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Abstract—Fully Homomorphic Encryption (FHE) allows for
secure computation on encrypted data. Unfortunately, huge
memory size, computational cost and bandwidth requirements
limit its practically. We present BASALISC, an architecture
family of hardware accelerators that aims to substantially
accelerate FHE computations in the cloud. BASALISC is the
first to implement the BGV scheme supporting fully-packed
bootstrapping – the noise removal capability necessary to sup-
port arbitrary-depth computation. We propose a generalized
version of bootstrapping that can be implemented directly
in our hardware, instantiated with Montgomery multipliers
that save 46% in silicon area and 40% in power consumption
compared to traditional approaches.

BASALISC is a three-abstraction-layer RISC architecture,
designed for a 1 GHz ASIC implementation and under-
way toward 150mm2 die tape-out in a 12nm GF process.
BASALISC’s four-layer memory hierarchy includes a two-
dimensional conflict-free inner memory layer that enables 32
Tb/s radix-256 NTT computations without pipeline stalls. Our
conflict-resolution permutation hardware is generalized and
re-used to compute BGV automorphisms without throughput
penalty. BASALISC also has a custom multiply-accumulate
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unit to accelerate BGV key switching. Both BASALISC’s
computation units and inner memory layers are designed in
asynchronous logic, allowing them to run at different speeds
to optimize each function.

The BASALISC toolchain comprises a custom compiler
and a joint performance and correctness simulator. To evaluate
BASALISC, we study its physical realizability, emulate and
formally verify its core functional units, and we study its
performance on a set of benchmarks. First, we evaluate a
single iteration of logistic regression training over encrypted
data – an application that translates to 513 bootstraps, 900K
high-level, or 27B low-level BASALISC instructions – showing
that BASALISC is only 3,500× slower than an Intel Xeon-
class processor running without data encryption. We also run
an individual bootstrapping operation, for which we show
a speedup of 4,000× over HElib - a popular software FHE
library.

Index Terms—fully homomorphic encryption, Brakerski-
Gentry-Vaikuntanathan, hardware accelerator, application-
specific integrated circuit



1. Motivation

Fully Homomorphic Encryption (FHE) [1]–[3] offers
the promise of confidentiality-preserving computation over
sensitive data in a variety of theoretical and practical ap-
plications, ranging from new cryptographic primitives to
machine learning as a service. Unfortunately, the utility of
FHE is severely limited by its high memory size, memory
bandwidth and high computational overhead. The typical
result - computation that runs many orders of magnitude
slower than insecure computation - prevents broad adop-
tion. Although new schemes have markedly improved FHE
performance [4]–[7], and highly optimized FHE libraries
[8]–[12] are now available, FHE still remains orders of
magnitude beyond acceptable performance limits for most
potential applications.

In other computational domains where performance
on general purpose processors is problematic, innovation
has turned to purpose-built accelerators, tuned to exploit
domain-specific characteristics of computation. DSP ac-
celerators, arguably starting with the Texas Instruments
TMS320 DSP family [13] in 1983, are perhaps the first ex-
ample of this approach. More recently, Graphics Processing
Units (GPUs) have become popular for accelerating video
stream processing and hash function computation. Our FHE
accelerator, BASALISC, follows this approach in pursuit of
bringing the throughput of FHE computation within an order
of magnitude relative to cleartext computation [14].

We summarize the key contributions of BASALISC as
follows:

• BASALISC accelerates BGV arithmetic for a large
range of parameters. BASALISC is a comprehensive
RISC-like architecture with a three-level instruction
set architecture (ISA) that allows for reasoning at
diverse levels of executive abstraction. In contrast to
prior accelerators, BASALISC is the first to support
and implement fully-packed BGV bootstrapping di-
rectly in hardware to enable unlimited-depth FHE
computations.

• We propose a novel version of bootstrapping that
is compatible with NTT-friendly primes. In contrast
to prior work, BASALISC instantiates its multipli-
ers exclusively to these NTT-friendly primes, which
saves 46% logic area and 40% power consumption.

• BASALISC implements a massively parallel radix-
256 NTT architecture, using a conflict-free layout, a
corresponding layout permutation unit, and a twiddle
factor generator. These units are deeply interleaved
with the on-chip memory and provide a record 32
Tb/s NTT throughput. In addition, we show that
we can efficiently generalize the required layout
permutation unit to compute BGV automorphisms
without additional silicon area.

• BASALISC adopts a four-level memory hierarchy
purpose-built to address common FHE memory bot-
tlenecks, including a mid-level 64 MB on-chip ci-
phertext buffer (CTB). At the lowest level, a mas-
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Figure 1: FHE used in a typical commercial application.

sively parallel multiply-accumulate unit with inte-
grated 16-entry register file allows accelerating tight
BGV key switching loops, asynchronously and in-
dependently of the CTB.

• BASALISC is placed and routed with 150mm2 die
size and 1 GHz operational frequency in a 12nm
low-power Global Foundries process. Critical hard-
ware logic is emulated and formally verified for cor-
rectness. We evaluate BASALISC on a bootstrapping
benchmark and a logistic regression application,
showing 4,000× speedup over an HElib software
reference.

2. Preliminaries

2.1. Fully Homomorphic Encryption

Fully Homomorphic Encryption (FHE) provides a sim-
ple use model to securely outsource computation on sensi-
tive data to a third party. Informally, the FHE model enables
a user to encrypt their data m into a ciphertext c = Enc(m),
then send it to a third party, who can compute on c. The
third party produces another ciphertext c′ encrypting f(m)
for some desired function f . We say that f was computed
homomorphically.

In FHE, the third party receives only ciphertexts and the
public key, but never the secret key that allows decryption.
As a result, the sensitive inputs are protected under the
security of the encryption scheme. Because the result of
the computation remains encrypted, the output also remains
unknown to the third party: only the holder of the secret
key can decrypt and access it. This scenario is illustrated in
Figure 1.

To achieve security, the ciphertexts of all FHE schemes
are noisy: during encryption, a small noise term is added
to the input data. Decryption can still recover the correct
result, provided that the noise is small enough. To evaluate
a function homomorphically, we represent the function in
terms of the operations provided by the scheme, typically
addition and multiplication, and compute these operations
on the encrypted inputs. Each operation increases the noise
in the resulting ciphertext, so we can compute only a limited
number of homomorphic operations before we reach the
limit of decryption failure.

Because multiplications increase ciphertext noise much
more than additions, we usually model noise growth by the



number of sequential multiplications only. If we compute
the product

∏L
i=1 mi homomorphically, then we say that the

computation requires multiplicative depth ⌈log2(L)⌉. This
is accomplished by writing the product in a tree structure,
with each leaf node representing one of the factors. In
general, there is a trade-off between computational cost and
tolerating a larger L: we can increase the FHE parameters
so that we obtain more multiplicative depth, but in doing so,
we make the homomorphic operations slower and the size
of ciphertexts larger.

To support the computation of functions regardless of
their multiplicative depth, FHE uses bootstrapping. This
operation reduces noise by decrypting a ciphertext homo-
morphically. Unfortunately, bootstrapping is very expensive,
so its use is often minimized. There are several techniques in
the FHE literature to slow down the noise growth, and thus
delay bootstrapping. In this work, we employ key switching
and modulus switching [4]. We note that bootstrapping and
key switching tend to heavily dominate computation and
data movement costs of an application: in a simple 1,024-
point, 10-feature logistic regression, we see that these tasks
account for over 95% of the computational effort and the
vast majority of data movement.

The key challenges in designing an efficient FHE scheme
are the high complexity of computation, the large ciphertext
expansion factor (large polynomials with integer coefficients
of 1000 bits or more), and the proportion of effort needed
in bootstrapping (or delaying it) in sufficiently complex
programs. In the remainder of this paper, we examine the
magnitude of these challenges and how they impact the
design of our FHE accelerator.

2.2. The BGV Cryptosystem

BASALISC targets the homomorphic encryption scheme
known as BGV [4]. Plaintexts and ciphertexts are repre-
sented by elements in the ring R = Z[X]/(XN+1) with N
a power of 2. Those elements are thus polynomials reduced
modulo XN + 1, and this modular reduction is implicit in
our notation. BGV guarantees finite data structures by also
reducing the coefficients: the plaintext space is computed
modulo t (denoted Rt), and the ciphertext space is a pair
of elements modulo q (denoted R2

q). Reduction modulo
m (with m = t or q) is explicitly denoted by [·]m. It
is always done symmetrically around 0, i.e., in the set
[−m/2,m/2) ∩ Z.

As with traditional ciphers, BGV has encryption and de-
cryption procedures to move between the plaintext space and
the ciphertext space. These operations are never executed
by the server doing outsourced computation and therefore
not implemented by BASALISC. However, it is necessary
to explain the ciphertext format in order to understand
homomorphic operations. A BGV ciphertext (c0, c1) ∈ R2

q

is said to encrypt plaintext m ∈ Rt under secret key s
(which has small coefficients) if

c0 + c1 · s = m+ te (mod q) (1)

for some element e that also has small coefficients. The term
e is called the noise, and it determines if decryption returns
the correct plaintext: as long as e has coefficients roughly
smaller than q/2t, the expression m+ te does not overflow
modulo q. We can therefore recover the plaintext uniquely
as m = [[c0 + c1 · s]q]t.

2.2.1. Basic Homomorphic Operations. Smart and Ver-
cauteren observed that for t = pr with p an odd prime,
the plaintext space Rt is equivalent to Zℓ

t for some ℓ that
divides N [15]. This technique is referred to as packing,
and it allows us to encode ℓ numbers into one plaintext
simultaneously. Addition and multiplication over tuples in
Zℓ
t are then performed component-wise. As a result, one

ciphertext can encrypt and operate on an entire tuple, which
leads to significant performance gains and memory reduc-
tions in practice.

When BGV is used in conjunction with packing, we
can define three basic homomorphic operations. Let (c0, c1)
and (c′0, c

′
1) be two ciphertexts encrypting the tuples

(m1, ...,mℓ) and (m′
1, ...,m

′
ℓ), then we have:

• Addition: we compute ([c0 + c′0]q, [c1 + c′1]q). The
encrypted plaintext is (m1 +m′

1, ...,mℓ +m′
ℓ).

