝑛2𝑘1
𝑁

𝜔
𝑛2𝑘2
𝑁2

. (2)

Radix-2
𝑘
NTT algorithms can be obtained from this generalized

description by choosing 𝑁1 = 2
𝑘
at each recursive decomposition.

For example, by choosing 𝑁1 = 2 and 𝑁2 = 𝑁 /2 or vice-versa, the
well-known radix-2 Decimation-In-Time (DIT) and Decimation-In-

Frequency (DIF) algorithms are obtained, respectively.

The NTT can be used for fast cyclic convolutions (polynomial

multiplication modulo 𝑋𝑁 − 1) through the convolution theorem:

𝑎𝑏 (mod 𝑋𝑁 − 1) = 𝑁𝑇𝑇−1 (𝑁𝑇𝑇 (𝑎) ⊙ 𝑁𝑇𝑇 (𝑏)),
where ⊙ denotes point-wise multiplication. However, the rings used

by BGV (and other FHE schemes) require negacyclic convolutions

(polynomial multiplication modulo 𝑋𝑁 + 1). If 𝑞𝑖 = 1 (mod 2𝑁 ),
such that there exists a 2𝑁 -th primitive root of unity 𝜙 = 𝜔2𝑁 , then

it can be shown that [2]:

ˆ𝑎𝑏 (mod 𝑋𝑁 + 1) = 𝑁𝑇𝑇−1 (𝑁𝑇𝑇 (𝑎) ⊙ 𝑁𝑇𝑇 ( ˆ𝑏)), (3)

where

𝑎 = (𝑎0, 𝜙𝑎1, . . . , 𝜙𝑁−1𝑎𝑁−1),
ˆ𝑏 = (𝑏0, 𝜙𝑏1, . . . , 𝜙𝑁−1𝑏𝑁−1).

Thus, negacyclic convolutions can be computed using a regular

NTT, together with a pre-multiplication and post-multiplication

step with appropriate twiddle factors.

We note that the NTT can also be interpreted in terms of the

Chinese Remainder Theorem, similarly to RNS. As a result, the
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combination of using RNS for fast arithmetic modulo 𝑞 and the NTT

for fast polynomial arithmetic modulo𝑋𝑁 +1, is often referred to as
Double-CRT. Auxiliary homomorphic operations such as modulus

switching and key switching rely on non-arithmetic operations

that are not directly possible in Double-CRT format. Converting

into and out of this format makes the auxiliary operations much

more expensive than the basic ones: in practice, key switching

dominates overall computation; it is roughly 100× as expensive as

multiplication.

3.3 Montgomery-Friendly Bootstrapping
As a common optimization, our Montgomery multipliers [32] are

restricted to moduli of the shape 𝑞𝑖 = 1 (mod 2𝑁 ) that enable the
NTT [31]. We refer to section 6.4 for a more extended explanation

about the design of our multipliers. However, restricting the moduli

in this way turns out to be incompatible with all currently existing

bootstrapping methods for BGV [19, 23].

Consider for example the bootstrapping routine as implemented

in the HElib library [23]. Let the plaintext modulus be 𝑡 = 𝑝𝑟 , then

bootstrapping evaluates an adapted version of Equation 1 under

the ciphertext modulus 𝑞 = 𝑝𝑒 + 1 that is significantly smaller than

𝑄 . It also involves an exact division by 𝑝𝑟 , which is implemented

based on arithmetic modulo 𝑝𝑟 . However, both 𝑝𝑒 + 1 and 𝑝𝑟 are

not Montgomery-friendly in general, so this cannot be done with

our optimized Montgomery multipliers.

We propose a generalized version of bootstrapping that works

with Montgomery-friendly primes exclusively. Our algorithm is

simpler than all current approaches, yet it can be evaluated at

exactly the same computational cost. The root of our algorithm is a

new decryption formula that has sufficient degrees of freedom to

take 𝑞 as a product of Montgomery-friendly primes and does not

involve an exact division operation. Consider the following lemma.

Lemma 3.1. Let 𝑝 > 1 be a prime number, and let 𝑒 > 𝑟 ⩾ 1 and
𝑞 = 1 (mod 𝑝𝑒 ) be sufficiently high parameters. If (𝒄0, 𝒄1) is a BGV
encryption of 𝒎 with plaintext modulus 𝑝𝑟 and ciphertext modulus 𝑞,
then we can decrypt it by computing

𝒄 ′𝑖 ← [𝑝
𝑒−𝑟 𝒄𝑖 ]𝑞, 𝒘 ← [𝒄 ′

0
+𝒄 ′

1
·𝒔]𝑝𝑒 and 𝒎 ← [⌊𝒘/𝑝𝑒−𝑟 ⌉]𝑝𝑟 .

Here we use ⌊·⌉ for coefficient-wise rounding to the nearest integer.

The first and second step in Lemma 3.1 are implemented based on

the techniques of Bajard et al. [5]. The third step is identical to the

bootstrapping algorithm from HElib [23]. More details such as the

proof and pseudocode are deferred to Appendix B.

4 BASALISC ARCHITECTURE
The BASALISC architecture defines a semi-autonomous co-processor
that accompanies and is managed by a commercial CPU. The CPU

typically uses direct memory access (DMA) capability to transfer

data to and from BASALISC’s memory subsystem, and uses either

DMA or programmed IO to issue streams of FHE instructions to

BASALISC. A simple interrupt-driven communication protocol

allows BASALISC to indicate changes in state to the managing CPU,

for example when a current instruction stream has been exhausted

and BASALISC is awaiting further instructions.

These special moduli are called Montgomery-friendly primes in the literature [4].

BASALISC is an adapted Reduced Instruction Set Computer

(RISC) architecture that allows for reasoning at diverse levels of ex-

ecutive abstraction. This multi-level approach aids in assuring the

correctness of our system. Having a hierarchy of multiple interme-

diate representations and instruction sets, each with well-defined

semantics, means that we can implement and test each stage of

the compiler toolchain separately. In addition, different instruction

set abstractions allow programmers to work at a higher level of

abstraction while allowing compiler writers and library authors

to reason about lower-level details such as scheduling and opti-

mizations easily. For example, when writing a program to run on

BASALISC, the programmer need not know about low-level data

representations.

Specifically, we generate and reason over three distinct levels of

instruction and typesystem abstraction.

• Macro-instructions are at the highest level, with the largest
data types and the most complex operations. Entire cipher-

texts, plaintexts, and key switching matrices are treated as

basic data types at this abstraction level. Operations that

can be described at this level include ciphertext addition,

multiplication, automorphisms, modulus switching, key

switching, and bootstrapping. Details about data represen-

tation and algorithms that implement those operations are

opaque at this level of abstraction.

• Mid-level instructions expose the Double-CRT data rep-

resentation used in BASALISC. The basic data type at this

level is a residue polynomial (a polynomial in RNS represen-

tation) comprising up to 2
16

32-bit polynomial coefficients.

Basic operations on these data types include pointwise mod-

ular addition and multiplication on vectors of coefficients;

automorphisms; NTTs; and multiply-accumulate iterations

commonly used in key switching. Also included in this list

are memory management instructions that Load and Store

data to and from the off-chip memory complement.

• Micro-instructions correspond very closely with the spe-

cific operations performed by the processing elements (PEs)

of BASALISC. The basic data type at this level contains as

many coefficient words (1024 or 2048) as can be processed

simultaneously by a PE or accessed in one on-chip memory

cycle. Instructions at this level are delivered via the Periph-

eral Component Interconnect Express (PCIe) interface to

the BASALISC processor for execution. This instruction

level also includes rudimentary machine control instruc-

tions.

Table 2 shows examples of operation code mnemonics (opcodes)

from each of our instruction sets.

FHE programs are deterministic: data dependencies do not ex-

ist since variables are encrypted, and hence all branches must be

translated to some form of predicated execution. BASALISC takes

advantage of this determinism: memory allocation is bound at com-

pile time, and the size of all data operands is also bound at compile

time. As a result, BASALISC uses a register-like addressing mode

for all levels in its memory hierarchy, and has no need for cache-like

structures that bind allocation of memory resources at runtime.

As shown in Table 2, BASALISC uses explicit Load-Store-Move

semantics for managing its memory hierarchy, which is divided into
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Table 2: BASALISC Example Opcodes. We omit operand spec-
ifiers.

ISA Opcode Semantics

Macro LOAD Move data from distant to near memory

KSW Key switch a ciphertext

MORPH Perform automorphism on a ciphertext

Mid MULI Element-wise multiply a residue polynomial by constant

NTT Compute NTT of residue polynomial

FBE Fast Base Extension

HCF Halt and await new instructions

Micro NTT1 Perform an iteration of the first pass of an NTT

MAC Multiply two operands, add result to accumulator

Table 3: BASALISC Micro-level operand addressing modes.