• Multiplication: we compute ([c0 ·c′0]q, [c0 ·c′1+c1 ·
c′0]q, [c1 · c′1]q). The resulting ciphertext is a vector
of three elements, but this can be reduced back to
two with a post-processing step called key switching.
The encrypted plaintext is (m1 ·m′

1, ...,mℓ ·m′
ℓ).

• Permutation: we compute (ϕk(c0), ϕk(c1)), where
the map ϕk is called an automorphism. It is pa-
rameterized by an odd integer k, and defined as
ϕk : c(X) 7→ c(Xk). Gentry et al. [16] show that
these automorphisms induce a permutation on the
elements of the encoded tuple, so the output encrypts
some permutation of (m1, ...,mℓ). Although the re-
sulting ciphertext has only two elements, we still
need post-processing by means of key switching.

The validity of these three operations can simply be veri-
fied by observing their effect on Equation 1. We refer to
Zucca [17] for a more detailed analysis, including noise
growth of each operation.

2.2.2. Auxiliary Homomorphic Operations. Basic homo-
morphic operations lead to ciphertext expansion and noise
growth. Take for example a product ciphertext: it consists
of three elements and it is encrypted under (s, s2) instead
of s. The same problem occurs during permutation: the
automorphism ϕk has a side effect on the secret key, so the
resulting ciphertext is encrypted under ϕk(s). Also noise
growth is an issue: the noise term in a product ciphertext,
for example, has increased to te · e′.

To prevent ciphertext expansion, switch between keys
and slow down noise growth, BGV defines two auxiliary
procedures:

• Modulus switching: given a ciphertext (c0, c1) ∈
R2

q and a new modulus q′, we compute a ciphertext



(c′0, c
′
1) ∈ R2

q′ that decrypts with respect to q′.
Modulus switching also scales the noise by a factor
of q′/q.

• Key switching: given a key switching ma-
trix (

−→
k0,
−→
k1) and either a product ciphertext

(c0, c1, c2) ∈ R3
q or a permuted ciphertext

(c0, c1) ∈ R2
q , we compute a ciphertext (c′0, c

′
1) ∈

R2
q that decrypts under Equation 1. Thus key switch-

ing brings the ciphertext back to its original format.

In summary, modulus switching is run before each mul-
tiplication to reduce the noise to its minimum level. Key
switching is run after each permutation or multiplication
to keep the ciphertext format consistent. Again we refer to
Zucca [17] for a more detailed analysis.

2.2.3. Bootstrapping. When the entire noise budget of a
ciphertext is consumed (equivalently, when the modulus
q is depleted to its minimum value by successive mod-
ulus switchings), further homomorphic operations are no
longer immediately possible. We can overcome this problem
by means of a bootstrapping procedure that reduces the
noise back to a lower level [2]. Bootstrapping “refreshes”
a ciphertext by running decryption homomorphically: we
first evaluate an adapted version of Equation 1, followed
by coefficient-wise rounding. The currently most efficient
bootstrapping technique for BGV is implemented in the
HElib library [18].

2.2.4. Supported Parameter Sets. As a nod to Amdahl’s
Law (“make the common case fast”), hardware optimiza-
tion gains throughput benefits by supporting only a limited
range of commonly used parameters. We start with the
realization that at least 128-bit security must be supported
if BASALISC is to be interesting to real-world users. Based
on this observation, we choose a range of parameters that
allows for an efficient implementation, while still retaining
sufficient freedom for application design.

Recall that FHE has a trade-off between implementation
cost and supported complexity of computation: we can in-
crease the multiplicative depth L and the plaintext modulus
pr by taking sufficiently high N and q, but this makes the
homomorphic operations inherently slower. A typical range
for the ring dimension N , still offering sufficient flexibility,
is between 214 and 216. BASALISC settles on a maximum
value of N = 216, which allows us to choose ciphertext
moduli up to q = 21782 at 128-bit security level. This results
in a large number of multiplicative levels, even at a high-
precision plaintext space (e.g., 31 levels at plaintext modulus
pr = 1273 without bootstrapping; with bootstrapping, we
get an arbitrary number of levels).

Table 1 shows the full parameter range supported by
BASALISC and an example parameter set for illustration.
The largest ciphertext modulus that appears during the basic
homomorphic operations is denoted by Q; key switching,
however, increases the modulus to QP .1 Concretely, our

1. Extending the modulus to QP during key switching is a common
trick in FHE. More information is given in Appendix A.

TABLE 1: BASALISC parameter ranges and examples.

Parameter Range Example
Security parameter N/A 128 bits
Ring dimension N 512− 65536 65536

Plaintext modulus pr > 2 1273

Ciphertext packing ℓ 2− 65536 64 slots
Max log2(QP ) for key switching 20− 1782 1782 bits

Max log2(Q) for ciphertext 20− 1782 1263 bits
Max multiplicative depth L N/A 31

largest supported modulus is QP = 21782 (limited by the
128-bit security target). The smallest supported modulus is
6 · 217 + 1 – the smallest prime congruent to 1 modulo 217

(because of the restrictions that follow in Section 7.4).

3. Data Representation & Algorithms

Basic homomorphic operations use arithmetic in the
ring Rq, namely polynomial addition, multiplication and
automorphism. Polynomial addition is coefficient-wise, and
can be handled via vector addition directly. Multiplication
and automorphism are more complicated; fortunately, they
can be handled in the “frequency domain” via respectively
entry-wise multiplication and entry permutation [19].

We now explain two common tricks to accelerate opera-
tions in Rq. Section 3.1 explains how computations modulo
q can be split into many smaller moduli qi, based on the
Chinese Remainder Theorem. Section 3.2 explains conver-
sion between the polynomial and frequency domain, aiming
for efficient polynomial multiplication and automorphism.

3.1. Residue Number System

Suppose that the ciphertext modulus is q = q1 · . . . · qk,
where the factors are pairwise coprime numbers. It is a
well-known fact that computations in Rq can be reduced to
simultaneous computations in the smaller rings Rqi . More
specifically, we apply the Chinese Remainder Theorem to
work modulo each qi individually. This common optimiza-
tion is referred to as a Residue Number System (RNS) [20],
and brings an asymptotic speedup factor of O(k). It also
simplifies our architecture since the size of each qi is much
smaller than q (a typical value is 32 bits for qi versus more
than 1000 bits for q).

3.2. Number-Theoretic Transform

In order to perform efficient polynomial multiplication
in time O(N log(N)), we resort to the Number-Theoretic
Transform (NTT). The NTT is a generalization of the Fast
Fourier Transform (FFT) to finite fields2, and allows us
to use exact integer arithmetic, preventing round-off errors
typical of real-valued FFT computations. Similar to the FFT,

2. The NTT can also be interpreted in terms of the Chinese Remainder
Theorem, similarly to RNS. Hence, the combination of using RNS for fast
arithmetic modulo q and the NTT for fast polynomial arithmetic modulo
XN + 1, is often referred to as Double-CRT.



the NTT can be computed with the Cooley-Tukey algorithm
that recursively re-expresses an NTT of size N = N1N2 as
N2 inner NTTs of size N1, followed by N1 outer NTTs
of size N2. Before the outer NTT, each output of the inner
NTT is multiplied by a twiddle factor:

X[k1+N1k2] =

N2−1∑
n2=0

(
N1−1∑
n1=0

x[N2n1+n2]ω
n1k1

N1

)
ωn2k1

N ωn2k2

N2
.

(2)

By choosing N1 = 2 and N2 = N/2 at each recursive
decomposition or vice-versa, the well-known radix-two
Decimation-In-Time (DIT) and Decimation-In-Frequency
(DIF) algorithms are obtained, respectively.

The NTT can be naturally used for fast cyclic convolu-
tions (polynomial multiplication modulo XN−1). However,
BGV and other FHE schemes perform polynomial multipli-
cation modulo XN + 1, requiring negacyclic convolutions.
Negacyclic convolutions can still be implemented with a
regular NTT, additionally requiring to pre-multiply the two
input polynomials and post-multiply the output polynomial
by an extra set of twiddle factors [21].

3.3. Supported Word Size

Because of algebraic constraints, the NTT is only de-
fined for prime moduli that satisfy qi = 1 (mod 2N). We
refer to these special moduli as NTT-friendly primes. Since
we support up to N = 216, this puts a lower bound of 17
bits on the size of qi. Coupled with the requirement to have
a sufficient amount of moduli to reach log2(QP ) = 1782
bits, a simple analysis shows that we need qi of at least
26 bits. In practice, however, BASALISC employs 32-bit
moduli, because it gives a better utilization for the on-chip
memory buffer and simplified interaction with the external
memory. Furthermore, we find that both 26-bit and 32-bit
moduli result in the same complement of arithmetic units
within our silicon area budget. For the example parameter
set of Table 1, Q is a product of 42 primes and P is a
product of 14 additional primes.

3.4. Algorithmic Requirements for BASALISC

Based on the operations explained above, we conclude
that BGV requires three low-level building blocks:

• Entry-wise vector addition and multiplication
• Entry permutation within a vector
• The NTT to convert between polynomial and fre-

quency domain.

Section 7 explains how we map these three building blocks
naturally to three Processing Elements (PEs): the MAC PE,
Permutation PE and NTT PE, respectively. This very limited
instruction set, in conjunction with the determinism of FHE
programs, will make BASALISC’s design much simpler
than traditional CPUs.

Although we concentrated only on the basic homomor-
phic operations, the auxiliary ones are constructed from the
same instruction set. Key-switching, for example, incorpo-
rates both the MAC and NTT unit. Still, there is a large
complexity gap between the basic and auxiliary operations:
in practice, key switching dominates overall computation
and is more than 10× as expensive as ciphertext multipli-
cation.

4. NTT-Friendly Bootstrapping

Recall that the NTT is only defined for NTT-friendly
primes of the shape qi = 1 (mod 2N). BASALISC goes
even one step further by optimizing its Montgomery mul-
tipliers [22] for NTT-friendly primes. This design choice
is taken for area and power related reasons, and further
explained in Section 7.4. However, restricting the moduli
in this way is incompatible with all currently existing boot-
strapping methods for BGV [18], [23].

Consider for example the bootstrapping routine as imple-
mented in the HElib library [18]. Let the plaintext modulus
be t = pr, then bootstrapping evaluates an adapted version
of Equation 1 under the ciphertext modulus q = pe + 1
that is significantly smaller than Q. It also involves an exact
division by pr, which is implemented based on arithmetic
modulo pr. However, both pe + 1 and pr are not NTT-
friendly in general, so this cannot be done with our opti-
mized Montgomery multipliers.

We propose a generalized version of bootstrapping that
works with NTT-friendly primes exclusively. Our algorithm
is simpler than all current approaches, yet it can be evaluated
at exactly the same computational cost. The root of our
algorithm is a new decryption formula that has sufficient
degrees of freedom to take q as a product of NTT-friendly
primes and does not involve an exact division operation.
Consider the following lemma.

Lemma 4.1. Let p > 1 be a prime number, and let e > r ⩾
1 and q = 1 (mod pe) be sufficiently high parameters. If
(c0, c1) is a BGV encryption of m with plaintext modulus
pr and ciphertext modulus q, then it can be decrypted by
computing

c′i ← [pe−rci]q, w ← [c′0+c′1 ·s]pe , m← [⌊w/pe−r⌉]pr .

Here we use ⌊·⌉ for coefficient-wise rounding to the nearest
integer.

The first and second step in Lemma 4.1 are implemented
based on the techniques of Bajard et al. [20]. The third step
is identical to the bootstrapping algorithm from HElib [18].
More details such as the proof and pseudocode are deferred
to Appendix B.

We emphasize that NTT-friendly bootstrapping does not
influence the security of BGV and is related to efficient
implementation only. Since BGV is an exact homomor-
phic encryption scheme, security is defined in the IND-
CPA model [24], which depends on key generation and
encryption only. Our implementation does not change key



generation nor encryption, so security is guaranteed. The
argument is simple: all key material and ciphertexts are iden-
tical in the standard and NTT-friendly scenario. Therefore,
any attacker in the standard scenario could mimic the NTT-
friendly scenario. So if NTT-friendly bootstrapping were
insecure, the standard one would already be.

5. BASALISC Instruction Set Architecture

BASALISC is an adapted Reduced Instruction Set Com-
puter (RISC) architecture with a three-level instruction set.
This multi-level approach allows for reasoning at diverse
levels of abstraction, and aids in assuring correctness of
our system. Having a hierarchy of multiple intermediate
representations and instruction sets, each with well-defined
semantics, means that we can implement and test each stage
of the compiler toolchain separately. In addition, different
instruction set abstractions allow programmers to work at a
higher level of abstraction while allowing compiler writers
and library authors to reason about lower-level details such
as scheduling and optimizations easily. For example, when
writing a program to run on BASALISC, the programmer
need not know about low-level data representations. Specif-
ically, we generate and reason over three distinct levels of
instruction and typesystem abstraction.

• Macro-instructions are at the highest level, with the
largest data types and the most complex operations.
Entire ciphertexts, plaintexts, and key switching ma-
trices are treated as basic data types at this abstrac-
tion level. Operations include ciphertext addition,
multiplication, modulus and key switching, auto-
morphisms, and bootstrapping. Details about data
representation and algorithms that implement those
operations are opaque at this level of abstraction.

• Mid-level instructions expose the Double-CRT data
representation. The basic data type at this level is a
residue polynomial (a polynomial in RNS represen-
tation) comprising up to 216 32-bit polynomial coef-
ficients. Basic operations on these data types include
pointwise modular addition and multiplication on
vectors of coefficients; automorphisms; NTTs; and
multiply-accumulate iterations commonly used in
key switching. Also included in this list are memory
management instructions that Load and Store data to
and from off-chip memory.

• Micro-instructions correspond very closely with
the specific operations performed by the processing
elements (PEs). The basic data type at this level
contains as many coefficient words (1024 or 2048)
as can be processed simultaneously by a PE or
accessed in one on-chip memory cycle. Instructions
at this level are delivered via the Peripheral Com-
ponent Interconnect Express (PCIe) interface to the
BASALISC processor for execution. This instruction
level also includes rudimentary machine control in-
structions.

TABLE 2: BASALISC Example Opcodes. We omit operand
specifiers.

ISA Opcode Semantics
Macro LOAD Move data from distant to near memory

KSW Key switch a ciphertext
MORPH Perform automorphism on a ciphertext

Mid MULI Multiply a residue polynomial by constant
NTT Compute NTT of residue polynomial
FBE Fast Base Extension

Micro NTT1 Perform an iteration of the first pass of an NTT
MAC Multiply two operands, add result to accumulator

TABLE 3: BASALISC Micro-level operand addressing
modes.

Mode Definition
$XXX address in distant memory, used only for LOAD/STORE
rXXX address of chunk in middle memory
tXX register number in near memory

nXXX immediate 32-bit scalar
iXXX index into table of prime moduli

Table 2 shows examples of operation code mnemonics
(opcodes) from each of our instruction sets. Together with
opcodes, BASALISC uses operand specifiers with register-
like addressing modes for all levels in its ISA and memory
hierarchy. Table 3 shows examples of the addressing modes
for operand specifiers at the Micro-instruction level. At this
level, operands are either “chunks” of 2048 32-bit coeffi-
cients within a residue polynomial, 32-bit scalar values, or
natural number indices into tables of moduli.

6. BASALISC Hardware Design

Figure 2 shows a system diagram of BASALISC 1.0
– the first implementation in the BASALISC family.
BASALISC 1.0 is a single-chip FHE coprocessor, designed
in a 12nm Global Foundries process, with additional off-
chip memory; high-speed connectivity to its host system;
and extensibility via a high-speed inter-chip interconnect.
For its implementation, BASALISC employs a mature asyn-
chronous logic process controlled by standard handshaking
protocols [25], allowing units to accelerate to a higher clock
frequency whenever input data is available. In Section 7.3,
we describe how this key design choice greatly helps to
accelerate the costly BGV key-switching.

6.1. Memory Architecture

BASALISC includes four layers of memory hierarchy
that exhibit diverse latencies and capacities. Table 4 depicts
these four layers, where – typical of computer memory hier-
archies – lower latency layers have smaller capacities. From
farthest to nearest to the PEs, these four layers comprise off-
chip distant memory (DRAM), a middle memory Ciphertext
Buffer (CTB), as well as both a local Register File (RF) and
Accumulator register (ACC) within the MAC PE.

A significant difference between typical memory hier-
archies and that of BASALISC is the working set size that
each layer can hold. Still, we expect capacity limits of layers



Figure 2: BASALISC 1.0 System Diagram.

in our memory hierarchy to be a major limiter of system
performance. In particular, we expect minimal locality of
reference for key switching matrices, each of which is larger
than the entire CTB. We now describe the DRAM array and
the CTB, and defer the description of the MAC memory
architecture to Section 7.3.

TABLE 4: Memory hierarchy for ciphertext and key storage.

Memory Capacity Round-trip latency
Off-chip DRAM 256 GB > 100 ns

CTB 64 MB ∼3 ns
MAC RF 128 kB ∼1.25 ns

MAC ACC 8 kB 0.625 ns

6.1.1. Middle Memory – the CTB. The 64 MB CTB
contains 224 locations, each of which holds a 32-bit residue
polynomial coefficient. In our largest supported parameter
set, a single residue polynomial consists of N = 216 = 64K
coefficients and occupies one entire page of the CTB. For
smaller ring dimensions, a single CTB page will contain
multiple residue polynomials. The CTB is a single-port
SRAM array that can either read or write 2048 32-bit residue
polynomial coefficients every machine cycle, providing a
total bandwidth of 8 Tb/s (at 1 GHz operation) to our set
of data Processing Elements (PEs) shown in yellow.

Data-dependent control flow such as branching and iter-
ation does not exist in FHE since variables are encrypted.3
As an advantage of this determinism, allocation and size of
all data and operands are bound at compile-time. This allows
the BASALISC CTB to be structured as an addressable
set of ciphertext registers, instead of requiring the complex
functionality of a run-time cache memory. This set of reg-
isters is compiler-managed with a true Least-Recently Used
(LRU) replacement policy. CTB bandwidth is not materially
affected by concurrent transfer between distant memory and
the CTB: roughly at most 0.3% of CTB access cycles are
used by our total distant memory bandwidth.

6.1.2. Distant Memory – the DRAM array. The DRAM
serves as the staging area for data that is scheduled for

3. Branches in FHE must typically be translated to some form of
predicated execution.

processing and for results that are ready for retrieval by
the host computer. In addition, for many applications, the
64 MB CTB is too small to hold the sizeable working sets of
ciphertexts and key switching matrices. The DRAM array
ensures that CTB capacity misses do not have to spill to
host memory.

6.2. System Design

In contrast to other FHE hardware accelerators [26],
BASALISC 1.0 reduces cost and manufacturing risk by
relying only on commercially available standard packaging,
DRAM, and PCIe technologies and fits within 150mm2 [14].
From the top down, the BASALISC system can be described
in different levels of hierarchy (see Figure 2).

(Blue) The BASALISC System Board instantiates the
distant DRAM memory using two DDR4 subsystems, each
providing up to 128 GB of DRAM and 25.6 GB/s of band-
width. At bottom left of the diagram is the 26 GB/s (near-
peak) PCIe x16 channel that connects BASALISC to its host
and carries data and instructions. We expect applications
with a large working set to be performance-limited by our
DDR4 bandwidth. The twin DDR4 interfaces allow us to
maximize the practical throughput of the DRAM subsystem,
by avoiding collisions between the PCIe-to-DRAM and
FHE-to-DRAM access streams.

(Orange) The BASALISC ASIC includes JTAG I/O
for testing and debuging, a RISC-V CPU to configure
BASALISC at startup, and the controllers and physical
interfaces (PHYs) for DDR4 and PCIe. These PHYs connect
to the 512-bit wide Advanced eXtensible Interface 4 (AXI4)
interconnect that transfers data between the DDR, PCIe, and
the CTB. Both the AXI4 and CTB operate at a target cycle
time of 1 GHz. As a result, the AXI has a peak bandwidth
of 32 GB/s for each endpoint connection, all running in
parallel.