Mode Definition

$XXX address of chunk in distant memory, used only for LOAD/STORE

rXXX address of chunk in middle memory

tXX register number in near memory

nXXX immediate 32-bit scalar

iXXX index into table of prime moduli

four levels. Distant memory is accessible only by LOAD and STORE

explicit references, as well as by DMA from host memory. In our

current single-chip design, distant memory is realized in off-chip

Dynamic Random Access Memory (DRAM) to allow for sufficient

storage for a meaningful working set of data. Middle memory is

accessible by LOAD and STORE operations, and also by direct ad-

dressing in data processing instructions. Middle memory is realized

in on-chip Static Random Access Memory (SRAM) in our current

design. Near memory consists of a register set integrated in our

multiply-accumulate functional unit, allowing for efficient addition,

multiplication, and multiply-accumulate operations common for

example in key switching inner loops, without reaching back to

Middle memory. Finally, immediate scalar 32-bit values may be

specified directly in the instruction stream for some instructions

such as Multiply by Immediate (MULI) (Table 2).

Operand specifiers exist at each level of the BASALISC ISA.

Table 3 shows examples of the addressing modes for operand speci-

fiers at the Micro-instruction level. At this level, operands are either

“chunks” of 2048 32-bit coefficients within a residue polynomial,

32-bit scalar values, or natural number indices into tables of moduli.

5 BASALISC HARDWARE DESIGN
Figure 2 shows a block diagram of BASALISC 1.0 – the first imple-

mentation in the BASALISC architecture family. BASALISC 1.0 is a

single-chip FHE coprocessor, designed in a 12nm Global Foundries

process, with additional off-chip memory; high-speed connectivity

to its host system; and extensibility via a high-speed inter-chip inter-

connect. In contrast to other FHE hardware accelerators, BASALISC

1.0 reduces cost and manufacturing risk by relying only on commer-

cially available standard packaging, DRAM, and PCIe technologies.

BASALISC System Board. At left in Figure 2, we instantiate distant
memory using two Double Data Rate 4 Synchronous Dynamic

Random-Access Memory (DDR4)-3200 subsystems, each providing

up to 128 GB of DRAM and 25.6 GB/s of bandwidth. At bottom left

of the diagram is the 26 GB/s (near-peak) PCIe x16 channel that

connects BASALISC to its host and carries data and instructions.

BASALISC 1.0 System Board

BASALISC 1.0 ASIC

2 x 
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2 x 
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Figure 2: BASALISC 1.0 System Diagram.

For many applications, our on-chip 64MBmiddlememory SRAM

array that we call the Ciphertext Buffer (CTB) is too small to hold

the sizeable working sets of ciphertexts and key switching matrices.

Thus, the CTB will suffer high capacity miss rates. Therefore, we

expect these applications to be performance-limited by our twin

DDR4 channel bandwidth. When the 256 GB complement of DDR4

is too small, performance will be limited by PCIe’s long latency and

low bandwidth to host memory.

BASALISC ASIC. The orange rectangle at center in the diagram

denotes the logical boundaries of the BASALISC 1.0 ASIC. Shown

at left within that box are the controllers and physical interfaces

(PHYs) for DDR4 and PCIe. These PHYs connect to the 512-bit wide

Advanced eXtensible Interface 4 (AXI4) interconnect that transfers

data between the DDR, PCIe, and the CTB. Both the AXI4 and CTB

operate at a target cycle time of 1 GHz. As a result, the AXI has

a peak bandwidth of 32 GB/s for each endpoint connection, all

running in parallel. At bottom right in the diagram is the RISC-V

CPU core we use to configure BASALISC at startup time. During

normal operation, this CPU core is inactive, so we do not discuss it

further. Also shown are the Joint Test Action Group (JTAG) external

I/O connections used in testing and debugging BASALISC 1.0.

BASALISC FHE Core Processor. In green is the core BASALISC

1.0 FHE Accelerator. This subsystem includes the CTB, AXI4 infras-

tructure, the instruction queue, and a Traffic Control Unit (TCU)

that manages instruction execution in the system. Because control

flow such as branching and iteration is not needed in BASALISC,

the TCU is much simpler than in a traditional CPU.

The CTB is a single-port SRAM array that can either read or

write 2048 32-bit residue polynomial coefficients every machine

cycle, providing a total bandwidth of 8 Tbps (at 1 GHz operation)

to our complement of data Processing Elements (PEs) shown in

yellow.

As an advantage of the compile-time determinism of the FHE

programming model, the BASALISC CTB comprises an addressable

set of ciphertext registers, instead of requiring the functionality of

a cache memory. This set of registers is compiler-managed with a

true least-recently used (LRU) replacement policy. CTB bandwidth

is not materially affected by concurrent transfer between distant

memory and the CTB: roughly at most 0.3% of CTB access cycles

are used by our total distant memory bandwidth.
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6 BASALISC PROCESSING ELEMENTS
BASALISC 1.0’s on-chip PEs and their connection to the CTB are

shown on the far right in Figure 2. The BASALISC PEs that rely on

the CTB for data are the Multiply-Accumulate (MAC) PE (used in ci-

phertext addition, multiplication, and for kernels of operations such

as key switching); the Permutation PE (used to permute data into

preferred orders to achieve NTT processing, and also used for auto-

morphisms); and the NTT PE (used to accomplish number-theoretic

transforms efficiently). We describe each of their capabilities below.

Whereas Figure 2 shows single PE instances, their implemen-

tation is a massively multicore architecture that exploits innate

parallelism in FHE ciphertext computations. FHE arithmetic in RNS

representation offers four types of parallelism: (i) over multiple

ciphertexts, (ii) over the polynomials within a ciphertext, (iii) over
the residue levels of a polynomial, and (iv) over the coefficients of

a residue polynomial. Prior work has focused on (iii), instantiating
multiple so-called Residue Polynomial Arithmetic Units (RPAUs)

[30, 40, 49]. In contrast, BASALISC focuses on exploiting (iv), due
to two key observations. First, the number of residues decreases

with the modulus level in the BGV scheme, leading to would-be idle

RPAUs as the computation gets closer to bootstrapping. Second, as

the lowest level of parallelism, coefficient-level parallelism offers

the best opportunity to exploit locality of reference and limit CTB

thrashing.

6.1 Number-Theoretic Transform PE
Because of the focus on coefficient-level parallelism, BASALISC

implements a high-radix NTT PE. We expect that many BASLISC

FHE applications will employ ring dimension 𝑁 = 65536 = 256
2
to

enable bootstrapping and thus arbitrary-depth computation. Thus,

our NTT PE employs a radix-256 butterfly, allowing us to compute

65536-point NTTs with only two round trips to memory for each

coefficient. NTTs of smaller sizes can be computed through shortcut

paths in our NTT butterfly network.

Following the generalized Cooley-Tukey NTT description of

Equation 2, a radix-256 NTT chooses 𝑁1 = 𝑁2 = 256. The main

arithmetic NTT unit consists of a 256-point NTT (that computes

the inner 𝑁1-point NTT and outer 𝑁2-point NTT) followed by 255

post-multipliers (that multiply with the twiddles𝜔
𝑛2𝑘1
𝑁

). We employ

a standard DIF flow graph for the 256-point NTT, where we replace

multiplications 𝜔0 = 1 with simple pipeline balancing registers.

Through this optimization, the inner NTT is implemented with

only 769 modular multipliers, instead of 𝑁 /2 log(𝑁 ) = 1024.

As shown in Equation 3, an additional pre-multiplication and

post-multiplication step is required to construct negacyclic forward

and inverse NTTs from regular NTTs. Because a radix-256 butterfly

already includes an array of 255 post-multipliers, it suffices to add

255 pre-multipliers to efficiently support negacyclic NTTs. The

result is a 3-stage NTT architecture, as illustrated in Figure 3 for a

scaled-down radix-4 unit. In Figure 4, we illustrate how a radix-4

unit is composed to compute the full NTT flow graph in two passes

that each take 4 chunks. In between the passes is an implicit memory

transposition that we enable with a conflict-free CTB design.
Our NTT PE instantiates four parallel 3-stage NTT units. Each

unit is deeply pipelined with 40 pipeline stages in order to run

at 2 GHz. Together, these four parallel pipes consume 1024 32-bit

𝜔1

4

4-point NTTPre-mul Post-mul

Figure 3: Radix-4 negacyclic NTT unit with pre- and post-
multiplier arrays.
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Figure 4: 16-point radix-4 negacyclic NTT flow graph. Extra
negacyclic twiddles (in blue) are decomposed into two pre-
multiply passes.

residue polynomial coefficients at that 2 GHz rate – sufficient to

consume all available data bandwidth from the CTB.