(Green) The BASALISC FHE Core Processor includes
the CTB, AXI4 infrastructure, and a Traffic Control Unit
(TCU). The TCU maintains a batch-queue instruction buffer
to manage instruction execution in the system. FHE pro-
grams are deterministic: the compiler knows in advance
about the flow of instructions and data in memory. This
allows the queue to be entirely compiler-managed and fairly
short (128 to 1024 instructions, depending on our perfor-
mance analysis). This results in a much simpler TCU design
than for a CPU.

7. BASALISC Processing Elements

BASALISC 1.0’s on-chip PEs and their connection to
the CTB are shown on the far right in Figure 2. The
BASALISC PEs that rely on the CTB for data are the
Multiply-Accumulate (MAC) PE (used in ciphertext addi-
tion, multiplication, and for kernels of operations such as
key switching); the Permutation PE (used to permute data
into preferred orders to achieve NTT processing, and also



used for automorphisms); and the NTT PE (used to accom-
plish number-theoretic transforms efficiently). We describe
their capabilities below.

Whereas Figure 2 shows single PE instances, their
implementation is a massively multicore architecture that
exploits innate parallelism in FHE ciphertext computations.
FHE arithmetic in RNS representation offers four types
of parallelism: (i) over multiple ciphertexts, (ii) over the
polynomials within a ciphertext, (iii) over the residue levels
of a polynomial, and (iv) over the coefficients of a residue
polynomial. Prior work has focused on (iii), instantiating
multiple so-called Residue Polynomial Arithmetic Units
(RPAUs) [27]–[29]. In contrast, BASALISC focuses on ex-
ploiting (iv), due to two key observations. First, the number
of residues decreases with the modulus level in the BGV
scheme, leading to would-be idle RPAUs as the computation
gets closer to bootstrapping. Second, as the lowest level
of parallelism, coefficient-level parallelism offers the best
opportunity to exploit locality of reference.

7.1. Number-Theoretic Transform PE

Because of the focus on coefficient-level parallelism,
BASALISC implements a high-radix NTT PE. We expect
that many BASLISC FHE applications will employ ring
dimension N = 65536 = 2562 to enable bootstrapping and
thus arbitrary-depth computation. Thus, our NTT PE em-
ploys a radix-256 butterfly, allowing us to compute 65536-
point NTTs with only two round trips to memory for each
coefficient. NTTs of smaller sizes can be computed through
shortcut paths in our NTT butterfly network.

Following the generalized Cooley-Tukey NTT descrip-
tion of Equation 2, a radix-256 NTT chooses N1 = N2 =
256. The main arithmetic NTT unit consists of a 256-point
NTT (that computes the inner N1-point NTT and outer N2-
point NTT) followed by 255 post-multipliers (that multiply
with the twiddles ωn2k1

N ). We employ a standard DIF flow
graph for the 256-point NTT, where we replace multipli-
cations ω0 = 1 with simple pipeline balancing registers.
Through this optimization, the N = 256-point sub-NTTs
are implemented with only 769 modular multipliers, instead
of N/2 log(N) = 1024.

As discussed in Section 3.2, additional pre- and post-
multiplication steps are required to construct negacyclic
forward and inverse NTTs from regular NTTs. Because a
radix-256 butterfly already includes an array of 255 post-
multipliers, it suffices to add 255 pre-multipliers to effi-
ciently support negacyclic NTTs. The result is a 3-stage
NTT architecture, as illustrated in Figure 3 for a scaled-
down radix-4 unit. In Figure 4, we illustrate how a radix-4
unit is composed to compute the full NTT flow graph in
two passes that each take 4 chunks. In between the passes
is an implicit memory transposition that we enable with a
conflict-free CTB design.

Our NTT PE instantiates four parallel 3-stage NTT units.
Each unit is deeply pipelined with 40 pipeline stages in order
to run at 2 GHz. Together, these four parallel pipes consume
1024 32-bit residue polynomial coefficients at that 2 GHz

ω1
4

4-point NTTPre-mul Post-mul

Figure 3: Radix-4 negacyclic NTT unit with pre- and post-
multiplier arrays.
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Figure 4: 16-point radix-4 negacyclic NTT flow graph. Extra
negacyclic twiddles (in blue) are decomposed into two pre-
multiply passes.

rate – sufficient to consume all available data bandwidth
from the CTB.

7.1.1. Conflict-Free Schedule. A well-known performance
inhibitor for NTTs is that successive NTT passes access
coefficients at different memory strides, introducing access
conflicts in memory. Prior NTT accelerators present custom
access patterns and reordering techniques that only work
for small-radix NTT architectures [30], [31] or require ex-
pensive in-memory transpositions [32]. BASALISC avoids
reinventing the wheel, instead building upon years of DSP
literature [33]–[35]. The most high-performance FFT ac-
celerators present conflict-free schedules [36]–[38] to tackle
this exact issue.

Conceptually, a N = N1N2 = 2562-point radix-256
NTT can be represented as a two-dimensional NTT, where
the data is laid-out with N1 = 256 rows and N2 = 256
columns. In this format, the inner N1-point NTT requires
coefficients in column-major order, whereas the outer N2-
point NTT requires data in row-major order. The crux of
building conflict-free NTT schedules is to structure the data
so that it can be read out in either order without bank
conflicts. This requires a minimum of 256 independently
addressable banks, each containing 216 bank addresses (for
a total CTB size of 224 values).

We employ a conflict-free layout based on XOR-
permutations [38], as illustrated in Figure 5. In this layout,
data with logical address {row, col} is stored at bank =
row ⊕ col. This layout ensures that each unique index for
every element in every row and column corresponds to a
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Figure 5: Example conflict-free CTB layout for a 16-point
radix-4 NTT. Data is striped using the equation bank =
row⊕ col, which ensures that both entire columns or entire
rows can be read out without bank conflicts. The on-the-fly
Permutation PE maps values from bank order into natural
order, as illustrated for access to the second column.

unique physically accessible bank of CTB SRAM.
When reading rows or columns from the CTB, values

come out of memory in bank order, one value for each bank
from bank 0 to 255. However, operations like NTT require
values in natural order: when accessing a row, we need
values sorted by column from 0 to 255, and when accessing
a column, we need values sorted by row from 0 to 255.
Thus, when accessing row r, we must map bank i to index
i ⊕ r. Likewise, when accessing column c, we must map
bank i to index i⊕ c.

We build a custom “on-the-fly” Permutation PE to com-
pute these XOR-based permutations as data moves to or
from the other PEs. Furthermore, we are the first to observe
a remarkable optimization opportunity for this unit. By
implementing a slightly more general permutation PE that
supports permutations of the form i 7→ (i · a + b) ⊕ c, we
can not only use the Permutation PE to implement conflict-
free XOR permutations, but also any BGV ring automor-
phism without additional hardware. The Permutation PE is
described in more detail in Section 7.2.

7.1.2. Twiddle Factor Factory. Similarly to polynomial
residue coefficients, twiddle factors in BASALISC are 32-
bit integers. There are N twiddle factors for each residue
for both forward and inverse NTT, and a maximum of
56 residues at max-capacity key switching, together re-
quiring ∼29.4 MB of twiddle factor material in a naive
implementation. Moreover, our four NTT units have 5116
multipliers total that must be fed each cycle with twiddles,
requiring massively parallel access into this storage memory.
BASALISC prevents this storage requirement in two ways.
First, we contribute new insights and a twiddle decompo-
sition method, that reduces the required parallel number
of distinct twiddle accesses. Second, we develop a custom
twiddle factor factory that drastically reduces the number
of twiddles stored. In the remainder, we analyze only the
forward NTT, but note that identical optimizations apply to
the inverted twiddles for the inverse NTT.

For a forward negacyclic NTT, each input xi is pre-
multiplied by the twiddle ϕi = ωi

2N . Using techniques
from the DSP literature [39], we propose to decompose the
additional negacyclic twiddles to extract a regular pattern,

and to distribute them evenly between the two NTT passes
in the flow graph. This is illustrated in Figure 4 by the extra
twiddles present in blue. The benefit of this technique is
twofold. Firstly, it can be seen that the pre-multiplications
become identical for each chunk in both passes. This allows
the four NTT units to share the same pre-multiply twiddles,
and drastically reduces the total number of pre-multiply
twiddles from N = 2562 to 2 ·

√
N , easily fitting in a small

SRAM. Second, the internal butterfly twiddles (powers of
ω256) are now a strict subset of the pre-multiply twiddle in
the first pass (powers of ω512). Both can therefore be routed
from the same small SRAM.

The remaining twiddle factor complexity sits in the post-
multiply twiddles. For each chunk k, there are 255 twiddles
ωik
2562 . An SRAM storing vectors of 255 twiddles with depth

255 for each residue is still much too large. We propose
a technique to reduce the width of this SRAM. It can
be coupled with techniques that reduce the depth of this
SRAM, such as On-the-fly-Twiddling (OT) [40]. To reduce
the width, we propose a power generator circuit that trades
SRAM storage for multipliers. The main idea is as follows.
By using the identity ωik

2562 = ωi
2562/k, it can be observed

that the required twiddles for chunk k are always the 255
consecutive powers of a seed value ω = ω2562/k. Using only
ω, we can compute its successive powers in a number of
multiply layers. The first layer computes ω2 from ω, with
a single multiplier. The second layer takes ω2 and ω to
compute ω4 and ω3, and so forth. Every multiplier in the
circuit produces a unique value that is used as an output, so
the number of multipliers to generate 255 powers from ω is
simply 254. Using this technique, instead of storing vectors
of 255 twiddles with depth 255 for each residue, it suffices
to store the single seeds with depth 255.

7.2. Permutation PE

A pair of Permutation PEs forms the interface between
the CTB and the other PEs. Our original contribution is a
slightly more generalized Permutation PE that can support
both conflict-free schedules required by NTT operations, as
well as BGV automorphisms with the same hardware. In
order to do so, the Permutation PE is generalized to compute
permutations of the form i 7→ (i·a+b)⊕c. Each permutation
unit reorders an array of input coefficients to produce a
permuted output array of the same length.