6.1.1 Conflict-Free Schedule. Awell-known performance inhibitor

for NTTs is that successive NTT passes access coefficients at dif-

ferent memory strides, introducing access conflicts in memory.

Prior NTT accelerators present custom access patterns and re-

ordering techniques that only work for small-radix NTT architec-

tures [37, 41] or require expensive in-memory transpositions [42].

BASALISC avoids reinventing the wheel, instead building upon

years of DSP literature [14, 24, 29]. The most high-performance

FFT accelerators present conflict-free schedules [36, 38, 48] to tackle
this exact issue.

Conceptually, a 𝑁 = 𝑁1𝑁2 = 256
2
-point radix-256 NTT can be

represented as a two-dimensional NTT, where the data is laid-out

with 𝑁1 = 256 rows and 𝑁2 = 256 columns. In this format, the inner

𝑁1-point NTT requires coefficients in column-major order, whereas

the outer 𝑁2-point NTT requires data in row-major order. The crux

of building conflict-free NTT schedules is to structure the data so

that it can be read out in either order without bank conflicts. This

requires a minimum of 256 independently addressable banks, each

containing 2
16

bank addresses (for a total CTB size of 2
24

values).

We employ a conflict-free layout based on XOR-permutations

[38], as illustrated in Figure 5. In this layout, data with logical

address {𝑟𝑜𝑤, 𝑐𝑜𝑙} is stored at𝑏𝑎𝑛𝑘 = 𝑟𝑜𝑤⊕𝑐𝑜𝑙 . This layout ensures
that each unique index for every element in every row and column

corresponds to a unique physically accessible bank of CTB SRAM.
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Figure 5: Example conflict-free CTB layout for a 16-point
radix-4 NTT. Data is striped using the equation 𝑏𝑎𝑛𝑘 =

𝑟𝑜𝑤 ⊕ 𝑐𝑜𝑙 , which ensures that both entire columns or entire
rows can be read out without bank conflicts. The on-the-fly
Permutation PE maps values from bank order into natural
order, as illustrated for access to the second column.

When reading rows or columns from the CTB, values come out

of memory in bank order, one value for each bank from bank 0 to

255. However, operations like NTT require values in natural order :
when accessing a row, we need values sorted by column from 0 to

255, and when accessing a column, we need values sorted by row

from 0 to 255. Thus, when accessing row 𝑟 , we must map bank 𝑖 to

index 𝑖 ⊕ 𝑟 . Likewise, when accessing column 𝑐 , we must map bank

𝑖 to index 𝑖 ⊕ 𝑐 .
We build a custom “on-the-fly” Permutation PE to compute these

XOR-based permutations as data moves to or from the other PEs.

Furthermore, we are the first to observe a remarkable optimiza-

tion opportunity for this unit. By implementing a slightly more

general permutation PE that supports permutations of the form

𝑖 ↦→ (𝑖 · 𝑎 + 𝑏) ⊕ 𝑐 , we can not only use the Permutation PE to

implement conflict-free XOR permutations, but also any BGV ring

automorphism without additional hardware. The Permutation PE is

described in more detail in section 6.2.

6.1.2 Twiddle Factor Factory. Similarly to polynomial residue co-

efficients, twiddle factors in BASALISC are 32-bit integers. There

are 𝑁 twiddle factors for each residue for both forward and inverse

NTT, and a maximum of 56 residues at max-capacity key switch-

ing, together requiring ∼29.4 MB of twiddle factor material in a

naive implementation. Moreover, our four NTT units have 5116

multipliers total that must be fed each cycle with twiddles, requir-

ing massively parallel access into this storage memory. BASALISC

prevents this storage requirement in two ways. First, we contribute

new insights and a twiddle decomposition method, that reduces

the required parallel number of distinct twiddle accesses. Second,

we develop a custom twiddle factor factory that drastically reduces

the number of twiddles stored. In the remainder, we analyze only

the forward NTT, but note that identical optimizations apply to the

inverted twiddles for the inverse NTT.

For a forward negacyclic NTT, each input 𝑥𝑖 is pre-multiplied

by the twiddle 𝜙𝑖 = 𝜔𝑖
2𝑁

. Using techniques from the DSP literature

[17], we propose to decompose the additional negacyclic twiddles

to extract a regular pattern, and to distribute them evenly between

the two NTT passes in the flow graph. This is illustrated in Figure 4

by the extra twiddles present in blue. The benefit of this technique is

twofold. Firstly, it can be easily seen that through this technique, the

pre-multiplications become identical for each chunk in both passes.

This allows the four NTT units to share the same pre-multiply

twiddles, and drastically reduces the total number of pre-multiply

twiddles from 𝑁 = 256
2
to 2 ·

√
𝑁 , easily fitting in a small SRAM.

Second, the internal butterfly twiddles (powers of 𝜔256) are now a

strict subset of the pre-multiply twiddle in the first pass (powers of

𝜔512). Both can therefore be routed from the same small SRAM.

The remaining twiddle factor complexity sits in the post-multiply

twiddles. For each chunk 𝑘 , there are 255 twiddles 𝜔𝑖𝑘
256

2
. An SRAM

storing vectors of 255 twiddles with depth 255 for each residue is

still much too large. We propose a technique to reduce the width
of this SRAM. It can be coupled with techniques that reduce the

depth of this SRAM, such as On-the-fly-Twiddling (OT) [26]. To

reduce the width, we propose a power generator circuit that trades
SRAM storage for multipliers. The main idea is as follows. By using

the identity 𝜔𝑖𝑘
256

2
= 𝜔𝑖

256
2/𝑘 , it can be observed that the required

twiddles for chunk 𝑘 are always the 255 consecutive powers of a

seed value𝜔 = 𝜔
256

2/𝑘 . Using only𝜔 , we can compute its successive

powers in a number of multiply layers. The first layer computes 𝜔2

from 𝜔 , with a single multiplier. The second layer takes 𝜔2
and 𝜔

to compute 𝜔4
and 𝜔3

, and so forth. Every multiplier in the circuit

produces a unique value that is used as an output, so the number of

multipliers to generate 255 powers from 𝜔 is simply 254. Using this

technique, instead of storing vectors of 255 twiddles with depth 255

for each residue, it suffices to store the single seeds with depth 255.

6.1.3 Related Work. Many NTT architectures have been proposed

in the literature. The architecture that is closest to ours is that of F1

[42], another concurrently-developed BGV accelerator. Targeting a

smaller parameter set than BASALISC, F1 similarly implements a

radix-128 butterfly to efficiently support 𝑁 = 16384 = 128
2
-point

NTTs.

To allow both row-major order and column-major order NTT

passes, F1 implements an explicit matrix transpose unit. In con-

trast to BASALISC’s conflict-free layout, this unit requires an in-

memory transposition that will stall the NTT pipeline. To prevent

these stalls, F1 fully pipelines their transpose PE. This requires the

transpose PE to implement an SRAM that buffers nearly the full

polynomial output of an NTT pass, which is much more expensive

than BASALISC’s cheap Omega-Network.

F1 adopts prior techniques tomerge the negacyclic pre-multipliers

into a DIT NTT flow graph [34, 41], an “optimization” that is rep-

resented in many works as going from 𝑁 + 𝑁 /2 log
2
(𝑁 ) to only

𝑁 /2 log
2
(𝑁 ) multiplications. The salient assumption for these for-

mulas is that an 𝑁 = 256-point NTT datapath has a DIT butterfly

at every node, for a total of 𝑁 /2 log
2
(𝑁 ) = 1024 multipliers. On

the other hand, by eliminating those that multiply with 𝜔0 = 1, a

256-point NTT requires only 769 multipliers. Together with the

pre-multipliers, both NTT implementations have an identical num-

ber of multipliers. This technique is therefore not an optimization

to reduce multiplier counts, but rather a way to distribute multi-

pliers more homogeneously in the flow graph. We do not adopt it

in BASALISC, because it removes the fixed static twiddle pattern

within the 256-point NTT that we exploit heavily in our twiddle

factor factory unit. F1 does not describe how they implement or

simplify their large twiddle factor SRAM.
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Figure 6: Simplified Diagram of MAC PE architecture.

6.2 Permutation PE
A pair of Permutation PEs forms the interface between the CTB

and the other PEs. We observe for the first time that a slightly more

generalized Permutation PE can support both conflict-free sched-

ules required by NTT operations, as well as BGV automorphisms

with the same hardware. In order to do so, the Permutation PE is

generalized to compute permutations of the form 𝑖 ↦→ (𝑖 ·𝑎 +𝑏) ⊕ 𝑐 .
Each permutation unit reorders an array of input coefficients to

produce a permuted output array of the same length.

The Read Permutation PE unscrambles data in conflict-free CTB

bank ordering in order to pass it to the other PEs expecting natural

ordering. It is a specialized instance of themore general Permutation

PE that only implements permutations 𝑖 ↦→ 𝑖 ⊕ 𝑐 , requiring values

𝑎 = 1 and 𝑏 = 0. The Write Permutation PE passes data in the

opposite direction. It implements the general permutation 𝑖 ↦→
(𝑖 · 𝑎 + 𝑏) ⊕ 𝑐 in order to re-scramble the data into its conflict-free

layout, or to compute ring automorphisms. In the latter case, the

output of the Read Permutation PE is fed directly into the input of

the Write Permutation PE to achieve the complete operation of the

automorphism.

Each Permutation PE itself is split into two portions. Firstly,

the data-permutation portion of the logic is implemented using

2x2 switch nodes placed using an Omega-Network topology. Sec-

ondly, a configuration portion takes constants 𝑎, 𝑏, and 𝑐 in order

to generate the routing pattern for the switches in the network.

The configuration portion of the logic attaches the routing pattern

to the data and the combined payload word is sent through the

network. The switch nodes forward the data according to the least

significant bit of the pattern part of the payload data, which is also

removed before forwarding. Thus the message is reduced by one

bit at each stage of the network and at the end the payload only

contains the data portion.

6.3 Multiply-Accumulate PE
We realize modular addition and multiplication for FHE in the

Multiply-Accumulate PE (MAC), shown in Figure 6. This pipelined

unit can start 2048 32-bit modular addition or modular multiply

operations each cycle, if data is available. Because the MAC PE is

built with asynchronous logic, it free-runs at 1.6 GHz when not

accessing the 1 GHz CTB. Therefore, operations that read and/or

write to the CTB are limited by the 1 GHz CTB bottleneck, while

other operations that operate on local data (accumulator register or

register file) can accelerate to 1.6 GHz, without using any additional

logic. The asynchronous logic provides significant area and latency

savings over implementing wide Clock Domain Crossings (CDCs)

Table 4: Area and power comparison of NTT single-butterfly
unit with original and optimized Montgomery multipliers at
1 GHz.

Multiplier Design Area TDP @0.72V, 125C

Unoptimized 3768 `m2
7.2 `W

Optimized 2052 `m2
4.3 `W

instead to achieve this 60% performance using a clocked approach.

At left in the figure, the 2048 𝑎 inputs, each 32-bit in size, come from

the CTB. The 𝑏 inputs are replicated copies of a 32-bit constant from

the instruction stream. The MAC includes a 16-entry Register File

(RF), shown at top in the figure. In addition, there is a single accu-

mulator register at the output of the adder/subtractor/accumulator

unit, shown at right in the figure.

Using the multiplexers shown in the figure, this arrangement can

accomplish a variety of functions. Residue chunk multiplication by

or addition of a constant to each coefficient can be accomplished at

full rate: 2048 32-bit operations per cycle. Multiplication or addition

of chunks when both are sourced directly from the CTB can be

accomplished at half-rate, using a register to buffer one operand

from the CTB, and directly feeding the second operand into the

operation from the CTB in a second read cycle. Acceleration of tight

kernels that repeatedly process the same chunks can be achieved

by storing up to 16 different chunks in the RF and then operating

on them at full rate. Finally, the MAC has a multiply-add capability

similar to that often found in digital signal processors, allowing

double-rate processing: a multiply and accumulate in every cycle.

The above possibilities are impacted by the write bandwidth needed

to the CTB for results. Write operations might occur as often as

for every chunk result, or much less often when the local RF or the

accumulator are used to store results during tight kernel operations.

A particularly important example of kernel acceleration in the

MAC is key switching from Appendix A. We expect key switching

to make up the large majority of the workload of a typical FHE

program. The inner loop of our key switching algorithm is a “fast

base extension” subroutine that pre-computes a table of about 12

residue polynomials, and then computes many (around 40) different

weighted sums of those twelve values, with constant weights. Use

of the local registers in the MAC PE and the compound multiply-

accumulate function realizes a 44× improvement compared to a

naive design. In addition, this approach reduces use of the CTB

during fast base extensions to 10.6% versus nearly 100%, saving 90%

of the CTB for use by the other PEs.

6.4 Modular Multiplier Arithmetic
Optimization

Both the MAC and NTT Butterfly units use Montgomery modular

arithmetic, optimized for Montgomery-friendly primes [31], and

matched to our novel bootstrapping approach. Specifically, instead

of supporting the full 32-bit prime value, the multiplier is optimized

to only support a subset compatible with our approach, where the

lower 17 bits of the prime are fixed (bits 16:1 are tied to 0 and bit 0 is

tied to 1). This optimization of the Montgomery modular arithmetic

saves 46% in area compared to a generic Montgomery multiplier

that can support all moduli. The results are summarized in Table 4.
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6.5 Memory Subsystem
BASALISC includes a four-layer memory hierarchy for storing

ciphertexts and keys. From farthest to nearest to the PEs, these are

the distant memory (off-chip DRAM), middle memory (CTB), the

MAC RF, and the accumulator register, as shown in Figure 2. The

capacity and latency of each level in the hierarchy are shown in

Table 5.

As shown in the table, the layers in our memory hierarchy ex-

hibit diverse latencies and capacities typical of computer memory

hierarchies, where lower latency layers have smaller capacities.

A significant difference between typical memory hierarchies and

that of BASALISC is the working set size that each layer can hold.

Nevertheless, we expect capacity limits of layers in our memory

hierarchy to be a major limiter of system performance. In particular,

we expect minimal locality of reference for key switching matrices,

each of which is larger than the entire CTB.

Table 5: Memory hierarchy for ciphertext and key storage.

Memory Capacity Round-trip latency

Off-chip DDR 256 GB >100 ns

CTB 64 MB ∼3 ns
MAC RF 128 kB ∼1.25 ns
MAC ACC 8 kB 0.625 ns

6.5.1 Middle Memory - the CTB. The 64 MB CTB contains 2
24

lo-

cations, each of which holds a 32-bit residue polynomial coefficient.

In our largest supported parameter set, a single residue polynomial

consists of 𝑁 = 2
16 = 64K coefficients and occupies one entire page

of the CTB. As explained before, a residue polynomial is arranged

conceptually as a 256-by-256 rectangular array in the CTB, and

coefficients are physically striped to support the conflict-free NTT

schedule. For smaller ring dimensions, polynomials are arranged

as a 256-by-(𝑁 /256) array, and a single CTB page will contain

multiple residue polynomials.

6.5.2 Distant Memory - the DRAM array. The DRAM system, as

described in the interface section above, comprises two independent

DDR4 interfaces in parallel, each supporting up to 128 GB of DRAM.

The DRAM serves as the staging area for data that is scheduled for

processing and for results that are ready for retrieval by the host

computer. The two interfaces allow us to maximize the practical

throughput of the DRAM subsystem, by avoiding collisions between

the PCIe-to-DRAM and FHE-to-DRAM access streams. The PCIe

can access data on one DRAM interface without interfering with

the FHE accelerator. At the same time, the FHE accelerator can

process data using the other DRAM interface. Since the dataflow

will be known in advance by the compiler, the data can be arranged

in such a way between the two DRAM instances as to minimize

the interactions between the two.

6.5.3 The Instruction Buffer. The BASALISC instruction buffer is

organized as a batch queue, and is maintained by the TCU. Each

instruction takes tens of cycles to execute and requires a substantial

amount of memory in the CTB, therefore the instruction queue

will be fairly short (128 to 1024 instructions, depending on our

performance analysis). The queue is loaded periodically with new

Figure 7: BASALISC Software Toolchain.

instructions when the host knows that there is a small amount of

pending instructions in memory left. Since the compiler knows in

advance about the flow of instructions and data in memory, this

can be predicted and is the reason why there is little need for a long

program queue.

7 BASALISC COMPILATION AND
SIMULATION TOOLS

Figure 7 shows the main components, languages, and intermedi-

ate data representations in the BASALISC software toolchain. The

dashed boxes in the figure represent our two main software tools:

Artemidorus is our compiler, which takes input programs written

in a Domain-Specific Language (DSL) and outputs one of our three

distinct instruction sets. Simba is our simulator, which takes in-

struction traces as input, and produces either a performance report

or concrete result values as output.