The Read Permutation PE unscrambles data in conflict-
free CTB bank ordering in order to pass it to the other
PEs expecting natural ordering. It is a specialized instance
of the more general Permutation PE that only implements
permutations i 7→ i ⊕ c, requiring values a = 1 and b =
0. The Write Permutation PE passes data in the opposite
direction. It implements the general permutation i 7→ (i ·
a+ b)⊕ c in order to re-scramble the data into its conflict-
free layout, or to compute ring automorphisms. In the latter
case, the output of the Read Permutation PE is fed directly
into the input of the Write Permutation PE to achieve the
complete operation of the automorphism.



Figure 6: Simplified Diagram of MAC PE architecture.

Each Permutation PE itself is split into two portions.
Firstly, the data-permutation portion of the logic is imple-
mented using 2x2 switch nodes placed using an Omega-
Network topology. Secondly, a configuration portion takes
constants a, b, and c in order to generate the routing pattern
for the switches in the network. The configuration portion
of the logic attaches the routing pattern to the data and
the combined payload word is sent through the network.
The switch nodes forward the data according to the least
significant bit of the pattern part of the payload data, which
is also removed before forwarding. Thus the message is
reduced by one bit at each stage of the network, and at
the end, the payload only contains the data portion.

7.3. Multiply-Accumulate PE

We realize modular addition and multiplication for FHE
in the Multiply-Accumulate (MAC) PE, shown in Figure 6.
This pipelined unit can start 2048 32-bit modular addition or
modular multiply operations each cycle, if data is available.
Because the MAC PE is built with asynchronous logic, it
free-runs at 1.6 GHz when not accessing the 1 GHz CTB.

Therefore, operations that read and/or write to the CTB
are limited by the 1 GHz CTB bottleneck, while other
operations that operate on local data (accumulator register
or register file) can accelerate to 1.6 GHz, without using
any additional logic. The asynchronous logic provides sig-
nificant area and latency savings over implementing wide
Clock Domain Crossings (CDCs) instead to achieve this
60% performance using a clocked approach. At left in the
figure, the 2048 a inputs, each 32-bit in size, come from
the CTB. The b inputs are replicated copies of a 32-bit
constant from the instruction stream. The MAC includes a
16-entry Register File (RF), shown at top in the figure. In
addition, there is a single accumulator register at the output
of the adder/subtractor/accumulator unit, shown at right in
the figure.

Using the multiplexers shown in the figure, this arrange-
ment can accomplish a variety of functions. Residue chunk
multiplication by or addition of a constant to each coefficient
can be accomplished at full rate: 2048 32-bit operations per
cycle. Multiplication or addition of chunks when both are
sourced directly from the CTB can be accomplished at half-
rate, using a register to buffer one operand from the CTB,
and directly feeding the second operand into the operation
from the CTB in a second read cycle. Acceleration of tight
kernels that repeatedly process the same chunks can be

TABLE 5: Area and power comparison of NTT single-
butterfly unit with original and optimized Montgomery mul-
tipliers at 1 GHz.

Multiplier Design Area TDP @0.72V, 125C
Unoptimized 3768 µm2 7.2 µW
Optimized 2052 µm2 4.3 µW

achieved by storing up to 16 different chunks in the RF
and then operating on them at full rate. Finally, the MAC
has a multiply-add capability similar to that often found in
digital signal processors, allowing double-rate processing: a
multiply and accumulate in every cycle. The above possi-
bilities are impacted by the write bandwidth needed to the
CTB for results. Write operations might occur as often as
for every chunk result, or much less often when the local
RF or the accumulator are used to store results during tight
kernel operations.

A particularly important example of kernel accelera-
tion in the MAC is key switching from Appendix A. Key
switching typically makes up the large majority of the
workload of an FHE program. The inner loop of our key
switching algorithm is the “fast base extension” subroutine
from Algorithm 1 that pre-computes a table of about 12
residue polynomials, and then computes many (around 40)
different weighted sums of those twelve values, with con-
stant weights. Use of the local registers in the MAC PE
and the compound multiply-accumulate function realizes a
44× improvement compared to a naive design. In addition,
this approach reduces the use of the CTB during fast base
extensions to 10.6% versus nearly 100%, saving 90% of the
CTB for use by the other PEs.

7.4. Modular Multiplier Arithmetic Optimization

Both the MAC and NTT Butterfly units use Montgomery
modular arithmetic, optimized for NTT-friendly primes [41],
and matched to our novel bootstrapping approach. Specifi-
cally, instead of supporting the full 32-bit prime value, the
multiplier is optimized to only support a subset compatible
with our approach, where the lower 17 bits of the prime are
fixed (bits 16:1 are tied to 0 and bit 0 is tied to 1). This
optimization of the Montgomery modular arithmetic saves
46% in area and 40% in power consumption compared to
a generic multiplier that can support all moduli. The results
are summarized in Table 5.

8. BASALISC Compilation and Simulation
Tools

Figure 7 shows the main components, languages, and in-
termediate data representations in the BASALISC software
toolchain. The dashed boxes in the figure represent our two
main software tools: Artemidorus is our compiler, which
takes input programs written in a Domain-Specific Language
(DSL) and outputs one of our three distinct instruction sets.
Simba is our simulator, which takes instruction traces as



Figure 7: BASALISC Software Toolchain.

input, and produces either a performance report or concrete
result values as output.

8.1. Artemidorus

As shown at top left in the figure, our toolchain begins
with high-level DSL that allows programmers to create
FHE applications for BASALISC to execute, and which
features data types including fixed-point numbers, vectors,
and matrices. The program passes through several stages in
Artemidorus. Bootstrap operations, vector operations, and
matrix operations are expanded into BGV primitives; key
switching operations are inferred; each operation is tagged
with the length of its modulus chain (i.e., the number
of prime factors in q), and then expanded into primitive
operations on individual residue polynomials for each factor
in the modulus; and finally memory regions and registers are
allocated and instructions are scheduled.

Artemidorus produces instruction traces at our three
levels of the ISA, which pass to Simba for performance or
correctness simulation. Especially Simba-micro, the micro-
level performance simulator shown on the bottom right,
presents an integral part of evaluating BASALISC at this
point in the design stage. We now describe it in detail.

8.2. Simba-micro

Our micro-level performance simulator employs a step-
based operational semantics to model the execution of the
BASALISC coprocessor. There are five basic operational
components: the CTB, and the four PEs (MAC, Read
Permutation, NTT, and Write Permutation). Each of these
components operates at a different internal frequency (Ta-
ble 6). The simulator models a micro-instruction’s life cycle
from instruction dispatch, to data transfer from CTB to the
appropriate functional unit, to proceeding down the pipeline,
to the “writeback” phase.

In order to account for the different clock rates of the
different components, we use a global “micro-clock” which
operates at 6 GHz as the time increment for the model’s

step function. We made the simplifying assumption that
the MAC operates at 1.5 GHz. In this way, we were able
to model each PE’s progress by causing the CTB to be
accessible every 6 micro-cycles, the MAC every 4 micro-
cycles, and the permutation/NTT units every 3 micro-cycles.
This behavior is modeled by supplying each component with
a wait counter which is reset to these values every time it
is accessed; the component is only accessible if the counter
is 0. If a component is accessible but has no work to do in
the given micro-cycle, it simply waits.

Each individual PE is modeled as a pipeline with a
certain number of stages and “stage capacity” (number of
coefficients that fit in each pipeline stage). The MAC’s stage
capacity is 2048 coefficients, while the other three have a
capacity of 1024. Every time the given PE is enabled (its
wait counter is 0), the pipeline advances. When there is a
write at the end of the pipeline, it stays at the end of the
pipeline until the CTB is available for writing.

Oftentimes, the CTB can be used for either reading
data or writing data in a given micro-cycle. This occurs
whenever the next instruction reads from the CTB, while
there is a write “waiting” at the end of either the MAC or
write permutation pipeline (or both). In this scenario, we
opted to always favor reads over writes; therefore in our
simulations, pipelines tend to fill up. Once a pipeline is full,
instruction dispatch is no longer possible to that pipeline,
and the control mechanism allows the pending writes to
occur. After execution, the following data is reported by
Simba-micro: number of CTB cycles (i.e., 6 micro-cycles)
of execution, overall CTB utilization (percentage of time
spent reading/writing/stalling), and utilization of each PE
(how “full” the pipelines are, broken down by % of time).

9. Evaluation of BASALISC

BASALISC is an architecture with an implementation-
in-progress but not delivered to silicon yet. We evaluate the
architecture and design of BASALISC in diverse ways at
this point in the design cycle.

9.1. Physical Realizability

One way to evaluate the design of BASALISC 1.0
and the BASALISC architecture is by a physical design
implementation in a practical semiconductor process, with a
reasonable target die size and operational frequency target.
One resulting evaluation criterion that can be objectively
measured using this approach is timing closure – the ver-
ification that, with placement and routing of key blocks
complete, and using industry best practice estimation of
inter-block wire delays based on a mature floorplan, the
design achieves a target operating frequency that yields
useful levels of performance. In the case of BASALISC 1.0,
we completed placement and routing of the novel circuitry
- our PEs - and the CTB RAM block. Our operational
frequency target was a minimum of 1.0 GHz at the standard
“slow-slow” (SS) process corner and a supply voltage of
0.72V in the 12nm low-power Global Foundries process.



TABLE 6: Performance characteristics of BASALISC hard-
ware elements.

Component fmax Area TDP @0.72V Throughput
CTB 1.0 GHz 77.9 mm2 9 W 2 × 32 Tb/s

MAC PE† 1.6 GHz 7.17 mm2 18.6 W 102 Tb/s
NTT PE 2.0 GHz 16 mm2 24.6 W 32 Tb/s

Permuation PE 2.0 GHz 0.16 mm2 ∼0 W 32 Tb/s
PCIe 500 MHz 12 mm2

5 W 26 GB/s
DDR 800 MHz 18.2 mm2 51 GB/s

Overall >1.0 GHz 150 mm2 57.5 - 115 W N/A
† Operation of PEs above the frequency of the CTB is advantageous

when they can run independently of the CTB.
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Figure 8: Floorplan of BASALISC 1.0 with all cells placed
and intra-block routing complete. Note that the MAC PE
and Permutation PE are interleaved within the CTB.