Artemidorus. As shown at top left in the figure, our toolchain

begins with high-level DSL that allows programmers to create FHE

applications for BASALISC to execute, and which features data

types including fixed-point numbers, vectors, and matrices. The

program passes through several stages in Artemidorus. Bootstrap

operations, vector operations, and matrix operations are expanded

into BGV primitives; key switching operations are inferred; each

operation is tagged with the length of its modulus chain, and then

expanded into primitive operations on individual residue polyno-

mials for each factor in the modulus; and finally memory regions

and registers are allocated and instructions are scheduled.

Artemidorus produces instruction traces at our three levels of

the ISA, which pass to Simba for performance or correctness simula-

tion. Especially Simba-micro, the micro-level performance simulator

shown on the bottom right, presents an integral part of evaluating

BASALISC at this point in the design stage. We now describe it in

detail.

Simba-micro. Our micro-level performance simulator employs

a step-based operational semantics to model the execution of the

BASALISC coprocessor. There are five basic operational compo-

nents: the CTB, and the four PEs (MAC, Read Permutation, NTT,
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and Write Permutation). Each of these components operates at a

different internal frequency (Table 6). The simulator models a micro-

instruction’s life cycle from instruction dispatch, to data transfer

from CTB to the appropriate functional unit, to proceeding down

the pipeline, to the “writeback” phase.

In order to account for the different clock rates of the different

components, we use a global “micro-clock” which operates at 6

GHz as the time increment for the model’s step function. We made

the simplifying assumption that the MAC operates at 1.5 GHz. In

this way, we were able to model each PE’s progress by causing

the CTB to be accessible every 6 micro-cycles, the MAC every 4

micro-cycles, and the permutation/NTT units every 3 micro-cycles.

This behavior is modeled by supplying each component with a wait

counter which is reset to these values every time it is accessed; the

component is only accessible if the counter is 0. If a component is

accessible but has no work to do in the given micro-cycle, it simply

waits until it has something to do.

Each individual PE is modeled as a pipeline with a certain number

of stages and “stage capacity” (number of coefficients that fit in

each pipeline stage). The MAC’s stage capacity is 2048 coefficients,

while the other three have a capacity of 1024. Every time the given

PE is enabled (its wait counter is 0), the pipeline advances. When

there is a write at the end of the pipeline, it stays at the end of the

pipeline until the CTB is available for writing.

Oftentimes, the CTB can be used for either reading data or writ-

ing data in a given micro-cycle. This occurs whenever the next

instruction reads from the CTB, while there is a write “waiting” at

the end of either the MAC or write permutation pipeline (or both).

In this scenario, we opted to always favor reads over writes; there-

fore in our simulations, pipelines tend to fill up. Once a pipeline is

full, instruction dispatch is no longer possible to that pipeline, and

the control mechanism allows the pending writes to occur. After

execution, the following data is reported by Simba-micro: number

of CTB cycles (i.e., 6 micro-cycles) of execution, overall CTB uti-

lization (percentage of time spent reading/writing/stalling), and

utilization of each PE (how “full” the pipelines are, broken down

by % of time).

8 EVALUATION OF BASALISC
At present, BASALISC is an architecure with an implementation-

in-progress but not delivered to silicon yet. We evaluate the archi-

tecture and design of BASALISC in diverse ways at this point in

the design cycle.

8.1 Physical Realizability
One way to evaluate the design of BASALISC 1.0 and the BASALISC

architecture that it implements is by undertaking a physical de-

sign implementation in a practical semiconductor process, with a

reasonable target die size and operational frequency target.

One resulting evaluation criterion that can be objectively mea-

sured using this approach is timing closure – the verification that,

with placement and routing of key blocks complete, and using in-

dustry best practice estimation of inter-block wire delays based on a

mature floorplan, the design achieves a target operating frequency

that yields useful levels of performance. In the case of BASALISC

1.0, we completed placement and routing of the novel circuitry - our

Table 6: Performance characteristics of BASALISC hardware
elements.

Component 𝑓𝑚𝑎𝑥 Area TDP @0.72V Throughput

CTB 1.0 GHz 77.9 mm
2

9 W 2 × 32 Tb/s

MAC PE
†

1.6 GHz 7.17 mm
2

18.6 W 102 Tb/s

NTT PE 2.0 GHz 16 mm
2

24.6 W 32 Tb/s

Permuation PE 2.0 GHz 0.16 mm
2 ∼0 W 32 Tb/s

PCIe 500 MHz 12 mm
2

5 W

26 GB/s

DDR 800 MHz 18.2 mm
2

51 GB/s

Overall >1.0 GHz 150 mm
2

57.5 - 115 W N/A

†
Operation of PEs above the frequency of the CTB is advantageous when they can

run independently of the CTB.

Figure 8: Floorplan of BASALISC 1.0 with all cells placed
and intra-block routing complete. Note that the MAC PE and
Permutation PE are interleaved within the CTB.

PEs - and the CTB RAM block. Our operational frequency target

was a minimum of 1.0 GHz at the standard “slow-slow” (SS) process

corner and a supply voltage of 0.72V in the 12nm low-power Global

Foundries process. We achieved timing closure for the diverse func-

tional units at the frequencies given in Table 6. Our target die size

is constrained to 150mm
2
, with an aspect ratio of 2 : 1 or less. Our

floorplan shown in Figure 8 uses actual IP block sizes for DDR4

DRAM, PCIe, our RAM array, and placed and routed PEs, providing

a 14.4mm × 10.4mm die size that satisfies both of those constraints.
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8.2 Logic Emulation & Formal Verification
A commonplace verification step prior to ASIC manufacturing pro-

vides yet another evaluation criterion: successful hardware emula-
tion of critical logic in the design. In the case of BASALISC 1.0, that

critical logic is the set of processing elements (MAC, permutation,

and NNT PEs). We successfully emulated each PE in full, using

test vectors extracted from our Verilog testbenches and our formal

models of each PE. Each PE passed its emulation test vector suite.

In addition to hardware emulation, BASALISC employs formal

methods with two primary goals: first, that the design be proven

mathematically correct, and, second, that the design be proven

consistent at every intermediate representation by demonstrating

proof of equivalence. For both the mathematical and consistency

proofs, BASALISC employs the Cryptol language [27] and related

tools.

In order to satisfy mathematical correctness, top-level FHE algo-

rithms are expressed as a mathematical model in Cryptol. Subse-

quently, using Cryptol’s proof capabilities, the mathematical model

is proven to sustain a set of separately-developed correctness defini-

tions. Proof of equivalence is provided through a two-step approach.

First, formal equivalence is proven between the high-level mathe-

matical Cryptol model and a low-level logic-oriented Cryptol de-

scription using SAW [8]. Next, the low-level Cryptol is converted to

Verilog that we prove equivalent to the optimized implementation-

Verilog using the commercial Synopsys Formality tool.

8.3 Benchmark Performance Simulation
We evaluate BASALISC 1.0 performance on different benchmarks:

a micro-benchmark that measures a single bootstrapping operation,

and a macro-benchmark comprising a single iteration of logistic

regression training over encrypted data. In both benchmarks, we

use the example parameter set from Table 1. Benchmarks for basic

and auxiliary homomorphic operations are provided in Appendix C.

8.3.1 Micro-Benchmark. We estimate execution time for a single

bootstrapping operation using our cycle-accurate simulator Simba-

micro. We set the bootstrapping parameter from section 3.3 to 𝑒 = 4.

Simulation results show that bootstrapping consumes only 40ms

of execution time. In comparison, HElib takes 160s to bootstrap

a single ciphertext with comparable parameters on a Intel Xeon

E5-2630 v2 CPU at 2.6 GHz running a single thread. Hence, we

achieve a speedup of 4,000 times.

8.3.2 Macro-Benchmark. We estimate execution time on one itera-

tion of secure logistic regression training. We apply the algorithm

from Chen et al. [10] to a 1,024-sample, 10-feature infant mortality

data set from the US Centers for Disease Control.

We apply three changes to the original algorithm: we replace

the FV scheme by the BGV scheme; we replace sign extraction

by an improved variant that has higher precision; and we replace

the sigmoid function by the piece-wise linear approximation over

[−63, 64] that is shown in Figure 9. These three change were pro-

posed in the DARPA DPRIVE program. Since the adapted algorithm

is not important for our purpose, we do not explain it in detail here.

We use the example parameters from Table 1, resulting in ci-

phertext size 21 MB and key switching size 84 MB. The single

iteration of logistic regression training includes 513 bootstrapping

operations. We note that this application actually uses a variant

−6 −4 −2 0 2 4 6
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1
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Figure 9: Sigmoid and PL
approximation.

of bootstrapping that per-

forms data scaling at the

same time. This variant is

much heavier than our micro-

benchmark. As a BASALISC

instruction trace, the logis-

tic regression is composed of

908,660 high-level, 850,564,991

mid-level, and 27,251,778,560

micro-level instructions. Ta-

ble 7 shows how the sigmoid

is broken down into mid-level

BASALISC instructions. Each

sigmoid accounts for 2 of the

513 bootstrappings.

Table 7: Sigmoid mid-
level instructions.

ADD 218,650

SUB 150

MUL 120,948

MORPH 3192

NTT 114,389

INNT 17,954

CONVERT 56,204

FBE 1,787

Again, we simulate the resulting

micro-level trace using our cycle-

accurate simulator Simba-micro. The

trace consumes 40.5s of simulated

execution time: 3,491 times slower

than running the same algorithm on

a single core Intel Xeon Silver 4210R

CPU at 2.4 GHz without using FHE.

Since HElib requires 160s to boot-

strap a single ciphertext, the total

running would be 82,080s account-

ing for the 513 bootstrapping occur-

rences. Hence we achieve a speedup of at least 2,025 times. Note,

however, that this is an underestimation, because logistic regres-

sion uses the heavier version of bootstrapping that is not present

in HElib.

8.4 Related Work
As part of BASALISC’s evaluation, we attempt a comparison to

prior FHE accelerators. This comparison is complicated, because

many prior architectures do not report bootstrapping benchmarks

or simply do not support it [9, 16, 30, 35, 37, 44–46, 50]. These

architectures support only unrealistically small parameter sets, of-

ten allowing them to fully compute on-chip. Furthermore, not all

accelerators implement full FHE computations, but rather individ-

ual computations such as the NTT. As one outcome, these other

approaches require frequent interaction with a host processor to

sequence operations and combine results. In this category, HEAWS

[50] reports a 5.5× speedup compared to a software reference for a

low-complexity neural network with multiplicative depth 4. HEAX

[37] achieves more significant acceleration numbers, in the order of

200× for high-level CKKS operations such as key switching, com-

pared to SEAL [43]. Another recent accelerator for CKKS, Medha

[30], shows a 130× speedup for ciphertext multiplication. Com-

pared to HEAX, Medha chooses to sacrifice throughput in order to

optimize for latency. However, at larger parameter sets, FHE kernels

and applications provide a multitude of parallelisms and possibil-

ity for re-ordering to eliminate data dependencies. For BASALISC
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applications, we expect very limited read/write dependency stalls

where low-latency would be favorable.

The architecture that is closest to ours is F1 [42]. F1 is an ASIC

architecture targeting the same die size (150mm
2
), technology node

(12nm GF), and clock frequency (1 GHz), and it also implements

bootstrapping. Whereas our micro-benchmark shows that BGV

bootstrapping takes 40ms in BASALISC 1.0, F1 [42] reports a boot-

strapping time of only 2.4ms. However, these numbers are not

comparable: F1 provides lower security (their ring dimension 𝑁 is

4 times lower) and supports a plaintext space of only 1 bit with no

packing. BASALISC supports plaintext modulus 127
3
with packing

capability.

Finally, a recent study by De Castro et al. highlighted the mem-

ory bottleneck of FHE acceleration [15]. The starting point for their

analysis is a CPU-like architecture, where ciphertexts do not fit

in the Last-Level Cache (LLC). However, BASALISC’s compiler-

managed on-chip CTB is very different from a typical LLC. More-

over, at 64 MB, we are able to fit several ciphertexts within the CTB.

Nevertheless, we also observe in BASALISC that data movement of

key switching matrices will often be the practical bottleneck of FHE

applications.

9 CONCLUSION
FHE enables new privacy-preserving applications, but its adoption

is limited because of high computational costs. BASALISC accel-

erates FHE computations by more than three orders of magnitude

over CPU performance, and thereby takes a step toward practical

feasibility.

In contrast to many prior works, BASALISC supports all BGV

operations, including bootstrapping, in a single ASIC architecture.

Our design includes a complete memory hierarchy, and an ISA

that supports different levels of abstraction. Moreover, we propose

several new hardware improvements: we implement a 32 Tb/s NTT

architecture, and show that its permutation unit can be generalized

to compute BGV automorphisms without additional area. We also

save over 40% in area and power consumption by restricting our

multipliers to Montgomery-friendly primes. We show that this

optimization still allows BGV bootstrapping, and therefore does

not compromise the generality of our design.

We evaluate the design of BASALISC for correctness and perfor-

mance. Our functional units are emulated and formally verified to

meet their specification. We also simulate performance on two FHE

benchmarks, showing more than 4,000 times speedup compared

to classical software implementations. In future work, we aim to

put these results into practice via fabrication of an IC that can be

applied in real-world applications.
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A KEY SWITCHING PROCEDURE
Key switching transforms a ciphertext ct encrypting a plaintext 𝒎
under a key 𝒔, into a ciphertext ct′ encrypting the same plaintext

under a different key 𝒔 ′. In practice, we usually switch from 𝒔2 (for
multiplication) or from 𝜙𝑘 (𝒔) (for automorphism) to the original

secret key. We need an auxiliary data structure called key switching
matrix, which is essentially a set of encryptions of 𝒔 under 𝒔′. A
high level description of various key switching methods is given in

Appendix B by Kim et al. [25]. BASALISC implements the hybrid
key switching method from Appendix B.2.3, which we review here.

A.1 Notations
Consider two coprime moduli

𝑄 =

ℓ∏
𝑖=1

𝑞𝑖 and 𝑃 =

ℓ+𝑘∏
𝑖=ℓ+1

𝑞𝑖 . (4)

The input ciphertext is defined modulo 𝑄 , but the key switching

matrix will be defined with respect to the extended modulus 𝑄𝑃 .

A main concept of key switching is digit decomposition: we fix
some 𝑑 ∈ N (typically between 3 and 5) and define “base digits” as

𝐷𝑖 =

𝑖 ·ℓ/𝑑∏
𝑗=(𝑖−1) · (ℓ/𝑑)+1

𝑞 𝑗 ,

In this appendix, ℓ does not denote the number of slots.
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for 1 ⩽ 𝑖 ⩽ 𝑑 . For simplicity, we assume that ℓ is divisible by 𝑑 .

Note that each base digit is a product of ℓ/𝑑 primes 𝑞 𝑗 . Also let

�̂�𝑖 = 𝑄/𝐷𝑖 , �̂�−1𝑖 = (𝑄/𝐷𝑖 )−1 (mod 𝐷𝑖 ),
and

®𝐷 =

(
[�̂�−1

1
· �̂�1]𝑄 , . . . , [�̂�−1𝑑 · �̂�𝑑 ]𝑄

)⊤
.

We define the digit decomposition of 𝒖 ∈ R𝑄 as

𝐷−1 (𝒖) =
(
[𝒖]𝐷1

, . . . , [𝒖]𝐷𝑑

)⊤
.

An important observation is that〈
𝐷−1 (𝒖), ®𝐷

〉
= 𝒖 (mod 𝑄),

where ⟨·, ·⟩ denotes the dot product between left and right vector.

A.2 Fast Base Extension
During key switching, the input ciphertext is defined modulo𝑄 , but

the key switching matrix is defined modulo𝑄𝑃 . Therefore, we need

a procedure that extends the modulus temporarily by including all

factors of 𝑃 . This procedure is called fast base extension, and it is

shown in Algorithm 1. Given a polynomial 𝒂 ∈ R𝑄 in coefficient

representation, we extend it from R𝑄 to R𝑄𝑃 as follows:

FastBaseExt(𝒂, 𝑄, 𝑃) =
©«


ℓ∑︁
𝑖=1

[
𝒂 ·

(
𝑄

𝑞𝑖

)−1]
𝑞𝑖

· 𝑄
𝑞𝑖

𝑞 𝑗

ª®®¬
ℓ+𝑘

𝑗=ℓ+1

.

The algorithm assumes that

𝑄𝑖 =
𝑄

𝑞𝑖
and 𝑄−1𝑖 =

(
𝑄

𝑞𝑖

)−1
(mod 𝑞𝑖 )

are given in precomputed format. Note that the residue of 𝒂 moduli

𝑞𝑖 is denoted by 𝒂 (𝑖) , and that the accumulator on line 5 is implicitly

initialized to 0.