We achieved timing closure for the diverse functional units
at the frequencies given in Table 6.

Our floorplan shown in Figure 8 uses actual IP block
sizes for DDR4 DRAM, PCIe, our RAM array, and placed
and routed PEs. I/O pads are part of the DDR4/PCIe macros,
including bumps for power and ground. Interface clock trees
run along provisioned routing channels; other big clock trees
are avoided through asynchronous design. Everything is
drawn assuming 75% density, with a 200µm peripheral gap
accounting for process DRC rules, including crackstop, cor-
ners, and ESD protection. Our target die size is constrained
to 150mm2 with an aspect ratio of 2 : 1 or less [14], which
we achieve with a 14.4mm × 10.4mm layout that satisfies
both of those constraints.

9.2. Logic Emulation & Formal Verification

A commonplace verification step prior to ASIC man-
ufacturing provides yet another evaluation criterion: suc-
cessful hardware emulation of critical logic in the design.
In the case of BASALISC 1.0, that critical logic is the
set of processing elements (MAC, permutation, and NNT
PEs). We successfully emulated each PE in full, using
test vectors extracted from our Verilog testbenches and our

TABLE 7: Performance comparison of HElib and
BASALISC.

Operation HElib BASALISC Speedup
NTT 27 ms 11 µs 2.5 · 103×

Add/Sub 4 ms 8 µs 5.0 · 102×
Plaintext mul 159 ms 5 µs 3.2 · 104×

Mul (no key switch) 531 ms 20 µs 2.7 · 104×
Permutation (no key switch) 12 ms 11 µs 1.1 · 103×

Key switching 580 ms 292 µs 2.0 · 103×
Bootstrapping 160 s 40 ms 4.0 · 103×

Logistic regression N/A 40.5 s N/A

formal models of each PE. Each PE passed its emulation
test vector suite.

In addition to hardware emulation, BASALISC em-
ploys formal methods with two primary goals: first, that
the design be proven mathematically correct, and second,
that the design be proven consistent at every intermediate
representation by demonstrating proof of equivalence. For
both the mathematical and consistency proofs, BASALISC
employs the Cryptol language [42] and related tools.

In order to satisfy mathematical correctness, top-level
FHE algorithms are expressed as a mathematical model
in Cryptol. Subsequently, using Cryptol’s proof capabili-
ties, the mathematical model is proven to sustain a set of
separately-developed correctness definitions. Proof of equiv-
alence is provided through a two-step approach. First, formal
equivalence is proven between the high-level mathematical
Cryptol model and a low-level logic-oriented Cryptol de-
scription using SAW [43]. Next, the low-level Cryptol is
converted to Verilog that we prove equivalent to the opti-
mized implementation-Verilog using the commercial Syn-
opsys Formality tool.

9.3. Benchmark Performance Simulation

We evaluate BASALISC 1.0 performance on a set
of benchmarks: six micro-benchmarks covering the basic
and auxiliary homomorphic operations; and two macro-
benchmarks that are respectively a bootstrapping operation
and a single iteration of logistic regression training over
encrypted data. All results are generated using the example
parameter set from Table 1, resulting in ciphertext size 21
MB and key switching size 84 MB. Everything is summa-
rized in Table 7.

9.3.1. Micro-Benchmarks. The first part of Table 7 com-
pares BASALISC performance to HElib for a ciphertext
NTT, and some basic and auxiliary homomorphic opera-
tions. Each operand is a freshly encrypted ciphertext.

We achieve major speedups for all homomorphic oper-
ations. In particular, we accelerate key switching - the most
time-intensive kernel - by a factor of 2.0 · 103×.

9.3.2. Macro-Benchmarks. We estimate execution time for
respectively a bootstrapping operation and a single iteration
of logistic regression training over encrypted data. Both
benchmarks require bootstrapping: we rely on HElib’s thin



bootstrapping procedure [18] for encryption of tuples in Zℓ
t ,

but adapted to our NTT-friendly approach. The comparison
to HElib is summarized in the second part of Table 7.

Thin bootstrapping. We evaluate thin bootstrapping,
where we set the parameter from Section 4 to e = 4. Using
our Simba-micro simulator, bootstrapping consumes only
40ms of execution time. In comparison, HElib takes 160s
to bootstrap a single ciphertext with comparable parameters
on an Intel Xeon E5-2630 v2 CPU at 2.6 GHz running a
single thread. Hence, we achieve a speedup of 4,000 times.

Logistic regression. We estimate execution time on one
iteration of secure logistic regression training. We use the
algorithm from Chen et al. [44] on a 1,024-sample, 10-
feature infant mortality data set from the US Centers for
Disease Control. We apply three changes to the original
algorithm: we replace the FV scheme by the BGV scheme;
we replace sign extraction by an improved variant that has
higher precision; and we replace the sigmoid function by the
piece-wise linear approximation over [−63, 64] that is shown
in Figure 9. These three changes were made for conformity
with the DARPA DPRIVE program [14].

The single iteration of logistic regression training in-
cludes 513 bootstrapping operations. However, we point out
that this application requires a variant of bootstrapping that
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Figure 9: Sigmoid and PL
approximation.

is heavier than our
micro-benchmark, and
adapted to fixed-point
arithmetic [44]. As a
BASALISC instruction
trace, the logistic
regression is composed of
900K high-level, 800M
mid-level, and 27B micro-
level instructions. Table 8
shows how the sigmoid is
broken down into mid-level
BASALISC instructions.
Each sigmoid accounts for 2 of the 513 bootstrappings in
the entire instruction trace.

Again, we evaluate the resulting micro-level trace us-
ing our cycle-accurate simulator Simba-micro. The trace

TABLE 8: Sigmoid
mid-level instructions.

ADD 218,650
SUB 150
MUL 120,948
MORPH 3192
NTT 114,389
INNT 17,954
CONVERT 56,204
FBE 1,787

consumes 40.5s of simulated
execution time: 3,491 times
slower than running the same
algorithm on a single core Intel
Xeon Silver 4210R CPU at 2.4
GHz without using FHE. Com-
parison to HElib is difficult, be-
cause this application uses the
fixed-point variant of bootstrap-
ping that is not present in HE-
lib. However, since the bench-
mark is dominated by boot-

strapping operations, we expect a similar speedup of around
4,000 times over software implementations.

9.4. Related Work

As part of BASALISC’s evaluation, we attempt a com-
parison to prior and concurrent FHE accelerators. This com-
parison is complicated, because many architectures do not
report bootstrapping benchmarks or simply do not support
it [29], [31], [45]–[51]. These architectures support only
unrealistically small parameter sets, often allowing them
to fully compute on-chip. Furthermore, not all accelerators
implement full FHE computations, but rather individual
computations such as the NTT. As one outcome, these
other approaches require frequent interaction with a host
processor to sequence operations and combine results. In
this category, HEAWS [51] reports a 5.5× speedup over a
software reference for a low-complexity neural network with
multiplicative depth 4. HEAX [31] achieves more significant
acceleration numbers, in the order of 200× for high-level
operations such as key switching, compared to SEAL [8].
Another recent accelerator, Medha [29], shows a 130×
speedup for ciphertext multiplication.

Other accelerators that support bootstrapping implement
the homomorphic scheme CKKS, and are again complicated
to compare with ours. Although CKKS and BGV are very
similar at first glance, there are some important lower-level
differences. Therefore, an accelerator for one scheme may
not necessarily support the other one.

BTS [52] is specially tailored to implement CKKS with
a large 374 mm2 area budget – 2.5× of ours. BTS uses
a grid-based microarchitecture that lays out 2,048 PEs as
32 by 64. Conceptually, this architecture is much more
complex than the simple vector architecture of BASALISC.
Each PE unit has a local SRAM memory, an NTT unit, a
“base extension” unit, adders, and multipliers. This incurs a
lot of communication between the PEs, so to simplify the
data movement management, they treat the entire output of
each PE as a “package of coefficients”. This restricts the
automorphisms that BTS can evaluate to a subset of only
half the size of the automorphism group. While sufficient
for CKKS, BTS cannot compute all automorphisms used
in BGV bootstrapping. We note that BTS uses On-the-
fly Twiddling (OT) [40] to store twiddle factors. As we
mentioned in Section 7.1.2, this technique can be further
combined with our more efficient twiddle factor factory, to
drastically reduce the requirements of twiddle factor storage
even more. Even at the larger area budget, BTS reports sim-
ilar speedups to BASALISC. Respectively, in a first bench-
mark involving ciphertext multiplication and bootstrapping,
and a second logistic regression training benchmark, BTS
outperforms the Lattigo software library by 2,237× and
1,306×.

The architecture that is closest to ours is F1 [32]. F1 is
an ASIC architecture targeting the same die size (150mm2),
technology node (12nm GF), clock frequency (1 GHz),
and it also implements bootstrapping. Whereas our macro-
benchmark shows that BGV bootstrapping takes 40ms in
BASALISC 1.0, F1 [32] reports a bootstrapping time of
only 2.4ms. However, these numbers are not comparable:
F1 provides lower security (4× smaller ring dimension N )



and supports a plaintext space of only 1 bit with no packing.
BASALISC supports plaintext modulus 1273 with packing
capability. We stress that essentially all applications of FHE
use packing to speed up the homomorphic evaluation, there-
fore, not supporting packed bootstrapping severely limits the
use cases of F1. BASALISC is the first accelerator to imple-
ment packed bootstrapping for BGV directly in hardware.
F1 also scales poorly to larger parameter sets: it is optimized
for simple BV key-switching, which is less efficient than our
hybrid key-switching for high-depth computations [53]. Our
asynchronous MAC PE with local RF is key to accelerating
hybrid key-switching, resulting in a 44× improvement over
running hybrid key-switching on F1’s set of PEs.