Algorithm 1 Fast base extension

Require: 𝒂 ∈ R𝑄 , 𝑄 and 𝑃

Ensure: 𝒂 ∈ R𝑄𝑃

1: function FastBaseExt(𝒂, 𝑄, 𝑃 )
2: for 𝑖 ∈ {1, . . . , ℓ} do
3: 𝒓 ← [𝒂 (𝑖) ·𝑄−1

𝑖
]𝑞𝑖

4: for 𝑗 ∈ {ℓ + 1, . . . , ℓ + 𝑘} do
5: 𝒂 ( 𝑗) ← [𝒂 ( 𝑗) + 𝒓 ·𝑄𝑖 ]𝑞 𝑗

⊲ MAC unit

6: end for
7: end for
8: return (𝒂 (1) , . . . , 𝒂 (ℓ+𝑘) ).
9: end function

A.3 Hybrid Key Switching
The high level idea of hybrid key switching is to provide a key

switchingmatrix that encrypts ®𝐷 ·𝒔 under 𝒔 ′. Now given a ciphertext

ct = (𝒄0, 𝒄1) = (−𝒄1 · 𝒔 + 𝑡𝒆 +𝒎, 𝒄1) ∈ R2𝑄 ,

we can decompose 𝒄1 into digits and multiply by the key switching

matrix to obtain an encryption of 𝒄1 · 𝒔 under 𝒔 ′. We add the result

to 𝒄0 to remove the term −𝒄1 · 𝒔, and obtain 𝒄 ′
0
= −𝒄 ′

1
· 𝒔 ′ + 𝑡𝒆′ +𝒎.

Following the above analysis, the key switching matrix is gener-

ated by the client as

−−→
evk = (−→𝒌0,

−→
𝒌1) ∈ R𝑑×2𝑄𝑃 ,

with

−→
𝒌0 = −−→𝒌1 · 𝒔 ′ + 𝑡−→𝒆 + 𝑃 ®𝐷 · 𝒔. To key switch a ciphertext, we

compute

−→𝒚 = 𝐷−1 (𝒄1) ∈ R𝑑𝑄 ,

and multiply it by both columns of the matrix

−−→
evk. Notice that −→𝒚 is

defined modulo 𝑄 , but the multiplications are performed with re-

spect to𝑄𝑃 . This is where the fast base extension from Algorithm 1

is used as a subroutine. So finally, key switching computes

c̃t = (�̃�0, �̃�1) =
(〈−→𝒚 ,−→𝒌0〉, 〈−→𝒚 ,−→𝒌1〉) ∈ R2𝑄𝑃 , (5)

and adds it to the original ciphertext as

ct′ =

([
𝒄0 +

�̃�0 + 𝑡𝜹0
𝑃

]
𝑄

,

[
�̃�1 + 𝑡𝜹1

𝑃

]
𝑄

)
∈ R2𝑄 , (6)

with 𝜹𝑖 = [−𝑡−1 �̃�𝑖 ]𝑃 . Note that the division by 𝑃 should be inter-

preted as a modulus switching step, which is necessary to bring

the ciphertext modulus back to 𝑄 .

Key switching relies on the NTT unit to convert between coeffi-

cient format and Double-CRT. In particular, fast base extension can

only be done in coefficient format, and is necessary in Equation 5

(to raise the ciphertext from𝑄 to𝑄𝑃 ) and in Equation 6 (to raise 𝜹𝑖
from 𝑃 to 𝑄𝑃 ).

B BOOTSTRAPPING DETAILS
This appendix includes extra details about ourMontgomery-friendly

bootstrapping algorithm. We first give the proof of Lemma 3.1,

presented in section 3.3. Then we give pseudocode for our new

bootstrapping technique. Finally, we explain how the parameters

of our method can be chosen in practice.

B.1 Proof of Lemma 3.1
Lemma 3.1. Let 𝑝 > 1 be a prime number, and let 𝑒 > 𝑟 ⩾ 1 and
𝑞 = 1 (mod 𝑝𝑒 ) be sufficiently high parameters. If (𝒄0, 𝒄1) is a BGV
encryption of 𝒎 with plaintext modulus 𝑝𝑟 and ciphertext modulus 𝑞,
then we can decrypt it by computing

𝒄 ′𝑖 ← [𝑝
𝑒−𝑟 𝒄𝑖 ]𝑞, 𝒘 ← [𝒄 ′

0
+𝒄 ′

1
·𝒔]𝑝𝑒 and 𝒎 ← [⌊𝒘/𝑝𝑒−𝑟 ⌉]𝑝𝑟 .

Here we use ⌊·⌉ for coefficient-wise rounding to the nearest integer.

Proof. Let 𝒖 = 𝒄 ′
0
+ 𝒄 ′

1
· 𝒔, then it follows that

𝒖 = 𝑝𝑒−𝑟 (𝒄0 + 𝒄1 · 𝒔) = 𝑝𝑒−𝑟 (𝒎 + 𝑝𝑟 𝒆) (mod 𝑞),
where we have used the definition of 𝒄 ′

𝑖
and Equation 1. Now we

make the reduction modulo 𝑞 explicit and write

𝒖 = 𝑝𝑒−𝑟 (𝒎 + 𝑝𝑟 𝒆) + 𝑞𝒓 (7)

for some 𝒓 ∈ R. Following the decryption procedure, we have

𝒘 = [𝒖]𝑝𝑒 = [𝑝𝑒−𝑟 (𝒎 + 𝑝𝑟 𝒆) + 𝑞𝒓]𝑝𝑒 = [𝑝𝑒−𝑟𝒎 + 𝒓]𝑝𝑒 ,
where we have used 𝑞 = 1 (mod 𝑝𝑒 ). Now we make the reduction

modulo 𝑝𝑒 explicit and write

𝒘 = 𝑝𝑒−𝑟𝒎 + 𝒓 + 𝑝𝑒 𝒕
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for some 𝒕 ∈ R. Again following the decryption procedure, we have

[⌊𝒘/𝑝𝑒−𝑟 ⌉]𝑝𝑟 = [𝒎 + ⌊𝒓/𝑝𝑒−𝑟 ⌉]𝑝𝑟 = 𝒎

where the last equation is correct if the coefficients of 𝒓 are up-

per bounded by 𝑝𝑒−𝑟 /2. Formally, we write this requirement as

| |𝒓 | |∞ ⩽ 𝑝𝑒−𝑟 /2, where | |𝒓 | |∞ denotes the uniform norm on the

coefficients of 𝒓 . So we need to find parameters 𝑒 and 𝑞 that satisfy

this requirement.

Applying the triangle inequality on Equation 7, we have

| |𝒓 | |∞ ⩽ | |𝒖/𝑞 | |∞ + ||𝑝𝑒−𝑟 (𝒎 + 𝑝𝑟 𝒆)/𝑞 | |∞
⩽ | | (𝒄 ′

0
+ 𝒄 ′1 · 𝒔)/𝑞 | |∞ + ||𝑝

𝑒−𝑟𝒎/𝑞 | |∞ + ||𝑝𝑒𝒆/𝑞 | |∞ .
(8)

The third term on the right-hand side of Equation 8 depends on the

remaining noise budget of (𝒄0, 𝒄1). Formally, we impose that the

noise rate is upper bounded as | |𝒆/𝑞 | |∞ ⩽ 𝐵1. The second term can

be made arbitrarily small by taking 𝑞 sufficiently high. Formally, we

impose | |𝒎/𝑞 | |∞ ⩽ 𝐵2. For the first term, recall that the coefficients

of 𝒔 are small, so let them be upper bounded by 𝐵3. Also note that

𝒄 ′
0
and 𝒄 ′

1
have coefficients in the set [−𝑞/2, 𝑞/2) ∩ Z. Moreover,

it is a well-known fact that multiplication modulo 𝑋𝑁 + 1 cannot
increase the norm more than a factor of 𝑁 (e.g., see Zucca [51]).

We combine these three insights to get

| | (𝒄 ′
0
+ 𝒄 ′1 · 𝒔)/𝑞 | |∞ ⩽ (1 + 𝐵3 · 𝑁 )/2.

Combining the three upper bounds, Equation 8 reduces to

| |𝒓 | |∞ ⩽ (1 + 𝐵3 · 𝑁 )/2 + 𝑝𝑒−𝑟𝐵2 + 𝑝𝑒𝐵1 .
Recall that our requirement was | |𝒓 | |∞ ⩽ 𝑝𝑒−𝑟 /2, so it suffices to

find parameters 𝑒 and 𝑞 such that

(1 + 𝐵3 · 𝑁 )/2 + 𝑝𝑒−𝑟𝐵2 + 𝑝𝑒𝐵1 ⩽ 𝑝𝑒−𝑟 /2. (9)

A set of example parameters shows that this inequality can be

satisfied: take 𝐵1 = 𝑝−𝑟 /8 and 𝐵2 = 1/8, then we are left with

(1 + 𝐵3 · 𝑁 )/2 ⩽ 𝑝𝑒−𝑟 /4.
Finally, we can choose the smallest possible value of 𝑒 that satisfies

this inequality and choose 𝑞 accordingly. □

B.2 Pseudocode
Our Montgomery-friendly bootstrapping needs one more subrou-

tine that is known as small Montgomery reduction. It was intro-

duced by Bajard et al. [5] and repeated here in Algorithm 2. It takes

as input a polynomial 𝒂 ∈ R𝑄𝑃 in coefficient representation, and

outputs 𝒂 · 𝑃−1 ∈ R𝑄 with coefficients reduced modulo a given

parameter𝑚. Specifically, the coefficients will be upper bounded

by (1 + 𝜖)𝑚/2 for some 𝜖 ≪ 1 that is not further specified here. We

need this subroutine for reduction modulo 𝑞 and 𝑝𝑒 in Lemma 3.1.