A key novel aspect of our accelerator is the conflict-
free CTB and NTT, with the corresponding Permutation PE
that reuses the same hardware for NTT and automorphism.
Compared to F1’s FFT algorithm, we avoid an expensive
matrix transpose unit, by computing the same transpose
directly within the CTB with our conflict-free schedule. F1’s
matrix transpose unit must buffer entire ciphertext polyno-
mials within the NTT PE, which we found prohibitive for
our parameter set. Apart from a simpler and more efficient
NTT algorithm, BASALISC also features a more performant
NTT butterfly. F1 reports 2.27mm2 for their radix-128 NTT
unit at 1 GHz. A single XYZ radix-256 unit measures 4mm2

– scaling down to 1.75mm2 for radix-128 – and, thanks to
our asynchronous design, runs at 2 GHz. We expect further
savings due to our new twiddle factor factory; F1 does
not describe how they implement their large twiddle factor
SRAM.

Finally, a recent study by De Castro et al. highlighted the
memory bottleneck of FHE acceleration [54]. The starting
point for their analysis is a CPU-like architecture, where
ciphertexts do not fit in the Last-Level Cache (LLC). How-
ever, BASALISC’s compiler-managed on-chip CTB is very
different from a typical LLC. Moreover, at 64 MB, we are
able to fit several ciphertexts within the CTB. Nevertheless,
we also observe in BASALISC that data movement of key
switching matrices will often be the practical bottleneck of
FHE applications.

10. Conclusion

FHE enables new privacy-preserving applications, but
its adoption is limited because of high computational costs.
BASALISC accelerates FHE computations by more than
three orders of magnitude over CPU performance, and
thereby takes a step toward practical feasibility.

In contrast to prior works, BASALISC supports all
BGV operations, including fully-packed bootstrapping, in
a single ASIC architecture. Our design includes a complete
memory hierarchy, and an ISA that supports different levels
of abstraction. Moreover, we propose several new hardware
improvements: we implement a 32 Tb/s NTT architecture,
and show that its permutation unit can be generalized to
compute BGV automorphisms without additional area. We
also save over 40% in area and power consumption by
restricting our multipliers to NTT-friendly primes. We show

that this optimization still allows BGV bootstrapping, and
therefore does not compromise the generality of our design.

We evaluate the design of BASALISC for correctness
and performance. Our functional units are emulated and
formally verified to meet their specification. We also simu-
late performance on two FHE benchmarks, showing at least
4,000 times speedup compared to classical software imple-
mentations. BASALISC has been selected as a candidate for
future fabrication of an IC that can be applied in real-world
applications.

Acknowledgment

This material is based upon work supported by the
Defense Advanced Research Projects Agency (DARPA) un-
der Contract No. HR0011-21-C-0034. The views, opinions,
and/or findings expressed are those of the authors and should
not be interpreted as representing the official views or poli-
cies of the Department of Defense or the U.S. Government.
This work was additionally supported in part by CyberSecu-
rity Research Flanders with reference number VR20192203
and the Research Council KU Leuven (C16/15/058). Michiel
Van Beirendonck is funded by Research Foundation – Flan-
ders (FWO) as Strategic Basic (SB) PhD fellow (project
number 1SD5621N).

References

[1] R. L. Rivest, L. Adleman, M. L. Dertouzos et al., “On data banks and
privacy homomorphisms,” Foundations of secure computation, vol. 4,
no. 11, pp. 169–180, 1978.

[2] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in
Proceedings of the 41st Annual ACM Symposium on Theory of
Computing, STOC 2009, Bethesda, MD, USA, May 31 - June 2,
2009, M. Mitzenmacher, Ed. ACM, 2009, pp. 169–178. [Online].
Available: https://doi.org/10.1145/1536414.1536440

[3] M. Albrecht, M. Chase, H. Chen, J. Ding, S. Goldwasser, S. Gor-
bunov, S. Halevi, J. Hoffstein, K. Laine, K. Lauter, S. Lokam, D. Mic-
ciancio, D. Moody, T. Morrison, A. Sahai, and V. Vaikuntanathan,
“Homomorphic encryption security standard,” HomomorphicEncryp-
tion.org, Toronto, Canada, Tech. Rep., November 2018.

[4] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(leveled) fully
homomorphic encryption without bootstrapping,” ACM Transactions
on Computation Theory (TOCT), vol. 6, no. 3, pp. 1–36, 2014.

[5] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène, “TFHE:
Fast fully homomorphic encryption over the torus,” vol. 33, no. 1,
pp. 34–91, Jan. 2020.

[6] C. Bonte, I. Iliashenko, J. Park, H. V. L. Pereira, and N. P. Smart,
“Final: Faster fhe instantiated with ntru and lwe,” Cryptology ePrint
Archive, Report 2022/074, 2022, https://ia.cr/2022/074.

[7] J. H. Cheon, A. Kim, M. Kim, and Y. Song, “Homomorphic en-
cryption for arithmetic of approximate numbers,” in Advances in
Cryptology – ASIACRYPT 2017, T. Takagi and T. Peyrin, Eds. Cham:
Springer International Publishing, 2017, pp. 409–437.

[8] “Microsoft SEAL (release 4.0),” https://github.com/Microsoft/SEAL,
Mar. 2022, microsoft Research, Redmond, WA.

[9] S. Halevi and V. Shoup, “Algorithms in helib,” in Advances in
Cryptology - CRYPTO 2014 - 34th Annual Cryptology Conference,
Santa Barbara, CA, USA, August 17-21, 2014, Proceedings, Part I,
ser. Lecture Notes in Computer Science, J. A. Garay and R. Gennaro,
Eds., vol. 8616. Springer, 2014, pp. 554–571. [Online]. Available:
https://doi.org/10.1007/978-3-662-44371-2 31

https://doi.org/10.1145/1536414.1536440
https://ia.cr/2022/074
https://github.com/Microsoft/SEAL
https://doi.org/10.1007/978-3-662-44371-2_31


[10] “Lattigo v3,” Online: https://github.com/tuneinsight/lattigo, Apr.
2022, ePFL-LDS, Tune Insight SA.

[11] I. Chillotti, M. Joye, D. Ligier, J.-B. Orfila, and S. Tap, “Concrete:
Concrete operates on ciphertexts rapidly by extending tfhe,” in WAHC
2020–8th Workshop on Encrypted Computing & Applied Homomor-
phic Cryptography, vol. 15, 2020.

[12] Y. Polyakov, K. Rohloff, and G. W. Ryan, “Palisade lattice cryptog-
raphy library user manual,” 2017.

[13] K.-S. Lin, G. Frantz, and R. Simar, “The tms320 family of digital
signal processors,” Proceedings of the IEEE, vol. 75, no. 9, pp. 1143–
1159, 1987.

[14] T. Rondeau, “Data protection in virtual environments (DPRIVE),”
2020.

[15] N. P. Smart and F. Vercauteren, “Fully homomorphic simd opera-
tions,” Designs, codes and cryptography, vol. 71, no. 1, pp. 57–81,
2014.

[16] C. Gentry, S. Halevi, and N. P. Smart, “Fully homomorphic encryption
with polylog overhead,” in Annual International Conference on the
Theory and Applications of Cryptographic Techniques. Springer,
2012, pp. 465–482.

[17] V. Zucca, “Towards efficient arithmetic for ring-lwe based homomor-
phic encryption,” Ph.D. dissertation, Sorbonne université, 2018.
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[47] Y. Doröz, E. Öztürk, and B. Sunar, “Accelerating Fully Homomorphic
Encryption in Hardware,” IEEE Transactions on Computers, vol. 64,
no. 6, pp. 1509–1521, Jun. 2015, 72 citations (Semantic Scholar/DOI)
[2022-04-29].

[48] S. Sinha Roy, F. Turan, K. Jarvinen, F. Vercauteren, and I. Ver-
bauwhede, “FPGA-Based High-Performance Parallel Architecture for
Homomorphic Computing on Encrypted Data,” in 2019 IEEE In-
ternational Symposium on High Performance Computer Architecture
(HPCA), Feb. 2019, pp. 387–398, 50 citations (Semantic Scholar/-
DOI) [2022-04-29].

[49] S. Sinha Roy, K. Järvinen, J. Vliegen, F. Vercauteren, and I. Ver-
bauwhede, “HEPCloud: An FPGA-Based Multicore Processor for FV
Somewhat Homomorphic Function Evaluation,” IEEE Transactions
on Computers, vol. 67, no. 11, pp. 1637–1650, Nov. 2018, 25 citations
(Semantic Scholar/DOI) [2022-04-29].

[50] S. Sinha Roy, K. Järvinen, F. Vercauteren, V. Dimitrov, and I. Ver-
bauwhede, “Modular Hardware Architecture for Somewhat Homo-
morphic Function Evaluation,” in Cryptographic Hardware and Em-
bedded Systems – CHES 2015, ser. Lecture Notes in Computer
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Appendix A.
Key Switching Procedure

Key switching transforms a ciphertext ct encrypting a
plaintext m under a key s, into a ciphertext ct′ encrypting
the same plaintext under a different key s′. In practice, we
usually switch from s2 (for multiplication) or from ϕk(s)
(for automorphism) to the original secret key. We need an
auxiliary data structure called key switching matrix, which is
essentially a set of encryptions of s under s′. A high level
description of various key switching methods is given in
Appendix B by Kim et al. [53]. BASALISC implements the
hybrid key switching method from Appendix B.2.3, which
we review here.

A.1. High-Level Overview

The idea is to provide a key switching matrix that
encrypts multiples of s under s′. Then given a ciphertext

ct = (c0, c1) = (−c1 · s+ te+m, c1) ∈ R2
Q,

we can decompose c1 into digits and multiply by the key
switching matrix to obtain an encryption of c1 · s under s′.
We add the result to c0 to remove the term −c1 · s, and
obtain c′0 = −c′1 · s′ + te′ +m.

For reasons related to noise growth, key switching is
done with respect to the modulus QP , which is larger than
the original ciphertext modulus Q. That is, we consider two
coprime moduli

Q =

ℓ∏
i=1

qi and P =

ℓ+k∏
i=ℓ+1

qi. (3)

Since the input ciphertext is only defined modulo Q, we
need a procedure to extend the ciphertext residues from Q
to QP . This procedure is known as fast base extension, and
explained in the next section.