Note that the algorithm is defined with respect to 𝑄 and 𝑃 as in

Equation 4, and that the residue of 𝒂 moduli 𝑞𝑖 is denoted by 𝒂 (𝑖) .
Algorithm 3 gives the pseudocode for our Montgomery-friendly

bootstrapping. This is a direct translation of Lemma 3.1 to the

homomorphic domain, and it includes the following steps:

This small Montgomery reduction is not directly related to the fact that we use

Montgomery multipliers. In fact, we have even specified Algorithm 1 and Algorithm 2

assuming a standard reduction technique. When instantiating either algorithm with

Montgomery multipliers, we need to convert all residues out and in Montgomery

format whenever we reinterpret a variable modulo 𝑞𝑖 as a variable modulo 𝑞 𝑗 . In both

algorithms, this happens on the fifth line.

Algorithm 2 Small Montgomery reduction

Require: 𝒂 ∈ R𝑄𝑃 , 𝑄 , 𝑃 and𝑚 s.t. | |𝒂 | |∞ ≪ 𝑃 ·𝑚
Ensure: 𝒃 ∈ R𝑄 s.t. 𝒃 = 𝒂 · 𝑃−1 (mod𝑚) and | |𝒃 | |∞ ⩽ (1+𝜖)𝑚/2
1: function SmallMontRed(𝒂, 𝑄 , 𝑃 ,𝑚)

2: for 𝑖 ∈ {ℓ + 𝑘, . . . , ℓ + 1} do ⊲ Loop in reverse direction

3: 𝒓 ← [−𝒂 (𝑖) ·𝑚−1]𝑞𝑖
4: for 𝑗 ∈ {1, . . . , 𝑖 − 1} do
5: 𝒂 ( 𝑗) ← [(𝒂 ( 𝑗) +𝑚 · 𝒓) · 𝑞−1

𝑖
]𝑞 𝑗

⊲ MAC unit

6: end for
7: end for
8: return (𝒂 (1) , . . . , 𝒂 (ℓ) )
9: end function

• Line 4 multiplies the input ciphertext by 𝑝𝑒−𝑟 and an aux-

iliary modulus 𝑏. The auxiliary modulus is introduced for

compensation on line 7.

• Line 6 extends the ciphertext modulus from 𝑞 to 𝑄 · 𝑞 · 𝑏
using fast base extension from Algorithm 1. This procedure

can lead to undesired overflows modulo 𝑞, which causes

| |𝒅𝑖 | |∞ to be greater than 𝑞/2. This increases the tightness
of the bound in Equation 8, but fortunately, the overflows

can be compensated in the next step. Finally, note that this

step assumes that 𝑄 , 𝑞 and 𝑏 are pairwise coprime.

• Line 7 compensates for possible overflows modulo 𝑞 intro-

duced on line 6. The small Montgomery reduction has two

side effects: it decreases the modulus from 𝑄 · 𝑞 · 𝑏 to 𝑄 · 𝑞,
and the result gets an additional factor 𝑏−1 (mod 𝑞). The
latter was already compensated by the factor 𝑏 on line 4.

• Line 8 reduces the result modulo 𝑝𝑒 and further decreases

themodulus from𝑄 ·𝑞 to𝑞. Now the result gets no additional

factor since𝑞 = 1 (mod 𝑝𝑒 ). Note that this step is necessary
to minimize the noise growth in the next step.

• Line 10 takes the inner product between the ciphertext and

the secret key. The secret key is processed homomorphically

in the form of a bootstrapping key.

• Line 11 performs homomorphic coefficient-wise rounding.

This functionality is the same as in HElib, so we can reuse

its implementation. Note that this step dominates execution

time in practice.

B.3 Choice of Parameters
We have a few notes on the concrete choice of 𝑒 and 𝑞:

• The constraint from Equation 9 is in practice determined

by the first term. The reason is that we can choose 𝐵1 and

𝐵2 significantly lower than 𝐵3, by taking 𝑞 sufficiently high

and preventing the noise from growing to its maximum

level. Hence the concrete values of 𝑒 and 𝑞 mainly depend

on the secret key distribution and the ring dimension 𝑁 .

• The parameter selection from the proof is rigorous, so de-

cryption succeeds with 100% probability. However, the com-

plexity of bootstrapping increases with the magnitude of 𝑒 ,

so it is beneficial to take it as low as possible. Halevi and

Shoup [23] have therefore proposed a statistical analysis on

the first term of Equation 8. Leveraging their approach, we
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Algorithm 3Montgomery-friendly bootstrapping

Require: ct = (𝒄0, 𝒄1) ∈ R2𝑞 and bsk ∈ R2
𝑄
s.t. 𝑞 = 1 (mod 𝑝𝑒 )

Ensure: ct′ ∈ R2
𝑄
s.t. Dec(ct′) = Dec(ct)

1: function Bootstrap(ct, bsk)
2: for 𝑖 ∈ {0, 1} do
3: for 𝑗 ∈ {ℓ + 1, . . . , ℓ + 𝑘} do
4: 𝒅 ( 𝑗)

𝑖
← [𝒄 ( 𝑗)

𝑖
· 𝑝𝑒−𝑟 · 𝑏]𝑞 𝑗

5: end for
6: 𝒅𝑖 ← FastBaseExt(𝒅𝑖 , 𝑞,𝑄 · 𝑏)
7: 𝒄 ′

𝑖
← SmallMontRed(𝒅𝑖 , 𝑄 · 𝑞,𝑏, 𝑞) ⊲ Reduce mod 𝑞

8: 𝒄 ′
𝑖
← SmallMontRed(𝒄 ′

𝑖
, 𝑄, 𝑞, 𝑝𝑒 ) ⊲ Reduce mod 𝑝𝑒

9: end for
10: ct′ ← Add(Mul(bsk, 𝒄 ′

1
), 𝒄 ′

0
)

11: return ⌊ct′/𝑝𝑒−𝑟 ⌉ ⊲ Same as in HElib

12: end function

can choose 𝑒 based on a trade-off between time complexity

and probability of a bootstrapping failure.

• For a plaintext modulus of 15 bits or less, we can directly

take 𝑞 as a Montgomery-friendly prime that satisfies the

constraint of Lemma 3.1. For higher precision plaintext

spaces, this is not directly possible anymore since the na-

tive word size of BASALISC is 32 bits, and the constraint

𝑞 = 1 (mod 2𝑁 ) already consumes 17 bits. Hence we must

apply a brute force or meet-in-the-middle search for an

appropriate 𝑞 that factors into 32-bit Montgomery-friendly

primes. Since this is a tedious procedure, it would be benefi-

cial to weaken the constraint of Lemma 3.1 to gcd(𝑞, 𝑝𝑒 ) = 1.

This is possible, provided that we change the last equation

in Lemma 3.1 to

𝒎 ← [𝑞 · ⌊𝑞−1 ·𝒘/𝑝𝑒−𝑟 ⌉]𝑝𝑟

for 𝑞−1 · 𝑞 = 1 (mod 𝑝𝑒 ). We omit the adapted proof.

C COMPARISON TO HELIB
Table 8 compares BASALISC performance to HElib for the NTT, and

some basic and auxiliary homomorphic operations. Each operand

is a freshly encrypted ciphertext using the example parameter set

from Table 1. Note that the NTT benchmark converts an entire

ciphertext from coefficient representation to Double-CRT.

We achieve major speedups for all homomorphic operations. In

particular, we accelerate key switching - the most time-intensive

kernel - by a factor of 2.0 · 103.

Table 8: Performance comparison of HElib and BASALISC.

Operation HElib BASALISC Speedup

NTT 27 ms 11 `s 2.5 · 103×
Add/Sub 4 ms 8 `s 5.0 · 102×

Plaintext mul 159 ms 5 `s 3.2 · 104×
Mul (no key switch) 531 ms 20 `s 2.7 · 104×

Permutation (no key switch) 12 ms 11 `s 1.1 · 103×
Key switching 580 ms 292 `s 2.0 · 103×
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