A.2. Fast Base Extension

Algorithm 1 shows the procedure for fast base extension
from Q to QP . Given an element a ∈ RQ in polynomial
representation, we extend it as follows:

FastBaseExt(a, Q, P ) =

[ ℓ∑
i=1

bi ·
Q

qi

]
qj

ℓ+k

j=ℓ+1

,

where

bi =

[
a ·
(
Q

qi

)−1
]
qi

.

The algorithm assumes that

Qi =
Q

qi
and Q−1

i =

(
Q

qi

)−1

(mod qi)

https://doi-org.kuleuven.e-bronnen.be/10.1145/2527269.2527277
http://arxiv.org/abs/2112.15479
http://arxiv.org/abs/2112.06396


are given in precomputed format. Note that the residue of
a moduli qi is denoted by a(i), and that the accumulator on
line 5 is implicitly initialized to 0.

Next to the MAC unit, fast base extension also relies on
the NTT unit to convert between polynomial and Double-
CRT representation. This is necessary because we mix
residues defined with respect to distinct moduli, which can
only be computed in polynomial format.

Algorithm 1 Fast base extension

Input: a ∈ RQ, Q and P
Output: a ∈ RQP

1: function FASTBASEEXT(a, Q, P )
2: for i ∈ {1, . . . , ℓ} do
3: r ← [a(i) ·Q−1

i ]qi
4: for j ∈ {ℓ+ 1, . . . , ℓ+ k} do
5: a(j) ← [a(j) + r ·Qi]qj ▷ MAC unit
6: end for
7: end for
8: return (a(1), . . . ,a(ℓ+k)).
9: end function

Appendix B.
Bootstrapping Details

This appendix includes extra details about our NTT-
friendly bootstrapping algorithm. We first give the proof of
Lemma 4.1, presented in Section 4. Then we give pseu-
docode for our new bootstrapping technique. Finally, we
explain how the parameters of our method can be chosen in
practice.

B.1. Proof of Lemma 4.1

Lemma 4.1. Let p > 1 be a prime number, and let e >
r ⩾ 1 and q = 1 (mod pe) be sufficiently high parameters.
If (c0, c1) is a BGV encryption of m with plaintext modulus
pr and ciphertext modulus q, then it can be decrypted by
computing

c′i ← [pe−rci]q, w ← [c′0+c′1 ·s]pe , m← [⌊w/pe−r⌉]pr .

Here we use ⌊·⌉ for coefficient-wise rounding to the nearest
integer.

Proof. Let u = c′0 + c′1 · s, then it follows that

u = pe−r(c0 + c1 · s) = pe−r(m+ pre) (mod q),

where we have used the definition of c′i and Equation 1.
Now we make the reduction modulo q explicit and write

u = pe−r(m+ pre) + qr (4)

for some r ∈ R. Following the decryption procedure, we
have

w = [u]pe = [pe−r(m+ pre) + qr]pe = [pe−rm+ r]pe ,

where we have used q = 1 (mod pe). Now we make the
reduction modulo pe explicit and write

w = pe−rm+ r + pet

for some t ∈ R. Again following the decryption procedure,
we have

[⌊w/pe−r⌉]pr = [m+ ⌊r/pe−r⌉]pr = m

where the last equation is correct if the coefficients of r
are appropriately upper bounded. Formally, we write this
requirement as ||r||∞ < pe−r/2, where ||r||∞ denotes the
uniform norm on the coefficients of r. So we need to find
parameters e and q that satisfy this requirement.

Applying the triangle inequality on Equation 4, we have

||r||∞ ⩽ ||u/q||∞ + ||pe−r(m+ pre)/q||∞
⩽ ||(c′0 + c′1 · s)/q||∞ + ||pe−rm/q||∞ +

||pee/q||∞.

(5)

The first term on the right-hand side of Equation 5 can
easily be upper bounded, depending on the magnitude of
the secret key coefficients. The second term can be made
arbitrarily small by choosing q sufficiently large. The third
term depends on the remaining noise budget of (c0, c1), and
can be controlled by invoking bootstrapping early enough.
Finally, we choose e as the smallest value such that pe−r/2
is larger than the sum of these three upper bounds.

B.2. Small Montgomery Reduction

Our NTT-friendly bootstrapping needs one more sub-
routine that is known as small Montgomery reduction.4 It
was introduced by Bajard et al. [20] and repeated here in
Algorithm 2. It takes as input an element a ∈ RQP in
polynomial representation, and outputs a · P−1 ∈ RQ with
coefficients reduced modulo a given parameter m. Specifi-
cally, the coefficients will be upper bounded by (1+ ϵ)m/2
for some ϵ ≪ 1 that is not further specified here. We need
this subroutine for reduction modulo q and pe in Lemma 4.1.
Note that the algorithm is defined with respect to Q and P
as in Equation 3, and that the residue of a moduli qi is
denoted by a(i).

4. This small Montgomery reduction is not directly related to the fact
that we use Montgomery multipliers. In fact, we have even specified Algo-
rithm 1 and Algorithm 2 assuming a standard reduction technique. When
instantiating either algorithm with Montgomery multipliers, we need to
convert all residues out and in Montgomery format whenever we reinterpret
a variable modulo qi as a variable modulo qj . In both algorithms, this
happens on the fifth line.



Algorithm 2 Small Montgomery reduction

Input: a ∈ RQP , Q, P and m s.t. ||a||∞ ≪ P ·m
Output: b ∈ RQ s.t. b = a · P−1 (mod m) and ||b||∞ ⩽

(1 + ϵ)m/2
1: function SMALLMONT(a, Q, P , m)
2: for i ∈ {ℓ+ k, . . . , ℓ+ 1} do ▷ Reverse direction
3: r ← [−a(i) ·m−1]qi
4: for j ∈ {1, . . . , i− 1} do
5: a(j) ← [(a(j) +m · r) · q−1

i ]qj ▷ MAC unit
6: end for
7: end for
8: return (a(1), . . . ,a(ℓ))
9: end function

B.3. NTT-Friendly Bootstrapping

Algorithm 3 gives the pseudocode for our NTT-friendly
bootstrapping. This is a direct translation of Lemma 4.1 to
the homomorphic domain, including the following steps:

• Line 4 multiplies the input ciphertext by pe−r and
an auxiliary modulus b. The auxiliary modulus is
introduced for compensation on line 7.

• Line 6 extends the ciphertext modulus from q to Q ·
q ·b using fast base extension from Algorithm 1. This
procedure can lead to undesired overflows modulo
q, which causes ||di||∞ to be greater than q/2. This
increases the tightness of the bound in Equation 5,
but fortunately, the overflows can be compensated
in the next step. Finally, note that this step assumes
that Q, q and b are pairwise coprime.

• Line 7 compensates for possible overflows modulo q
introduced on line 6. The small Montgomery reduc-
tion has two side effects: it decreases the modulus
from Q · q · b to Q · q, and the result gets an addi-
tional factor b−1 (mod q). The latter was already
compensated by the factor b on line 4.

• Line 8 reduces the result modulo pe and further
decreases the modulus from Q·q to q. Now the result
gets no additional factor since q = 1 (mod pe).
Note that this step is necessary to minimize the noise
growth in the next step.

• Line 10 takes the inner product between the cipher-
text and the secret key. The secret key is processed
homomorphically in the form of a bootstrapping key.

• Line 11 performs homomorphic coefficient-wise
rounding. This functionality is the same as in HElib,
so we can reuse its implementation. Note that this
step dominates execution time in practice.

Finally, we remark that bootstrapping comes in two
variants: the ciphertext either encrypts an element from Rt,
or a tuple (m1, ...,mℓ) ∈ Zℓ

t as explained in Section 2.2.1.
The second variant is known as thin bootstrapping [18].
Although Algorithm 3 describes the first variant, it can easily
be ported to thin bootstrapping. We omit further pseudocode.

Algorithm 3 NTT-friendly bootstrapping

Input: ct ∈ R2
q and bsk ∈ R2

Q s.t. q = 1 (mod pe)
Output: ct′ ∈ R2

Q s.t. Dec(ct′) = Dec(ct)
1: function BOOTSTRAP(ct, bsk)
2: for i ∈ {0, 1} do ▷ ct = (c0, c1)
3: for j ∈ {ℓ+ 1, . . . , ℓ+ k} do
4: d

(j)
i ← [c

(j)
i · pe−r · b]qj

5: end for
6: di ← FASTBASEEXT(di, q, Q · b)
7: c′i ← SMALLMONT(di, Q · q, b, q) ▷ Mod q
8: c′i ← SMALLMONT(c′i, Q, q, pe) ▷ Mod pe

9: end for
10: ct′ ← ADD(MUL(bsk, c′1), c′0)
11: return ⌊ct′/pe−r⌉ ▷ Same as in HElib
12: end function

B.4. Choice of Parameters

We note a few things about the concrete choice of the
parameters e and q:

• The constraint from Equation 5 is in practice de-
termined by the first term. The reason is that we
can make the contribution of the second and third
term significantly smaller, respectively by taking
q sufficiently high and preventing the noise from
growing to its maximum level. Hence the concrete
values of e and q mainly depend on the secret key
distribution and the ring dimension N .

• Our proof describes a very conservative way to
choose e and q. However, the complexity of boot-
strapping increases heavily with the magnitude of e,
so it is beneficial to take it as low as possible. Halevi
and Shoup [18] have therefore proposed a statistical
analysis on the first term of Equation 5. Leveraging
their approach, we can choose e based on a trade-
off between time complexity and probability of a
bootstrapping failure.

• For a plaintext modulus of 15 bits or less, we can
directly take q as an NTT-friendly prime that satisfies
the extra constraint q = 1 (mod pe) of Lemma 4.1.
For higher precision plaintext spaces, this is not di-
rectly possible anymore since the native word size of
BASALISC is 32 bits, and the requirement of q to be
NTT-friendly would already consume 17 bits. Hence
we must apply a brute force or meet-in-the-middle
search for an appropriate q that factors into 32-bit
NTT-friendly primes. This is a tedious procedure,
and better practice is to weaken the constraint of
Lemma 4.1 to gcd(q, pe) = 1. However, then we
need to change the last equation in Lemma 4.1 to

m← [q · ⌊q−1 ·w/pe−r⌉]pr

for q−1 ·q = 1 (mod pe). We omit the adapted proof
and pseudocode.
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